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ABSTRACT
In this study, we devel@oland assesslithe potential of dynamic control strategies for a domestic scale
1-kW solarthermal powesystem based on a noacuperated organic Rankine cycle (ORC) engine
coupled toa solar energy systenSuch soladriven systems suffer from pddad performance
deterioration due to diurnal and ingasonal fluctuations in solar irradiance and ambéenperature.
Realtime control strategies for adjusting the operating parameters of thesesslyatenshown great
potential tooptimise their transient response to tiraarying conditions, thus allowing significant gains
in the power output delivered hige system. Dynamic model predictive control strategies rely on the
development of computationally efficient, fasilving modelsIn contrastraditional physicdased
dynamic process models are often too complex to be used fdinneatontrols Machire learning
techniques (MLTSs), especially deep learning artificial neural networks (ANN), have been applied
successfully for controlling anaptimising nonlineardynamicsystemsin this study, he solar system
was controlled using a fuzzy logic controllgith optimised decision parameters for maximum solar
energy absorptiorzor the sake obbtainingthe optimal ORC thermal efficiencyt any instantaneous
time, particularlyduring partload operationthe firstlaw ORC model was first replaced by ast
solving feedforward networknodel, which was themiegrated with a mukbbjective genetic algorithm,
such that the optim&®RC operating parameters can be obtainBdspite the fact that the feedforward
network model was trained using steatgte ORC pdormance data, ishowed comparable results
compared withthe firstprinciple model in the dynamic context, with a mean absolute error of 3.3
percent for power prediction and 0.186 percentage points for efficiency prediction.

1 INTRODUCTION
Solar energy i| particularlypromising energyesourcedue toits clean,abundancand sustainable
benign naturePhotovoltaic (PV) (Aktas et al.,, 2018 and Qiu, 2016) and P\Mhermal (PVT)
(Herrandcet al., 2018; Wang et al., 201t@chnologies have gainsdnificart attentionin recent years
as ameando create electricity from the sun’s lightfributed to the fall in price of these technologies
The Organic Rankine Cycle (ORC) engine is onthe$etechnologies being explored as an alternative
to PV for the transformation of solar radiation into electrical enddgycombining ORC with thermal
energy storage (TES) system, theegratedsystem can store solar heat (for example, as hot water) for
domesticheatsupplyingand electrical load profile matety, giving it an advantage over scRY
systems (Freeman et al., 2015).

The Organic Rankine Cycle (ORC) is a closed thermodynamic power cycle based on the Rankine cycle
thatcanproduce electricity in the range of a f&ilowatts to ten megawattdnstead ofusing water as

the workingfluid, ORC systenemployso r gani ¢ p ui deseratetectrecity ramdomiarid y
mediumtemperature heat sources from 65 °C up to 400P&rolleseand Cocco, 2019 In a solar
powered ORC,darirradiationis utilisedto heat and evaporate tdRCworking fluid at high pressure

which is then expanded to create mechanical shaft work. This shaft work candee wdiilectly as
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mechanical work, such as driving a pump, or it can be used to generate enemggndeatorFreeman

et al. (2017) examined several combinations of collectors and phase change materials (PCMs) to
investigate thermal energy storage alternatives for a-8%&2 system, with findings indicating that a
400500 L PCM storage tank was readrin the UK to produce a 1 kdtale power outpuRamos et

al. (2018)optimised a solalORC system for home use, taking into account two different types of solar
collectors and seven different organic working fluids. They reported that with R245favasrkieg

fluid and R1233zd as the working fluid, the net power output ofia 68olar collector array in south
European locations (average irradiance 600 W/m2) was 460 W and 1700 W, respectively.

Solar-ORC suffers from partload performance deterioratiomi@l todaily and interseasonatlynamic
fluctuations in solar irradiance and ambient temperalMioelelbasedredictive control strategiesan

be used tonitigate these problemk does, however, rely on the creation of computationally efficient,
fastsolving models, whereas traditional physitalsed models are usually too complex to be employed
for reattime controlsDatadrivenmodels particularlydeep learning artificial neural networks (ANN),
have beemecentlydemonstrateduccess irtontrolling andoptimising nonlinearsystemsZhaoet al.
(2020) reviewed ar t ityeddsignlofORGinttre bspdcty & deciston makipg, i e d i
parametepptimisationand parameter predictioang et al. (2018) used a feedforward ANN reiotth
optimise an ORC system for waste heat recowdry diesel enginelhey found if the ANN is coupled
with the genetic algorithm, prediction accuracy can be significantly imprdRadgiet al. (2019)
compared three different ANN models, namely thedferward, Recurrent and Long Short Term
Memory networks, in the prediction of the dynamics of a 20 kW ORC syéid¢houghthe Long Short
Term Memorymodel shows thebest performancewith a meanerror smallerthan 5% it is still
challengingto be implemented in the sol@RC architectureowing to thehigh uncertainty of the
weather which can be hardly predictedrrectlybased on histizal data

Imranet al. (2020)comprehensively reviewed the dynamic control method over the. ygaodin et
al. (2011) presentetthe dynamic modelling andontrol strategy oORC to improve efficiency during
partioad operation. Their simulation results show that a model predictive control strategy based on
optimisedevaporating temperature regulatirhichmakes use of a steadtateoptimisationmodel of
the system bracketing a wide rangevofking conditions, gave the best resuliiset al. (2018studied
the influence factor such as the thermal storage sy§i@éi®) capacity,solar fluctuation (priod,
amplitude, average solar) and evaporation temperaturthe dynamic performance of sef@aRC
systemThey suggestetES capacity should be selected according to local solar fluctuationprove
system stability Baccioliet al. (2017¥simulatedhe dynamic performance aémallscale solar power
plant with compound parabolic collectors and ORC mothr¢heyearlong operationTheyadoped
asliding-velocity control strategy, allowg the systento operatevithout any storag.

To the best of thauthorsknowledgeno previous study in the literature has apptiathdriven models

to dynamically controkolarORC plants Further resear@s are neededin developng an effective
control logic formaxmising the solarenergyabsorption while taking into account numerous aspects
such as diurnal and intseasonaluctuations as well as regime changes in thermal storage capacity.
In this study, we developetismaliscale solalORC system model, which is designed liouselolds
combinal heatand powerusage focusing on thespecific user groupt the location of LondarAn
optimisedfuzzylogic control algorithnwasused tanaximisethesolarenergyabsorbed by the collector
The firstprinciple ORC model is replacedby a datadriven machine learning model (feedforward
neuron network), which ithenintegrated with a muHlbbjective genetic algorithm (GA) to estimate
optimal system operating parameters in-teaé.

2 SYSTEM AND MODELLING DESCRIPTION
TheORCsystemmodelwasdevelopediccording to thactualsetupof the ORC testing facilityocated
at the Clean Energy Processkaboratoryof Imperial College LondonA detailed discussion of the
ORC test facility was described hinamba et al(2019. The performaoe of a norrecuperative 4
kWe ORC engine with a rotary vane pump, bragkde evaporator and condenser units, and a scroll
expander was investigated experimentdtlis worth mentioning that the test facility does not include
the solar system so thagetsolar system was modelled by referring to the technical datasheet or literature.
The solar systemsesTherminol VR1 as the heat transfer fluid (HTE) heatthe Qganic working
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fluid (R245FA via a plat evaporator The hightemperature, higpressue working fluid expands in
the expander to generate power before being cooled by cooling water in the condendensed
working fluid is then pumped to the evaporator, completing the cycle

Although the schematic view shows a solar and ORC cowyietem.as showrin Fig. 1(a), they are
physicallydecoupled and modelled in differesatftware The ORC system was modelled using the one
dimensional differential equations with the physics described by the conservation of mass, momentum,
and energy. Ttee equations are solved by a differergigiebraic system solver DASSL using Dymola
software, which is a simulation environment for Modeliesed models. Small tins¢eps are required

to solve these system equations to prevent chattering concerns loadsadmic boundary conditions
(Quoilin etal., 2014). Optimal control algorithme necessary for the best adaptation to-ewanging

heat source conditions, suchafjusing the pump speedndexpander speed in retiine. Depending

on the number ofeabkign variables, an optisaition process is generally converged after thousands of
iterations The authors employ an Intel Core-i1700 to simulate the firdhw model, and one
casditerationcomparable to thdaily operatiorof ORC system takes 130 mirutes of CPU time to
complete.Thus it is not computationally efficient to use solgystem andORC systemcoupled
simulation method$or optimisation purpose Researchers (Christidis et al., 2012; Pérdmarren et

al., 2020; Benalcazar 2021) used a eniinteger programming framework to simulate CHP with
various scale TES and optimised the capacity of the TES; however, this is out of the scope of this study
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Figure 1: (a) Schematic view of the solalriven ORC systerfb) solar systensimulation method

The solaffield wasmodelledin Simulink, utilising the Eulersolve with a fixed timestep of 5 seconds

The solar system was physically decoupled with the ORC cisiishown in Fig. 1(bjut it was
virtually connected to the ORC by using a heat rejection unit, which releases the thermal energy from
the solar circuit as if it was used by the ORC sysiHm. amount of rejected energy rates is calculated

by dividing the demanded power by t&&RC thermal efficiency, which is calculated using an ANN
model that will be discussed in section.3f3he storage temperatugnesbelow the intended level

(120 °C) or the heat source flowrate falls below the threshold value of 0.5 kg/s, the quam¢ist of
rejection is set to zero, indicating that the ORC has been closed, protaioiyimgefficient operations.

In summary, the firskaw ORC model served two functions. To begin, createeadystate dataset that

can beutilisedto train a datalriven sirrogate model later. Second, it can be used to assess the dynamic
performance of a dat@riven model. The solar model was used to test the efficacy of various control
strategies under various seasonal conditions.

2.1 Solar collector

The ®lar field use an evacuated flaplate collector, designed by TVP Solafhe collector array is
modelled as soutfacing, with an inclination angle of 3&r the UK (Freemaret al., 2017)The heat
absorbed by the collector is detenmd by the solar irradian€6&), totalarea of collector arraf )
and collector efficiencys ), given by EQ. 1

0 "1 s (1)
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The collector efficiency- is calculated byEQ. 2, wheréXis the ambient temperature , 0 and®
arecorrection parameters of the produehich are 0.76, 0.51, and 0.0@&&pectively

on - S ¥AX O AKX @

2.2 Tanks

HT and LT tanks are developed by considering the conservation of mass and energy sqdumeion
convective healbssis adjusted to a level that the storage tempezgtlb03 ) graduallydrops to the
ambient level after 8 hours if there is no flavevinginto or out of the tank, as referred to Baccioli et
al. (2017).The filling level (FL) ofthetank is calculated byhe EQ3, where” is the density of the heat
transfer fluid inside the tank; is the accumulated fluid mass inside the tadk; is the volume of
tank and is chose as a design parameter in this study. The actual valuendf be determined from
an optimgation studyas will be dscussed in Section 3.2.3.

5
mt w
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2.3 Evaporator and condenser

The evaporator usesSWEP B12LX18 brazeglate heat exchang@dX) with an area of 08ld and
a nominal capacitgf 10.63 kV. The condensemploysan Alfa Laval CB6630H-F with a total heat
transfer area of 1.6&2 anda nominal capacity of 22W{. Mersch(2019) evaluated the effects of
different heat transfer correlations on the accuracy of model prediction tengame types of
evaporator and condensdhey found Bogaert correlatiorfBogaertand Boles, 1995for Reynolds
numbers below 1000 and the Chisholm correlat©hisholmand Wanniarachchil991)for higher
Reynolds numbergives the best model predictidor singlephase heat transfafor two-phase heat
transfer, they recommendadingCooper correlatiofCooper, 198%to takethe evaporate pool boiling
effectsinto accountand use Thonon correlationThonon and Bontemps, 2002 calculate the
condensation heat transfer

Table 1. Design parameters bfazedplate heat exchangers

Design parameters Evaporator Condenser
Num of plates 18 33
Patternwavelength (m) 2.2e2 3.2e2
Pattern wave amplitudgm) 1.2e3 1.6e3
Pattern waveangle(degree) 60 35
Wall thicknesgm) 1.8e3 3.5e3

However, due to the lack of detailed design informatoich as the number of platesll thicknesses

and pattern anglestc, this study used a finining procedurd¢o estimate these parameterhisis a
guessandverify processn which the HX design parameters are first approximated within a reasonable
range and then matched to the intended heat transfeiTaeeéinetuning process was performed for
each HX for ten distinct operating points witarying heat source temperatures, mass flowrates, and
work fluid mass flowrateg\s listedin Table.1, the HX design with the lowest mean differences relative
to Mersch's(2019) results was decided.

2.4 Expander

The ORC uses amallscale(~1 KW) scroll expandr of which performance map wasperimentally
charactesed by Lemort et al. (2012)The expander was designed withswept volume oR2.4

ait 7i ‘Qand a volume ratio of 2.89he machine's highest isentropic efficiency is 71.03 percent,
indicatingthat it has good volumetric performandes per EQY4, fifth-order(n=5) and seconarder
(n=2) polynomialare usedo fit the experimentallymeasurecfficiency andilling factor, resultingin

Y 99.31percentand  99.62 percentespectivelyThe expander's magntum inertia was ignored

in this investigation since the expander's response time, which is arelihdéonds (Unamba et al.,
2019), is insignificantompared to the response time of the sGIRIC with TES.
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2.5 Pumps

ThesolarORC system hahreepumpswith a constant isentropic efficiency of 0.75 assumed for pump
1 andpump 2due to lack of experimental dafBhis assumptiocanreasonaly estimaethep u mp 6 s
power consumptiomsthe pressureatios of the first two pump aresmall (ess than 1)1 while the
ORC pump shoulbeexplicitly modelled due tthelargerpressure ri@o encounteredlhe performance
prediction of the ORC pump was basedtib@look-up of a spline surface fitted by the experimental
dataprovided byMersch(2019, as shown in FicR.
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Figure 2: ORC pumpmapwith spline surface fitted by the experiment daiesch 2019)

2.6 Feasbility of ORC model

The ORC model's performangeasassessed using experimental data provided by Imperial College
London's Clean Energy Processes Laboratory (Unamba et al. R@#i®) variable heat source
temperatures and mass flowrates (16 @/g g/s), and constant heat sink temperature of Hhd wate
flowrates of 0.4 kg/s. As illustrated in Fig.3, the mean averaged percentage error is 3.2% at the heat
source temperature is 1320. Although the error (8.2%) is higher at a higher heat source temperature
(140 °C), the primary goal of this researchas$ to construct a higfidelity first-law model, which has
already been described in many publicatidnstead, theobjectiveof this research was to create a
surrogate model of the firliw ORC model and assess the efficacy of employing the surrogate model
for realtime control. As a result, the current model's accuracy indicates that it can reflect the overall
trend of ORC pdormance under various operatiognditions

Heat Source Temperature: 120 “C Heat Source Temperature: 140 ° C

500 ® MNetPower W] L ®  Net Power [W] -
— y=x .- — y=x f,g,l

450 === y=x+0.1x // 4 —-—- y=x+0.1x PP

Model Prediction
g
Model Prediction

150 200 250 300 350 400 450 150 200 250 300 350 400 450 500
Experiment Data Experiment Data

(a) (b)
Figure 3: Net power comparison between experimental data and model prediction on the basis of
ORC system level at the heat source temperature of (a)pl@@d (b) 14Q10

3 SIMULATION AND CONTROL METHODOLOGY
3.1  Simulation boundary conditions
Diurnaland seasonal variations of sal@adiancewereobtained from an opesourcepythonpackage
pvlib (Holmgren et al, 2018) which providesa set of functions and classes for simulating the
performance of photovoltaic energy systeds.shown inFig. 4(a), direct normalirradiationprofiles
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were retrievedfor typical days in summer winter and Autumrin London which aremid of July,
January and Octobefor simplicity, the weatheronditionsof Springassumedhe sameas Autumn.
The acquired direct normal irradiance profiles were rectified by taking into account the solar incidence
angle on the tilted collector plane, and then fluctuating noises were introduced to capture the dynamics
causedby cloudy weatherDiurnal and seasonal domestic electriecityo ad pr oyl WK f or t
Energy Research Centre, 19%fe shown inFig. 4(b), typically showng a characteristic peak in
consumption in the evening occurring betwe8r3Q and 1980. In the winter, the largest power usage
was seen, along with the lowest irradiance and temperétureder to meet the higher power usage in
the winter, the solar collector would need a larger panel area than in the summer.
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—-= Winter

09+ —— Summer N
| -=- Spring/Autumn i
—-— Winter | ~
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Irradiance [W/m?]
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Figure 4: (a) Diurnaland seasonafariations of solairradianceand ambientemperaturéb) UK
average househol d el e(dKBEnérgy RasgarcltGemE87inpt i on pr o

3.2 Solarfield dynamic control method

The objective is to obtain a control solution that optimise the flowrates discharged by pump 1 and
pump 2 such that the solar system gaximise the use of solar engrgrhe decision on the pump flow
rateis influenced byariousinput conditionsi.e. the solar irradiance, filling level of tank and storage
temperatureand thesénput conditionscan also affect each other, resulting in mgbdelnonlinearity
Safety precautions must be taken, such as not overcharging and emptying the tanks.

3.2.1Pump 1 controiethod The solar field's control logic should be built to suit the safety system's
requirements while also allowing the solar field to supply sufficient energy to the ORC dystehis
reason,fuzzy control algorithmwas used to determapump 1 flow rate The fuzzy logic is a
multivalued logical system that provides the value of an unknmwput by attaching the degree of
known input of the systenThe fuzzy logic method divides inputs and outputs into linguistic levels
based on theiralues, which are known as membership functions, and then calculates the degree of truth
for each level Fuzzy logic controller usesfewer resources and saves substantial computation time
thereforeit can be used for reéime control purposes.
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Figure 5: Membership functions dfizzy logicinput variables

As shown in Fig5, thelinguistic levels assigned to three input variapfid®ormaliseds ol ar i rr adi ar
AHTank filling ahnkvelt®draamgde fdtHImMper at ur eHigh.dhee L : L «
y-axis is called the degree of membershipwhich a higher value means the case has a higher
possibility of belonging to the corresponding levéls shown in Fig. 6,He output variable was

classified into five linguistic levels with additiondL (very low) and VH (very high) levels.
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Once the membership functions of the input and output variables have been specified, the next stage is
to define the rules and create logical linkages between the model inputs and outputs. As listed in Table.
2, ninerules have been defined. It is worth mentioning that the first two rules ensafieoperation of
the systemstatingthat if the filling level is low, the flow rate of pump 1 muxst set to very high
preventinghe useup of fluid inside the tank and vice versa.
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—
—
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|

0.2 0.4
Pump 1 Mass Flow Rate [kg.s™']

Figure 6: Membership functions diizzy logicoutputvariables

Table 2: Decision matrix of the fuzzy logic controller used for pump 1 flowrate control
Rule Num Irradiance Filling Level HT Tank Temperature Pump 1 Flow ate

1 any L any VH
2 any H any VL
3 L M any VL
4 M M L L
5 M M M M
6 M M H H
7 H M L M
8 H M M H
9 H M H H

VL: Very low; L: Low; M: Medium; H: High; VH: Very High

The last and most important step islezidetherange for each linguistic levahddefine thdocation

of the highest possibilityThis process was conventionalgstablished based almee ngi neer 6 s
experiences ankhowledge This study employGA for this decision makingAs highlighted inFig. 5

andFig. 6, a red dot means it is a desigariableto be optiméed A blue dot means it is a dependent
variableand its location is influenced by the nearby design varidiile.relative distance between the

design variables anddjacentdependent variables controlled byintroducing additional design
parametersi black dot means that point is fixed through the stiliyte that eacpoint has one degree

of freedomand carmowve alongthe x-axis only

3.2.2 Pump2 control methodump 2 controls the amouant heat flows going througthe evaporator,

thus having a direct influence on the ORC performarfiemp 2's control logic states that if the-HT

storage Tank's temperature is less than the minimum required temperature, in this case 120 °C, pump 2
produceghe same amount of flowrates as pump1, allowing the storage temperature to rise as the flow
recirculates; otherwise, the flow rates of pump 2 refer to a 3rd order polynomial as perTH3.

equation sayshatwhenthe fill level of LT-tankis low (0<FL<0.2), pump2 increases its flow rate,
avoiding the use up of the tankds <bl<l).Panpé@d vi ce
maintains aelativelystable flow rate while the L-fank is at a medium fill levéD.3<FL<0.7), allowing

for a smodh ORC operationPump 2's nominal flow rate is close to 0.6 kg/s, whschxpected to

produce highethermal efficiencybasedoerformance map

a od X TB@D &0 p (5)

3.2.30ptimisation of the controller in the soldield: the solar system has 15 different parameters that
define the fuzzy logic controllemwo new parameters were added to the ogénto limit the system

to an acceptable scale: tank volume and solar collector Areaulti-objective Genetic Algorithm
namelyNSGA-II optimiser, was usd for maximising the ORC daily work outpuhe maximum HT
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tank storage temperatusbouldnot exceedl54J0, asthis would cause the ORC fluid to surpass the
critical temperaturéY of R245FA resulting ina supercriticalcycle with high operating pressure
beyond theproposed a c i | i t gcops whidheissusuglly achieved usinghonlinearconstraing.
However,it significantly raise the computing costsit necessitates an exploratiprocesgo find a
feasibledesignoption before starting the actual simulatid¥or this reason, we impose a design choice
similarto thenonlinearconstraintwith thesecond GAobjective beindo minimise differences between
the maximum HRank temperature and th€ of R245FA. It also sets a safety margiof 4 K,
resulting ina maximum storage temperatweless than 156 . Theoptimiser ses thepopulationsize
of 200 andthe crossoveffractionof 0.65.The tank volume is set with a lower bound of 200 L and
upper bound of 500 Landthesolar collector ares ranging fronl5& and 704 . The design limits
of thefuzzy logic controlleiare not listed here as they are mbtiitive.

Table 3: ORC simulation matrix

Parameter Values

Expander speedHz 10+5k, k= 1, 2, é7
Pump Flow Rateg/s 15+5k, k = 1,
Heat source tempo 120,130,140,150

Heat source flow rafég/s 0. 4+0. 1k, k =

3.3 ORC dynamic control method

ORC dynamic control is designed to maxseniORC thermal efficiency for the targedwer output
under continuously changing heat source conditidhs. firstlaw dynamic ORC model was used to
investigate several steadyate operating points as shown in the simulation mafrikable.3. After

the simulation complese an extensivedatagt is generatedincluding 4279 validORC results Fig.7
showsan example of the ORC performance roaper the heat source temperature of X2and heat
source mass flowrate of 1 kgis.has been discovered that the same power output may be achieved
using various combinations of expander speeds and pump flow rates.
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Figure 7: ORC spline fitted (a) net power and (b) thermal efficiency contours as a function of
expander speed and pump flowrate under heat source flow rate of 1kg/s anatiemérl 2Q0

Feedorward neural networksere trained and represented as the surrogate model of thaviinstodel.

The overall dataset was randomly split into 90% training dataset and 10% test dratedetward
neural networkare the most basic ANN architecture, which is composed of neuronssedyamiayers
forward connected to eadther.The Keras platform was used to implement fisedorward neural
networks.The input layer has four neurons corresponding to the fousidegarameters as listed in
Table.3. Only one hidden layer that has 450 units was used as it is vddegptedhat one hidden
layer is enough for the resolution of almost any regression problem. The output layer has one unit,
representing either theRT thermal efficiency or the ORC net power. A dropout rate of 0.2 was used
to preventoverfitting. The hidden layer uses ReLu as the activation function. Adam eptimith a
learning rate of 0.001 was used to mirsenthe mean square errors during ttaéning processThe
training phase has been performed using a batch si® of

Fig.8 shows theperformance of théeedorward neural network®n the prediction of ORC thermal
efficiency and ORC net power, and the respectvare0.98 and 0.99The training and testing datasets
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both have the sané value, indicating thabverfitting unlikely happensThe multi-objective GAwas
thenintegrated with the datdriven modeto find the ideal expander speed and pump flow rate that can
result in maxinnm thermal efficiency and supply the target power under a certain heat source
temperature and flowrate condition.

9 1400 2
s Training Data, R? = 0.98 + Training Data, R? = 0.99

84 = Validation Data, R = 0.98 1200 = Validation Data, R® = 0.99
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(a) (b)
Figure 8: Performancef feedorwardneural networks on the prediction of (a) ORC thermal
efficiency and (b) ORC net power

4 RESULTS AND DISCUSSION
4.1  Solar systemoptimisation results
The dynamic simulation of the solar system sthstsassuming thaboth tanksreach the thermal
equilibrium conditions antdaveanequivalenfilling level of 0.5. Fig.9 shows theptimisationdataset
under different seasonal conditions, with the optimal design highlighted by a red pentagram. The
optimal designs were selected from the dataset by three steps (1) filtering the cabegette
maximum HTFtank temperature closer ¢ 3) to the desed value (153 ); (2) the case that has the
maximum daily work output was deemed as the optimal; (3) if there is no case found in the first step,
the optimal design was selected based on the highest work .olitutimeresolved operational
profiles of optimised cases, such as instantaneous tank fill level, tank storage temperature, and mass
flowrates of pumps, can Heund in Appendix A. As observedn Fig. 9(c), the maximum storage
temperature is lower than 150 due to low irradiances during winterte.
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Figure 9: Solar system timization results of (a3pring/autumr{b) summer (c) winter

Table 4: Summary of design and operational parameters of the optimal cases
Spring/Autumn  Summer Winter

Max Generatios 48 24 25
Tank volume(L) 203 494 201
Collector aredi ) 433 467 698
Daily work output(kWh) 1.95 2.32 1.75
Maximumtanktemp 6 ) 152 152 136.4
Start time 09:46 10:30 10:53
Stop time 14:18 16:21 14:12
Operation hours 4:32 5:51 3:19
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Table. 4 summariessome key design and operational parameters of the optimal ddse®ORC
produces thenost significahdaily work of 2.32 kwWh during theummer, followed by 1.95 kWh in the
spring/autumn, and 1.75 kWh in the wint€he tankcapacitief springautumrwinter seasons tend
to reach the lower bounaf the design limitsas it is easier fas smaller sizd tankto reachthe ORC
trigger tempeaitureof 1203 underlow irradianceconditions The summer case has the largest tank
volume of all the cases, storing the most solar energy during the day and havimgsth@olonged
working period of around 6 hour&ccording to the optinsation results, for the yedong operation in
the United Kingdom, it is advised fostall two 200 L tanks (no PCM) for both HT and LT tanks.
During the spring/autumn and winter, one HT (LT) tank will be utilised instead of two.

The collector area in thgpsng/autumn cases is comparable to that in the summer Ghsesollector
area othewinter case almosteaches the upper bouafithe design limitsattempting tanaximise the
energy absorption from the sun.

4.2 ORC optimisation results

A trained feedfawvard neuron network can forecast ORC power and efficiepsymply providing the
input parametersuch asxpander speed, pump flowrate, heat source temperature, and heat source
mass flowrate The instantaneou®©®RC boundary conditionsjamelythe HT-tank temperature and
Pump 2 flowrate, are discrstd into multiple quassteady pointsas shown in FiglO. Therefore, the
optimal expander speed and pump flowyratieich can result in the maximal thermal efficiencan be
obtained by integrating a mulbbjective GA with the trainedeedorwardneuron networkSimilarly,
thedifferencesbetween theequired household electricity consumptérd modepredicted valuavere
served asnotherobjectiveto be minimsed. This process waspeated for eaadtliscretsed operating
point With the current CPU power, the optsaiion process converges in less than 30 secosidg
thefastsolving datadriven model.

As Fig. 7 indicates each optingation processnay producea variety of feasibl®utputs ofexpander
speeds and pump flowrates, all of which can result in the same thermal efficiency and power output
which may lead to system instabiliti@® mitigatethis, following the determination of the first set of
outputs, the least distance critewasused to £k the subsequertutputs.The distance refers to the
differencesn expander speeds and pump flowrates between consecasi@gas pefEQb5. It's worth

noting that these variables are first norsedi ensuringthat they are all equally weightedncerning

the distance.
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Figure 10: Instantaneousperationaperformance data of (a) storage temperature (b) pump flow rate
(c) household power demand

Fig. 11shows a diagram, whicscummarses theworkflow of the proposed dynamic control method

The top-right figure shows he optimal ORC control solutionsased on a series of stesstgte
optimisation of the discreied points.The final and most important stép to examinewhether the
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required power can be met whilst maintaining excellent ORC thermal efficiBacshown in Figl2
(a), boththe datadriven model andhefirst-law model capture the trend of the target valamg the
control solutionsBut it seems the modetould notdamp the secondary fluctuatiomssulting in a non
smooth operatingharacteristiclt was found that the secondary fluctuatiovare mainly influenced
by the pump flow rates. Therefore, it is anticipated that using data smoatlgiomithms, such as
moving averagsfilter, canmitigatethis situation Nonetheless, the dathiven modeldemonstratea
good correlation with the firdw model,notably in terms ofefficiency prediction, where the data
driven modehlccuratelycapturesevenminortraits Given the facthat the optingation of the dynamic
datadriven ORC model was achieved in a qegteady mannethe smalldiscrepanciebetween the
first-law modeland datedriven model imply the dynamics can be negleethdn TES isncluded.

The mean absolute inaccuracy for the power estimate is 3.3 percent, while the mean absolute difference
for the efficiency prediction is 0.186 percebiuring the ORC's operation, a high averaged thermal
efficiency of 7.5 percent was attained, dsstrating the effectiveness of datdven methodsn
controlling nonlinear systems
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Figure 11: Summaryof the proposedlynamic control method
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Figure 12: Comparisorbetween the firskaw model and the datdriven model in terms of (a) net
power output and (b) thermal efficiency

5 CONCLUSIONS
This studyintends todevelopa dynamiccontrol strategy foa domestic scale-kW solardriven ORC
systemin order to mitigate the inefficiency caused daily and interseasonasolar energy changes
The solardriven ORC system was decoupled itwo subsystemand optimsedseparatelyln the solar
field, the flowrates released by pumps was managed withizy logic contrder that used redime
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