
Technische Universität München

Department of Mathematics

Bachelor’s Thesis

Feature Extraction for Nonlinear System
Control Through Jointly Smooth Functions

Robert Schmidt

Supervisor: Prof. Dr. Hans-Joachim Bungartz

Advisor: Dr. Felix Dietrich

Submission Date: 01.04.2021

I assure the single handed composition of this bachelor’s thesis only supported by declared
resources.

München, 01.04.2021

Robert Schmidt

Zusammenfassung

In dieser Arbeit werden wir einen aktuellen Ansatz der Merkmalfindung in dynamis-
chen Systemen diskutieren. Er involviert eine Kernel Methode um glatte Funktionen auf
beobachteten Mannigfaltigkeiten zu generieren. Diese Funktionen können dann angewen-
det werden um effektive Parameter in nichtlineren dynamischen Systemen zu identi-
fizieren, ohne dabei Wissen über das System zu benötigen. Desweiteren können sie ver-
wendet werden um den Systemverlauf vorrauszusagen. Wir werden zwei häufig verwen-
dete Steuermechanismen PID und MPC dazu verwenden um Daten von einem invtierten
Pendel zu erhalten, auf welchen wir dann die Robustheit von unseren glatten Funktio-
nen gegenuüber Sensorrauschen und hochdimensionalen Inputdaten demonstrieren. Ab-
schließend werden dann noch Daten von einer landenden simulierten Rackete analysiert
um zu zeigen dass unsere Methoden auch auf komplexe Systeme anwendbar sind.

Abstract

In this thesis we are going to discuss a recent approach to extract features from dynamic
systems. It involves a kernel method to generate smooth functions on observed manifolds.
Such functions can be used to identify effective parameters of nonlinear systems without
knowledge of the dynamics and can be further combined to form a predictor for the system.
We are going to generate data implementing PID and MPC controllers for an inverted
pendulum, on which we will test the rigidity of our jointly smooth functions concerning
noise and high dimensional input. In the end we will demonstrate the usability of our
methods for complex dynamic systems by applying them to data from a landing spacecraft
simulation.

Contents

1 Introduction 1

2 State of the Art 2
2.1 Basic Controllers . 2

2.1.1 Proportional-Integral-Derivative Controller 2
2.1.2 Model Predictive Control . 4

2.2 Spectral discovery of jointly smooth functions 5
2.2.1 Kernel method . 6
2.2.2 Discovery of Smooth Functions over Manifolds 7

3 Feature Extraction Through Jointly Smooth Functions 9
3.1 Toy Problem . 9
3.2 Control of an inverted pendulum . 11

3.2.1 Modelling of the inverted pendulum 11
3.2.2 Controller Realization and Choice of Hyperparameters 12
3.2.3 Jointly smooth functions over pendulum data 15

3.3 Landing rockets . 18
3.3.1 The Simulation environment and obtaining data 18
3.3.2 Extraction of jointly smooth functions 19

4 Conclusion 21

References 22

1

1 Introduction

As technology advances sensors get more and more compact, we can incorporate an in-
creasing amount of them in confined dynamic systems in hope of achieving a higher
quality of controllability. Therefore the acquisition of meaningful features from multi-
modal data became a central problem in data analysis. In this thesis we will view the
data as high-dimensional points residing on (multiple) low-dimensional manifolds and we
will then operate in the space of real functions on these manifolds. In particular we will
define functions in the span of the top eigenfunctions of the Laplacian, as smooth on said
manifold. We will obtain jointly smooth functions by calculating the SVD of the union of
spaces of real functions on the manifold. These functions are of interest as they represent
the commonality of the observed manifolds and form a relationship between data sets of
possibly different modalities.
In this thesis the use cases of jointly smooth functions (JSFs) in combination with dynamic
systems will be discussed. We will review two commonly used control loops PID and MPC,
so own data can be gathered from the highly unstable dynamic system of an inverted
pendulum. We will present a method on how you can use JSFs in order to identify and
obtain effective parameters of dynamic systems in a model-free manner. Further we will
test the rigidity of JSFs to noise and high dimensional redundant data. Also a theoretical
approach to obtain a predictor from the obtained functions will be presented. In the
end we will demonstrate the real world feasibility by gathering meaningful JSFs from the
complex dynamic system of a landing spacecraft simulation.

2 2 STATE OF THE ART

2 State of the Art

We start of by introducing commonly used controllers and also the algorithm we will use
to analyse data from such controllers on the dynamic system of an inverted pendulum in
the next chapter.

2.1 Basic Controllers

2.1.1 Proportional-Integral-Derivative Controller

Figure 1: Visualisation of the PID control loop. The error e(t) is calculated as the
difference between a setpoint r(t) and the system state y(t). The control output u(t) is
then calculated as a sum of the three terms Pout, Iout and Dout.

The Proportional-Integral-Derivative Controller is a control loop mechanism using feed-
back. The goal is to stabilize a process variable x(t) at a target value of r(t). The
controller output u(t) is calculated by taking the error function e(t) := r(t) − x(t) in
the tree control terms into consideration. It is tuned by setting the parameters Kp, Ki

and Kd, hereby you can choose to not use one or more of the control terms by setting
the corresponding parameter to zero, resulting in so called PI/PD/P/...-controllers. The
control u of the system is then simply defined as:

u(t) := Pout + Iout +Dout = Kpe(t) +Ki

∫ t

0

e(τ)dτ +Kd
de(t)

dt
(2.1)

with the tuning parameters Kp, Ki, Kd ∈ R:
Kp proportional gain
Ki integral gain
Kd derivative gain

Proportional term
This term produces an output directly proportional to the error e(t). It is adjusted by
tuning the proportional gain Kp. Is Kp too large, the system might become unstable as
the controller is overreacting. Contrary if Kp is too small the system is not responsive
enough and the output might be too low to counteract the error inducing forces. The
proportional term is usually the most dominant one of the three as it is directly connected

2.1 Basic Controllers 3

to the error function.
Pout := Kpe(t)

Integral Term
The integral term increases in proportion the error and also the duration it has already
persisted. So if initially the output is to small to reduce the error down to zero, then Iout
will slowly rise to compensate. It is used to correct for any constant offset to the target.
Because the integral term depends on accumulated errors and not the current error it can
cause the system to overshoot the target initially.

Iout := Ki

∫ t

0

e(τ)dτ

Derivative Term
The derivative term incorporates the slope of the error function. As such it aims to predict
the trajectory of the system and therefore reducing the amount of overshooting, which
results in damping and less oscillation of the error curve. As this term does not include
the error itself, a pure D-controller can not bring the system to its target.

Dout := Kd
de(t)

dt

In practice
Because in practice we obtain discrete sensor data, the controller changes it output in set
intervals (e.g. every 0.2sec). Hence the above formula can be simplified to:

u(tn) = Kpe(tn) +Ki

n∑
k=0

e(tk) +Kd[e(tn)− e(tn−1)] (2.2)

Designing and tuning a proportional-integral-derivative (PID) controller appears to be
conceptually intuitive, but can be hard in practice, if multiple (and often conflicting)
objectives such as short transient and high stability are to be achieved. Usually, initial
designs obtained by all means need to be adjusted repeatedly through computer simula-
tions until the closed-loop system performs or compromises as desired[1].

4 2 STATE OF THE ART

2.1.2 Model Predictive Control

Figure 2: Basic MPC control illustration. The optimizer calculates an optimal control
strategy, utilizing a model of the system.

Model Predictive Control (MPC) incorporates optimization of a process model in a finite
time horizon h ∈ N. At a given time t and sampling time T the controller calculates
an optimal control strategy for the time interval [t, t + hT], by numerically minimiz-
ing a cost function over the predicted trajectory of the system, which is estimated by a
model/predictor. Then only the first step of the control strategy is implemented and the
procedure repeated at the next iteration. This results in a shifting time frame over which
the cost function is minimized in every step.

Figure 3: Illustration of the MPC optimization task. The optimizer tries to fit the
trajectory of the system to a reference trajectory based on predictions made by the model
up to a horizon. Figure adapted from [2].

Assume we have a state space Ω ⊂ Rn1 and a control space U ⊂ Rn2 of variables we can
feely manipulate , then a predictor needed for MPC is a function

M : Ω× Uh → Ωh, (x(0), u(1), . . . , u(h)) 7→ (x(1), . . . , x(h))

such that it predicts the trajectory x(0) → x(1) → · · · → x(h) of future states, given the
control ui at between time steps.

Incorporating a basic quadratic cost function:

e(x, u) =

n1∑
i=1

wxi(ri − xi)2 +

n2∑
i=1

wui∆u
2
i (2.3)

2.2 Spectral discovery of jointly smooth functions 5

where:
x ∈ Ω is the vector of process variables
r ∈ Ω is the vector of reference variables
u ∈ U is the vector of controlled variables
wxi ∈ R ith weighting coefficient reflecting importance of xi
uui ∈ R ith weight penalizing big changes in ui

The optimization problem is then given by:

û(x̂) = arg min
u(1),...,u(h)∈R

h∑
i=1

wie(x(i), u(i)) (2.4)

with constraints:

α ≤ u(i) ≤ β, ∀i ∈ {1, . . . , h}

where the states x(i) are obtained via the model M(x̂, u(1), . . . , u(h)) = (x(1), . . . , x(h))

MPC is a powerful tool which offers a lot of flexibility and is highly customizable as it
has many weights which can be tweaked, to e.g. sacrifice intimidate gain for future gain
(wi), weighting the importance of variables(wxi), or smoothing out the control(wui). But
all this requires a good model of the system which can be hard to acquire, and might be
computational expensive to calculate.

2.2 Spectral discovery of jointly smooth functions

As mentioned above, a good model is often crucial for the control of dynamic systems.
Such a model needs to be reliable, resistant to disturbance in the input and ideally re-
dundant in the sense that if one or a few input-sensors are lost the model still functions
somewhat reasonable. Furthermore finding minimal parameter space realizations in an
ongoing challenge[3]. For the purpose of creating such a model which predicts variables
from sensor data without knowledge of the dynamic system. We will discover smooth
functions {f (m)}m∈N defined on both the state space X ⊂ Rnx and output space of our

predicted variable Y ⊂ Rny , namely f
(m)
X : X → R and f

(m)
Y : Y → R respectively. Such

that for pairs of points in state and corresponding output space {(xi ∈ X, yi ∈ Y)}Ni=1,

the functions satisfy f
(m)
X (xi) = f

(m)
Y (yi) ∈ R,∀i,m. Now assume we find a selection

{i1, i2, . . . , ik} ⊂ N such that (f
(i1)
X , . . . , f

(ik)
X) and (f

(i1)
X , . . . , f

(ik)
X) are a discrete realisa-

tion of smooth and injective functions FX : X → Rk, FY : Y → Rk such that:

FX(xi) := (f
(i1)
X (xi), . . . , f

(ik)
X (xi)) = (f

(i1)
Y (xi), . . . , f

(ik)
Y (yi)) =: FY (xi) (2.5)

Then for the points xi it follows that (F−1
Y ◦FX)(xi) = yi. It turns out that this method can

be expanded for unseen states x̂ and ŷ := (F−1
Y ◦FX)(x̂) will a good output approximation.

This will result in a model that is resistant to disturbance, as demonstrated in the next
chapter. The use of such model construction in MPC will be subject of future work. We
use a kernel based spectral method to find such function f (m). In this section we will
develop the tools, required to discover such functions.

6 2 STATE OF THE ART

2.2.1 Kernel method

Kernel machines are instance-based learners, which means rather than learning parameters
corresponding to features of the input space, they keep all training data (xi, yi) in memory
and learn weights wi for each one of them. The output for a new input x∗ is than calculated
by using a symmetric similarity function k called kernel to compare the new input data to
the training data weighted with wi. For instance for a binary classifier you can calculate
the weighted sum:

ŷ = sgn
n∑
i=1

wiyik(xi, x
∗)

where:
ŷ is the classifier’s predicted label for input x∗

k : X × X → R is the kernel function measuring similarity
{(xi, yi)}Ni=1 is the labelled training set with input x ∈ X and output y ∈ {−1, 1}
wi ∈ R are the weights determined by the learning algorithm

Furthermore a kernel function is a way to calculate a dot product of data in some higher
dimensional feature space V , without knowledge of this space or how to compute such
mapping ϕ : X → V . A kernel k therefore corresponds to a dot product[4] such that

k(x, y′) = 〈ϕ(x), ϕ(y)〉

Many data analysis methods use kernels to efficiently represent data. One of the most
frequently used kernels is the Gaussian kernel (RBF Kernel), given by following matrix
to represent input data, σx ∈ R is a parameter controlling the ’strictness’ of the kernel as
similarity function:

Kx[i, j] = exp

(
−
‖xi − xj‖2

2

2σ2
x

)
, Kx ∈ RN×N

This matrix approximates the operator exp(−σxLx) which has the same eigenfunctions
as the Laplace-Beltrami operator Lx. These eigenfunctions span a dense subspace of
the function space and correspond to non-negative real eigenvalues[5]. The higher the
eigenvalue, the more oscillatory the eigenfunction is. This is demonstrated in figure 4 by
plotting the eigenfunctions of the kernel matrix of random points on the unit circle.

2.2 Spectral discovery of jointly smooth functions 7

Figure 4: Four different eigenfunctions of the kernel matrix of random points on the unit
circle. As scatter-plot in the plane and also graphed in relation to the radial angle φ.
Note that higher eigenvalues λi correspond to a higher oscillation.

2.2.2 Discovery of Smooth Functions over Manifolds

This section is a summery of a recent paper from O. Yair et al.[6] which builds foundation
for the next chapter.

Smooth Functions on Data
We consider a set of points {xi ∈ Mx}Ni=1 on a manifold Mx ⊂ Rd embedded in d-
dimensional Euclidean space. Our following definition of smoothness is inspired by the
Dirichlet energy 1

2

∫
Ω
‖∇f(x)‖2

2 dx of a function f : Ω → R, which is a measure of how
variable the function is, and further adapted to Kernel matrices, by calling functions
smooth if they lie in the span of top eigenvectors of the kernel matrix.
Note that since the functions f we will work with are discrete, we will use a vector
representation through their evaluation on data. They can be viewed as sampled versions
of functions f̂ :Mx → R. Namely the i-th coordinate corresponds to the evaluation of f̂
at the i-th data point: f [i] := f̂(xi)

Definition 2.1 (Truncated energy). For a number d < N < ∞ and a given function
f ∈ RN , define its d-truncated energy Ed

x(f) with respect to a kernel Kx by

Ed
x(f) :=

∥∥W T
xf
∥∥2

2
(2.6)

where W x := [w1w2 . . . wd] ∈ RN×d the matrix of normalized eigenvectors corresponding
to the d-highest eigenvalues of Kx

Definition 2.2 (smooth function). A function f ∈ RN with ‖f‖2 = 1 and with Ed
x(f) = 1

is called smooth. For two functions f 1,f 2 ∈ RN with
∥∥W T

xf 1

∥∥
2
>
∥∥W T

xf 2

∥∥
2

we call f 1

smoother than f 2.

Remark: For all f ∈ RN with ‖f‖2 = 1 it follows from the definition:

Ed
x(f) = 1 ⇐⇒ f ∈ span(W x)

Definition 2.3 (Jointly smooth function). a function f ∈ RN with ‖f‖2 = 1 and d-
truncated Energy Ed

x(f) = Ed
y (f) = 1, with respect to Kx and Ky, is called jointly

smooth on Mx and My.

8 2 STATE OF THE ART

Proposed Algorithm
Now we consider two sets of observations {xi ∈ Mx}Ni=1 and {yi ∈ My}Ni=1 such that
they build corresponding pairs {(xi, yi)}Ni=1. O. Yair et al. now propose Algorithms to
find orthogonal functions fm which are close to jointly smooth (ordered in decreasing
smoothness) on Mx and My. Namely the functions fm can be approximated by linear
combinations of eigenfunctions of both kernels. These functions are of interest as they
represent the common part between the two manifolds. In the next chapter of this thesis
we will present applications of such functions. Algorithm 1 is slightly modified from the
original to fit our needs.

Algorithm 1: Jointly smooth functions from 2 observations

Input: 2 observations
{
xi,yi

}N
i=1

where xi ∈ Rnx and yi ∈ Rny .

Output: M jointly smooth functions {fm ∈ RN}Mm=1.

1. Compute the kernels Kx,Ky ∈ RN×N :

Kx [i, j] = exp

(
−‖xi − xj‖

2
2

2σ2
x

)
, Ky [i, j] = exp

(
−‖yi − yj‖

2
2

2σ2
y

)

2. Compute W x,∈ RN×dx , W y ∈ RN×dy the first d normalized eigenvectors of Kx

and Ky associated with the largest eigenvalues, such that all eigenvalues are still
greater than ε.

3. Set W := [W x,W y] ∈ RN×(dx+dy)

4. Compute a SVD decomposition of W = UΣV T

5. Set fm to be the m-th column of U .

Remark: one flaw of the Gaussian kernel, used in this method, is that it directly depends
on the euclidean distance of data points. ‖·‖2 is highly influenced by the largest vector
component. This results in the kernel being biased towards the variable with the biggest
changes. So algorithm 1 will produce functions mostly depending on those variables.
This means we might need to select or scale our input data accordingly. Further in this
thesis we will use σx := 0.3 ·median({‖xi − xj‖2

2}i,j) and σy analogously, as it has shown
experimental success. It is has also shown practical to restrict Wx and Wy to only use
eigenvectors corresponding to large enough eigenvalues, as it excludes noise by ignoring
small features represented by those vectors, this was not mentioned in the original paper.
For this thesis we will utilize a lower bound of ε = 10−8.
The main paper also gives algorithms on how to calculate jointly smooth functions from
more than two observations and how to estimate fm(x∗) for some unseen data x∗ based on
the Nyström method. Especially the extension can be used to build a predictor as men-
tioned in the beginning. Furthermore the paper gives a reasonable value of the parameter
M , namely a lower bound on the d-truncated Energy of the functions fm for which those
become ’not smooth enough’. We will not go into much depth for those topics and there-
fore exclude further information in this thesis. Please regard the original paper [6] for

9

more detailed information, such as the prove that fm are indeed jointly smooth on Mx

and My.

3 Feature Extraction Through Jointly Smooth Func-

tions

In this chapter we will use jointly smooth functions (JSF) in order to obtain features of
various dynamic systems. Firstly we construct a toy problem on which the JSFs’ ability,
to identify and extract effective parameters, is demonstrated. Following that, the classic
example of a nonlinear system, the inverted pendulum, is covered. Here we derive the
necessary information from basic physics and Lagrange equations, so that we can simulate
the system and implement PID/MPC controllers. Those are then used to extract JSFs on
data gathered from a controlled inverted pendulum. And finally we illustrate feasibility
of our JSF-methods for complex systems by taking a look at data from a simulated
spacecraft. The goal is to interpret jointly smooth functions as features of the dynamic
systems and utilize them to implement a control loop for said system.

3.1 Toy Problem

Finding minimal parameter spaces for nonlinear dynamical systems from observations is
an ongoing challenge[3]. In this example we will use jointly smooth functions to identify
an effective parameter from the observation of an aircraft. The planes altitude x1 and
velocity x2 is modelled by the nonlinear dynamic system described by following differential
equation, depending on parameters p1,p2,p3.

ẋ = J(s(x)) · gp1,p2,p3(s(x)) ∈ R2 (3.1)

with nonlinear transformation J and linear oscillator g defined by:

J(x) =

[
1 −2x2

−2x1 + 2x2
2 1 + 4x1x2 − 4x3

2

]
, s(x) =

[
x1 + x4

1 + 2x2
1x2 + x2

2

x2
1 + x2

]
and

gp1,p2,p3(x) =

[
−2 1
−1 −1

] [
x1 − (p1 + p3

2)
x2 − p3

]
(3.2)

the system models the planes as its speed and velocity oscillates towards a steady state
given by x̂ := s(p1 + p3

2, p3). Equation 3.1 describes a spiralling contraction towards x̂,
which is illustrated in figure 5(a) by its flow. Note that the systems dynamics only depend
on the parameters peff := p1 + p3

2 and p3, despite having a three dimensional parameter
space.
Now suppose we have no knowledge of the dynamics of our system and only p1 and p2

are controllable while p3 is unknown. We can simulate the aircraft and therefore observe
the steady state for different parameters p1 and p2. From such observations we will
use algorithm 1 to identify the effective parameter peff. For this purpose we generate

10 3 FEATURE EXTRACTION THROUGH JOINTLY SMOOTH FUNCTIONS

N = 4000 parameter triplets i.e. {(p1, p2, p3)i}Ni=1 uniformly distributed on [−1, 1]3 and
then observe the steady state {(x̂1, x̂2)i}Ni=1 for each set of parameters through simulation
until convergence. We then apply algorithm 1 on {(p1, p2)i, (x̂1, x̂2)i)}Ni=1 with d = 500 in
order to get jointly smooth function fm on the observable parameters (p1, p2) and steady
state x̂. In the top row of figure 5(b) we plot the four most jointly smooth functions as
functions of p1 +p3

2 and observe that there is a obvious correspondence with the unknown
parameter combination. In order to find such combination we can take a look at the
scatter of p1 against p2, coloured by the jointly smooth functions fm, as depicted in the
second row of figure 5(b). The level sets coincide with the graphs of p1 + p3

2 = C, C ∈ R,
which is expected because along these graphs the effective parameter is constant and
therefore the dynamical system behaves the same. Going back to our plane, this implies
that we can reduce the parameter space for the aircrafts’ steady state control by utilizing
the parameter combination p1 + p3

2.

(a) (b)

Figure 5: On the left we have the flow of the system for parameters (p1, p2, p3) =
(0.2, 0.3,−0.1); on the right the top four jointly smooth functions, obtained by algorithm
1, are depicted. The top row plots the functions against the hidden effective parameter
peff := p1 + p3

2 and observe that all fi are smooth on peff. The bottom row illustrates how
to find such effective parameter, as peff coincides with the level sets of the scatter plot of
p1 to p2 coloured by fm. The red lines are the graphs of p1 + p3

2 = C ∈ {−0.7, 0, 0.7}

3.2 Control of an inverted pendulum 11

3.2 Control of an inverted pendulum

Figure 6: Illustration of our inverted pendulum on a cart, controlled by a force u.

The inverted pendulum is a classic problem in dynamics and control theory which can
be used to benchmark control strategies[7][8]. Here we will use this dynamic system to
expand on the use cases and demonstrate the feature defining ability of jointly smooth
functions. We will gather data from the control of such pendulum, use it to find jointly
smooth functions and further illustrate how to utilize those JSFs to develop a control
system from the data.

3.2.1 Modelling of the inverted pendulum

System Description

We consider a cart pendulum system as depicted in figure 6. The cart of mass M can move
on the track with a ball (with mass m) attached via a massless rod of length l. θ is the
angle in which the rod deviates counter-clockwise from vertical, while the gravitational
acceleration acting on the arm is g. The system is controlled by a force u(t) on the cart,
in the positive x direction. The masses are considered point-masses attached to the rod
and the system is assumed to be frictionless.

Deriving the equations of motion
By defining the potential energy of the cart as zero we can write the total potential energy
V of the system as:

V = mgl sin(θ) (3.3)

In order to calculate the kinetic energy T we derive the position xb and velocity (ẋb) of
the ball, from the carts horizontal position x and angle θ:

xb =

[
x− l sin(θ)
l cos(θ)

]
(3.4)

ẋb =

[
ẋ− lθ̇ cos(θ)

−lθ̇ sin(θ)

]
(3.5)

12 3 FEATURE EXTRACTION THROUGH JOINTLY SMOOTH FUNCTIONS

and then write T as the sum of kinetic energy of cart and ball:

T =
1

2
M‖ẋ‖2

2 +
1

2
m‖ẋb‖2

2 =
1

2
(M +m)ẋ2 +

1

2
ml2θ̇2 −mlθ̇ẋ cos(θ) (3.6)

using the Lagragian L = T − V we apply the Euler-Lagrange equations.

d

dt

(
∂L
∂θ̇

)
− ∂L
∂θ

= Qθ (3.7)

d

dt

(
∂L
∂ẋ

)
− ∂L
∂x

= Qx (3.8)

L =
1

2
(M +m)ẋ2 +

1

2
ml2θ̇2 −mlθ̇ẋ cos(θ)−mgl sin(θ) (3.9)

with the external moment Qθ = 0 and Qx = u we get:

lθ̈ = ẍ cos(θ) + g sin(θ) (3.10)

(M +m)ẍ−ml cos(θ)θ̈ +mlθ̇2 sin(θ) = u (3.11)

by substitution of θ̈ and ẍ respectively, the final equations of motion follow:

θ̈ =
u cos(θ) +mlθ̇2 sin(θ) cos(θ) + (M +m)g sin(θ)

Ml +ml −ml cos2(θ)
(3.12)

ẍ =
u+mg cos(θ) sin(θ) +mlθ̇2 sin(θ)

M +m−m cos2(θ)
(3.13)

These can be used to describe the dynamic system with a time independent ordinary
differential equation of first order in a four dimensional state space. This allows us to
numerically simulate the nonlinear inverted pendulum on a cart and further control it via
the parameter u.

d

dt
x =

d

dt


x
ẋ
θ

θ̇

 =


ẋ
ẍ

θ̇

θ̈

 =


ẋ

u+mg cos(θ) sin(θ)+mlθ̇2 sin(θ)
M+m−m cos2(θ)

θ̇
u cos(θ)+mlθ̇2 sin(θ) cos(θ)+(M+m)g sin(θ)

Ml+ml−ml cos2(θ)

 (3.14)

3.2.2 Controller Realization and Choice of Hyperparameters

Here we demonstrate two Controller realizations, one PID and MPC-Controller. For this
we will use an inverted pendulum on a cart with mass M = 5kg. The ball (m = 1kg)
is connected with a massless rod of length l = 1.5m. The gravitational acceleration is
g = 9.81m

s2
and we will ignore any friction so we can use the equations of motion from the

previous section.

3.2 Control of an inverted pendulum 13

System simulation
The simulation on which we test our following controllers is based on numerical integration
of the equations of motion (3.12) using an explicit Runge-Kutta (4,5) formula[9]. With
a sample rate T = 0.2s we can, in this manner calculate the trajectory of the system
originating from a state xi at time ti up to a state xi+1 at time ti+1 := ti + T . We iterate
this procedure until we reach the time limit of tmax = 5s. While we update the control
force u according to the controller at each iteration, taking xi into account.

PID-Controller
Since the PID-Controller only works with one process variable, we will use the angle
deviation of the rod from vertical θ, resulting in a error function e(t) := −θ(t). As for
parameters Kp, Ki and Kd, we obviously need to make the control force u depended on
the angle θ and angular velocity θ̇, but since we did not incorporate θ̇ into the error
function we will need a PD-Controller or PID-Controller to account for the change in
angle. Because we already have a understanding of the dynamic system we can derive a
lower bound on Kp from the equation of motion (3.12) using the low angle approximations,
cos(x) ≈ 1 and sin(x) ≈ x. So for a angular stationary (θ̇ = 0) pendulum we get:

0 = θ̈ ≈ u+ (M +m)gθ

Ml
⇒ u ≈ −(M +m)gθ = −58.86 θ

In conclusion we need Kp > 58.81 for the controller to overcome the gravitational pull on
the ball. In expectation that the angular velocity is equally influential we can start off
with parameters Kp = Kd = 100 and see how the system behaves. The controller can then
be further adjusted for its needs, depending on whether you want to minimize overshoot,
time to reach a stable state, etc. Increases in Kp will result in stronger corrections and
Kd can decrease oscillations and overshoot.

The result of such PD-Controller on the system is demonstrated in figure 6(a). As you
can see we only regulate the angle of the pendulum. Often you want to also control more
than one process variable, this is achieved by creating a separate PID-controller for each
one. So in our case we could implement another controller which affects the position[10].

MPC-Controller
One of the many advantages of MPC, in contrast to PID, is that you can control more
than one process variable at once. So we will incorporate travelling of the cart to a given
point and stabilizing it there. Additionally to not utilize the exact same equations as
model as used by the simulation, we instead make use of a linearised version obtained via
small angle approximation:

d

dt


x
ẋ
θ

θ̇

 =


ẋ

u+mgθ+mlθ̇2θ
M

θ̇
u+mlθ̇2θ+(M+m)gθ

Ml

 (3.15)

The model incorporates a numerical solution of this differential equation to simulate the

14 3 FEATURE EXTRACTION THROUGH JOINTLY SMOOTH FUNCTIONS

trajectory. Further we will use following quadratic cost function:

e(x, u) =
4∑
i=1

wxi(ri − xi)2 + wu∆u
2 (3.16)

Further apply following weights: w := (0.25, 0.1, 1, 0)T , wx := (1, 0, 1, 0)T (only taking
position and angle into account) and wu := 0.001, forcing more subtle changes in the
control force.

û(x̂) = arg min
u(1),...,u(h)∈R

h∑
i=1

i

2
e(x(i), u(i)) (3.17)

The solution of this optimization problem is numerically obtained with the constraints
−20 < u(i) < 20. So that the controller will then use the first component of û, implement-
ing only the first control step of the obtained optimal control strategy. The trajectory
endorsed by this controller is depicted in figure 6(b,c).

(a) PID-Controler (Kp, Pi, Pd) = (100, 0, 140)

3.2 Control of an inverted pendulum 15

(b) MPC-Controler with horizon h = 5 (c) MPC-Controler with horizon h = 7

Figure 6: (a) illustrates a PD controller with parameters Kp = Kd = 100. You can see the
angle θ slowly oscillating towards the target r(t) = 0, meanwhile the uncontrolled cart-
position x steadily rises; (b) and (c) show the systems trajectory under MPC-Controllers.
They both have the same weights in the cost function as defined above, the same target
r(t) = (0.5, 0, 0, 0)T , but different horizons. The last row is the diagram, is the cost
function the optimizer tries to minimize. Note that they both overshoot their target and
then slowly approach position and angle from above. The one with greater horizon acts
more aggressive as it sees immediate gain in the future and therefore achieves the target
state sooner. But the higher horizon resulted in doubling of the average computation time
per time step.

3.2.3 Jointly smooth functions over pendulum data

We will now apply the methods of section 2.2.2 to find jointly smooth functions on data
gathered from pendulum simulations. It is generated by letting the PD-Controller(Kp =
Kd = 100) stabilize a pendulum for 5 seconds at 50 equidistant starting angles θ ∈
[−0.5, 0.5]. The simulation has a sampling time T = 0.1s, meaning that every 0.1s a
new control output is calculated and applied until the next one is requested. The states
xi := (θi, θ̇i) on which the controller acts (containing angle θ and angular velocity θ̇),
are then collected with their corresponding output ui, such that we get observations
{(xi, ui)}Ni=1 where xi ∈ R2 and ui ∈ R. In this manner we get N = 2500 such points, on
which Algorithm 1 can be applied with d = 250. This generates jointly smooth functions
fm on the manifolds underlying state and output space. Since the control output is one
dimensional the functions are expected to be smooth on the output data. Figure 7(top)
shows the 4 smoothest functions as their evaluation on the control output.

16 3 FEATURE EXTRACTION THROUGH JOINTLY SMOOTH FUNCTIONS

Figure 7: Top 4 jointly smooth functions obtained by using algorithm 1 on data gathered
by 50 simulations of inverted pendulum under PID-control; The top row uses the angel
and angular velocity in its data, while the bottom row has 5 dimensions of noise included
in the sensor data. Both still deliver roughly the same functions, up to their sign and
mild boundary effects.

Adding noise
We will now add further sensors, to the existing ones (θ and θ̇), which only return noise.
This simulates sensors which ether measure completely unrelated quantities or broken
ones only returning noise. We expand xi from previously to x∗i := (θi, θ̇i, z

(1)
i , . . . , z

(5)
i)

where z
(1)
i , . . . , z

(5)
i are uniformly distributed on [0, 0.5]5. We should not use too big noise,

because the used Gaussian kernel is biased towards the vector components of greatest
value changes. This noise is still considerable big enough, regarding the largest starting
angle is ±0.5. The usage of other kernels to counteract this issue is subject of future
work. We again apply algorithm 1 to {(x∗i , ui)}Ni=1 with d = 250. The obtained jointly
smooth functions fm, depicted in figure 7(bottom) are approximately the same as the ones
acquired from noiseless data, up to mainly boundary effects and the sign. This concludes
that obtaining jointly smooth functions also works reasonably well under the influence of
unrelated or noised sensors.

Adding shifted sensor data
Now we will briefly test if the obtained jointly smooth functions are dependent on the
embedding of the manifold. We will do this by expanding the input space by shifted data
residing on the same manifold. For this we will use x+

i := (xi, x
0.3T
i , x0.6T

i , x0.9T
i) ∈ R8

whereas xi is a observed state at time ti as before and x0.3T
i is the state observed at time

3.2 Control of an inverted pendulum 17

ti+0.3T . x0.6T
i , x0.9T

i are defined respectively. This means we add states observed between
time-steps. This is a simple method to lift the data into 6 dimensional space. As usual
algorithm 1 is then applied to {(x+

i , ui)}Ni=1 with d = 250. The resulting jointly smooth
functions do not noticeable differ from the ones obtained from the pure data. This implies
that we can also add further sensors, related to the output, resulting in redundant infor-
mation and still obtain similar JSFs because those depend on the underlying manifold,
not the concrete realization.

Figure 8: f2,f3,f4 plotted against each other and coloured according to the control output
u; the right plot included used 5 dimensions of noise in the generation of fm

Output prediction for unseen states
Since each jointly smooth function represents something common between the sensor
space and control output, we can interpret such a function as features of the dynamic
system. We can now try to make a selection {fi1 , fi2 , . . . , fik} of JSF’s, such that the curve
F := {(fi1(xi), . . . , fik(xi)) ∈ Rk| i ∈ {1, . . . , N}} is a discrete sampling of a smooth and

injective curve F̂ . Furthermore xi corresponds to an control yi which induces a continues
mapping ϕ : F̂ → R from the feature space to the control space. Such a selection is
represented in figure 8. The motivation is, that if we find such a curve F̂ we can predict
a control output from this feature space Rk using ϕ. For new unseen sensor data x∗ and
a good approximation of fm(x∗) (presented in [6]) we can then make a prediction for the
control y∗ = ϕ(fi1(x

∗), . . . , fik(x∗)).

18 3 FEATURE EXTRACTION THROUGH JOINTLY SMOOTH FUNCTIONS

3.3 Landing rockets

Considering how expensive space travel is, re-usability of spacecraft is an important topic
in the advancements of the field. After making history by the successful landing of the
Falcon 9 rocket by the private company SpaceX[11], this subject gained increasing public
attention. In the following section we will apply our methods of extracting JSFs to data
gathered from a simulated rocket as it performs vertical landings.

3.3.1 The Simulation environment and obtaining data

The dynamic system is given by Kerbal Space Program (KSP), a space flight simulation
video game published in 2015. It offers an environment for realistic simulations of space
travel. We will use data obtained by Kaan Atukalp, where he demonstrates a MPC-
controller utilizing machine learning in his predictor to land a rocket[12]. The controller
is based on a the design Ali Ganbarov developed in his thesis which uses MPC for altitude
control and PID to keep the spacecraft vertical[13]. Said data includes 7 landings from
an altitude of 3000m. The MPC-controller minimizes towards a target altitude ytarget and
target velocity vtarget depending on the current altitude y:

ytarget :=


y − 500 5000 < y

y − 800 5000 ≥ y > 1000

−2 1000 ≥ y

and vtarget :=

{
−200 1000 < y

0 1000 ≥ y
(3.18)

We will only use the vertical speed, altitude and thrust in the upcoming, even though the
data also includes orientation, drag, etc. In Figure 9 we visualize the data used in this
experiment. You can see, the controller does not counteract the fall for approximately the
first 14s where it starts to stabilizes the vessel to a constant velocity of around −150m

s
.

Note that the target speed vtarget = −200m
s

is not approached because MPC also tries
to minimizes the distance towards the target altitude over the timespan of the horizon.

3.3 Landing rockets 19

Particularly a stable altitude on the horizon would imply a speed of 0, all this results
in achieving nether the target altitude nor speed. Similarly to the time interval [0s, 14s]
there is no throttle around 17s as the vessel drops bellow 1000m and the target values
change, resulting in the altitude objective dominating the target speed. Then in the final
stage, the MPC-controller does its main work, balancing both objectives aiming for a
gentle touch down.

Figure 9: Visualization of the 7 landings used in the data set

3.3.2 Extraction of jointly smooth functions

We collect the observations from all 7 landings and filter for altitude xi, speed vi and
thrust ui resulting in N = 2919 data points {((xi, vi), ui)}Ni=1. On this we can apply
algorithm 1 with d = 300 and get jointly smooth functions fm on the manifolds of sensor
data (altitude/speed) and the control output (thrust).

Figure 10: Top five jointly smooth functions.

In figure 10 we depict the 5 most jointly smooth functions on the observations. f1 is the
trivial constant function and therefore not of great interest. On the rest you can see a
flaw of this method as all functions have a big sudden spike around 5 · 104 throttle. This

20 3 FEATURE EXTRACTION THROUGH JOINTLY SMOOTH FUNCTIONS

can occur if the data is not dense enough distributed. On close inspection there is no
observation with a throttle of (5.3 ± 0.3) · 104, which causes a discontinuity there. Even
though some boundary effects appear around this spot, we can still continue with our
method and create a selection of jointly smooth functions such that we get a injective
mapping into some feature space. {f2} might be a sufficient choice, but {f2, f4} probably
result in more accurate predictions around the discontinuity. This is depicted in figure 11
The result is obviously a segmented curve.

Figure 11: f2 and f4 form an injective mapping into the feature space R2, which can
therefore be used for our system control loop.

21

4 Conclusion

In this thesis we reviewed two popular control mechanisms PID and MPC, such that we
can stabilize an inverted pendulum, in order to generate sensor data. This data is then
used to discuss the flaws, advantages and mainly applications of jointly smooth functions,
a recent approach employing a spectral method on kernels. Said function are then utilized
to discover common parts between data sets gartered from dynamic systems simulations.
Therefore they represent features of the underlying system. We showed in our toy example
how it can be possible to extract effective parameters from JSFs, reducing the parameter
space for system control. Furthermore we demonstrate the resistance of JSFs to noised
and redundant data. Ultimately we show how JSFs can theoretically be utilized as a
predictor based on a very small amount of training data. Further we demonstrate that
our approach can also be used in complex dynamic systems, by applying it to rocket
landing simulations.
In this thesis we used the Gaussian kernel, but noted this also induces a few limitations
on our data. Experimenting with different kernels to overcome this issue will be subject
of future work. Further it is suggested that we can modify our predictor, to work under
malfunction of some sensors by looking at more than 2 observation. If this turns out to
be feasible or not remains to be seen.

22 REFERENCES

References

[1] Kiam Heong Ang, G. Chong, and Yun Li. Pid control system analysis, design, and
technology. IEEE Transactions on Control Systems Technology, 13(4):559–576, 2005.

[2] Behrendt Martin. A discrete mpc scheme. https://commons.wikimedia.org/wiki/
File:MPC_scheme_basic.svg.

[3] Alexander Holiday, Mahdi Kooshkbaghi, Juan M. Bello-Rivas, C. William Gear, An-
tonios Zagaris, and Ioannis G. Kevrekidis. Manifold learning for parameter reduction.
Journal of Computational Physics, 392:419431, Sep 2019.

[4] Thomas Hofmann, Bernhard Schlkopf, and Alexander Smola. Kernel methods in
machine learning. The Annals of Statistics, 36, 01 2007.

[5] Yoshida Kosaku. Functional analysis. Springer, 1995.

[6] Or Yair, Felix Dietrich, Rotem Mulayoff, Ronen Talmon, and Ioannis G. Kevrekidis.
Spectral discovery of jointly smooth features for multimodal data, 2020.

[7] Yoshida Kosaku. Bioinspired legged locomotion: models, concepts, control and appli-
cations. M. Sharbafi and A. Seyfarth, 2017.

[8] Maria Landry, Sue Campbell, Kirsten Morris, and Cesar Aguilar. Dynamics of an in-
verted pendulum with delayed feedback control. Siam Journal on Applied Dynamical
Systems - SIADS, 4, 01 2005.

[9] L.F. and M.W. Reichelt. The matlab ode suite. SIAM Journal on Scientific Com-
puting, 18:1–22, 1997.

[10] Elisa Sara Varghese, Anju K Vincent, and V Bagyaveereswaran. Optimal control of
inverted pendulum system using PID controller, LQR and MPC. IOP Conference
Series: Materials Science and Engineering, 263:052007, nov 2017.

[11] Loren Grush. Spacex successfully landed its falcon 9 rocket after launch-
ing it to space. https://www.theverge.com/2015/12/21/10640306/

spacex-elon-musk-rocket-landing-success, Dec 2015.

[12] Kaan Atukalp. Automated feature selection and learning of spaceship model for
model predictive control, 2021.

[13] Ali Ganbarov. Autonomous spaceship navigation and landing using model predictive
control, 2020.

https://commons.wikimedia.org/wiki/File:MPC_scheme_basic.svg
https://commons.wikimedia.org/wiki/File:MPC_scheme_basic.svg
https://www.theverge.com/2015/12/21/10640306/spacex-elon-musk-rocket-landing-success
https://www.theverge.com/2015/12/21/10640306/spacex-elon-musk-rocket-landing-success

	Introduction
	State of the Art
	Basic Controllers
	Proportional-Integral-Derivative Controller
	Model Predictive Control

	Spectral discovery of jointly smooth functions
	Kernel method
	Discovery of Smooth Functions over Manifolds

	Feature Extraction Through Jointly Smooth Functions
	Toy Problem
	Control of an inverted pendulum
	Modelling of the inverted pendulum
	Controller Realization and Choice of Hyperparameters
	Jointly smooth functions over pendulum data

	Landing rockets
	The Simulation environment and obtaining data
	Extraction of jointly smooth functions

	Conclusion
	References

