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Abstract

The accelerated increase of computational power and the growing importance of deep
learning in the scientific computing research opens up several new possibilities for im-
provement of well-known and established algorithms. One of them is the solution of lin-
ear systems of the type Ax = b . It is the backbone to tackle other problems such as partial
differential equations or unitary transformations in the arising field of quantum mechan-
ics. Since the number of entries in the matrix A typically grows with the square of the
number of points in the domain, solving exceedingly large systems on standard desktop
computers becomes quickly unfeasible. Given that neural networks are considered univer-
sal approximators, this work presents the implementation of a non-linear neural network
to approximate this linear mapping, i.e. the linear operator A from the data (typically
functions) x. This approach will be demonstrated with a specific example in two dimen-
sions: the diffusion equation, a linear partial differential equations. where the matrix A
is a finite dimensional approximation of the Laplace operator. Finally, the benefits of the
implemented will be compared to standard discretization techniques.
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1 Introduction

Systems of equations and differential equations, and all other mathematical methods of de-
scribing physical phenomena have given us the possibility to understand an exceedingly
complex world. We can often describe how a system evolves on an infinitesimal time scale,
e.g. through difference or differential equations. In this case, obtaining the solution over
a longer time period can be a challenge. The computational power needed to solve some
systems is so large that, in some cases, thousand years of a High-Performance Computer
(HPC) would be required. As a solution to this unfeasibility, several ingenious numerical
methods have been derived to approximate solutions.

Figure 1.1: Heat distribution of a Gaussian Kernel after 10 time steps computed by the
Neural Networks approximated linear operator

In 1991, Kurt Hornik showed that a multilayer feed-forward architecture gives neu-
ral networks the potential of being universal approximators [9

.

]. Since then, Machine
Learning, particularly Deep Learning, has gained a lot of attention, particularly in the
last decade. The algorithmic advancements and the increasing computational power have
boosted the effectiveness of neural networks on several domains and have led to impres-
sive performances [16

.

]. Recent successes of computer vision, speech recognition and nat-
ural language processing [1

.

] [11

.

] by using deep learning have inspired studies in other
fields such as numerical analysis [33

.

].
Linear equations of the form Ax = b are the focus of study on this thesis work. Geomet-

ric transformations, the motion of a string, heat dissipation on solids, quantum operations,
and electric field inside a charged sphere are some applications of linear transformations
[23

.

]. An example, the heat distribution of a Gaussian Kernel after 10 steps is shown in
1.1

.

. This solution was computed using the Neural Network approximation of the linear
operator Ut. Principally, we studied the linear operator A applied to x, i.e. Ax.
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1 Introduction

This paper explores the usage of neural networks to approximate linear operators and
compares them to standard discretization techniques. In the State of the Art section, rele-
vant concepts to get familiarised, such as properties of linear operators, neural networks
and standard techniques, are presented, and most importantly, related work is revisited
and explained. The proposed neural network approach is explained in the section Ap-
proximating Linear Operators with Neural Networks. Finally, the results and the future
work are discussed in the Conclusion Section.
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2 State of the Art

2.1 Linear Operators

Most of the problems in applied mathematics require mappings between abstract function
spaces. This transformation is, nowadays, known as an operator. Stefan Banach, one of the
most influential 20th-century mathematician and one of the founders of the modern func-
tional analysis [2

.

], defined an operator as a function whose domain is a set of functions.
Therefore, an operator can be thought of as a mapping or a transformation that acts on a
member of the function space to produce another member of that space.

2.1.1 Definition and Properties of Linear Operators

Let V and W be vector spaces over the field K. The mapping L : V → W is a linear
operator if for any for the two vectors f, g ∈ V the following two conditions are met:

Additivity:
L(f + g) = L(f) + L(g)

Homogeneity:
L(cf) = cf(u)

for all f, g ∈ V and c ∈ K. These properties mean that a linear operator preserves
vector space operations and, it is worth mentioning that they are also called vector space
homomorphisms [13

.

]. An operator that does not satisfy both conditions, i.e. neither ho-
mogeneous nor additive, is a non-linear operator.

2.1.2 Associated Matrix of a Linear Operator

In finite-dimensional vector spaces and a basis defined for each vector space, linear algebra
notation can be used to represent the linear transformation. LetX,Y be finite-dimensional
vector spaces, and letA : X → Y be a linear map. This leads to a linear system of equations
of the form Ax = b: 

A11 A12 A13

A21 A22 A23

A31 A32 A33

A41 A42 A43


x1

x2

x3

 =


b1
b2
b3
b4
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2 State of the Art

where A is the linear operator, (x1, ..., x3) is a basis of X , and (b1, ..., b4) is a basis for B.
Then,Ax describes a linear transformation R3 → R4. The finite vector space representation
presented was only an illustration of how it could be seen as a linear system of equations
when discrete. We shall not think the vector space is restricted to scalars numbers.

Let us now consider three vector spaces U, V,W and let F : U → V and G : V → W be
maps. Then the composition map of F with G is denoted by

G ◦ F : U →W,

and it is also a linear map.

2.1.3 Examples of Linear Operators

The derivative operator denoted by D is clearly an example of a linear operator. The result
of the application of such operator on a function is the derivative of this function:

Df(x) = f ′(x) =
∂f

∂x
. (2.1)

It is possible to build linear operators by using the properties of additivity and homo-
geneity. As an example, a new linear operator could be build by self composition upon the
derivative operator in the following form

L(x,D) = αnD
n+αn−1D

n−1+...+α1D
1+α0D

0, n = 1, 2, ... Dn = D(Dn−1), (2.2)

where αn can be constant values as well as functions, and L is a linear operator of order n.
Let us consider the case when n = 3, y = y(x) is of class C3, and L(y), or for simplicity

Ly, is the linear operator defined in (REF) acting on y(x) giving

Ly(x) = α3y
′′′(x) + α2y

′′(x) + α1y
′(x) + α0y(x), (2.3)

where α3, α2, α1, α0 are given functions.

2.2 Standard Discretization Techniques

When solving a differential equation, there are two possible approaches: on one side, the
analytical procedure, which means the direct integration of the equation, thus obtaining
an exact solution. On the other side, the numerical methods approximate the solution in-
stead of solving the equation. An analytical solution is not always possible; this topic is
addressed in the latter section. This section briefly summarises popular discretization tech-
niques to approximate those solutions, namely finite difference and finite element meth-
ods, whose definitions are needed to understand this work. Furthermore, novel methods
in the field of numerical approximation with neural networks are revised.

4



2.2 Standard Discretization Techniques

2.2.1 Finite Difference Methods

Finite difference methods are numerical techniques in which appropriate finite differences
approximate the derivatives of differential equations. To illustrate, let us consider the
normalized heat equation in one dimension with Dirichlet boundary conditions

Ut = Uxx

U(0, t) = U(1, t) = 0

U(x, 0) = U0(x).

To approximate numerically the operator Ut using finite differences method, we parti-
tion the space domain using a uniform mesh x0, ..., xn. The following differences quotient
can be used for the approximation

first order forward difference : D+u(xi) : ux,i = ui+1−ui
hx

+O(hx)

first order backward difference : D−u(xi) : ux,i = ui−ui−1

hx
+O(hx)

first order centered difference : D0u(xi) : ux,i = ui+1−ui−1

2hx
+O(h2

x),

where hx is the distance between xi+1 and xi. Since we are looking for the second order
difference to approximate Uxx, we apply first order finite difference twice and obtain

D+D−u(xi) : uxx,i =
ui+1 − 2ui + ui−1

2hx
+O(h2

x) (2.4)

For this example, the discretization leads to a linear systems of equations of the form
AU = Ut, explained in section 2.1.2, and the approximated operator, Ut, is said to be
consistent of order 2.

2.2.2 Finite Elements Method

The finite element method is one of the most effective approaches known for the numeri-
cal solution of differential equations [12

.

]. Behind this method, there are two fundamental
ideas. The first is partitioning the domain into N smaller non-overlapping subdomains,
which are the ones called the finite elements [29

.

]. Over each of these pieces, local functions
are systematically approximated. The second idea behind this is the so-called weak formu-
lation of a problem. This form is used so that the subdomains contributions are summed
up to produce an integral characterising the problem over the full domain [31

.

]. To demon-
strate these concepts, let us consider the Poisson problem on a one-dimensional domain
with homogeneous Dirichlet boundary conditions{

−∇2u = f(x) in Ω

u = g on δΩ
(2.5)

5



2 State of the Art

where ∇2 is the Laplace operator, f(x) is the given source, and the domain Ω := (0, 1).
First, we need to find the weak form. This form is called so because it imposes weaker
conditions, when compared to 2.5

.

, on the smoothness of the solutions u and test functions
v, namely, it reduces their regularity properties. After multiplying by v, the test function,
and integrating by parts, we obtain∫ 1

0
u′(x)v′i(x)dx =

∫ 1

0
f(x)vi(x)dx ∀v ∈ V , (2.6)

for the computational grid: xi = ih (for i = 1, ..., n − 1), and the function space Vh = Wh

are often chosen to be identical so we have as many equations as unknowns [15

.

]. Then, we
need to define the basis functions. For simplicity, we definite then as piece-linear functions
as following

ϕi(x) =


1
h(x− xi−1), xi−1 < x < xi
1
h(xi+1 − x), xi < x < xi+1

0 otherwise,

then, the weak form reads∫ 1

0
u′(x)ϕ′i(x)dx =

∫ 1

0
f(x)ϕi(x)dx ∀i = 1, ..., n− 1 , (2.7)

and u is a numerical solution in the function space Wh

uh =
∑
j

ujϕj(x), span {ϕ1, ..., ϕj} = Wh . (2.8)

FEniCS

The FEniCS Project is a collaborative open-source project that collects components for sci-
entific computation, focusing on solving differential equations by finite element methods
[17

.

]
To illustrate the applicability and the main idea behind the FEniCS framework. Let

us consider a simple example where FEniCS can be applied, Poisson’s equation −∇2u =
sin(x) on the unit square Ω := (0, 1)2 with homogeneous Dirichlet boundary conditions.
We want to find u in the solution space V . Thus, we derive the weak formulation∫

Ω
∇u · ∇v =

∫
Ω
v sin dx ∀ v ∈ V. (2.9)

The short Python script in 2.1

.

shows how FEniCS framework can be used to compute the
solution of the proposed problem in 2.9

.

. When the method solve() is called, the expressions
are compiled in C language and then loaded to memory [19

.

]. Next, it follows the standard

6



2.3 Neural Networks

path: assembles a global matrix equation with the generated code and finally solves the re-
sulting linear system of equations using an LU solver. For this thesis, a regular laptop was
used, but for more complex computations, it can be run in parallel on high-performance
clusters

1 from fenics import *
2 mesh = UnitSquareMesh(20,20)
3 V = FunctionSpace(mesh, "Lagrange", 2)
4 u , v = TrialFunction(V), TestFunction(V)
5 a = inner(grad(u), grad(v))*dx
6 f = Expression("sin(x[0]", degree = 2)
7 L = f*v*dx
8 u = Function(V)
9 bc = DirichletBC(V, 0.0, "on_boundary")

10 solve (a==L, u ,bc)

Source Code 2.1: Python script that computes Poisson’s equation using FEniCS framework

2.3 Neural Networks

Machine learning is an application of artificial intelligence that consists of training a model
to learn specific features and parameters with representative data so that when a new in-
put is received, predictions can be generated [10

.

]. Deep Learning is a ML technique that
enables computation models to gradually build representations from simple to complex
abstractions of the data upon neural network[8

.

]. We could say neural networks are in-
spired by human neurons because, in a very simplified way, they follow the architecture
of communicating information to the neighbouring neurons like the ones in the brain.

Feed-forward networks are a type of neural network topology where the data flow from
input to output is strictly feed-forward; no feedback connections are present in between.
The structure of a neural network consists typically of layers. These layers are functions
that process input information and finally get to an outcome prediction (i.e. f(x) = y,
where x is the input information, and y is the outcome prediction).

Given that neural networks are universal approximators and it is natural to use them
as ansatz spaces for numerical approximations [14

.

], several approaches for approximating
solutions have been proposed. Some works use neural networks to solve partial differ-
ential equations [22

.

] [25

.

][17

.

]. Some of those novel methods use neural networks to ap-
proximate optimal data-driven discretizations [6

.

] and then apply methods such as Finite
Volume on a coarser grid [3

.

] i.e. the PDEs are parameterized by latter coefficients learnt
from the data [4

.

]. Some works take a different approach. Rather than generalizing the

7



2 State of the Art

behaviour for unseen data, they focus on predicting the evolution of dynamic systems
described by differential equations [21

.

][24

.

][26

.

].

2.3.1 Neural network approach for the identification of distributed parameters
systems

Figure 2.1: Schematic of the network template for the identification of 1D PDEs using
Runge-Kutta method as integrator [6

.

]

When building a model of system, there are two approaches. On one side, the theoretical
one: mathematical derivation using the physical relationships of the system. On the other
side, the empirical one: conducting experiments and measurements of the system [20

.

].
This work is important because it approximates the parameters of those systems which
are used to approximate the solutions and predict their behaviors. In 1998, a novel method
for the identification of distributed parameters system was presented[6

.

]. This methodol-
ogy, based upon concepts and procedures developed in previous works [27

.

][28

.

], identifies
distributed parameter systems using neural networks, as well as standard discretization
techniques. The schematic of the network template for the identification of 1D PDEs using
a 4th order Runge-Kutta method as an integrator is shown in 2.1

.

. There, a standard finite
differences scheme and an integrator are used for the implementation. First spatial deriva-
tives of the state variable U at each point are calculated and later forwarded to the neural
network.

2.3.2 Physics Informed Neural Networks - PINN

Physics Informed Neural Networks (PINN) [26

.

] is an approach that has gained popularity
across engineering fields because it approximates partial differential equations while obey-
ing any given law of physics described by general nonlinear PDEs. It incorporates those
physical properties into the objective function, e.g. conservation of mass, momentum, en-

8



2.3 Neural Networks

Figure 2.2: Schematic of a Physics-Informed Neural Network (PINN) model [7

.

].

ergy. The schematic of a PINN model is shown in 2.2

.

. First, a solution to the equation
is approximated with a feed-forward neural network using only the modelled data as in-
put; no physical constraints are considered up to this step. Second, the physical laws are
imposed on the output by using the parameterized equation. The objective function is
composed of two mean squared errors (MSE) as shown in 2.2

.

Several comparisons and experiments were made in that work, and one of the many
takeaways is that when physics constraints were imposed on the model, the generalization
error outside the domain was acceptable. However, when physics laws were ignored, the
generalization error outside the domain became too large to be acceptable. It is known
that obtaining a large number of observations in science is expensive [26

.

]. Surprisingly, the
imposed physical properties on PINN showed a compensation behaviour to small dataset
sizes.

2.3.3 DeepONet

Most of the work mentioned above focuses on either approximating the solution or its be-
haviour. However, research from the operator point of view has also been done. Some of
those works take the data on an equispaced grid and use it as an input to a convolutional
neural network to learn the mapping [32

.

] [34

.

]. This approach can be applied only to spe-
cific problems because the data points must be equidistant and distributed along the grid,
and it can be computationally expensive. A different approach was taken with DeepONet
[18

.

], a novel approach to approximate nonlinear operators published a few months ago.
Deep operator networks (DeepONet) are neural network architectures motivated by the

universal approximation theorem for operators proved by Chen and Chen in [5

.

]. Deep-
ONet models have demonstrated great potential in approximating nonlinear operators

9



2 State of the Art

Figure 2.3: Schematic of a Stacked and an Unstacked DeepONet model [18

.

].

between infinite-dimensional Banach spaces [30

.

]. A non-linear operator is approximated
using two neural networks: Branch Net and Trunk Net shown in 2.3

.

C and 2.3

.

D.
Branch Net’s objective is to extract representations of the input functions. It takes u =

[u(x1), u(x2), ..., u(xm)] as input and outputs the features embedding b = [b1, b2, ..., bp]
T .

Trunk Net takes the continuous coordinates y as input and returns a features embedding
t = [t1, t2, ..., tp]. To obtain the final output of DeepONet, the two outputs of the sub-
networks, Branch and Trunk Net, are merged by a dot product operation. More concisely,
the prediction of a function u evaluated at y can be expressed by

Gθ(u)(y) =

p∑
i=1

bi(u(x1), ..., u(xm))ti(y), (2.10)

where θ are all the trainable weights in the branch and trunk networks that are optimized
by minimizing the mean square error loss.

2.4 Summary

This section went through the definition and properties of linear operators used in the next
section. Standard discretizations methods, such as finite differences and finite elements,
were briefly described, and FEniCS framework was introduced. This framework will be

10



2.4 Summary

used for data generation and comparisons in the main section. Lastly, state of the art on
the field of numerical approximation using neural networks was discussed.

Even though the focus of this thesis is to approximate linear operators, Physics Informed
Neural Network, a non-linear PDE solver, was introduced because some concepts derived
from that work are later referenced and used. Although DeepONet approximates nonlin-
ear mappings in a general setting, it was also revised because large datasets are required
for that training. This work explores how to use linear operators properties to design
a Neural Network scheme that overcomes problems such as large datasets requirements
and generalization errors.

11





3 Approximating Linear Operators with
Neural Networks

One of the limitations learnt from the novel models -for approximating operators or PDEs
solutions- presented in chapter 2

.

was the requirements of large datasets when physics laws
were not included. As mentioned before, high volumes of data or observations in science
are expensive and given the focus of this work on linear operators in a general setting, we
propose a new approach that takes advantage of the properties of linear operators.

3.1 The proposed neural network approach

Motivated by the works described over section 1

.

, we propose an approach to approximate
linear operators that consists of two parts: a linear augmentation block and a feed-forward
network. The schematic of this approach is presented in 3.1

.

.

Figure 3.1: Schematic of the proposed neural network approach. It consists on two blocks:
the linear augmentation block and the feed-forward neural network block

The linear augmentation block was designed to build more data upon the properties of
linear operators: homogeneity and additivity, see chapter 2

.

. This block takes as inputs the
values before applying the linear operator to generate linear combinations of them. The
same combinations are also computed to the applied operator.

To illustrate these operations, let V and W be again vector spaces over the field K. The
mapping L : V → W is a linear operator we want to approximate, f, g, h ∈ V and c ∈ K.
The inputs for the linear augmentation are {[f i, L(f i)], [gk, L(gk)], [hj , L(hj)]} as shown in

13



3 Approximating Linear Operators with Neural Networks

Figure 3.2: Linear Augmentation block that uses the properties of additivity and homo-
geneity to compute more data to learn the operator. V and W are vector spaces
over the field K. The operator L : V →W , f, g, h ∈ V and c ∈ K

figure 3.2

.

. Linear combinations are computed leading to the outputs [f i + gk, ..., cf i] that
are sequentially forwarded to the neural network block, and [L(f i)+L(gk), ..., cL(f i)], that
is used to compute the loss function.

The next block consists of a feed-forward neural network. This network approximates
the operator by taking a fixed discretization of the generated data as an input. At each
iteration, it takes a group of neighbouring values around the chosen point and the value
at that point. It can also be seen as a stencil ∈ Rn as in the finite difference method. How-
ever, in this case, the neural network approximates the linear operator with a non-linear
combination of those points. In figure 3.3

.

, an example of a ∈ R3 when n, the number of
neighbouring points, is chosen to be 6.

Figure 3.3: Example of an stencil ∈ R3 with number of neighbours n = 6

The presented approach can be thought as a non-linear finite differences using neural
networks. This non-linearity of the neural network allows the model to act as a universal
approximator. To demonstrate the capability and effectiveness of the presented approach,
we consider the heat equation, a well-known linear partial differential equation, as an
example.

14



3.2 The heat equation

3.2 The heat equation

The heat equation, also known as heat diffusion, is a partial differential equation that mod-
els how the heat diffuses through a particular medium

∂u

∂t
= α∆u (3.1)

where t denotes the time, and the right-hand side of the equation is the Laplacian of the
Function u(·, t) multiplied by α, the diffusivity constant of the medium.

3.2.1 Definition of the problem

We define the problem in a two-dimensional space. For concreteness, a unit square plate
with an initial temperature distribution, i.e. for t = 0, and insulated on the sides. The
diffusivity constant α in 3.1

.

is often, for the sake of mathematical analysis, ignored. Thus
we consider α = 1, and the equation is:

∂u

∂t
= ∆u =

∂2u

∂x2
+
∂2u

∂y2
(3.2)

To fully define the heat equation example, we should still define the initial and boundary
conditions of the problem. Thus, let the initial temperature distribution in the rectangle be
given by the function f(x, y), a manufactured initial condition which derivation will be
explained in next section. For now, we define it as:

u(x, y, 0) = f(x, y) (3.3)

For the boundaries, we set homogeneous Neumann conditions, also known as natural
boundary conditions, to simulate insulated sides of the square plate:

∂u(x, y, t)

∂
= 0 ∀(x, y) ∈ ∂Ω (3.4)

Let us summarize the proposed heat equation problem:
ut = uxx + uyy, (x, y) ∈ Ω

u(x, y) = f(x, y), t = 0

u′ = 0, (x, y) ∈ ∂Ω

(3.5)

where Ω = (0, 1)2 is the unit square domain.
Now that the problem is completely defined, we will go through the two approaches to

obtain the data to train the linear operator.
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3 Approximating Linear Operators with Neural Networks

3.2.2 Solving the heat equation analytically

The first step towards the heat equation’s analytical solution is to apply the separation
of variables. This separation, known as the Fourier method, is a technique that involves
assuming a solution of a particular form. For the proposed example, the form is:

u(x, y, t) = V (x, y)T (t) (3.6)

where V (x, y) and T (t) are functions to be determined in the following steps. We will
suppose a solution of the form in 3.6

.

exists. Substituting the function u = V (x, y)T (t) into
the heat equation in 3.2

.

and dividing it by V (x, y)T (t) gives

T ′

T
=
V ′′

V
= −λ (3.7)

where λ is a constant. Since we assumed a solution of the form in 3.7

.

exists, then the
following equations must be satisfied

T ′

T
= −λ, (3.8)

V ′′

V
= −λ. (3.9)

In 3.9

.

we have a Sturm-Lioville or a second-order linear ODE problem. This equation
and the natural boundary conditions imposed can also be seen as an eigenvalue problem.
In particular, the constant λ is an eigenvalue and the function V is an eigenfunction with
eigenvalue µ. Separation of variables is applied here again, but now in x and y. Substitut-
ing V (x, y) = X(x)Y (y) into 3.9

.

and dividing it by X(x)Y (y) gives

Y ′′

Y
+ λ = −X

′′

X
= µ (3.10)

where µ is constant.
The natural boundary conditions in 3.4

.

over the defined unit square region imply
Vx(0, y) = X ′(0)Y (y) = X ′(0) = 0

Vx(1, y) = X ′(1)Y (y) = X ′(1) = 0

Vy(x, 0) = X(x)Y ′(0) = Y ′(0) = 0

Vy(x, 1) = X(x)Y ′(1) = Y ′(1) = 0

(3.11)

As well as before, since we assumed a solution of the form in V (x, y) = X(x)Y (y), the
following equations in 3.12

.

and 3.13

.

must be satisfied{
X ′′ + µX = 0

X ′(0) = 0 X ′(1) = 0
(3.12)
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3.2 The heat equation

{
Y ′′ + (λ− µ)Y = 0

Y ′(0) = 0 Y ′(1) = 0
(3.13)

two ODE problems which can also be seen as eigenvalue problems. The solutions to these
ODEs are of the forms

X(x) = A cosµ
1
2x+B sinµ

1
2x (3.14)

Y (y) = C cos (λ− µ)
1
2 y +D sin (λ− µ)

1
2 y (3.15)

Using the derivations of the boundary condition in 3.11

.

, the solutions of the ODEs are
given by

xn = An cos (nπx), µ = (nπ)2 (3.16)

yn = Cn cos (mπx), λ− µ = (mπ)2 (3.17)

Therefore, using the definition V (x, y) = X(x)Y (y), we obtain

vnm = Enm cos (nπx) cos (mπy), λ = (mπ)2 + (nπ)2 n = 1, 2, ... . (3.18)

Once we have solved the eigenvalue problem, the ODE for T in 3.8

.

is the only missing.
Its solution is given by

T (t) = Ae−λt, (3.19)

where A is an arbitrary constant. We reverse the initial separation of variables in 3.6

.

and
substitute the obtained solutions in 3.18

.

and 3.19

.

, to get

unm = Anm cos (nπx) cos (mπy)e−λnmt (3.20)

To satisfy the initial conditions, we sum over all n and m and impose the initial condi-
tions in 3.3

.

and obtain

U(x, y, t) =
∞∑
n=1

∞∑
m=1

unm =
∞∑
n=1

∞∑
m=1

Anm cos (nπx) cos (mπy)e−π
2(m2+n2)t (3.21)

U(x, y, t = 0) =

∞∑
n=1

∞∑
m=1

Anm cos (nπx) cos (mπy) = f(x, y). (3.22)

To find the coefficient Anm, we multiply both sides of the equation in 3.22

.

by the eigen-
function vnm for a fixed n and m, and integrate over the domain Ω. We have

Anm〈vnm, vnm〉 = 〈f(x, y), vnm〉, (3.23)
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3 Approximating Linear Operators with Neural Networks

which implies

Anm =
〈f(x, y), vnm〉
〈vnm, vnm〉

= 4

∫ 1

0

∫ 1

0
f(x, y) cos (nπx) cos (mπy) dx dy (3.24)

The solution of the proposed heat equation is presented in 3.21

.

and 3.24

.

but for the
purposes of this research, a closed solution is needed; thus, f(x, y) was not set at the be-
ginning. We take advantage of the orthogonality property of eigenfunctions again. f(x, y)
can be set to any multiple of the eigenfunction vnfacem or, given that it is a linear PDE, a
linear combination of them. For the presented example,

f(x, y) = vn=1,m=1 = cos (πx) cos (πy) λ = π2(n2 +m2) = 2π2 (3.25)

is the function chosen to be the initial condition. Substituting 3.25

.

into 3.24

.

gives

Anm =

{
1, n = m = 1

0, otherwise.
(3.26)

From the infinite sum in 3.21

.

, the only nonzero coefficient is A11 which leads to

U(x, y, t) = cos (πx) cos (πy)e−2π2t, (3.27)

the analytical solution of the proposed problem in 3.25

.

for f(x, y) = cos (πx) cos (πy).

3.3 Conducted Experiments on the heat equation

In this section, first, the operator is approximated using the derived analytical solution of
the heat equation. Later, to have more data to compare the learnt operator with different
initial conditions, FEniCS approximations are computed to obtain the order of error of
their results.

3.3.1 Approximating the Linear Operator upon analytical solutions

In this section, the linear operator is approximated using the obtained analytical solution
and, later, tested on analytical data.

Hyper-parameter search

In 3.1

.

, the schematic of the proposed neural network was presented, but the parameters
were not specified. Hyper-parameters are the values that need to be set to control the
learning process in machine learning, such as the number of layers, learning rate, activa-
tion functions or batch size.

In each experiment, the operator was approximated using the analytical solution data
obtained in 3.27

.

. The hyper-parameters tuned in these experiments are the number of data

18



3.3 Conducted Experiments on the heat equation

Data Points
Input

Dimension
Stencil shape

Mean Absolute Error
(MAE)

5 8.6e− 07

2000 9 9.1e− 05

9 4.8e− 07

5 8.9e− 07

20000 9 1.2e− 06

9 7.4e− 07

Table 3.1: Hyper-parameter search to approximate the linear operator. MEA, the Mean
Absolute Error, is compared directly with analytical solutions

points, the shape of the stencil and the mean absolute error (MAE). The MEA is the error
obtained after applying the operator to the analytical test dataset. In table 3.1

.

, the results
of this search are presented.

Figure 3.4: Schematic of the proposed approach to approximate the linear operator of a
heat equation

After searching for better hyper-parameters, slightly better results were obtained by
training using 2000 data points in a 9-point stencil shape. In figure 3.4

.

, the schematic
to approximate the operator for the heat equation is shown. 2000 points from 3 different
time steps were used as training data; and, the linear augmentation block, 15 linear combi-
nations were generated, and later, serially forwarded to the neural network in groups of 9,
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3 Approximating Linear Operators with Neural Networks

Hyper-parameters

Activation function Exponential Linear Unit (ELU)

Optimizer Adam lr = 0.001
β1 = 0.9
β2 = 0.999
ε = 1.e− 07

Loss Mean Squared Error (MSE)

Epochs 200

Hidden layers 3

Neurons per layer 8

Batch size 64

Table 3.2: Hyper-parameters of the fully connected neural network set for the approxima-
tion of the linear operator

9-point stencil. The neural network architecture is composed of 9 input neurons, 3 hidden
layers containing 8 neurons each, and 1 output neuron. Besides the already mentioned
hyper-parameters, some others were set on the neural network model definition and are
shown in table 3.2

.

.

Figure 3.5: Heat distribution at n = [0, 50, 100] steps applying the approximated linear
operator on the heat equation

The linear operator was approximated using the analytical solution using the tuned
hyper-parameters and, in figure 3.5

.

, the temperature distribution calculated at n = [0, 50, 100]
using the operator is presented. The operator was applied 200 times to the manufactured
initial conditions to obtain the value at each step and compare it to the analytical solution.
In figure 3.6

.

, the mean absolute obtained at each time step is shown. As expected, error
amplification after each time step is observed.
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3.3 Conducted Experiments on the heat equation

Figure 3.6: Mean absolute error (MEA) after n applications of the approximated linear op-
erator

3.3.2 Approximating the solution with FEniCS

As illustrated before, not all differential equations have finite analytical solutions. In real-
ity, most of them do not have them. To avoid being restricted to only compare the approxi-
mated operator on analytical solutions data, namely manufactured solutions, some exper-
iments on FEniCS were conducted as a test. These experiments intend to demonstrate the
order of the error when approximating the solution using the FEniCS framework.

∆t
mesh

grid points
family of the

element
degree of the

element
mean absolute

error

0.01 [250,250] Lagrange 3 7.88e− 07
0.01 [100,100] Lagrange 1 2.31e− 03

Table 3.3: Selected parameters on FEniCS framework to approximate the solution of the
proposed heat equation

For these experiments, the analytical solution for the presented heat equation problem
obtained in 3.27

.

is used for the comparisons. The parameters used to compute the nu-
merical approximation with FEniCS are shown in table 3.3

.

. At first, a coarser mesh from
[100, 100] and a Lagrange polynomial of degree 1 for the elements was used. When the
approximations were compared to the analytical solutions, the mean absolute error was
on the order of 10−3. Hence, the mesh was set to [250, 250], namely finer, and the degree of
the element, to 3. This time, the order of error obtained was 10−7.

The previous experiments leave the error of our FEniCS approximation on the order
of 10−7, and this information is valuable because we want to compare the operator ap-
plication not only to another analytical solution, which implies manufacturing the initial
conditions but also to a kernel as initial condition and other cases.
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3 Approximating Linear Operators with Neural Networks

Even though we are comparing solutions, let us not forget that the focus of this work
is to approximating the operator. Consequently, the comparisons made are from not only
one application of the approximated operator but, in the case of the heat equation example,
after 10∆t because the error is expected to grow after each application.

3.3.3 Gaussian kernel diffusion

In this section, the approximated operator is tested for a new example: the heat equation
with the following initial conditions

Figure 3.7: Heat diffusion of a Gaussian kernel at x = 0.5 for n = 10, 20, 50, 100 computed
by a neural network approximated operator

U(x, y, 0) = e−
(x−a)2+(y−a)2

2σ2 , σ2 = 0.001,

where a = 0.5, representing a Gaussian Kernel centered on the unit square domain.
As mentioned before, to measure the error of our operator, the numerical approxima-

tions of the solution are generated using FEniCS framework. These numerical approxima-
tions are the base to compare the results obtained by our neural network approximated
operator.

In figure 3.7

.

, the heat kernel diffusion at x = 0.5 after n = [10, 20, 50, 100] time steps,
applying the approximated operator, is shown. The diffusing trend and the preservation
of the imposed natural conditions at the boundary ∂Ω are observed. In table 3.4

.

, the MAE
after 10, 20, 50 and 100 time steps are presented and, in figure 3.8

.

, the absolute error at
each point y when x = 0.5 is presented. It can be seen how the error increases significantly
the bigger the time step. The reason behind applying the operator more than one time is

22



3.3 Conducted Experiments on the heat equation

Figure 3.8: Error of a Gaussian Kernel diffusion at x = 0.5 after n = 10, 20, 50, 100 time
steps computed by a neural network approximated operator

n = 10 n = 20 n = 50 n = 100

MAE 1.5e− 6 5.2e− 5 8.6e− 4 3.1e− 3

Table 3.4: Error of a Gaussian Kernel diffusion after n time steps computed by a neural net-
work approximated operator when compared to FEniCS framework’s numerical
approximation

that the error after 1 time step is relatively small, and only when it is applied several times,
as shown in figure 3.8

.

, the error is amplified.
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3 Approximating Linear Operators with Neural Networks

3.4 Experiments on the Fokker-Planck Equation

In the last section, only the linear operator of the heat equation has been approximated.
However, to demonstrate the capabilities of the proposed approach, another linear op-
erator was approximated. The Fokker-Plank equation, also known as the Kolmogorov
forward equation, describes the time evolution of the probability density function of the
velocity of a particle under the influence of drag forces:

∂

∂t
p(x, t) = − ∂

∂x
[µ(x, t)p(x, t)] +

1

2

∂2

∂x2
[D(x, t)p(x, t)] ,

where p(x, t) is the probability density of the variable x, µ(x, t) is the drift, D(x, t) is the
diffusion coefficient. Note that when µ = 0, the equation becomes the heat or the diffusion
equation, and, when D = 0, it becomes the advection equation: ut + aux = 0.

Figure 3.9: Numerical approximation with FEniCS framework of the Fokker-Plank equa-
tion

Let us define the following Fokker-Plank equation in one dimension:

∂P

∂L
(L, x) =

1

θ

∂

∂x

(
(x2 + 1)

∂P

∂x

)

with natural boundary conditions, and as initial conditions p(x, 0), a Gaussian distribu-
tion

P (x, 0) =
e−(x−8)2/2σ2

√
2πσ2

, σ = 2.
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3.4 Experiments on the Fokker-Planck Equation

Figure 3.10: Fokker-Plank approximated with the neural network approximated operator
after n time steps. The absolute error, compared to FEniCS data, are displayed
at the bottom four plots.

First, data to feed the model was required, then, FEniCS framework was used to gener-
ate the numerical approximations. The obtained approximations on FEniCS for the time
steps n = [0, 1, 2, 3, 9, 12] are presented in figure 3.9

.

. The input data for the proposed ap-
proach consists on 1200 points that are linearly augmented to 9600 points. Those points
are forwarded to the neural network using a 5-points stencil in one dimension. The hyper-
parameters used in the neural network are detailed in 3.5

.

. The results obtained are shown
in figure 3.10

.

.
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3 Approximating Linear Operators with Neural Networks

Hyper-parameters

Activation function Exponential Linear Unit (ELU)

Optimizer Adam lr = 0.001
β1 = 0.9
β2 = 0.999
ε = 1.e− 07

Loss Mean Squared Error (MSE)

Epochs 300

Hidden layers 3

Neurons per layer 8

Batch size 64

Table 3.5: Hyper-parameters of the fully connected neural network set for the approxima-
tion of the linear operator

3.5 Summary

In this section, the proposed neural network approach for approximating linear operators
was introduced. The architecture consists of two blocks: the linear augmentation and the
fully connected neural network (FCNN) block. The first one is in charge of generating
more data by taking advantage of the properties of linear operators. The second one is a
FCNN to which the data from the previous block is serially forwarded, and it outputs the
result of the operator applied to a certain point.

For concreteness, a first example was introduced: a heat equation in two dimensions.
The analytical solution was derived, and the initial conditions were manufactured to ob-
tain a finite solution. Later, the linear operator was approximated, performing, at the same
time, a hyper-parameter search. Once the hyper-parameters were set, FEniCS framework
was used to approximate numerically another solution to the heat equation with different
initial conditions. The approximated operator was applied to the new problem to eval-
uate its performance and to calculate the error with FEniCS approximation. Finally, the
results of this experiment were compared for different time steps. To show the capabili-
ties of the proposed approached, the linear operator of a Fokker-Plank equation was also
approximated using FEniCS approximations as training data.
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4 Conclusion

4.1 Summary

This work was organized in the following manner: In section 1

.

, Introduction, context and
the motivation of the current work were given. In section 2

.

, State of The Art, linear op-
erators, standard discretization techniques, and, most importantly, related works in the
scientific computing field were presented. Furthermore, the architectures of the most rele-
vant works for the development of this thesis were illustrated and explained. In section 3

.

,
Approximating Linear Operators with Neural Networks, the proposed approach was in-
troduced. The linear operator on the heat equation was first approximated using analytical
solutions and later tested on other analytical solutions and FEniCS numerical approxima-
tions when the analytical solution was not finite. The same approach was also used on the
Fokker-Plank equation where the linear operator proposed was approximated; however,
this time, FEniCS data was used to train and test.

4.2 Conclusion

The presented neural network method relies upon the function approximation capabilities
of feed-forward neural networks to approximate linear operators. This approach, moti-
vated by the idea behind finite differences, can be thought of as a non-linear finite differ-
ence approach because it combines the terms in a non-linear manner using a non-linear
neural network. The architecture of the proposed method is flexible; no prior knowledge
of the underlying physics are needed as in other approaches. It requires low computa-
tional power, and the number of parameters does not grow exponentially when the size
of the matrix is increased as in other standard methods. The datasize requirements for
the method are low because it takes advantage of the linearity properties to generate more
data. As shown with the conducted experiments, this approach exhibits good performance
and expressiveness when approximating linear operators.

4.3 Future Work

The neural network employed was fixed in all the experiments, and we did not attempt
to find optimal configurations of parameters such as number of layers, number of neu-
rons, activation functions, optimization algorithm and others. A parallel implementation
could be built to reduce computing time, particularly when the dimensions of the matrix
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4 Conclusion

increase. Eigenvalues and eigenfunctions characterize fundamental properties of linear
transformations that are useful in many fields. Finding those values is beyond the scope
of this work, but currently, it is a work in progress.
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