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Abstract

A lot of problems that arise in machine learning or pattern recognition boil down to
solving eigenproblems Ax = λx, with respect to x and λ. Tasks such as dimensionality
reduction (PCA, Fisher’s discriminant), Spectral clustering or data representation (Lapla-
cian, Hessian eigenmaps or diffusion maps) are all based on calculating eigenvectors and
eigenvalues of a matrix. There are various approaches for finding the spectral decompo-
sition of a matrix. As finding the roots of a characteristic polynomial of a matrix becomes
computationally infeasible in higher dimensions, there are only special cases where calcu-
lating eigenvalues exactly is possible in a finite number of steps. In general, algorithms
for finding eigenvalues and eigenvectors are iterative, such as the power method, inverse
method, Rayleigh quotient method, QR method and provide numerical approximations as
opposed to exact solutions. As the sizes of matrices in the industry increases, it becomes
important to solve eigenproblems as efficiently as possible, using methods that are fast,
accurate and feasible even for large amounts of data. Recently, neural network based ap-
proaches have been proposed for this problem. The researches demonstrated that their
approach could successfully solve linear algebraic systems with relatively short training
time. In this thesis, we are going to tackle eigenproblems with Artificial Neural Networks
(ANN) and compare the results with standard solvers in terms of accuracy, efficiency, etc.
We demonstrate the accuracy of obtained eigenvectors by solving the heat equation.
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1 Introduction

1 Introduction

Applications of eigenproblems are everywhere. From computing higher powers of a ma-
trix, to solving problems in physics or quantum chemistry. A lot of computer science tasks
such as image restoration or information retrieval or clustering also boil down to finding
eigenvectors and eigenvalues of a matrix. Developments of eigensolvers, therefore, benefit
a lot of fields that rely on spectral properties derived from their data.

The earliest work that solves eigenproblems dates back to 19th Century, when Jacobi
came up with a process of diagonalization, an iterative method for finding eigenvalues
and eigenvectors of a symmetric matrix. However, it did not gain popularity until 1950’s,
when first modernized electronic computers were introduced. Since then, numerical al-
gebra became a very actively researched topic and several theoretical developments have
made it possible to grow computational techniques too. [ 13 ] states that around 40% of
average 60 papers per year published in scientific SIAM Journal on Matrix Analysis and
Applications (SIMAX), was about eigenvalue problem research.

To state the eigenvalue problem, it involves finding non-trivial solutions to the following
equation for a matrix A:

Ax = λx

This can be re-written as:

Ax− λx = (A− λI)x = 0

Eigenvectors and eigenvalues come in pairs. Applying a linear transformation A to its
eigenvector wi can at most change it by a scalar factor, so it only gets stretched out or
squeezed, but does not change direction. The corresponding eigenvalue, often denoted
by λi, represents the scaling factor of the vector in the new subspace. (λi, vi) is then an
eigenpair of matrix A.

Since we are searching for a non-zero vector x that, multiplied by a matrix, becomes zero,
we know that the determinant of that matrix should be zero, so that the transformation
A− λI squishes the space to a lower dimension.

det(A− λI) = 0

This is called a characteristic equation. We can find eigenvalues of A by solving this
equation. To do this algebraically, it is known that for polynomials of degree higher than
4, we do not have a closed form algebraic equation to find its roots, and that’s why other
iterative numerical methods are employed. However, except for some special cases, ex-
plicitly determining and solving this equation is often numerically highly unstable, since
large perturbations of the roots could be caused by even very small perturbations of the
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polynomial coefficients.

This obstacle lead to development of other techniques for solving eigenproblems. One
very important iterative method for this task is power method, and it became a basis
method for many modern eigensolvers. It is the simplest iterative method that converges
to the biggest eigenvalue. The procedure involves repeatedly multiplying matrix A by
some vector v. With enough iterations, the component of vector v corresponding to the
direction of the dominant eigenvector becomes significantly higher in magnitude than all
other components. This method, however, is no longer competitive with modern eigen-
solvers and not used in standard solvers, but is a basis for more powerful QR method, and
methods developed of Arnoldi and Lanczos.

There are mainly two types of eigensolvers: direct (Gaussian elimination) and iterative
(conjugate gradients [ 19 ]). Direct solvers differ from iterative solvers in that they produce
the solution in fixed number of steps, while iterative solvers produce increasingly accu-
rate approximations to the solution. Direct solvers operate on the transformed matrix to
get the eigensystem that is equivalent but easier to solve, usually transforming the ma-
trix to its tridiagonal form, while purely iterative methods try to find the eigenvalues and
eigenvectors of a lower-dimentional subspace of the matrix that represents it well. The
latter algorithm is highly favorable due to its property of producing accurate and useful
solution estimate when stopped early, but also requires finite number of iterations to ter-
minate. When matrices are sparse and large, and we are interested in only a small fraction
of the eigenspectrum, iterative solvers, such as Lanczos method, Jacobi-Davidson methods
or the Jacobi method are widely used. However, if we want to find the whole spectrum of
the matrix, then direct solvers are a more feasible choice.

The cg-method was proposed initially as an alternative to solve well-defined problems,
but in the early 70’s the researchers started utilizing the method for other problems as
well and now it is heavily used for unconstrained optimization problems or singular ma-
trices. It is a good tool approximate solutions to linearized Partial Differential Equations
(PDEs), or to solve large and sparse systems of linear equations, where matrix modifica-
tion methods, which required a lot of fast computational capabilities on matrices, become
unpractical and have a higher time(O(n3)) and memory complexity.

In order to evaluate and compare the novel approach of solving eigenproblems with
Neural networks, first it is important to overview proven methods that are currently in-
dustry standard for finding eigenvalues and eigenvectors.

Linear equation solvers that are widely used today are implemented in libraries such
as PetSC [ 1 ], LAPACK (using BlAS subroutines), are typically operating on full matrices
instead of batches. Even though they have highly reliable and accurate, fast results and
are widely used today, novel approaches have still been developed to employ non-linear
neural networks to solve the same problems, since they can operate on small batches of
data and also give us a function output in the end, which can be applied to any previously
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1 Introduction

unknown input.
Solving eigenproblems with complex non-linear functions seems like over-complication

of a problem. In reality, eigenproblems sometimes get too big to solve with direct methods
and that’s where non-linear solvers offer their benefits. Non-linear methods could come
up with solutions that are more compact, and also are suitable for training on batches of
the data, and therefore have less rigorous memory requirements.

In [ 34 ] time recurrent neural networks were proposed to obtain the smallest and largest
eigenvalues of a symmetric matrix and recently, more and more machine learning tech-
niques have been brought up to solve certain eigenvalue problems. [ 35 ] demonstrated
possibility of using reinforcement learning to find eigenvalues and eigenvectors of a k-
sparse eigenvalue problem. [ 11 ] recently showcased employing game theory for PCA,
which is a type of eigenvalue problem. It reformulates PCA as an Eigengame, a compete-
tive multi agent game. Each player controls an eigenvector, and they are punished for
getting too similar to other players, while the better they explain variance in the data, the
higher the score of their reward function. The nash equilibrium of this game gives the so-
lution of PCA and it can be found by using gradient descent for each independent player
to optimize for their own reward function. This approach made it possible to perform
spectral clustering or graphs or find principal components of massive datasets [ 12 ].

The goal of this research is to investigate non-linear, neural network based solver to
solve eigenproblems and apply computed eigenvalues and eigenvectors to solve a par-
tial differential equation for heat diffusion and see if it gives a viable solution. Solutions
to partial differential equations can sometimes be computed analytically, but usually nu-
merical methods are employed to solve them. Physics informed Neural network based
approaches have also been brought forward to solve PDEs [  14 ], that use supervised learn-
ing and therefore rely on good quality training data, but they are not useful for solving
eigenproblems.

Since neural networks are stochastically trained, it is unlikely that they will provide
competitive performance to standard solvers, however, using neural networks could pro-
vide us with better scallability and other benefits, such as a possibility to use it as one of
the steps in future eigensolvers.

Other approaches that solve eigenproblems do not provide a continuous function that
can be used to map points to their spectral embeddings, instead they approximate eigen-
functions by discretizing the manifold and then computing the eigenvectors as approx-
imations to eigenfunctions. Manifold learning, for example, needs to be defined firstly
in terms of a method for local parametrization of the data and secondly a way of com-
bining the local parametrization to get an effective global parametrization of the whole
manifold. In theory, neural networks, having universal approximation capabilities for any
arbitrary function, could solve this problem more naturally and directly, without having
to discretize the problem, but instead using a training procedure to adjust the shape of the
function to resemble the one that describes the true function the best. The complexity how-
ever, is that training such a neural network could pose challenges in itself. For example,
the eigenfunctions need to be orthogonal to each other, and ensuring orthogonality when
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training a neural network with mini-batch procedure, is difficult.
The network of choice is SpectralNet [ 27 ], which takes a deep learning approach towards

finding eigenvectors and creates spectral embeddings of input data by embedding data
points into eigenspace of the Laplacian associated with the graph constructed from the
data.

2 State Of the Art

In this section we introduce existing algorithms and specific implementations related to
finding spectral properties of matrices. Section  2.1 introduces spectral clustering, a well-
known technique for dimensionality reduction that utilizes spectrum of a the similarity
matrix to find lower level representation of the data prior to clustering, while preserving
information about underlying density and geometry of the data. Section  2.2 introduces
diffusion maps, another approach for dimensionality reduction, targeted specifically to the
Laplacian. Subsection  2.3 introduces Datafold, a software written in python that interprets
time-series data as dynamical systems and point clouds as geometrical structures with
operator-theoretic models. It, among many other machine learning methods, implements
above-mentioned diffusion map algorithm using standard eigensolvers.  2.4 describes ex-
isting neural network architecture designed for spectral clustering, which conversely to
standard eigensolvers, does stochastic gradient optimization steps towards learning eigen-
functions of a matrix.

2.1 Spectral Clustering

Spectral Clustering [ 17 ] is an unsupervised learning technique that has its roots in graph
theory. It is a very powerful clustering tool compared to k-means or Gaussian mixture
models. On one hand, the latter techniques are very efficient, but can only be success-
fully be applied to limited cases where data points are grouped in convex shapes. On the
other hand, spectral clustering can identify non-convex clusters, and it does so by analyz-
ing spectrum of special matrices constructed from the data set. Even though it is better
applicable to clustering problems with more complex point cloud shapes, it is less com-
putationally efficient and hard to scale up to large datasets. Similarity matrix, which is
necessary for performing this type of clustering, is quadratic to the data size and often
becomes challenging to analyze without employing a supercomputer with huge memory
capabilities. The space complexity of the algorithm is O(N2), and the time complexity
O(N3), and there has been a lot of effort put into reducing this complexity.

Adjacency Matrix is a matrix, constructed from the data, important for this method.
First, every type of data is translated into a graph, this can be done by seeing points in
our datasets as collection of nodes and edges that connect them. Adjacency matrix is a
matrix representation of the graph, and it is constructed by setting Aij element to one, if
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ith and jth nodes are connected to each other by an edge, and 0 otherwise. Affinity matrix
is another important matrix, which is similar to adjacency matrix, however the distinction
between them is that the edges between the nodes are weighted according to some weight
function, instead of having value 1 for all edges.

In order to determine which nodes have edges between them and which ones do not,
there is a need for a notion of closeness. Typically, either matrices are constructed by con-
sidering number of nearest neighbours, that is chosen arbitrarily and edges are assumed
between node and it’s nearest n neighbours. Alternatively, euclidean distance between the
nodes is measured and a cut off parameter ε is chosen, which determines how close the two
nodes should be in order to have an edge between them, so if ||xi−xj || < ε, there is an edge
between ith and jth nodes, and if the distance is larger, the two nodes are disconnected.
ε-neighourhood graphs are geometrically motivated, however, it is difficult to choose the
a good ε parameter and it often leads to several connected components in the graph. n-
nearest neighbourhood graphs are less geometrically intuitive but it is easier to choose the
number of nearest neighbours for the given dataset. Since we would be computing eigen-
decomposition of those matrices, it is important to note that both ε-neighbourhood and
n-nearest neighbourhood adjacency matrix is sparse and symmetric.

Then, to get affinity matrix from adjacency matrix, the edge are weighted depending
on the euclidean distance between the nodes, often as a weight function a gaussian (heat)
kernel is used:

W = exp (−||xi − xj ||
2

2σ2
), (2.1)

where σ is a standard deviation parameter that controls bandwidth of the gaussian filter.
It represents typical distance between the points in the dataset. The bandwidth is heuris-
tically selectde, typically by considering mean or median value of distances between the
data points.

Affinity and Adjancency matrices have zeroes on the diagonal, since nodes are not con-
nected to themselves. In case of an undirected graph, Adjacency and affinity matrices are
symmetric, as the edges have two directions, and Aij = Aji. Affinity matrix can also be
viewed as a diffusion operator of a graph.

Degree Matrix D represents the number of outgoing/incoming edges for each node. If
the graph is undirected, incoming and outgoing edges are the same, since the edge goes
both ways. The Degree matrix is a diagonal matrix, and the degree of ith node is in Dii
cell. Every other entry is zero. We can compute the degree matrix from adjacency matrix,
by summing up every row and making the end result a diagonal matrix.

Unnormalized Graph laplacian is another matrix describing graph data. It is a dis-
crete analogue of the laplacian operator and measures how a function differs at a point
compared to its nearby points. It is a symmetric and positive semi-definite matrix that
encodes information about the connectivity of the graph, as described in detail in [ 7 ]. It’s
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eigenvalues are real and non-negative. The number of 0 eigenvalues of the graph laplacian
indicate number of connected components in the graph. The importance of second eigen-
value of graph laplacian, Fiedler’s value is also known since 1973 when Fiedler discovered
it encodes information about connectivity of the graph.  2.1 visualizes the graph laplacian.

It is calculated by:

L = A−D

The positive-semidefiniteness of the matrix tells us that it’s eigenvalues are all non-
negative and real valued. The smalles eigenvalue is 0 corresponding to the constant eigen-
vector of 1’s.

Figure 2.1: Graph laplacian for 1000 points on a circle

Normalized Graph laplacian is often used instead of graph laplacian for spectral clus-
tering and spectral partitioning. It is important to note that normalized and unnormalized
laplacians share the same eigenvalues. However, using normalized graph laplacian for
finding eigenvectors provides better consistency guarantees when number of data points
increase. In spectral graph theory, there is a notion of cut, which represents number of
edges between clusters. If the cut is small, the formed clusters have low intra cluster con-
nectivity. The main difference in using normalized versus unnormalized laplacian is that
while unnormalized graph laplacian optimizes optimal ratio cut in a graph, the normal-
ized graph laplacian optimizes for normalized cut.
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Ncut(A,B) =
cut(A,B)(V ol(A) + V ol(B)

V ol(A)V ol(B)
,

where V ol(X) is sum of the weights of edges in the set X

V ol(X) =
∑
i∈X

∑
j

Wij

,
and cut(A, B) is the sum of weights of edges connecting A and B partitions of the graph

cut(A,B) =
∑

i∈A,j∈BWij, where W is a weighted adjacency matrix.
Then, to perform spectral clustering, the spectrum of the chosen graph laplacian (nor-

malized or unnormalized) is found. The second smallest eigenvector is used, either by
considering the sign of the vector components or performing K-means on the components.

 1 shows the pseudo-code for performing spectral clustering.
[ 30 ] analyzed consistency of spectral clustering and showed superiority of normalized

method from statistical point of view. The normalized graph laplacian is defined by:

L = D−1/2LD−1/2 = I −D−1/2AD−1/2

For optimal cluster recognition, the Laplacian should approximately resemble a diag-
onal block matrix, where each block is represents a cluster and each sub block gives us
information about shape of the cluster. Other useful properties derived from this ma-
trix are used for spectral clustering, such as spectral gap

¯
, difference between first largest

eigenvalues, that conveys information about density of the node distribution or number
of eigenvalues before the first big gap between eigenvalues, which usually represents a
number of clusters in the graph, and fiedler value

¯
and fiedler vector which can be used

to partition a graph. In general, spectral properties of this graph are often analyzed and
studied, and as the matrices are sparse and symmetric, eigensolvers targeted towards large
and sparse matrices are of great importance for spectral clustering applications.

Algorithm 1: Spectral Clustering
Result: Cluster assignments
A = SquaredDistances(X);
W = GaussianKernel(A, scale);
L = D −W ;
L = D

−1
2 LD

−1
2 ;

eigenvalues, eigenvectors = eigsh(L);
U = eigenvectors[:: k];
clusters = KMeans(k).predict(U);

In [ 3 ] Spectral clustering showed significant improvement over other clustering tech-
niques such as standard K means, due to its ability to find non-convex cluster shapes. The
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main trick that causes this improvement is the change of the representation of the abstract
data points to a representation that, due to the properties of the graph laplacian, represents
the cluster shapes in the data in an improved way, and therefore is simpler to detect for
the K-means algorithm. There have been studies [ 25 ] analyzing stability or consistency
of spectral clustering, as well as it’s usage towards problems in many specific fields. [ 29 ]
describes various fields spectral clustering is used for, such as image segmentation, en-
tity resolution, educational data mining and also presents recent improvements in time
complexity or parallel computing to better equip the method to be highly scalable to large
datasets.

2.2 Diffusion Maps

Exploratory Data analysis often requires transforming points lying in a higher dimensional
space into lower dimensional representation that still offers meaningful insight about the
data. When analyzing large scale simulations of dynamical systems that change over time,
it is important to identify slow variables that capture evolution of the system in a longer
timeframe. This is a dimensionality reduction problem that can be solved in many ways.
One of the more robust and versatile methods of dimensionality reduction is manifold
learning. Manifold is a lower dimensional set of points embedded in a high dimensional
space. For example, a subspace could be non-linearly embedded in a space, but have linear
instristic geometry.  2.2 illustrates that.

Figure 2.2: Non linearly embedded intristicly linear manifold

By choosing the right, either linear or non linear transformation for the points, the in-
tristic complexity of the manifold could be preserved in just a few dimensions. Man-
ifold learning, similarly to spectral clustering, is a non-linear dimensionality reduction
method, therefore it can be more expressive than famous PCA, due to it’s ability to pre-
serve underlying structure of not only linear manifolds, but also non-linear ones. One of
the algorithms for manifold learning, basis of which is that data is only artificially high-
dimensional, is diffusion maps. It works by computing the distance between points not
in euclidean space, which is only locally relevant, but over the low-dimensional manifold
that the data is assumed to reside in.

Diffusion maps [ 6 ] are a non-linear unsupervised learning method, that learn meaning-
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ful geometric representations of the data that is useful for dimensionality reduction. This
framework is computationally inexpensive and unifies many ideas from machine learning
and is connected to eigenmap methods and spectral graph theory [ 5 ]. It results in a rep-
resentation of X that is constructed from integrating on local geometry of the graph data.
The method approximates diffusion distances which then can be used for analyzing con-
nectivity within the graph, clustering or ranking. It is a robust method that is insensitive
to noisy perturbations.

Diffusion maps construct random walk on the data, illustrated in  2.3 , where each tran-
sition step has it’s associated probability. This random walk, gives us a way to translate
the geometrical structure of a manifold into a matrix. Given a dataset X and a kernel k
that represents prior definition of local geometry of X, diffusion maps algorithm construct
a reversible markov chain on X , known as normalized graph laplacian matrix. The kernel
is called a diffusion kernel and its shows connectivity between two nodes, and a gaussian
kernel (  2.1 ) here is a common choice too. The kernel defines local neighbourhood where
euclidean distance is still relevant, and outside of this distance, the values quickly go to 0.
The kernel has two properties:

Figure 2.3: Random walk on the manifold

• It is positivity preserving k(x, y) >= 0.

• It is symmetric, so k(y, x) = k(x, y).

The idea then, is that running the chain forward in time, or taking higher order powers
of this diffusion matrix, can be used to perform multiscale geometric analysis of X . Since
powers of the operator are of interest, spectral theory is employed to use eigenvalues and
eigenvectors and efficiently compute the powers of the kernel. Kernel eigenmap methods
have proposed the idea that eigenvectors of the kernel matrix can be viewed as coordinates
in the data set. Given those, we can compute diffusion distances between points, as well as
create a mapping to embed points in a euclidean space, where diffusion distance of those
points is equal to euclidean distance.
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Difussion maps are connected to kernel PCA methods, which is a general approach for
all kernel based manifold learning methods [ 16 ]. These methods have offer major improve-
ments over classical dimensionality reduction approaches: They preserve local structures
and are non linear. Non linearity of these methods are essential, since typically points
rarely lie on linear manifolds. Preserving locality is another very important benefit. As we
know, in higher dimensions, long distances become meaningless, since due to the curse of
dimensionality, similarity measures break down. Preserving locality then works against
skewing the results towards those high distances.

Figure 2.4: Basic Diffusion Map algorithm from [ 26 ]

Thus, diffusion maps employ eigenvectors corresponding to the first few eigenvalues of
markov matrices to embed data in lower dimensions. Diffusion maps represent the data
as edges and vertices, where edges are weighted by the heat kernel with parameter ε. One
of the downsides of the diffusion maps algorithm is that this parameter is data dependent
and therefore a new scaling parameter has to be chosen for each new dataset.

In [ 2 ] mathematical justification was provided for using the first few eigenvectors as ap-
proximations of eigenfunctions of the Laplace-Beltrami operator, when data is uniformly
sampled from a low dimensional manifold. Laplace-beltrami operator is a generalization
of the Laplacian to Riemannian manifolds. Riemannian manifold is a collection of points
that locally resembles euclidean space but globally is different and has defined Rieman-
nian metric, which measures the length of the curves as well as the length of the tangent
vectors.

However, it is important to note that different scales yield different embeddings. The
mapping to eigenspace therefore is not unique, rather, there is a family of diffusion maps,
which also results from different normalization of the markov chain. A parameter α can
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specify the amount of influence of the density in the infinitesimal transitions of the diffu-
sion. The influence of density is maximized if we set αa to be zero, which is equivalent
to graph laplacian normalization with gaussian weights and is best used for spectral clus-
tering. In case of α = 1

2 , markov chain normalization then leads to approximation of the
Fokker–Planck operator, which is especially useful when analyzing limiting behaviour of
high dimensional stochastic systems. Lastly, another important operator can be approxi-
mated if we set the α parameter to one, Laplace-Beltrami (heat) operator, which, regardless
of the density of the data, can be used to analyze geometry of the point cloud.

[ 26 ] showed connection between the heat equation and random walks on graphs and
discussed computing eigenvectors and eigenvalues of the heat diffusion equation directly,
which is what diffusion maps algorithm does. Especially when the domain is high-dimensional
and complex, solving the heat equation becomes very hard, but this way it can still be ap-
proximated.

2.3 Datafold

Datafold [  21 ] is an open-source software package that enables inferring underlying geo-
metrical structures from large-scale datasets. In comparison to equation driven approach,
datafold provides data-driven models for analyzing point clouds and time series on mani-
folds, which givers users more flexibility to analyze wider range of systems, even the ones
where the system of equation is either intractable or even unknown.

Datafold’s API is templated from popylar machine learning library scikit-learn. It is
highly customizable and adjustable to many machine learning problems and abstracts
away the complexity of defining algorithms that solve the problem of representing those
complex or simple data structures. It’s infrastructure is based on using data format struc-
tures widely used in scientific context, namely Numpy and Scipy arrays. It works on
sparse matrices, which provides more robust and scalable solutions.

Datafold views data points as point clouds embedded over a manifold, and for global
parametrization of those point clouds, it provides an efficient implementation of diffusion
maps. This particular implementation of the algorithm stands out with it’s ability to han-
dle sparse kernel matrix. Additionally, it can allows choosing an arbitrary kernel. It can
be utilized to infer geometrically meaningful structures from data, such as approximate
eigenfunctions of operators: Laplace-Beltrami, Fokker-Plank, Graph Laplacian.

Instead of approximating Laplace-Beltrami operator, the choice of parameter alpha = 0
gives us an estimation of eigenvectors of the graph laplacian of the gaussian kernel with
the specified bandwidth (sigma parameter of the gaussian) that can be optimized for each
manifold. For stability of eigenvector computations, the gaussian kernel is normalized to
obtain a conjugate transformation, a symmetric conjugate kernel with the same spectral
properties, and then eigenvalue decomposition happens with scipys methods that operate
on sparse matrices to offer faster solutions with less memory requirements.

Datafold uses ARPACK library, which is an industry standard, robust and scalable method
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for solving eigenproblems. Datafold implements a wrapper of eigensolver calls and chooses
optimal subroutine depending on the matrix and it’s density. Hermitian matrix is matrix
that is equal to its conjugate transpose and sparsity of a matrix is determined by having
mostly non-zero entries. The final solver is chosen between 4 subroutines displayed in
table  1 .

Hermitian Non-hermitian
Sparse scipy.sparse.linalg.eigh scipy.sparse.linalg.eig
Dense scipy.linalg.eigh scipy.linalg.eig

Table 1: Scipy solvers for different types of matrices

Under the hood, datafold uses scipy’s eigensolver, which, in turn, is a wrapper for
ARPACK [ 22 ] software subroutines that use Implicitly Restarted Arnoldi Method to find
the eigenvalues and eigenvectors of sparse matrices. For symmetric matrices, the this pro-
cess becomes another Krylov subspace method, called the Implicitly Restarted Lanczos
Method (IRLM). For dense matrices, scipy calls LAPACK, which uses a variation of QR
algorithm. Scipy solver is selected based on number of eigenpairs to be computed, and
often sparse solver is favoured over dense solvers, because often dense solvers find all
eigenpairs which is a computationally costly operation when only solving for k eigenpairs.

The software provides a way to transform out of sample points and embed them in
their respective spectral image by implementing Nyström extension, allowing the users to
extend the diffusion map algorithm to unseen data.

Datafold also provides a way of choosing parameters for gaussian affinity, namely cut
off and ε parameters in it’s estimators class. Cut off represents a value of distance above
which distance is treated as zero when computing the kernel matrix, it is estimated by
choosing maximum distance between points and it’s nearest k neighbours. ε represents
gaussian kernel scale, which, for given tolerance parameter, is estimated this way:

ε =
cut-off2

−log(tolerance)
(2.2)

where by default, tolerance= 1e−08, k = 25 and cut-off is estimated to be maximum
distance from each node to it’s 25th neighbour.

The parameters estimated from datafold are then used for computing the kernel matrix
for SpectalNet too, which is going to be discussed next.

2.4 SpectralNet

Spectralnet [ 27 ] solves a problem of spectral clustering, which is unsupervised learning
method that is widely used when working with graph data. It’s primary goal is to find
good clustering assignments to points in the data, where similar data points are grouped
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together, while dissimilar points are in separate groups. So maximising intra cluster con-
nectivity score while minimising inter cluster connectivity. If we consider random walk
on a graph, Spectral Clustering can also be interpreted as searching for a partitioning of
the graph, for which the probability of jumping between clusters is low and the random
walk stays within clusters for the longest time. In essence, Spectral clustering performs
K mean clustering on embedded data in eigenspace of normalized laplacian matrix, de-
rived from pairwise similarities between data points. However, even though embeddings
only require eigen-decomposition of a matrix, for large datasets direct computation of the
eigenvalues is infeasible.

SpectralNet, is a neural network that uses deep learning for performing spectral em-
bedding on the data. It addresses the shortcomings of traditional spectral clustering ap-
proaches: poor scalability and out-of-sample-extension. It’s learning process is based on
constrained stochastic optimisation, which enables scallability to larger datasets. The con-
straint, which is there to ensure orthogonality of the outputs, is implemented by a special
purpose output layer, designed to make the output of the network orthogonal.

Out of sample extension problem is non-trivial problem, as showcased in [ 4 ], where 5
algorithms with no straightforward way to generalize over unseen data points, were ex-
tended to be able to embed new data points without recalculating the eigenvectors, due
to the convergence of eigenvectors to eigenfunctions. Conversely, Spectralnet uses con-
strained stochastic optimization to learn a mapping function from input to output space,
that can be generalized to map any point to it’s difussion map, solving the OOSE problem.
The function is represented as a feed forward deep neural network, and the added con-
straint is needed to ensure orthogonality of the eigenvectors and is achieved a linear layer,
whose weights are set by the QR decomposition of it’s inputs.

SpectralNet stochastic optimization process ensures scalability to large datasets. [ 18 ]
demonstrated that spectral clustering could be reformulated as a constrained optimiza-
tion problem and approximated in mini-batch training, relying on stochastic gradients to
compute unbiased estimations of exact gradients with On cost instead of On2. At each
iteration, this method uses only a fixed subset of columns of the laplacian to compute
the gradients. Due to the stochastic characteristic of the training process, the orthogonal-
ity constraint is not strictly satisfied for the full dataset, however, shuffling the data and
choosing different mini-batches gives a good approximation to orthogonal vectors.

The most interesting part in SpectralNet, is that, once trained, SpectralNet computes a
map Fθ : Rd → Rk. It maps each input point x to an output y = Fθ(x). The spectral map Fθ
is implemented using a neural network, and the parameter vector θ denotes the network
weights.

The training of SpectralNet consists of three components:

• Unsupervised training of Siamese Network to learn an affinity given the input dis-
tance measure.
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• Unsupervised learning of the map Fθ by optimizing a spectral clustering objective
while enforcing orthogonality.

• Using K-means on the spectral embeddings to learning the cluster assignments.

The first and the last components are less important for this thesis. However, the second
component, learning the function via the neural network is an important step that can be
utilized to enhance or, in the future, substitute other eigensolvers.

End-to-end training approach for learning Fθ is summarized below in  2 .

Algorithm 2: SpectralNet Training

Input: Data Matrix X ⊆ Rd, batch size m ;
Output: embeddings y1, ..., yn, yi ∈ Rk ;

while LSpectralNet(θ) not converged do
Orthogonalization step:
Sample a random minibatch X of size m;
Forward propagate X and compute inputs to orthogonalization layer Ỹ ;
Compute the Cholesky factorization LLT = Ỹ T Ỹ ;
Set the weights of the orthogonalization layer to be

√
m(L−1)T ;

Gradient step:
Sample a random minibatch X of size m;
Compute the m × m gaussian affinity matrix W;
Forward propagate x1, ..., xm to get y1, ..., ym;
Compute the loss ;
Use the gradient of LSpectralNet(θ) to tune all Fθ weights, except those of the
output layer;

end
Forward propagate x1, ..., xn and obtain Fθ outputs y1, ..., yn ;

SpectralNet training involves two steps, and happens in coordinate descent fashion,
alternating between orthogonalization and gradient steps. For each step, different random
mini-batch of size m is selected. Orthogonalization step adjusts weights of the last linear
layer of the network, which is responsible for orthogonalizing its inputs, while the gradient
steps uses backpropagation to update every other layer’s weights except for the last one.

The loss for SpectralNet if we use unnormalized laplacian is:

LSpectralNet(θ) =
1

m2
=

m∑
i,j=1

Wi,j ||yi − yj ||2

It can be rewritten as:

LSpectralNet(θ) =
2

m2
= trace(Y T (D −W )Y )
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Considering the orthogonality of the outputs, the minimum of the loss function is reached
when columns of Y T span the subspace of the first k eigenvalues of D −W.. It is defined
as a sum over pairs of points from the dataset, which is unlike other loss functions, that
typically sum over individual samples. Each summand is representative of relationship
between the two chosen nodes.

SpectralNet represents neural network based approach to finding diffusion maps. It
approximates diffusion map with major computational speedup, which is linear in dataset
and model size. [ 23 ] used this diffusion map approximation as a prior for defining the
manifold to overcome prior mismatch problem when training VAEs or GANs. SpectralNet
does offer an advantage of not having a bias towards forming only convex shaped clusters,
unlike other methods that use Gaussian priors, and then perform variational inference to
find lower dimensional latent space, such as one described in [ 20 ].

SpectralNet approximates eigenvectors of the laplacian well enough to allow the net-
work to cluster non-convex shaped point clouds, which still poses a challenge for other
deep learning approaches trying to solve the same problem. It achieved state-of-the-art
performance on Reuters dataset, which is a large corpus for text categorization, for which
traditional spectral clustering is impractical. SpectralNet can be used to optimize for eigen-
functions of normalized or unnormalized laplacian, as well as another neural network,
called ”Siamese Net” can be employed to learn different affinity function between the data
points to use instead of the standard gaussian affinity.

Other approaches have also been tried to tackle the problem of scalability of clustering
methods. [  28 ] successfully suggested reducing size of similarity matrix for spectral clus-
tering to improve clustering result of k-means, which was achieved even for the datasets
where Mcut [ 8 ] algorithm could not be performed. [ 9 ] used Nystrom extension, a tech-
nique to approximate eigenfunctions and solve OOSE, to first perform image segmentation
for small subset of pixels and then extrapolate the results to full image.

It is important to note that other deep learning approaches for performing clustering di-
rectly optimize Kullback–Leibler (KL) divergence, and serve as an autoencoder that tries
to encode target distribution into centroid-based prior probability distribution. One such
example was described in [ 33 ], where spectral convolution and spectral transformer net-
works were built and used to perform 3D shape augmentation. With SpectralNet, we first
get an intermediate result of data points transformed to their eigenspace and then perform
clustering. This enables us to utilize eigenvectors of the laplacian for other tasks as well.
Additionaly, since the gaussian kernel matrix is computed, we can compute eigenvalues
corresponding to each eigenvectors, which would have been impossible with most other
deep learning based spectral clustering approaches, since they do not compute the kernel
explicitly.
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3 Solving Eigenproblems With Artificial Neural Networks

In this chapter, first we are going to introduce the architecture of neural network used for
solving the eigenproblem, with it’s activation functions and choice of layers, define it’s loss
function and describe how the network tries to satisfy the orthogonality constrained. The
next section,  3.2 introduces evaluation metrics used for evaluating the quality/accuracy
of resulting eigenvectors, since we have an unsupervised learning problem and the loss
or validation loss does not convey how well our network approximates eigenfunctions.
Consequently, in  3.3 we introduce set up for our models and experiments. Firstly, Spec-
tralNet was primarily used for clustering, and then to examine how well a neural network
can estimate eigenfunctions and eigenvalues of the Laplacian. Moreover, the results of
choosing hyperparameters for our training procedure are shown.  3.4 describes the pro-
cess of actually computing the eigenvectors and eigenvalues with the neural network.  3.4 

presents comparison of evaluations of two sets of eigenvectors, obtained from SpectralNet
and Datafold. In  3.5 , the results are applied to solve one of the test examples, eigenfunc-
tions and eigenvalues are used to obtain the solution to the heat equation on the circle.
The results are then compared in terms of how close the numerical approximation with
the eigenvectors comes to the true exact solution computed analytically.

3.1 The Architecture of Neural Network of SpectralNet

Neural networks are a complex computing system that is used for various problems. Some
problems are hard for humans, but incedibly easy for computers, typically the ones that
involve a lot of calculations. However, pattern recognition is a task that conversely, is dif-
ficult for a machine, and typically neural networks are often employed for solving such
problems. In the paper named ”A logical calculus of the ideas imminent in nervous ac-
tivity”, published 1943, a neuro scientists described the first artificial neural network, in-
spired by human brain cells. Even though the building blocks of the network, neurons
are incredibly simple and are only responsible for reading an input, processing it and re-
turning an output, collective power of the neurons today, can solve some tasks with even
better performance than a human. Neural networks are universal approximators and can
theoretically be constructed and trained to approximate any arbitrary function, they are
adaptive and can change their internal structure according to the data given to it. A typi-
cal neural network consists of layers of neurons, which represent the smallest computing
units in the network. Neural network algorithm is defined by it’s architecture (the way
neurons are arranged), the loss function and the optimisation strategy. The loss function is
a function for which neural network tries to achieve an optimum, using the optimisation
strategy that we define.

Different neural network architectures have been developed for different kind of prob-
lems. The simples neural network, perceptron, could only solve linearly separable tasks.
Later on, Convolutional networks were developed for image recognition, Recurrent neural
networks were created for sequential data and are mostly used in Natural language pro-
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cessing, and as the field of deep learning advanced, neural networks not only classified
data, but became generators too. Moreover, different architectures have been brought up
that serve the purpose of Spectral Analysis. SA-NET, [  31 ] for example, is one such other
neural network architecture, that uses spectral analysis layer to employ deep learning and
analyze images for clustering. Following Han and Filippone ( [ 18 ]), demonstrating that
the spectrum of the laplacian can be computer with mini-batch training, another algorithm,
called SpectralNet, was developed to approximate the eigenfunctions of the laplacian with
a neural network.

For SpectralNet, the architecture is customizable. We can choose number of layers and
number of neurons in the layers.  3.5 shows a typical fully connected neural network ar-
chitecture with 3 hidden layers. For our problem, we also started with using a Neural
Network with three hidden layers. With 128, 64, and 32 neurons, respectively. The output
dimension is determined by the number of eigenvectors we want our network to com-
pute, k. Since our output needs to be orthonormal, additional linear layer is added at the
end, which performs orthogonalization of the output by computing QR decomposition
via cholesky decomposition and transofrming input to be othogonal. After that, in order
to use the eigenvectors, we have to normalize them to have norm 1 and range between -1
and 1.

The last linear layer, therefore, for input matrix X, where XTX is full rank, performs
cholesky decomposition:
XTX = LLT

where L is a lower triangular matrix with positive diagonal entries. Then the orthogo-
nalization of the input can be obtained with:

Q = X(L−1)T

So at each orthogonalization step, which is a step that happens during training process
of the network, the weights of the last linear layer are set to be L( − 1)T .

Each neuron in the network has it’s own set of weights and biases, as well as an activa-
tion function, which indicates whether the neuron is active or not (propagates information
forward or not). There are many activation functions available, and their choice typically
depends on the task. For this problem, in our network architecture Elu activation function
was used. SpectralNet’s implementation did not use this activation function and keras
layer interface was used to add Elu activation function to the network architecture. Elu is
identical to famous RELU for positive inputs, but is smoother towards 0. This smoothness
makes it better suited for optimization, since it is differentiable everywhere and therefore
performs well during backpropagation. However, it is important to note that Elu tends to
cause saturation problems when it’s inputs are large negative values.

R(z) =

{
z z < 0

α(ez–1) z ≥ 0
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Figure 3.5: Architecture of Fully connected artificial neural network with 3 hidden layers

Figure 3.6: Elu activation function

The loss function of the network is set up to find eigenvectors of the graph Laplacian of
gaussian kernel on the data. The optimization algorithm for SpectralNet is RMSPropOpti-
mizer(Root Mean Square Propagation), which is a gradient-based optimization algorithm
with adaptive learning rate, where each weight has it’s own learning rate that gets adapted
depending on the magnitude of the gradient. Gradients of functions such as neural net-
works often either explode (get too large) or vanish (become nearly zero) as the data prop-
agates through the deep layers of the network, and RMSProp was designed to avoid this,
by decreasing the step size for large gradients and increasing it for small gradients.

LSpectralNet(θ) =
1

m2

m∑
i,j=1

Wij

∥∥∥∥yidi − yj
dj

∥∥∥∥2
where di = Di,i =

∑m
j=1Wi,j , and this loss ensures training the network to optimize for
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eigenfunctions of normalized graph laplacian I −D
−1
2 WD

−1
2 .

3.2 Evaluation Metrics

As we have already seen, we are performing unsupervised learning with our artificial
neural network. When choosing optimal model and hyperparameters for the models for
the supervised case, we rely on our test and validation data, for which we have labels
for, and evaluate how well our network generalizes. However, theoretically, we don’t
have the eigenvectors of the matrices we are looking for, and thus we train our network
in an unsupervised way. However, choosing the right model becomes trickier, and so we
need other methods to essentially distinguish between poor and good performance of our
model.

In order to evaluate quality of eigenvectors computed from the methods, it is useful to
take a look into couple of metrics that will gives us capability not only to measure the
change in loss of the neural network function, but also make sure that the network is in-
deed approximating the eigenvectors.

Grassmann distance is a measure that was used in SpectralNet in order to compute
the quality of eigenvector approximation. Grassmann distance is calculated between sub-
spaces of true eigenvectors and spectralnet output. It represents square root of sum of
squared distances of sine angles between two subspaces.

d(A,B) = (
k∑

n=1

θ2i )
1/2

, where θi is the ith principal angle between A and B.

θi = cos−1(σi(A
TB)

and σi is the ith singular value.
This measure, therefore, estimates similarity of the two sets of eigenvectors given the

relative position of two subspaces spanned by them. Figure  3.7 from [ 32 ] visualizes the
intuition behind grassmann distance.

Squared L2 distance was a measure that was used in SpectralNet in order to compute
the quality of eigenvector by comparing norm of difference vector between datafold and
spectralnet outputs. Where Vs and Vd are vectors computed from spectralnet and datafold
respectively.

L2(Vs, Vd)
2 =

∑
i,j

(Vsij − Vdij)2

For the estimation of quality of eigenvectors computed by neural networks in [ 24 ] the
following measures were used also for our purpose.
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Figure 3.7: span(Yi)
′s are a d-dimensional subspace in R. The distance between them can

be measured by principal angles, θ′is., In the Grassmann manifold point of view,
these subspaces are points on the manifold G(d, D). Then, the distance between
these points is ||θ||2.
1) Principal angle in RD. 2) Grassmann distance in G(d, D).

Projection/Reconstruction error which measures how close the subspaces spanned by
wi’s are to the one spanned by qi’s, where i = 1..K, the smaller the value of E, the closer
the two sub-spaces are to each other.

E =
K∑
n=1

wi

||wi||
−

K∑
i=1

qiqi
T wi

||wi||

The metrics above capture how close to sets of vectors are close to each other, however,
extent of orthogonality is not captured in them. So additionally, orthogonality measure
which is essentialy capturing the same thing as Orthmax from [ 24 ] is calculated:

Orthogonality Measure to ensure that orthogonality constraint is met.

Orth = ||I − V V T ||

where V is matrix with computer eigenvectors. The lower the measure, the less the norm
of the error between identity matrix and V V T , since we know ideally they should be equal.

3.3 Models and Experiments

Experimenting with Spectral Clustering With SpectralNet

The model of neural network that was primarily used is SpectralNet, which provides a
new way to perform spectral clustering via learning the spectral embedding of the graph
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laplacian.

Prior to using SpectralNet to solve the heat equation numerically, the network was used
to perform spectral clustering on one of sklearn’s dataset, concentric circles with non con-
vex decision boundary. The dataset can be generated specifying number of points, the
noise parameter that is added to the data, and the factor parameter which controls the
scale between inner and outer circle.

It is important to mention that the training was happening without any labeled data, as
opposed to other examples listed in SpectralNet paper, where training always was either
fully, or at least semi-supervised and the network had at least some labeled data. For our
clustering experiments, the data provided to the network was only the points, without the
cluster assignments.

It performed consistently well for recognizing the clusters. 1000 points from the dataset
were sampled with a noise parameter 0.1 and a factor of 0.2. Without having to extensively
search through for hyperparameters, it outperformed standard clustering with K-means,
which, due to non-deterministicity of the algorithm, yielded different clustering assign-
ments and did not recognize cluster shapes due to it’s inability to recognize non-linear
boundaries. However, standard spectral clustering and spectralnet both had resulted with
correct cluster assignments over multiple runs.  3.8 Illustrates the circles where the color-
ing indicates each cluster an algorithm assigned a particular point to.

Figure 3.8: Results of SpectralNet, Standard Spectral Clustering and K-means clustering.
Sampling 1500 points, with noise set to 0.1 and factor 0.2
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However, changing the dataset a bit to have a different shape but still have similar
boundary, changed the results of the network. The Figure  3.9 shows the cluster assign-
ments generated from again 1500 samples, noise=0.05, but this time with a factor of 0.5.
Here, SpectralNet is unable to correctly classify points into clusters without supervised
learning.

Figure 3.9: Results of SpectralNet, Standard Spectral Clustering and K-means clustering.
Sampling 1500 points, with noise set to 0.05 and factor 0.5

Using SpectralNet to estimate eigenfunctions and eigenvalues of The Laplacian

As SpectralNet’s loss attains optimum when Y is subspace of eigenfunctions of the Lapla-
cian, we try to measure how good those estimations are, by comparing it with eigen-
functions computed by another standard method, that comes from the software package
Datafold. Datafold, as previously discussed, performs manifold learning, which refers to
learning underlying structure of a point cloud. This is a process of finding lower dimen-
sional representation, and can be achieved with methods such as kernel PCA or Spectral
Clustering. Datafold provides efficient implementation of ”Diffusion Maps” model, which
involves finding eigenfunctions of markov matrices defining a random walk on the data to
obtain a new representation of the dataset, which is equivalently, optimizing for the same
function as SpectralNet’s loss.
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The hyperparameters for datafold is only a scale parameter for the gaussian kernel,
which, is estimated with the help of the same package. However, SpectralNet, apart from
the scale parameter, requires a lot of additional settings.

As with any kind of neural network training, hyperparameter searching is done before
determining the best hyperparameters for the given problem. In this case, grid search was
performed to choose optimal learning rate, patience, dropout and number of epochs. In

 3.10 the part of grid search results is presented. As optimal parameters, the 19th row was
chosen, with learning rate 1e− 4, patience 30, number of epochs 70, and dropout to be 0.2
since it had lower accuracy and grassmann measure.

Figure 3.10: Hyperparameter Searching, grid search results

Apart from normal hyperparameters of the neural network such as learning rate, pa-
tience, dropout and number of epochs, our problem also needs to use a scale parameter
for the gaussian kernel construction. choice of scale parameter controls bandwidth of the
gaussian kernel. Both SpectralNet and Datafold provides a way to estimate the scale to be
used.

SpectralNet takes median distance of each node to it’s 25th neighbour as a heuristic for
the scale parameter, while datafold’s heuristic for the scale is desribed in equation  2.2 .

Their optimal scale varies, but in order to make sensible comparisons of two sets of
eigenvectors, our experiments used datafold’s scale parameter for constructing the ker-
nel matrix for SpectralNet. Additionaly, the scale for spectralnet was standard deviation,
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while for datafold it was used as a variance. So our parameter for the network was the
following:

Since datafold uses it’s ε parameter to compute the kernel matrix the following way:

W = exp(
−D2

2 ∗ ε
)

where D is a matrix of pairwise euclidean distances.
And SpectralNet exponentiates by squared of it’s input scale as seen in equation  2.1 ,

therefore:
σSpectralNet = ε1/2

The data for our example comes from a simple circle. The dataset is created by sampling
θ, which represents an angle and is between 0 and 2π N=10 000 times, then multiplying ra-
dius by cosine and sine of θ and getting the x and y coordinates on the circle, respectively.
Figure  3.11 shows the plotted generated circle. Then two approaches are used to find k
eigenvectors corresponding to the graph normalized Laplacian for this data.

Figure 3.11: Unit circle with 10000 points

Two models differ from each other in terms of time needed to compute the eigenvectors.
Datafold uses direct solver and therefore is much faster compared to spectral net. Figure
 3.12 demonstrates this advantage, where the setup and compute times are compared for
two methods.

Choosing the mini-batch size

The optimization happens on mini batches. Mini batch size is another hyperparameter
that can influence stability of the training process and speed of the learning, as well as
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Figure 3.12: Change in Training and Compute time with increasing K

Parameter Value
Optimizer RMSprop
Initial Learning Rate 1e−4

Batch Size 256
Batch Size Orthonorm 512
Weight Initializer Glorot uniform
Number of Epochs 70

Table 2: Chosen Hyperparameters for network training.

generalization ability of the network. Neural network training process involves updating
the network learnable weights according to the gradient of error estimate, which is calcu-
lated on a given batch. The larger the batch, the better it represents the overall data and
the more accurate the gradient updates would be. During SpectralNet training process, the
learning iteration chooses two different mini-batches. One for updating the weights of the
last layer, and one for the rest of the network. The batch size, therefore greatly influences
how orthogonal are the resulting eigenvectors to each other. It should be large enough
to still be able to produce orthogonal outputs, without diminishing benefits of mini-batch
training. Figure illustrates that the larger the mini-batch, the more orthogonal the output of
the network become. For our testing, as a batch size for orthonormal layer, we used batch
size of 512, because even though increasing batch size reduces the orthonogonality error
and grassmann distance, using large batch-sizes is impractical (since generally smaller
batch sizes are favoured, for faster iterations) and the network performed better when
orthonorm batch size was closer to the batch size for the rest of the network.

Finally, all chosen hyperparameters for network training is summarized in  2 .
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Figure 3.13: Change of Orthogonality with Batch Size

Adding more complexity to the network

When searching for neural network architecture, it is a common practice to start with small
amount of layers and neurons and add more learnable parameters later if necessary. Since
3 layered neural network has less learnable parameters than a deeper and wider neural
network, it has less complexity and expressability. By making the network wider or deeper,
we estimated whether this change improved performance of the network. Unfortunately,
increasing either the width or the depth of the network did not result in better quality
eigenvectors.

3.4 Computing Eigenvectors and Eigenvalues

In order to compute eigenvectors, we first train SpectralNet on our data. Plotting the loss
after training gives us intuition about whether our network converged to something or
diverged and did not find good enough approximation of the function we are optimizing
for. In our case, it can be seen on figure  3.14 that the loss converges and goes down from
initial starting point, so we know the network is wired up correctly.

The loss we are optimizing for, however, does not capture quality of our eigenvectors.
For that, we also consider grassmann distance and how it changes over time, depicted on
 3.15 .

After training, predict ”spectral” embeddings on the data, which gives us approxima-
tions of eigenfunctions of the laplacian. Firstly, the output is normalized to make the
eigenvectors orthonormal. Then, in order to sort the eigenvalues in terms of importance,
eigenvalues need to be calculated. It is known that the quality of eigenvalue estimation
depends on how separated each eigenvalue is to its closest neighbouring eigenvalues, and
similarly, eigenvectors are also sensitive to the direction of other eigenvectors correspond-
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Figure 3.14: Change of loss over epoches

ing to neighbouring eigenvalues. The more separated the values are, the less sensitive the
eigenvalue estimation is to numerical perturbations.

In order to calculate the eigenvalues, the kernel matrix itself is needed. It is computed
by fixing the indexes of the shuffled dataset, running the Tensorflow graph on the whole
dataset after training, to evaluate the kernel, and then predicting the eigenvectors for the
same exact order of the data. The output of the network is then multiplied by the row-
normalized kernel and divided by the output again, in order to get N approximations of
the k eigenvalues.

After plotting the distribution of eigenvalues, the median of the distribution is consid-
ered as an approximation to the eigenvalue itself in order to compare with values com-
puted by datafold. Another heuristic, the mean of the distribution was compared to the
median and the norm of the error between datafold’s output and the median of the approx-
imations was the minimum of the two.  3.16 vizualizes the reasoning behind the chosen
heuristic. This procedure gave us a very comparable approximation for eigenvalues of the
laplacian matrix, difference between the norms of eigenvalues came close to 0.

Estimating Eigenvalues with spectral net gave pretty accurate results. Figure  3.17 plots
the 5 smallest eigenvalues of the laplacian, which can be computed by reversing the gaus-
sian filter

λ =
2 ∗ log(value)

ε

where epsilon is the used scale parameter and value is the eigenvalue computed with
the gaussian kernel.

It is important to note that when we increase the size of our last layer (want to compute
more eigenvectors), to compute more than 11 eigenvectors, the input to cholesky decom-
position becomes invalid due to numerical errors, and matrix XTX , where X is the input
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Figure 3.15: Change of Grassmann distance between subspaces spanned by Datafold’s
and SpectralNet’s approximated eigenvectors during training.

to the orthogonalization layer at the end of the network, becomes singular.
Additionaly, it is important to note that the more the number of eigenvectors we want

to compute, the less exact they are. Figure  3.18 shows the rise in norm of difference of
eigenvalues computes from two methods, although it remains close to zero even when
estimating 10 eigenvalues. This is not suprising since we are using the whole dataset to get
estimations for eigenvalues, whereas the eigenfunctions are estimated on smaller batches.

The results from datafold package are plotted below, they represent sine and cosine
functions, as expected. We plot each eigenvector against our sampled variable θ.

Contrastly, the eigenvectors from spectralnet do not look as accurate. They still look like
periodic functions and their frequency gets higher and higher we compute more eigenvec-
tors, but are arguably less resembling the cosine and sine functions than datafold output.
Also, spectralnet only provides eigenvectors and eigenvalues are not computed, therefore
the order of the eigenvectors is unknown and it is not guaranteed that they are sorted. Al-
though the spectralnet loss function optimizes for a subspace in which the constant vector
is contained, but spectralnet fails to estimate the constant vector exactly, and the difference
in eigenvalues is also often more prominent for the smallest eigenvalue (zero).

Moreover, the neural network output is not deterministic, therefore, each time we train
a network, even with the choice of same parameters, we get a different result. For this
particular neural network, the results are not stable, and this can be visualized in the  3.19 ,
where a network was trained with same parameters and norm of error between the eigen-
values (after scaling them back) and the heat equation solution was measured, and it has
large deviations.

One of the reasons of this instability could be network’s sensitivity to it’s initial weights.
First off, replacing the standard choice of Glorot uniform (Xavier) initialization with an-
other weight initializer, which initialized weights to be orthogonal to each other was tested,
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Figure 3.16: 5 Smallest eigenvalues of the laplacian, estimated by datafold, and from spec-
tralnet with mean and median heuristics

it’s performance was even less predictable, however, in some cases solution to the heat
equation was approximated much better. To test whether the output was inconsistent due
to the sensitivity towards choice of weights, a seed parameter was passed to a weight ini-
tializer, in which case the network training process became much more reliable. To combat
this sensitivity towards initialization, batch normalization layers were added in between
the layers to stabilize the training process. In the end, Xavier initialization without batch-
normalisation layers performed in the most stable way shown in figure  3.20 .

3.5 Test example: The heat equation on a circle

Heat equation Background

The Laplacian is a differential operator given by the divergence of the gradient of a func-
tion on Euclidean space. It often appears in differential equations that describe physical
phenomena. One such example is the heat equation, which describes diffusion of the heat
in a region. The solution to the heat equation gives the distribution of temperature in a re-
gion as a function of space and time for specified temperature at the boundaries, the initial
distribution of temperature, and the physical properties of the medium.

Partial differential equations are useful when a process can be easier described through
the process of change. The heat equation is an partial differential equation that describes
how heat diffuses over time, mainly, the rate of heat transfer on a given points depends on
the temperature of the point itself.

Let g(θ) be the initial temperature on a thin unit circular rod. Let u(t, θ) be the tempera-
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Figure 3.17: 5 Smallest eigenvalues of the laplacian

Figure 3.18: Error in eigenvalues and eigenvectors with increasing K

ture distribution over a rod in time. It satisfies the heat equation

∂u

∂t
=
∂2u

∂θ2
(3.3)

with boundary conditions

u(0, θ) = g(θ) (3.4)

In order to solve the equation analytically, we need to employ separation of variables,
a technique which enables us to rewrite the solution so that each variable appears on dif-
ferent side of the equation. This is a technique that assumes a solution of particular form,
and is known as Fourier method:

u(t, θ) = T (t)Θ(θ))

30



3 Solving Eigenproblems With Artificial Neural Networks

Figure 3.19: Norm of error of eigenvalues and heat equation solution obtained by Spec-
tralNet, trained with the same parameters 30 times.

where Θ(T ) and T (t) are some functions that only depend on spatial and time variable,
respectively. Substituting , the heat equation becomes:

T ′(t)Θ(θ) = T (t)Θ′′(θ).

If we rearrange the above equation, and get left hand side which only depends on t, and
right hand side which only depends on theta, we know it is equal to some constant.

T ′(t)

T (t)
=

Θ′′(θ)

Θ(θ)
= −λ

This gives us two equations:

Θ′′ + λΘ = 0

Where Θ is periodic function with period equal to 2π, and

T ′ + λT = 0, t > 0

The solution of the latter problem is:

T (t) = e−k
2t
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Figure 3.20: Norm of error of eigenvalues and heat equation solution obtained by Spec-
tralNet, trained with the same parameters 30 times.

,
where k2 = λ and k ∈ Z

Θ(θ) =
∞∑
n=1

cne
−λnwn(θ)

where wn is an eigenfunction corresponding to the eingevalues λn. The infinite sum
reflects the fact that the heat equation has infinitely many real eigenvalues, 0 <= λ1 <=
λ2 <= λ3..., λn. cn are the coefficients such that:

u(0, θ) =
∞∑
n=1

cnwn(θ)

The eigenfunction of a linear operator D defined on some function space is any non-zero
function f in that space that, when acted upon by D, is only multiplied by some scaling fac-
tor called an eigenvalue. We know that sin(wx) and cos(wx) is a an eigenfunction of the
operator ∂2f

∂x2
. For example ∂2f

∂x2
(sin(wx) = −w2sin(wx)., which proves that sin(wx) and

−w2 is an eigenpair of this function.
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3 Solving Eigenproblems With Artificial Neural Networks

Figure 3.21: 5 Eigenvectors computed by datafold plotted against θ

Figure 3.22: 5 Eigenvectors computed by spectralnet plotted against θ

Substituting the sines and cosines as eigenfunctions of the laplacian, we then have:

Θ(θ) = Akcos(kθ) +Bksin(kθ)

gives us solution to the first equation if λ = k2 and k ∈ N for some constants Ak, Bk.
Otherwise if k = 0, then Θ(θ) = A0

The solution to the whole partial differential equation that satisfy the boundary condi-
tions then becomes:

un(t, θ) = e−k
2t(Akcos(kθ) +Bksin(kθ))

By linearity, the general is then given by superposition of all these solutions:

u(t, θ) = A0 +

∞∑
k=1

e−k
2t(Akcos(kθ) +Bksin(kθ))

where AkandBk are coefficients and the initial condition is satisfied if:

Ak =
1

π

∫ π

−π
g(θ)cos(kθ) dθ and Bk =

1

π

∫ π

−π
g(θ)sin(kθ) dθ (3.5)

where g(θ) = u(0, θ) is the initial condition, which is a function of heat distribution for
the first timestamp, t = 0.

The smalles eigenvalue is 0, with corresponding constant eigenfunction of 1’s. Then. as
time goes to infinity, the temperature becomes diffuses uniformly over the whole domain
and eventually reaches equilibrium and becomes a constant. Each term in the solution
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contains negative exponential, and terms get faster and faster decaying since as n increases,
λn increases quadratically. λ2 represents the convergence rate towards the equilibrium
point of the problem and A0 determines the temperature it will converge to.

g(θ) =

inf∑
k=0

Akcos(kθ) +Bksin(kθ) =
1

2
A0 +

inf∑
k=1

Akcos(kθ) +Bksin(kθ)

The coefficients Ak and Bk are only dependent on the initial condition.
We take the initial condition to be 2π periodic function, for example:

u(0, θ) = sin(θ) + cos(2 ∗ θ)

And try to get the solution to the heat equation numerically, using the eigenvectors and
eigenvalues obtained from our above-described methods. Apart from the eigenfunction
and eigenvalue pairs, the coefficients that depend on the initial condition should also be
computed.

To solve heat equation in python, we apply sine and cosine functions as true eigenfunc-
tions, and compute the coefficients by solving a linear matrix equation with least-squares
approach.

u(0, θ) =
inf∑
k=0

Akcos(kθ) +Bksin(kθ) = V · c

where V are eigenfunctions of the laplacian and c is a vector of coefficients. c can be
estimated with :

c = argmin
x
||g(θ)− V x||.

Heat equation on uniformly sampled data

We are going to look at the solution to the heat equation over a domain of a circulad rod.
We take our initial condition to be:

g(θ) = sin(θ) + cos(2 ∗ θ)

We compute first 5 eigenvectors with SpectralNet and Datafold.
We sample theta uniformly from a circle N=10000 times. We also sample time variable,

t, uniformly 100 times, ranging from 0th to 10th seconds. By applying the initial condition
of the heat to the sampled θ, we get the initial distribution of the heat.  3.23 shows the
initial distribution of the heat, estimated with 3 different methods. Numerically from using
approximationgs of eigenfunctions by SpectralNet and Datafold, and obtained by the exact
solution (using sine and cosine functions with different frequencies).
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3 Solving Eigenproblems With Artificial Neural Networks

To get the solution to the heat equation, we need to estimate Fourier coefficients. Ap-
proximating Fourier coefficients happens through least squares optimization using Numpy’s
linalg.lstsq method. We know, that our initial function can be approximated by sine and
cosine functions weighted by some coefficients, and the least squares solution approxi-
mates them.

The infinite sum is then approximated by summing over number of computed eigenval-
ues and eigenvectors.

The results from analytical solution and two numerical solutions are plotted below. We
see that the initial condition obtained from each solution is similar.

Figure 3.23: Initial distribution of heat obtaind from different method, plotted over the
angle

But as we move away from initial timestamp, the difference between two solutions is
apparent, as the first few eigenvectors and eigenvalues obtained from the neural network
are not resembling the true eigenvalues and eigenfunctions exactly. As the time passes,
the error then decreases exponentially for both numerical methods due to exponentially
decaying relationship of the time t and value of the sum in the solution of the heat equation
at time t.  3.24 we see how datafold has consistetly lower error compared to SpectralNet, it
estimated the exact solution with 10−−3 precision.  3.25 shows us 3 solutions for the heat
equation, plotted at different time stamps over the angle. As expected, Exact solution and
Datafold are close to each other, however, the most important eigenvector and eigenvalue
computed from SpectralNet deviates from the true one, which results in the difference in
the solution for earlier timestamps, when diffusion first starts.

Heat equation on non-uniformly sampled data

The previous example resulted in neural network performance which was not compara-
ble to standard industry solver’s, however, it still managed to find eigenfunction subspace
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Figure 3.24: Distribution of norm of error over time

Figure 3.25: Distribution of the heat evolving over time, plotted over the angle θ

which was close to one spanned by true eigenfunctions. With this experiment, we try to
identify whether the uniformity of data contributed to achieving low grassman distance
between sets of eigenvectors and if in non-uniform case the network will be able to esti-
mate eigenvalues with the same accuracy as previously.

We take our initial condition to be:

g(θ) = sin(3 ∗ θ) + cos(θ)

We compute first 7 eigenvectors with SpectralNet and Datafold.
In previous experiments, however, θ, the angle on a circular rod was sampled uniformly

from 0 to 2π. Additionaly, another non-uniform samplig method was used to evaluate
solution invariance to density of the problem.
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3 Solving Eigenproblems With Artificial Neural Networks

θ = 2 ∗ π ∗ (x2), x ∈ [0,1)]

Evaluating the eigenvalues, as previously, still was accurate and the norm of difference
was about 1.4e−05.

The eigenvectors, however, with the same parameter settings, are better estimated by
SpectralNet than Datafold. Without adjusting the diffusion map parameters, the method
fails to recognize the sine and cosine functions, however, spectral net was able to produce
eigenvectors that better resemble the true eigenfunctions.

Figure 3.26: Eigenvectors computer by Datafold for non-uniform sampling

Figure 3.27: Eigenvectors computer by SpectralNet for non-uniform sampling

And therefore, the solution to the heat equation computed with SpectralNet’s output is
closer to the exact one compared to Datafold. Figures  3.28 illustrate the solutions over
a domain for 3 different time stamps.  3.29 shows the error between obtained solutions
for each timestamp, conversely to the uniform case, solution of Spectral Net approximates
the solution better, because, without any parameters adjustments, the scale factor used in
datafold skews the eigenvalues, while SpectralNet, although can not learn precise eigen-
functions and eigenvalues, can adjust itself to learn the approximation without externally
changing it’s configuration.

However, both datafold and spectralnet are far off from the true analytical solution, if
we compute the solution this way. Datafold’s hyperparameters can be adjusted to account
for non-uniform data and still provide accurate representations of eigenfunctions, which,
unfortunately is not yet achievable with non-linear neural network, even for the simper
case of distributions.
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(a) Initial heat distribution computed by Datafolt on the
left, Analytically in the middle, and SpectralNet on
the right

(b) Heat distribution at t=10 computed by Datafolt on
the left, Analytically in the middle, and SpectralNet
on the right

(c) Heat distribution at t=70 computed by Datafolt on
the left, Analytically in the middle, and SpectralNet
on the right

Figure 3.28: Datafold’s numerical solution, Exact solution and SpectralNet’s solution at
time=0,10,70 from top to bottom
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Figure 3.29: Distribution of norm of error over time for non-uniform sampling

4 Summary

4.1 Summary of the thesis

The aim of the thesis was to use and examine a novel approach towards solving eigenprob-
lems, by employing complex non-linear functions for finding eigendecomposition of the
Laplacian on a given domain. The potential usage of the neural network as an algorithm
to solve eigenproblems was considered, as well as it’s limitations and complications when
it comes to learning the solution with a iterative, mini-batch based stochastic optimization
procedure.

Apart from using a novel approach, a standard method for finding spectral properties of
a matrix was chosen, as an alternative solution which was used as a subject of comparison
for the novel approach. At first, eigenproblems were defined and the challenges of solving
them have been introduced. Categorization of eigensolvers between direct and iterative
types has been established, and several iterative solvers and the choice of those solvers for
different kind of eigenproblems has been discussed. In this thesis, we have taken a closer
look into two approaches that solve eigenproblems. For scalable and more straightfor-
ward solution, deep neural network based approach to eigenproblems was investigated
and estimated. Potentially, neural networks are promising tool for finding approximations
of eigenfunctions of the laplacian on a manifold, giving a more natural and compact so-
lution to the problem than those provided by standard solvers with discretized methods
and standard linear algebra operations. Apart from using it for standard clustering, it was
applied to a test example, the heat equation on a circle and then compared with the so-
lution obtained with another eigensolver. This standard approach to eigenproblems was
performed by using diffusion map algorithm implemented in python package Datafold,
which stands as a wrapper for state-of-the-art eigensolvers built in scipy, relying on Im-
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plicitly Restarted Arnoldi Method (IRAM), which is the basis eigs routine implemented in
ARPACK.

Section  1 introduces the problem of finding eigenvalues and eigenvectors of matrices
and how different approaches have been used to solve it over the years. The importance
of developing novel approaches in this field was discussed, as well as the challenges of
computing eigenvalues and eigenproblems of a large matrix. In section  2 spectral cluster-
ing and diffusion maps were discussed, two dimensionality reduction methods that rely
on eigenvectors of the normalized graph Laplacian. Both methods rely on eigensolvers
and therefore have a limitation in terms of data size, since eigensolvers nowadays typ-
ically operate on the whole matrices and often are hard to parallelize or scale up. Dif-
fusion map algorithm, implemented in software package Datafold, was used to estimate
the eigenfunctions of the laplacian, and this section provided overview of the software
and the eigensolvers it uses internally. Alternatively, to examine a newer, less well-known
approach, a neural network, called SpectralNet was introduced, which primarily was de-
signed to come up with spectral embeddings of the data for subsequent clustering, it’s
algorithm was briefly described, as well as other neural network approaches that perform
clustering were compared. In section  3 Firstly, the architecture of neural network was
presented, defining it’s layers and number of neurons, as well as activation functions and
custom layers specific to the problem at hand. The optimizer used for training the network
was discussed and the loss function of the network was presented. Secondly, giving the
unsupervised manner of the network learning and lack of adequate tools to evaluate the
results, evaluation metrics were chosen to assess the quality of eigenvectors, given by the
mapping of the data points to their spectral emdeddings. Apart from the orthogonality
of the output, the Grassmann distance and projection error is measured as a way to esti-
mate accuracy of the network and define how good the eigenfunction estimations really
are compared to the true solution or the solution obtained by datafold. Moving forward,
the problems to which SpectralNet was applied were presented. At first, the network
was used for spectral clustering of data with non-linear decision boundary. The network,
trained without any labeled data, managed to correctly identify the clusters in some cases,
but failed in others, depending on the distribution of the data points between the clus-
ters. More interestingly, the eigenvectors and eigenvalues of the graph Laplacian were
estimated in order to later be used for a test example. The hyperparameter search for the
parameters of the network was presented. Additionally, the choice of batch size parameter
and it’s importance was discussed in relation to the orthogonality of the output and gen-
eral network performance. The sensitivity of neural network training was also considered
to it’s initialization. Additionally, the change in quality of eigenvectors was observed with
added generalization capability to the network. Lastly, an application of the eigensolver
was presented, applying the result to solve a partial differential equation numerically and
compare the results with exact, analytical solution. The derivation of analytical solution
was presented and the results from two eigensolvers were compared.
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4.2 Discussion

Even though standard solvers available right now are fast and reliable, their limitations be-
come apparent when it comes to performing eigendecomposition on large matrices. That’s
where neural network based approach offers its benefits, trading precision and accuracy
for generalization ability and scalability.

Although Spectral Clustering and Diffusion maps can be applied to relatively large
datasets as long as their similarity matrix is sparse, they cannot be used as a ”black box”
algorithm for clustering any kind of dataset. That is, without having to tune in parameters
for each model, thinking about which similarity graph to use and how to choose its local
neighborhood, these methods can be quite unstable. However, designing a network for
spectral analysis could, after learning, serve as a universal tool for finding eigenfunctions
of the Laplacian.

The results of our experiments show that although spectral clustering performance is
better when using SpectralNet to get spectral embedding of the data for clustering, the
eigenvector estimation is not as accurate or efficient when it comes to using them for
other eigenproblems such as solving Partial Differential Equations, where precision of both
eigenvalues and eigenvectors is important to get a solution that is similar to the true (ana-
lytically computed) one.

This lack of precision is largely due to instability of the network and stochastic nature of
training. The choice of different mini-batches for each iteration and random initialization
of the weights, gives a lot of variability to this process, which, in turn results in lack of
accuracy of the output.

The evaluation of eigenvalues was relatively close to true eigenvalues, but this was
largely due to the fact that the kernel matrix was estimated for the whole dataset, without
mini-batches. If the procedure is changed to truly be fully scalable, then the approximation
to heat diffusion would be even less accurate.

However, in some cases, for example when the data density of the problem is non-
uniform, using a neural network could still offer it’s benefits. Even though it is still not
precise, with the same parameter settings, it manages to identify the approximations to
the eigenfunctions of the Laplacian that resemble true sine and cosine functions, which,
depending on the application of the solution (whether it asks for high precision or not),
may alleviate the need for some of the hyperparameter search that is usually necessary for
datafold.

4.3 Outlook

In general, neural network based eigensolver is an intriguing idea that needs further re-
search. It is apparent, that the choice of architecture of this particular neural network did
not affect the accuracy or the quality of eigenvectors. Further research could be employed
to change the training procedure of this particular neural network, to be more stable than
mini-batch training allows to be. Another approach could be changing the loss function of
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the neural network in order to get more accurate eigenfunction estimation. There could be
also some improvement in the type of layers used in the network, for example, in [ 10 ], a
new type of layer was introduced that transformed symmetric positive semi definite ma-
trix to another symmetric positive semi definite matrix, but in a different, more compact
manifold, and then optimizing for the eigenvectors could become a more robust process,
if, similarly to datafold, the layer would then learn to transform the input to its symmetric
conjugate kernel. Another interesting approach that could also improve the results ob-
tained from the network is using different initialization schemes, which could guide the
function to learn a function towards producing orthogonal output.

Alternatively, a novel approach in Machine learning, weight agnostic neural networks
could be employed to tackle the same problem, by searching for an optimal neural net-
work architecture that can achieve a certain task with just random weights, to overcome
the problem of training difficulty for this particular problem. Alternatively, as already
mentioned, other reinforcement learning ideas have been brought up that solve the eigen-
problem as a multi-agent game [ 11 ].

Substituting the standard solvers with neural network based approaches seem to be
an idea too far in the future, however, as in a lot of numerical methods, using less accu-
rate preconditioners for other solvers is a standard approach, and this could be another
interesting research idea. As described in [ 15 ], machine learning could greatly benefit nu-
merical linear algebra by aiding its iterative procedure with efficient deep learning based
preconditioners. Preconditioners are an extra step added to numerical methods to ac-
celerate their convergence. In fact, a lot of standard eigensolvers, that serve large scale
eigenvalue computations, are solving preconditioned system via iterative methods. In a
lot of cases, the convergence rate of those methods is highly dependent on the good initial
starting point, and neural network could be utilised to provide starting points for those
solvers, such as Newton’s method or Jacobi-Davidson method described in [ 36 ], which
could easily be preconditioned.
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data-driven models for point clouds and time series on manifolds. Journal of Open
Source Software, 5(51):2283, 2020.

[22] R. Lehoucq, D. Sorensen, and C. Yang. Arpack users’ guide - solution of large-scale
eigenvalue problems with implicitly restarted arnoldi methods. In Software, environ-
ments, tools, 1998.

[23] Henry Li, Ofir Lindenbaum, Xiuyuan Cheng, and Alexander Cloninger. Variational
diffusion autoencoders with random walk sampling, 2020.

[24] G. Mathew and V. Reddy. Orthogonal eigensubspace estimation using neural net-
works. IEEE Trans. Signal Process., 42:1803–1811, 1994.

44



Bibliography

[25] Andrew Y. Ng, Michael I. Jordan, and Yair Weiss. On spectral clustering: Analysis and
an algorithm. In Proceedings of the 14th International Conference on Neural Information
Processing Systems: Natural and Synthetic, NIPS’01, page 849–856, Cambridge, MA,
USA, 2001. MIT Press.

[26] J Porte, Ben Herbst, Willy Hereman, and Stéfan van der Walt. An introduction to
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