
DEPARTMENT OF INFORMATICS
TECHNICAL UNIVERSITY OF MUNICH

Bachelor’s Thesis in Informatics

Implementation of a Deep Sparse Grid
Layer in PyTorch

Simon Blöchinger

DEPARTMENT OF INFORMATICS
TECHNICAL UNIVERSITY OF MUNICH

Bachelor’s Thesis in Informatics

Implementation of a Deep Sparse Grid Layer
in PyTorch

Implementierung mehrschichtiger dünner Gitter in PyTorch

Author: Simon Blöchinger

Supervisor: Univ.-Prof. Dr. Hans-Joachim Bungartz

Advisor: Dr. Felix Dietrich

Submission Date: May 12, 2021

I confirm that this bachelor’s thesis is my own work and I have documented all sources
and material used.

May 12, 2021 Simon Blöchinger

Acknowledgements

I want to acknowledge

• . . . my advisor, Dr. Felix Dietrich, for his helpful feedback and support throughout
the writing of this thesis,

• . . . Zhen Zhang, who provided helpful insights about the codebase,

• . . . my friends and family for proofreading this thesis and providing support during
the creation process.

v

Abstract

Sparse grids are useful for function approximation in high dimensions, because they re-
duce the impact of the “curse of dimensionality”, as the number of grid points does not
grow exponentially with the number of dimensions. This gives access to function approxi-
mation in higher dimensions than possible with full grids. Sparse grids represent functions
as a linear combination of nonlinear basis functions.

A neural network can also represent a function as a linear combination of nonlinear ba-
sis functions. In contrast to sparse grids, however, the neural network learns the linear
combination.

A combination of sparse grids and neural networks could lead to a more efficient use
of resources and faster training of the neural network. Since there currently is a lack of
frameworks that allow using sparse grids inside of neural networks, an implementation of
a deep sparse grid layer is introduced in this thesis. The implementation uses the Python
machine learning library PyTorch. With this implementation, it is possible for future re-
searchers to start evaluating the advantages and disadvantages of sparse grids inside neu-
ral networks quicker. It provides a customizable sparse grid layer, which uses a sparse
grid built with the combination technique, and can utilize PyTorch’s parallel tensor com-
putation on compatible GPUs.

vii

Zusammenfassung

Dünne Gitter sind nützlich, um Funktionen in hohen Dimensionen zu approximieren, weil
sie die Auswirkungen des „Fluchs der Dimensionalität” reduzieren, da die Anzahl der
Gitterpunkte nicht exponentiell mit der Dimension ansteigt. Die Verwendung von dün-
nen Gittern erlaubt demnach die Approximation in höheren Dimensionen als mit vollen
Gittern. Funktionen werden in dünnen und vollen Gittern als lineare Kombination von
nichtlinearen Basisfunktionen dargestellt.

Ein neuronales Netz repräsentiert Funktionen auch mit einer linearen Kombination von
nichtlinearen Basisfunktionen. Diese Kombination wird allerdings von dem neuronalen
Netz gelernt.

Eine Verbindung zwischen dünnen Gittern und neuronalen Netzen könnte zu einer effek-
tiveren Nutzung von Rechenressourcen und damit einer schnelleren Lerngeschwindigkeit
des neuronalen Netzes führen. Da es momentan an Programmiergerüsten, die die Ver-
wendung von dünnen Gittern innerhalb von neuralen Netzen erlauben, mangelt, führt
diese Bachelorarbeit eine Implementierung mehrschichtiger dünner Gitter in der Python
Programmbibliothek PyTorch ein. Diese Implementierung erlaubt zukünftigen Forsch-
ern, schneller und einfacher mit dem Studieren der Vor- und Nachteile der Verwendung
von dünnen Gittern in neuronalen Netzen anzufangen. Die Implementierung stellt eine
Schicht für ein neurales Netz zur Verfügung, die ein dünnes Gitter, das mit der Kombina-
tionstechnik geschaffen wurde, verwendet. Parallele Berechnung auf Grafikprozessoren
kann von der Schicht verwendet werden.

ix

Contents

Acknowledgements

.

v

Abstract

.

vii

List of Notations

.

xiii

1 Introduction

.

1

2 Theoretical Background

.

3
2.1 Full Grids

.

. 3
2.1.1 Hat Function

.

. 4
2.1.2 One-dimensional Nodal Basis

.

. 5
2.1.3 One-dimensional Hierarchical Basis

.

. 6
2.1.4 Multi-dimensional Basis

.

. 7
2.2 Sparse Grids

.

. 9
2.3 Neural Networks

.

. 13
2.3.1 Types of Neural Networks

.

. 13
2.3.2 Layers

.

. 14
2.3.3 Forward Pass

.

. 15
2.3.4 Activation Functions

.

. 16
2.3.5 Problems Solvable with Machine Learning

.

. 16
2.3.6 Loss Function

.

. 18
2.3.7 Backpropagation

.

. 19
2.4 PyTorch

.

. 19
2.4.1 Model Definition

.

. 19
2.4.2 Layer Definition

.

. 20

3 Implementation of a Deep Sparse Grid Layer in PyTorch

.

23
3.1 Deep Sparse Grids Codebase

.

. 23
3.2 Sparse Grid Representation in the Deep Sparse Grid Layer

.

. 24
3.3 Features of the Deep Sparse Grid Layer

.

. 24
3.4 Grid Generation

.

. 25
3.5 Layer Architecture

.

. 27
3.6 Unit Tests

.

. 29
3.7 Computational Experiments

.

. 30

xi

Contents

3.8 GPU Optimization

.

. 31

4 Conclusion

.

37
4.1 Summary

.

. 37
4.2 Discussion

.

. 37
4.3 Outlook

.

. 38

List of Figures

.

40

List of Tables

.

41

List of Source Code

.

43

Bibliography

.

46

xii

List of Notations

Notation Description

N The natural numbers.
N0 The natural numbers including 0.
~v The vector v.
vi The i-th element of the vector v.
~1 The vector consisting of ones.
O The big O notation.
l The discretization level.
~l The multi-dimensional vector of discretization levels.
Ωl The one-dimensional grid of level l.
Ω̄ The domain of the one-dimensional grid.
Ωd
l The d-dimensional grid of level l.

Ω̄d The domain of the d-dimensional grid.
hl The mesh width of a grid of level l.
~hl The multi-dimensional mesh width of level l.
xl,i The point with the index i in a grid of level l.
~x~l,~i The grid point with the vector index~i.
Φ(x) The hat function.
Φl,i(x) The hat function on the grid point xl,i.
Φ~l,~i

(x) The hat function on the grid point x~l,~i.
Vl The function space of a basis of level l.
V~l The function space of a basis with the discretization level vector ~l.
Wl The hierarchical increment space of level l.
W~l

The hierarchical increment space with the discretization level vector ~l.
Il The index set for the increment space Wl.
I~l The index set for the increment space W~l

.
V̂n The sparse grid space of level n.
ul(x) The interpolation function of a basis of level l.
u~l(~x) The interpolation function of a basis with the discretization level vector ~l.
ûn(x) The interpolation function of a sparse grid of level n.
|~l|1 The L-1 norm of the vector ~l.
|~l|∞ The uniform norm of the vector ~l.

xiii

1 Introduction

Nowadays, neural networks are used to solve a multitude of tasks that consist of learning,
generalizing or clustering data. They can for example be used to identify emotions in
pictures of faces [1

.

] or interpret medical images [2

.

]. They can also be used for dimension
reduction on a function or regression [3

.

].

Full grids can be used to approximate a function when a full sampling of the space is
necessary. However, full grid approximation does not work well for functions in higher
dimensions, since the number of points needed in a full grid grows exponentially with the
dimension. Sparse grids are grids where most grid points are left empty. This results in
the number of sparse grid points not growing exponentially with the number of dimen-
sions. This gives access to function approximation in higher dimensions than normally
possible. The intelligent layout of the sparse grid points (see Figure 1.1

.

) allows for func-
tion approximation in higher dimensions with adequate approximation accuracy. Sparse
grids are typically used when the use of full grids is not feasible anymore, but the space
still has to be sampled completely, like solving partial differential equations or interpola-
tion and approximation in medium dimensions [4

.

]. Sparse grids represent functions as a
linear combination of nonlinear basis functions.

A neural network can also represent a function as a linear combination of nonlinear basis
functions. In contrast to sparse grids, however, the neural network needs to learn this
combination. When training to represent a function, the neural network adjusts its weights
to achieve a result with minimal error.

Combining sparse grids and neural networks could lead to faster training of neural net-
works. However, there currently is a lack of frameworks that allow using sparse grids
inside of neural networks. This thesis introduces the implementation of a deep sparse grid
layer for the Python machine learning library PyTorch. With this implementation, it will
be possible for future researchers to start evaluating the advantages and disadvantages of
sparse grids inside of neural networks quicker.

The mathematical background of full grids and sparse grids is explained in Sections 2.1

.

and 2.2

.

, followed by an introduction to neural networks in Section 2.3

.

. The library Py-
Torch, which is the Python machine learning library used to implement the deep sparse
grid layer, is introduced in Section 2.4

.

. Section 3

.

discusses the implementation of the deep
sparse grid layer. The underlying codebase that is the basis for the sparse grid layer is in-
troduced in Section 3.1

.

. In Section 3.2

.

the representation of sparse grids in the sparse grid
layer is explained. How the implemented layer can be customized and which features are

1

1 Introduction

implemented is discussed in Section 3.3

.

. The algorithm used to generate sparse and full
grids in the sparse grid layer is introduced in Section 3.4

.

. In Section 3.5

.

the architecture of
the implementation is presented. Unit tests for the sparse grid layer are introduced in Sec-
tion 3.6

.

. Finally, the capabilities of the deep sparse grid layer implementation for utilizing
parallel GPU processing is evaluated in Section 3.8

.

.

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Two-dimensional sparse grid of level 4

Figure 1.1: A two-dimensional sparse grid of level 4 with boundary points in the do-
main [0, 1]2.

2

2 Theoretical Background

The mathematical background of full grids and sparse grids is given in Sections 2.1

.

and 2.2

.

.
Afterwards, neural networks are introduced in Section 2.3

.

. The Python library PyTorch,
that is the basis for the implementation of the deep sparse grid layer, is examined in Sec-
tion 2.4

.

.

2.1 Full Grids

In order to define sparse grids, full grids are introduced first. For simplicity’s sake, a one-
dimensional equidistant grid Ωl of level l ∈ N in the interval Ω̄ = [0, 1] is considered first.
Figure 2.1a

.

shows a one-dimensional full grid. Then, these principles will be extended to
multiple dimensions in Section 2.1.4

.

. A two-dimensional full grid is shown in Figure 2.1b

.

.

The grid Ωl consists of (2l + 1) equidistant points if it contains the boundary points and
of (2l − 1) equidistant points if not [5

.

]. The distance hl between the points of a grid with
level l, also called mesh width, is defined as

hl := 2−l. (2.1)

A point xl,i in relation to its index i and the level l of the grid is defined as

xl,i := i · hl, 0 ≤ i ≤ 2l (2.2)

if the grid contains boundary points and as

xl,i := i · hl, 1 ≤ i ≤ 2l − 1 (2.3)

if not.

3

2 Theoretical Background

0.0 0.2 0.4 0.6 0.8 1.0

(a) One-dimensional full grid of level 3.

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

(b) Two-dimensional full grid of level (3, 3)>.

Figure 2.1: Full grids with boundary points in the domain [0, 1].

In the Sections 2.1

.

and 2.2

.

a grid without boundary points is considered.

2.1.1 Hat Function

A one-dimensional basis function is used to construct the full grid. The hat function,

Φ(x) := max {1− |x|, 0}, (2.4)

is a simple one-dimensional basis function [6

.

]. Figure 2.2

.

shows a plot of the hat function
in the interval [−3, 3].

4

2.1 Full Grids

3 2 1 0 1 2 3
0.0

0.2

0.4

0.6

0.8

1.0

Figure 2.2: The hat function in the interval [−3, 3].

By dilating and translating this function, the hat function can be defined in relation to the
grid point xl,i:

Φl,i(x) := Φ

(
x− xi
hi

)
. (2.5)

This general hat function can then be used to construct a basis.

2.1.2 One-dimensional Nodal Basis

A nodal basis of level l uses a span of level l basis functions to construct its function space.
An example of a nodal basis can be seen in Figure 2.3

.

.

Using the basis function from (2.5

.

), the function space Vl of the nodal basis is defined as

Vl := span
{

Φl,i : 1 ≤ i ≤ 2l − 1
}
. (2.6)

This space contains all functions that can be represented by the nodal basis [6

.

].

5

2 Theoretical Background

0.0 0.2 0.4 0.6 0.8 1.0

Figure 2.3: A nodal basis of level 3 in the domain [0, 1].

An interpolation function u(x) can be constructed by multiplying the basis functions with
a basis-specific weight vl,i and summing up all results:

u(x) =
∑
i∈Il

vl,i · Φl,i(x). (2.7)

Since the basis functions are static, the interpolation function u(x) can be represented by
its weights.

2.1.3 One-dimensional Hierarchical Basis

A hierarchical basis can also be constructed in a similar way to the nodal basis. The hierar-
chical basis uses multiple hierarchical increment spacesWl to build its function space Vl [6

.

].
Each increment space Wl contains the odd basis functions of level l:

Wl : = span {Φl,i : i ∈ Il} , (2.8)

Il : =
{
i ∈ N : 1 ≤ i ≤ 2l − 1, i odd

}
. (2.9)

The sum of the increment spaces Wl of all levels l is the resulting function space

Vl =
⊕
k≤l

Wk, (2.10)

which is the same space as the nodal function space. An example of a hierarchical basis
can be seen in Figure 2.4

.

.

6

2.1 Full Grids

0.0 0.2 0.4 0.6 0.8 1.0

Figure 2.4: A hierarchical basis of level 3 in the domain [0, 1].

A function u(x) inside the function space Vl can be represented by the basis functions
as the sum of all hierarchical basis functions in all increment spaces, multiplied by their
respective weights vk,i:

u(x) =

l∑
k=1

∑
i∈Ik

vk,i · Φki(x). (2.11)

The interpolation function u(x) can be uniquely represented by its weights using hierar-
chical basis function as well.

2.1.4 Multi-dimensional Basis

Tensor product construction can be utilized to extend the one-dimensional grid to d di-
mensions. The d levels l of the d-dimensional grid Ωd

l are combined into the d-dimensional
vector ~l:

~l := (l1, l2, . . . , ld) ∈ Nd. (2.12)

The grid Ωd
l is now in the d-dimensional interval Ω̄d := [0, 1]d. The mesh width is defined

as
~hl := (hl,1, hl,2, . . . , hl,d) := 2−

~l. (2.13)

The grid points ~x~l,~i of the grid Ωd
l are defined as

~x~l,~i := (xl1,i1 , . . . , xld,id) , ~1 ≤~i ≤ 2
~l−~1, (2.14)

7

2 Theoretical Background

where for all vectors above, all arithmetic operations are component-wise [5

.

]. Figure 2.5

.

shows a full grid with ~l = (3, 3)>.

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Figure 2.5: A two-dimensional full grid of level (3, 3)> (without boundary points).

For each grid point the d-dimensional hat function is defined as

Φ~l,~i
(x) :=

d∏
j=1

Φlj ,ij (xj). (2.15)

The function space

V~l := span
{

Φl,i : ~1 ≤~i ≤ 2
~l −~1

}
(2.16)

is again defined as a span of basis functions.

8

2.2 Sparse Grids

To represent a function u~l(~x) in the multi-dimensional function space V~l, the nodal basis
functions are multiplied with their respective weights v~l,~i, similar to the one-dimensional
case:

u~l(~x) =
∑
~i∈I~l

v~l,~i · Φ~l,~i
(~x). (2.17)

The hierarchical increment spaces W~l
are defined as

W~l
: = span

{
Φ~l,~i

: ~i ∈ I~l
}
, with (2.18)

I~l : =
{
~i ∈ Nd : ~1 ≤~i ≤ 2

~l −~1, ij odd for all 1 ≤ j ≤ d
}
. (2.19)

The sum of the increment spaces W~l
of all levels ~l still is the same as the function space V~l

of the nodal basis:

V~l =
⊕
~k≤~l

W~k
. (2.20)

A function u~l(~x) can be represented by the sum of all hierarchical basis functions in all
increment spaces, multiplied by their respective weights v~k,~i:

u~l(~x) =
∑

~1≤~k≤~l

∑
~i∈I~k

v~k,~i · Φki(~x). (2.21)

An interpolation function u~l(~x) can be represented in the multi-dimensional grid just by
its weights as well.

2.2 Sparse Grids

When approximating functions in increasing dimensions, the number of points in a full
grid increases exponentially. This is called “the curse of dimensionality”. Sparse grids are
grids that have a large number of empty grid points. Because of that, the actual number of
points in a sparse grid does not increase exponentially while the quality of the approxima-
tion does not decrease significantly [6

.

, 7

.

]. Table 2.1

.

shows a comparison of the grid points
and accuracy of full and sparse grids.

9

2 Theoretical Background

Table 2.1: Comparison between full grids and sparse grids in relation to the dimension d
and the mesh width h [4

.

].

Full grid Sparse grid

Grid Points O
(
h−d

)
O
(
h−1 log

(
h−1

)d−1)
Accuracy O

(
h2
)

O
(
h2 log

(
h−1

)d−1)

One way of defining sparse grids is by selectively adding hierarchical subspaces from the
full grids space (see Figure 2.6

.

). The result of the added hierarchical subspaces can be
seen in Figure 2.7

.

. Sparse grids achieve their smaller number of points with little loss in
accuracy by selectively adding subspaces from the full grid space (see Figure 2.6

.

). Two
norms are used to distinguish the hierarchical subspaces:

|~l|1 : =

d∑
j=1

|lj |, (2.22)

|~l|∞ : = max
1≤j≤d

|lj |. (2.23)

To gain the maximum accuracy for the least amount of points, sparse grid spaces V̂n of
levels ~l = (n, . . . , n)> in d dimensions are defined as

V̂n :=
⊕

|~l|1≤n+d−1

W~l
. (2.24)

Full grid spaces do not selectively choose hierarchical subspaces but use all subspaces from
the corresponding full grid space:

Vn :=
⊕
|~l|∞≤n

W~l
. (2.25)

10

2.2 Sparse Grids

Figure 2.6: Subspaces W~l
for levels |~l∞| ≤ 3. Together the subspaces form the full grid

space V3. The sparse grid space V̂3 consists of the full grid spaces that sat-
isfy |~l|1 ≤ 3 + 2− 1 = 4 (see (2.24

.

)), in this figure shown above the dashed
line [taken from 6

.

].

11

2 Theoretical Background

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Figure 2.7: Two-dimensional sparse grid of level 3.

The combination technique is another technique used for generating sparse grids. Instead
of adding hierarchical subspaces from the full grid space, the combination technique lin-
early adds and subtracts coarser full grids to represent a sparse grid. The advantage of
constructing a sparse grid out of complete full grids instead of hierarchical subspaces is
that existing solving methods for full grids can be used on the constructed sparse grid.
The disadvantage is that the combination technique uses additional points. An example of
the combination technique can be seen in Figure 2.8

.

, where the technique is used to create
a two-dimensional sparse grid of level 3.

The sparse grid interpolation function ûl(x), also called sparse grid solution, is given by

ûn(x) :=
∑

n≤|~l|1≤n+d−1

(−1)n+d−|~l|1−1
(
d− 1

|~l|1 − n

)
ul(x). (2.26)

The coefficient

c = (−1)n+d−|~l|1−1
(
d− 1

|~l|1 − n

)
(2.27)

of a grid determines whether the grid is added or subtracted.

12

2.3 Neural Networks

Figure 2.8: A two-dimensional sparse grid of level 3 is combined from full grids. The co-
efficient c of the grids Ω(3,1), Ω(2,2) and Ω(1,3) is 1, which means that these grids
are added. The coefficient c of the grids Ω(2,1) and Ω(1,2) is −1, which means
that these grids are subtracted [taken from 6

.

].

2.3 Neural Networks

Artificial neural networks are computational models that possess the ability to learn, gen-
eralize or cluster data. They are loosely inspired by biological neural networks and consist
of a set of simple processing units called neurons. These neurons communicate with each
other via weighted connections [8

.

].

Neural networks can perform various tasks, from diagnosing patients with dementia us-
ing neural imaging [2

.

] to reading emotions using facial image analysis [1

.

] to playing Star-
Craft II, a complex real-time strategy game with incomplete information [9

.

].

2.3.1 Types of Neural Networks

There are different types of neural networks, two important types are feed-forward net-
works and recurrent networks. In feed-forward networks the data flow is unidirectional.
No information is transmitted backwards and there are no loops in the network. Fig-
ure 2.9a

.

shows a feed-forward network. Recurrent networks on the other hand do transmit
data backwards. This means that the network influences itself. The output of a network

13

2 Theoretical Background

can either be stable, when the network reaches an equilibrium, or dynamic, when the net-
work does not converge to a stable state and instead periodically changes [8

.

]. Figure 2.9b

.

shows a recurrent network.

(a) Feed-forward network. (b) Recurrent network.

Figure 2.9: Comparison between a feed-forward network and a recurrent network.

The focus of this thesis will be on feed-forward networks.

2.3.2 Layers

The neurons in a feed-forward network are usually divided into layers. Neurons of layer
n only influence neurons of layer n+ 1. Neurons on the same level do not influence each
other. Figure 2.10

.

shows a feed-forward network with an input layer, a hidden layer and
an output layer.

The neurons on the first layer are influenced by the input layer, which is not counted in
the number of layers of a neural network. The last layer, which is also called output layer,
does not influence other neurons in the neural network. All layers between the input and
the output layer are called hidden layers. Most neural networks consist of multiple layers.
While single-layer networks without hidden layers exist, they are much more restricted
than multi-layer networks [8

.

].

14

2.3 Neural Networks

Figure 2.10: Feed-forward neural network with 2 layers.

2.3.3 Forward Pass

To calculate the result of a neural network, which is the states of the neurons in the output
layer, a forward pass is executed. In this forward pass the states of all neurons get evalu-
ated. The forward pass starts at the input layer, moves forwards through the network, and
ends at the output layer.

Each neuron can assume an activation state s between zero and one. The weight of the
connection from neuron j to neuron k is wjk. For each neuron there can also be a bias Θ [8

.

].
The state of the neuron is calculated as the sum of all weighted connections to the neuron
plus the bias of the neuron:

sk(t) =
∑
j

wjk(t)yj(t) + Θk(t). (2.28)

To calculate the output y of a neuron an activation function α(x) can be used. This acti-
vation function can introduce non-linearity to the neural network and help detect certain
features [10

.

]. The activation function gets the state of the neuron as input and returns the
output of the neuron:

yk(t) = αk(sk(t)). (2.29)

15

2 Theoretical Background

The output of the neurons is evaluated layer by layer until the output layer is reached. The
output y of the neurons of the output layer is the output of the neural network.

2.3.4 Activation Functions

Different activation functions can be used for different purposes. Two popular activation
functions are the sigmoid activation function and the rectified linear unit (ReLU) activation
function [10

.

].

The sigmoid activation function, shown in Figure 2.11a

.

, is defined as

f(x) =
1

(1 + e−x)
. (2.30)

It is a non-linear smooth activation function that is derivable. It is mainly used in the
output layer.

The ReLU activation function, shown in Figure 2.11b

.

, is defined as

f(x) = max(0, x). (2.31)

It is a nearly linear activation function which means it is often used in linear models.

6 4 2 0 2 4 6
0.0

0.2

0.4

0.6

0.8

1.0

(a) Sigmoid activation function.

6 4 2 0 2 4 6
0

1

2

3

4

5

6

(b) ReLU activation function.

Figure 2.11: Comparison of the sigmoid and the ReLU activation function in the interval
[−6, 6].

2.3.5 Problems Solvable with Machine Learning

Problems that can be solved by machine learning can be divided into two groups: super-
vised and unsupervised learning [11

.

].

16

2.3 Neural Networks

In supervised learning problems, the neural network learns a function that best predicts
the output of incoming data by learning from input-output pairs of data. The output that
the network should predict is already known. Examples of supervised learning problems
are classification, where the network classifies input data into known classes, and regres-
sion, where the network learns a function from sample points. An example of regression
can be seen in Figure 2.12

.

.

(a) Input data points. (b) Predicted function.

Figure 2.12: Regression example.

Unsupervised learning is done without a priori knowledge about the data. The network
gets unlabeled data without instructions on what to predict. It then tries to find patterns
in the data. An example of unsupervised learning problems is clustering, which is the
division of unknown data into clusters of similar data points. The number of clusters and
the features that are used in the clustering process are not known beforehand. An example
of this can be seen in Figure 2.13

.

.

17

2 Theoretical Background

(a) Input data points. (b) Clustered data.

Figure 2.13: Clustering example.

2.3.6 Loss Function

A loss function is used to measure how well a model performs. It quantifies the difference
between the value predicted by the model and the expected value. This quantification is
then used to tune the model’s parameters to better predict the input data [12

.

]. Because the
loss function compares to an expected value, it is only usable in supervised learning. This
tuning of the model’s parameters is explained in Section 2.3.7

.

.

There are different loss functions for different purposes. A simple loss function used for
example in regression problems is the quadratic loss function, also called squared error
(SE) function. It uses the squared distance between prediction y and target T as loss value.
It is defined as

L(y) = B · (y − T)2, (2.32)

where B is a constant.

The mean value of the quadratic loss function over a batch of data is called the mean
squared error (MSE) function. It is defined as

MSE(y) =
1

n

n∑
i=0

B · (yn − Tn)2 (2.33)

for n different data points.

18

2.4 PyTorch

2.3.7 Backpropagation

After training data was passed forward through the neural network, the loss of this for-
ward pass is calculated. In case of a batch of training data, a mean loss function is used.
Then the weights and biases of the neurons and connections in the neural network get
adjusted to minimize the loss. This is done by passing the loss backwards through the net-
work. The adjustment of the parameters to minimize the loss are done layer by layer. An
algorithm such as gradient descent can be used to find a local minimum of the loss function
for different weights and biases. The weights and biases can then be optimized [8

.

].

2.4 PyTorch

PyTorch is an open-source Python library that is used for deep learning. It provides tensors
that support calculations both with central processing units (CPUs) and graphical process-
ing units (GPUs). Using a GPU allows for faster parallel calculations. The tensors save a
history of changes, which provides built-in differentiation.

The library provides a wide range of ready-to-use layers that can easily be added to custom
models. It also provides optimizers and loss functions used for backpropagation [13

.

].

The implementation discussed in Section 3

.

defines a deep sparse grid layer in PyTorch.
The steps required for creating a custom layer in PyTorch and using the layer in a PyTorch
model are introduced in Sections 2.4.1

.

and 2.4.2

.

.

2.4.1 Model Definition

To define a new model in PyTorch, the torch.nn.Module class is extended. The pro-
grammer then has to define the layers. In addition, the function that is executed with each
forward pass needs to be defined as well. A code example can be found below in Source
Code 2.1

.

[14

.

].

19

2 Theoretical Background

1 class CustomModel(torch.nn.Module):
2 def __init__(self, dim_in, dim_h1, dim_out):
3 super(CustomModel, self).__init__()
4 self.linear1 = torch.nn.Linear(dim_in, dim_h1)
5 self.linear2 = torch.nn.Linear(dim_h1, dim_out)
6

7 def forward(self, x):
8 h1 = F.relu(self.linear1(x))
9 y = torch.sigmoid(self.linear2(h1))

10 return y
11

12 my_model = CustomModel(3, 2, 1)

Source Code 2.1: Definition of a model with two linear layers.

The model consists of two linear layers. The first linear layer uses the ReLU activation
function, while the second linear layer uses the sigmoid activation function.

2.4.2 Layer Definition

To define a custom layer in PyTorch, the torch.nn.Module class also needs to be ex-
tended. Inside the layer class a forward function needs to be defined that gets executed
with every forward pass. The custom layer can then be used in any model. A code example
can be found below (see Source Code 2.2

.

).

20

2.4 PyTorch

1 class CustomLinearLayer(torch.nn.Module):
2 def __init__(self, in_features: int, out_features: int) \
3 -> None:
4 super(CustomLinearLayer, self).__init__()
5 self.in_features = in_features
6 self.out_features = out_features
7 self.weight = Parameter(
8 torch.Tensor(out_features, in_features))
9

10

11 def forward(self, x):
12 return torch.nn.functional.linear(x, self.weight)
13

14

15 class CustomModel(torch.nn.Module):
16 def __init__(self, dim_in, dim_h1, dim_out):
17 super(CustomModel, self).__init__()
18 self.linear1 = torch.nn.Linear(dim_in, dim_h1)
19 self.custom_linear = CustomLinearLayer(dim_h1, dim_out)
20

21 def forward(self, x):
22 h1 = F.relu(self.linear1(x))
23 y = torch.sigmoid(self.custom_linear(h1))
24 return y
25

26 my_model = CustomModel(3, 2, 1)

Source Code 2.2: Definition of a custom layer and instantiation of it in a custom model.

In this code example a custom linear layer is defined. The forward pass of the custom layer
is a function call to a built-in function in the PyTorch library. The custom linear layer is
then used after a linear layer in the defined model.

21

3 Implementation of a Deep Sparse Grid
Layer in PyTorch

Sparse grids perform best in ambient space dimensions larger than three when an expo-
nential increase of points is not feasible anymore, but the space still has to be sampled
completely. The sparsity does not only scale better in high dimensions but can also help
with pattern recognition by dropping unnecessary features, making the system more ro-
bust in return [15

.

].

Sparse grids in combination with machine learning can also be useful for density estima-
tion, since it needs an exponentially growing number of grid points compared to data
points, whereas the number of sparse grid points does not grow as fast [16

.

].

The scope of this thesis is the implementation of a deep sparse grid layer in PyTorch, using
the already existing codebase as a starting point.

The features of the codebase will be introduced in Section 3.1

.

. Afterwards, an overview of
the representation of sparse grids in the deep sparse grid layer implementation is given in
Section 3.2

.

. The features and options of the layer implementation are summarized in Sec-
tion 3.3

.

. In Section 3.4

.

the grid generation algorithm is explained. The architecture of the
implementation and its modularization is discussed in Section 3.5

.

. Unit tests, which ensure
the functionality of the implementation of the deep sparse grid layer and its components,
are outlined in Section 3.6

.

. Finally, in Section 3.8

.

, the topic of using parallel computation
from GPUs with the implementation of the deep sparse grid layer is discussed.

3.1 Deep Sparse Grids Codebase

The already existing codebase implements a neural network with a sparse grid layer for
Tensorflow, a Python library similar to PyTorch that is also used for machine learning.

An algorithm to create a d-dimensional sparse grid without boundary points in the domain
[0, 1]d using the combination technique is also already implemented in the codebase. To
create a sparse grid with the combination technique, a set of full grids is multiplied with a
set of coefficients and then added together.

The sparse grid representation in the codebase stores the sparse grid in three variables. The
grid points of all full grids that make up the sparse grid are stored together in the variable

23

3 Implementation of a Deep Sparse Grid Layer in PyTorch

positions. When representing a d-dimensional sparse grid with p grid points, the array
positions has the shape (p, d). The grid coefficients of the set of full grids are stored for
every point. This means that the variable called combi_coefficients contains the grid
coefficient for every grid point, which makes it a one-dimensional array of length p. The
mesh widths of the set of full grids are also stored for every grid point in every dimension,
which results in an array with the shape (p, d) called scales.

3.2 Sparse Grid Representation in the Deep Sparse Grid Layer

Sparse grids in the deep sparse grid layer are also generated using the combination tech-
nique. The representation of sparse grids is very similar to the representation in the code-
base. Three variables with the same functions and shapes as in the codebase are used.
To make the naming more consistent with the purpose of the variables, two of them have
been renamed. The variable that contains the positions of all grid points is still called
positions. The variable containing the grid coefficients for every grid point is called
grid_coefficients. The mesh widths for each grid point are stored in mesh_widths.

Full grids are represented using the same variables. The positions of the points are stored
the same way the positions of sparse grid points are stored. Since full grids are just a single
full grid and not a combination of multiple full grids, no grid coefficients are needed. This
means that the grid coefficient of all grid points is 1. The mesh width for all grid points is
equal as well. It only depends on the domain and level of the full grid.

3.3 Features of the Deep Sparse Grid Layer

The sparsegrid_layer module allows its user to create deep sparse grid layers, which
can be used in PyTorch neural networks. When using the layer in a PyTorch model, the
sparse grid layer can be customized to best accomplish its task.

To allow easy comparisons between sparse and full grids, the grid type can be chosen when
instantiating the layer. The generation of sparse grids using the combination technique is
supported. Full grids can be generated as well. The generation of both grid types is also
accessible from outside of the sparse grid layer, which makes it possible to use the grid
generation algorithm outside of a neural network.

Both grid types can be generated with or without boundary points. The use of boundary
points increases the number of points that are used in the grid, which makes calculations
slower. However, it can be beneficial to use boundary points when the data in the neural
network has boundary conditions that are not zero.

The level of the grid can be specified as well, which is used to define the level of detail that
the grid has. A higher level means more grid points, but higher accuracy as well.

24

3.4 Grid Generation

When generating a new grid the grid domain can be chosen as well. By default, the grid
will be generated in the domain [0, 1]d. It is possible to choose different grid domains for
each dimension.

Basis functions on each grid point are used to construct the grid. The basis function used
in the sparse grid layer can be specified as well. The default basis function is the hat func-
tion (2.5

.

). Currently, only the hat function is implemented. However, a function wrapper
exists that allows to easily define further basis functions.

The weights of the sparse grid layer can be optimized with an optimizer from the PyTorch
library together with the other layers in a model. It is, however, also possible to optimize
the weights of the sparse grid layer with a custom optimizer. Optimizing the weights
during a training step is also possible. A PyTorch implementation of a regularized least
squares solver implemented by Zhen Zhang also comes with the deep sparse grid layer.
This solver can be used to optimize the weights of the layer.

3.4 Grid Generation

The grid generation of the deep sparse grid layer is done by the grid_generation mod-
ule. The generation function is accessible outside of the sparse grid layer, which means it
can be used to generate sparse grids and full grids for other use cases as well. It is possible
to generate sparse and full grids of different levels and dimensions in a chosen domain
with or without boundary points.

The grid generation is done in two parts.

First, a list of full grids, called scheme, is generated, together with a list of grid coeffi-
cients. Each full grid is represented by a d-tuple specifying the level of the full grid in each
dimension d.

To generate sparse grids, the combination technique (see Section 2.2

.

) is used. This tech-
nique constructs a sparse grid out of multiple full grids, which are multiplied with a coef-
ficient and added together. All full grids that satisfy the condition

n ≤ |l|1 ≤ n+ d− 1, (3.1)

where n is the level and d the dimension of the sparse grid, are added to the scheme. The
coefficient of the full grid is calculated with (2.27

.

).

To generate full grids, no addition of multiple grids needs to happen. The scheme simply
contains the final full grid. The corresponding coefficient is 1.

Source Code 3.1

.

shows the algorithm used to generate the grid scheme and coefficients in
the deep sparse grid layer implementation.

25

3 Implementation of a Deep Sparse Grid Layer in PyTorch

1 Function create_combi_scheme(dim, level)
2

3 # create all possible level vectors that could be part of the scheme
4 level_list = list from 1 to level
5 level_lists = list of level_list for i=1 to dim
6 level_vectors = cartesian_product(level_lists)
7

8 # add all fitting level vectors to the scheme
9 scheme = empty list

10 For level_vector in level_vectors:
11 If level <= L1_norm(level_vector) <= level + dim - 1
12 Append level_vector to scheme
13 Endif
14 Endfor
15

16 # calculate the coefficients for all level_vectors in the scheme
17 coefficients = empty list
18 For level_vector in scheme:
19 q = level + dim - 1 - L1_norm(level_vector)
20 f = (dim - 1) choose (L1_norm(level_vector) - level)
21 coefficient = (-1)^q * f
22 Append coefficient to coefficients
23 Endfor
24

25 Return (scheme, coefficients)
26 Endfunction

Source Code 3.1: Generation of the grid scheme and grid coefficients used to build a sparse
grid using the combination technique.

After the creation of a scheme and grid coefficients, the actual grid generation starts. For
each full grid specified in the scheme the following steps are executed:

1. The coordinates of the full grid are generated and saved to an array called positions.

2. The grid coefficient of the full grid is expanded into an array called grid coefficients,
which is the same length as positions.

3. The mesh width of the full grid is expanded into an array called mesh widths, which
is the same size as positions.

26

3.5 Layer Architecture

The arrays representing each full grid are then merged into one array representing the final
grid.

3.5 Layer Architecture

The main class in the sparsegrid_layer module is called SparsegridLayer and ex-
tends torch.nn.Module, the main building block for layers in PyTorch. It contains the
layer’s weights and implements the forward pass of the layer, which multiplies the result
of the sparse grid with the layer’s weights. All other functionality is implemented in differ-
ent modules. This makes extending the sparse grid layer function easier. It also provides
easier access to functions like the grid generation algorithm, which are used in the sparse
grid layer.

To calculate the result of the sparse grid, the basis_functions module is used. It con-
tains all basis functions that can be used in the sparse grid layer. Custom basis functions
can also be added here.

To generate a grid, the generate_grid module is used. It implements the generation of
sparse and full grids as described in Section 3.4

.

.

Useful math functions are located in the math_utilmodule. The regularized least squares
solver for PyTorch implemented by Zhen Zhang is located here.

The module plot_grid implements a function that plots a sparse- or full grid in up to
two dimensions, which can be helpful for debugging purposes. Figure 3.1

.

showcases a
plot produced by the module. The plot features a two-dimensional sparse grid of level 4,
that was built using the combination technique. The red dots indicate where subtracted
grid points are. The green dots are the added grid points. Red grid points are plotted with
25% opacity while green grid points are plotted with 75% opacity. Multiple grid points in
the same spot result in a point that appears more opaque.

27

3 Implementation of a Deep Sparse Grid Layer in PyTorch

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Two-dimensional sparse grid of level 4

Figure 3.1: Sparse grid plotted by the plot grid module. Green and red dots represent
added and subtracted grid points in the sparse grid built with the combination
technique. The more opaque a point is, the more grid points are in the same
spot.

28

3.6 Unit Tests

sparsegrid_layer
+-- sparsegrid_layer

+-- __init__.py
+-- basis_functions.py
+-- grid_generation.py
+-- math_util.py
+-- plot_grid.py
+-- sparsegrid_layer.py

+-- test
+-- __init__.py
+-- test_basis_functions.py
+-- test_grid_generation.py
+-- test_math_util.py
+-- test_plot_grid.py
+-- test_sparsegrid_layer.py

Figure 3.2: Directory structure of the sparse grid layer.

Figure 3.2

.

showcases the directory structure of the sparse grid layer and its components.
The main modules are located in the folder sparsegrid_layer. The unit tests are found
separately in the folder test.

3.6 Unit Tests

To ensure the functionality of the deep sparse grid layer and all of its components, unit
tests are employed. These tests are used to ensure that all parts of the code still function
properly after implementing new features or rewriting code. They also check that unal-
lowed inputs get handled correctly. The unit tests are found in the subfolder test, as seen
in Figure 3.2

.

. The unit tests used in the implementation are listed in Table 3.1

.

.

29

3 Implementation of a Deep Sparse Grid Layer in PyTorch

Table 3.1: List of the unit tests used to test the deep sparse grid layer and its components.

Test method name Function

Basis functions
test_parameter_validation Tests for correct input validation.
test_hat_function Tests the hat function implementation.

Grid generation
test_parameter_validation Tests for correct input validation.
test_combi_scheme Tests the generation of the combi grid scheme.
test_combi Tests the generation of combi grids.
test_full_scheme Tests the generation of the full grid scheme.
test_full Tests the generation of full grids.

Math util
test_lstsq Tests the regularized least squares solver.

Plot grid
test_parameter_validation Tests for correct input validation.

Sparsegrid layer
test_parameter_validation Tests for correct input validation.
test_forward_pass Tests basic functionality of the forward pass.

The implementation passes all unit tests. The tests for the regularized least squares solver
are implemented by Zhen Zhang.

3.7 Computational Experiments

Section 3.8

.

performs experiments regarding the ability of the deep sparse grid layer imple-
mentation to use parallel computation.

The models used in the experiments perform regression on the three-dimensional swiss
roll dataset from the scikit-learn Python library [17

.

]. The number of sample points is 8000
and the noise is 0.001.

The training is done over 200 epochs with a batch size of 32. The Adam optimizer imple-
mented in the PyTorch library is used with a learning rate of 0.005.

Four different PyTorch models are used in the experiments. The input sample size of all
models is 3 and the output sample size is 1. The sparse grid layers used in the models all
use a level 6 sparse grid in the domain [0, 1]d with boundary points built with the combina-

30

3.8 GPU Optimization

tion technique. Model [1] consists of three linear layers that encode the three-dimensional
function, all with an input sample size of 3, followed by one two-dimensional sparse grid
layer. Model [2] uses only one linear layer and one sparse grid layer. The linear layer is
used to reduce the dimension of the input from three to two dimensions. The sparse grid
layer once again uses a two-dimensional sparse grid. Model [3] consists only of one sparse
grid layer, which uses a three-dimensional sparse grid. Model [4] does not use a sparse
grid layer. It only uses two linear layers. To make better comparisons with model [3],
which uses a high number of grid points, the hidden layer has an input sample size of
15188, which is also the number of grid points in a three-dimensional sparse grid of level
6 with boundary points created with the combination technique.

3.8 GPU Optimization

The library PyTorch provides tensors that can use the GPU of a system for parallel com-
putations. To utilize the GPU of a system, a specific library from the GPU’s manufacturer
needs to be used. For these comparisons, the Nvidia GPU GTX 1060 in combination with
Nvidia’s CUDA library1

.

is used. The CPU used is the AMD Ryzen 3 1300X.

The arrays used to represent the sparse (or full) grid inside the sparse grid layer are imple-
mented as PyTorch tensors. While tensors, in general, can be calculated in parallel using
a GPU, it is unclear if the current representation of the sparse (or full) grid in conjunction
with the implementation of the basis functions can benefit from using CUDA, because it
is more complex than the multiplication of just two tensors. All functions used during
training are functions from the PyTorch library that support parallel tensor calculations.
However, the implementation was not tailored specifically for parallel computation.

To analyze how much the current implementation of the sparse grid layer benefits from
parallel computations, the performance gain from using CUDA computations over CPU
computations is analyzed and compared to the linear layer, which is implemented in the
PyTorch library. To compare the layers, different PyTorch model configurations are used.
These configurations and the dataset are explained in Section 3.7

.

. The time spent on
the training while using CPU calculations and while using GPU calculations utilizing the
CUDA library is compared. To get more reliable results, each training is done five times.
A comparison of the quality of the models is not part of the scope of this thesis.

1CUDA Toolkit Documentation: https://docs.nvidia.com/cuda/

.

31

https://docs.nvidia.com/cuda/

3 Implementation of a Deep Sparse Grid Layer in PyTorch

The execution time (in seconds) of model [1], which uses three linear layers and one two-
dimensional sparse grid layer, is plotted in Figure 3.3

.

. The three linear layers are used to
reduce the three-dimensional input to two dimensions so that a two-dimensional sparse
grid can be used.

1 2 3 4 5
Test iteration

0

25

50

75

100

125

150

175

200

Ex
ec

ut
io

n
tim

e
(s

)

CPU calculation
CUDA calculation

Figure 3.3: The execution time (in seconds) for model [1], consisting of three linear layers
and one sparse grid layer using a two-dimensional sparse grid.

It is noticeable that the training utilizing CUDA calculations is about 48% faster than using
CPU calculations on average. However, since the model consists of three linear layers and
only one sparse grid layer, it is possible that the computation acceleration observable in
Figure 3.3

.

is not because of the sparse grid layer.

32

3.8 GPU Optimization

The next experiment is done with model [2], which uses only one linear layer and one
sparse grid layer. The linear layer is used to reduce the dimension of the input to two
dimensions. This means that the sparse grid layer can once again use a two-dimensional
sparse grid.

1 2 3 4 5
Test iteration

0

25

50

75

100

125

150

175

Ex
ec

ut
io

n
tim

e
(s

)

CPU calculation
CUDA calculation

Figure 3.4: The execution time (in seconds) for model [2], consisting of one linear layer and
one sparse grid layer using a two-dimensional sparse grid.

Figure 3.4

.

shows that the execution time of the training done with CUDA calculations is
around 57% faster than the execution time of the training done with CPU calculations on
average. This could mean that the current implementation of the sparse grid layer can
benefit from CUDA calculations. However, since a linear layer is still used in the model,
the difference in execution time could be entirely a result of the linear layer.

33

3 Implementation of a Deep Sparse Grid Layer in PyTorch

To ensure that only the sparse grid layer implementation is tested, a model consisting only
of one sparse grid layer is used next (model [3]). This time the sparse grid layer uses a
three-dimensional sparse grid of level 6 with boundary points, since the input is three-
dimensional as well. This means that the sparse grid consists of much more points than
before. For context, a two-dimensional sparse grid of level 6 with boundary points built
using the combination technique only has about 1500 points, while a three-dimensional
sparse grid with otherwise the same properties consists of about 15000 points. This means
that the execution is going to be slower. However, it could also mean that parallel CUDA
computation could have a bigger impact on the execution time for this model than for the
past models.

1 2 3 4 5
Test iteration

0

200

400

600

800

Ex
ec

ut
io

n
tim

e
(s

)

CPU calculation
CUDA calculation

Figure 3.5: The execution time (in seconds) for model [3], consisting of one three-
dimensional sparse grid layer.

Figure 3.5

.

shows that calculations using CUDA are around 93% faster than calculations
using the CPU. The execution time for using CPU calculations is much slower than before.
This is a result of the increase in sparse grid points. In spite of the increase in execution
time using CPU computation, the CUDA execution time is similar compared to the models

34

3.8 GPU Optimization

before. This is because using CUDA allows for parallel processing of the sparse grid points.
Since this model only uses a sparse grid layer and no other layers, this means that its
current implementation does benefit from parallel GPU computation.

The last experiment is done on model [4], which uses only two linear layers and no sparse
grid layer. The hidden layer uses a similar number of points to the three-dimensional
sparse grid layer.

1 2 3 4 5
Test iteration

0

20

40

60

80

100

120

140

Ex
ec

ut
io

n
tim

e
(s

)

CPU calculation
CUDA calculation

Figure 3.6: The execution time (in seconds) for model [4], consisting of two linear layers.

The use of CUDA calculations also affects this model, as shown in Figure 3.6

.

. On average,
the training using CUDA calculations was around 68% faster than the training using only
CPU calculations. The linear layer implemented in the PyTorch library also benefits from
parallel computation, as expected. The execution time is lower than in the model utilizing
only the sparse grid layer though. This might be because the sparse grid layer is more
complex than a linear layer, even when using a similar number of points.

35

3 Implementation of a Deep Sparse Grid Layer in PyTorch

Two metrics are introduced to compare the use of CUDA calculations with CPU calcu-
lations: The average speed increase when using CUDA (shown in Figure 3.7a

.

) and the
average time saved by using CUDA (shown in Figure 3.7b

.

).

[1] [2] [3] [4]
Model configuration

0

2

4

6

8

10

12

14

16

Av
er

ag
e

sp
ee

d
in

cr
ea

se

(a) Average speed increase with CUDA calcula-
tions.

[1] [2] [3] [4]
Model configuration

0.0

0.2

0.4

0.6

0.8

Av
er

ag
e

pe
rc

en
ta

ge
 ti

m
e

sa
ve

d
by

 C
UD

A

(b) Average percentage time saved by CUDA
calculations.

Figure 3.7: Comparison of CUDA and CPU calcuations in respect to the four models: three
linear into one sparse grid layer(model [1]), one linear into one sparse grid
layer(model [2]), only one three-dimensional sparse grid layer(model [3]) and
two linear layers using a similar number of points as the three-dimensional
sparse grid layer(model [4]).

Model [3] benefited the most from using CUDA computation on average. The training
was over 16-times faster when using CUDA computation compared to CPU computation.
This corresponds to an average percentage time saved of over 90%. The sparse grid used
in model [3] uses a large number of grid points, which explains why model [3] benefits so
much from parallel computation. The hidden layer in model [4] uses a similar number of
grid points as model [3] but does not see as much of a speed increase as model [3] does.
This could be explained by the complexity of the sparse grid layer, which is higher than the
complexity of a linear layer. Since the sparse grid layer is more complex it could gain more
from parallel computation. Model [1] and model [2] also benefit from CUDA computation
and are around two times faster with parallel computation. These models do not consist
of as many points as models [3] and [4], which could mean that they can benefit less from
parallel computation.

36

4 Conclusion

This section summarizes the achieved results and looks into possible future work done on
the implementation.

4.1 Summary

This bachelor’s thesis discussed the implementation of the deep sparse grid layer and
provided an introduction to sparse grids and machine learning. The mathematical back-
ground of full grids was provided in Section 2.1

.

. In Section 2.2

.

this concept was extended
to sparse grids. The basics of neural networks were discussed in Section 2.3

.

. Afterwards
the Python machine learning library PyTorch was introduced in Section 2.4

.

.

In Section 3

.

the implementation of the deep sparse grid layer was presented, starting with
the codebase, which is the foundation of the deep sparse grid layer, in Section 3.1

.

. The
representation of sparse grids in the final implementation was explained in Section 3.2

.

. In
Section 3.3

.

the features of the deep sparse grid layer were listed and the options explained.
The grid generation algorithm for full grids and sparse grids was discussed in Section 3.4

.

.
The general layer architecture and module separation was shown in Section 3.5

.

. In Sec-
tion 3.6

.

the unit tests used to verify the functionality of the deep sparse grid layer were
listed. Lastly, in Section 3.8

.

, the parallel processing capabilities utilizing GPU computation
of the deep sparse grid layer implementation were evaluated.

4.2 Discussion

Until now, there was a lack of frameworks providing easy access to sparse grids in neural
networks. With the completion of the deep sparse grid layer, an entry point to research-
ing the possibilities of the combination of sparse grids and neural networks was created.
Future researchers can start realizing their ideas quicker and can easily extend the existing
sparse grid layer in case they need specific features that are not yet implemented.

The current sparse grid layer implementation supports the use of sparse grids inside a
neural network. The generation and use of both full grids and sparse grids is supported,
which enables comparisons between the two grid types. The sparse grids used are gener-
ated using the combination technique. Both grid types can be generated with and without

37

4 Conclusion

boundary points. The sparse grid layer can be tailored to the data that is processed within.
It is also possible to specify a domain for the used grid. Different domains for the different
dimensions of the grid are supported. The basis function used to construct the grid can be
customized as well.

The operations done on the sparse grid layer benefit from parallel GPU computing. When
using a larger number of grid points, increases of over 90% were observed in tests. This
makes studying neural networks with detailed sparse grid layers possible in a reasonable
time frame.

4.3 Outlook

In the future, the implementation of the deep sparse grid layer could be extended further.
The existing options could be extended, like supporting more basis functions or imple-
menting the generation of other grid types. Adaptive sparse grids, which dynamically
adjust the sparse grid to be denser at certain points, could be added as a new feature. This
would allow using the grid points of the sparse grid more efficiently. More tests evaluating
how the sparse grid layer performs in extreme cases should be done as well.

The current implementation was built putting the convenience of the user first. Because
of this, adding new features and options took priority over optimizing the implemented
algorithms. It is probably possible to optimize the algorithms used in the sparse grid layer
to get faster computation. Tailoring the implementation to parallel computation might
further increase the benefit of using CUDA and increase performance for large grids. There
might be a performance gain using a different, more performance-oriented, data structure
to represent the sparse grids as well.

38

List of Figures

1.1 A two-dimensional sparse grid of level 4 with boundary points in the do-
main [0, 1]2.

.

. 2

2.1 Full grids with boundary points in the domain [0, 1].

.

. 4
2.2 The hat function in the interval [−3, 3].

.

. 5
2.3 A nodal basis of level 3 in the domain [0, 1].

.

. 6
2.4 A hierarchical basis of level 3 in the domain [0, 1].

.

. 7
2.5 A two-dimensional full grid of level (3, 3)> (without boundary points).

.

. . . 8
2.6 Subspaces W~l

for levels |~l∞| ≤ 3. Together the subspaces form the full grid
space V3. The sparse grid space V̂3 consists of the full grid spaces that sat-
isfy |~l|1 ≤ 3 + 2− 1 = 4 (see (

.

2.24

.

)), in this figure shown above the dashed
line [taken from

.

6

.

].

.

. 11
2.7 Two-dimensional sparse grid of level 3.

.

. 12
2.8 A two-dimensional sparse grid of level 3 is combined from full grids. The

coefficient c of the grids Ω(3,1), Ω(2,2) and Ω(1,3) is 1, which means that these
grids are added. The coefficient c of the grids Ω(2,1) and Ω(1,2) is −1, which
means that these grids are subtracted [taken from

.

6

.

].

.

. 13
2.9 Comparison between a feed-forward network and a recurrent network.

.

. . 14
2.10 Feed-forward neural network with 2 layers.

.

. 15
2.11 Comparison of the sigmoid and the ReLU activation function in the interval

[−6, 6].

.

. 16
2.12 Regression example.

.

. 17
2.13 Clustering example.

.

. 18

3.1 Sparse grid plotted by the plot grid module. Green and red dots represent
added and subtracted grid points in the sparse grid built with the combina-
tion technique. The more opaque a point is, the more grid points are in the
same spot.

.

. 28
3.2 Directory structure of the sparse grid layer.

.

. 29
3.3 The execution time (in seconds) for model [1], consisting of three linear lay-

ers and one sparse grid layer using a two-dimensional sparse grid.

.

. 32
3.4 The execution time (in seconds) for model [2], consisting of one linear layer

and one sparse grid layer using a two-dimensional sparse grid.

.

. 33

39

List of Figures

3.5 The execution time (in seconds) for model [3], consisting of one three-dimensional
sparse grid layer.

.

. 34
3.6 The execution time (in seconds) for model [4], consisting of two linear layers.

.

35
3.7 Comparison of CUDA and CPU calcuations in respect to the four models:

three linear into one sparse grid layer(model [1]), one linear into one sparse
grid layer(model [2]), only one three-dimensional sparse grid layer(model [3])
and two linear layers using a similar number of points as the three-dimensional
sparse grid layer(model [4]).

.

. 36

40

List of Tables

2.1 Comparison between full grids and sparse grids in relation to the dimension
d and the mesh width h [

.

4

.

].

.

. 10

3.1 List of the unit tests used to test the deep sparse grid layer and its components.

.

30

41

List of Source Code

2.1 Definition of a model with two linear layers.

.

. 20
2.2 Definition of a custom layer and instantiation of it in a custom model.

.

. . . 21

3.1 Generation of the grid scheme and grid coefficients used to build a sparse
grid using the combination technique.

.

. 26

43

Bibliography

[1] Tuhin Kundu and Chandran Saravanan. Advancements and recent trends in emotion
recognition using facial image analysis and machine learning models. In 2017 Inter-
national Conference on Electrical, Electronics, Communication, Computer, and Optimization
Techniques (ICEECCOT), pages 1–6. IEEE, 2017.

[2] Md Rishad Ahmed, Yuan Zhang, Zhiquan Feng, Benny Lo, Omer T Inan, and Hongen
Liao. Neuroimaging and machine learning for dementia diagnosis: Recent advance-
ments and future prospects. IEEE reviews in biomedical engineering, 12:19–33, 2018.

[3] Miguel A Carreira-Perpinán. A review of dimension reduction techniques. Depart-
ment of Computer Science. University of Sheffield. Tech. Rep. CS-96-09, 9:1–69, 1997.

[4] Jochen Garcke, Michael Griebel, and Michael Thess. Data mining with sparse grids.
Computing, 67(3):225–253, 2001.

[5] Thomas Gerstner and Michael Griebel. Sparse grids. Encyclopedia of Quantitative Fi-
nance, 2008.

[6] Hans-Joachim Bungartz and Michael Griebel. Sparse grids. Acta Numerica, pages
1–123, 2004.

[7] Michael Griebel, Michael Schneider, and Christoph Zenger. A combination technique
for the solution of sparse grid problems. 1990.

[8] Ben Kröse, Ben Krose, Patrick van der Smagt, and Patrick Smagt. An introduction to
neural networks. 1993.

[9] Oriol Vinyals, Timo Ewalds, Sergey Bartunov, Petko Georgiev, Alexander Sasha
Vezhnevets, Michelle Yeo, Alireza Makhzani, Heinrich Küttler, John Agapiou, Julian
Schrittwieser, et al. Starcraft ii: A new challenge for reinforcement learning. 2017.

[10] Chigozie Nwankpa, Winifred Ijomah, Anthony Gachagan, and Stephen Marshall. Ac-
tivation functions: Comparison of trends in practice and research for deep learning.
2018.

[11] Kenneth Rose. Deterministic annealing for clustering, compression, classification,
regression, and related optimization problems. Proceedings of the IEEE, 86(11):2210–
2239, 1998.

[12] Fred A Spiring. The reflected normal loss function. The Canadian Journal of Statistics/La
Revue Canadienne de Statistique, pages 321–330, 1993.

45

Bibliography

[13] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch:
An imperative style, high-performance deep learning library. 2019.

[14] Torch Contributors. Pytorch documentation. https://pytorch.org/docs/
stable/index.html

.

, 2019. Accessed: 2021-04-24.

[15] Xavier Glorot, Antoine Bordes, and Yoshua Bengio. Deep sparse rectifier neural net-
works. In Proceedings of the fourteenth international conference on artificial intelligence and
statistics, pages 315–323. JMLR Workshop and Conference Proceedings, 2011.

[16] Benjamin Peherstorfer, Dirk Pflüge, and Hans-Joachim Bungartz. Density estimation
with adaptive sparse grids for large data sets. In Proceedings of the 2014 SIAM interna-
tional conference on data mining, pages 443–451. SIAM, 2014.

[17] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-
del, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,
M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python.
Journal of Machine Learning Research, 12:2825–2830, 2011.

46

https://pytorch.org/docs/stable/index.html
https://pytorch.org/docs/stable/index.html

	Acknowledgements
	Abstract
	List of Notations
	Introduction
	Theoretical Background
	Full Grids
	Hat Function
	One-dimensional Nodal Basis
	One-dimensional Hierarchical Basis
	Multi-dimensional Basis

	Sparse Grids
	Neural Networks
	Types of Neural Networks
	Layers
	Forward Pass
	Activation Functions
	Problems Solvable with Machine Learning
	Loss Function
	Backpropagation

	PyTorch
	Model Definition
	Layer Definition

	Implementation of a Deep Sparse Grid Layer in PyTorch
	Deep Sparse Grids Codebase
	Sparse Grid Representation in the Deep Sparse Grid Layer
	Features of the Deep Sparse Grid Layer
	Grid Generation
	Layer Architecture
	Unit Tests
	Computational Experiments
	GPU Optimization

	Conclusion
	Summary
	Discussion
	Outlook

	List of Figures
	List of Tables
	List of Source Code
	Bibliography

