
Computational Science and Engineering
Technical University of Munich

Master’s Thesis

Light Microscopy Image Analysis using
Neural Networks

Jan Watter

Computational Science and Engineering
Technical University of Munich

Master’s Thesis

Light Microscopy Image Analysis using Neural
Networks

Author: Jan Watter
Examiner: Prof. Dr. Christian Mendl
Assistant advisor: Dr. Felix Dietrich
Submission Date: April 15th, 2021

Declaration for the master’s thesis

Name: Jan Watter
Student ID Number (Matrikelnummer): 03665485
Supervisor: Dr. Felix Dietrich
Examiner: Prof. Dr. Christian Mendl
Title: Light Microscopy Image Analysis using

Neural Networks

I hereby declare that this thesis is entirely the result of my own work except where
otherwise indicated. I have only used the resources given in the list of references.

April 15th, 2021 Jan Watter

Acknowledgments

I want to thank Prof. Christian Mendl and Dr. Felix Dietrich for the possibility to write
this master’s thesis at the Chair of Scientific Computing in Computer Science. Felix
always helped me out, whenever I had questions about my research or writing. Our
discussions helped me to gain a better understanding in image processing, machine
learning and 3D modeling. I would also like to thank Prof. Caroline Gutjahr and Dr.

Catarina Cardoso from the Gutjahr Lab at the TUM School of Life Sciences for introducing
me to their research in plant genetics. Without them, this collaboration would not have

been possible. In addition, I want to thank Susi and Anthony for proofreading this thesis.
This thesis marks the last step of my master’s studies, which complements my academic
education started in 2014. This journey was (almost) always supported and encouraged
by my parents and grandparents, for which I am deeply grateful for. My fellow students
Moritz, Max, Felix, Martin and Mihai were also always supportive. A special thanks to

the Newmanhaus and its roommates, my friends from Munich and home.

vii

Abstract

Arbuscular mycorrhizal is a symbiosis of soil fungi and vascular land plants. Current vi-
sual analysis methods of arbuscular mycorrhizal fungi (AMF) rely on staining of plant
roots, imaging the samples and manual counting of fungal structures in microscopy im-
ages.

We developed a software pipeline that automates parts of this image analysis. Therefore,
we trained a convolutional neural network (CNN) that generates semantic segmentations:
it colors the pixels of the microscopy images according to their corresponding class. These
classes represent the fungal structures arbuscules, vesicles and hyphae.

The idea of this thesis is to build a 3D model of a fungal-colonized root section. This
allows us to procedurally generate synthetic training data that is used as input for the
U-Net deep learning architecture.

Different data augmentations have been applied and several networks have been trained.
The networks delivered high-confidence predictions on unseen data. In particular, a F1-
score of 84% was achieved for the fungal objects. Future steps for this ongoing research
project include to apply the findings of this thesis to real-world microscopy data. Top-
ics like image similarity and transfer learning have been discussed and could be future
applications of the trained networks.

ix

Contents

 Acknowledgements vii

 Abstract ix

 Contents xi

 List of Figures xiii

 List of Tables xv

 1 Introduction 1

 2 State of the Art 3

 2.1 Arbuscular Mycorrhiza Fungi . 3

 2.2 AMF Preparation and Imaging . 4

 2.3 Computer Vision . 5

 2.4 Machine Learning . 7

 2.4.1 Supervised Learning . 8

 2.4.2 Convolutional Neural Networks (CNNs) 8

 2.4.3 Data Augmentation . 12

 2.4.4 Transfer Learning . 13

 2.5 Image Similarity . 14

xi

CONTENTS

 2.6 Related Software for Biological Image Processing 15

 3 Light Microscopy Image Analysis using Neural Networks 17

 3.1 Technical Environment and Utilized Software 17

 3.2 Microscopy Data . 18

 3.3 Data Pipeline . 21

 3.3.1 Simulation Pipeline Using Blender . 21

 3.3.2 Data Pre-processing . 26

 3.3.3 Data Augmentation . 29

 3.3.4 Data Post-processing . 32

 3.4 Evaluation Metrics and Loss Functions . 33

 3.4.1 Pixel Accuracies . 33

 3.4.2 Intersection over Union or Jaccard Index 34

 3.4.3 Dice-Coefficient or F1-score . 35

 3.4.4 Rand Error . 35

 3.4.5 Loss Functions in PlantSeg . 36

 3.5 U-Net Architecture and PyTorch Implementation 37

 3.6 Training Results . 39

 4 Conclusion 45

 Appendix 45

 Bibliography 53

xii

List of Figures

 2.1 Visualization of AMF structures showing intracellular hyphae growing through
the root cortex of the host plant. Degenerated and fully developed arbus-
cules are indicated. With permission from [29]. 4

 2.2 Two different representations of the same data. The microscopy image was
taken by Catarina Cardoso. 5

 2.3 Computer vision: semantic segmentation, classification, object detection and
instance segmentation. Taken from [19]. 6

 2.4 A three-layered feedforward neural network composed of an input, a hid-
den and an output layer. The information moves only in one direction from
the input nodes through the hidden nodes to the output nodes. Taken from
[9], licensed under CC BY-SA 3.0, author: Christoph Burgmer. 7

 2.5 Discrete 2D convolution. For simplification the image pixel-values and filter
weights are chosen with values of −1, 1. Taken from [40], licensed under
CC0 1.0 Universal (CC0 1.0). 10

 2.6 Different ML learning techniques. On the left-hand side: traditional ML, on
the right-hand side: transfer learning. Based on [35] Figure 1. 13

 3.1 Annotated colonized root section. The red circles represent arbuscules, the
green circles represent vesicles and some of the hyphal structures are anno-
tated as yellow lines. 19

 3.2 Six example microscopy images from three different imaging rounds, show-
ing the variability of the data. 20

 3.3 Modified schematic visualization of a cross-section of a dicot root taken
from [45], licensed under CC BY 3.0. 22

 3.4 Screenshots of the blender 3D Viewport showing different objects from the
3D scene. (a) is rendered in wireframe shading, while (b)-(d) are rendered
in solid-view. 23

 3.5 Armature and part of the mesh displayed as wireframe. 24
 3.6 Microscopy image used as main reference for creating the shaders and mod-

eling the plant root. An air bubble is seen on the right-hand side. Image
taken by Catarina Cardoso. 25

 3.7 Realistic render on the left and the corresponding segmented target images
(segmentation maps) on the right. The segmented objects shown here are
root cortex (green), vesicles (blue), arbuscules (yellow) and hyphae (red). . . 26

xiii

LIST OF FIGURES

 3.8 Example poses of the root procedurally generated by the render pipeline. . 27
 3.9 Pre-processing of blender-output, exemplary with 4 classes to segment. . . . 28
 3.10 Data augmentation: Flip image . 29
 3.11 Data augmentation: Rotate 90 degrees . 30
 3.12 Data augmentation: Rotation with user-defined angle 30
 3.13 Data augmentation: Elastic deformation . 30
 3.14 Data augmentation: Random contrast . 31
 3.15 Data augmentation: Gaussian noise . 31
 3.16 Data augmentation: Poisson noise . 32
 3.17 Connected components algorithm of skimage. 32
 3.18 Visual equation of IoU. Author: Adrian Rosebrock [42]. Licensed under CC

BY-SA 4.0. 34
 3.19 The original 3D U-Net architecture. Blue boxes represent feature maps. The

number of channels is denoted above each feature map. With permission
from Özgün Çiçek [11] and Springer International Publishing AG. 37

 3.20 Network loss for a 4-class model on the training set. The diagram shows the
loss on the y-axis and no. of iterations on the x-axis. 40

 3.21 Evaluation score for a 4-class model on the training set. 40
 3.22 Network loss for a 4-class model on the validation set. 41
 3.23 Evaluation score for a 4-class model on the validation set. 41
 3.24 Predictions of the U-Net, compared to the groundtruth and the correspond-

ing rendered data. The images are taken from the test set. 43

xiv

List of Tables

 3.1 Technical properties of the atsccs68 compute node, which was used to train
the networks and the local machine, which was used to generate the syn-
thetic image training data using blender. 18

 3.2 Image properties of the microscopy data taken by a Leica DM6 B wide-field
microscope using a 10x magnification objective 19

 3.3 Confusion matrix . 34
 3.4 Data properties of a 4-class model. 40
 3.5 Evaluation metrics of a 4-class model on the test set. Precision, Recall, F1-

score and Jaccard-index are first calculated for each label. Accuracy and the
Adjusted Rand-error are metrics that take all classes into account. Because
the background class is very large, compared to the fungal object classes,
we included an averaged version of the F1-score and Jaccard-index, that
excludes the background class. The results are shown in per cent. 41

xv

1 Introduction

Arbuscular mycorrhiza (AM) is a mutualistic symbiotic relationship between soil fungi
and most families of land plants, occurring in more than 85% of vascular land plants [46].
With regards to geographical distribution, it is probably one of the most common sym-
biosis on earth [23]. The AM fungus provides the plant with mineral nutrients, while it
receives carbohydrates that the plant generates via photosynthesis. Structures similar to
arbuscules were discovered in the earliest land plant fossils (> 400 million years ago), in-
dicating that AM have been in existence when plants colonized the land.

Research into cell and developmental biology is driven by the possibility of increased
exploitation of the benefits of this symbiosis for sustainable agriculture. Furthermore, it
has revealed insights into inter-organismic communication (fungi and land plants belong
to different biological kingdoms) and into the plasticity of plant development.

Contemporary approaches of quantifying AM fungal colonization are based on visual
diagnosis using microscopes or image scanners to create digital images. These methods
rely on staining of the colonized roots, imaging of the samples, followed by manual scor-
ing, done by experimenters. This includes simple and repetitive tasks prone to variation
and human errors.

Computer vision is the scientific field that addresses the task of giving computers a
high-level understanding of digital images. With the increase of computational power
over the recent years, machine learning has enabled immense advances in data analysis
and computer vision in particular.

A class of computational models that learn to extract information at several levels of
abstractions from input data, is called deep learning. These methods are based on artificial
neural network algorithms, which are inspired by the distributed communication nodes
and information processing of biological systems [30].

In many computer vision tasks like image classification and image segmentation, convo-
lutional neural networks (CNNs) have outperformed traditional image analysis methods.
Typical CNNs consist of three types of processing layers: First, a convolutional layer that
uses local receptive fields, called filters, to extract visual features from a group of neigh-
bouring pixels. Following this, the resulting features maps are down-sampled to reduce
the size of the features and thus reducing computational complexity, done by the pooling
layer.

After several iterations through convolutional and pooling layers, a fully-connected
layer follows. This layer maps higher-dimensional feature maps to a one-dimensional
vector that allows for high-level decision making, like classification or further processing.

1

1 Introduction

CNNs are responsible for many advances in domains such as diagnostic imaging [55],
self-driving cars [5], face recognition [24] and also plant pathology [32].

Despite having performed well in many vision tasks, the neural networks rely heavily
on big data. In order to generalize from seen data to unseen data, the neural networks
require a lot of high-quality and often labeled training data. In many application domains,
this represents a bottleneck and barrier for applying these methods, since there is no access
to big data or generating new datasets is infeasible.

The following thesis makes use of a CNN-architecture called U-Net [41] to build a
pipeline that detects fungal structures and classifies the corresponding pixels in the im-
ages. Due to the limited amount of real-world training data, we built a 3D model of a
fungal-colonized plant section, using the computer graphics software blender. This al-
lowed us to procedurally generate synthetic testing data.

The thesis is structured as follows: We start with an introduction to arbuscular myc-
orrhizal fungi (AMF) and outline how AMF probes are prepared and imaged (cf. 2.1).
Subsequently, we describe the task of image segmentation within the context of computer
vision and how machine learning techniques deal with this problem (cf. 2.3 and 2.4).

We continue to describe the theoretical background of how CNNs work (cf. 2.4.2) and
discuss data augmentation techniques (cf. 2.4.3) and transfer learning (cf. 2.4.4) as methods
to deal with poor data availability. Since capturing the similarity and comparing different
images is a recurring theme in this thesis, we quickly discuss the topic of image similarity
(cf. 2.5) and finish the chapter State of the Art (cf. 2) with related software for biological
image processing (cf. 2.6).

The body of the thesis (cf. 3) starts with the technical environment of the machines that
were used for network training and we list the utilized software (cf. 3.1). Next, the real-
world microscopy data (cf. 3.2) and the generation of the synthetic training dataset (cf.
 3.3) are discussed. Here, we show the simulation steps, that were implemented to model
the biology of a colonized plant root using blender and the following pre-processing steps
and data augmentations that were applied.

In the following, we describe the U-Net architecture and the implementation that was
used and summarize some of its implementation details like evaluation metrics and loss
functions, before showing training and evaluation results.

In the Conclusion chapter (cf. 4), we provide a brief summary and outlook about possible
next steps for this ongoing research project.

2

2 State of the Art

This thesis emerged from a collaboration between the Professorship of Plant Genetics (Gut-
jahr Lab) of the TUM School of Life Sciences and the Chair of Scientific Computing in Com-
puter Science at the TUM Department of Informatics. At the Gutjahr Lab interactions of
plants with nutrient-delivering arbuscular mycorrhiza fungi are investigated, while the
Chair of Scientific Computing uses advanced computing technologies to understand and
solve research problems from many different domains.

The goal of this chapter is to explain the biological background of this research project
and provide the theoretical background of the computational methods, that have been
employed.

2.1 Arbuscular Mycorrhiza Fungi

A mycorrhiza is a mutualistic symbiotic relationship between a fungus and a vascular
land plant. Arbuscular mycorrhizal (AM) is a type of this association, where an arbuscular
mycorrhizal fungus (AMF) colonizes the host plant’s root tissues.

Fungal hyphae, which are long, filamentous branches and are collectively called my-
cellium, grow inside the root and penetrate its cell walls to form arbuscules that become
surrounded by the plasma membrane of the plant cell [6]. This results in a very invasive
mutualistic relationship between the plant and the fungus. It is found in more than 85% of
vascular plant families and is of huge importance for agriculture, ecosystem management
and restoration [46].

The major function of these symbiotic relationships is nutrient acquisition. The arbus-
cules, which are highly branched, tree-shaped structures, create greater contact surface
areas between the fungus and the plant, which facilitate greater nutrient transfer. The fun-
gus aids this nutrient transfer with the uptake of phosphorus, nitrogen, water and amino
acids. In exchange for providing these nutrients, the plant provides carbon, which it cre-
ates via photosynthesis [27].

The development process of AMF can be separated into distinct steps. In the pre-
contact stage the symbiotic partners exchange signalling molecules to show mutual recog-
nition. Next, the contacted plant cells form an intracellular accommodation structure that
guides the fungus into deeper cell layers. Finally, the fungal hyphae progress longitudi-
nally through the spaces between the cells of the root cortex. These hyphae form further
branches to initiate arbuscle formations inside plant cells. Post-arbuscular development
includes the differentiation of vesicles, which store oil-rich products.

3

2 State of the Art

While these differentiation steps follow a precise morphogenetic program, the hyphal
network as a whole is not synchronized. Thus, the various types of fungal structures can
occur simultaneously inside the plant root. A schematic visualization of AMF is shown in
Figure 2.1 .

Arbuscules, vesicles and hyphae are the objects, in descending order of importance, that
shall be detected by the algorithm later on.

2.2 AMF Preparation and Imaging

Genetic manipulation of symbiotic fungi remains challenging and visual analysis of AMF
colonization complements the molecular methods and gene sequencing knowledge.

We continue to summarize how the AMF samples were prepared and imaged: Lotus
japonicus ecotype Gifu wild-type (plant-name) seeds were scarified and surface sterilized.
The imbibed seeds were germinated for 10-14 days and cultivated in quartz sand as sub-
strate. For colonization with Rhizophagus irregularis (fungus-name) the roots were inocu-
lated with 500 spores per plant and harvested after five weeks after inoculation. To make
the fungal structures visible under the microscope, they were stained according to the ink-
vinegar-staining method described in [51].

Colonized root sections were then imaged by a Leica DM6 B wide-field microscope us-
ing a 10x magnification objective at 10-14 different focal planes across the root diameter.

Figure 2.1: Visualization of AMF structures showing intracellular hyphae growing through
the root cortex of the host plant. Degenerated and fully developed arbuscules
are indicated. With permission from [29].

4

2.3 Computer Vision

2.3 Computer Vision

Computer vision can be described as giving computers the ability to mimic or simulate
human vision using sensors and algorithms. To illustrate the complexity of this task, con-
sider Figure 2.2 , where two representations of a grayscale image are shown. Note that
both of these representations contain the same information but for a human observer it is
challenging to find correspondence between them.

Figure 2.2: Two different representations of the same data. The microscopy image was
taken by Catarina Cardoso.

The image representation on the left plots the brightness value of the corresponding
pixel on the vertical axis. The image representation on the right is more common and a
human observer can quickly identify what is shown.

Humans use a lot of a-priori knowledge to interpret images, while a machine begins
with an array of numeric values and algorithms draw conclusions from that alone. In
this context, machine learning can be viewed as the attempt to teach the machine some a-
priori knowledge. Machine learning techniques feed the machine with many example data
points, so it learns the underlying distribution of certain features of the image.

The task in this thesis is to implement an algorithm that finds the pixels that correspond
to fungal structures in digital images.

In the field of computer vision this problem is called semantic segmentation. It refers to
the process of assigning labels to specific regions of an image to simplify image analysis. It
can be seen as a pixel-level classification task, where the goal is to partition the image into
coherent regions. Applications range from computed tomography, where a tumor has to
be located in a volumetric image and isolated from the rest of the image, to face recognition
in smartphones [7].

Commonly, the machine learning approaches of object detection and image segmenta-
tion are classified into the following categories:

5

2 State of the Art

• Image classification has the goal of answering the question of what object is depicted
in the image. Often, the aim is to find a bounding box that additionally localizes the
object. Figure 2.3 visualizes that the algorithm correctly classified and localized the
object cat.

• Object detection wants to determine where multiple objects are located in given
images and how each object can be categorized. It can deal with multiple objects,
while image classification deals with a single objects only.

• Semantic segmentation is a technique where each pixel shall be labeled (or colored)
according to its corresponding class. The goal is to find the boundaries of the ob-
jects, in contrast to only draw bounding boxes surrounding the objects. It does not
differentiate across instances of the same object.

• Instance segmentation works similar to semantic segmentation but classifies each
instance as a separate entity. For example if there are two dogs in an image, semantic
segmentation only assigns the label Dog to the corresponding pixels, while instance
segmentation assigns Dog 1 and Dog 2 labels to the corresponding image regions.

Figure 2.3: Computer vision: semantic segmentation, classification, object detection and
instance segmentation. Taken from [19].

Machine learning techniques, especially deep learning and convolutional neural net-
works have superseded early image processing methods that rely on low-level vision cues
in automated image processing [3].

6

2.4 Machine Learning

2.4 Machine Learning

Machine learning can be defined in many different ways. We propose to use the following
definition from [33]:

“Machine learning can be broadly defined as computational methods using experience
to improve performance or to make predictions. Here, experience refers to the past
information available to the learner, which typically takes the form of electronic data
collected and made available for analysis. This data could be in the form of digitized
human-labeled training sets, or other types of information obtained via interaction with
the environment.”

Artificial neural networks (ANNs) are a class of machine learning algorithms that are in-
spired by the structure and function of biological nervous systems like the human brain.
They consist of a high number of linked computational nodes, referred to as neurons,
which change their weights in order to optimize a certain cost function.

The basic structure of ANNs is shown in 2.4 . Commonly, a multidimensional vector is
loaded as input, which then gets distributed to the hidden layers. The process of adjust-
ing the weights, in order to optimize a cost function, is referred to as learning. A system
compromised of multiple, stacked hidden layers falls in the category of deep learning net-
works.

Figure 2.4: A three-layered feedforward neural network composed of an input, a hidden
and an output layer. The information moves only in one direction from the
input nodes through the hidden nodes to the output nodes. Taken from [9],
licensed under CC BY-SA 3.0, author: Christoph Burgmer.

7

2 State of the Art

2.4.1 Supervised Learning

In the supervised learning paradigm, the goal is to approximate a function called classifier,
f : X → Y , from a training dataset Tn, which is composed of input-output pairs (xi, yi),
where xi ∈ X and yi ∈ Y :

Tn = {(x1, y1) , . . . , (xn, yn)} ∈ (X × Y)n.

X describes some feature set, usually X ⊂ Rd and Y ⊂ N is discrete for classification
problems.

In semantic segmentation, the training dataset Tn consists of RGB-images and Y is the
set of labeled (or annotated or output) images. To be more precise, the goal of the neu-
ral network (NN) is to map each pixel from the RGB-color space, which usually contains
256 values in the Red, Green and Blue channel, to the label-space, which is made up of
consecutive integers, depending on how many objects shall be classified.

In this framework of statistical learning, there are two fundamental concepts:

1. The training data is identically and independently generated from a fixed but un-
known joint probability distribution function P (x, y). The goal of the learning pro-
cess is to find the function f that attempts to model the dependency encoded in
P (x, y) between the input x and the output y.

2. To evaluate the agreement between the prediction f(x) and the ground-truth y, a
loss or cost function L(f(x), y) is introduced. Loss functions are classified according
to their regularity or singularity properties and according to their ability to produce
convex or non-convex criteria for optimization [16]. The loss functions that are com-
monly used in semantic segmentation tasks are explained in section 3.4.5 .

2.4.2 Convolutional Neural Networks (CNNs)

The implementation we utilized to perform semantic segmentation is based on convolu-
tional neural networks (CNNs), which are powerful image classifiers. The main difference
to ANNs is that CNNs try to encode image specific features into the architecture, making
the network more suited for image-focused tasks.

The input vector consists of the pixel intensity values of an image. Consequently, a
series of hidden layers is used to extract features from the input image. Each layer in
a CNN applies a different set of filters by convolution and then combines the result by
addition, feeding the output into the next layer of the network. During training, the CNN
automatically learns the values of these filters. The last layer in a CNN uses these higher-
level features to make predictions, regarding the contents of the image.

The CNN structure we used in this thesis, is called U-Net [41] and consists of convo-
lutional, activation, max-pooling and fully-connected layers. We continue to explain the
functionality of these layers.

8

2.4 Machine Learning

• The input layer represents the image data itself, specifically the pixel values of the
image. When dealing with RGB images the number of channels is three, one for each
color. The dimension of channels is often referred to as depth (for RGB images: depth
= 3, for grayscale images: depth = 1).

• Convolutional layers are the core building block of CNNs. They consist of a set of
k filters (also called kernels), which extract features from the input image. When the
data is fed into a convolutional layer, each filter is slid across the image to produce a
2D activation or feature map.

In mathematical terms, an element-wise multiplication (dot product) between a filter-
sized patch of the input image and the filter is applied. By doing this, the convolu-
tional layers activate different, local parts of the image and map certain features of
the image to a new layer.

Each kernel produces an activation map which will be stacked along the depth di-
mension and is the input for the next layer. This concatenation in conjunction with
the following layers results in a hierarchical representation of the image. As [28]
points out:

“Pixels are assembled into edglets, edglets into motifs, motifs into parts, parts into
objects, and objects into scenes.”

The following mathematical expressions for this chapter are taken from [37]: the
output Y (l)

i of layer l consists of m(l)
1 feature maps of size m(l)

2 ×m
(l)
3 . A feature map

Yi is computed as

Y
(l)
i = B

(l)
i +

m
(l−1)
1∑
j=1

K
(l)
i,j ∗ Y

(l−1)
j (2.1)

where B(l)
i is a bias matrix and K

(l)
i,j is the filter with a specified size connecting the

jth feature map in layer (l − 1) with the ith feature map in layer (l). The operation
(I ∗K) describes a discrete 2D convolution. For a given filter K ∈ R2h1+1×2h2+1 the
discrete 2D convolution of Image I with kernel K is given by

(I ∗K)r,s :=

h1∑
u=−h1

h2∑
u=−h2

Ku,vIr−u,s−v (2.2)

with filter K defined as

K =

 K−h1,−h2 · · · K−h1,h2
... K0,0

...
Kh1,−h2 · · · Kh1,h2

 .

9

2 State of the Art

The resulting feature map provides information on how well the local filter fits the
patch of the image. Figure 2.5 shows an image which gets convolved with a filter
from top left to bottom right and the resulting feature map.

Figure 2.5: Discrete 2D convolution. For simplification the image pixel-values and filter
weights are chosen with values of −1, 1. Taken from [40], licensed under CC0
1.0 Universal (CC0 1.0).

• An activation layer introduces a non-linearity to the network, so that it is able to
learn more non-linear patterns from the data. It consists of an activation function that
takes a feature map, generated by the convolutional layer, and creates an activation
map as its output.
Since the activation function is an element-wise operation over the input volume,
the dimensions of the input and the output are identical. Expressed in mathematical
notation: the activation function is a function of the feature data Y

(l−1)
i from the

convolutional layer l − 1 and generates the activation volume Y (l)
i :

Y
(l)
i = f(Y

(l−1)
i) (2.3)

where,

Y
(l)
i ∈ Rm

(l)
1 ×m(l)

2 ×m(l)
3

Y
(l−1)
i ∈ Rm

(l−1)
1 ×m(l−1)

2 ×m(l−1)
3

m
(l)
1 = m

(l−1)
1 ∧m(l)

2 = m
(l−1)
2 ∧m(l)

3 = m
(l−1)
3

with m
(l−1)
1 2D feature maps generated by the same number of filters in convolu-

tional layer (l − 1), each with size m(l−1)
2 ×m(l−1)

3 . Common activation functions are
sigmoid, hyperbolic tangent functions or (leaky) rectified linear units (ReLUs).

10

2.4 Machine Learning

• The pooling layer performs downsampling along the spatial dimensionality of the
input data. It has two hyperparameters:

1
 the spatial extent of the filter F (l) and the

stride S(l).
The input of a pooling layer is a feature volume of size m(l−1)

1 ×m(l−1)
2 ×m(l−1)

3 and
the output is a volume of size m(l)

1 ×m
(l)
2 ×m

(l)
3 with

m
(l)
1 = m

(l−1)
1

m
(l)
2 =

(
m

(l−1)
2 − F (l)

)
/S(l) + 1

m
(l)
3 =

(
m

(l−1)
3 − F (l)

)
/S(l) + 1

Since feature detection is more relevant, compared to the features exact location, the
pooling operation aims to preserve detected features as more compact representa-
tions. It discards less significant data at the cost of spatial resolution. Put differently,
it reduces the number of parameters and the computational complexity of the net-
work.

• The fully-connected layer in a CNN maps the resulting activation map from the pre-
vious layers to a class probability distribution. Mathematically this can be expressed
as

y
(l)
i = f

(
z
(l)
i

)
with z

(l)
i =

m
(l−1)
1∑
j=1

w
(l)
i,jy

(l−1)
i (2.4)

The goal of this layer is to train the weight parameters w(l)
i,j to create a stochastic

likelihood representation of each class, based on the concatenation of previous layers.
Similar to the activation layer, the function f is a non-linear function.

To sum up: CNNs use weighted, sparsely connected layers, which preserve the spatial
characteristics of the images. Convolutional and pooling layers downsample the resolu-
tion of images while expanding the depth of their feature maps. This can generate lower-
dimensional and more useful representations of the high-dimensional inputs. The success
of CNNs has led to high interest and optimism in implementing deep learning architec-
tures to computer vision tasks.

1Hyperparameters are parameters which are set before training and specify some aspect of the network
architecture or training process.

11

2 State of the Art

2.4.3 Data Augmentation

Many scientific fields hope to improve current benchmarks by using deep CNNs for com-
puter vision tasks. One of the most challenging aspects regarding the training of NNs, is
to improve their ability to generalize from seen data (training data) to unseen data (test
data).

Overfitting the training data is a main reason for poor generalization ability. It can
be identified when the validation error starts to increase, while the training error con-
tinues to decrease during network training. Data augmentation is a powerful technique
to reduce overfitting. Others include using more sophisticated NN-architectures, batch-
normalization and transfer learning.

Data augmentation works under the assumption that the training dataset can be artifi-
cially increased and thus more information can be extracted by the NN.

Before discussing augmentation techniques it might be useful to mention some of the
challenges that the network encounters in image segmentation tasks: different lightning
conditions, noisy data, rotations, shape deformations, background objects and different
scales. The task of data augmentation is to capture these variances of the data and apply
them to the training dataset, so that the network generalizes better.

Data augmentation techniques can be classified into the following two, not mutually
exclusive, categories:

1. Data warping augmentations transform the input images such that their label is
preserved. Examples are color transformations, geometric transformations, erasing
parts of the image, adversarial training and neural style transfer.

2. Oversampling techniques create new, synthetic image instances and add them to the
training dataset. Examples include mixing images, feature space augmentations and
generative adversarial networks.

In this thesis only data warping augmentations have been used, as presented in chapter
 3.3.2 . For a comprehensive survey on data augmentations in deep learning, it is referred
to [44].

12

2.4 Machine Learning

2.4.4 Transfer Learning

Many ML algorithms perform well under the assumption that training and test data are
drawn from the same distribution. However, if the distribution changes they need to be
rebuilt from scratch. This entails the need for collecting new training data and in many
real-world applications this can be expensive or impossible. In such cases it would be use-
ful to reduce the need and effort to recollect training data and have a knowledge transfer
between different domains.

Semi-supervised classification can be seen as a kind of precursor of transfer learning.
It is used if there is too few labeled data, to build a good classifier, available by utilizing
a large amount of unlabeled data and a small amount of labeled data. Variations of su-
pervised and semi-supervised learning paradigms have been studied [57] but still assume
that the underlying distribution of labeled and unlabeled data is the same.

In contrast to this, transfer learning allows the distributions, tasks and domains used
in training and test data to be different. It aims to extract knowledge from one or more
source tasks and applies this knowledge to a novel target task. This is different to mul-
titask learning, where all of the source and target tasks are learned simultaneously, since
transfer learning cares more about the target task.

Learning System Learning System Learning System

Different Tasks

Learning Process of Traditional Machine Learning

Learning System

Source Tasks

Learning Process of Transfer Learning

Knowledge

Target Task

Figure 2.6: Different ML learning techniques. On the left-hand side: traditional ML, on the
right-hand side: transfer learning. Based on [35] Figure 1.

The different learning processes of traditional ML algorithms and transfer learning is
seen in Figure 2.6 . While the traditional ML algorithms learn each new task from scratch,
transfer learning algorithms transfer knowledge from previous tasks to a target task, which
has fewer training data available.

13

2 State of the Art

For a mathematical definition, we use following definitions similar to 2.4.1 but differen-
tiate between feature space X and feature set X :

Domain D consists of feature space X and a marginal probability distribution P (X),
with X = x1, ..., xn ∈ X . Generally speaking, two domains are different, when they have
different feature spaces or marginal probability distributions.

For a specific domain D = {X , P (X)}, a task consists of label space Y and a classifier
f(·), which can be learned from training data consisting of input-output pairs xi, yi with
xi ∈ X and yi ∈ Y . This task is denoted by T = {Y, f(·)}. Following this, a unified
definition of transfer learning reads as follows [44]:

“Given a source domain DS and learning task TS , a target domain DT and learning
task TT , transfer learning aims to help improve the learning of the target predictive
function fT (·) in DT using the knowledge in DS and TS , where DS 6= DT , or TS 6=
TT .”

We did not employ transfer learning in this work but a potential application could be
to use our model as a source task and apply transfer learning to a target task, like the
segmentation of a real-world AMF light-microscopy image dataset.

2.5 Image Similarity

Image similarity occurs in different contexts in this thesis:

• The NN evaluates the similarity between its prediction and the groundtruth and
adjusts its weights to maximize similarity (or minimize its loss function) accordingly.
Evaluation metrics and loss functions for semantic segmentation are discussed in
detail in section 3.4 .

• The computer generated training data should resemble the real-world microscopy
images as close as possible. The microscopy images show a lot of variability as seen
and discussed in section 3.2 . We do not know the underlying distribution of this
data. One could argue that the NN tries to approximate this distribution during its
training.
In section 3.3.1 we explain the modeling of the 3D root model, and show the mea-
sures that were applied to generate realistic renderings.

In this section, we want to outline some theoretical aspects of image similarity.
It is a non-trivial task and active research field in computer vision. Here, the term simi-

larity measure is used as general term both for similarity measures which reach their max-
imum when A = B and dissimilarity or distance measures which reach their minimum
when A = B, for images A and B.

A quantitative image similarity measure between two images A and B has two com-
ponents: Firstly, a transformation T which extracts the characteristics of an input and

14

2.6 Related Software for Biological Image Processing

converts it to a multi-dimensional feature vector. Secondly, a distance measure D which
quantifies the similarity between two images, whereD is defined in the multi-dimensional
features space. [31].

S(A,B) = D(T (A), T (B)) (2.5)

A similarity measure or distance is considered a metric when it satisfies the following:

1. Nonnegativity: S(A,B) ≥ 0,

2. Reflexivity: S(A,B) = 0,

3. Symmetry: S(A,B) = S(B,A),

4. Triangle Inequality: S(A,C) + S(C,B) ≤ S(A,B).

Although the properties of having a metric are desirable, a similarity measure can be ef-
fective without being a metric. Similarity or distance measures that are invariant to sensor
parameters or insensitive to radiometric changes are often not metrics [22]. For example
measures that are formulated as joint probability distribution of image intensities are not
metrics but can be effective in comparing images captured by different sensors.

Similarity measures can be broadly divided into two, non-mutually exclusive, groups:

• Global Measures: Return a single value describing the overall similarity between
the two input images. Furthermore, they can be divided into measures which require
spatially registration of the input images and those which do not require the images
to be spatially registered.

• Local Measures: Return a similarity image or map which characterizes the local
similarity between the two input images. These measures need the input images to
be spatially registered.

Spatial image registration describes the process of transforming different types of image
data into the same coordinate system.

2.6 Related Software for Biological Image Processing

Recent progress in biological imaging has resulted in an increase of quantity and quality
of digital biological images [39]. With larger datasets, automated image analysis and high-
throughput methods become necessary, resulting in new tools developed in collaborations
between computer scientists, biologists, mathematicians and physicists. In this section we
briefly layout some of these tools.

• ImageJ (Fiji) is an open-source software, designed for analyzing scientific multidi-
mensional images [2]. Fiji refers to a distribution of ImageJ, where many plugins are
pre-installed. It remains a widely used application for image processing and data
analysis when dealing with biological image data.

15

2 State of the Art

• Ilastik is an open-source tool for interactive image classification, segmentation and
analysis leveraging machine learning algorithms [47]. The labels of the objects of in-
terest have to be assigned manually. This process slows down an automated pipeline
but is very user-friendly as no machine learning expertise or previous image process-
ing experience is required.

• Cellprofiler is an open-source software designed to help scientists identify and mea-
sure biological entities, process images and export data for further analysis [10]. The
users can create their own pipeline and use a number of algorithms to perform cell
segmentation.

• PlantSeg is an open-source pipeline for volumetric segmentation of plant tissues. It
employs a CNN to predict cell boundaries and graph partitioning to segment cells
based on the neural network predictions [53]. Since we used the NN implementation
of PlantSeg, it will be discussed in section 3.5 .

• AMFinder is an open-source software which was released during the time of the
research of this thesis and is described as

“AMFinder allows for automatic computer vision-based identification and quan-
tification of AM fungal colonization and intraradical hyphal structures on ink-
stained root images using convolutional neural networks [18].

2
 ”

Evidently, it tackles the same task while using similar techniques when compared
to our approach. However, there are a few differences, for example the prediction
pipeline is built hierarchical and semi-supervised.
During the pre-processing stage the images are divided into tiles before the first
round of prediction follows. A CNN classifies the tiles into the mutually exclusive
classes ’colonized root section’, ’non-colonized root section’, and ’background / not a root /
other’. Upon user request AMFinder can proceed with a more refined analysis of the
tiles classified as colonized root section, where a second CNN predicts the presence
of arbuscules, vesicles, hyphopodia, and intraradical hyphae. The user can specifi-
cally review tiles with low-confidence predictions.
In contrast, our network assigns each pixel in the image to a class resembling arbus-
cules, vesicles and (depending on the trained network) hyphae. Therefore, a more
refined per-image analysis is possible. As a further research project, a comparison
between the two tools could be carried out.

2ClearSee, which is an optical clearing reagent, was used during the fungal staining process as a contrast
enhancer for the training dataset. High contrasted fungal structures mean a high signal for the NN thus
ClearSee turned out to be very useful for the following image analysis and network training.

16

3 Light Microscopy Image Analysis using
Neural Networks

This chapter describes the development of the render pipeline, the training of the neural
network and the following results.

We start by outlining the technical environment of the machines used for network train-
ing, utilized software and details of the microscopy data. Following this, we discuss the
simulation pipeline, that models the biology and renders the computer-generated training
data in detail.

Before the data can be fed into the network, pre-processing steps had to be implemented
and data augmentations were applied, which are discussed. Next, we present the network
architecture and some of the implementation details like evaluation metrics and loss func-
tions of the software. Finally, we show training results and evaluate the performance of
the network.

3.1 Technical Environment and Utilized Software

Runtime results have been gathered on a local machine and on the atsccs68 compute node
in Garching. The render pipeline, as well as the pre-processing pipeline have been em-
ployed on the local machine while the training of the NN was done on the atsccs68. The
technical properties of the machines are listed in table 3.1 .

The data pre-processing pipeline, as well as post-processing and evaluation were imple-
mented in Python3 [50] using libraries OpenCV [8], h5py [12] and scikit-image [49] among
others. Image processing software ImageJ (Fiji), mentioned in 2.6 , was used for initial im-
age analysis and the NN was trained using the U-Net implementation of PlantSeg, (cf 2.6).
The U-Net is implemented using the Pytorch library [36]. The conda package manager [1]
was used to create separate Python environments to resolve dependency issues between
different libraries and library versions. For enabling network training on the GPUs, the
CUDA toolkit [34] was utilized.

For building the 3D model of the fungus-colonized root section, the 3D computer graph-
ics software blender [13] was used.

17

3 Light Microscopy Image Analysis using Neural Networks

atsccs68-machine local machine
CPU i7-3770 @ 3.40GHz i5-7500 @ 3.40GHz
Threads/core 2 1
Cores/socket 4 4
Socket 1 1
RAM 16 GB 16 GB
GPU GP102 TITAN Xp GeForce GTX 1660 SUPER
OS Ubuntu 16.04.7 LTS Manjaro Linux
Kernel Linux 4.15.0-139-generic x86-64 Linux 5.4.89-1-MANJARO x86-64

Table 3.1: Technical properties of the atsccs68 compute node, which was used to train the
networks and the local machine, which was used to generate the synthetic image
training data using blender.

3.2 Microscopy Data

We continue to discuss some of the technical details of the microscopy data, as well as
various aspects of the data variability:

• Different phenotypes of arbuscules (wild-type and mutant type)

• Different lightning levels

• Different magnification levels

• Possibly different types of staining and thus different contrast and saturation levels
of fungal structures

For this thesis, the distinction between wild-type and mutant-type is not of relevance,
since the 3D model only renders one type of arbuscules, resembling wild-type (or mature)
arbuscules. However, the mutant-type is relevant for AMF-research and will be of impor-
tance in future research projects. The ink-staining gives the fungal structures their bluish
appearance. Depending on this staining and on the person that performs the imaging, the
lightning levels can differ. Furthermore, the magnification levels can differ, although only
a 10x magnification objective has been used so far.

Current research like PlantSeg [53] shows that the performance of CNNs in segmenta-
tion tasks is sensitive to changes in pixel (or voxel) size. This implies that using different
levels of scaling in the training data can be helpful. Finally, different staining methods
could be used in the future, for example ClearSee as contrast enhancer as described in 2.6 .

The relevant image properties that are constant across the different imaging rounds are
listed in table 3.4 . A complete list of the metadata, including the detailed microscope
settings, can be exported using ImageJ.

18

3.2 Microscopy Data

File format File size Pixel type Bits per pixel Dimensions

.tif or

.lif (Leica Image File)
∼100MB uint8 8

2048x1536
10-14 Focal Planes
3 Channel (RGB)

Table 3.2: Image properties of the microscopy data taken by a Leica DM6 B wide-field mi-
croscope using a 10x magnification objective

Additionally, the plant biologists provide annotations of arbuscules (for future research
also a distinction between wild-type and mutant-type arbuscules is designated), vesicles
and hyphae on the corresponding z-stack. As annotating the complete hyphal network
would be infeasible and hyphae are of less relevance, they are marked by coarser annota-
tions. Figure 3.1 shows an image of a colonized root section together with the annotations
from the plant biologists. Furthermore, we show some more plots to illustrate the variabil-
ity of the data in figure 3.2 .

Figure 3.1: Annotated colonized root section. The red circles represent arbuscules, the
green circles represent vesicles and some of the hyphal structures are annotated
as yellow lines.

19

3 Light Microscopy Image Analysis using Neural Networks

Figure 3.2: Six example microscopy images from three different imaging rounds, showing
the variability of the data.

20

3.3 Data Pipeline

3.3 Data Pipeline

The training data is generated using the 3D computer graphics software blender [13]. We
built a 3D model of a fungus-colonized root section, which allows us to render computer
generated training data.

Generally speaking, modelling in 3D is a more complex task but has several advantages
compared to modeling in 2D. Often in 2D, modeling several models are needed, for exam-
ple for different views. In 3D, one scene can be sufficient to represent the complete model.
It allows for more flexibility in the rendering process when changing camera perspectives
and lightning conditions.

In our context, 3D modeling has the advantage of directly mapping the plant anatomy,
like the proportions of the internal structures (root, arbuscules and vesicles and the sur-
rounding cell morphology), to a geometrical model. In addition, this allows to render the
model at different focal points (or depths).

In the microscopy images, fungal or plant objects can occlude each other when they are
located at the same X- and Y-positions but different Z-positions. This is why the roots are
imaged at different focal points. In a 3D model a rendering at different depths is possible,
whereas in a 2D model there is no depth by definition.

Another general, non-technical advantage of 3D models over 2D models might be better
communication of complex concepts between different research fields and maybe even to
broader audiences.

3.3.1 Simulation Pipeline Using Blender

The generation of the synthetic training data follows the common 3D simulation pipeline:
object modeling, rigging, shading, compositing and rendering. Furthermore, the blender
Python API was used to procedurally create new poses of the plant root and generate
renders automatically.

Object modeling

The main idea behind the modeling of the plant root anatomy is to build a polygon repre-
senting the shape or geometry of a single cell, stacking these polygons on top of each other
and adding modifiers to attach them to Bezier curves, which correspond to the pose of the
root as a whole. Figures 3.4a and 3.4b show this process.

At this point, it seems useful to quickly outline the basic plant root anatomy that shall be
modeled. Figure 3.3 schematically shows the cross-section of a dicot root. We divided the
model into the groups (called collections in blender) root core, root shell, outer cell layer
and root hairs.

The root core collection consists of 3 different cell types and corresponds to the xlem
and phloem of the plant, which make up the stele and the central part of the root. Outside
the stele lies the endodermis, which is the innermost cell layer of the cortex of the plant. In

21

3 Light Microscopy Image Analysis using Neural Networks

our 3D model this, together with the pericycle, which is the outermost layer of the stele, is
represented by the root shell collection.

The outer cell layer collection represents the epidermis, which is a single layer of cells
that forms the boundary between plant and the external environment. A visualization of
blender is shown in 3.4d . The root hairs collection represents the root hairs of the plant
evidently.

The fungal structures, which are the elements that shall be detected and segmented by
the NN in a later stage, are modeled using a similar technique. A screenshot of a blender
3D viewport is shown in 3.4c .

Figure 3.3: Modified schematic visualization of a cross-section of a dicot root taken from
[45], licensed under CC BY 3.0.

22

3.3 Data Pipeline

(a) A single cell of the root core is selected
(in orange) and then duplicated. A cir-
cular and a longitudinal Bezier curve
which gets wrapped around by these cells
is shown as well.

(b) The resulting geometric structure, con-
sisting of three different cell types, rep-
resenting the root core.

(c) Fungal structures: arbuscules, vesicles
and hyphae modeled in blender, dis-
played in object mode.

(d) Modeling of the epidermis, the outer-
most cell layer.

Figure 3.4: Screenshots of the blender 3D Viewport showing different objects from the 3D
scene. (a) is rendered in wireframe shading, while (b)-(d) are rendered in solid-
view.

23

3 Light Microscopy Image Analysis using Neural Networks

Rigging and Scripting

Rigging or skeletal animation in computer graphics can be described as assigning rela-
tionships between objects so that applying a transformation to one object will induce a
transformation in the other object. So far, the model consists of a surface representation,
often called mesh, only.

Using rigging techniques we add a set of (interconnected) parts, called bones (or collec-
tively: skeleton or rig), which can animate or deform the 3D mesh. This virtual armature
is needed so we can generate new poses, meaning new mesh deformations.

This procedural generation of new configurations is done using the blender Python
API. We wrote a Python script that will create a number of configuration files and run
the blender rendering on each of them. Through a random number generator, the bones
and in turn the whole mesh of the model, will be slightly translated, rotated and scaled for
each rendering process. Furthermore, file-export options can be set.

In the future, functions that allow to manually adjust the number of arbuscules, vesicles
and hyphae could be implemented. The armature is shown in Figure 3.5 .

Figure 3.5: Armature and part of the mesh displayed as wireframe.

Shading

Shading is the process of computing the intensities and colors of a model in a 3D scene,
based on the surface and illumination properties. This could be the surface’s distance to
the light sources, its angle to the lights and its angle to the camera.

24

3.3 Data Pipeline

In blender so-called shading nodes, which define materials, lights and background of
the scene can be used to build a network of connected nodes and their resulting output is
be used by the renderer. In our case we defined materials, which resemble the biological
structures like cortex material, cell hull material, cell nucleus material (cell nuclei are not
used so far), fungus material etc. and assigned them to their corresponding objects.

To build the material, mainly the Principled BDSF shading node was utilized. This shader
combines multiple layers like the specular layer, roughness layer, sheen tint layer, trans-
mission layer, alpha layer and many more to create a wide variety of materials. These
layers were also the ones used most often for creating the different materials.

As main reference microscopy image for shading and modeling the plant root Figure 3.6

was used.

Figure 3.6: Microscopy image used as main reference for creating the shaders and model-
ing the plant root. An air bubble is seen on the right-hand side. Image taken by
Catarina Cardoso.

25

3 Light Microscopy Image Analysis using Neural Networks

Compositing and Rendering

There are sometimes cotton fibers or air bubbles visible in the images as seen in Figure
 3.6 . The cotton fibers were present in the substrate to hold the sand to the pots. Objects
resembling these thin, dark fibers as well as air bubbles were added as background objects
in the 3D model.

To mimic the effect of chromatic abberation, the compositing node Lens Distortion was
used. Chromatic abberation is a color distortion that results in blurring or unwanted col-
ored edges along objects in an image. It is due to a failure of a camera lens to focus different
wavelengths onto the same focal points.

The NN needs two types of outputs: Firstly, an image that resembles the microscopy
image and secondly, a target image that shows the segmented parts only. Using the blender
compositor one can specify how these different outputs should be exported.

Figure 3.7 shows an example render and the corresponding target data and Figure 3.8

shows more example configurations that the pipeline generates procedurally. Observing
the target data, the different distribution patterns of the fungal objects can be noticed. So
far, the fungal objects are arranged manually and may need more elaborate distributions.

Figure 3.7: Realistic render on the left and the corresponding segmented target images
(segmentation maps) on the right. The segmented objects shown here are root
cortex (green), vesicles (blue), arbuscules (yellow) and hyphae (red).

3.3.2 Data Pre-processing

Figure 3.9 shows the pre-processing steps of the rendered image data, that need to be
applied, before the training data can be used as input for the NN.

26

3.3 Data Pipeline

Figure 3.8: Example poses of the root procedurally generated by the render pipeline.

The left path of the flow-diagram shows the processing steps for the segmentation maps,
while the right path shows the transformations for the input (or realistically rendered)
images, which need to be resized only. The PyTorch framework requires the additional
singleton dimension D = 1 for all input data.

Depending on the loss function, the input data and network need to be adjusted: Net-
works using BCE- or Dice-loss or their combination need their data to be one-hot encoded,
as well as a Sigmoid layer as output layer. A network using cross-entropy loss requires the
segmentation maps as categorical variables. Here, consecutive integers (often 0 is used as
the background class) are used. Additionally, a Softmax layer as output layer is required
by networks using cross-entropy loss.

One-hot encoding, sometimes called dummy coding in statistics, can be defined as fol-
lows: a dummy variable yi, indicates when pixel pi is a member of set A. In our case, pi
can be seen as a pixel value and A as the arbuscule label, then:

yi = 1I (pi) =

{
1, if pi ∈ A
0, if pi /∈ A

(3.1)

with 1I(x) as the indicator function of the membership of A.

In order to train the network, the data needs to be converted to the .hdf5 File format.
Each hdf5 file consists of two datasets, one representing the segmentation maps and one
representing the input image. With these hdf5 files, the data is ready to be processed by
the U-Net implementation.

27

3 Light Microscopy Image Analysis using Neural Networks

Figure 3.9: Pre-processing of blender-output, exemplary with 4 classes to segment.

28

3.3 Data Pipeline

3.3.3 Data Augmentation

This chapter lists the data augmentations, that have been employed before training the
model. Before augmenting the data, each image Xi gets normalized to mean µ = 0 and
standard deviation σ = 1. This is sometimes referred to as z-score normalization and defined
as

Z(Xi) =
Xi − X̄i

σi
(3.2)

with X̄i as the mean of the pixel values of imageXi and σi as the standard deviation across
pixel values

1
 .

This normalization is necessary for some of the augmentation techniques and important
for ML tasks in general, since it improves convergence speed and accuracy and combats
vanishing and exploding gradients during network training [52].

The data augmentations, that were employed, are data warping techniques (cf. 2.4.3).
We present the plots of the data augmentations as grayscale images, using the magma col-
ormap from matplotlib [25] in a non-normalized form, otherwise the plots would appear
meaningless. Furthermore, note that the augmentations are applied in a randomized fash-
ion by the U-Net implementation.

• Flip image across vertical or horizontal axis as seen in 3.10

Figure 3.10: Data augmentation: Flip image

• Rotate image 90 degrees clockwise or counter-clockwise as seen in 3.11

1For RGB-images this normalization can be done channel-wise or per whole image.

29

3 Light Microscopy Image Analysis using Neural Networks

Figure 3.11: Data augmentation: Rotate 90 degrees

• Random rotate image by user-defined angular spectrum. In Figure 3.12 this is set to
45 degrees.

Figure 3.12: Data augmentation: Rotation with user-defined angle

• Apply elastic deformation of images as done in original U-Net paper [41] and 3D
U-Net paper [11], shown in 3.13 .

Figure 3.13: Data augmentation: Elastic deformation

• Apply random contrast by using transformation T (Xi) = X̄i+α(Xi− X̄i), for image
Xi and its mean X̄i. Here α = [0.3, 1.5], where a value is chosen randomly from this

30

3.3 Data Pipeline

interval for the standardised grayscale image. The transformation is shown in Figure
 3.14 .

Figure 3.14: Data augmentation: Random contrast

• Additive Gaussian noise: The noise, that gets added to the original intensity values,
follows a Gaussian distribution. Put differently, the statistical noise has a probability
density function equal to that of the Gaussian distribution. The probability density
function p of a Gaussian random variable z is given as

pG(z) =
1

σ
√

2π
e−

(z−µ)2

2σ2 (3.3)

with gray-level z, mean µ and standard deviation σ of a user-defined interval. The
transformation is shown in Figure 3.15 .

Figure 3.15: Data augmentation: Gaussian noise

• Poisson noise: The noise, that gets added to the original intensity values, is drawn
from a Poisson distribution with probability mass function:

pP (k) =
e−λλk

k!
(3.4)

with k as the number of samples (here number of grayscale values of the image) and
a user-defined range of λ > 0, which gets sampled randomly. The transformation is
shown in Figure 3.16

31

3 Light Microscopy Image Analysis using Neural Networks

Figure 3.16: Data augmentation: Poisson noise

3.3.4 Data Post-processing

When running predictions, the U-Net generates probability maps as its output. For each
class, a probability map, that displays the probabilities of all pixels belonging to this class,
is predicted. For example, if the network was trained on 4 classes with images of resolution
1600x1200, the output is a tensor of [4 x 1 x 1600 x 1200]. The singleton dimension is due
to PyTorch but has no meaning regarding the images.

To evaluate this segmentation and produce meaningful plots, we applied different thresh-
olds on the probability maps. A threshold of 0.5 produced the best evaluation metrics.
Details on the training results and network predictions are shown in section 3.6 .

As a sidenote: the skimage.measure.label algorithm labels connected regions on
an array. By running this, one can simulate instance segmentation and quickly count the
number of objects in an image. Figure 3.17 shows the predictions of vesicles and arbuscules
of the image on the left, generated by the network. The mentioned connected-components
algorithm was applied on the probability maps. Given that the single fungal objects are
separated, one can use this to let the machine count the number of objects. This might be
useful for future research on this project.

Figure 3.17: Connected components algorithm of skimage.

32

3.4 Evaluation Metrics and Loss Functions

3.4 Evaluation Metrics and Loss Functions

Closely related to the mage similarity chapter (cf. 2.5) and loss functions are evaluation
metrics, since they try to evaluate a distance between two corresponding images as well.

In the context of NNs, this image pair consists of the predicted data and the ground-
truth. The following section discusses the different metrics, that are used to evaluate the
accuracy of the model and how well the model performs on unseen data.

The metrics used for semantic segmentation tasks are mostly variations on Pixel Accu-
racy and Intersection over Union (IoU), which are based on pixel-wise similarity between
ground-truth and predicted segmentation masks. The supported semantic segmentation
metrics of the PyTorch U-Net implementation are: Average Precision, Mean Intersection
over Union, Dice Coefficient and Adapted Rand Error. The following paragraphs will
explain the basic ideas behind these metrics and point out potential shortcomings.

For the following explanations we denote these notation details: there are k + 1 total
classes, including a background class; pij is the number of pixels of class i classified as
class j.

Put differently, pii refers to the true positives (TP), while pij and pji represent the number
of false positives (FP) and false negatives (FN) respectively. Lastly, pjj can be interpreted
as true negatives (TN).

3.4.1 Pixel Accuracies

The simplest metric Pixel Accuracy is computed by the ratio between the number of cor-
rect classified pixels and the total number of pixels [21]:

PixelAccuracy =

∑k
i=0 pii∑k

i=0

∑k
j=0 pij

(3.5)

In Mean Pixel Accuracy the ratio of correct classified pixels is calculated in a per-class
basis before averaged over the total number of classes:

MeanPixelAccuracy =
1

k + 1

k∑
i=0

pii∑k
j=0 pij

(3.6)

A significant limitation of these scores is their bias for datasets with high class imbalances.
In many real-world datasets the background-class can be large and one can artificially

improve the object class accuracies: By always predicting the classes of objects and never
predicting the background-class, all object class accuracies get improved at the expense of
lowering a single scalar in the average (the score of the background class) [14].

The following metrics try to counteract this limitation.

33

3 Light Microscopy Image Analysis using Neural Networks

3.4.2 Intersection over Union or Jaccard Index

Initially we define the confusion matrix for binary classification: it depicts the predicted
instances of a predicted class in the rows and the instances of an actual class in the columns
as shown in table 3.3 .

Ground-truth
Positive Negative

Predicted
Positive TP FP
Negative FN TN

Table 3.3: Confusion matrix

With this, the following metrics can be easily understood. Intersection over Union (IoU)
or Jaccard Index is the standard metric for segmentation purposes. It is computed by
taking the ratio between the intersection and the union of two sets. Here, these are the
ground-truth X and the predicted segmentation X̂ :

IoU(X, X̂) =

∣∣∣X ∩ X̂∣∣∣∣∣∣X ∪ X̂∣∣∣ −→ TP

TP + FN + FP
(3.7)

The IoU score can range from 0 to 1. A score of 1 means that the predicted pixels exactly
match the ground-truth pixels, while a score of 0 means none of the predicted pixels match
the ground-truth class. A common visualization is shown in Figure 3.18 .

Figure 3.18: Visual equation of IoU. Author: Adrian Rosebrock [42]. Licensed under CC
BY-SA 4.0.

A pixel-wise Mean Intersection over Union (MIoU) is computed on a per-class basis
and then averaged over the classes. It is calculated the following way:

MIoU =
1

k + 1

k∑
i=0

pii∑k
j=0 pij +

∑k
j=0 pji − pii

(3.8)

34

3.4 Evaluation Metrics and Loss Functions

One limitation of this method is that it evaluates the amount of correct segmented regions
but not necessarily how accurate the segmentation boundaries are [15].

The next metric and a further improvement is Average Precision: For each object in the
prediction, the IoU is calculated with the corresponding ground-truth mask in the image.
If it exceeds a certain threshold, it is counted as TP, otherwise as FP. At each threshold
the precision is then calculated across all masks before it is averaged across multiple IoU
values. Refer to [4] for a step-by-step explanation.

3.4.3 Dice-Coefficient or F1-score

Similar to the Jaccard Index is the Dice-Coefficient or F1-Score, which gets calculated the
following way:

Dice(X, X̂) =
2
∣∣∣X ∩ X̂∣∣∣∣∣∣X + X̂

∣∣∣ −→ 2TP

2TP + FN + FP
(3.9)

Its range is between 0 and 1. In contrast to IoU, it does not satisfy the triangle inequality
and can be considered a semi-metric version of the Jaccard Index. Which of these measures
works best is dependent on the application.

Recent research [56] points out, that the metrics mentioned above account for the correct-
ness of predictions on a global level but fail to capture region-based agreement between
predicted regions and ground-truth.

3.4.4 Rand Error

The last evaluation metric, that is implemented in PlantSeg, is a variant of the Rand Error
(RE) [38]. We first need to define the Rand index (RI), which is a measure of the similarity
between data clusterings.

Since a segmentation can be viewed as a clustering of pixels, it has been proposed as
an evaluation metric: Given two segmentations X and X̂ (in our case ground-truth and
predicted segmentation) of an Image I with n pixels, we define the following:

• a as the number of pairs of pixels that are part of the same object in X and in X̂ (TP).
Meaning they are assigned the same label.

• b as the number of pairs of pixels that are in different objects in X and in different
objects in X̂ . They belong to different classes.

Then the RI is defined as:

RI =
a+ b(
n
2

) −→ TP + TN

TP + TN + FP + FN
(3.10)

35

3 Light Microscopy Image Analysis using Neural Networks

Similar to the previous scores, the RI ranges from 0 to 1, where 0 indicates that the two
data clusterings do not agree on any pair of pixels and 1 indicates, that the clusterings are
the same. Finally the Rand Error is defined as:

RE = 1−RI (3.11)

PlantSeg comes with a adjusted version of the Rand Error, an explanation is given in [43].

Note how related these metrics are to the topics of Image similarity (cf. 2.5) and loss
functions (cf. 3.4.5). Loss functions like the Dice-loss can be directly calculated from the
Dice-coefficient by Dice Loss = 1−Dice Coefficient, since the goal of the NN is to minimize
the loss function.

3.4.5 Loss Functions in PlantSeg

The implemented loss functions in PlantSeg are:

1. Binary cross-entropy (BCE)

2. Cross-entropy, where class weights can be specified

3. Pixel-wise cross-entropy, where additionally per pixel weights can be classified to
assign more weight to important or under-represented regions in the ground-truth

4. Dice-Loss defined as 1−DiceCoefficient (cf. 3.8) for binary segmentation; for more
than two classes it computes the Dice-loss over each channel and averages the results

5. Generalized Dice-Loss, where additionally class weights can be specified

6. BCE-Dice-Loss, a linear combination of BCE and Dice loss, calculated as α ∗BCE +
β ∗Dice, where α, β can be specified

Some of these supported loss functions, as well as the issue of class-imbalance, is explained
in [48]. Generally speaking, cross-entropy loss functions are susceptible to class imbalance,
while Dice-losses tend to perform better for data imbalance.

36

3.5 U-Net Architecture and PyTorch Implementation

3.5 U-Net Architecture and PyTorch Implementation

The CNN that was used for this thesis is a PyTorch implementation [54] of the 3D U-Net
architecture described in [11]. The original network structure is shown in image 3.19 .

Figure 3.19: The original 3D U-Net architecture. Blue boxes represent feature maps. The
number of channels is denoted above each feature map. With permission from
Özgün Çiçek [11] and Springer International Publishing AG.

It consists of a contracting path on the left side and an expansive path on the right side,
resembling a U-shape.

The contracting path resembles the typical architecture of a CNN. Each layer consists
of two repeated 3x3x3 convolutions each followed by a rectified linear unit (ReLU) and
a 2x2x2 max-pooling operation with stride 2 for downsampling. Thus, the feature chan-
nels get doubled in each downsampling step. For the sake of completion, we show the
definition of the ReLU function:

f(x) =

{
0, if x < 0
x, if x ≥ 0

(3.12)

The levels in the expansive path consist of 2x2x2 transpose convolutions (or upconvolu-
tions), using strides of two in each dimension, followed by two 3x3x3 convolutions each
followed by a ReLU.

Skip-connections between the layers of equal resolution of the two paths, represented as

37

3 Light Microscopy Image Analysis using Neural Networks

green horizontal arrows in the diagram, provide high-resolution features to the expansive
path. Meaning the input of an expansive block is a concatenation of the output from the
previous expansive block and the output from the corresponding contractive block before
the max-pooling layer. Thus, the spatial information lost during downsampling is recov-
ered. These symmetrical skip connections work very effectively in dense prediction tasks
[17].

At the final layer, a 1x1x1 convolution is used to map each 64-component feature vector
to the desired number of classes, which is 3 in the original implementation. Since the
network does not contain any dense layers, it can process images of any size.

Also batch normalization [26] is used before each ReLU.

The U-Net implementation used in this thesis is written in Python and uses the machine
learning library PyTorch [36]. This implementation is also used in the segmentation tool
PlantSeg [53] and highly modular. It can be used for semantic segmentation (binary and
multi-class) and regression problems. Both a 3D U-Net architecture based on [11] and the
standard 2D U-Net architecture, as well as a Residual U-Net, can be trained.

Data parallelism using the parallel computing platform and application programming
interface CUDA can be utilized. The data has to be provided in the HDF5 file format [20].

A configuration file for training of a network, that was used in this thesis, is listed in the
appendix (cf. 4.1).

38

3.6 Training Results

3.6 Training Results

In this section, we present results of the network training. Starting with differences and
similarities of the models, we continue to show detailed information about a particular
4-class model.

Several models with different hyperparameters have been trained:

• No. of classes: 4 classes vs 3 classes (background, arbuscules, vesicles and hyphae);
Hyphae were omitted in the 3-class models

• Dataset size: ranging from 50 images to 500 images

• Different learning-rates and learning-rate schedulers

• Different number of feature maps at each level in the U-Net

• Different number of epochs and iterations

• Different weight decays and data augmentations

The loss function (cross-entropy-loss) and evaluation metric (MeanIoU) were constant
over all models. Changing them would require different pre-processing of the input data.

An interesting observation for all models, is the behaviour of the evaluation score on the
training and validation set. The evaluation score converges towards 0.5. This can be seen in
Figure 3.23 , which shows the evaluation score of a training set. When the large background
class was omitted, the networks converge towards even lower evaluation scores. However,
on the test set, the evaluation scores are much better, as shown below (cf. 3.5).

Another observation is that the image data generated by the blender-pipeline is quite
similar. This could explain why the loss function decreases rapidly during the beginning
of the network training, while further iterations show less improvements. This can be seen
in Figure 3.22 , which shows the loss during training.

The networks always stopped their training, due to the stopping criterion minimum
learning rate reached. Learning rate schedulers were responsible for reducing the learning
rate when certain criteria are fulfilled. Different schedulers have been employed: Reduce-
On-Plateu, which reduces the learning rate after a metric has stopped improving and Multi-
Step, which reduces the learning rate after a certain number of epochs.

39

3 Light Microscopy Image Analysis using Neural Networks

The following statistics and predictions show the details of a 4-class model. Although
this model performed very well, other models using considerably less training data (for
example only 50 images) performed similar. This shows again, that the training images
were quite similar to each other.

Table 3.4 shows information about the dataset and network configurations.

Data
Data split No. images File size [MB] Classes Image Resolution

Training:
Validation:
Test:
Total:

350
70
50
470

1.200
240
160
1.600

Background
Vesicles
Arbuscules
Hyphae
Total: 4

973 x 736

Table 3.4: Data properties of a 4-class model.

Figures 3.22 , 3.23 show the network loss and evaluation score for the training set. Fig-
ures 3.22 , 3.23 show the network loss and evaluation score for the validation set. Inter-
esting is the outlier near iteration 5k. Similar to other models, the evaluation score on the
validation set is more smooth, compared to the training set.

Figure 3.20: Network loss for a 4-class
model on the training set.
The diagram shows the loss
on the y-axis and no. of iter-
ations on the x-axis.

Figure 3.21: Evaluation score for a 4-
class model on the training
set.

40

3.6 Training Results

Figure 3.22: Network loss for a 4-class
model on the validation set.

Figure 3.23: Evaluation score for a 4-
class model on the valida-
tion set.

Evaluation metrics are shown in table 3.5 . Firstly, Precision, Recall, F1-score and the
Jaccard-index are calculated on a per-class basis. Interestingly, vesicles perform consis-
tently better than arbuscules and hyphae. A possible explanation for this behaviour could
be the higher contrast of vesicles with regard to their surroundings.

The accuracy metric computes the fraction of correct predictions. Since the background
class dominates the other classes, this leads to a misguided high score. Therefore, we
included the F1-score and Jaccard-index, averaged over the fungal objects, excluding the
background class. The Adapted Rand error (in the table AR) measures similarity of data
clusterings.

A detailed explanation of the evaluation metrics and the problem of class-imbalance is
explained in section 3.4 .

Label-wise Averaged
Averaged

w/o background
Classes Precision Recall F1 Jacc. Acc. AR F1 Jacc.
Background:
Hyphae:
Arbuscules:
Vesicles:

98.9
89.5
84.5
91.8

99.6
77.0
85.0
87.9

99.2
82.7
84.7
89.6

98.5
70.6
73.6
81.4

98.2 88.8 84.4 73.2

Table 3.5: Evaluation metrics of a 4-class model on the test set. Precision, Recall, F1-score
and Jaccard-index are first calculated for each label. Accuracy and the Adjusted
Rand-error are metrics that take all classes into account. Because the background
class is very large, compared to the fungal object classes, we included an aver-
aged version of the F1-score and Jaccard-index, that excludes the background
class. The results are shown in per cent.

41

3 Light Microscopy Image Analysis using Neural Networks

Finally, we show a few predictions of the U-Net, compared to the groundtruth data for
the test set. The colormap of the groundtruth and prediction images shows hyphae in red,
arbuscules in yellow and vesicles in blue. Clearly, the network has the most problems
when arbuscules and hyphae overlay. Occasionally, it confuses arbuscules with vesicles.
This happens only when vesicles and arbuscules appear very similar. Viewing the original
render, this difference can be difficult to detect for a human observer as well. Otherwise,
the network produces satisfying predictions.

42

3.6 Training Results

Figure 3.24: Predictions of the U-Net, compared to the groundtruth and the corresponding
rendered data. The images are taken from the test set.

43

4 Conclusion

We presented an image processing pipeline that assists with the visual analysis of quan-
tifying AMF colonization by segmenting images into regions that correspond to fungal
structures like arbuscules, vesicles and hyphae.

Due to the lack of labeled microscopy image data, we built a 3D model of a colonized
root section, that allowed us to procedurally generate training data. This data was fur-
ther processed and augmented, before fed into a CNN. The utilized CNN-architecture is a
PyTorch implementation of the U-Net architecture and part of the PlantSeg segmentation
pipeline.

We presented evaluation results and showed a few predictions of the network for un-
seen data. The evaluation results for the fungal structures show a F1-score of 84%. As
the prediction images show, the network produces satisfying results. In conclusion, the
overall aim of the thesis, meaning the creation of an automated 3D rendering pipeline to
generate training data, and subsequent training of a deep learning neural network, has
been reached.

As this thesis is an ongoing research project, we outline some suggestions for improve-
ments and an outlook. There are several ideas to train more robust networks by modifying
the render pipeline: use different camera angles, use different zoom levels for better scale
invariance, render at different focal-planes to create a z-stack, alter lightning conditions
of the scene, alter hue and saturation of plant and fungal objects and change distribution
patterns of arbuscules, vesicles and hyphae. These modification ideas show again how
powerful, modular and extensible 3D models can be.

The next step for this ongoing research project is to apply this segmentation pipeline to
real-world microscopy data. In this thesis several suggestions have been made, regarding
future work: Use the models, trained in this thesis, as pre-trained models for transfer
learning; extend the 3D model to mutant arbuscules and generate more variety in the
renderings; apply more hyperparameter tuning with respect to the network training.

During development of this thesis, a paper called Artificial intelligence enables the identifi-
cation and quantification of arbuscular mycorrhizal fungi in plant roots and the corresponding
software AMFinder [18] were published, after two years of development. This shows the
scientific interest in AMF image analysis research.

AMFinder also uses CNNs and predicts the presence of fungal structures in image-tiles.
With these current research developments in mind, future projects could focus on classify-
ing different developmental stages in the growth process of AMF. Here, a network would
not only detect the presence of arbuscules but further distinct into fully-developed or mu-
tant arbuscules.

45

Appendix

Code 4.1 shows an example configuration file for network training.

1 manual_seed: 0
2 model:
3 name: UNet2D
4 # number of input channels (for RGB images: 3)
5 in_channels: 3
6 # number of output channels = number of semantic classes
7 out_channels: 4
8 # layer ordering: groupnorm + conv + relu
9 layer_order: gcr

10 # fix number of groups for the groupnorm
11 num_groups: 8
12 # number of feature maps at each level of the U-Net
13 f_maps: [32, 64, 128, 256]
14 # Softmax is used instead of Sigmoid
15 final_sigmoid: false
16 # for segmentation problems: true
17 is_segmentation: true
18 trainer:
19 # path the model and tensorboard logs are saved
20 checkpoint_dir: "/path/to/model"
21 # set to 'last_checkpoint.pytorch' if traning shall be resumed
22 resume: null
23 validate_after_iters: 100
24 log_after_iters: 100
25 epochs: 30
26 iters: 100000
27 # hint to the trainer if lower or higher validation scores are better
28 eval_score_higher_is_better: True
29 # Adam optimizer config
30 optimizer:
31 # initial learning rate
32 learning_rate: 0.002
33 # weight L2 regularization weight

47

4 Conclusion

34 weight_decay: 0.00001
35 # loss configuration
36 loss:
37 # for multi-class semantic segmentation problem: standard cross-entropy
38 name: CrossEntropyLoss
39 # configuration of the evaluation metric
40 eval_metric:
41 name: MeanIoU
42 # skip background class so that it doesn't dominate remaining semantic classes
43 skip_channels: [0]
44 # configure the learning rate scheduler
45 lr_scheduler:
46 name: ReduceLROnPlateau
47 mode: max
48 factor: 0.02
49 patience: 5
50 loaders:
51 # save training data as .hdf5 / .h5 files:
52 # input should be saved as CDHW format; for example 4 classes: 4x1xHxW
53 # if cross entropy is used, target should be saved in DHW
54 dataset: StandardHDF5Dataset
55 # name of the target dataset inside the .h5 file
56 label_internal_path: 'label'
57 # name of the input dataset inside the .h5 file
58 raw_internal_path: 'raw'
59 # batch size
60 batch_size: 16
61 # number of worker processes in the loader
62 num_workers: 8
63 # training data loader config
64 train:
65 file_paths:
66 - '/path/to/training_files/'
67 # building of patches for training, "sliding window"
68 # with the size of 256x256 and stride of 32x32
69 slice_builder:
70 name: SliceBuilder
71 patch_shape: [1, 256, 256]
72 stride_shape: [1, 32, 32]
73 skip_shape_check: True
74 # training transformation / data augmentations
75 transformer:

48

76 raw:
77 - name: Standardize
78 - name: RandomFlip
79 - name: RandomRotate90
80 - name: RandomRotate
81 axes: [[2, 1]]
82 angle_spectrum: 30
83 mode: reflect
84 - name: ElasticDeformation
85 spline_order: 3
86 execution_probability: 0.1
87 - name: RandomContrast
88 execution_probability: 0.1
89 - name: AdditiveGaussianNoise
90 scale: [0.0, 0.5]
91 execution_probability: 0.1
92 - name: AdditivePoissonNoise
93 lam: [0.0, 0.01]
94 execution_probability: 0.1
95 - name: ToTensor
96 expand_dims: true
97 label:
98 - name: RandomFlip
99 - name: RandomRotate90

100 - name: RandomRotate
101 axes: [[2, 1]]
102 angle_spectrum: 30
103 mode: reflect
104 - name: ElasticDeformation
105 spline_order: 0
106 execution_probability: 0.1
107 - name: ToTensor
108 expand_dims: false
109 dtype: 'int64'
110 # validation data loader config
111 val:
112 file_paths:
113 - '/path/to/validation_files/'
114 slice_builder:
115 name: SliceBuilder
116 patch_shape: [1, 256, 256]
117 stride_shape: [1, 256, 256]

49

4 Conclusion

118 skip_shape_check: True
119 transformer:
120 raw:
121 - name: Standardize
122 - name: ToTensor
123 expand_dims: true
124 label:
125 - name: ToTensor
126 expand_dims: false
127 dtype: 'int64'

Source Code 4.1: Example configuration file for training semantic segmentation problem
with standard 2D U-Net using the PyTorch implementation described in
section 3.5 .

50

51

Bibliography

[1] Anaconda software distribution, 2020.

[2] Michael D Abràmoff, Paulo J Magalhães, and Sunanda J Ram. Image processing with
imagej. Biophotonics international, 11(7):36–42, 2004.

[3] Vijay Badrinarayanan, Alex Kendall, and Roberto Cipolla. Segnet: A deep convo-
lutional encoder-decoder architecture for image segmentation. IEEE transactions on
pattern analysis and machine intelligence, 39(12):2481–2495, 2017.

[4] Stephen Bailey. Step-by-step explanation of scoring metric. https://www.kaggle.
com/stkbailey/step-by-step-explanation-of-scoring-metric , 2018.
Accessed: 2021-03-09, Licensed under Apache License, Version 2.0: http://www.
apache.org/licenses/LICENSE-2.0 .

[5] Mariusz Bojarski, Philip Yeres, Anna Choromanska, Krzysztof Choromanski, Bern-
hard Firner, Lawrence Jackel, and Urs Muller. Explaining how a deep neural network
trained with end-to-end learning steers a car. arXiv preprint arXiv:1704.07911, 2017.

[6] Paola Bonfante and Andrea Genre. Mechanisms underlying beneficial plant–fungus
interactions in mycorrhizal symbiosis. Nature communications, 1(1):1–11, 2010.

[7] Alan C Bovik. Handbook of image and video processing. Academic press, 2010.

[8] G. Bradski. The OpenCV Library. Dr. Dobb’s Journal of Software Tools, 2000.

[9] Christoph Burgmer. Diagram of a multi-layer feedforward arificial
neural network. https://commons.wikimedia.org/wiki/File:
MultiLayerNeuralNetworkBigger_english.png , 2010. Accessed: 2021-03-28,
Licensed under CC BY-SA 3.0: https://creativecommons.org/licenses/
by-sa/3.0/ .

[10] Anne E Carpenter, Thouis R Jones, Michael R Lamprecht, Colin Clarke, In Han Kang,
Ola Friman, David A Guertin, Joo Han Chang, Robert A Lindquist, Jason Moffat, et al.
Cellprofiler: image analysis software for identifying and quantifying cell phenotypes.
Genome biology, 7(10):R100, 2006.

[11] Özgün Çiçek, Ahmed Abdulkadir, Soeren S Lienkamp, Thomas Brox, and Olaf Ron-
neberger. 3d u-net: learning dense volumetric segmentation from sparse annotation.

53

https://www.kaggle.com/stkbailey/step-by-step-explanation-of-scoring-metric
https://www.kaggle.com/stkbailey/step-by-step-explanation-of-scoring-metric
http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/LICENSE-2.0
https://commons.wikimedia.org/wiki/File:MultiLayerNeuralNetworkBigger_english.png
https://commons.wikimedia.org/wiki/File:MultiLayerNeuralNetworkBigger_english.png
https://creativecommons.org/licenses/by-sa/3.0/
https://creativecommons.org/licenses/by-sa/3.0/

BIBLIOGRAPHY

In International conference on medical image computing and computer-assisted intervention,
pages 424–432. Springer, 2016.

[12] Andrew Collette. Python and HDF5. O’Reilly, 2013.

[13] Blender Online Community. Blender - a 3D modelling and rendering package. Blender
Foundation, Stichting Blender Foundation, Amsterdam, 2018.

[14] Gabriela Csurka, Diane Larlus, Florent Perronnin, and F Meylan. What is a good
evaluation measure for semantic segmentation? IEEE PAMI, 26(1), 2004.

[15] Gabriela Csurka, Diane Larlus, Florent Perronnin, and France Meylan. What is a good
evaluation measure for semantic segmentation?. In BMVC, volume 27, pages 10–5244,
2013.

[16] Pádraig Cunningham, Matthieu Cord, and Sarah Jane Delany. Supervised learning.
In Machine learning techniques for multimedia, pages 21–49. Springer, 2008.

[17] Michal Drozdzal, Eugene Vorontsov, Gabriel Chartrand, Samuel Kadoury, and Chris
Pal. The importance of skip connections in biomedical image segmentation. In Deep
learning and data labeling for medical applications, pages 179–187. Springer, 2016.

[18] Edouard Evangelisti, Carl Turner, Alice McDowell, Liron Shenhav, Temur Yunusov,
Aleksandr Gavrin, Emily K Servante, Clement Quan, and Sebastian Schornack. Ar-
tificial intelligence enables the identification and quantification of arbuscular mycor-
rhizal fungi in plant roots. bioRxiv, 2021.

[19] Serena Yeung Fei-Fei Li, Justin Johnson. Lecture 11: Detection and seg-
mentation. http://cs231n.stanford.edu/slides/2017/cs231n_2017_
lecture11.pdf , 2017. Accessed: 2021-01-02, Licensed under CC0 1.0, https:
//creativecommons.org/publicdomain/zero/1.0/deed.en .

[20] Mike Folk, Gerd Heber, Quincey Koziol, Elena Pourmal, and Dana Robinson. An
overview of the hdf5 technology suite and its applications. In Proceedings of the
EDBT/ICDT 2011 Workshop on Array Databases, pages 36–47, 2011.

[21] Alberto Garcia-Garcia, Sergio Orts-Escolano, Sergiu Oprea, Victor Villena-Martinez,
and Jose Garcia-Rodriguez. A review on deep learning techniques applied to seman-
tic segmentation. arXiv preprint arXiv:1704.06857, 2017.

[22] A Ardeshir Goshtasby. Image registration: Principles, tools and methods. Springer Science
& Business Media, 2012.

[23] Caroline Gutjahr and Martin Parniske. Cell and developmental biology of arbuscular
mycorrhiza symbiosis. Annual review of cell and developmental biology, 29:593–617, 2013.

54

http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture11.pdf
http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture11.pdf
https://creativecommons.org/publicdomain/zero/1.0/deed.en
https://creativecommons.org/publicdomain/zero/1.0/deed.en

BIBLIOGRAPHY

[24] Guosheng Hu, Yongxin Yang, Dong Yi, Josef Kittler, William Christmas, Stan Z Li,
and Timothy Hospedales. When face recognition meets with deep learning: an eval-
uation of convolutional neural networks for face recognition. In Proceedings of the
IEEE international conference on computer vision workshops, pages 142–150, 2015.

[25] J. D. Hunter. Matplotlib: A 2d graphics environment. Computing in Science & Engi-
neering, 9(3):90–95, 2007.

[26] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network
training by reducing internal covariate shift. In International conference on machine
learning, pages 448–456. PMLR, 2015.

[27] Arshad Javaid. Arbuscular mycorrhizal mediated nutrition in plants. Journal of Plant
Nutrition, 32(10):1595–1618, 2009.

[28] Yann LeCun, Koray Kavukcuoglu, and Clément Farabet. Convolutional neural net-
works and applications in vision. In ISCAS 2010, IEEE International Symposium on
Circuits and Systems: Nano-Bio Circuit Fabrics and Systems, 2010.

[29] Leonie H. Luginbuehl and Giles E.D. Oldroyd. Understanding the arbuscule at the
heart of endomycorrhizal symbioses in plants. Current Biology, 27(17):R952 – R963,
2017.

[30] Adam H Marblestone, Greg Wayne, and Konrad P Kording. Toward an integration
of deep learning and neuroscience. Frontiers in computational neuroscience, 10:94, 2016.

[31] H. B. Mitchell. Image Similarity Measures, pages 167–185. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2010.

[32] Sharada P Mohanty, David P Hughes, and Marcel Salathé. Using deep learning for
image-based plant disease detection. Frontiers in plant science, 7:1419, 2016.

[33] Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar. Foundations of machine
learning. MIT press, 2018.

[34] NVIDIA, Péter Vingelmann, and Frank H.P. Fitzek. Cuda, release: 10.2.89, 2020.

[35] Sinno Jialin Pan and Qiang Yang. A survey on transfer learning. IEEE Transactions on
knowledge and data engineering, 22(10):1345–1359, 2009.

[36] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Py-
torch: An imperative style, high-performance deep learning library. arXiv preprint
arXiv:1912.01703, 2019.

55

BIBLIOGRAPHY

[37] Simon Pöcheim. Convolutional neural networks. https://wiki.tum.de/
display/lfdv/Layers+of+a+Convolutional+Neural+Network . Accessed:
2021-01-03.

[38] William M Rand. Objective criteria for the evaluation of clustering methods. Journal
of the American Statistical association, 66(336):846–850, 1971.

[39] Adrienne HK Roeder, Alexandre Cunha, Michael C Burl, and Elliot M Meyerowitz. A
computational image analysis glossary for biologists. Development, 139(17):3071–3080,
2012.

[40] Brandon Rohrer. How do convolutional neural networks work. https://e2eml.
school/how_convolutional_neural_networks_work.html , 2016-08-18. Ac-
cessed: 2021-03-15; Licensed under CC0 1.0 Universal (CC0 1.0): https://
creativecommons.org/publicdomain/zero/1.0/ .

[41] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks
for biomedical image segmentation. In International Conference on Medical image com-
puting and computer-assisted intervention, pages 234–241. Springer, 2015.

[42] Adrian Rosebrock. A visual equation for intersection over
union. https://www.pyimagesearch.com/2016/11/07/
intersection-over-union-iou-for-object-detection/ , 2016. Ac-
cessed: 2021-03-08, Licensed under CC BY-SA 4.0: https://creativecommons.
org/licenses/by-sa/4.0/ .

[43] Nader Shaar. Snemi3d 3d segmentation. http://brainiac2.mit.edu/
SNEMI3D/evaluation , 2013. Accessed: 2021-03-09.

[44] Connor Shorten and Taghi M Khoshgoftaar. A survey on image data augmentation
for deep learning. Journal of Big Data, 6(1):1–48, 2019.

[45] Siyavula. Dicotyledonous root profile showing the major tissues found in the root sys-
tem which also aid in transport. https://intl.siyavula.com/read/science/
grade-10-lifesciences/support-and-transport-systems-in-plants ,
2015. Accessed: 2021-03-15, Licensed under CC BY 3.0: https://
creativecommons.org/licenses/by/3.0/ .

[46] Sally E Smith and David J Read. Mycorrhizal symbiosis. Academic press, 2010.

[47] Christoph Sommer, Christoph Straehle, Ullrich Koethe, and Fred A Hamprecht.
Ilastik: Interactive learning and segmentation toolkit. In 2011 IEEE international sym-
posium on biomedical imaging: From nano to macro, pages 230–233. IEEE, 2011.

56

https://wiki.tum.de/display/lfdv/Layers+of+a+Convolutional+Neural+Network
https://wiki.tum.de/display/lfdv/Layers+of+a+Convolutional+Neural+Network
https://e2eml.school/how_convolutional_neural_networks_work.html
https://e2eml.school/how_convolutional_neural_networks_work.html
https://creativecommons.org/publicdomain/zero/1.0/
https://creativecommons.org/publicdomain/zero/1.0/
https://www.pyimagesearch.com/2016/11/07/intersection-over-union-iou-for-object-detection/
https://www.pyimagesearch.com/2016/11/07/intersection-over-union-iou-for-object-detection/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
http://brainiac2.mit.edu/SNEMI3D/evaluation
http://brainiac2.mit.edu/SNEMI3D/evaluation
https://intl.siyavula.com/read/science/grade-10-lifesciences/support-and-transport-systems-in-plants
https://intl.siyavula.com/read/science/grade-10-lifesciences/support-and-transport-systems-in-plants
https://creativecommons.org/licenses/by/3.0/
https://creativecommons.org/licenses/by/3.0/

BIBLIOGRAPHY

[48] Carole H Sudre, Wenqi Li, Tom Vercauteren, Sebastien Ourselin, and M Jorge Car-
doso. Generalised dice overlap as a deep learning loss function for highly unbal-
anced segmentations. In Deep learning in medical image analysis and multimodal learning
for clinical decision support, pages 240–248. Springer, 2017.

[49] Stefan Van der Walt, Johannes L Schönberger, Juan Nunez-Iglesias, François
Boulogne, Joshua D Warner, Neil Yager, Emmanuelle Gouillart, and Tony Yu. scikit-
image: image processing in python. PeerJ, 2:e453, 2014.

[50] Guido Van Rossum and Fred L. Drake. Python 3 Reference Manual. CreateSpace, Scotts
Valley, CA, 2009.

[51] Horst Vierheilig, Andrew P Coughlan, URS Wyss, and Yves Piché. Ink and vinegar, a
simple staining technique for arbuscular-mycorrhizal fungi. Applied and environmental
microbiology, 64(12):5004–5007, 1998.

[52] Xing Wan. Influence of feature scaling on convergence of gradient iterative algorithm.
In Journal of Physics: Conference Series, volume 1213, page 032021. IOP Publishing,
2019.

[53] Adrian Wolny, Lorenzo Cerrone, Athul Vijayan, Rachele Tofanelli, Amaya Vilches
Barro, Marion Louveaux, Christian Wenzl, Susanne Steigleder, Constantin Pape, Al-
berto Bailoni, et al. Accurate and versatile 3d segmentation of plant tissues at cellular
resolution. BioRxiv, 2020.

[54] Adrian Wolny, Lorenzo Cerrone, Athul Vijayan, Rachele Tofanelli, Amaya Vilches
Barro, Marion Louveaux, Christian Wenzl, Sören Strauss, David Wilson-Sánchez,
Rena Lymbouridou, Susanne S Steigleder, Constantin Pape, Alberto Bailoni, Salva
Duran-Nebreda, George W Bassel, Jan U Lohmann, Miltos Tsiantis, Fred A Ham-
precht, Kay Schneitz, Alexis Maizel, and Anna Kreshuk. Accurate and versatile 3d
segmentation of plant tissues at cellular resolution. eLife, 9:e57613, jul 2020.

[55] Rikiya Yamashita, Mizuho Nishio, Richard Kinh Gian Do, and Kaori Togashi. Con-
volutional neural networks: an overview and application in radiology. Insights into
imaging, 9(4):611–629, 2018.

[56] Yuxiang Zhang, Sachin Mehta, and Anat Caspi. Rethinking semantic segmentation
evaluation for explainability and model selection. arXiv preprint arXiv:2101.08418,
2021.

[57] Xiaojin Jerry Zhu. Semi-supervised learning literature survey. 2005.

57

	Acknowledgements
	Abstract
	Contents
	List of Figures
	List of Tables
	Introduction
	State of the Art
	Arbuscular Mycorrhiza Fungi
	AMF Preparation and Imaging
	Computer Vision
	Machine Learning
	Supervised Learning
	Convolutional Neural Networks (CNNs)
	Data Augmentation
	Transfer Learning

	Image Similarity
	Related Software for Biological Image Processing

	Light Microscopy Image Analysis using Neural Networks
	Technical Environment and Utilized Software
	Microscopy Data
	Data Pipeline
	Simulation Pipeline Using Blender
	Data Pre-processing
	Data Augmentation
	Data Post-processing

	Evaluation Metrics and Loss Functions
	Pixel Accuracies
	Intersection over Union or Jaccard Index
	Dice-Coefficient or F1-score
	Rand Error
	Loss Functions in PlantSeg

	U-Net Architecture and PyTorch Implementation
	Training Results

	Conclusion
	Appendix
	Bibliography

