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ABSTRACT 
 

The ORC technology is subject to manifold sources of uncertainty that can have a severe impact on the 

thermodynamic and economic efficiency of plant components, particularly when the system is operated 

at off-design conditions. In this contribution we focus on the development of ORC turbines with stable 

performance under uncertainty: a novel multi-fidelity robust design optimization (RDO) strategy is used 

to design the first nozzle of an ORC turbine for high temperature waste-heat recovery. For this kind of 

application, the turbine inlet and outlet conditions may vary randomly over a large range. The RDO 

strategy combines parsimonious uncertainty quantification techniques with a multi-objective genetic 

algorithm optimizer based on surrogate models. The multi-fidelity approach allows to estimate with 

high accuracy and with a low computational cost the statistical moments of the probability distribution 

function of the quantity of interest, which here is the entropy generation within the cascade. To improve 

the accuracy of the surrogate model coupled with the optimizer, the multi-objective expected 

improvement criterion is adopted. The optimization converges to an efficient optimum solution, 

ensuring improved and stable performance over the whole considered range of uncertain operating 

conditions and with a computational cost that is significantly lower than other RDO approaches 

proposed in literature. 

 

1 INTRODUCTION 
 

According to the estimation provided by the International Energy Agency, within the next 20 years we 

are likely to register a further increase in the world's population of 1.7 billion people, most of which is 

expected to be concentrated in urban areas of developing countries (IEA, 2018), leading to a dramatic 

rise in the demand for energy, goods, and services.   

Such a forecast is confirmed by the study of trends over the past two decades, indicating that during 

this time range the demand for industrial products has increased significantly worldwide. This growth 

is mainly due to the rise of production in energy-intensive industrial sectors like iron and steel, cement, 

chemicals, glass, aluminum and paper and it indicates that global industry could become more energy 

intensive in the next years (Levi et al., 2020).  

Immediate measures are therefore necessary to curb the surge in energy consumption and to reduce 

carbon footprint; since energy efficiency plays a key role in accelerating the transition to sustainable 

energy (IEA, 2020), industrial waste heat recovery (WHR) should be considered as a key strategy to be 

exploited. Indeed, one has to consider that just in Europe an estimated potential of about 300 TWh/year 

is available for heat recovery from industrial processes (Papapetrou et al., 2018, Bianchi et al., 2019).  

ORCs are a mature and effective technology for this purpose. However, despite many energy-intensive 

industries could benefit from the integration of an ORC, the employment of this technology continues 

to be limited. In fact, without the aim of providing an exhaustive list of ORCs for WHR, as of April 

2021 Turboden declares about 86 MW of installed capacity (Turboden, 2021), Exergy about 31 MW 

(Exergy, 2021), Ormat 134 MW from gas compressor stations and only 15 MW from industrial 

applications (Ormat, 2021) and Enertime 11 MW.  

One of the main reasons behind this reticence stems from the lack of confidence of potential investors, 

who still consider that the potential energy savings offered by a WHR application do not offset the risk 
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connected to the project (Mahmoudi et al., 2018). Such a belief is nowadays unjustified and is rooted 

in a context that is no longer current, considering the measures lawmakers are taking worldwide (see 

for instance EU Parliament, 2018 or US Congress, 2021 or Liu, 2018). 

Nevertheless, an industrial WHR project can be affected by several sources of uncertainty. Among 

them, the variability of the thermal input to be recovered is likely to be the most crucial one; in fact, 

despite the belief that thermal process in cement, glass and iron and steel industry is constant, some 

fluctuations in the mass flow rate and in the temperature of the exhaust gas usually occur with hourly, 

daily, monthly and yearly timescale as a consequence of:  

- the variation of the production of the factory during the year (typically, seasonal production), 

- the adaptation of the factory's production to the demand over the entire period of the WHR 

project, 

- periodic burners reversal cycles in the factory’s furnace (as in regenerative furnaces),  

- eventual discontinuities in the factory’s productive process. 

This variability in the input power has a major impact over the ORC system used for the heat recovery 

and all its components. In particular, the turbine is the most critical equipment in this sense, since when 

it is operated in off-design condition far from the nominal point, it may drop in efficiency with a 

significant impact on the performance of the overall system and, consequently, the profitability of the 

whole WHR project.  

To account for this uncertainty, some safety margins are typically used in the design of the ORC and 

its components. Still, this approach presents the risk of not being efficient from an energy and economic 

viewpoint. Hence, in such a context robust design optimization (RDO) should be considered as a 

promising alternative strategy to standard design methods, allowing to ensure more stable performance 

over a range of randomly varying operating conditions.  

The present work presents the main results of the application of a novel multi-fidelity RDO 

methodology for the efficient 2D design of the first nozzle of an ORC turbine for high temperature 

WHR. In the following, Section 2 provides a description of the model of the turbine blade employed 

for the optimization, while Section 3 explains the adopted RDO strategy and section 4 shows the main 

results.  Finally, conclusions and some perspectives are given is Section 5.  
 

2 MODEL DESCRIPTION 
 

The objective of the RDO here carried out is the shape optimization of the blade profile for the first 

nozzle of an ORC turbine for high temperature WHR applications. The working fluid is cyclopentane 

and the cascade is supposed to work under uncertain operating conditions, since the inlet total pressure 

𝑃𝑇,𝑖𝑛, the inlet total temperature 𝑇𝑇,𝑖𝑛 and the outlet static pressure 𝑃𝑜𝑢𝑡 are submitted to aleatory 

fluctuations.  For the present test case, such sources of uncertainty are modelled by means of the 

Gaussian probability distribution functions (PDF) defined in Table 1, which reports the mean value of 

these three PDFs and their coefficient of variation, defined as the ratio between the mean value and the 

standard deviation.  However, the adopted RDO strategy is general and can be straightforwardly applied 

even in case of different modelling of the uncertainty. The ranges of variation of the inlet/outlet 

conditions are represented in the h-s chart reported in Figure 1.  

 

 
Figure 1: h-s chart with uncertainty at the inlet and at the outlet of the cascade 



 

Paper ID: 93, Page 3 
 

6th International Seminar on ORC Power Systems, October 11 - 13, 2021, Munich, Germany 

Table 1: Uncertain operating conditions 
 

Variable PDF type PDF mean value Coefficient of variation 

𝑃𝑇,𝑖𝑛 Gaussian 28.9 bar 4.5% 

𝑇𝑇,𝑖𝑛 Gaussian 277.3 degC 0.6% 

𝑃𝑜𝑢𝑡 Gaussian 10.05 bar 2.0% 
 

The randomness of 𝑃𝑇,𝑖𝑛 and 𝑇𝑇,𝑖𝑛 determines an uncertainty at the inlet of the cascade that is identified 

with the blue hatched area, while 𝑃𝑜𝑢𝑡 spans the red hatched area. The saturation curve on the lower left 

margin indicates that the working fluid is highly superheated. 

For the design of the turbine blade, a family of candidate geometries is generated with the free-form 

deformation method (Sederberg, and Parry, 1986): a lattice of control points is used to deform the 

geometry of a baseline blade, by means of a bivariate tensor product of Bernstein polynomials. 

As presented in Figure 2, for the present work, the lattice is made by 12 control points, named with 

letters A to L. To enforce the axial chord length and to avoid uncontrollable deformations of the trailing 

edge, the four corners (points A, F, G and L, colored in black) are constrained and only vertical 

displacements of the other 8 control points (colored in red) are allowed. 
 

 
Figure 2: Blade profile parametrization with the FFD technique 

 

Hence, this parametrization introduces eight design parameters, which are the vertical displacements δ 

of the eight free-form deformation control points: they can move, deforming the baseline profile to 

generate an optimal blade with improved performance. To avoid an excessive deformation of the profile 

during the RDO, the variation interval of the 8 design parameters has been bounded with the values 

δ𝑀𝐴𝑋 and δ𝑀𝐼𝑁 reported in Table 2.  

To study the system, the open-source code GMSH (Geuzaine and Remacle, 2009) has been used to 

generate the computational grid, adopting the meshing strategy depicted in Figure 3: the domain 

presents an inlet surface (identified as A) an outlet surface (indicated as B) and two periodic surfaces 

(called C and D); the blade surface is noted as E. This strategy is employed to build three unstructured 

meshes with a different refinement: the coarse grid has 4772 elements, the medium has 16453 while the 

fine has 56885. To resolve viscous layers close to the blade walls, a boundary layer infill has been 

adopted, so that the maximum Y + value along the wall is always lower than 1.2. Moreover, since the 

trailing edge effects are important in the account of total losses, this region has been particularly refined. 

To reduce the RDO computational burden, the medium mesh will be used for all CFD simulations 

solved during the optimization. The independence of the solution from the computational grid will be 

then verified ex-post. 
 

Table 2: Upper and lower boundary of the variation interval for the 8 design parameters 
 

Variable B C D E H I J K 

δ𝑀𝐼𝑁 -2.5% -5% -5% -10% -10% -15% -10% -10% 

δ𝑀𝐴𝑋 2.5% 5% 5% 10% 10% 15% 10% 10% 
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Figure 3: Mesh strategy used for the CFD simulation of the blade during the RDO (fine grid) 

 

The flow is governed by the compressible Navier-Stokes equations, solved in a 2D Cartesian coordinate 

frame with the SU2 code (Economon et al., 2016). The Jameson-Schmidt-Turkel central scheme 

(Jameson, 2017) has been used for the discretization of convective inviscid fluxes, while an Euler 

implicit method has been employed for time discretization and turbulent stresses are modelled with the 

SST k-omega RANS model (Menter, 1994). The linearized equations have been solved by means of the 

FGMRES method and an incomplete lower upper factorization with connectivity-based sparse pattern 

has been adopted as a linear pre-conditioner. Fluid properties are estimated with Peng-Robinson (Peng 

and Robinson, 1976) equation of state, while constant values are assumed for transport properties. As a 

convergence criterion, the order of magnitude of the RMS residuals for the mass, momentum (in both 

X and Y directions), and energy are set at  10−6 . 
 

3 ROBUST DESIGN OPTIMIZATION STRATEGY 
 

The adopted RDO methodology is represented in Figure 4: given the information about the PDF of the 

three uncertain variables, namely 𝑃𝑇,𝑖𝑛 , 𝑇𝑇,𝑖𝑛 and 𝑃𝑜𝑢𝑡 , and defined the eight design parameters, an 

uncertainty quantification (UQ) model can be exploited to estimate the PDF of the quantity of interest 

(QoI) J; more specifically, since Taguchi’s RDO criterion (Taguchi, 1987) is employed here, the aim 

of the optimization is to identify the best values of  the 8 design parameters minimizing the expectancy 

and the standard deviation of the PDF of the QoI J, respectively called E[J] and STD[J].  

In the present work, the average entropy difference between the outlet and the inlet of the domain is 

considered as the QoI J, since it is a convenient measure of internal flow losses affecting the adiabatic 

turbine expansion.  
 

 
Figure 4: Workflow of the robust design optimization methodology 



 

Paper ID: 93, Page 5 
 

6th International Seminar on ORC Power Systems, October 11 - 13, 2021, Munich, Germany 

To lower the computational cost of the RDO, a multi-objective genetic algorithm optimizer (Deb, 2002) 

is coupled with the response surface of a surrogate model that is built by means of a multi-fidelity 

strategy. Such a response surface provides an estimation of E[J] and STD[J] and it is constructed 

leveraging the evaluations of the low-fidelity UQ model, which is cheap but inaccurate, with only few 

runs of the high-fidelity UQ model, that is more accurate but extremely expensive: this multi-fidelity 

approach allows to perform UQ estimations accurate as the high-fidelity model at the cost of the low-

fidelity one. A detailed description of the present RDO strategy can be found in Serafino et al. (2020a). 

Specifically, here the first order method of moments (Hazelton, 2011) is used as low-fidelity UQ model 

and the Bayesian Kriging (Wikle and Berliner, 2007) as the high-fidelity one. 

The first order method of moments uses the first order derivative of the QoI J with respect to the 

uncertain variables 𝑃𝑇,𝑖𝑛 , 𝑇𝑇,𝑖𝑛 and 𝑃𝑜𝑢𝑡 to provide an estimation of E[J] and STD[J];  since in the 

present work a second-order central finite differences scheme has been used to estimate such a 

derivative, one UQ calculation with the low-fidelity method costs 7 CFD simulations. 

For the high-fidelity UQ model, a small set of CFD calculations are required to construct the Bayesian 

Kriging response surface approximating the PDF of the QoI J in the space of the uncertain variables; 

then, this is used to estimate E[J] and STD[J]. After some numerical experiments, it has come out that 

for this study 32 CFD calculations represent a good trade-off between accuracy and computational cost. 

80 samples are considered for the construction of the low-fidelity design of experiments, while the high-

fidelity one contains only 20 samples. Hence, the complete calculation of both designs of experiments 

requires respectively 560 and 640 CFD simulations. Once both datasets are constructed, the multi-

fidelity approach is adopted to build the response surface to be coupled with the optimizer: on this 

surrogate, the multi-objective genetic algorithm initializes randomly a first population composed by 40 

individuals in the design space which is let to evolve over 20 generations. To improve the accuracy of 

the surrogate, an adaptive infill is calculated every 5 generations with the multi-objective expected 

improvement criterion (Keane, 2006). The overall design process requires 1271 CFD simulations, 

which represents a considerable improvement compared to other RDO approaches proposed in literature 

(see Bufi and Cinnella, 2016, Serafino et al. 2020b or Razaaly et al., 2020). 
 

4 RESULTS 
 

All solutions calculated during the optimization on the response surface of the surrogate coupled with 

the optimizer are plotted on the objective space E[J] vs. STD[J] depicted in Figure 5. From the analysis 

of the Pareto front, depicted as a black dashed line, it is possible to appreciate that solutions minimizing 

E[J] maximize STD[J]. Therefore, a unique optimum solution does not exist, since it is not possible to 

minimize simultaneously both E[J] and STD[J]. Among the optimal solutions lying on the Pareto front, 

the one offering the best compromise has been selected. This point, represented as a red symbol in 

Figure 5, is slightly shifted from the pareto front, because after the optimization it has been re-evaluated 

with the high-fidelity model; as shown in Figure 5, the error of the surrogate coupled with the optimizer 

is lower than 2%. 
 

 
Figure 5: Objective space E[J] – STD[J] 
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The high-fidelity UQ method has been used to estimate the full PDF of the QoI J for the baseline profile 

and for the RDO optimum. Such a comparison is presented in Figure 6, showing the success of the RDO 

carried out, since the PDF calculated for the optimal solution has lower mean and standard variation 

than the one for the baseline geometry. This result is summarized in Table 3, reporting the statistical 

moments of both the PDFs: it appears that the RDO can reduce E[J] by 20% and STD[J] by 27.2%.  

The optimal solution and the baseline profile are compared in Figure 7: it appears that the RDO has 

transformed the starting geometry in a front-loaded profile, transferring the blade load to the first part 

of the blade. Moreover, the RDO gives a converging-diverging shape to the profile. 

 

Table 3: Statistical moments of the PDF of QoI J for the baseline profile and the RDO optimum 
 

Quantity Baseline RDO Optimum Δ% 

E[J] 8.307 6.646 -20.0% 

STD[J] 3.824 2.784 -27.2% 
 

 
Figure 6 Comparison of the PDF of QoI J for the baseline profile and for the RDO optimal solution 

 

 
Figure 7: Comparison of the baseline with the optimal design 

 

Finally, a CFD simulation is performed for both the profiles at the deterministic boundary conditions in 

Table 4. The results are depicted in Figure 8 and Figure 9.  
 

Table 4: Deterministic boundary condition for the CFD analysis performed on both geometries 
 

𝑃𝑇,𝑖𝑛 𝑇𝑇,𝑖𝑛 𝑃𝑜𝑢𝑡 

28.9 bar 277.3 degC 10.05 bar 
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Figure 8: Comparison of the entropy field between the baseline and the RDO optimal geometry 

 

 
Figure 9: Comparison of the Mach number distribution between the baseline and the RDO optimum 
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From the analysis of Figure 8, one can identify in both profiles three main dissipation zones: the 

boundary layer over the blade profile, the trailing edge and the downstream region. The first one is an 

expected effect of the fluid viscosity and it has a lower influence on the account of losses than the other 

two phenomena. Figure 9 shows that the blade is subject to a large pressure ratio, which is achieved by 

means of a post-expansion. Immediately before the trailing edge, the Mach number is 2 on the suction 

side of the baseline profile, generating a “fish-tail shock system” that propagates downstream with large 

effects on the resulting flow field: the shock generated on the pressure side reaches the suction side of 

the adjacent blade, it is reflected and it increases its strength merging with the shock wave generated on 

the suction side. Finally, it interacts with the wake coming from the adjacent blades. The RDO optimal 

solution shows the same phenomenology just presented as well, but with a lower intensity, since the 

transfer of the blade load on the first part of the profile allows to reduce the maximum Mach number 

on the suction side of the blade to the value of 1.8.  

Table 5 summarizes three performance parameters for both geometries, namely  
 ∆𝑠 , that is the entropy increase between the inlet at the outlet sections of the domain, the corresponding 

total pressure drop  ∆𝑃𝑇 and the pressure loss factor  𝛾𝑃 =  ∆𝑃𝑇 (𝑃𝑇,𝑖𝑛 −  𝑃𝑜𝑢𝑡)⁄ . 

 

Table 5: Comparison of performance parameters for both geometries 
 

Geometry ∆𝒔 [ 𝑱 𝒌𝒈−𝟏𝑲−𝟏] ∆𝑷𝑻 [ 𝑷𝒂 ] 𝜸𝑷 [ % ] 
Baseline 10.468 290443 15.41% 

RDO Optimum 9.504 267093 14.17% 

 

The convergence of the RMS residuals for the mass, the momentum (in directions X and Y) and energy 

is plotted in Figure 10, while the check of the grid convergence is presented in Figure 11, showing the 

estimation of the quantity 𝑀𝑜𝑢𝑡
̅̅ ̅̅ ̅̅  obtained on the coarse, the medium and the fine grids: rigorously 

speaking, it appears that this result on the fine grid is not completely converged and a more refined 

mesh would have been necessary to obtain a more grid-independent solution. Nevertheless, the reduced 

difference between the solution calculated on the fine grid and on the medium one, allows the use of 

this last one for the simulations solved during the RDO. On the other hand, the comparison between the 

baseline geometry and the optimal solution has been carried out on the fine mesh.   

 
 

 
Figure 10: Convergence of residuals 
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Figure 11: Convergence to solution of quantity  𝑀𝑜𝑢𝑡

̅̅ ̅̅ ̅̅  vs. mesh refinement 

 

5 CONCLUSIONS 
 

A promising multi-fidelity RDO strategy has been successfully applied to the efficient 2D design of the 

first nozzle of an ORC turbine for high temperature waste-heat recovery, whose working conditions are 

affected by aleatory uncertainty both at the inlet and at the outlet. This uncertainty defines a large 

operating interval for the turbomachinery. The optimization converges after only 1271 CFD simulations 

to an optimum solution, ensuring improved and stable performance over the whole considered operating 

range: with respect to the baseline geometry, the expected value of the PDF of the entropy generation 

along the cascade is reduced by 20.0% and the standard deviation by 27.2%. 

Future works will focus on the application of the presented RDO strategy to the optimization of a 3D 

turbine blade or of a multi-cascade system with a mixing plane interface.  
 

NOMENCLATURE 
 

E[J]  Expected value of the PDF of the QoI  - 

P  Pressure     (bar) 

PDF  Probability distribution functions  - 

QoI  Quantity of Interest    - 

RDO  Robust design optimization   - 

s  Entropy      (J kg^-1 K^-1) 

STD[J]  Standard deviation of the PDF of the QoI  - 

T  Temperature     (degC) 

UQ  Uncertainty quantification   - 

WHR  Waste heat recovery    - 

ΔP  Difference of pressure    (Pa) 

δ   Vertical displacement of FFD control points (% in the lattice reference system) 

𝛾𝑃  Pressure loss factor    (%) 
 

Subscript 

in inlet 

out outlet 

T total 
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