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ABSTRACT 
In this study, we developed and assessed the potential of dynamic control strategies for a domestic scale 

1-kW solar thermal power system based on a non-recuperated organic Rankine cycle (ORC) engine 

coupled to a solar energy system. Such solar-driven systems suffer from part-load performance 

deterioration due to diurnal and inter-seasonal fluctuations in solar irradiance and ambient temperature. 

Real-time control strategies for adjusting the operating parameters of these systems have shown great 

potential to optimise their transient response to time-varying conditions, thus allowing significant gains 

in the power output delivered by the system. Dynamic model predictive control strategies rely on the 

development of computationally efficient, fast-solving models. In contrast, traditional physics-based 

dynamic process models are often too complex to be used for real-time controls. Machine learning 

techniques (MLTs), especially deep learning artificial neural networks (ANN), have been applied 

successfully for controlling and optimising nonlinear dynamic systems. In this study, the solar system 

was controlled using a fuzzy logic controller with optimised decision parameters for maximum solar 

energy absorption. For the sake of obtaining the optimal ORC thermal efficiency at any instantaneous 

time,  particularly during part-load operation, the first-law ORC model was first replaced by a fast-

solving feedforward network model, which was then integrated with a multi-objective genetic algorithm, 

such that the optimal ORC operating parameters can be obtained.  Despite the fact that the feedforward 

network model was trained using steady-state ORC performance data, it showed comparable results 

compared with the first-principle model in the dynamic context, with a mean absolute error of 3.3 

percent for power prediction and 0.186 percentage points for efficiency prediction. 

 

1 INTRODUCTION  
Solar energy is a particularly promising energy resource due to its clean, abundance and sustainable 

benign nature. Photovoltaic (PV) (Aktas et al., 2018; Li and Qiu, 2016) and PV-thermal (PVT) 

(Herrando et al., 2018; Wang et al., 2019) technologies have gained significant attention in recent years 

as a means to create electricity from the sun's light, attributed to the fall in price of these technologies. 

The Organic Rankine Cycle (ORC) engine is one of these technologies being explored as an alternative 

to PV for the transformation of solar radiation into electrical energy. By combining ORC with thermal 

energy storage (TES) system, the integrated system can store solar heat (for example, as hot water) for 

domestic heat supplying and electrical load profile matching, giving it an advantage over solar-PV 

systems (Freeman et al., 2015).   

The Organic Rankine Cycle (ORC) is a closed thermodynamic power cycle based on the Rankine cycle 

that can produce electricity in the range of a few kilowatts to ten megawatts. Instead of using water as 

the working fluid, ORC system employs organic þuids to e ciently generate electricity from low- and 

medium-temperature heat sources from 65 °C up to 400 °C (Petrollese and Cocco, 2019).  In a solar-

powered ORC, solar irradiation is utilised to heat and evaporate the ORC working fluid at high pressure, 

which is then expanded to create mechanical shaft work. This shaft work can be utilised directly as 
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mechanical work, such as driving a pump, or it can be used to generate energy via a generator. Freeman 

et al. (2017) examined several combinations of collectors and phase change materials (PCMs) to 

investigate thermal energy storage alternatives for a solar-ORC system, with findings indicating that a 

400-500 L PCM storage tank was required in the UK to produce a 1 kW-scale power output. Ramos et 

al. (2018) optimised a solar-ORC system for home use, taking into account two different types of solar 

collectors and seven different organic working fluids. They reported that with R245fa as the working 

fluid and R1233zd as the working fluid, the net power output of a 60 Í  solar collector array in south 

European locations (average irradiance 600 W/m2) was 460 W and 1700 W, respectively. 

Solar-ORC suffers from part-load performance deterioration due to daily and inter-seasonal dynamic 

fluctuations in solar irradiance and ambient temperature. Model-based predictive control strategies can 

be used to mitigate these problems. It does, however, rely on the creation of computationally efficient, 

fast-solving models, whereas traditional physical-based models are usually too complex to be employed 

for real-time controls. Data-driven models, particularly deep learning artificial neural networks (ANN), 

have been recently demonstrated success in controlling and optimising nonlinear systems. Zhao et al. 

(2020) reviewed artiýcial intelligence applied in the design of ORC in the aspects of decision making, 

parameter optimisation and parameter prediction. Yang et al. (2018) used a feedforward ANN model to 

optimise an ORC system for waste heat recovery of a diesel engine. They found if the ANN is coupled 

with the genetic algorithm, prediction accuracy can be significantly improved. Palagi et al. (2019) 

compared three different ANN models, namely the Feedforward, Recurrent and Long Short Term 

Memory networks, in the prediction of the dynamics of a 20 kW ORC system. Al though the Long Short 

Term Memory model shows the best performance with a mean error smaller than 5%, it is still 

challenging to be implemented in the solar-ORC architecture owing to the high uncertainty of the 

weather, which can be hardly predicted correctly based on historical data. 

Imran et al. (2020) comprehensively reviewed the dynamic control method over the years. Quoilin et 

al. (2011) presented the dynamic modelling and control strategy of ORC to improve efficiency during 

part-load operation. Their simulation results show that a model predictive control strategy based on 

optimised evaporating temperature regulation, which makes use of a steady-state optimisation model of 

the system bracketing a wide range of working conditions, gave the best results. Li  et al. (2018) studied 

the influence factor such as the thermal storage system (TES) capacity, solar fluctuation (period, 

amplitude, average solar) and evaporation temperature on the dynamic performance of solar-ORC 

system. They suggested TES capacity should be selected according to local solar fluctuations to improve 

system stability.  Baccioli et al. (2017) simulated the dynamic performance of a small-scale solar power 

plant with compound parabolic collectors and ORC module for the year-long operation. They adopted 

a sliding-velocity control strategy, allowing the system to operate without any storage.  

To the best of the authors' knowledge, no previous study in the literature has applied data-driven models 

to dynamically control solar-ORC plants. Further researches are needed in developing an effective 

control logic for maximising the solar energy absorption while taking into account numerous aspects 

such as diurnal and inter-seasonal fluctuations, as well as real-time changes in thermal storage capacity. 

In this study, we developed a small-scale solar-ORC system model, which is designed for households 

combined heat and power usage, focusing on the specific user group at the location of London. An 

optimised fuzzy logic control algorithm was used to maximise the solar energy absorbed by the collector. 

The first-principle ORC model is replaced by a data-driven machine learning model (feedforward 

neuron network), which is then integrated with a multi-objective genetic algorithm (GA) to estimate 

optimal system operating parameters in real-time.  

2 SYSTEM AND MODELLING  DESCRIPTION  
The ORC system model was developed according to the actual setup of the ORC testing facility located 

at the Clean Energy Processes Laboratory of Imperial College London. A detailed discussion of the 

ORC test facility was described by Unamba et al. (2019).  The performance of a non-recuperative 1-

kWe ORC engine with a rotary vane pump, brazed-plate evaporator and condenser units, and a scroll 

expander was investigated experimentally. It is worth mentioning that the test facility does not include 

the solar system so that the solar system was modelled by referring to the technical datasheet or literature. 

The solar system uses Therminol VP-1 as the heat transfer fluid (HTF) to heat the Organic working 
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fluid (R245FA) via a plate evaporator.  The high-temperature, high-pressure working fluid expands in 

the expander to generate power before being cooled by cooling water in the condenser. Condensed 

working fluid is then pumped to the evaporator, completing the cycle.  

Although the schematic view shows a solar and ORC coupled system, as shown in Fig. 1(a) , they are 

physically decoupled and modelled in different software. The ORC system was modelled using the one-

dimensional differential equations with the physics described by the conservation of mass, momentum, 

and energy. These equations are solved by a differential-algebraic system solver DASSL using Dymola 

software, which is a simulation environment for Modelica-based models. Small time steps are required 

to solve these system equations to prevent chattering concerns caused by dynamic boundary conditions 

(Quoilin et al., 2014).  Optimal control algorithms are necessary for the best adaptation to ever-changing 

heat source conditions, such as adjusting the pump speed and expander speed in real-time. Depending 

on the number of design variables, an optimisation process is generally converged after thousands of 

iterations. The authors employ an Intel Core i7-11700 to simulate the first-law model, and one 

case/iteration comparable to the daily operation of ORC system takes 15ï20 minutes of CPU time to 

complete. Thus, it is not computationally efficient to use solar system and ORC system coupled 

simulation methods for optimisation purposes. Researchers (Christidis et al., 2012; Pérez-Iribarren et 

al., 2020; Benalcazar 2021) used a mixed-integer programming framework to simulate CHP with 

various scale TES and optimised the capacity of the TES; however, this is out of the scope of this study. 

  

(a) (b) 

Figure 1: (a) Schematic view of the solar-driven ORC system (b) solar system simulation method 

 
The solar field was modelled in Simulink, utilising the Euler solver with a fixed time-step of 5 seconds. 

The solar system was physically decoupled with the ORC circuit, as shown in Fig. 1(b), but it was 

virtually connected to the ORC by using a heat rejection unit, which releases the thermal energy from 

the solar circuit as if it was used by the ORC system. The amount of rejected energy rates is calculated 

by dividing the demanded power by the ORC thermal efficiency, which is calculated using an ANN 

model that will be discussed in section.3.3. If the storage temperature goes below the intended level 

(120 °C) or the heat source flowrate falls below the threshold value of 0.5 kg/s, the quantity of heat 

rejection is set to zero, indicating that the ORC has been closed, prohibiting any inefficient operations. 

In summary, the first-law ORC model served two functions. To begin, create a steady-state dataset that 

can be utili sed to train a data-driven surrogate model later. Second, it can be used to assess the dynamic 

performance of a data-driven model. The solar model was used to test the efficacy of various control 

strategies under various seasonal conditions.  

 
2.1 Solar collector 

The solar field uses an evacuated flat-plate collector, designed by TVP Solar. The collector array is 

modelled as south-facing, with an inclination angle of 36° for the UK (Freeman et al., 2017). The heat 

absorbed by the collector is determined by the solar irradiance (G), total area of collector array (! ) 

and collector efficiency (ʂ ), given by EQ. 1. 

ὗ '! ʂ  (1) 
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The collector efficiency –  is calculated by EQ. 2, where ὝÁ is the ambient temperature. –, ὥ and ὥ 

are correction parameters of the product, which are 0.76, 0.51, and 0.007 respectively. 

–ÓÃ –
ὥ ὝÓÃ ὝÁ

Ὃ

ὥ ὝÓÃ ὝÁ
Ὃ

 (2) 

2.2 Tanks 

HT and LT tanks are developed by considering the conservation of mass and energy equations. The 

convective heat loss is adjusted to a level that the storage temperature (150 ᴈ) gradually drops to the 

ambient level after 8 hours if there is no flow moving into or out of the tank, as referred to Baccioli et 

al. (2017). The filling level (FL) of the tank is calculated by the EQ.3, where ” is the density of the heat 

transfer fluid inside the tank; - is the accumulated fluid mass inside the tank;  ὠ  is the volume of 

tank and is chose as a design parameter in this study. The actual value of  ὠ  will be determined from 

an optimisation study, as will be discussed in Section 3.2.3.  

Ὂὒ
ὓ

ʍẗὠ
 (3) 

 

2.3 Evaporator and condenser 

The evaporator uses a SWEP B12LX18 brazed-plate heat exchanger (HX) with an area of 0.45 ά  and 

a nominal capacity of 10.63 kW. The condenser employs an Alfa Laval CB60-30H-F with a total heat-

transfer area of 1.62 ά  and a nominal capacity of 22 kW. Mersch (2019) evaluated the effects of 

different heat transfer correlations on the accuracy of model prediction using the same types of 

evaporator and condenser. They found Bogaert correlation (Bogaert and Böles, 1995) for Reynolds 

numbers below 1000 and the Chisholm correlation (Chisholm and Wanniarachchi, 1991) for higher 

Reynolds numbers gives the best model prediction for single-phase heat transfer. For two-phase heat 

transfer, they recommended using Cooper correlation (Cooper, 1984) to take the evaporate pool boiling 

effects into account and use Thonon correlation (Thonon and Bontemps, 2002) to calculate the 

condensation heat transfer.  

Table 1: Design parameters of brazed-plate heat exchangers 

Design parameters Evaporator Condenser 

Num of plates 18 33 

Pattern wavelength (m) 2.2e-2 3.2e-2 

Pattern wave amplitude (m) 1.2e-3 1.6-e3 

Pattern wave angle (degree) 60 35 

Wall thickness (m) 1.8e-3 3.5e-3 

 
However, due to the lack of detailed design information, such as the number of plates, wall thicknesses 

and pattern angle etc., this study used a fine-tuning procedure to estimate these parameters. This is a 

guess-and-verify process in which the HX design parameters are first approximated within a reasonable 

range and then matched to the intended heat transfer area. The fine-tuning process was performed for 

each HX for ten distinct operating points with varying heat source temperatures, mass flowrates, and 

work fluid mass flowrates. As listed in Table. 1, the HX design with the lowest mean differences relative 

to Mersch's(2019) results was decided. 

2.4 Expander 

The ORC uses a small-scale (~1 kW) scroll expander of which performance map was experimentally 

characterised by Lemort et al. (2012). The expander was designed with a swept volume of 22.4 

ὧά ȾὶὩὺ and a volume ratio of 2.85. The machine's highest isentropic efficiency is 71.03 percent, 

indicating that it has good volumetric performance. As per EQ.4, fifth-order (n=5) and second-order 

(n=2) polynomial are used to fit the experimentally measured efficiency and filling factor, resulting in 

Ὑ  99.31 percent and Ὑ   99.62 percent respectively. The expander's momentum inertia was ignored 

in this investigation since the expander's response time, which is around 8~11 seconds (Unamba et al., 

2019), is insignificant compared to the response time of the solar-ORC with TES. 
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ÁẗÌÎÒÐ ẗÌÎὖÉÎ Á ẗÌÎÒÐ Á ẗÌÎὖ ÆÒÐȟὖ  (4) 

2.5 Pumps 

The solar-ORC system has three pumps with a constant isentropic efficiency of 0.75 assumed for pump 

1 and pump 2 due to lack of experimental data. This assumption can reasonably estimate the pumpôs 

power consumption as the pressure ratios of the first two pumps are small (less than 1.1), while the 

ORC pump should be explicitly modelled due to the larger pressure ratio encountered. The performance 

prediction of the ORC pump was based on the look-up of a spline surface fitted by the experimental 

data provided by Mersch (2019), as shown in Fig. 2.  

 
Figure 2: ORC pump map with spline surface fitted by the experiment data (Mersch, 2019) 

 
2.6 Feasibili ty of ORC model  

The ORC model's performance was assessed using experimental data provided by Imperial College 

London's Clean Energy Processes Laboratory (Unamba et al. 2019) under variable heat source 

temperatures and mass flowrates (16 g/s ï 47 g/s), and constant heat sink temperature of 18 ᴈ and water 

flowrates of 0.4 kg/s. As illustrated in Fig.3, the mean averaged percentage error is 3.2% at the heat 

source temperature is 120 Јὅ. Although the error (8.2%) is higher at a higher heat source temperature 

(140 °C), the primary goal of this research is not to construct a high-fidelity first-law model, which has 

already been described in many publications. Instead, the objective of this research was to create a 

surrogate model of the first-law ORC model and assess the efficacy of employing the surrogate model 

for real-time control. As a result, the current model's accuracy indicates that it can reflect the overall 

trend of ORC performance under various operating conditions.  

  
(a) (b) 

Figure 3: Net power comparison between experimental data and model prediction on the basis of 

ORC system level at the heat source temperature of (a) 120 Јὅ and (b) 140 Јὅ 

 

 

3 SIMULATION AND CONTROL METHODOLOGY  
3.1  Simulation boundary conditions  

Diurnal and seasonal variations of solar irradiance were obtained from an open-source python package 

pvlib (Holmgren et al., 2018), which provides a set of functions and classes for simulating the 

performance of photovoltaic energy systems. As shown in Fig. 4(a), direct normal irradiation profiles 
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were retrieved for typical days in summer, winter and Autumn in London, which are mid of July, 

January and October. For simplicity, the weather conditions of Spring assumed the same as Autumn. 

The acquired direct normal irradiance profiles were rectified by taking into account the solar incidence 

angle on the tilted collector plane, and then fluctuating noises were introduced to capture the dynamics 

caused by cloudy weather. Diurnal and seasonal domestic electricity-load proýles for the UK (UK 

Energy Research Centre, 1997) are shown in Fig. 4(b), typically showing a characteristic peak in 

consumption in the evening occurring between 18:30 and 19:30. In the winter, the largest power usage 

was seen, along with the lowest irradiance and temperature. In order to meet the higher power usage in 

the winter, the solar collector would need a larger panel area than in the summer. 

  
(a) (b) 

Figure 4: (a) Diurnal and seasonal variations of solar irradiance and ambient temperature (b) UK 

average household electricity consumption proýles (UK Energy Research Centre, 1997) 
 
3.2 Solar field dynamic control method 

The objective is to obtain a control solution that can optimise the flowrates discharged by pump 1 and 

pump 2 such that the solar system can maximise the use of solar energy. The decision on the pump flow 

rate is influenced by various input conditions, i.e. the solar irradiance, filling level of tank and storage 

temperature, and these input conditions can also affect each other, resulting in high model nonlinearity. 

Safety precautions must be taken, such as not overcharging and emptying the tanks. 

3.2.1 Pump 1 control method: The solar field's control logic should be built to suit the safety system's 

requirements while also allowing the solar field to supply sufficient energy to the ORC system. For this 

reason, fuzzy control algorithm was used to determine pump 1 flow rate. The fuzzy logic is a 

multivalued logical system that provides the value of an unknown output by attaching the degree of 

known input of the system. The fuzzy logic method divides inputs and outputs into linguistic levels 

based on their values, which are known as membership functions, and then calculates the degree of truth 

for each level. Fuzzy logic controller uses fewer resources and saves substantial computation time; 

therefore, it can be used for real-time control purposes.   

 
Figure 5: Membership functions of fuzzy logic input variables 

As shown in Fig. 5, the linguistic levels assigned to three input variables, ñNormalised solar irradianceò, 

ñHT-Tank filling levelò and ñHT-Tank storage temperatureò are L: Low; M: Medium and H: High. The 

y-axis is called the degree of membership, in which a higher value means the case has a higher 

possibility of belonging to the corresponding level. As shown in Fig. 6, the output variable was 

classified into five linguistic levels with additional VL (very low) and VH (very high) levels.  
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Once the membership functions of the input and output variables have been specified, the next stage is 

to define the rules and create logical linkages between the model inputs and outputs. As listed in Table. 

2, nine rules have been defined. It is worth mentioning that the first two rules ensure a safe operation of 

the system, stating that if the filling level is low, the flow rate of pump 1 must be set to very high, 

preventing the use-up of fluid inside the tank and vice versa. 

 
Figure 6: Membership functions of fuzzy logic output variables 

 

Table 2: Decision matrix of the fuzzy logic controller used for pump 1 flowrate control 

Rule Num Irradiance  Filling Level HT Tank Temperature Pump 1 Flowrate 

1 any L any VH 

2 any H any VL 

3 L M any VL 

4 M M L L 

5 M M M M 

6 M M H H 

7 H M L M 

8 H M M H 

9 H M H H 

 VL: Very low;  L: Low;  M: Medium;  H: High; VH: Very High 

 
The last and most important step is to decide the range for each linguistic level and define the location 

of the highest possibility. This process was conventionally established based on the engineerôs 

experiences and knowledge. This study employs GA for this decision making. As highlighted in Fig. 5 

and Fig. 6, a red dot means it is a design variable to be optimised. A blue dot means it is a dependent 

variable and its location is influenced by the nearby design variable. The relative distance between the 

design variables and adjacent dependent variables is controlled by introducing additional design 

parameters. A black dot means that point is fixed through the study. Note that each point has one degree 

of freedom and can move along the x-axis only.  

3.2.2 Pump2 control method: pump 2 controls the amount of heat flows going through the evaporator, 

thus having a direct influence on the ORC performance.  Pump 2's control logic states that if the HT-

storage Tank's temperature is less than the minimum required temperature, in this case 120 °C, pump 2 

produces the same amount of flowrates as pump1, allowing the storage temperature to rise as the flow 

recirculates; otherwise, the flow rates of pump 2 refer to a 3rd order polynomial as per EQ. 5. This 

equation says that when the fill level of LT-tank is low (0<FL<0.2), pump2 increases its flow rate, 

avoiding the use up of the tankôs oil and vice versa when the fill level is high (0.8<FL<1). Pump 2 

maintains a relatively stable flow rate while the LT-tank is at a medium fill level (0.3<FL<0.7), allowing 

for a smooth ORC operation. Pump 2's nominal flow rate is close to 0.6 kg/s, which is expected to 

produce higher thermal efficiency based performance map. 

ά σȢυχὊὒ τȢωςὊὒ ςȢσυὊὒ ρ  (5) 

3.2.3 Optimisation of the controller in the solar field: the solar system has 15 different parameters that 

define the fuzzy logic controller. Two new parameters were added to the optimiser to limit the system 

to an acceptable scale: tank volume and solar collector area. A multi-objective Genetic Algorithm, 

namely NSGA-II  optimiser, was used for maximising the ORC daily work output. The maximum HT-



 

 

Paper ID: 131, Page 8 

6th International Seminar on ORC Power Systems, October 11 - 13, 2021, Munich, Germany 

 

 

tank storage temperature should not exceed 154 Јὅ, as this would cause the ORC fluid to surpass the 

critical temperature Ὕ  of R245FA, resulting in a supercritical cycle with high operating pressure 

beyond the proposed facilityôs design scope, which is usually achieved using nonlinear constraints. 

However, it significantly raises the computing cost, as it necessitates an exploration process to find a 

feasible design option before starting the actual simulation. For this reason, we impose a design choice 

similar to the nonlinear constraint, with the second GA objective being to minimise differences between 

the maximum HT-tank temperature and the Ὕ  of R245FA. It also sets a safety margin ʀ of 4 K, 

resulting in a maximum storage temperature of less than 150 ᴈ. The optimiser sets the population size 

of 200 and the crossover fraction of 0.65. The tank volume is set with a lower bound of 200 L and an 

upper bound of 500 L, and the solar collector area is ranging from 15 ά  and 70 ά . The design limits 

of the fuzzy logic controller are not listed here as they are not intuitive.  

Table 3: ORC simulation matrix 

Parameter Values 

Expander speed, Hz 10+5k, k = 1,2,é7 

Pump Flow Rate, g/s 15+5k, k = 1,2,é,10 

Heat source temp, Јὅ 120,130,140,150 

Heat source flow rate, kg/s  0.4+0.1k, k = 1,2,é,7 

 

3.3 ORC dynamic control method 

 ORC dynamic control is designed to maximise ORC thermal efficiency for the target power output 

under continuously changing heat source conditions. The first-law dynamic ORC model was used to 

investigate several steady-state operating points as shown in the simulation matrix of Table. 3. After 

the simulation completes, an extensive dataset is generated, including 4279 valid ORC results. Fig.7 

shows an example of the ORC performance map under the heat source temperature of 120 Јὅ and heat 

source mass flowrate of 1 kg/s. It has been discovered that the same power output may be achieved 

using various combinations of expander speeds and pump flow rates. 

  
(a) (b) 

Figure 7: ORC spline fitted (a) net power and (b) thermal efficiency contours as a function of 

expander speed and pump flowrate under heat source flow rate of 1kg/s and temperature of 120 Јὅ 

 

Feedforward neural networks were trained and represented as the surrogate model of the first-law model. 

The overall dataset was randomly split into 90% training dataset and 10% test dataset. Feedforward 

neural networks are the most basic ANN architecture, which is composed of neurons organised in layers 

forward connected to each other. The Keras platform was used to implement the feedforward neural 

networks. The input layer has four neurons corresponding to the four decision parameters as listed in 

Table. 3. Only one hidden layer that has 450 units was used as it is widely accepted that one hidden 

layer is enough for the resolution of almost any regression problem. The output layer has one unit, 

representing either the ORC thermal efficiency or the ORC net power.  A dropout rate of 0.2 was used 

to prevent overfitting. The hidden layer uses ReLu as the activation function. Adam optimiser with a 

learning rate of 0.001 was used to minimise the mean square errors during the training process. The 

training phase has been performed using a batch size of 10.  

Fig.8 shows the performance of the feedforward neural networks on the prediction of ORC thermal 

efficiency and ORC net power, and the respective Ὑ  are 0.98 and 0.99. The training and testing datasets 
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both have the same Ὑ  value, indicating that overfitting unlikely happens. The multi-objective GA was 

then integrated with the data-driven model to find the ideal expander speed and pump flow rate that can 

result in maximum thermal efficiency and supply the target power under a certain heat source 

temperature and flowrate condition.  

  
(a) (b) 

Figure 8: Performance of feedforward neural networks on the prediction of (a) ORC thermal 

efficiency and (b) ORC net power 

 

4 RESULTS AND DISCUSSION 
4.1  Solar system optimisation results 

The dynamic simulation of the solar system starts by assuming that both tanks reach the thermal 

equilibrium conditions and have an equivalent filling level of 0.5.  Fig.9 shows the optimisation dataset 

under different seasonal conditions, with the optimal design highlighted by a red pentagram. The 

optimal designs were selected from the dataset by three steps (1) filtering the cases that have the 

maximum HT-tank temperature closer (ςᴈ) to the desired value (150 ᴈ); (2) the case that has the 

maximum daily work output was deemed as the optimal; (3) if there is no case found in the first step, 

the optimal design was selected based on the highest work output. The time-resolved operational 

profiles of optimised cases, such as instantaneous tank fill level, tank storage temperature, and mass 

flowrates of pumps, can be found in Appendix. A. As observed in Fig. 9(c), the maximum storage 

temperature is lower than 150 ᴈ due to low irradiances during wintertime. 

     
(a)                                                 (b)                                           (c) 

Figure 9: Solar system optimization results of (a) spring/autumn (b) summer (c) winter  

 

Table 4: Summary of design and operational parameters of the optimal cases 
 Spring/Autumn Summer Winter  

Max Generations 48 24 25 

Tank volume (L) 203 494 201 

Collector area (Í ) 43.3 46.7 69.8 

Daily work output (kWh) 1.95 2.32 1.75 

Maximum tank temp (ᴈ) 152 152 136.4 

Start time 09:46 10:30 10:53 

Stop time 14:18 16:21 14:12 

Operation hours 4:32 5:51 3:19 
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Table. 4 summaries some key design and operational parameters of the optimal cases. The ORC 

produces the most significant daily work of 2.32 kWh during the summer, followed by 1.95 kWh in the 

spring/autumn, and 1.75 kWh in the winter. The tank capacities of spring/autumn/winter seasons tend 

to reach the lower bound of the design limits, as it is easier for a smaller sized tank to reach the ORC 

trigger temperature of 120 ᴈ under low irradiance conditions. The summer case has the largest tank 

volume of all the cases, storing the most solar energy during the day and having the most prolonged 

working period of around 6 hours. According to the optimisation results, for the year-long operation in 

the United Kingdom, it is advised to install two 200 L tanks (no PCM) for both HT and LT tanks. 

During the spring/autumn and winter, one HT (LT) tank will be utilised instead of two. 

The collector area in the spring/autumn cases is comparable to that in the summer cases. The collector 

area of the winter case almost reaches the upper bound of the design limits, attempting to maximise the 

energy absorption from the sun.   

4.2 ORC optimisation results 

A trained feedforward neuron network can forecast ORC power and efficiency by simply providing the 

input parameters, such as expander speed, pump flowrate, heat source temperature, and heat source 

mass flowrate. The instantaneous ORC boundary conditions, namely the HT-tank temperature and 

Pump 2 flowrate, are discretised into multiple quasi-steady points, as shown in Fig. 10. Therefore, the 

optimal expander speed and pump flowrate, which can result in the maximal thermal efficiency, can be 

obtained by integrating a multi-objective GA with the trained feedforward neuron network. Similarly, 

the differences between the required household electricity consumption and model-predicted value were 

served as another objective to be minimised. This process was repeated for each discretised operating 

point. With the current CPU power, the optimisation process converges in less than 30 seconds using 

the fast-solving data-driven model. 

As Fig. 7 indicates, each optimisation process may produce a variety of feasible outputs of expander 

speeds and pump flowrates, all of which can result in the same thermal efficiency and power output, 

which may lead to system instabilities. To mitigate this, following the determination of the first set of 

outputs, the least distance criteria was used to pick the subsequent outputs. The distance refers to the 

differences in expander speeds and pump flowrates between consecutive cases, as per EQ.5. It's worth 

noting that these variables are first normalised, ensuring that they are all equally weighted concerning 

the distance. 
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Figure 10: Instantaneous operational performance data of (a) storage temperature (b) pump flow rate 

(c) household power demand 

 
Fig. 11 shows a diagram, which summarises the workflow of the proposed dynamic control method. 

The top-right figure shows the optimal ORC control solutions based on a series of steady-state 

optimisation of the discretised points. The final and most important step is to examine whether the 
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required power can be met whilst maintaining excellent ORC thermal efficiency. As shown in Fig.12 

(a), both the data-driven model and the first-law model capture the trend of the target value using the 

control solutions. But it seems the model could not damp the secondary fluctuations, resulting in a non-

smooth operating characteristic. It was found that the secondary fluctuations were mainly influenced 

by the pump flow rates. Therefore, it is anticipated that using data smoothing algorithms, such as 

moving average filter, can mitigate this situation. Nonetheless, the data-driven model demonstrates a 

good correlation with the first-law model, notably in terms of efficiency prediction, where the data-

driven model accurately captures even minor traits. Given the fact that the optimisation of the dynamic 

data-driven ORC model was achieved in a quasi-steady manner, the small discrepancies between the 

first-law model and data-driven model imply the dynamics can be neglected when TES is included. 

The mean absolute inaccuracy for the power estimate is 3.3 percent, while the mean absolute difference 

for the efficiency prediction is 0.186 percent. During the ORC's operation, a high averaged thermal 

efficiency of 7.5 percent was attained, demonstrating the effectiveness of data-driven methods in 

controlling nonlinear systems.  

 
Figure 11: Summary of the proposed dynamic control method 

 

 

  

(a) (b) 

Figure 12: Comparison between the first-law model and the data-driven model in terms of (a) net 

power output and (b) thermal efficiency  

 

5 CONCLUSIONS 
This study intends to develop a dynamic control strategy for a domestic scale 1-kW solar-driven ORC 

system in order to mitigate the inefficiency caused by daily and inter-seasonal solar energy changes. 

The solar-driven ORC system was decoupled into two subsystems and optimised separately. In the solar 

field, the flowrates released by pumps was managed with a fuzzy logic controller that used real-time 


