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Abstract

Deep learning has a to lot of applications; however, its use in solving partial differen-
tial equations (PDEs) has been a trending topic recently. Recent works have shown that
neural networks can be used to solve partial differential equations, which introduce us to
a method called physics informed neural networks (PINNs).The purpose of this project
is to have a clear understanding of these methods. Then we study about the tool devel-
oped in recent times to implement PINNs known as SimNet by NVIDIA. We elaborate
the usage and customizability of SimNet and systematically study the concept of PINNs
applied to Navier-Stokes equations as compared to conventional CFD methods such as Fi-
nite Volume Method (FVM). The sensitivity of PINNs with respect to parameter variations
are studied based on the flow around the cylinder in the steady state regime. From the
parameters studies, best parameters are chosen to demonstrate the application of SimNet
for a parametrized simulation problem.
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1 Introduction

1.1 Introduction

Advances in computing power and rapid growth of available data in recent years have
revived the field of artificial intelligence and deep learning . In particular, deep learning
methods have achieved exceptional results in a wide range of problems, including im-
age recognition, natural language processing and reinforcement learning [1 ] [2 ] [3 ]. The
most notable architecture within deep learning is the deep neural networks. The poten-
tial of deep learning methods stems from the approximation capabilities of deep neural
networks, and the ability of training algorithms to find network parameters with which
accurate approximations are achieved.

Typical applications of neural networks employ these networks to recover functions that
are not directly available to the user. For example in image recognition, functions that map
images to the corresponding classes are vastly complex and high dimensional functions,
which convolutional neural networks are able to accurately recover [1 ]. Other problems
where one is interested in finding unknown functions are given by partial differential
equations. For more difficult partial differential equations, analytical solutions are typi-
cally unavailable, and one has to resort to numerically approximating the solution. Many
state of the art numerical solvers divide the geometry of the problem into a mesh of points
or simple geometric elements, and proceed to compute an approximation of the solution
on this set of points or using the basis functions on these finite elements.

Neural networks can also be utilized as a kind of basis function. The study of [4 ] shows
that there is a strong connection between finite element methods and neural networks with
rectified linear units, as only two hidden layers are required for such neural networks to
be able to express any output of a finite element method.

Particularly, the study of [5 ] motivates the use of neural networks in this context by
stating that neural networks are closed form expressions, and thus provide information
about the approximation anywhere in the relevant domain. This information includes
derivatives of the solution, as neural networks with the appropriate activation functions
are differentiable functions. Furthermore, they state that training neural networks is a
highly parallelizable process. So deep neural networks may be the key to solving high
dimensional partial differential equations since these methods are meshfree in contrast to
most conventional numerical approaches.
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1 Introduction

1.2 Motivation of the thesis

Although most works [6 ] [7 ] that utilize deep neural networks to solve partial differential
equations are similar in nature, these methods are still not well understood. The main
goal of this thesis is to gain a deeper understanding of PINNs, and gain knowledge to im-
plement the methods in NVIDIA’s SimNet tool. In particular, we aim to understand how
the approximation properties of PINNs can be influenced and how the obtained solution
compares with traditional numerical approaches.

This thesis is structured as follows. In Section 2.1, we discuss the background theory
that is required to understand the neural networks and basic definitions of terms used in
deep neural networks. Then Section 2.2 and 2.3 covers the literature study about PINNs
and the implementation of PINNs based on the SimNet tool. The aim is to approximate
the solution of Navier Stokes equations for the case of flow around a cylinder in two spa-
tial dimensions. We discuss optimization of hyperparameters present in the proposed
methods, and some general properties of PINNs. In Section 3.1 and 3.2 ,we validate the re-
sults with conventional Computational Fluid Dynamics (CFD) methods like finite volume
method (FVM) and elaborate computational aspects of PINNs and its advantages over
conventional CFD methods. The final chapter concludes by giving a brief summary and
discussion of the results, and some recommendations for further research.
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2 State of the Art

2.1 Basics of Neural Networks

2.1.1 Architecture

Neural networks define complicated functions that are parametrized by the weights of the
connections between neurons, and the biases of these neurons [8 ]. Let us denote these
weights by W and the biases by b, and the joint set containing all parameters by θ =
{W, b}. Each of the neurons computes the weighted average of their input neurons and the
corresponding weights, adds its bias to the result, and feeds the resulting value through
a nonlinear activation function, which we label α. Let us denote the inputs by the vector
x. With this notation, a neural network defines a function f(x; θ), where f has the same
dimension as the number of neurons in the output layer, and may thus be vector-valued.

The simplest configuration of deep neural networks is the multilayer perceptron (MLP).
For such neural networks, all neurons are arranged in ordered layers, and each neuron
is connected to all neurons in neighbouring layers as shown in Figure 2.1 . Under this
configuration, it makes sense to label the outputs of the parameters belonging to each
layer separately. Using vector notation, we denote the output of the ith layer by fi and the
biases by bi. We denote the weight connecting the (i − 1)th layer to the ith layer by the
matrix Wi. The input layer is assigned the index 0, and the output layer is assigned the
index k. Then, the output of the ithlayer is given by:

fi(x) =


x i=0
σ(Wifi−1x+ bi) i= 1 ,2,....k-1
Wifi−1(x) + bi i= k

(2.1)

where σ is the vector containing the outputs of the activation function α applied element
wise to the argument vector. The output of the network is thus given by f(x; θ) = fk(x).

3



2 State of the Art

Figure 2.1: Graphical representation of feed forward Neural Networks [8 ]

It is of critical importance that these activation functions are nonlinear, since otherwise
neural networks would only be able to describe linear functions, regardless of the con-
figuration [9 ]. Common choices of activations functions are sigmoid functions such as the
logistic function, the hyperbolic tangent and rectified linear unit (ReLU) is another popular
choice.

2.1.2 Automatic Differentiation

There are four ways for computing the derivatives [10 ]:(1) hand-written analytical way to
compute derivatives. (2) numerical methods like finite difference methods (3) symbolic
differentiation. and (4) automatic differentiation (AD, also called algorithmic differentia-
tion). In deep learning, the derivatives are evaluated using back propagation [10 ], a spe-
cialized technique of AD. We know neural network represent a compositional function,
so AD makes use of the chain rule to compute the gradients or derivatives. AD can be
performed in couple of steps , in which first step involves a forward pass to calculate the
values of all variables and second one uses backward pass to calculate the gradients or
derivatives. We will represent it in Figure 2.2 .

4



2.1 Basics of Neural Networks

Figure 2.2: Overview of Forward and Backward pass in back propagation

2.1.3 Activation Functions

In the Section 1.3.1 we defined a vector containing the outputs of the activation function σ
applied element wise to the argument vector. They are mostly non linear functions and we
will see a brief explanation of some commonly used activation functions in the following
section

ReLU

The default choice for an activation function in modern neural networks is the ReLU func-
tion implemented through the maximum function and the plot is in Figure 2.3 .

g(z) = max(0, z) (2.2)
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Figure 2.3: Rectified linear Unit Function

Parameters of the neural networks that use RELUs are optimized since the derivative
is either 0 or a positive constant value through the domain. One drawback to ReLUs is
that the parameters cannot learn via gradient-based methods on examples for which the
activation is zero [9 ].

Sigmoid

The sigmoid function is used to represent a probability distribution over a binary variable
and plotted in Figure 2.4 . It is defined as:

σ(z) =
1

1 + exp(−z) (2.3)
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6 4 2 0 2 4 6
0.0

0.2

0.4

0.6

0.8

1.0
sigmoid

sigmoid

Figure 2.4: Sigmoid Function

Hyperbolic tan Function

The tanh non-linearity is shown on the Figure below. It squeezes a real-valued number
to the range [-1, 1]. Very much like the sigmoid , the activations of tanh saturate, but its
output is zero-centered. Hence, most of the times the tanh is chosen ahead of sigmoid due
to non linearity [9 ].
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Figure 2.5: tanh Function
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2 State of the Art

2.1.4 Loss Functions

Although neural networks have very nice properties in theory, it is not straightforward
to make use of these in practice [9 ]. It has proven to be very challenging to find sets of
weights with which accurate approximations are achieved. There seem to be no direct
ways of finding such weights. However, by constructing a kind of distance measure be-
tween the parametrized function that a neural network defines and the function one aims
to approximate, the problem of finding weights that are good for the neural networks can
be modeled or written as a minimization problem. Such distance measures are generally
referred to as loss functions. Loss functions do not need to be true distance measures; the
only thing that matters is that their minima correspond to accurate approximations [8 ].

In most cases, parametric models define a distribution. Let pmodel(x; θ) be a family of
probability distributions over the same space indexed by θ that maps any configuration x
to a real number that estimates the true probability pdata(x). The maximum likelihood θML

is then defined as

θML = argmaxpmodel(χ : θ). (2.4)

Other popular loss functions are quadratic functions, such as the mean-square-error
(MSE) and the root-mean-square-error (RMSE). The Mean Square Error(MSE) is defined
as :

L(θ) =
1

N

N∑
i=1

(f(xi, θ)− yi)2. (2.5)

Minimizing such a loss function is called training in the context of neural networks.
There are lot of training algorithms and we will discuss about some of them in the next
section.

2.1.5 Training Algorithm

A neural network is trained by having a set of input data called a training set. The goal
of the training is to minimize the loss function. The training process involves set of steps
to obtain good weights and biases of the networks neurons. After training the network to
learn the relationship between inputs and outputs, and it can produce outputs that is close
to original output for the specified inputs.

Gradient Descent

Gradient descent is a iterative optimization function for finding a minimum of a func-
tion. Gradient descent iterates from a initial set of parameters to a set of parameters that
minimizes the function. The local minimum is found by taking steps proportional to the

8



2.1 Basics of Neural Networks

negative of the gradient at the local point. The algorithm is generic and easy to implement
but may result in a local minimum instead of the global minimum [11 ].

In gradient-based methods, one of the issue is that the parameters tends to not get opti-
mized when the gradient size is big. To solve this problem, we multiply the gradient by a
small constant (called the learning rate) in the parameter update rule. However, in order to
improve learning efficiency, there are many methods for changing the value at each step,
instead of using a constant learning rate like exponential-based learning rate schedule [12 ].

Stochastic Gradient Descent

Stochastic Gradient Descent (SGD) is one of the most common training algorithms for
neural networks [13 ]. It is very similar to gradient descent, which is a first order gradient-
based optimization method that updates the variables subject to optimization in the direc-
tion of steepest descent. Applying gradient descent to neural networks is straightforward,
because neural networks define closed form expressions which are differentiable almost
everywhere. Many machine learning libraries that support neural networks also provide
automatic differentiation tools, making the implementation of such algorithms managable.

Despite the simplicity of implementing gradient descent, stochastic gradient descent is
generally preferred over gradient descent because it is less likely to get stuck at local min-
ima or saddle points. This stochasticity is usually introduced by computing the gradients
with respect to subsets of the data. Using a batch size of k, an iteration of SGD when
minimizing the loss function L(θ) is given by

θi+1 = θi − σ∇L(θi) (2.6)

where L is the loss function evaluated on a randomly selected batch i containing k samples
,i.e.

L(θ) =
1

k

k∑
j=1

(f(xi(j), θ)− yi(j))2 (2.7)

where i(j) is taken between {1,2,..k} and {1,2,..N}where N is the total number of avail-
able data points.

Adaptive Gradient

The Adaptive Gradient (Adagrad) method is an adaptive method which changes the learn-
ing rate by dividing the learning rate by the L2-norm of the gradient at each step [12 ]. In
the denominator, the square of the gradient at each step is added. Therefore, as the learn-
ing progresses, the denominator becomes larger.

9



2 State of the Art

RMSProp Method

Root Mean Square Propagation(RMSProp) [14 ] tries to resolve Adagrad’s radically dimin-
ishing learning rates by using a moving average of the squared gradient, which utilizes the
magnitude of recent gradient descents for normalization of the gradient. Therefore, with
the increase of the learning rate, the algorithm used would move in a horizontal direction
with larger steps converging faster.

Adam Optimizer

Adam realizes the benefits of both AdaGrad and RMSProp. What makes Adam different
from gradient descent is that it takes more parameters into account when calculating these
steps [15 ]. In gradient descent there is a constant learning rate, but in Adam the learn-
ing rate is changed with respect to both the first (the mean) and second (the uncentered
variance) moments of the gradients.

2.2 Physics Informed Neural Networks (PINNs)

In the work done by Raissi et al. [16 ] [17 ] [18 ] , they named a approach for approximating
the solutions of differential equation as the physics informed neural networks (PINNs). In
many cases, the governing equations or empirically determined rules defining the problem
are known a priori. For instance, an incompressible flow has to satisfy the law of conser-
vation of mass and momentum. By incorporating this information, the solution space is
drastically reduced and, as a result, less training data are needed to learn the solution. In
particular, the goal is to solve problems which can be described by parameterized nonlin-
ear partial differential equations of the form

ut +N [u;λ] = 0, x ∈ Ω, t ∈ [0, T ] (2.8)

Here, the solution u(t, x) depends on time t and a spatial variable x, N [u;λ] represents
the nonlinear operator with parameter λ, and Ω refers to a space in RD. This description
covers a wide range of problems ranging from advection-diffusion-reaction of chemical or
biological systems to the governing equations of continuum mechanics.

Furthermore, there was demonstration of PINNs on a variety of examples that are of
interest in a physics and engineering context. The code for the demonstation was written in
Python and utilizes the popular GPU-accelerated machine learning framework Tensorflow
and it is is publicly available on github [19 ] allowing others to explore physics-informed
neural networks and contribute to their development .

10



2.2 Physics Informed Neural Networks (PINNs)

2.2.1 Algorithm for approximate solution of PDEs using PINNs

Let us consider the following PDE which can be parametrized by λ for the solution u(x)
with x = (x1, , x2, ....xd) taken on a domain Ω ⊂ Rd [20 ]:

f(x;
∂u

∂x1
, ...,

∂u

∂xd
;
∂2u

∂x1
2
, ...

∂2u

∂x1∂xd
; ...;λ) = 0, x ⊂ Ω, (2.9)

with boundary conditions : B(u, x) = 0 on ∂Ω where B(u, x) can be any one of the
Neumann, Dirchlet, Robin peroidic boundary conditions.

The PINNs algorithm for solving differential equations [20 ].

1. Construct a neural network û(x; θ) with parameters θ

2. Specify the two training sets τf and τb for the equation and boundary or initial con-
dition

3. Specify a loss function by summing the weighted L2 norm of both the PDE equation
and boundary condition residuals.

4. Train the neural network to find the best parameters θ∗ by minimizing the loss func-
tion L(θ; τ).

Constructing a Neural network

Here we construct a neural network û(x; θ) to approximate solution of u(x), which has
the input x and outputs is a vector which has a dimension as u. Here θ = (W l, bl)(1<l<L)

represents a set of weight matrices and bias vectors in the neural network û and we can get
the gradients of û with respect to x using Automatic Differentiation, which can be easily
implemented with Tensorflow or PyTorch [20 ].

Specifying the training Sets

Here we restrict û on some points randomly distributed points in the domain, i.e., the
training data τ = (x1, x2, .., x|τ |). Here, τ consists of two sets τf ⊂ Ω and τb ⊂ ∂Ω , that are
the points in the domain and on the boundary. We denote τf and τb as the sets of residual
points [20 ].

Specifying the Loss Functions

To quantify the difference between the neural network û and the constraints, we select
the loss function as the weighted sum of the L2 norm of residuals for the equation and
boundary conditions [20 ]:

L(θ; τ) = wfLf (θ; τf ) + wbLb(θ; τb) (2.10)

11



2 State of the Art

where

Lf (θ; τf ) =
1

|τf |
∑
x∈τf

‖f(x;
∂û

∂x1
, ...,

∂û

∂xd
;
∂2û

∂x1
2
, ...

∂2û

∂x1∂xd
; ...;λ‖22 (2.11)

Lb(θ; τb) =
1

|τb|
∑
x∈τb

‖B(û, x)‖22 (2.12)

where wf and wb are weights and definition of weights is a topic of current research.
Section 2.3.1 will cover how these weights are defined within SimNet.

Training the Neural Networks

At last, the way of searching for a better θ by minimizing the loss function L(θ; τ) is called
as training. We know the fact that the loss is nonlinear and non-convex with respect to
θ, so we minimize the loss function by gradient-based optimizers as discussed above in
Section 2.1.5 [20 ].

2.2.2 Schematic Representation of PINNs

Let us try to represent PINNs in a schematic way with a simple example which is a 1D-
diffusion equation

∂u

∂t
= λ

∂2u

∂x2
(2.13)

with the boundary conditions u(x, t) = gD(x, t) on ΓD ⊂ ∂Ω and ∂u
∂n(x, t) = gR(x, u, t)

on ΓR ⊂ ∂Ω. Let û be the neural network with inputs (x, t) that approximates the function
u(x, t). We can define the loss function as mentioned in equation 2.10 where,

Lf (θ; τf ) =
1

|τf |
∑
x∈τf

‖∂û
∂t
− λ∂

2û

∂x2
‖22 (2.14)

Lb(θ; τb) =
1

|τb|
∑
x∈τb

‖[û(x, t)− gD(x, t)] + [
∂û

∂n
(x, t)− gR(x, u, t)]‖22 (2.15)

where τf and τb represents the residual or sampling points for the PDE and boundary
conditions respectively. The overall representation can be summarised as shown in the
Figure 2.6 .

12



2.3 SimNet -Tool for PINNs

Figure 2.6: Schematic of PINN for Solving 1D diffusion [20 ]

2.3 SimNet -Tool for PINNs

In this section we are going to have a look into the AI-driven multi-physics simulation
framework called SimNet which is developed by NVIDIA for Physics Informed Neural
Networks [21 ].

2.3.1 Physics Informed Neural Networks in SimNet

SimNet is a neural network solver which is able to solve problems with complex geome-
tries. SimNet has different way of formulating the losses than the conventional way ex-
plained in Section 2.2. The losses are formulated in integral form and the equation 2.14 can
be written as,

Lf =

∫
Ω
‖∂û
∂t
− λ∂

2û

∂x2
‖22dx ≈ (

∫
Ω
dx) ∗ 1

|τf |
∑
x∈τf

‖∂û
∂t
− λ∂

2û

∂x2
‖22 (2.16)

Then the approximation of integral is done using Monte Carlo integration. Thereby, ef-
fectively the same formulation as equation 2.14 is obtained, but scaled by the area/volume
of the domain. NVIDIA argues that this keeps the losses consistent across all domains.
The boundary condition losses are treated similarly [22 ].

2.3.2 Modules in Simnet

SimNet is a Tensorflow based neural network solver and it provides APIs which allows
us to make our own applications based on the existing modules. An overview of SimNet
architecture is given in Figure 2.7 . The modules that allow us to define a physical system
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2 State of the Art

are grouped in the geometry modules and PDEs modules. We can also chose network
architecture , optimizers of our own choice , which allows us to build a neural network
and train the model and minimize the loss function and compute gradients efficiently. The
outputs are saved in form of CSV or VTK files and can be visualized using TensorBoard
and ParaView. In the following section, we will discuss about all the modules in SimNet
and also different network architectures. The training procedure can be done with the help
of TensorFlow built-in functions on a single or cluster of GPUs.

Figure 2.7: SimNet Architecture [21 ]

Geometry modules

In SimNet there are currently two geometry modules which are called as Constructive
Solid Geometry (CSG) and Tessellated Geometry (TG) modules. Geometry primitives can
be easily constructed using CSG module and we can perform boolean operations on them.
This makes it easier for parameterization of broad range of different geometries and con-
truct various parameterized geometry for design optimization. The TG module allow us
to imports STL, OBJ, and other tessellated geometries that make us to work with complex
geometries.

PDE modules

The PDE module consists of common differential equations including the Navier-Stokes,
diffusion, advection-diffusion, wave equations, and linear elasticity equations. SymPy
module in Python has been also used in SimNet, so that PDE modules can be extended to

14



2.3 SimNet -Tool for PINNs

define our own differential equations. The PDE module in SimNet also provides imple-
mentations of turbulence and exact continuity in the Navier-Stokes equations [21 ].

2.3.3 Activation Functions in SimNet

SimNet uses some other activations functions other than the ones that mentioned in the
Section 1.3.3. We can see a brief introduction about those activation functions in this sec-
tion.

Swish Function

A little modification is added to sigmoid, to define a swish function. ReLU produces zero
as output for negative inputs and cannot be back-propagated. Herein, swish can partially
handle this problem. The function is formulated as sigmoid(x) multiplied by x shown in
Figure 2.8 .

swish(x) =
x

1 + exp(−x)
(2.17)
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Figure 2.8: Swish Function
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Exponential Linear Unit(ELU)

In ELU, if you input an x-value that is greater than zero, then it’s the same as the ReLU
which means the result will be a y-value equal to the x-value. But this time, if the input
value x is less than 0, we get a value slightly below zero. It is defined as :

ELU(x) =

{
x if x > 0,

α(ex − 1) if x < 0
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6
elu

elu

Figure 2.9: ELU activation function

The alpha controls the value to which an ELU function saturates for negative net inputs
as described in Figure 2.9 . ELU reduce the vanishing gradient effect [23 ]. The alpha value
chosen here is 1.0 which is also the default value in Tensorflow.

Leaky ReLU

In SimNet ,Leaky ReLU takes the mathematical form as given below and can be viewed in
Figure 2.10 .

L−ReLU(x) = 0.55x+ 0.45|x|

16



2.3 SimNet -Tool for PINNs
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Figure 2.10: Leaky-ReLU

SeLU

In Scaled Exponential Linear Unit(SeLU) ,the input value x is greater than zero, the output
value becomes x multiplied by λ. If the input value x is less than or equal to zero, we have
a function that goes up to 0, which is our output y, when x is zero. Essentially, when x is
less than zero, we multiply α with the exponential of the x-value minus the alpha value,
and then we multiply by the λ value [24 ]. In SimNet λ ≈ 1.0507 and α ≈ 1.6733 and plot
is shown in Figure 2.11 .

SeLU(x) = λ

{
x if x > 0,

αex − α if x ≤ 0
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Figure 2.11: SELU

The concatenated versions of above activation functions and the commonly used acti-
vation functions discussed in Section 2.1.3 are also included in SimNet and some of these
activation functions are included as a parameter to study which influences the conver-
gences and accuracy of PINNs in the later sections.

2.3.4 Example in SimNet

There are different types of examples in SimNet such as turbulent and multi-physics sim-
ulation, simulation with complex geometries, design optimization for a multi-physics sys-
tem, and an inverse problems. For illustrative purposes one example is picked from the
user guide [22 ] to demonstrate SimNet’s capability to deal with complex flow problems.

Blood flow in an Intracranial Aneurysm

We can examine the ability of SimNet to work with STL geometries from a CAD system
[21 ]. Using the SimNet’s TG module, the simulation of the flow inside a patient specific
geometry of an aneurysm is investigated as shown in the Figure 2.12a . The streamline plot
in Figure 2.12b shows that SimNet captures the flow field. Then, Figure 2.13 also shows
the good agreement of the SimNet prediction in comparison with a CFD simulation using
OpenFoam.
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SIMNET USER GUIDE

8 Forward simulation using STL geometry: Blood Flow in Intracranial Aneurysm

8.1 Introduction

In this tutorial, we will import an STL file for a complicated geometry and use SimNet’s SDF library to sample points
on the surface and the interior of the STL and train the PINNs to predict flow in this complex geometry. In this tutorial
you will learn the following:

1. How to import an STL file in SimNet and sample points in the interior and on the surface of the geometry.

Figure 26: Aneurysm STL file

Prerequisites

This tutorial assumes that you have completed tutorial 2 on Lid Driven Cavity Flow and have familiarized yourself
with the basics of the SimNet user interface. Also, we recommend you to refer to tutorial 3 for information on creating
monitor and inference domains. Additionally, to use the modules described in this tutorial, make sure your system
satisfies the requirements for SDF library mentioned in Table 1.

Note: For the interior sampling to work, ensure that the STL geometry is watertight. This requirement is not necessary
for sampling points on the surface.

8.2 Problem Description

For this simulation we apply a no-slip boundary condition on the walls of the aneurysm u, v, w = 0. For the inlet we
use a parabolic flow where the flow goes in the normal direction of the inlet and has peak velocity 1.5. The outlet has a
zero pressure condition, p = 0. The kinematic viscosity of the fluid is 0.025 and the density is a constant 1.0.

66

(a) Aneurysm geometry

SIMNET USER GUIDE

Figure 30: Flow streamlines inside the aneurysm generated from SimNet simulation.
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(b) Streamlines inside the aneurysm sac

Figure 2.12: SimNet results for the aneurysm problem [22 ]

SIMNET USER GUIDE

Figure 28: Cross-sectional view aneurysm showing velocity magnitude. Left: SimNet. Center: OpenFOAM. Right:
Difference

Figure 29: Pressure across aneurysm. Left: SimNet. Center: OpenFOAM. Right: Difference
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Figure 28: Cross-sectional view aneurysm showing velocity magnitude. Left: SimNet. Center: OpenFOAM. Right:
Difference

Figure 29: Pressure across aneurysm. Left: SimNet. Center: OpenFOAM. Right: Difference
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Figure 2.13: comparison between the SimNet and OpenFOAM results for the velocity mag-
nitude and pressure [22 ]

2.3.5 Methods/Parameters to Improve Convergence

In the following section, we will have a brief introduction about some of the methods
used in SimNet to improve the accuracy and convergence speed of PINNs results. These
methods can come in handy when we use SimNet for larger scale problems and makes
SimNet robust to use.

Global Adaptive Activation Functions

In Section 2.1.5, we discussed that minimizing the loss function is given by equation 2.6 . In
global adaptive activation [25 ], another parameter α is multiplied to the inputs to change
the slope of activation functions and equation 2.6 can be rewritten as

θi = θi−1 − σ(α∇L(θi−1)) (2.18)
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Now minimizing the loss function is done by optimizing α together with the θ which is
a set weights and biases , which can be described as

α∗, θ∗ = argmin
θ,α

L(θ, α) (2.19)

Here α is called as global adaptive activation parameter.

Integral Continuity Planes

For some of the fluid flow problems involving channel flow, it is observed that in addi-
tion to solving the Navier-Stokes equations in differential form, specifying the mass flow
through some of the planes in the domain significantly speeds up the rate of convergence
and gives better accuracy. Assuming there is no leakage of flow, the flow exiting the sys-
tem must be equal to the flow entering the system. Also, by specifying such constraints
at several other planes in the interior improves the accuracy further. For incompressible
flows, one can replace mass flow with the volumetric flow rate [22 ].

Spatial Weighting of Losses(SDF)

Signed distance functions, or SDFs for short, when passed the coordinates of a point in
space, return the shortest distance between that point and some surface. The sign of the
return value indicates whether the point is inside that surface or outside (hence signed
distance function). We can recall to equation 2.10 where the weights wf and wb impacts
the convergence of the solution. We can rewrite the integral formulation from equation
2.16 as

Lf =

∫
Ω
wf (x)‖∂û

∂t
− λ∂

2û

∂x2
‖22dx (2.20)

The signed distance function (SDF) is used for wf (x) and hence the figure 2.14 shows
the impact on how SDF improves the accuracy. The L2 error term will be explained more
clearly in the following sections. This graph is to show why SDF is used as default [22 ].
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Figure 2.14: Improvements in convergence speed by weighting the equation residuals spa-
tially

Quasi Random Sampling

Training points in SimNet are generated according to a random distribution by default.
An other way is the quasi-random sampling, that gives us a way to generate training
points with a low level of variation across the domain. There are other sequences like
Halton sequences [26 ], the Sobol sequences and the Hammersley sets. SimNet uses Halton
sequences. The Figure 2.15 shows how points are generated using random sampling and
Halton sequences for an exemplary geometry example [22 ].
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SIMNET USER GUIDE

Figure 8: A snapshot of a batch of training points generated using uniform sampling (top) and Halton sequences
(bottom) for the annular ring example.

• Zero normal gradient for physical variables with even symmetry.

Details on how to setup an example with symmetry boundary conditions are presented in tutorial 11.
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Figure 2.15: batch of training points generated using uniform sampling (top) and Halton
sequences (bottom) for the annular ring example in tutorial [21 ]

2.4 Advanced Architectures

In addition to the feed-forward, fully connected networks, SimNet offers a number of more
advanced architectures such as Fourier feature networks , Modified Fourier feature net-
works and Sin activation functions dubbed Sinusoidal Representation Networks(SiReNs).
These architectures are not investigated in this work and it is therefore referred to [22 ] for
more details.
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3 Physics Informed Neural Networks
(PINNs)

3.1 Problem Definition

3.1.1 2D flow around a Cylinder

In this section, we employ the proposed PINNs to model the steady flow passing a circular
cylinder. For the entire neural network solvers in this case study, the architectures consist
of 6 layers, each with 512 units, and Swish activation function as their default. We used
the Adam optimizer with an initial learning rate of 10−4 [21 ].

Geometry and flow configuration

The underlying geometry is a channel with dimensions 2.2 x 0.41 with a circular cylinder
with r = 0.05 and centre is at (0.2, 0.2). The gravity is ignored. Taking the fluid density
ρ = 1.0 , the fluid is characterised by the Navier-stokes equation [27 ].

−ν4u+ u∇u+∇p = 0 (3.1)

∇.u = 0 (3.2)

with u defining the velocity vector and p the pressure. The kinematic viscosity is taken
as ν = 0.001.

Figure 3.1: Flow around a cylinder
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Boundary Conditions

For the lower and upper walls Γ1 = [0, 2.2] × 0 and Γ2 = [0, 2.2] × 0.41 as well as the
boundary S = ∂Br(0.2, 0.2) , no slip boundary conditions are defined,

u|Γ1
= u|Γ2

= u|S = 0 (3.3)

On the left edge Γ3 = 0 × [0, 0.41], a parabolic inflow profile is prescribed by equation
3.4 with the maximum velocity U = 0.3. On the right edge , Γ4 = 2.2× [0, 0.41], do nothing
boundary conditions define the outflow.

u(0, y) = (
4Uy(0.41− y)

0.412
, 0) (3.4)

3.1.2 Case Setup in Simnet

To set up case in SimNet , we can create a single python script containing the geometry ,
boundary conditions and network information. We will go through the steps in writing
the python script and entire code will be available in the appendix part A.

Steps to solve the Case Study in SimNet [22 ].

1. Creating geometry using the geometry module in SimNet.

2. Defining training domain for training our Neural network.

3. Creating validation data

4. Making the network solver

5. Running the SimNet solver

6. Results and postprocessing in SimNet

Creating Geometry

Once we are done with importing all the required modules , we can generate the geometry
of the case study using the geometry modules in SimNet. The geometry module has pre-
defined 2D and 3D shapes to construct a geometry. In our case we are going to use the 2D
channel and circle and construct by performing subtract operations shown in Figure 3.2 .
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Figure 3.2: creating geometry in SimNet

Defining Training Domain

Here we define a training domain for training our neural network. As a result of this , a
loss function is created that is a combination of boundary conditions in equation 3.3 , 3.4 

and equations in 3.1 , 3.2 that a neural network should satisfy after training. These training
points for boundary conditions and equations are defined as sample points on boundary
of the geometry and the conservation equations of fluid mechanics are enforced on all the
points on the interior of the geometry [22 ].

Creating validation data

We know, SimNet doesn’t require training data from any other CFD/PDE solver to make
predictions as it is a physics based neural network solver. But, in SimNet it is possible
to add CFD data from a solver like OpenFoam and which can be used to compare the
SimNet’s result. The results from OpenFoam are added or imported into SimNet as a .csv
file [22 ].

Making the Neural Network Solver

The train domain and validation domain are assigned here and the equation to be solved
are specified here too. In the given case, the Navier-Stokes equations are readily defined
in the PDE module of SimNet. Subsequently, the inputs and outputs of neural network is
specified and nodes of architecture are made.

Results and Post Processing

The Tensorboard can be used to visualise the different losses at each step during the train-
ing. The Adam optimizer loss is the total loss computed by the network. The ’L2 continuity’
, ’L2 momentum x’ and ’L2 momentum y’ tells us the L2 loss computed for the continu-
ity and momentum equation in x and y direction respectively in equations 3.7 and 3.8 .
The ’L2 u ’ and ’L2 v’ determine how well the boundary conditions are satisfied and it
is shown in equation 3.6 . The ’L2 relative-error u’ and ’L2 relative-error v’ are relative
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error with respect to validation data and relative error in SimNet as calculated using the
formula in equation in 3.5 .

L2 relative error =

√
1
N

∑N
i=1‖ftrue − fpred‖2

variance(ftrue)
(3.5)

L2 Error =
1

N

N∑
i=1

β ∗ (True valuebc − Predicted valuebc)2 (3.6)

L2 Momentum loss x =
1

N

N∑
i=1

(momentumx(xi, yi)−momentumx(x̂i, ŷi))
2 (3.7)

L2 Continuity loss x =
1

N

N∑
i=1

(continuity(xi, yi)− continuity(x̂i, ŷi))
2 (3.8)

where β is the weighting used in Monte Carlo integration as discussed in Section 2.3.1
and N is the total number of sampling points. xi, yi are the true values and x̂i ,ŷi are the
network predicted values. The true value for momentum and continuity in our case are
zero.

3.1.3 Validation

In the previous we saw a brief explanation of how to write a SimNet python code for our
case study, some terminology used for different loss functions and the sample code can be
seen in Section 5.1 of appendix A. Here, we will see the results we obtained after training
the neural networks for 25k steps and compare it with OpenFoam solution and analyse
how close it is to it. Below table depicts the number of sampling points used by default.
The results after training and comparison is given in Figures 3.3 , 3.4 , 3.5 .

geometry No.of Sampling points

upper wall 99
lower wall 99

inflow 20
outflow 20
cylinder 54
interior 3611

Table 3.1: Default Number of Sampling points
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(a) pressure p from SimNet

(b) pressure p from OpenFoam

(c) p:difference

Figure 3.3: pressure distribution comparison
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(a) velocity u from SimNet

(b) velocity u from OpenFoam

(c) u:difference

Figure 3.4: velocity magnitude comparison
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(a) velocity v from SimNet

(b) velocity v from OpenFoam

(c) v:difference

Figure 3.5: Comparison of velocity(v) profiles

The above figures clearly depicts the SimNet results are in good accordance with Open-
Foam results for the given set of sampling points and defaults parameters used. In the next
section, defaults parameters will be changed separately and studied how these parameters
influence the convergence and accuracy of PINNs in SimNet.

3.2 Study of Different Parameters

3.2.1 Activation Functions

Choice of activation function has a significant impact on the success of training PINNs
to solve PDEs. During training following the backpropagation algorithm, the derivative
of the loss function with respect to the weights of each layer must be calculated. In this
calculation, the derivative of activation functions is multiplied by itself several times, equal
to the layer distance from the output. For an activation function where the derivative is
squeezed into a narrow range, training of a neural networks with many hidden layers may
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not be successful.
As we discussed before , swish is the default activation function used . But in literature

study , we discussed about some activation functions that are available in SimNet and we
are going to study and compare how these activation functions impact the convergence
rate. We keep the default values same and just change the activation functions one by one
and we plot the overall training loss in a separate plot to analyse the convergence rate. The
plot is shown in the Figure 3.6 .
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Figure 3.6: AdamOptimizer loss for Different Activation Functions

We group them into 4 different compare and analyse them separately in the following
sections.

RELU Vs L-RELU

RELU has dying relu(ignores negative values and hence no weight updates in back propa-
gation) problem which was overcomed by leaky relu [4 ]. For solving a PDE such as Navier-
Stokes, it is necessary to take the first and second derivatives of the neural networks with
respect to network inputs to calculate the loss function. However, second derivatives of
ReLU and Leaky-RELU are equal to zero as shown in Figure 3.7 . This makes the training
process ineffective.
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Figure 3.7: RELU Vs Leaky-RELU

ELU Vs SELU

In ELU, in the negative region, the curve is not a straight line because of the exponential
term. Because of this term only, the negative values saturate to some level and as a result,
the model is not impacted more by the noise which is the case in leaky-relu where we
get considerable negative output for a very large negative input. The plots of these two
functions are plotted along with their derivatives in the Figure 3.8 . The second derivative
of ELU is non-zero and also first derivative doesn’t have peaks like SELU, and hence its
loss value is lesser than other three activation functions.
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Figure 3.8: ELU Vs SELU
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Tanh Vs sin

sin and tanh are non linear functions and they also have non-zero second derivatives and
they are zero centered as shown in Figure 3.9 , hence perform better compared to previous
four activation functions.
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Figure 3.9: tanh Vs sin

Swish

Swish and its derivatives are a smooth function. This allows the optimizer to go through
fewer oscillations which helps in faster convergence, effective optimization and general-
ization and details in Figure 3.10 .
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Figure 3.10: swish

In conclusion, we noticed the activation functions that have second derivatives close
to zero perform badly or have bad convergence rate. Also we learn Swish perform better
than all other activation function mentioned above because they are non-monotonic (RELU
and others are either entirely non increasing or non decreasing). Hence, swish is chosen as
default by SimNet.

Hard swish also performs similar to swish, but the formulation was different in Sim-
Net and the details and plots are in Section 5.2 of Appendix A. Hence, hard swish is also
considered in the following studies.

3.2.2 Influence of Point Sampling

In the Section 3.1.3, we did validation with respect to an OpenFoam solution and we used
default number of sampling points as mentioned in the table 3.1 . Here we are going to
increase the number of sampling points and we study how this influences the convergence
rate and solution accuracy. The sampling points that we are going to use are mentioned in
the table 3.2 which is approximately close to the number of mesh points used in OpenFoam
which is given in the table 3.3 .
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geometry Sampling1(default) Sampling2

upper wall 99 200
lower wall 99 200

inflow 20 40
outflow 20 40
cylinder 54 108
interior 3611 15285

Table 3.2: Different set of Sampling points

geometry mesh1 mesh2

upper wall 100 200
lower wall 100 200

inflow 20 40
outflow 20 40
cylinder 54 108
interior 2374 10049

Table 3.3: OpenFoam Settings: Mesh points corresponding to their sampling points

Sampling1 vs Sampling2 - Improving Convergence

In the Section 2.2.4, we discussed briefly about the parameter that can be used to improve
convergence. Here we will use parameters such as integral continuity planes, adaptive ac-
tivations and quasirandom sampling both in Sampling1 and Sampling2 and study how the
different losses like Overall loss , boundary condition loss , validation loss are influenced.
We used 6 integral continuity planes as shown in the Figure 3.11 .

Figure 3.11: 6- integral continuity planes
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(a) Sampling1 - Overall loss
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(b) Sampling2 - Overall loss

Figure 3.12: Sampling1 Vs Sampling2 - Overall loss for networks with two different train-
ing data sampling strategies

Here in the Figure 3.12 we can notice there is improved convergence with quasi random
settings in Sampling1 compared to default setting which is plotted as swish in the graph,
but for Sampling2 we see the convergences rates are similar. The similar kinds of trends
are seen in the validation loss and momentum loss in x direction and also continuity loss
which are clearly seen in Figures 3.13 , 3.14 , 3.15 .
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(a) Sampling1 -L2 Momentum loss
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(b) Sampling2 - L2 Momentum loss

Figure 3.13: Sampling1 Vs Sampling2 -Momentum loss in x direction
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(a) Sampling1 - Validation loss in u
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Figure 3.14: Sampling1 Vs Sampling2 -Validation loss in u
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(a) Sampling1 - L2 Continuity loss
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(b) Sampling2 - L2 Continuity loss

Figure 3.15: Sampling1 Vs Sampling2 -L2 Continuity loss

It is learned that in case of Sampling1 which has fewer training points, quasi random
settings can improve convergence. In case of Sampling2 that has more training points,
adaptive activation gives the minimum loss value as it is seen in the table 3.4 .

Training sets Swish Quasirandom 6-Integralplanes Adaptive activations

Sampling1 1.96e-5 3.74e-6 2.00e-5 1.18e-5
Sampling2 9.5e-6 1.15e-5 1.14e-5 6.61e-6

Table 3.4: Overall Loss value after 25k steps for the two sampling sets

This section gives a brief explanation of how different sampling points and parameters
that can be used to get to convergence faster. Also it is learned that when there are less
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sampling points, quasi random setting have a bigger influence but in other case integral
continuity planes and quasi random settings does not have bigger impact.

Sampling1 vs Sampling2 - Different Activation functions

In this section , we compare Sampling1 and Sampling2 by taking two activation functions
that showed slower convergence (SELU and Leaky RELU) and two activation functions
showed faster convergence (Swish and hard Swish) as in Section 3.2.1 and also we take
account of adaptive activation as per previous section and study different losses. Here we
can see, irrespective of the sampling size, the validation loss, boundary condition loss and
overall loss don’t converge at all for SELU and Leaky-relu. For swish activation functions,
the convergence is faster with increasing number of sampling points which can be seen
clearly from the graphs 3.16 , 3.17 , 3.18 , 3.19 .
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Figure 3.16: Sampling1 Vs Sampling2 - Overall Loss for different activation functions
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(a) Sampling1 - Momentum loss
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(b) Sampling2 - Momentum loss

Figure 3.17: Sampling1 Vs Sampling2 - L2 momentum loss in x direction for different acti-
vation functions
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(a) Sampling1 - Validation loss in u
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(b) Sampling2 - Validation loss in u

Figure 3.18: Sampling1 Vs Sampling2 -Validation loss in u for different activation
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(a) Sampling1 - Boundary Condition loss in u
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(b) Sampling2 - Boundary Condition loss in u

Figure 3.19: Sampling1 Vs Sampling2 -Boundary Condition loss in u for different activa-
tion

We will also plot the pressure distribution p and velocity magnitude for Sampling1 in the
Figures 3.20 , 3.21 , 3.22 . As you can see in the below plots, SELU gives unphysical results,
while swish converges well and gives accurate results for same number of steps(20k).

(a) Pressure distrbution with SELU activation Function

(b) Pressure distribution with Swish Activation Function

Figure 3.20: Pressure distrbution in Sampling1 - Swish Vs SELU
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(a) Velocity u with SELU activation Function

(b) Velocity u with Swish Activation Function

Figure 3.21: Velocity u in Sampling1 - Swish Vs SELU

(a) Velocity v with SELU activation Function

(b) Velocity v with Swish Activation Function

Figure 3.22: Velocity v in Sampling1 - Swish Vs SELU

In conclusion from the above observations,Sampling1 set of training points with quasi
random setting and adaptive function with swish activation gives best convergence. This
setting will be taken into account for our application problem in Section 3.3.
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3.2.3 Number of Layers and Number of Nodes

In this section, we are going to analyse the different combinations of number of layers
and number of nodes in each layer as depicted in the table 3.5 and see which gives better
convergence rate and the hardware used for running the training is NVIDIA TITAN X.

number of nodes Number of layers
3 6 12

256 3*256 6*256 12*256
512 3*512 6*512(default) 12*512
1024 3*1024 6*1024 12*1024

Table 3.5: Different combination to be analysed

Different combinations time taken for 25k steps(minutes)
3*256 16
3*512 28
3*1024 67
6*256 28
6*512 57
6*1024 147
12*256 52
12*512 111
12*1024 304

Table 3.6: Training time for different combinations

Increasing Number of Nodes

In this section, we will increase the number of nodes per layer by keeping the layer size
constant. So as the result of it we get three different combination for each of the layer size
and we will analyse how the different losses in comparison to the default combination 6 x
512. We will plot four different plots for each combination - validation loss in p, boundary
condition loss in u, L2 continuity loss and overall loss. The time take for each runs for
different combinations is given in the table 3.7 .

From the Figure 3.23 we see, irrespective of increasing the number of nodes per layer, for
the layer size 3, the training converge as compared to the default combination or in other
words it takes may take much longer to converge. So layer size 3, irrespective of number
of nodes is not a good choice.
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(a) Overall Loss (b) Boundary condition loss in u

(c) validation loss in p (d) L2 continuity loss

Figure 3.23: Increasing number of nodes for layer size 3

From the Figure 3.24 we see, increasing the number of nodes per layer from the default,
doesn’t converge or behaves in a unusual way when number of nodes is 1024. But when
the number of nodes is 256 per layers, it gives very similar convergence to the default
combination and also takes less time compared to default as show in the table 3.7 .
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(a) Overall Loss (b) Boundary condition loss in u

(c) validation loss in p (d) L2 continuity loss

Figure 3.24: Increasing number of nodes for layer size 6

From the Figure 3.25 we see, increasing the layer size and decreasing the number of
nodes (12 x 256), gives better convergence than default combination and it takes similar
time. The combination 12* 512 also gives the better convergence, but the time taken is
twice as much as default combination(6 x 512). Considering time efficient and convergence
rate, 12 * 256 is best choice.
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(a) Overall Loss (b) Boundary condition loss in u

(c) validation loss in p (d) L2 continuity loss

Figure 3.25: Increasing number of nodes for layer size 12

3.2.4 Impact of Random Initialisation

As SimNet uses random initialisation for weights and bias, we tried to run same training
with default values multiple times and as you can see in Figure 3.26 , there isn’t much dif-
ference in trends and values, but there are sudden large spikes in Sampling1 and multiple
small spikes in Sampling2. Hence we can come to theory that, random initialisation and
low number of sampling points together may contribute to large spikes in the overall loss
and thereby slow down convergence.
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(a) Sampling1 -Multiple runs
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(b) Sampling2 -Multiple runs

Figure 3.26: Sampling1 Vs Sampling2 -Random Initialisation study

After all the above studies, we conclude the hyper parameters for our application prob-
lem in SimNet. We use 12*256 size, sampling1 set of training points, adaptive activations
with swish function and quasi-random settings for the next section.

3.3 Application of SimNet

One important advantage of a neural network solver over traditional numerical methods
is its ability to solve parameterized geometries [28 ]. In other words, SimNet allows us
to solve problems for multiple design parameters in a single training. This implies that
once the training is complete , it is possible to inference on several geometry/physical
parameter combinations as a post processing step, without solving the forward problem
again. To illustrate this concept we solved a parameterized version of our case study by
defining the range as show in table 3.7 .

parameter range values chosen for validation
cylinder radius - r 0.025 to 0.1 0.025, 0.05, 0.1

Max.inlet velocity - U 0.3 to 0.6 0.3 , 0.45 , 0.6

Table 3.7: Parameter ranges

Once we have trained the parameter for a given range, three values are taken for valida-
tion. To illustrate the parametrized cylinder radius problem, velocity flow field is plotted
for cylinder radius 0.1 in Figure 3.27 . The complete plots are available in Section 5.3 of
Appendix A.
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(a) velocity u from simnet

(b) velocity u from OpenFoam

(c) u:difference

Figure 3.27: velocity Magnitude Comparison for radius 0.1

It was mentioned that it is possible to parametrize a physical parameter. So inlet velocity
is trained in the range given in table 3.7 . Similar to the previous case, velocity flow field
for inlet velocity 0.6 is plotted in figure 3.28 to demonstrate the parametrized solution. The
complete plots are available in Section 5.3 of Appendix A.
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(a) velocity u from simnet

(b) velocity u from OpenFoam

(c) u:difference

Figure 3.28: velocity Magnitude Comparison for U = 0.6

The results obtained from SimNet for all other values chosen for validation are in good
accordance with the OpenFoam results. As best hyperparameters are chosen from the
analysis to solve our parametrized problem, now the study of convergence rate and time
taken for a parametrized problem is compared with non parametrized problem with same
hyper parameters.
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Figure 3.29: AdamOptimizer Loss - Comparison

It is seen from the Figure 3.29 that parametrized problem convergence rate compara-
tively slower than the non-parametrized problem. The table 3.8 gives the details about
training time and loss value. It is understood that parametrized problem takes little more
training time.

Parametrized-r Parametrized-U Non-parametrized
training time(minutes) 66 64 57

Overall Loss 5.58e-5 5.45e-5 2.75e-6

Table 3.8: Training time and Loss values comparison
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4 Conclusion

4.1 Discussion

Based on the case study on Navier stokes equation, Physics informed neural networks
were constructed using NVIDIA’s SimNet (version 20.12) and different parameters influ-
encing the convergence are studied. It is found that Swish activation function along with
adaptive activations work the best and also it is analysed that the combination of 12 * 256
of network size gives better convergence. Quasi random sampling helps to improve con-
vergence for Sampling1 set of training points. Then all those best parameters are chosen
for the parameterized problem and the results are compared with OpenFoam solutions
and results are in good accordance with OpenFoam.

In this study, the training data used are randomly selected in the space domain, hence
the PINNs does not need to consider the discretization of Navier stokes equation and can
predict solutions from a little amount of data. But in solvers like OpenFoam which uses
Finite Volume methods, discretization of equations are done. It is also learned that PINNs
are mesh free and meshing cost can be avoided in case of complex geometries.

4.2 Conclusion and Outlook

Because SimNet tool is GPU integrated AI simulation, Multi GPU training can be done
which enables us to reduce the time taken for training. Apart from the parametrised prob-
lem , SimNet has other advantages such a solving the inverse problems, creating geometry
for real world problems to predict solutions and also solving design optimization problem
[21 ].

The SimNet achieves good results due to the powerful function approximation ability
incorporated using PINNs. In the future, physics-informed neural networks will create a
big influence in the study of solving partial differential equations and even much more
tools like SimNet will be developed on the field of scientific computing.
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5 Appendix A

5.1 Sample Python Code

1 from sympy import Symbol ,Eq
2 from simnet.pdes import PDES
3 from sympy import Symbol
4 import numpy as np
5 from simnet.csv_utils.csv_rw import csv_to_dict
6 from simnet.solver import Solver
7 from simnet.dataset import TrainDomain , ValidationDomain
8 from simnet.data import Validation
9 from simnet.PDES import NavierStokes , IntegralContinuity

10 from simnet.sympy_utils.functions import parabola
11 from simnet.sympy_utils.geometry_2d import Circle ,Channel2D , Line
12 from simnet.controller import SimNetController
13

14 channel_length = (0, 2.2)
15 channel_width = (0, 0.41)
16 channel = Channel2D((channel_length[0], channel_width[0]),
17 (channel_length[1], channel_width[1]))
18 centre = (0.2,0.2)
19 inlet_vel = 0.3
20

21

22 circle = Circle((centre[0],centre[1]), 0.05)
23

24

25 geo = channel - circle
26

27 inlet = Line((channel_length[0], channel_width[0]),
28 (channel_length[0], channel_width[1]), 1)
29 outlet = Line((channel_length[1], channel_width[0]),
30 (channel_length[1], channel_width[1]), 1)
31

32
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33 # params for domain
34

35 # define sympy varaibles to parametize domain curves
36 # sympy variables
37 x , y = Symbol('x') , Symbol('y')
38

39 class NavierTrain(TrainDomain):
40 def __init__(self, **config):
41 super(NavierTrain, self).__init__()
42

43

44 #initial condition
45

46 #boundary conditions
47

48 # inlet
49 parabola_sympy = parabola(y, inter_1=channel_width[0],
50 inter_2=channel_width[1],
51 height=inlet_vel)
52 inletBC = inlet.boundary_bc(outvar_sympy={'u': parabola_sympy ,'v':0},
53 batch_size_per_area=49)
54 self.add(inletBC, name="Inlet")
55

56 outletBC = outlet.boundary_bc(outvar_sympy={'p': 0},batch_size_per_area=49)
57 self.add(outletBC, name="Outlet")
58

59 topWall = geo.boundary_bc(outvar_sympy={'u': 0, 'v': 0},
60 batch_size_per_area=45,
61 lambda_sympy={'lambda_u': 1.0 ,
62 'lambda_v': 1.0},
63 criteria=Eq(y,0.41)
64 )
65

66 self.add(topWall, name="TopWall")
67

68 # no slip
69 bottomWall = geo.boundary_bc(outvar_sympy={'u': 0, 'v': 0},
70 batch_size_per_area=45,
71 criteria=Eq(y,0))
72 self.add(bottomWall, name="NoSlip")
73

74
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5.1 Sample Python Code

75 # interior
76 interior = geo.interior_bc(outvar_sympy={'continuity': 0,
77 'momentum_x': 0,
78 'momentum_y': 0},
79 bounds=
80 {x: (channel_length[0],channel_length[1]),
81 y: (channel_width[0],channel_width[1])},
82 lambda_sympy={'lambda_continuity': geo.sdf,
83 'lambda_momentum_x': geo.sdf,
84 'lambda_momentum_y': geo.sdf},
85 batch_size_per_area=4095
86

87 )
88

89

90 self.add(interior, name="Interior")
91

92 ObstacleCont = circle.boundary_bc(outvar_sympy={'u': 0, 'v':0},
93 batch_size_per_area=172,
94

95 lambda_sympy={'lambda_u': 1.0 ,
96 'lambda_v':1.0})
97

98 self.add(ObstacleCont, name="Obstacle")
99

100 outletCont = outlet.boundary_bc
101 (outvar_sympy={'integral_continuity': 0.082},
102 batch_size_per_area=45,
103 lambda_sympy=
104 {'lambda_integral_continuity': 0.1})
105 self.add(outletCont, name="IntegralContinuity1")
106

107

108

109

110 #validation data
111 mapping = {'Points_0':'x','Points_1':'y','U_0':'u','U_1':'v','p':'p'}
112 openfoam_var = csv_to_dict('Cylinder_OpenFoam_mesh1.csv', mapping)
113 openfoam_invar_numpy = {key: value for key, value in openfoam_var.items()
114 if key in ['x', 'y']}
115 openfoam_outvar_numpy = {key: value for key, value in openfoam_var.items()
116 if key in ['u', 'v','p']}
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117

118 class NavierVal(ValidationDomain):
119 def __init__(self, **config):
120 super(NavierVal, self).__init__()
121 val = Validation.from_numpy(openfoam_invar_numpy, openfoam_outvar_numpy)
122 self.add(val, name='Val')
123

124 # Define neural network
125 class NavierSolver(Solver):
126 train_domain = NavierTrain
127 val_domain = NavierVal
128 #inference_domain = NavierInference
129

130

131 def __init__(self, **config):
132 super(NavierSolver, self).__init__(**config)
133

134 self.equations = NavierStokes(nu=0.001, rho=1.0, dim=2,
135 time=False).make_node()
136 + IntegralContinuity().make_node()
137

138

139 heat_net = self.arch.make_node(name='heat_net',
140 inputs=['x', 'y'],
141 outputs=['u', 'v', 'p'])
142 self.nets = [heat_net]
143

144 @classmethod # Explain This
145 def update_defaults(cls, defaults):
146 defaults.update({
147 'network_dir': './network_checkpoint_NavierMesh1',
148 'max_steps': 50000,
149 'decay_steps': 1000
150 })
151

152 if __name__ == '__main__':
153 ctr = SimNetController(NavierSolver)
154 ctr.run()
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5.2 Hard Swish

5.2 Hard Swish

Hard Swish is a type of activation function based on Swish, but replaces the computation-
ally expensive sigmoid with a piecewise linear analogue [29 ] which can be written as

hard− swish(x) = x ∗ RELU6(x+ 3)

6
. (5.1)

But in SimNet , the hard swish is formulated differently as shown in the equation below.
The plots of functon and it derivatives are shown in Figure 5.1 .

h− swish(x) = x ∗ sigmoid(100 ∗ x) (5.2)
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Figure 5.1: Hard swish and its derivatives in SimNet
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5.3 Parametrized Problem - solution plots

(a) pressure p from simnet

(b) pressure p from OpenFoam

(c) p:difference

Figure 5.2: Pressure Comparison for radius 0.1
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5.3 Parametrized Problem - solution plots

(a) velocity v from simnet

(b) velocity v from OpenFoam

(c) v:difference

Figure 5.3: velocity v for radius 0.1
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(a) pressure p from simnet

(b) pressure p from OpenFoam

(c) p:difference

Figure 5.4: Pressure Comparison for radius 0.05

68



5.3 Parametrized Problem - solution plots

(a) velocity u from simnet

(b) velocity u from OpenFoam

(c) u:difference

Figure 5.5: velocity Magnitude Comparison for radius 0.05
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(a) velocity v from simnet

(b) velocity v from OpenFoam

(c) v:difference

Figure 5.6: velocity v for radius 0.05
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5.3 Parametrized Problem - solution plots

(a) pressure p from simnet

(b) pressure p from OpenFoam

(c) p:difference

Figure 5.7: Pressure Comparison for radius 0.025
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(a) velocity u from simnet

(b) velocity u from OpenFoam

(c) u:difference

Figure 5.8: velocity Magnitude Comparison for radius 0.025
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5.3 Parametrized Problem - solution plots

(a) velocity v from simnet

(b) velocity v from OpenFoam

(c) v:difference

Figure 5.9: velocity v for radius 0.025

73



5 Appendix A

(a) Pressure p from simnet

(b) Pressure p from OpenFoam

(c) p:difference

Figure 5.10: Pressure p Comparison for U = 0.6
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5.3 Parametrized Problem - solution plots

(a) velocity v from simnet

(b) velocity v from OpenFoam

(c) v:difference

Figure 5.11: velocity v for U = 0.6
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(a) Pressure p from simnet

(b) Pressure p from OpenFoam

(c) p:difference

Figure 5.12: Pressure p Comparison for U = 0.45
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5.3 Parametrized Problem - solution plots

(a) velocity u from simnet

(b) velocity u from OpenFoam

(c) u:difference

Figure 5.13: velocity Magnitude Comparison for U = 0.45
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(a) velocity v from simnet

(b) velocity v from OpenFoam

(c) v:difference

Figure 5.14: velocity v for U = 0.45
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5.3 Parametrized Problem - solution plots

(a) Pressure p from simnet

(b) Pressure p from OpenFoam

(c) p:difference

Figure 5.15: Pressure p Comparison for U = 0.3
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(a) velocity u from simnet

(b) velocity u from OpenFoam

(c) u:difference

Figure 5.16: velocity Magnitude Comparison for U = 0.3
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5.3 Parametrized Problem - solution plots

(a) velocity v from simnet

(b) velocity v from OpenFoam

(c) v:difference

Figure 5.17: velocity v for U = 0.3
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