
DEPARTMENT OF INFORMATICS
TECHNISCHE UNIVERSITÄT MÜNCHEN

Bachelor’s Thesis in Informatics

Geometric Harmonics and Laplacian
Pyramids

Darius Augsburger



DEPARTMENT OF INFORMATICS
TECHNISCHE UNIVERSITÄT MÜNCHEN

Bachelor’s Thesis in Informatics

Geometric Harmonics and Laplacian
Pyramids

Geometrische Harmonische Funktionen
und Laplace-Pyramiden

Author: Darius Augsburger
Supervisor: Univ.-Prof. Dr. Christian Mendl
Advisor: Dr. Felix Dietrich
Submission Date: 15.04.2021



I confirm that this bachelor’s thesis in informatics is my own work and I have docu-
mented all sources and material used.

Munich, 15.04.2021 Darius Augsburger



Acknowledgments

I would like to thank my advisor Dr. Felix Dietrich for his patience, advice and
continuous support in understanding complex mathematical problems and in decision-
making.



Abstract

This thesis is about the implementation of two out-of-sample extension algorithms,
namely “Multi Scale Geometric Harmonics” and “Laplacian Pyramids”, for empirical
functions on data sets with the manifold assumption. The challenge is to design the
software interfaces for the algorithms, improve the efficiency of the existing imple-
mentation, test and document it, and then to include everything as an open source
solution in the python package datafold. The new implementations are demonstrated
on suitable examples. The tests showed very good agreement with the examples from
the original papers where the algorithms were first proposed.

iv



Contents

Acknowledgments iii

Abstract iv

1 Introduction 1

2 State of the art 3
2.1 Geometric Harmonics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1.1 Properties of Geometric Harmonics . . . . . . . . . . . . . . . . . 4
2.1.2 Extension algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.3 Bandlimited extension . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.4 Gaussian extension . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.5 Multiscale extension . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Laplacian Pyramids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.1 Basic Laplacian Pyramids . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.2 Auto-adaptive Laplacian Pyramids . . . . . . . . . . . . . . . . . 11

2.3 Datafold for data-driven model parametrization . . . . . . . . . . . . . . 13

3 Geometric Harmonics and Laplacian Pyramids 15
3.1 Implementation requirements and constraints . . . . . . . . . . . . . . . 15

3.1.1 Instantiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.1.2 Fitting the parameters . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.1.3 Necessary base classes . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2 Implementation of Geometric Harmonics . . . . . . . . . . . . . . . . . . 19
3.2.1 Old Software Design . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2.2 Optimized Software Design . . . . . . . . . . . . . . . . . . . . . . 28

3.3 Implementation of Multiscale Geometric Harmonics . . . . . . . . . . . 35
3.3.1 The current state . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.3.2 The reworked model . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.4 Implementation of Laplacian Pyramids . . . . . . . . . . . . . . . . . . . 41
3.4.1 The current state . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.4.2 Proposed enhancements . . . . . . . . . . . . . . . . . . . . . . . . 43

v



Contents

3.5 Testing and Demonstrations . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.5.1 Conducted tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.5.2 Unit circle to the plane . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.5.3 Image interpolation . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.5.4 Synthetic example . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4 Conclusion 55

List of Figures 56

List of Tables 58

Bibliography 59

vi



1 Introduction

Often tasks like clustering, regression and classification where large amount of data
is involved cannot be computed directly. Instead, a subsample of data is produced.
Thereby, the problem size is reduced drastically and after processing the subsample of
data, it is scaled back to the original data. Geometric Harmonics [14, 8, 7] is one scheme
to extend empirical functions this way. It is inspired by the vastly used Nyström method
which is for example applied in partial differential solvers or in machine learning and
spectral graph theory to subsample large data sets [2, 11, 26]. Another scheme for
out-of-sample extension is the multiscale model Laplacian Pyramids that generates
a smoothed version of a function with Gaussian kernels of decreasing bandwidths
in each iteration [5]. Additionally, this method can be seen as an iterative version of
a Nadaraya-Watson estimator [18]. Most of the several applications of the Laplacian
Pyramids scheme utilize it for function approximation and out-of-sample extension
[2, 16]. For both algorithms we predominantly apply the Gaussian kernel as kernel
function which is itself a Radial Basis Function [3] since this type of function is in
general the best choice to approximate and interpolate, especially for high-dimensional
data [10].

Figure 1.1: The levels of the MultiscaleGeometricHarmonicsInterpolator predicting
the train image beginning with the coarsest scale.

In this thesis, first we introduce two out-of-sample extension schemes, namely Geo-
metric Harmonics and Laplacian Pyramids. For the Geometric Harmonics, we define
the extension and restriction operators and show how they are in relation with the
eigenpairs of a kernel k with certain properties. Additionally, we consider different
extensions, among others the multiscale extension. Then we briefly outline its two
interesting properties double orthogonality and variational optimality [7]. In the case of

1



1 Introduction

Laplacian Pyramids, we first introduce the basic approach and then, based on this, we
consider the Auto-adaptive Laplacian Pyramids [10]. Those algorithms are later imple-
mented in the python package datafold [15]. After outlining the structure and available
tools of the datafold package and considering the constraints added by the dependence
to scikit-learn [19, 4] we focus the implementation documentation and optimization
of the out-of-sample extension algorithms in datafold. The algorithms are either more
or less implemented in datafold, namely GeometricHarmonicsInterpolator, Multi-
scaleGeometricHarmonicsInterpolator and LaplacianPyramidsInterpolator. After
optimizing the Geometric Harmonics models and proposing improvements for the
Laplacian Pyramids algorithm, we briefly outline conducted tests and finally, define
some detailed demonstrations which generate results as Figure 1.1. One can clearly see,
what multiscale actually means as the captured scale gets finer per iteration and how
the Geometric Harmonics interpolates with higher frequencies per level.

In Section 2.1 we first consider the mathematical definitions and provide a single-
and a multiscale Geometric Harmonics extension scheme. In the next Section 2.2 we go
through the basic Laplacian Pyramids algorithm and then based on those introduce
the Auto-adaptive Laplacian Pyramids. Furthermore, we introduce the python library
datafold in Section 2.3 and outline its structure. The implementation of single-scale
Geometric Harmonics is optimized in Section 3.2. After adjusting the structure of
the single-scale Geometric Harmonics for inheritance ad reusability, we rework the
multiscale model in Section 3.3. The Laplacian Pyramids implementation is outlined in
Section 3.4 and we propose some optimizations on the implementation. Lastly, tests
and demonstrations are outlined in Section 3.5 and the thesis is concluded in Section 4.

2



2 State of the art

In the first chapter, we will focus more on the mathematical background of the algo-
rithms and definitions necessary to understand them than on implementation aspects.
The algorithms are introduced and described in Section 2.1 and Section 2.2. Last but
not least, in 2.3 we take a look at the structure of the datafold package [15], the available
models and where our algorithms should be implemented.

2.1 Geometric Harmonics

Let X ⊂ X be two sets and µ be a finite measure on X. With the geometric harmonics,
we can extend a function f defined on set X to X [14, 7]. Furthermore, we define
a kernel k : X × X → R. The selected kernel must satisfy the following properties
regarding Coifman and S. Lafon [7]:

• k is symmetric.

• k is positive semi-definite. This property allows us to interpret the geometric
harmonics as maximizing some concentration measure over X.

• k is bounded on X× X by a number M > 0.

Since k is positive semi-definite, there is a unique kernel Hilbert space H of functions
defined on X for which k is the reproducing kernel [14]. In this thesis, we mostly use
the Gaussian kernel which is defined by Rabin and Coifman [20] as

gε(x, y) = exp
(
−‖x− y‖2

ε

)
. (2.1)

Let k be a symmetric positive semi-definite kernel on X× X. Furthermore, we define
the operator K : L2 (X, dµ)→ H as

K f (x) =
∫

X
k (x, y) f (y) dµ(y)

with x ∈ X. Then the adjoint K∗ : H → L2 (X, dµ) is defined as the restriction operator
on the set X. That means, if F ∈ H and x ∈ X then

K∗F(x) = F(x).

3



2 State of the art

Moreover, for a bounded k the operator K∗K : L2 (X, dµ)→ L2 (X, dµ) is compact [14].
Since the operator K∗K is self-adjoint, positive and compact, it grants a discrete set
of eigenfunctions

{
ψj
}

and non-negative eigenvalues {λj}. Thus, we can obtain the
eigenfunctions and eigenvalues from the diagonalization of the kernel k on X if x ∈ X
[14]: ∫

X
k (x, y)ψj (y) dµ (y) = λjψj (x)

By applying the Nyström method [26], we get the extension of these eigenfunctions
called “geometric harmonics” to x ∈ X if λj > 0:

Ψj (x) =
1
λj

∫
X

k (x, y)ψj (y) dµ (y)

As we can see, performing interpolation with geometric harmonics builds up on the
idea of the Nyström extension: instead of extending the geometric harmonics itself
to a neighborhood region, the method allows interpolating arbitrary function values
defined on a manifold. The inspiration of the term ‘geometric harmonics’ comes from
ψj being extended as an average over its values, and thus can be thought of as verifying
a certain form of mean value theorem [7].

Since we divide by the eigenvalues λj of a compact operator Coifman and S. Lafon
[7] point out that this procedure is extremely ill-conditioned and propose a solution
to bound the condition of the extension procedure. We fix a condition number C = 1

δ

with arbitrary δ > 0 and define the following sets:

Sδ = {j|λj ≥ δ ∗ λ0}, (2.2)

L2
δ = Span{ψj|j ∈ Sδ},

Hδ = Span{Ψj|j ∈ Sδ}.

With the new finite-dimensional vector spaces the extension procedure L2
δ → Hδ has a

condition number bounded from above by C. We can finally summarize the algebraic
relation between K, K∗, Ψj and ψj as

Kψj = λjΨj (extension),

K∗Ψj = ψj (restriction).

2.1.1 Properties of Geometric Harmonics

As mentioned by S. S. Lafon [14], the geometric harmonics have two interesting
properties:

4



2 State of the art

Double Orthogonality

The system {Ψj}j∈Sδ
forms an orthogonal basis of Hδ, and their restrictions {ψj}j∈Sδ

to
X forms an orthogonal basis of L2

δ.

Variational Optimality

For F ∈ H and restriction f ∈ L2
δ (X, dµ), the concentration of F over X is the Rayleigh

quotient

cX (F) =
‖ f ‖X

‖F‖X
.

Furthermore, under the constraint that F ⊥ {Ψ0, Ψ1, ..., Ψj−1} the function Ψj is a
solution for the problem

max
F∈H

cX (F) .

Thus, Ψ0 is the most concentrated element of H on X.

2.1.2 Extension algorithm

The natural extension algorithm associated with the geometric harmonics which are
obtained from a kernel k is described in detail by Coifman and S. Lafon [7]. It only
considers one scale defined by k which is essentially arbitrary since it is unrelated to f .
By scale the size of k’s numerical support in Rn is meant.

Project f ∈ L2 (X, dµ) onto the space L2
δ spanned by orthonormal system {ψj}j∈Sδ

:

f → Pδ f = ∑
j∈Sδ

〈 f , ψj〉Xψj (2.3)

Use the extension Ψj of ψj to extend Pδ f on x ∈ X as

F = E f (x) = ∑
j∈Sδ

〈 f , ψj〉XΨj (x) (2.4)

A more detailed description of the calculation steps is given in Algorithm 1 which is
based on the already implemented GeometricHarmonicsInterpolator [15].

5



2 State of the art

Algorithm 1: Geometric Harmonics

Input: Function space X ⊂ X, function values f , target space T ⊆ X, condition 1
δ

Output: Extended function F
1 Pδ f ; f̂ ; F;
// Precomputation phase

2 k = predefined kernel;
3 K = kernel matrix with entries Kij = k

(
xi, xj

)
, xi, xj ∈ X;

4 (λ, ψ) = eigenpairs of K;
5 for λj ≥ δλ0 do
6 Pδ f = Pδ f + 〈 f , ψj〉ψj;
7 end
8 for λj ≥ δλ0 do
9 Ψj =

1
λj

ψj;

10 f̂ = f̂ + 〈Pδ f , ψj〉Ψj;
11 end

// Prediction phase

12 K = kernel matrix with entries Kij = k
(
xi, xj

)
, xi ∈ T, xj ∈ X;

13 F = K f̂ ;

(η, δ)-extendable functions

This technique does not provide an extension for f but rather a filtered version, namely
the orthogonal projection L2

δ (X, dµ) [14, 7]. Filtered version of functions constitute the
set of (safely) X-extendable functions. In the process of extension, since the condition
number of the operation is 1

δ , log
( 1

δ

)
digits are lost. A general empirical function f on

X is extendable if the residual is smaller than a prescribed error:

‖ f − Pδ f ‖ ≤ η (2.5)

There is in general no unique way to extend f as a function of H, because its
elements might not be determined by their restrictions to X. The second property
gives us nevertheless an interpretation to the choice made by the algorithm. It returns
the function with maximum concentration, which is equivalent to the function with
minimal energy on X. That means that the algorithm provides the best extension given
the information at the disposal [14].

6



2 State of the art

2.1.3 Bandlimited extension

The prolate spheroidal wave functions are introduced by Slepian and Pollak [22]
as the solution of the problem of finding functions optimally concentrated in time
and frequency. Those are bandlimited functions of unit energy that have maximum
energy within an interval in the time domain. Their results are generalized to higher
dimensions. By defining HB to be the space functions of L2 (Rn) whose Fourier
transforms are compactly supported in the ball centered at the origin of radius B

2 ,
Slepian [21] generalizes the results to higher dimension. That means that HB is the
space of bandlimited functions of finite energy with bandwidth B

2 . The generated space
is a reproducing kernel Hilbert space [14, 7] with the so-called Bessel kernel

k(n)B (x, y) =
(

B
2

) n
2 J n

2
(πB‖x− y‖)
‖x− y‖ n

2

and Jv being the Bessel function of the first kind and of order v. We refer to the operator
EB as the Bessel kernel with bandwidth B > 0 which computes the bandlimited
extension of band B that is maximally concentrated on X [7].

2.1.4 Gaussian extension

The Gaussian kernel (2.1) which is mainly used in this paper is also in general widely
used in the Machine Learning community. Furthermore, Coifman and S. Lafon [7] state
that it is a limiting case of the Bessel kernels:

lim
n
→ ∞

k(n)B
(√ n

π‖x− y‖
)

VB,n
= exp

(
−B2‖x− y‖2)

In this equation, VB,n represents the volume of the unit ball of radius B in Rn. While this
seems to mean that Bessel and Gaussian kernels are equivalent in higher dimensions,
in lower dimensions Bessel kernels show oscillations, unlike Gaussian kernels [7].

2.1.5 Multiscale extension

For the Multiscale extension elaborated by Coifman and S. Lafon [7] we define X = Rn,
X as smooth, compact submanifold C∞ of dimension d and a function f defined on X.
Furthermore, we assume dµ to be the Riemannian measure dx on X. The key point
of this procedure is to consider several kernels, i.e. several scales for the extension.
First, we consider the analysis of the two different Fourier analyses on the function
f . A purely intrinsic analysis is obtained by the use of the eigenfunctions of the
Laplace Beltrami operator (LBO) [1] ∆ on X which are the analogue of the Fourier

7



2 State of the art

basis to arbitrary submanifolds. As X is compact the spectrum of ∆ is discrete and
corresponds to pure frequency modes. The second analysis that can be performed is
the classical Fourier transform in Rn which can be applied to various extensions of f .
Both analyses and their relation are investigated thoroughly by Coifman and S. Lafon
[7] by considering the restriction and extension operators. The relation of the intrinsic
and extrinsic Fourier analysis of f then results in the proposed Multiscale extension
scheme. It consists of two phases: As first phase, we have the precomputation phase
in which one computes the minimal frequency band Bj for each eigenfunction φj of
∆ to which it can be extended to using EBj . The second phase is the extension phase
which first computes the decomposition of f over φj. Subsequently, we require enough
coefficients such that the relative error is of order η:

f = ∑
j∈S
〈 f , φj〉Xφj +O (η‖ f ‖X)

To extend f one uses the precomputed extensions of φj:

F = ∑
j∈S
〈 f , φj〉XEBj φj

F is a sum of functions that oscillate at intrinsic frequency ν2 on X that vanish at
distance 1

ν2
j

from this set [7].

An easier description of the algorithm is proposed by Chiavazzo et al. [6] and Sonday
[23]: We initially project the function f as described in Equation (2.3) at a coarse scale
which corresponds to a large ε0 for the Gaussian kernel (2.1). Then the residual f − Pδ f
is projected at a finer scale ε1. These steps are iterated for even finer scales ε l =

ε0
µl with

a fixed scale divisor µ > 1, until the norm of the residual remains larger than a fixed
admissible error. This description leads to Algorithm 2 which is the reference for the
Multiscale Geometric Harmonics implementation in 3.3.2.

8



2 State of the art

Algorithm 2: Multiscale Geometric Harmonics

Input: Function space X ⊂ X, function values f , target space T ⊆ X, condition
1
δ , scale ε, scale divisor µ, admissible error e

Output: Extended function F
// Precomputation phase

1 f = f ; ε0 = ε; ` = 0;
2 while e ≤ ‖ f ‖ do
3 K = kernel matrix with entries Kij = gε`

(
xi, xj

)
and xi, xj ∈ X;

4 f̂` = f̂ of Algorithm 1 Geometric Harmonics(X, ∅, f , 1
δ ) precomputation

phase performed with kernel matrix K;
5 f = f − Pδ f also from Algorithm 1 precomputation phase;
6 ε`+1 = ε` ÷ µ;
7 `++;
8 end
// Prediction phase

9 for ` in range(len( f̂ )) do
10 K = kernel matrix with entries Kij = gε`

(
xi, xj

)
and xi ∈ T, xj ∈ X;

11 F = F + K f̂`;
12 end

2.2 Laplacian Pyramids

The Laplacian Pyramids algorithm originated from image processing applications and
was first introduced by Burt and Adelson [5]. This procedure decomposes the input
image into a series of images, each capturing a different frequency band of the original
image. Laplacian Pyramids was later proved to be a tight frame [9]. Furthermore, Rabin
and Coifman [20] introduced a multiscale approach based on Laplacian Pyramids for
high-dimensional data analysis which has been applied by Mishne and Cohen [17]. In
Section 2.2.1 we first consider basic Laplacian Pyramids. Additionally, we introduce
Auto-adaptive Laplacian Pyramids proposed by Fernández et al. [10] in Section 2.2.2.
Another variant proposed by Fernández et al. [10] is Local Auto-adaptive Laplacian
Pyramids. It serves better for data that is not equally distributed and that has different
density characteristics. Even though this is an interesting topic, we will not go further
into details in this thesis.

9



2 State of the art

2.2.1 Basic Laplacian Pyramids

First, we consider the multiscale Laplacian Pyramids described by Rabin and Coifman
[20] and Fernández et al. [10]. They both define the up-sampling, but not the reduction
step. Our goal is to extend an empirical function f defined on a dataset X to N new
points xi ∈ Rm. Again, the Gaussian kernel is defined as in Equation (2.1) and in the
proceeding referred as K(`)

(
xi, xj

)
= gε`

(
xi, xj

)
, where ε0 is the initial scale and ε` is

the scale of level `. Then from the kernel construct P(0), the normalized kernel which
represents the smoothing operator:

P(0) (xi, xj
)
=

K(0) (xi, xj
)

∑k K(0)
(
xj, xk

) .

The first representation of f is then the convolution f
(0)

= f ∗ P(0). At level ` we then
construct the kernel matrix P(`) with a smaller scale ε` = ε0

µ` and a fixed parameter

value µ > 1. Afterwards, the residual d(`−1) = f − f
(`−1)

is required which captures
the error of the approximation of f at level `− 1. A more detailed representation of f
is afterwards given by

f
(`)

= f
(`−1)

+ d(`−1) ∗ P(`).

Once the norm of the residual vector d(`) is smaller than a predefined tolerance, which
is comparable to the admissible error of the Multiscale Geometric Harmonics, the
algorithm stops at iteration L. On this level, the Laplacian Pyramids model has the
form

f
(L)

= f
(0)

+
L

∑
`=1

d(`−1) ∗ P(`).

Now extend this multiscale representation to a new data point x ∈ RM by setting

f
(L)

(x) = ∑
j

f
(

xj
)

P(0) (x, xj
)
+

L

∑
`=1

∑
j

d(`−1) (xj
)

P(`)
(
x, xj

)
.

The smoothing kernels can directly be extended with K(`)
(
x, xj

)
= gε`

(
x, xj

)
for a new

point x as

P(`)
(
x, xj

)
=

K(`)
(
x, xj

)
∑k K(`)

(
x, xj

) .

Fixing a small error threshold may easily cause overfitting since the error of the basic
Laplacian Pyramids method decays fast [10]. The whole algorithm is outlined in
Algorithm 3.

10



2 State of the art

Algorithm 3: Laplacian Pyramids

Input: Function domain X ⊂ X, function values f , target space T ⊆ X, initial
scale ε, scale divisor µ, admissible error e

Output: Extended function F
// Precomputation phase

1 d(0) = f ; f
(0)

= 0; ε1 = ε; ` = 1;
2 while e ≤ error do
3 K(`) = kernel matrix with entries Kij = gε`

(
xi, xj

)
and xi, xj ∈ X;

4 P(`) = normalized K(`);

5 f
(`)

= f
(`−1)

+ P(`)d(`−1);

6 d(`) = f − f
(`)

;
7 error = ‖d(`)‖2;
8 ε`+1 = ε` ÷ µ;
9 `++;

10 end
11 L = `− 1;

// Prediction phase

12 for ` = 1 to len(L) do
13 K(`) = kernel matrix with entries Kij = gε`

(
xi, xj

)
and xi ∈ T, xj ∈ X;

14 P(`) = normalized K(`);
15 F = F + P(`)d(`−1);
16 end

2.2.2 Auto-adaptive Laplacian Pyramids

To prevent overfitting Fernández et al. [10] point out that a common way is to use an
independent validation subset and stop the iteration when the error on that subset
starts to increase. Since it introduces a random dependence on the choice of the
particular validation subset, this can be problematic for small samples. Usually, k-fold
Cross Validation is the standard solution to avoid this. One first distributes samples
in k subsets and then uses k− 1 of the in total N available samples for training. The
left N − (k − 1) sets are then used for validation. Cross Validation then becomes
Leave-One-Out Cross Validation (LOOCV) in the extreme case N = k which has a
rather high cost, in our case O

(
LN3). The train process is stopped, when the error

starts to increase. Even though it has originally a high cost, it is possible to apply
LOOCV in O

(
LN2). That means, Fernández et al. [10] showed how to perform LOOCV

11



2 State of the art

for Laplacian Pyramids without essentially increasing cost. We can approximate the
LOOCV validation values xp with the values

f
(L) (

xp
)
= ∑

j
f
(
xj
)

P(0) (xp, xj
)
+

L

∑
`=1

∑
j

d(`−1) (xj
)

P(`) (xp, xj
)

.

The introduced P(`) modifies P(`) by setting its diagonal elements to zero. This time we
furthermore, automatically pick a ε by first computing the matrix Wi,j = xi − xj, ∀i, j
and then fixing the initial scale ε = 10 max

(
Wi,j

)
. Furthermore, Fernández et al. [10]

bounds the maximum iterations as maxIts = log2

(
5ε÷min

(
Wi,j

))
and in practice

stops the iterations if the LOOCV error starts to grow which approximately equals the
error in Algorithm 3. These changes finally result in Algorithm 4.

Algorithm 4: Auto-adaptive Laplacian Pyramids

Input: Function domain X ⊂ X, function values f , target space T ⊆ X, scale
divisor µ

Output: Extended function F
// Precomputation phase

1 Wi,j = xi − xj∀i, j; ε1 = 10 max
(
Wi,j

)
; maxIts = log2

(
5ε÷min

(
Wi,j

))
;

2 d(0) = f ; f
(0)

= 0; ` = 1;
3 while ` < maxIts do
4 K(`) = kernel matrix with entries Kij = gε`

(
xi, xj

)
, xi, xj ∈ X and 0-diagonal;

5 P(`) = normalized K(`);

6 f
(`)

= f
(`−1)

+ P(`)d(`−1);

7 d(`) = f − f
(`)

;
8 error(`) = ‖d(`)‖2;
9 ε`+1 = ε` ÷ µ;

10 `++;
11 end
12 L = arg min`{error(`)};

// Prediction phase

13 for ` = 1 to len(L) do
14 K(`) = kernel matrix with entries Kij = gε`

(
xi, xj

)
and xi ∈ T, xj ∈ X;

15 P(`) = normalized K(`);
16 F = F + P(`)d(`−1);
17 end

12



2 State of the art

2.3 Datafold for data-driven model parametrization

The Python package datafold [15] provides data-driven models for point clouds to find
an explicit manifold parametrization and to identify non-linear dynamical systems on
these manifolds. A manifold is a usually unknown geometrical structure on which
data is sampled. For high-dimensional point clouds a typical use case is to parametrize
an intrinsic low-dimension manifold, with non-linear dimension reduction. For time
series data, the underlying dynamical system is assumed to have a phase space that is
a manifold.

The software architecture of datafold consists of three layers for maintaining a high
degree of modularity [15]. Each one of the implemented data-driven models is either
to be used on their own or in other model implementations, while dependencies
should only appear unidirectional on functionality of lower levels or the same level.
The associated base classes of each model are either directly from scikit-learn [19] or
datafold its own provided specifications aligned to the scikit-learn API [4] in duck-
typing manner. Those are for example the BaseEstimator which every base class
inherits from, the RegressorMixin and the MultiOutputMixin which are later used to
implement the considered interpolation algorithms. The three layers of datafold are
shortly introduced in the following sections from higher to lower level.

datafold.appfold Package

The datafold.appfold Package is the highest level of datafold [15]. It accommodates
those models that capture complex processing pipelines. Since the models in this layer
provide a single point of access to multiple sub-models, the models are essentially
“meta-models”. They are intended to solve complex data-driven use cases or analysis
tasks at the end of the machine learning process. Thanks to the modularization, there
is a great flexibility in combining data process pipelines which makes testing model
configurations and accuracies easier.

datafold.dynfold Package

The middle layer of the datafold library is the datafold.dynfold Package [15]. It
contains all data-driven models which deal directly with point cloud manifolds or the
dynamics of time series data. This package is the location of implementation for the
algorithms considered in this paper. Actually, Laplacian Pyramids and single-scale
Geometric Harmonics are already partially implemented and tested. Furthermore,
first attempt of Multiscale Geometric Harmonics is also implemented but not working
and not tested. The models of this layer can either be used in the datafold.appfold

13



2 State of the art

“meta-models” or on their own for appropriate analysis tasks.

datafold.pcfold Package

The lowest level datafold.pcfold provides data structures like kernels and funda-
mental algorithms on data like an eigensolver datafold.dynfold [15]. The two data
structures provided by datafold are the PCManifold which is part of the algorithm im-
plementations and the TSCDataFrame. The first one is derived from the numpy.nparray

[12] and furthermore, describes the local proximity between points with an attached
kernel. It is applied to point cloud data with manifold assumption. Moreover, the
PCManifold data structure can compute sparse/dense matrices of different distance
metrics and eigenpairs with different backends. An important method of the PCMani-

fold for the implementations is optimize_parameters which estimates a suitable scale
and cut off for a Gaussian kernel. The TSCDataFrame on the other hand represents a
collection of time series data. We do not go into detail on this data structure, since it is
not important for this thesis.

14



3 Geometric Harmonics and Laplacian
Pyramids

This chapter is about the implementation of the single- and Multiscale Geometric
Harmonics and the Laplacian Pyramids. We use the provided scikit-learn API [4] to
implement the algorithms since datafold [15] relies on it. In Section 3.1 we first focus
on the implementation requirements and constraints, which come with datafold and
the scikit-learn API. After considering the restrictions, in Section 3.2 the current state of
the Geometric Harmonics algorithm is analyzed, we implement a better software archi-
tecture and optimizations. Based on the optimized GeometricHarmonicsInterpolator,
we develop a new working model for Multiscale Geometric Harmonics in Section 3.3.
Lastly, in Section 3.4 we consider the current implementation of Laplacian Pyramids
and propose some optimizations.

3.1 Implementation requirements and constraints

Datafold is using the scikit-learn API [4] when implementing estimators for compatibil-
ity reasons [15]. The predominant object of this API is the estimator, which can be a
classifier or regressor. In our case, all estimators are regressors. Since all estimators
fit a model based on training data and are capable of inferring some properties on
new data, they implement a method called fit to estimate necessary parameters. We
first consider the instantiation in Section 3.1.1, then the purpose of the fit method in
Section 3.1.2 and in the last Section 3.1.3 we take a look at the base classes required by
our models.

3.1.1 Instantiation

Regarding to the scikit-learn API [4] the __init__ method should not take the actual
training data as argument, since this is part of the fit method. Rather, it concentrates on
the creation of the object. It should accept arguments with predefined values, such that
the user can instantiate an estimator without passing any arguments. Those parameters
correspond to the problem the estimator is intended to solve. Therefore, they are

15



3 Geometric Harmonics and Laplacian Pyramids

remembered as initial arguments. Instead of documenting them as “Attributes”, they
are documented in the estimators “Parameters” section.

When doing model selection, scikit-learn relies on the arguments accepted by __-

init__, corresponding to an instance attribute. In this function, simple association
should take place, meaning it should not implement data validation or any other
logic. This kind of functionality must be implemented in the fit method, otherwise
scikit-learn algorithms like the GridSearchCV would also perform a validation in their
set_params method [19]. An initiation method would then look like this:

// Example

def __init__(self, param1="default1", param2="default2"):

self.param1 = param1

self.param2 = param2

The detailed parametrization of each algorithm follows in the corresponding imple-
mentation section.

3.1.2 Fitting the parameters

The next step is to estimate necessary parameters in the model by implementing the
fit method. It takes the training data as arguments, which corresponds to one array
for unsupervised learning and two arrays in the case of supervised learning [4]. Since
our estimators correspond to supervised learning, our fit methods should accept
two arrays. The arguments of the fit method for our implementations with their
corresponding type are listed in Table 3.1. The method may accept additional keywords
arguments if necessary, it should be restricted to directly data dependent variables.
Calling it repeatedly must yield the same result. Therefore, fit is an idempotent
function as long as it does not depend on some random process. Also, if the parameter
warm_start is set to true and the estimator does support it, the previous state of
trainable parameters are used instead of the default initialization strategy. This feature
is not considered for our implementations. Furthermore, it should return the object
itself to facilitate quick one-liners.

Parameter Type

X array-like, shape (n_samples, n_features)
y array, shape (n_samples)

kwargs optional data-dependent parameters.

Table 3.1: Arguments of the fit method.

16



3 Geometric Harmonics and Laplacian Pyramids

Attributes estimated from the data must end with a trailing underscore. They are
overridden every time fit is executed [4]. Furthermore, iterative algorithms should
let specify the number of iterations by the integer parameter n_iter. Even though, the
algorithms of this thesis are iterative, we do not implement this parameter, since the
algorithms provide meaningful methodology to handle the iterations.

3.1.3 Necessary base classes

Since datafold [15] depends on scikit-learn [19], we can prevent a lot of boilerplate code
by inheriting from their base classes. Even thought scikit-learn provides a lot of base
classes, we only need the three base classes described in the following subsections for
the implementation of our algorithms.

BaseEstimator

The BaseEstimator is the base class for all estimators in scikit-learn [19]. Since our
algorithms are all estimators, they all extend the BaseEstimator. As one can see in
Figure 3.1, it already provides the methods get_params(), set_params and _get_-

tags() which we otherwise should implement by ourselves regarding the scikit-learn
API [4]. The get_params() method is optional and returns a dict of all __init_-

_ parameters, together with their values. With set_params one can set parameters
during grid searches what makes it necessary. Also, since scikit-learn version 0.21 the
_get_tags() method that returns the estimator tags as dictionary is necessary [19].
Tags allow programmatic inspection of the estimators capabilities and are used by the
check_estimator function and the parametrize_with_checks decorator to determine
which checks to run and what input data is appropriate. To add additional tags,

Figure 3.1: Class diagram of the scikit-learn BaseEstimator

we have to override the _more_tags() method and define the default values of the
new tags. The _more_tags() provided by the BaseEstimator returns a dictionary of

17



3 Geometric Harmonics and Laplacian Pyramids

tags and their default value. All tags and their precise meaning are available on the
scikit-learn website.

MultiOutputMixin

By extending the multi-output mixin, we get an additional tag through its extension of
the _more_tags() method [4]. As one can see in Figure 3.2, this is its only purpose. The
tag added by this mixin is 'multioutput': True which is False by default. It tells,
whether a regressor supports multi-target outputs or a classifier supports multi-class
multi-output.

Figure 3.2: Class diagram of the scikit-learn MultiOutputMixin

RegressorMixin

Since our algorithms are supervised learning algorithms, they extend the Regres-

sorMixin class [4]. The estimator type is delegated by the attribute declaration _esti-

mator_type = "regressor". Furthermore, this mixin adds necessary tags for regressors
with its _more_tags() override, namely {'requires_y': True}. The tag requires_y

implies that the estimator requires target values as input for the fit method. Last
but not least, the RegressorMixin provides the method score(X, y, sample_weight

= None) with the parameters X providing test samples, y being the true target values
and sample_weight providing sample weights if necessary. It returns a score ≤ 1 and
may be negative, since models may be arbitrarily bad. This means, the higher the score
the better the model predicts the data.

Figure 3.3: Class diagram of the scikit-learn RegressorMixin

18



3 Geometric Harmonics and Laplacian Pyramids

3.2 Implementation of Geometric Harmonics

This section is about the Geometric Harmonics algorithm. We first document and
review the old implementation in Section 3.2.1. In the second Section 3.2.2 we remedy
the upcoming issues and then implement optimizations like an automated scale and
cut-off selection.

3.2.1 Old Software Design

The single-scale “Geometric Harmonics” algorithm is already implemented in datafold
[15] as the class GeometricHarmonicsInterpolator which inherits from the Regres-

sorMixin, MultiOutputMixin and BaseEstimator as it should. The class diagram of
the GeometricHarmonicsInterpolator is depicted in Figure 3.4.

Figure 3.4: Class diagram of of the GeometricHarmonicsInterpolator.

19



3 Geometric Harmonics and Laplacian Pyramids

Parameters

It accepts the parameters listed in Table 3.2 with their matching default value on
initialization. Corresponding to the extension algorithm described in Section 2.1.2 the
kernel parameter equals the type of kernel used to calculate the kernel matrix K and
n_eigenpairs gives some restriction to the amount of calculated eigenvalues λ and
eigenvectors ψ. This software structure does not provide an input parameter for the
condition number 1

δ , yet.

Parameter Description Default

kernel kernel to describe proximity between points None

n_eigenpairs Number of eigenpairs to compute from kernel
matrix

10

is_stochastic If True, the diffusion kernel matrix is normal-
ized

False

alpha Re-normalization parameter. “alpha=1“ cor-
rects the sampling density in the data as an
artifact of the collection process.

1

symmetrize_kernel If True, a conjugate transformation is performed
if the current settings would lead to a non-
symmetric kernel matrix.

True

dist_kwargs Keyword arguments passed to the internal dis-
tance matrix computation.

None

Table 3.2: Parameters of the GeometricHarmonicsInterpolator

Attributes

In the fitting process described in the Section 3.2.1, the attributes listed in Table 3.3
are estimated to later calculate the prediction, gradient and the score of the model.
The attribute kernel_matrix_ is currently only in use for test cases. Furthermore, the
estimator hast three protected attributes. Two of them are the vectors necessary for
function extension _aux and the diffusion map kernel _dmap_kernel. The last one is
_cdist_kwargs which is assigned to a dict that contains keys for a component-wise
kernel computation [15].

20



3 Geometric Harmonics and Laplacian Pyramids

Attribute Description

X_ Training data during fit of shape ‘(n_samples, n_features)‘.
Required to be stored to perform out-of-sample interpola-
tions.

y_ Target function values of shape ‘(n_samples, n_targets)‘,
can be multi-dimensional.

eigenvalues_ Eigenvalues of diffusion kernel in decreasing order.
eigenvectors_ Eigenvectors of the kernel matrix.
kernel_matrix_ Computed kernel matrix, stored if ‘store_kernel_ma-

trix=True‘ during fit.
dist_kwargs_ Actual keyword dictionary arguments passed to the internal

distance matrix computation.
_aux Extension function to perform out-of-sample interpolation.

_cdist_kwargs Keys required for a component-wise kernel computation.
_dmap_kernel The computed diffusion map kernel.

Table 3.3: All attributes of the GeometricHarmonicsInterpolator.

Fitting the parameters

After fitting, the interpolator should be able to estimate function values for any x ∈
X\X. To achieve this, the vector f̂ of Algorithm 1 must be precomputed and stored
for prediction. This corresponds to the precomputation phase from line 2 to 11 in
Algorithm 1. With the old implementation in datafold [15] we do this by first computing
the kernel matrix K with the given parameter kernel of X, which is either defined
by the user or is given as internal default as GaussianKernel(epsilon=1) by the
function _get_default_kernel(). Subsequently, its eigenvalues λ and eigenvectors ψ

are computed. The amount of eigenpairs is at the very beginning constrained by the
parameter n_eigenpairs. Since computing eigenpairs is expensive this restriction can
be very important to reduce computation time for certain cases. To generate the matrix
K, we first construct a new DmapKernelFixed with the selected kernel method and the
values of the parameters is_stochastic, alpha and symmetrize_kernel, and assign it
to _dmap_kernel:

21



3 Geometric Harmonics and Laplacian Pyramids

self._dmap_kernel = DmapKernelFixed(

internal_kernel=internal_kernel,

is_stochastic=self.is_stochastic,

alpha=self.alpha,

symmetrize_kernel=self.symmetrize_kernel,

)

The next step is to link the fixed diffusion kernel with the provided data X by creating
a point cloud with data X and the kernel just constructed _dmap_kernel. In general, to
construct such an object we use the data structure PCManifold introduced in Section 2.3
which is provided by datafold [15]. On the created point cloud object, we call the
function compute_kernel_matrix() and unpack the result with the static method
read_kernel_output of the class PCManifoldKernel:

kernel_output = self.X_.compute_kernel_matrix()

(

kernel_matrix_,

self._cdist_kwargs,

ret_extra,

) = PCManifoldKernel.read_kernel_output(kernel_output)

basis_change_matrix = ret_extra["basis_change_matrix"]

The returned values of read_kernel_output are required to compute the eigenpairs
of K which corresponds to the local variable kernel_matrix_ and _cdist_kwargs is
necessary to later compute the kernel matrix for the prediction. Hence, we can compute
the eigenpairs λ and ψ of K. Since we use a diffusion map kernel, we can fall back to
the class _DmapKernelAlgorithms which constitutes a collection of reusable algorithms
for models with diffusion map kernels [15]. The algorithm we need is provided by its
solve_eigenproblem method, which returns the largest n_eigenpairs eigenvalues and
eigenvectors of a given kernel matrix. This method itself calls the datafold eigensolver
function compute_kernel_eigenpairs which currently only provides the computation
of the eigenpairs with the python library SciPy [25] but could potentially provide more
backends to compute eigenpairs in the future. The datafold eigensolver wrapper should
then select the best option for the given kernel matrix, depending on the parameters n_-
eigenpairs, is_stochastic and is_symmetric. In the case of the scipy_eigensolver

function provided by datafold [15], it is decided between the SciPy eigensolvers eig,
eigh and eigsh. Initially, we call the solve_eigenproblem method and pass the recently
calculated kernel matrix stored in kernel_matrix_, the parameters n_eigenpairs, is_-
stochastic and is_symmetric necessary for optimization and the variable basis_-

change_matrix. The method then returns the optimally calculated eigenvalues and

22



3 Geometric Harmonics and Laplacian Pyramids

eigenpairs for the given kernel_matrix_ which we store in the estimator instance to
use them in the ongoing steps:

(

self.eigenvalues_,

self.eigenvectors_,

) = _DmapKernelAlgorithms.solve_eigenproblem(

kernel_matrix=kernel_matrix_,

n_eigenpairs=self.n_eigenpairs,

is_symmetric=self._dmap_kernel.is_symmetric,

is_stochastic=self.is_stochastic,

basis_change_matrix=basis_change_matrix,

)

After the computation of the eigenpairs λ and ψ, we should compute the projection
Pδ f of the function y to bound the condition of the algorithm. Since this implementation
does not provide an initialization parameter for the condition 1

δ , it also does not feature
the calculation of the projection defined in Equation (2.3). Among other optimizations,
this feature is implemented in the reworked model in Section 3.2.2. While the original
extension algorithm would now calculate further with the projection Pδ f instead of the
actual function values, we continue with the initially passed y.

We continue with the calculation of the lines 7 to 10 of Algorithm 1 with the
method _precompute_aux() provided by our geometric harmonics interpolator [15].
It first asserts whether the just calculated eigenvalues and eigenpairs are not None.
Then, instead of calculating the f̂ values with the for loop proposed, we use matrix
multiplication operations provided the NumPy library [12]. First we consider the
calculation of the vectors Ψj which corresponds to the multiplication of the reciprocal
of λj and ψj:

Ψj =
1
λj

ψj.

As each Ψj in this discrete implementation is a vector of the length of given function val-
ues, we define Ψ as matrix of same dimensions as the calculated matrix containing the
eigenvectors self.eigenvectors_. The dimensionality of matrix self.eigenvectors_-

is determined by the shape (len(y), n_eigenpairs). To finally map self.eigenvectors_-

and the corresponding array self.eigenvalues_ with this considerations to the matrix
Ψ, we first take the reciprocal of self.eigenvalues_. This can be done for the whole
array with the NumPy function reciprocal [12]. The next step is to multiply each recip-
rocal 1

λj
with its eigenvector ψj and to directly store the resulting Ψj in the jth column of

23



3 Geometric Harmonics and Laplacian Pyramids

the matrix Ψ which is exactly the result of multiplying the matrix self.eigenvectors_-

with the diagonalization of the eigenvalues self.eigenvalues_ in this order.

ψ =


ψ0(x0) ψ1(x0) · · · ψn(x0)

ψ0(x1) ψ1(x1) · · · ψn(x1)
...

...
. . .

...
ψ0(xm) ψ1(xm) · · · ψn(xm)

 , λ−1 =


1

λ0
0 · · · 0

0 1
λ1
· · · 0

...
...

. . .
...

0 0 · · · 1
λn


The datafold function mat_dot_diagmat can do this by taking the eigenvector matrix as
first argument and the array of eigenvalues as second argument [15]. The result of this
function is then our aimed matrix Ψ:

Ψ = ψ ∗ λ−1

=


ψ0(x0) ψ1(x0) · · · ψn(x0)

ψ0(x1) ψ1(x1) · · · ψn(x1)
...

...
. . .

...
ψ0(xm) ψ1(xm) · · · ψn(xm)




1
λ0

0 · · · 0
0 1

λ1
· · · 0

...
...

. . .
...

0 0 · · · 1
λn



=


ψ0(x0)

λ0

ψ1(x0)
λ1

· · · ψn(x0)
λn

ψ0(x1)
λ0

ψ1(x1)
λ1

· · · ψn(x1)
λn

...
...

. . .
...

ψ0(xm)
λ0

ψ1(xm)
λ1

· · · ψn(xm)
λn


To get the desired vector f̂ , we now have to multiply the scalar products 〈 f , ψj〉 and the
matching Ψj and add the result to the current f̂ as described in Algorithm 1 line 10.
Again, this can be simplified by utilizing the NumPy functionalities [12]. We transpose
the eigenvalue matrix self.eigenvectors_ and calculate its product with the function

24



3 Geometric Harmonics and Laplacian Pyramids

values self.y_ which are equal to y:

〈 f , ψ〉 = ψ ∗ f

=


ψ0(x0) ψ1(x0) · · · ψn(x0)

ψ0(x1) ψ1(x1) · · · ψn(x1)
...

...
. . .

...
ψ0(xm) ψ1(xm) · · · ψn(xm)


T 

f (x0)

f (x1)
...

f (xm)



=


ψ0(x0) ψ0(x1) · · · ψ0(xm)

ψ1(x0) ψ1(x1) · · · ψ1(xm)
...

...
. . .

...
ψn(x0) ψn(x1) · · · ψn(xm)




f (x0)

f (x1)
...

f (xm)



=


∑m

i=0 ψ0(xi) f (xi)

∑m
i=0 ψ1(xi) f (xi)

...
∑m

i=0 ψn(xi) f (xi)

 =


〈 f , ψ0〉
〈 f , ψ1〉

...
〈 f , ψn〉



(3.1)

Last but not least, the multiplication of the matrix Ψ and of the vector 〈 f , ψ〉 yields
the desired vector f̂ which can then be used to extend the function as described in
Section 3.2.1.

f̂ = Ψ ∗ 〈 f , ψ〉

=


ψ0(x0)

λ0

ψ1(x0)
λ1

· · · ψn(x0)
λn

ψ0(x1)
λ0

ψ1(x1)
λ1

· · · ψn(x1)
λn

...
...

. . .
...

ψ0(xm)
λ0

ψ1(xm)
λ1

· · · ψn(xm)
λn



〈 f , ψ0〉
〈 f , ψ1〉

...
〈 f , ψn〉



=


∑n

i=0〈 f , ψi〉 ∗ ψi(x0)
λi

∑n
i=0〈 f , ψi〉 ∗ ψi(x1)

λi
...

∑n
i=0〈 f , ψi〉 ∗ ψi(xm)

λi


All these steps combined results in the following sequence of operations which directly
stores the outcome in the variable self._aux:

self._aux = mat_dot_diagmat(

self.eigenvectors_, np.reciprocal(self.eigenvalues_)

) @ (self.eigenvectors_.T @ self.y_)

25



3 Geometric Harmonics and Laplacian Pyramids

The last segment of the fitting method to mention is the possibility to pass the
boolean argument store_kernel_matrix to store the kernel in the instance which is
by default False [15]. This feature is currently applied to assert features of the kernel
matrix in unit tests.

Predicting target values

A shorter procedure is the prediction of target values for arbitrary x ∈ X which is
described in the prediction phase of Algorithm 1 line 12 and 13. The implemented
method just takes the argument X representing the set T ⊆ X for which the function
values should be calculated while the set X is represented by the variable self.X_-

from the fitting process [15]. With these variables we compute the kernel matrix K by
again using the function compute_kernel_matrix of self.X_ but this time we pass the
given argument X as parameter Y and the _cdist_kwargs of the fitting kernel matrix
computation:

kernel_output = self.X_.compute_kernel_matrix(Y=X, **self._cdist_kwargs)

kernel_matrix_, _, _ = PCManifoldKernel.read_kernel_output(

kernel_output=kernel_output

)

The resulting kernel_matrix_ is then used to yield the extended function F by mul-
tiplying K with the vector f̂ represented by self._aux. Furthermore, we apply the
NumPy squeeze method [12] to remove axis of length one:

np.squeeze(kernel_matrix_ @ self._aux)

Lastly, the computed function F is returned by the predict method.

Calculating a Score and the Gradient

The last two interesting methods of the old GeometricHarmonicsInterpolator are the
score method, which is important to compare the results of different estimators and
parameter constellations, and the gradient method, which computes the gradient
of the interpolator at given points [15]. The gradient method is not content of the
optimization process but contains known bugs and therefore, should be considered in
future work on the model. The score method calculates the negated root mean squared
error for a prediction on the two passed arguments X representing the data which is to
be evaluated, and y representing the actual target values on the set X. Furthermore, one

26



3 Geometric Harmonics and Laplacian Pyramids

can pass the arguments sample_weight to define a weight on the sample weights and
multioutput to tell whether it should return the “raw values” or the “uniform average”
of the set of errors. As an error is by nature better if it is smaller, the score is negated
to comply with the scikit-learn API constraint “higher score is better” [4]. Since this
approach forces us to define the tag poor_score as True to pass the scikit-learn tests,
we later change the value of the score to better comply with this constraint.

27



3 Geometric Harmonics and Laplacian Pyramids

3.2.2 Optimized Software Design

After getting to know the old software design of the GeometricHarmonicsInterpolator

one can optimize a few things regarding the constraints to be fulfilled, the software
structure and the algorithm itself. First we take a look at the parameters and attributes
of the estimator. Then we abstract some processes to make them available for subclasses,
especially for the multiscale extension, and complete the algorithm itself by adding the
projection of the function to calculate the actually desired extension [7]. Finally, we
implement the automated calculation of an optimized initial scale and cut-off. The new
class diagram in Figure 3.5 gives a first insight on changes to the model.

Figure 3.5: Class diagram of of the optimized GeometricHarmonicsInterpolator

28



3 Geometric Harmonics and Laplacian Pyramids

Parameters

For the initialization parameters, one important argument was missing, namely the
condition parameter defined as 1

δ in Algorithm 1. This parameter is necessary to
calculate the projection Pδ f which is also skipped in the old implementation [7, 15]. All
other parameters did not change in naming or meaning.

Parameter Description Default

kernel Kernel to describe proximity between points. None

condition Number to bound the condition of the extension
from above.

50

n_eigenpairs Number of eigenpairs to compute from kernel
matrix

10

is_stochastic If True, the diffusion kernel matrix is normal-
ized

False

alpha Re-normalization parameter. “alpha=1“ cor-
rects the sampling density in the data as an
artifact of the collection process.

1

symmetrize_kernel If True, a conjugate transformation is performed
if the current settings would lead to a non-
symmetric kernel matrix.

True

dist_kwargs Keyword arguments passed to the internal dis-
tance matrix computation.

None

Table 3.4: Parameters of the optimized GeometricHarmonicsInterpolator.

Attributes

As for the old implementation, the attributes listed in Table 3.5 are estimated in the
fitting process to later calculate predictions. The only changes here are on the one hand,
the new naming of the function extended_function_ which was called _aux before.
Since the name was incomprehensible, it already was marked as issue [15]. On the other
hand, the accessibility of the attributes that were protected in the old implementation,
namely the just mentioned extended_function_ and the two attributes cdist_kwargs_-
and dmap_kernel_ are now publicly accessible. This change comes from the scikit-learn
constraint mentioned in Section 3.1.2 which tells us to end all attributes estimated from
the data with an underscore.

29



3 Geometric Harmonics and Laplacian Pyramids

Attribute Description

X_ Training data during fit of shape ‘(n_samples, n_features)‘.
Required to be stored to perform out-of-sample interpola-
tions.

y_ Target function values of shape ‘(n_samples, n_targets)‘,
can be multi-dimensional.

eigenvalues_ Eigenvalues of diffusion kernel in decreasing order.
eigenvectors_ Eigenvectors of the kernel matrix.
kernel_matrix_ Computed kernel matrix, stored if ‘store_kernel_ma-

trix=True‘ during fit.
dist_kwargs_ Actual keyword dictionary arguments passed to the internal

distance matrix computation.
extended_function_ Extension function to perform out-of-sample interpolation.

cdist_kwargs_ Keys required for a component-wise kernel computation.
dmap_kernel_ The computed diffusion map kernel.

Table 3.5: All attributes of the optimized GeometricHarmonicsInterpolator.

Projection of data

As already mentioned, the most significant problem with this implementation is the
missing projection Pδ f of f , since the projection is important to bound the condition of
the algorithm [7]. One could say that the condition can be bounded by tweaking the
amount of eigenpairs via the n_eigenpairs parameter, but this approach is error-prone.
Especially for the Multiscale algorithm we would have to pick the correct amount of
eigenpairs for each level. This problem can currently only be solved with the set

{ψj, λj|λj ≥ δ ∗ λ0}. (3.2)

To include the projection of f , we first have to calculate the set (3.2) of considered
eigenpairs. In the new implementation, this is realized by the method _get_condi-

tionally_considered_vectors() which returns the considered eigenpairs and the
considered scalar products. They are required to calculate the projection and extension
regarding Equations (2.3) and (2.4). Furthermore, it returns the scalar products that are
not considered for the given iteration, we call them “excluded scalar products”. Those
are necessary to later calculate the error ‖ f − Pδ f ‖ for the projection of each iteration
in the multiscale approach. To compute these considered sets, we first calculate the
largest index j of the set Sδ, defined in Equation (2.2), which is returned by the method
_get_separation_index(). It first calculates the threshold determined by the largest

30



3 Geometric Harmonics and Laplacian Pyramids

eigenvalue λ0 and the condition C = 1
δ as λ0 ∗ δ = λ0

C . With this threshold we yield a
boolean array indicating whether an eigenvalue is chosen for projection Pδ f or not:

threshold_eval = self.eigenvalues_[0] / self.condition

dyadic_separation = self.eigenvalues_ >= threshold_eval

Then we simply take the index of the first value being False which is our desired
separation index. This is done with the NumPy function argmin [12]. It returns the
index of the smallest value. If the array contains some equal values which are at the
same time the smallest values, it returns the index of the first smallest value. This is
most of the time the case for our implementation and deliberated. But with this feature
we also have to consider the case when all values are True, meaning every value of the
array is equally “small”. In this case we wrongly obtain 0 as separation index while the
actual separation index should resemble the length of the dyadic_separation array.
We can handle this error by checking the first index of the dyadic_separation array. If
it yields True, we should assign the length of the array as separation index. Otherwise,
we can continue with the already calculated index:

if separation_index == 0 and dyadic_separation[0]:

separation_index = len(dyadic_separation)

With this separation index s we can obtain the considered elements. But to also split
the scalar products we first have to calculate them as described in Equation (3.1). This
calculation is already implemented in the old model. Thus, we just have to extract
it from the old extension calculation and assign it to the variable separation_index.
Now we can calculate all conditionally considered subsets necessary for the projection
of f and the calculation of the prescribed error in the multiscale extension:

scalar_products = self.eigenvectors_.T @ self.y_

considered_scalar_products = scalar_products[:separation_index]

excluded_scalar_products = scalar_products[separation_index:]

considered_evals = self.eigenvalues_[:separation_index]

considered_evecs = self.eigenvectors_[:, :separation_index]

Finally, we can calculate the projection as described in Algorithm 1, but instead of

31



3 Geometric Harmonics and Laplacian Pyramids

calculating it in a loop we again, fall back on the NumPy features [12].

Pδ f =


ψ0(x0) ψ1(x0) · · · ψs(x0)

ψ0(x1) ψ1(x1) · · · ψs(x1)
...

...
. . .

...
ψ0(xm) ψ1(xm) · · · ψs(xm)



〈 f , ψ0〉
〈 f , ψ1〉

...
〈 f , ψs〉



=


∑s

i=0 ψi(x0)〈 f , ψi〉
∑s

i=0 ψi(x1)〈 f , ψi〉
...

∑s
i=0 ψi(xm)〈 f , ψi〉

 =


Pδ f (x0)

Pδ f (x1)
...

Pδ f (xm)


(3.3)

Regarding Equation (3.3) we can calculate the projection of f by calculating the matrix
multiplication of considered_evecs and considered_scalar_products:

projection = considered_evecs @ considered_scalar_products

Last but not least, with the projection the function extension f̂ can be computed as in
the old implementation, but this time with the considered eigenpairs and the scalar
products of the projection Pδ f instead of f :

projected_scalar_products = considered_evecs.T @ projection

extended_function = (

mat_dot_diagmat(considered_evecs, np.reciprocal(considered_evals))

@ projected_scalar_products

)

Refactorings

Since the old software design does not meet all requirements of the scikit-learn API
[4] constraints and more important, since it does not provide a sufficient API for the
multiscale extension, some refactoring is necessary [15].

First, we take a look at the issues regarding scikit-learn API. One issue is the wrong
naming of attributes estimated in the fitting process, but this was already fixed in
Section 3.2.2. Another issue is, that the method _get_tags() is already implemented by
the parent class BaseEstimator and therefore, we should not override it. Thus, we can
delete it from the model. Furthermore, the method _more_tags() should only return
additional tags which are not defined by parent methods or tags which should override
a value. Since the tags {"requires_y": True, "multioutput": True,} are already
defined by the base classes MultiOutputMixin and RegressorMixin with these values,

32



3 Geometric Harmonics and Laplacian Pyramids

it is unnecessary to declare them again. Additionally, we will calculate the score as
1÷ (1 + RMSE) where RMSE is the root mean squared error calculated as before, but
not negated. The best result reachable is then one which satisfies the scikit-learn API
constraint “higher score is better” [4]. Since this score returns better results better the
"poor_score" tag can be deleted and hence, we can safely delete the whole method.

To make the GeometricHarmonicsInterpolator suitable for the multiscale extension,
we extract some functionality into reusable methods. The data validation, the construc-
tion of the diffusion map kernel, the point cloud and the computation of the kernel and
its eigenvalues are moved from the fit method to the separate protected method called
_setup, which is called in the fit method. The setup sequence returns the variables
kernel_matrix_ and basis_change_ matrix to allow the storage in the fitting process
of the kernel matrix like in the old implementation [15]. Furthermore, we extract the
computation of the extension in the predict method described in Section 3.2.1 to the
method _compute_extension for better reusability. Last but not least, the function
_get_validation_kwargs is now static since it does not depend on the instance state.

Automatic scale and cut-off selection

The last part of the software design optimization is the automatic selection of an ap-
propriate scale and cut-off. Even though, the original algorithm does not consider the
automated selection of the scale, selecting the right scale is crucial for good results
in both interpolators, the GeometricHarmonicsInterpolator and the MultiscaleGeo-

metricHarmonicsInterpolator. Furthermore, the right cut-off for the dmap_kernel_ is
important for a faster computation and for saving large amounts of storage. The old
implementation sets the cut-off to np.inf per default, which means the kernel matrix
computes and stores all m× n entries in the memory [15].

One can see in the optimize_parameters method of the PCManifold class that these
two parameters scale and cut-off of the kernel and point cloud are closely related to
each other. This function first estimates the cut-off and subsequently, estimates the
scale based on the cut-off. The cut-off is computed in the function estimate_cutoff

[15] which is located in a collection of functions for estimators. In short, this function
computes the distance matrix of the point cloud and returns the maximum distance
to the k-th nearest neighbors where k is per default 10. To calculate epsilon, we first
assume a fixed number t, which corresponds to the variable tol, greater than or equal
to the Gaussian kernel (2.1):

t ≥ exp
(
−‖x− y‖2

ε

)
(3.4)

Then we approximate the scale by solving Equation (3.4) for ε and simply setting it

33



3 Geometric Harmonics and Laplacian Pyramids

equal:

ε = −‖x− y‖2

log(t)
(3.5)

In this function the cut-off corresponds to ‖x − y‖. Another datafold function es-

timate_scale [15] of the function collection for estimators computes the scale with
Equation (3.5) by inserting the previously calculated cut-off and a fixed t which is by
default 1e-8. We encapsulate the optimization method of the PCManifold in the public
method optimized_manifold_parameters which first validates the passed array X and
then constructs a PCManifold with this data and a default Gaussian kernel. On this
PCManifold we then call the optimization method with the passed tol and return the
results. In this way, the function may also be used by the user to pick an appropriate
scale and cut-off by himself. We also apply our optimization method in the _setup

method when the kernel parameter equals None but only to estimate the scale rather
than both parameters, since we have to define another method which adjusts the cut-off
to the scale in the multiscale approach.

We can compute an estimation of the cut-off c = ‖x − y‖ from a given scale by
solving Equation (3.5) for c:

c =
√
− log(t) ∗ ε

This equation is then implemented as the function estimate_cut_off which accepts a
scale and a tol as arguments:

def estimate_cut_off(self, scale: float, tol=1e-10) -> float:

return float(np.sqrt(-np.log(tol) * scale))

With this method, we then automatically select an appropriate cut-off in the _setup

method if the user did not provide one in dist_kwargs. In the function _setup_-

default_dist_kwargs() the attribute optimize_cut_off_ is assigned True if either
dist_kwargs is None or the key "cut_off" is not defined on dist_kwargs.

34



3 Geometric Harmonics and Laplacian Pyramids

3.3 Implementation of Multiscale Geometric Harmonics

As the single-scale Geometric Harmonics model now meets the requirements to design
a well-structured multiscale extension, we elaborate the new software design for the
multiscale extension algorithm. In the first Section 3.3.1 we document the old unfinished
software design and then provide a reworked model in Section 3.3.2.

3.3.1 The current state

Again, the current state of the code is documented as for the single-scale approach. The
multiscale extension algorithm is implemented as the MultiscaleGeometricHarmonic-

sInterpolator class which inherits from the GeometricHarmonicsInterpolator [15].
Since this implementation is incomplete, it is marked with the @NotImplementedError

decorator. The class diagram of the multiscale extension is depicted in Figure 3.6.
First we shortly analyze the fitting process. The current MultiscaleGeometricHar-

monicsInterpolator [15] more or less implements the basic Geometric Harmonic
algorithm. In this case with considering a condition and thus, it is using the projection
of f . Another difference to the old single-scale implementation is that it repeats the
algorithm in a loop with a shrinking scale and the corresponding Gaussian kernel. The
initial scale is reduced by two in each iteration and the termination condition depends
on the levels prescribed error. That means, that the algorithm reduces the scale until
the prescribed error is small enough and then only the last scale is used to calculate
one extension function f̂ . Thus, it is not a multiscale algorithm but single-scale. Even
though it computes the Gaussian kernel and all necessary variables for an extension
function at every scale. Another issue is the calculation of eigenpairs with the eigsh

function, which is perfect for sparse hermitian matrices but with the eigensolver meth-
ods used in the GeometricHarmonicsInterpolator implementation we always use the
best matching eigensolver [15].

One more important observation of the old implementation is, that it does not
implement an own predict method as typical for a scikit-learn regressor [4] but a
__call__ method, which lets one handle an instance like calling a function. It contains
the procedure which should be provided by a predict method. Last but not least,
the algorithm implements an own score method but actually only calls the parent’s
method, namely the score method of the GeometricHarmonicsInterpolator.

35



3 Geometric Harmonics and Laplacian Pyramids

Figure 3.6: Class diagram of of MultiscaleGeometricHarmonicsInterpolator.

Parameters

The MultiscaleGeometricHarmonicsInterpolator is initialized with the same param-
eters as the GeometricHarmonicsInterpolator class accepts listed in Table 3.2 on the
one hand and on the other hand, with the three additional parameters listed in Table 3.6.
The necessity of the three parameters was already explained in the previous subsection.

Parameter Description Default

initial_scale The scale to begin with. 1.0

condition The number C = 1
δ to bound the condition of

the algorithm from above.
1.0

admissible_error The maximal acceptable prescribed error. 1.0

Table 3.6: Additional parameters of the MultiscaleGeometricHarmonicsInterpolator.

Attributes

The only additional attributes of the multiscale approach are X and y. First, they do not
fulfill the scikit-learn API constraint of the trailing underscore. Second, they would be
unnecessary because the old GeometricHarmonicsInterpolator is equipped with the
correctly named attributes X_ and y_ [15]. Since it extends the GeometricHarmonicsIn-

36



3 Geometric Harmonics and Laplacian Pyramids

terpolator, it naturally inherits the attributes listed in Table 3.3. Most of them are not
used by the MultiscaleGeometricHarmonicsInterpolator.

3.3.2 The reworked model

For the multiscale approach, we have to completely rework the implementation as
already implied by the @NotImplementedError decorator of the MultiscaleGeomet-

ricHarmonicsInterpolator class [15]. The UML class diagram of the reworked soft-
ware design is depicted in Figure 3.7.

Figure 3.7: Class diagram of of the reworked MultiscaleGeometricHarmonicsInter-

polator.

Parameters

For the new model, four additional parameters to the parameters of the GeometricHar-

monicsInterpolator defined in Table 3.4 are necessary. Two of them are already
declared in the incomplete implementation, namely the arguments initial_scale and
admissible_error. The initial_scale is per default None. That tells the algorithm
to pick an appropriate initial scale automatically with the procedure introduced in
Section 3.2.2 if none is defined by the user. One of the new parameters is the scale_di-

visor corresponding to µ in Algorithm 2 which defines the size of the scale reduction
per iteration. It must be larger than one for the algorithm to converge. The second

37



3 Geometric Harmonics and Laplacian Pyramids

new parameter is minimum_scale which tells the algorithm when to stop even though
the prescribed error is not smaller than admissible_error. On the one hand, this is
important for the implementation, since otherwise, the construction of a kernel with a
scale smaller than minimum_scale its default value would throw an error [15]. On the
other hand, with this argument the user can adjust the smallest scale the algorithm
should consider. This value may of course not be smaller than the default value. All
additional attributes of the reworked MultiscaleGeometricHarmonicsInterpolator

class are listed in Table 3.7.

Parameter Description Default

initial_scale The scale we begin with. None

scale_divisor The number the scale is divided by.
It must be larger than one.

2.0

minimum_scale The minimum scale which should
be reached. It must be larger than
the default value, otherwise the ker-
nel would throw an error.

2.220446049250313e-16

admissible_error The maximal acceptable prescribed
error.

1.0

Table 3.7: Additional parameters of the reworked MultiscaleGeometricHarmonicsIn-

terpolator.

Attributes

While the incomplete MultiscaleGeometricHarmonicsInterpolator does not define
extra meaningful attributes, we have to specify two new attributes listed in Table 3.8
which are necessary for the multiscale approach, additionally to the attributes of the
optimized GeometricHarmonicsInterpolator from Table 3.5. Both extra attributes are
required by the adjusted predict procedure which is later introduced.

Attribute Description

extended_functions_ An array of each levels extension function.
scales_ An array of each levels scale.

Table 3.8: Additional attributes of the reworked MultiscaleGeometricHarmonicsIn-

terpolator.

38



3 Geometric Harmonics and Laplacian Pyramids

Fitting the parameters

The fitting process of Multiscale Geometric Harmonics corresponds to the precomputa-
tion phase of Algorithm 2 line 1 to 8. First, we have to set up the necessary variables.
The attributes extended_functions_ and scales_, required for the prediction explained
in Section 3.3.2, get initialized with empty arrays. Subsequently, we call the _setup_de-

fault_dist_kwargs() method in which it is also decided whether to use a predefined
value if one is passed, or to compute an automatically selected cut-off in each iteration
as described in Section 3.2.2. Furthermore, we check the values of the parameters
scale_divisor and minimum_scale. As specified in Table 3.7, the scale_divisor must
be larger than one and the minimum_scale may not be smaller than the default value.
Thus, we throw an exception if the constraints are not satisfied. Another parameter to
be checked is the initial scale. If it equals None, we automatically pick an appropriate
initial scale by passing the argument X to the optimized_manifold_parameters method
of its improved parent class GeometricHarmonicsInterpolator. The respective scale is
then assigned to the variable scale:

if self.initial_scale is None:

(_, opt_scale) = self.optimized_manifold_parameters(X)

scale = opt_scale

else:

scale = self.initial_scale

We need the extra internal variable scale, since we will reduce it in every iteration
of the algorithm and do not want to change the value of the initialization parameter
initial_scale.

The next step is to start a loop which either stops when the calculated error ‖ f −
Pδ f ‖ is smaller than the given admissible error admissible_error as described in
Algorithm 2 or when the scale for the next iteration ε j+1 = ε j ∗ 1

µ is smaller than the
value of minimum_scale. Both cases are handled with a break condition, since we do
not initialize the error before entering the loop. And since the initial scale may be
smaller than a manually selected minimum scale, the algorithm should at least calculate
one iteration instead of preventing the computation completely. Obviously, before
checking the scale of the next iteration we calculate it. The main computation is done by
the protected function _compute_one_scale which performs the single-scale geometric
harmonics for a given scale and returns the vector f in line 5 of Algorithm 2 and the
norm of it which corresponds to the error. The obtained values f are then passed to the
function call in the next iteration. The whole loop then looks as follows:

39



3 Geometric Harmonics and Laplacian Pyramids

while True:

(y, error) = self._calculate_one_scale(X, y, scale)

if error <= self.admissible_error:

break

scale = scale / self.scale_divisor

if scale < self.minimum_scale:

break

In the function _compute_one_scale we first construct a Gaussian kernel with the
scale of the current iteration and pass it together with X_ and y to the _setup function
of the adjusted parent class GeometricHarmonicsInterpolator. This function call
validates the data sets all attributes necessary to compute the extension of one scale
as for the single-scale algorithm. Now it is time to get involved with the newly
returned variables of the adjusted _precompute_extended_function function which is
called next. With the variables considered_evecs and considered_scalar_products

we again, compute the projection as described in Equation (3.3) which is required to
calculate the target values f as difference of the validated self.y_ and the projection
for the next iteration:

projection = considered_evecs @ considered_scalar_products

y = self.y_ - projection.reshape(self.y_.shape)

Of course, one could now use y to calculate the error as ‖ f ‖ = ‖ f − Pδ f ‖ [7, 6], but
the better option is to calculate the norm of excluded_scalar_products, since this
is roughly equal to the norm of the new f but consists of fewer values. Hence, the
computation is less expensive. If the array excluded_scalar_products does not contain
any value, the error is assigned to zero:

if len(excluded_scalar_products) > 0:

error = np.sqrt(np.mean(np.abs(y) ** 2))

else:

error = 0

Lastly, we return the calculated y and error and continue the iteration with these
values until we reach one of the break conditions.

Predicting of data

To complete the algorithm the projection of the data itself is required. We use exactly
the process defined as prediction phase in Algorithm 2 line 9 to 12. The precomputed

40



3 Geometric Harmonics and Laplacian Pyramids

vectors extended_functions_ correspond to the f̂ j and the scalars scales_ are the scales
ε j for the corresponding level j. The amount of levels is thus, given by the length of the
arrays extended_functions_ and scales_. For each level j we do not explicitly construct
a new Gaussian kernel, but rather substitute the epsilon of the stored dmap_kernel_-

with the scale ε j in each iteration:

self.dmap_kernel_.internal_kernel.epsilon = self.scales_[j]

When we then compute the required kernel matrix of self.X_, the exchanged scale
is applied. The matrix computation is done in _compute_extension provided by the
parent class GeometricHarmonicsInterpolator. It accepts T and f̂ j as inputs for which
the extension should be calculated and returns it:

extension = self._compute_extension(X, self.extended_functions_[j])

The computed extension for level j is then added to the accumulator extension_acc
which corresponds to the actual extension of the multiscale algorithm. In the loop the
variable is initialized with the NumPy function np.zeros [12] of the shape of the first
calculated extension. After exiting the loop, predict returns the extended function F
as extension_acc.

3.4 Implementation of Laplacian Pyramids

The last procedure we consider is Laplacian Pyramids which is introduced in Sec-
tion 2.2. Those are also multiscale approaches which are for instance applicable in
high-dimensional data analysis [17]. In Section 3.4.1 we outline and analyze the existing
implementation.

Parameters

The parameters of this implementation [15] listed in Table 3.9 already meet the require-
ments of the Laplacian Pyramids procedure described in Section 2.2.1. Those are the
initial scale initial_epsilon, mu as scale divisor and residual_tol which is compara-
ble to admissible_error of the MultiscaleGeometricHarmonicsInterpolator. Since
this model also implements Auto-adaptive Laplacian Pyramids, it provides the boolean
parameter auto_adaptive to tell whether to use the auto-adaptive strategy. In this
case, it would ignore the value provided in residual_tol. Either residual_tol must
contain a value or auto_adaptive must be true. Otherwise, the estimator throws an
error.

41



3 Geometric Harmonics and Laplacian Pyramids

Parameter Description Default

initial_epsilon The scale we begin with. 10

mu The number the scale is divided by. Must be
larger than one.

2.0

residual_tol The tolerance at which the iteration is termi-
nated. If “auto_adaptive=False” a value must
be provided.

None

auto_adaptive If True, decreasing the kernel scale terminates
based on LOOCV estimation in each iteration.

False

alpha A parameter handled to the diffusion maps
kernel that in internally used.

0

Table 3.9: Parameters of the LaplacianPyramidsInterpolator.

Attributes

The attributes listed in 3.10 are all estimated to later calculate the prediction. The
attribute _level_tracker is a dictionary storing all information of the considered
levels. To later assign the accumulator variable F in Algorithm 3 correctly, we remember
the number of target functions in n_targets_.

Attribute Description

X_ Training data during fit of shape ‘(n_samples, n_features)‘.
Required to be stored to perform out-of-sample interpola-
tions.

n_targets_ The number of target functions during fit.
_level_tracker A dictionary containing the information of each level.

Table 3.10: Attributes of the LaplacianPyramidsInterpolator.

42



3 Geometric Harmonics and Laplacian Pyramids

3.4.1 The current state

This algorithm is already well implemented in the LaplacianPyramidsInterpolator

[15], even though mingled with the Auto-adaptive approach [10]. The UML class
diagram of the interpolator is depicted in Figure 3.8. As already mentioned, the class
LaplacianPyramidsInterpolator does not only contain Algorithm 3 of basic Laplacian
Pyramids, but also the Auto-adaptive Laplacian Pyramids procedure described in
Algorithm 4. The fit procedure corresponds to the precomputation phase in the
pseudocode algorithms. It first checks the initialization parameters and the input X
and y of the fit method. If for example auto_adaptive is False and residual_tol

is None, the algorithm throws an exception since none of both algorithms can then be
applied. After the validation we set up a empty dictionary for _level_tracker. Lastly,
we assign n_targets_ to y.shape([1]) and proceed with the Laplacian Pyramids
algorithm. Overall, the algorithm is implemented similar to the proposed Algorithm 3
and Algorithm 4. It manages an internal state for the levels via the enum type called
_LoopCond and provides many methods to handle it. Overall, the algorithm is fine, but
the code structure is confusing especially since the LaplacianPyramidsInterpolator

contains both algorithms at once. buhmann2000radial
The prediction also first validates the passed X and then creates the initial F with X

and n_targets:

y_hat = np.zeros([X.shape[0], self.n_targets_])

Then in the loop, we compute the kernel matrix with stored kernel of the corresponding
level and the distance matrix returned by the method _distance_matrix. We then
compute the new approximation for the active indices with the kernel_matrix and the
target values:

active_indices = level_content["active_indices"]

y_hat[:, active_indices] += kernel_matrix @ level_content["target_values"]

3.4.2 Proposed enhancements

The first enhancement should be the abstraction of the Auto-adaptive Laplacian Pyra-
mids procedure as own estimator which inherits from LaplacianPyramidsInterpola-

tor. This would make the code much clearer and better structured. Thus, it is also
less error-prone when everything is better encapsulated. Furthermore, one could then
provide an additional class for the Local Auto-adaptive Laplacian Pyramids [10]. In
addition, one should implement the automatic initial scale selection and one may add
the threshold of the maximum amount of iterations as described for the Auto-adaptive

43



3 Geometric Harmonics and Laplacian Pyramids

Figure 3.8: Class diagram of of the LaplacianPyramidsInterpolator.

Laplacian Pyramids [10]. However, the estimator already shows good results as one can
see in Section 3.5. Another optimization could be the implementation of the optimized
cut-off that we introduced for Geometric Harmonics in Section 3.2.2. This could allow
the estimation with larger samples. The scale should also be checked in every iteration
in the fitting process, since the algorithm throws an error when the scale gets too small
[15]. Last but not least, the LaplacianPyramidsInterpolator should implement the
same score calculation as GeometricHarmonicsInterpolator for better comparability.
This would be 1÷ (1 + RMSE) with the Root Mean Squared Error [4, 15].

3.5 Testing and Demonstrations

In the first Section 3.5.1 the conducted tests are briefly outlined, in Section 3.5.2 a
typical “Geometric Harmonics” example is introduced, then in Section 3.5.3 we observe
an example of image interpolation of the and in the last Section 3.5.4 we reproduce the
results of a synthetic example with the LaplacianPyramidsInterpolator.

44



3 Geometric Harmonics and Laplacian Pyramids

3.5.1 Conducted tests

The tests are conducted as python unit tests in the datafold [15] testing environment.
Most of the tests, already existing and newly added tests consist of demonstrations
like those presented in the next three sections. They assert, whether the predictions
fulfill predefined constraints regarding the score of the estimator. Additionally, tests to
validate the satisfaction of important constraints are added to the newly introduced
MultiScaleGeometricHarmonicsTest testing class. One important test for every esti-
mator is the check_estimator function provided by the scikit-learn API [4]. It goes
through all important estimator tests regarding fitting and predictions depending on
the tags returned by the respective _get_tags method of the tested estimator. Since
this test executes successfully for the new software design of the MultiscaleGeomet-

ricHarmonicsInterpolator, the class can be called a valid estimator. Furthermore, this
test also succeeds for the old and new GeometricHarmonicsInterpolator and for the
LaplacianPyramidsInterpolator. Other old tests were adapted to agree on the new
implementations. Even though, some important tests are provided and old tests were
adjusted, additional tests should be considered one time.

3.5.2 Unit circle to the plane

The first example, the unit circle to the plane is prevalent as demonstration case in the
papers on geometric harmonics [6, 23, 14, 8, 7] but most of the time, the circumstances
are not described very well. This results in a variety of extrapolations with diverse
appearances. Therefore, we want to reproduce the most convincing results and then
summarize the setup. Also, we consider the results on the actual two-dimensional
interpolation of the different observed frequencies. We will demonstrate this with
Multiscale Geometric Harmonics on the one hand, and on the other hand, we will also
apply basic Laplacian Pyramids to compare both procedures directly [6]. All charts are
created with the data visualization tool Plotly [13].

First, we set up the demonstration data. The train data consists of 100 points uni-
formly distributed in the interval [0, 2π] which correlates to the circumference of the
unit circle. Each point x is then assigned to its coordinates (sin(x), cos(x)). The cor-
responding function value of the point x is cos( f θ) with frequency f . We consider
the frequencies 1, 2, 4 and 8 and fit and predict each separately. The MultiscaleGeo-

metricHarmonicsInterpolator is initialized with the maximum number of eigenpairs,
in this case 99, a condition of 50 and with dist_kwargs={"cut_off": np.inf}, such
that we do not optimize the cut-off. Since LaplacianPyramidsInterpolator does not
implement this feature, the results would not be comparable. Both estimators are
initialized with the initial scale 1, scale divisor 2 and an admissible error of 1e-10.

45



3 Geometric Harmonics and Laplacian Pyramids

Next, the test data in the three-dimensional case is a matrix arranged in the interval
[−3, 3] with a distance of 0.01 to another point in each dimension x and y. We then
correlate each point with another, such that we have an array of all coordinate pairs.
After fitting the data, the prediction results in Figure 3.9 for Multiscale Geometric
Harmonics and in Figure 3.10 for Laplacian Pyramids. The results show very good
conformity with the visualizations presented by Coifman and S. Lafon [7] in the case of
Multiscale Geometric Harmonics, and by Chiavazzo et al. [6] in the case of Laplacian
Pyramids. It is interesting to see how different the extrapolations of the two algorithms
look. While Geometric Harmonics seems to be very local, Laplacian Pyramids appear
very diffusing.

Lastly, we consider the two-dimensional case. The test data stays the same, we only
adjust the train data such that we obtain an interpolation instead of an extrapolation.
This time, it consists of 150 points uniformly distributed, again, in the interval [0, 2π].
We assign the coordinates to each point as for the training samples and then let the
estimators predict the corresponding values. The resulting predictions calculated by
the MultiscaleGeometricHarmonicsInterpolator are plotted in Figure 3.11 and the
predictions of LaplacianPyramidsInterpolator are displayed in 3.12. Additionally, to
each frequency, one can see the absolute difference between the prediction and the
actual values in the plots. While the largest error of MultiscaleGeometricHarmonic-
sInterpolator is approximately 1.5e-10, the smallest error of Laplacian Pyramids is
roughly 1e-8.

46



3 Geometric Harmonics and Laplacian Pyramids

Figure 3.9: The unit circle in the plane for cos (θ), cos (2θ), cos (4θ) and cos (8θ) com-
puted with the MultiscaleGeometricHarmonicsInterpolator. The inter-
polator is trained and initialized with n=100 train points, condition=50,
initial_scale=1, scale_divisor=2 and admissible_error=1e-10.

47



3 Geometric Harmonics and Laplacian Pyramids

Figure 3.10: The unit circle in the plane for cos (θ), cos (2θ), cos (4θ) and cos (8θ) com-
puted with the LaplacianPyramidsInterpolator. Each trained and ini-
tialized with n=100 train points, initial_epsilon=1, mu=2 and residual_-

tol=1e-10.

48



3 Geometric Harmonics and Laplacian Pyramids

Figure 3.11: The actual interpolation of the cosinus functions in the interval [0, 2π] with
MultiscaleGeometricHarmonicsInterpolator. The interpolated values
are displayed as dots.

49



3 Geometric Harmonics and Laplacian Pyramids

Figure 3.12: The actual interpolation of the cosinus functions in the interval [0, 2π] with
LaplacianPyramidsInterpolator. The interpolated values are displayed
as dots.

50



3 Geometric Harmonics and Laplacian Pyramids

3.5.3 Image interpolation

The next demonstration is literally classic for Laplacian Pyramids [5] and likewise very
descriptive. In addition, we apply Multiscale Geometric Harmonics on this example for
comparison reasons. One will once again, clearly see the difference between the two
approaches. For the image data, we use the image processing Python package scikit-
image [24]. The plots are again, generated with the data visualization tool Plotly [13].
Two problems appeared when setting up the demonstration, one is the computation
time required by the eigensolver applied in the MultiscaleGeometricHarmonicsInter-

polator. The original image has 256x256 pixels which corresponds to an array of 65536
values. For reasonable good results, one should use about two-thirds of the theoretically
available eigenpairs which would be approximately 43690 but the eigensolver already
requires minutes for ten thousand eigenpairs. The second problem is already fixed
for the Geometric Harmonics estimator but still exists in the LaplacianPyramidsInter-

polator class [15], namely the optimized cut-off when calculating the kernel matrix
on larger data sets. When the cut-off is set to np.inf and we want to compute the
kernel matrix with 655362 values the program crashes. To prevent crashes and to
compute the results in reasonable time, we only use a fraction of the original dataset.
Instead of 256x256 pixels the images are shrinked to 64x64 pixels. Thus, our train set
consists of 642 = 4096 pixel coordinates (x, y) and their corresponding pixel values
as function values. The MultiscaleGeometricHarmonicsInterpolator is initialized
with n_eigenpairs=pixels ** 2 - 1, condition=5 and again for comparison reasons
dist_kwargs={"cut_off": np.inf}. Both estimators have an initial scale of 2, µ = 2
and an admissible error of 1e-10. The resulting levels of restoring the image for each
estimator are shown in Figure 3.13 and Figure 3.14.

One can clearly see the difference between the images of the first iteration. While the
image with Laplace Pyramids gets less and less blurry in Figure 3.14, with Multiscale
Geometric Harmonics the frequencies get higher and higher in Figure 3.13. Even
though, Geometric Harmonics needs fewer iterations, the difference in calculation time
is enormous. In this setup, the Laplacian Pyramids interpolator is about 830 times
faster with approximately one second fitting process time than the Multiscale Geometric
Harmonics approach which required about 830 seconds.

In 3.15 the interpolation of the image of size 128x128 is generated for each estimator.
Even though, they can interpolate the missing pixels, the prediction is not very good
in comparison with the original image. Obviously, the finer scales are missing in the
interpolated versions, since the smaller image used to fit the estimators did not contain
the information for this scale.

51



3 Geometric Harmonics and Laplacian Pyramids

Figure 3.13: All four levels of the MultiscaleGeometricHarmonicsInterpolator pre-
dicting the train image beginning with the coarsest scale.

Figure 3.14: The levels 1, 3, 5 and 8 of the LaplacianPyramidsInterpolator predicting
the train image beginning with the coarsest scale.

Figure 3.15: The generated interpolations with the MultiscaleGeometricHarmonicsIn-

terpolator and the LaplacianPyramidsInterpolator.

52



3 Geometric Harmonics and Laplacian Pyramids

3.5.4 Synthetic example

The last demonstration is a reproduction of the synthetic example proposed by Fer-
nández et al. [10]. Since this example is originally performed with the Auto-adaptive
Laplacian Pyramids procedure, and we only want to compare the actual datafold
implementation [15] with the proposal, we only demonstrate this for the Laplacian-

PyramidsInterpolator. We show that the implementation meets the expectations. The
plots are, again, generated with Plotly for visualization purposes [13]. We consider the
sample with 4000 points uniformly distributed in the interval [0, 10π]. The function for
our target values is

f = sin(x) + sin(3x)I2(x) + 0.25 sin(9x)I3(x) + ε.

The indicator functions I2 and I3 represent the intervals (10 π
3 , 10π] and (10 2π

3 , 10π].
The noise ε ∼ U ([−δ, δ]) is uniformly distributed [10]. We only consider the small noise
example, thus δ = 0.1 for our demonstration. The LaplacianPyramidsInterpolator

is initialized with an initial scale of 10π, µ = 2 and is passed auto_adaptive=true

to use Auto-adaptive Laplacian Pyramids. The demonstration shows good results in
Figure 3.16 compared to the results produced by Fernández et al. [10]. One can see
how finer scales are covered in each iteration.

53



3 Geometric Harmonics and Laplacian Pyramids

Figure 3.16: The iterations 4, 7, 10 and 13 of the LaplacianPyramidsInterpolator for
the synthetic example.

54



4 Conclusion

In conclusion, we elaborated an optimization and rework of both Geometric Har-
monic extensions. Furthermore, all out-of-sample extension schemes are thoroughly
documented and the software structure was analyzed. In addition, we introduced a
scale and cut-off optimization strategy for both Geometric Harmonics interpolators.
Inconsistencies in the data structure were removed and the GeometricHarmonicsIn-

terpolator class was adjusted, such that the multiscale estimator can properly extend
it and reuse its functionality. We outlined some ideas on how to improve the Lapla-

cianPyramidsInterpolator and showed missing features regarding the Auto-adaptive
Laplacian Pyramids proposed by Fernández et al. [10]. Lastly, we summarized the
conducted tests and demonstrated the multiscale approaches with details about the
setup of the respective example and generated very good insightful results.

Even though, this thesis focsed on the optimization of the considered out-of-sample
extensions and the implementation of optimizations, there is still much to do. Maybe
one could find a better solution for calculating the right amount of eigenpairs in the
Geometric Harmonics algorithms or even a better eigensolver for a faster computation
in general. Also, a better way for stopping the Multiscale Geometric Harmonics
iteration could be elaborated, which could work similar to the Auto-adaptive Laplacian
Pyramids approach. The Laplacian Pyramids estimator has also still a lot to do, since in
this paper optimizations were just proposed. As already mentioned, it is missing some
originally intended key features for automatically selecting a scale and the maximal
amount of iterations. Also, one should split the basic Laplacian Pyramids and Auto-
adaptive Laplacian Pyramids for a better model structure. Based on that, one could
implement the Local Auto-adaptive Laplacian Pyramids proposed by Fernández et al.
[10] as another child class, which serves better for data that is not equally distributed
and that has different density characteristics.

55



List of Figures

1.1 The levels of the MultiscaleGeometricHarmonicsInterpolator predict-
ing the train image beginning with the coarsest scale. . . . . . . . . . . . 1

3.1 Class diagram of the scikit-learn BaseEstimator . . . . . . . . . . . . . . 17
3.2 Class diagram of the scikit-learn MultiOutputMixin . . . . . . . . . . . . 18
3.3 Class diagram of the scikit-learn RegressorMixin . . . . . . . . . . . . . 18
3.4 Class diagram of of the GeometricHarmonicsInterpolator. . . . . . . . 19
3.5 Class diagram of of the optimized GeometricHarmonicsInterpolator . 28
3.6 Class diagram of of MultiscaleGeometricHarmonicsInterpolator. . . . 36
3.7 Class diagram of of the reworked MultiscaleGeometricHarmonicsIn-

terpolator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.8 Class diagram of of the LaplacianPyramidsInterpolator. . . . . . . . . 44
3.9 The unit circle in the plane for cos (θ), cos (2θ), cos (4θ) and cos (8θ)

computed with the MultiscaleGeometricHarmonicsInterpolator. The
interpolator is trained and initialized with n=100 train points, condi-
tion=50, initial_scale=1, scale_divisor=2 and admissible_error=1e-

10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.10 The unit circle in the plane for cos (θ), cos (2θ), cos (4θ) and cos (8θ)

computed with the LaplacianPyramidsInterpolator. Each trained and
initialized with n=100 train points, initial_epsilon=1, mu=2 and resid-

ual_tol=1e-10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.11 The actual interpolation of the cosinus functions in the interval [0, 2π]

with MultiscaleGeometricHarmonicsInterpolator. The interpolated
values are displayed as dots. . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.12 The actual interpolation of the cosinus functions in the interval [0, 2π]

with LaplacianPyramidsInterpolator. The interpolated values are dis-
played as dots. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.13 All four levels of the MultiscaleGeometricHarmonicsInterpolator pre-
dicting the train image beginning with the coarsest scale. . . . . . . . . . 52

3.14 The levels 1, 3, 5 and 8 of the LaplacianPyramidsInterpolator predict-
ing the train image beginning with the coarsest scale. . . . . . . . . . . . 52

56



List of Figures

3.15 The generated interpolations with the MultiscaleGeometricHarmonic-

sInterpolator and the LaplacianPyramidsInterpolator. . . . . . . . . 52
3.16 The iterations 4, 7, 10 and 13 of the LaplacianPyramidsInterpolator

for the synthetic example. . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

57



List of Tables

3.1 Arguments of the fit method. . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2 Parameters of the GeometricHarmonicsInterpolator . . . . . . . . . . . 20
3.3 All attributes of the GeometricHarmonicsInterpolator. . . . . . . . . . 21
3.4 Parameters of the optimized GeometricHarmonicsInterpolator. . . . . 29
3.5 All attributes of the optimized GeometricHarmonicsInterpolator. . . . 30
3.6 Additional parameters of the MultiscaleGeometricHarmonicsInterpo-

lator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.7 Additional parameters of the reworked MultiscaleGeometricHarmonic-

sInterpolator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.8 Additional attributes of the reworked MultiscaleGeometricHarmonic-

sInterpolator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.9 Parameters of the LaplacianPyramidsInterpolator. . . . . . . . . . . . 42
3.10 Attributes of the LaplacianPyramidsInterpolator. . . . . . . . . . . . . 42

58



Bibliography

[1] S. Axler, P. Bourdon, and R. Wade. Harmonic function theory. Vol. 137. Springer
Science & Business Media, 2013.

[2] Y. Bengio, J.-f. Paiement, P. Vincent, O. Delalleau, N. Roux, and M. Ouimet. “Out-
of-sample extensions for lle, isomap, mds, eigenmaps, and spectral clustering.”
In: Advances in neural information processing systems 16 (2003), pp. 177–184.

[3] M. D. Buhmann. “Radial basis functions.” In: Acta numerica 9 (2000), pp. 1–38.

[4] L. Buitinck, G. Louppe, M. Blondel, F. Pedregosa, A. Mueller, O. Grisel, V. Niculae,
P. Prettenhofer, A. Gramfort, J. Grobler, R. Layton, J. VanderPlas, A. Joly, B. Holt,
and G. Varoquaux. “API design for machine learning software: experiences from
the scikit-learn project.” In: ECML PKDD Workshop: Languages for Data Mining and
Machine Learning. 2013, pp. 108–122.

[5] P. J. Burt and E. H. Adelson. “The Laplacian pyramid as a compact image code.”
In: Readings in computer vision. Elsevier, 1987, pp. 671–679.

[6] E. Chiavazzo, C. W. Gear, C. J. Dsilva, N. Rabin, and I. G. Kevrekidis. “Reduced
models in chemical kinetics via nonlinear data-mining.” In: Processes 2.1 (2014),
pp. 112–140.

[7] R. R. Coifman and S. Lafon. “Geometric harmonics: a novel tool for multiscale
out-of-sample extension of empirical functions.” In: Applied and Computational
Harmonic Analysis 21.1 (2006), pp. 31–52.

[8] R. R. Coifman, S. Lafon, A. B. Lee, M. Maggioni, B. Nadler, F. Warner, and
S. W. Zucker. “Geometric diffusions as a tool for harmonic analysis and structure
definition of data: Diffusion maps.” In: Proceedings of the national academy of sciences
102.21 (2005), pp. 7426–7431.

[9] M. N. Do and M. Vetterli. “Framing pyramids.” In: IEEE Transactions on Signal
Processing 51.9 (2003), pp. 2329–2342.

[10] Á. Fernández, N. Rabin, D. Fishelov, and J. R. Dorronsoro. “Auto-adaptive
multiscale Laplacian Pyramids for modeling non-uniform data.” In: Engineering
Applications of Artificial Intelligence 93 (2020), p. 103682. issn: 0952-1976. doi:
https://doi.org/10.1016/j.engappai.2020.103682.

59

https://doi.org/https://doi.org/10.1016/j.engappai.2020.103682


Bibliography

[11] C. Fowlkes, S. Belongie, and J. Malik. “Efficient spatiotemporal grouping using
the nystrom method.” In: Proceedings of the 2001 IEEE Computer Society Conference
on Computer Vision and Pattern Recognition. CVPR 2001. Vol. 1. IEEE. 2001, pp. I–I.

[12] C. R. Harris, K. J. Millman, S. J. van der Walt, R. Gommers, P. Virtanen, D.
Cournapeau, E. Wieser, J. Taylor, S. Berg, N. J. Smith, R. Kern, M. Picus, S. Hoyer,
M. H. van Kerkwijk, M. Brett, A. Haldane, J. F. del R’ıo, M. Wiebe, P. Peterson,
P. G’erard-Marchant, K. Sheppard, T. Reddy, W. Weckesser, H. Abbasi, C. Gohlke,
and T. E. Oliphant. “Array programming with NumPy.” In: Nature 585.7825 (Sept.
2020), pp. 357–362. doi: 10.1038/s41586-020-2649-2.

[13] P. T. Inc. Collaborative data science. 2015. url: https://plot.ly.

[14] S. S. Lafon. “Diffusion maps and geometric harmonics.” In: (2004).

[15] D. Lehmberg, F. Dietrich, G. Köster, and H.-J. Bungartz. “datafold: data-driven
models for point clouds and time series on manifolds.” In: Journal of Open Source
Software 5.51 (2020), p. 2283. doi: 10.21105/joss.02283.

[16] A. W. Long and A. L. Ferguson. “Landmark diffusion maps (L-dMaps): Acceler-
ated manifold learning out-of-sample extension.” In: Applied and Computational
Harmonic Analysis 47.1 (2019), pp. 190–211.

[17] G. Mishne and I. Cohen. “Multiscale anomaly detection using diffusion maps.”
In: IEEE Journal of selected topics in signal processing 7.1 (2012), pp. 111–123.

[18] E. A. Nadaraya. “On estimating regression.” In: Theory of Probability & Its Applica-
tions 9.1 (1964), pp. 141–142.

[19] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M.
Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D.
Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. “Scikit-learn: Machine
Learning in Python.” In: Journal of Machine Learning Research 12 (2011), pp. 2825–
2830.

[20] N. Rabin and R. R. Coifman. “Heterogeneous datasets representation and learning
using diffusion maps and Laplacian pyramids.” In: Proceedings of the 2012 SIAM
International Conference on Data Mining. SIAM. 2012, pp. 189–199.

[21] D. Slepian. “Prolate spheroidal wave functions, Fourier analysis and uncer-
tainty—IV: extensions to many dimensions; generalized prolate spheroidal func-
tions.” In: Bell System Technical Journal 43.6 (1964), pp. 3009–3057.

[22] D. Slepian and H. O. Pollak. “Prolate spheroidal wave functions, Fourier analysis
and uncertainty—I.” In: Bell System Technical Journal 40.1 (1961), pp. 43–63.

[23] B. Sonday. Systematic model reduction for complex systems through data mining and
dimensionality reduction. Princeton University, 2011.

60

https://doi.org/10.1038/s41586-020-2649-2
https://plot.ly
https://doi.org/10.21105/joss.02283


Bibliography

[24] S. Van der Walt, J. L. Schönberger, J. Nunez-Iglesias, F. Boulogne, J. D. Warner,
N. Yager, E. Gouillart, and T. Yu. “scikit-image: image processing in Python.” In:
PeerJ 2 (2014), e453.

[25] P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy, D. Cournapeau,
E. Burovski, P. Peterson, W. Weckesser, J. Bright, S. J. van der Walt, M. Brett,
J. Wilson, K. J. Millman, N. Mayorov, A. R. J. Nelson, E. Jones, R. Kern, E. Larson,
C. J. Carey, İ. Polat, Y. Feng, E. W. Moore, J. VanderPlas, D. Laxalde, J. Perktold,
R. Cimrman, I. Henriksen, E. A. Quintero, C. R. Harris, A. M. Archibald, A. H.
Ribeiro, F. Pedregosa, P. van Mulbregt, and SciPy 1.0 Contributors. “SciPy 1.0:
Fundamental Algorithms for Scientific Computing in Python.” In: Nature Methods
17 (2020), pp. 261–272. doi: 10.1038/s41592-019-0686-2.

[26] C. Williams and M. Seeger. “Using the Nyström Method to Speed Up Kernel
Machines.” In: Advances in Neural Information Processing Systems. Ed. by T. Leen,
T. Dietterich, and V. Tresp. Vol. 13. MIT Press, 2001, pp. 682–688.

61

https://doi.org/10.1038/s41592-019-0686-2

	Acknowledgments
	Abstract
	Contents
	Introduction
	State of the art
	Geometric Harmonics
	Properties of Geometric Harmonics
	Extension algorithm
	Bandlimited extension
	Gaussian extension
	Multiscale extension

	Laplacian Pyramids
	Basic Laplacian Pyramids
	Auto-adaptive Laplacian Pyramids

	Datafold for data-driven model parametrization

	Geometric Harmonics and Laplacian Pyramids
	Implementation requirements and constraints
	Instantiation
	Fitting the parameters
	Necessary base classes

	Implementation of Geometric Harmonics
	Old Software Design
	Optimized Software Design

	Implementation of Multiscale Geometric Harmonics
	The current state
	The reworked model

	Implementation of Laplacian Pyramids
	The current state
	Proposed enhancements

	Testing and Demonstrations
	Conducted tests
	Unit circle to the plane
	Image interpolation
	Synthetic example


	Conclusion
	List of Figures
	List of Tables
	Bibliography

