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ABSTRACT Single-frame 3D detection is a well-studied vision problem with dedicated benchmarks and a
large body of work. This knowledge has translated to a myriad of real-world applications. However, frame-
by-frame detection suffers from inconsistencies between independent frames, such as flickering bounding
box shape and occasional misdetections. Safety-critical applications may not tolerate these inconsistencies.
For example, automated driving systems require robust and temporally consistent detection output for
planning. A vehicle’s 3D bounding box shape should not change dramatically across independent frames.
Against this backdrop, we propose amulti-frameRGB-Lidar feature alignment strategy to refine and increase
the temporal consistency of 3D detection outputs. Our main contribution is aligning and aggregating object-
level features using multiple past frames to improve 3D detection quality in the inference frame. First,
a Frustum PointNet architecture extracts a frustum-cropped point cloud using RGB and lidar data for each
object frame-by-frame. After tracking, multi-frame frustum features of unique objects are fused through
a Gated Recurrent Unit (GRU) to obtain a refined 3D box shape and orientation. The proposed method
improves 3D detection performance on the KITTI tracking dataset by more than 4% for all classes compared
to the vanilla Frustum PointNet baseline. We also conducted extensive ablation studies to show the effi-
cacy of our hyperparameter selections. Codes are available at https://github.com/emecercelik/Multi-frame-
3D-detection.git.

INDEX TERMS 3D object detection, KITTI, LiDAR, multi-frame fusion.

I. INTRODUCTION
Perception is an important step for autonomous systems to
plan their actions safely, especially in dynamic environments.
For example, the dynamic nature of the traffic makes it vital
for automated vehicles to obtain high-quality 3D detections
to react to changes at appropriate times. Therefore, 3D object
detection has gained increasing importance in the intelligent
vehicle domain. Recently, large-scale benchmarks [1]–[3]
with annotated lidar, RGB camera, and radar data have been
introduced to compare different approaches.

The best performing state-of-the-art 3D detectors mostly
rely only on lidar scans [4]–[6]. Several monocular camera-
lidar fusion strategies [7]–[12] have been proposed to achieve
robust 3D detection. However, fusion methods suffer from
multi-modal feature [13] alignment problems.
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State-of-the-art 3D object detectors rely on single-frame
data [14]–[17]. However, a single-frame lidar point cloud can
contain occluded or partially observed objects. These occlu-
sions are especially prevalent in dense, urban cityscapes. In
addition, the sparsity of lidar point clouds increases with
distance [18]. This sparsity causes inconsistent single-frame
detection performance. Against this backdrop, we propose a
multi-frame approach to compensate for the lack of infor-
mation by using object features already obtained in previous
frames (Fig. 1).

Multi-frame approach has been studied quite intensively
for 2D image-based problems. There have been attempts
to fuse object-level features [19]–[24] and scene-level fea-
tures [25]–[29] to improve the 2D detection quality. Also,
action recognition studies rely on multi-frame information
to reach more reliable decisions [30], [31], since one scene
in a single-frame can be related to multiple actions without
observing corresponding scenes in the prior frames. Multi-
frame processing has been also studied in the context of

143138 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 9, 2021

https://orcid.org/0000-0002-0716-0475
https://orcid.org/0000-0002-3103-6052
https://orcid.org/0000-0003-4840-076X
https://orcid.org/0000-0002-3895-1448


E. Erçelik et al.: 3D Object Detection With Multi-Frame RGB-Lidar Feature Alignment

FIGURE 1. Single-frame 3D detectors rely only on the point cloud
available in one frame. Therefore, quality of 3D detections decreases for
far away or occluded objects, which reflect only a small number of points.
We propose fusing object-level features in multiple frames to
compensate for the missing information in the current frame. In this way,
we utilize features of high-quality detections from the previous frames
for poor-quality features in the most recent scene.

tracking. Instead of comparing two frames [32], [33], meth-
ods utilizing more than two frames reach better 2D tracking
capability [34]–[36].

3D object tracking methods work also on successive
frames to track objects [37], [38]. It has been shown that
using object-level features improves the tracking quality
further [39]. However, processing multi-frame data for 3D
object detection has been limited until the release of large-
scale datasets [1], [2]. Recently, there are studies considering
scene-level temporal fusion [40]–[42], however these meth-
ods suffer from feature alignment problems in two successive
frames due to the movement of objects.

In this study, we propose an object-level temporal fusion
method to improve 3D object detection results. We extend
Frustum PointNet architecture [43] with our temporal fusion
module, which fuses features of the same object from suc-
cessive frames to obtain a more representative feature. The
Frustum PointNet generates object-level features to predict
3D bounding boxes using segmented frustum points. We fuse
the object-level feature of an object in the current frame with
its features from the previous frames temporally to predict
a more accurate 3D bounding box. We run our method on
the KITTI Multi-object Tracking Benchmark dataset since it
contains sequential data contrary to KITTI 3D object detec-
tion dataset. The validations are done for car, pedestrian,
and cyclist classes. We compare out method with the vanilla
Frustum PointNet baseline as well as the state-of-the-art
object detectors that apply RGB-Lidar fusion. Comparing
to the Frustum PointNet baseline, we reach 7%, 4%, and
6% improvement on car, pedestrian, and cyclist classes in
moderate difficulty, respectively.

We list our main contributions below:
• A novel multi-frame 3D object detection strategy to
increase consistency of bounding box predictions by
fusing object-level features from multiple frames.

• An object-level RNN-based temporal RGB-Lidar fusion
approach for 3D object detection. We investigate the

temporal fusion strategies for the RNN and provide our
results through extensive ablation studies.

• Experimental validation on a commonly used bench-
mark. We provide our 3D detection results on the KITTI
object tracking.

II. RELATED WORK
A. SINGLE-FRAME RGB-LIDAR FUSION FOR 3D OBJECT
DETECTION
Multi-modal perception systems benefit from redundancy
for alleviating sensor failure problems. RGB-lidar fusion is
commonly used for multi-modal 3D object detection, which
follows two main strategies: feature-level and high-level
information fusion.

The common approach for feature-level method is the
fusion of lidar bird’s eye view (BEV) representations with
RGB image features [10], [11]. Additionally, [7] and [13]
combine RGB image features and 2D segmentation outcomes
with lidar features using calibration information. Cross-
modality fusion further improves the 3D detection qual-
ity [12]. As a high-level fusion method, 2D bounding boxes
obtained from RGB images are used to extract frustums of
objects to reduce the search space in the entire point cloud
[8], [43]. Similarly, [9] uses 2D semantic segmentation results
to filter out background points in the point cloud.

Our temporal fusion method is based-on the Frustum
PointNet [43] architecture, which applies high-level RGB and
lidar frustum fusion. In this way, we obtain object-specific
features from the frustums of 2D bounding boxes. Single-
frame methods are limited to the data of the current frame,
which makes them prone to noisy data. However, our multi-
frame approach can propagate features from previous frames
to the current frame, which helps obtaining a wider view,
richer features, and as a result more stable 3D detections.

B. 2D VIDEO OBJECT DETECTION AND TRACKING
Multi-frame processing has been studied more extensively
for 2D object detection and tracking tasks than their coun-
terparts in 3D. Even though, single-frame 2D object detec-
tion methods provide good results [44], [45], they can miss
previously-detected objects in certain frames of a video.
Aggregating object-level features through multiple frames
alleviates this problem. References [19], [34] combines 2D
regions in 3D tube-like volumes among multiple frames, [20]
and [21] leverage attention mechanisms among multi-frame
objects, [22] measures similarities and concatenates similar
regions in the video, [23] and [24] refine object-level features
using RNNs. On the other hand, several approaches to aggre-
gate features of the entire scene have been proposed such as
using convolutional LSTMs [25] and LSTMs [28], attention
mechanisms [26], [29] and flow fields [27]. Similarly for
the 2D tracking problem, [36] processes object-bounding
tubes with 3D convolutions, [35] utilizes graph and motion
features, and [46] and [47] use transformer architectures to
track objects.
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Even though object-level feature aggregation has been
frequently and successfully considered for 2D video object
detection, this was an untouched method for the 3D object
detection problem. In this study, we propose multi-frame
object-level feature propagation method is to obtain better 3D
bounding boxes from successive lidar point clouds in time.

C. 3D OBJECT DETECTION AND TRACKING WITH LIDAR
1) SINGLE-FRAME 3D OBJECT DETECTION
Voxel-based and point-based feature learning methods are
the two main methods to process unordered and sparse lidar
point cloudes. Voxel-based methods learn features of the
points in 3D grid cells, which are called voxels, by applying
3D convolutions [5], [48], [49] to voxels. References [50]
and [51] utilize pillars, infinitely-high voxels, to increase
the detection speed. Differently, point-based 3D detectors
apply PointNets [52], [53] to learn features from sampled
lidar points [16], [17]. To improve the representation quality,
both methods have recently been combined either sequen-
tially [54], in parallel [15], [55], [56], or one as an auxiliary
network [6].

In the voxel-based approaches, an object can occupy mul-
tiple voxels, which makes it difficult to obtain and prop-
agate object-level features. Similarly, point-based methods
that rely only on lidar point clouds sample keypoints, also
multiple of which can represent an object. Instead, we utilize
and extend Frustum PointNet [43], which extracts features
from the region of the object. Thus, object-specific features
are obtained without additional computation and merging
process.

2) 3D MULTI-OBJECT TRACKING
3D multi-object trackers also utilize 3D bounding box
and appearance information from multiple successive
frames. [38] tracks 3D bounding box of objects using a 3D
Kalman filter. References [37] learns a similarity map on
2D appearance features from two frames. References [57]
predicts also 2D and 3D center offsets to match objects in suc-
cessive frames. [58] associates objects by learning geometry-
and appearance-based costs for 3D bounding boxes of two
adjacent frames. [59] utilizes LSTMs on monocular video
frames. Additionally, [60] makes use of lidar appearance
features. [39] employs 2D and 3D appearance andmotion fea-
tures of 3D bounding boxes detected in multiple time-steps.

Similar with the 3D tracking methods, we fuse 3D appear-
ance features of objects from multiple frames to predict bet-
ter 3D bounding boxes instead of associating objects. Thus,
the more representative multi-frame object features can result
in better 3D bounding box prediction comparing to using
single-frame features.

3) MULTI-FRAME 3D OBJECT DETECTION
Multi-frame 3D object detection gained attention after the
availability of datasets that provide sequences of data
[1], [2]. Even though, KITTI multi-object tracking dataset [3]

provides sequences of lidar scans, it has been only considered
for the tracking task. The proposed methods for process-
ing multiple frames have focused on scene-level aggrega-
tion so far. [61] utilizes motion maps from two successive
frames. [62] uses 3D CNNs for multi-frame BEV features,
whereas [63] and [40] apply convolutional LSTMs. Sim-
ilarly, [41] proposes a custom-designed LSTM with spa-
tial feature alignment between frames. Differently, non-local
attention mechanisms [64] as well as transformer architec-
tures [42], [65] have been utilized to build the spatio-temporal
relation between multiple frames.

Thesemethods show usefulness of multi-frame approaches
to improve quality of 3D detections. However, scene-level
feature aggregation requires spatial alignment of features
between successive frames. Different from these approaches,
we utilize object-level features frommultiple frames to obtain
stronger object representations without the need for an addi-
tional spatial alignment. Our previous work [66] includes
also object-level temporal features on lidar-RGB fusion for
3D object detection, in which tracking and the extent of
temporal associations were not considered. Here, we extend
the previous study considering tracking of objects, ablation
of multi-frame sequence lengths, comparison with other 3D
detectors as well as a large number of ablations.

III. PROPOSED METHOD
Making use of the data from the previously-processed frames
extends ego-vehicle’s field of view and compensates for the
occluded objects. With this idea, we aim to fuse an object’s
features in successive frames to obtain more informative
object-specific features and finally its 3D bounding box as
shown in Fig. 2. Therefore, we extend Frustum PointNet [43]
v1 model, from which we can obtain object-specific features.

A. PROBLEM DEFINITION
Our method utilizes a point cloud Pt = {pi|i = 1, . . . , k} and
an RGB image It ∈ RH×W×3 sampled at time-step t , where
k is the number of points, a single point pi ∈ R3, and H and
W are height and width of the RGB image. A 2D detector
detects a list of 2D bounding boxes Ot =

{
oti |i = 1, . . . , l

}
using I t , where oi ∈ R4 and l is the number of objects visible
in It . A 2D tracker, h, takes Ot and Ot−1 with the list of
unique IDs of the objects, U t−1, in frame t − 1 to provide
unique track IDs U t

=
{
uti |i = 1, . . . , l

}
of Ot defined as

U t
= h(U t ,Ot ,Ot−1), where ui ∈ Z+.
Utilizing a τ length sequence of S t = {(Pt ,U t ,Ot ), . . . ,

(Pt−τ+1,U t−τ+1,Ot−τ+1)}, we aim to obtain 3D bounding
boxes Bt =

{
bti |i = 1, . . . , l

}
, where bti ∈ R7, with a

3D detector, which is capable of processing the multi-frame
sequence S t . We represent bti with the width, height, and
length, 3D center, and the orientation of the 3D bounding box.
The whole pipeline is summarized in Fig. 2.

B. 2D DETECTION
Frustum PointNet extracts a subset of point cloud in the
frustum of a 2D bounding box, oti . Therefore, we require a 2D
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FIGURE 2. Multi-frame 3D detection pipeline: 2D bounding boxes and track IDs are obtained using a 2D detector and tracker, which are used for
extracting frustum points (orangely-painted). For clarity, we show the process only for one tracked object shown with the 2D bounding boxes
{ot−τ+1

1 , . . . ,ot
1} and track IDs {ut−τ+1

1 , . . . ,ut
1}. From frustum points, 3D point segmentation module generates {Rt−τ+1

1 , . . . ,Rt
1} that are predicted to

be the object of interest’s. Taking the masked points, T-Net and a PointNet generate object-level features. The object-level features {F t−τ+1
1 , . . . , F t

1 } of
the object {ot−τ+1

1 , . . . ,ot
1} are fused in time with a GRU-based multi-frame feature alignment module. The final temporal feature (z t

1) of the ot
1 is used

to predict 3D bounding box parameters bt
1.

detector g to obtain a set of 2D bounding boxes given asOt =
g(I t ). Frustum PointNet utilizes a custom-designed detector
for high recall, which is not included in the original Frustum
PointNet repository. We provide our own 2D detectors in our
repository. The 2D bounding boxes are used to decrease the
search space in the entire point cloud. In addition, high recall
is required not to miss the objects for 3D detection.

C. 2D TRACKING
We need track IDs of the 2D bounding boxes to associate
features of the same object from multiple scenes. Therefore,
we utilize a 2D tracker, which takes 2D bounding boxes in
successive two frames, Ot and Ot−1, with unique track IDs
U t−1 and outputs U t as seen at the top of Fig. 2. Since the
tracking problem was not considered in the original Frustum
PointNet [43] study, we employed our 2D trackers to match
objects in successive frames. As we explain our approach in
subsection IV-D, we tested SORT [32] and Deep SORT [33]
2D trackers on top of 2D detections for assigning 2D bound-
ing boxes to each other in successive frames.

D. SINGLE-FRAME FRUSTUM-LEVEL RGB-LIDAR FUSION
Frustum PointNet is a single-frame 3D detector, which takes
RGB images and lidar point clouds as inputs and fuses them
by extracting lidar points (Pi) in the frustum of each object’s
2D bounding box oi. The point set is decreased to Pi =
{pi|i = 1, . . . ,m}, where m is the number of points sampled
randomly in the frustum. However, the quality of the object-
level features and the 3D detection depends on the sampling
strategy, which is done randomly in the original study [43].
We also follow the same procedure.

E. OBJECT-LEVEL SINGLE-FRAME 3D DETECTION
Frustum PointNet [43] consists of 3 main parts. The frus-
tum proposal part extracts frustum lidar points, a subset of
point clouds POt = {P1,P2, . . . ,Pl}, using 2D bounding
boxes, Ot . This leaves irrelevant lidar points outside of the
frustum. However, there are still points in the frustum that do
not belong to the object of interest, which would cause a noisy
representation.
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The 3D instance segmentation PointNet aims to minimize
the irrelevant frustum points. It removes points with low
objectness scores from the frustum point set (Pti ). A masked
subset (Rti ) of P

t
i is obtained such that R

t
i = {pi|i = 1, . . . , n}

as shown in Fig. 2. n is the number of points after masking
operation and satisfies n < m.
The amodal 3D box estimation module consists of a

T-Net and an amodal 3D box estimation PointNet. The
T-Net takes Rti and estimates center residuals, which are
used to translate Rti to a point set R̂ti in the new coordinate
system. The amodal 3D box estimation PointNet takes R̂ti
and outputs global feature (F ti ) of the object o

t
i using multi-

layer perceptrons (MLPs) and a max-pool operation. F ti is
further processed by fully-connected layers to predict 3D box
parameters bti .

F. TEMPORALLY FUSING OBJECT-LEVEL FEATURES FOR
REFINING 3D DETECTION
The global feature Fi represents the position, orientation, and
shape of the object oi in an abstract way. However, the oi can
be only partially observed by the lidar sensor at a time-step,
which causes dramatic changes in Fi. Therefore, detection
quality depends on the sampled R̂i and the occlusion state of
the oi.

To alleviate the stated problem, we propose to use an
object’s features from successive frames to compensate for
the loss of information and to obtain a richer representation.
Our multi-frame feature alignment module, f , fuses global
features of the same object from multiple frames given with
F [t−τ+1,t]
i = {F t−τ+1i , . . . ,F ti } to obtain a more representa-

tive feature of the object as shown with zti = f (F [t−τ+1,t]
i ),

where τ is the number of frames, as depicted at the bottom of
Fig. 2.

We realize f with the gated recurrent units (GRUs) to
fuse object-level features in time. The resulting feature vector
from GRU cells is further processed with a fully-connected
layer. We expect that the temporal feature vector zti provides
a better representation of the object, which is shown with the
experiments in V. The T-Net shown in the Fig. 2 predicts
center residuals R̂ti for the bounding box of the oti . Adding
this information to the object feature vector F ti would help
the network to understand the center shifts of the bounding
box. Therefore, we concatenate the center residuals from
T-Net with the F ti to improve the representation quality. This
choice is also experimented as given in IV-D.

G. MULTI-FRAME FEATURE ALIGNMENT STRATEGIES
The obtained temporal feature zti can be used with dif-
ferent multi-frame feature alignment strategies as shown
in Fig. 3 for predicting 3D bounding boxes. The straight-
forward approach would be to feed zti directly to the FCs
to predict 3D box parameters. We name this strategy as one
branch (OB) seen in Fig. 3-a. Even though zti is expected to
contain a richer representation, it is still beneficial to have
object’s current feature vector, F ti , that is related more to the

current position. Therefore, we combine the temporal feature
zti with the object feature F ti at time-step t through a mean
operation, which is named as two branch (TB) in Fig. 3-b.
In this way, the feature has also the awareness for the current
state’s predictions. We realized the mean operation by adding
two feature vectors and dividing by 2.

Due to objects’ movement, only objects’ shape remains
same between frames. As a third alignment option, we use zti
to predict shape parameters of the object bounding box and
F ti to predict the rest of the parameters. To construct the final
output, the parameters are concatenated. In addition, using
temporal feature zti for the shape prediction acts as an auxil-
iary loss for the preceding shared layers ofF ti and z

t
i . This also

ensures to obtain a more representative object feature vector
F ti from the MLPs. This is called as Ours (seen in Fig. 3-c)
throughout the experiments and results sections. None of the
three strategies requires extra learnable parameters and the
shape of the FCs are the same. As the ablation results in sub-
sectionV-B3 indicate, the Ours version provides considerably
better results than the other two strategies.

IV. EXPERIMENTS
A. KITTI TRACKING DATASET
In this study, we use KITTI Multi-object Tracking Bench-
mark dataset [3], which provides sequential RGB images and
lidar scans.We split the 21 drives of the dataset in training and
validation sets. The validation split consists of drives 11, 15,
16, and 18 and the rest of the drives are used for the training.
There are 6264 frames in the training and 1239 frames in the
validation set. We tried to keep the ratio of object instances
in the training and validation splits similar. In addition, 92%
and 96.3% of the objects are visible in more than 10 frames
in the training and validation sets, respectively. We choose
the validation splits to be challenging. As it can be seen from
Fig. 4, there are scenes from the urban and suburban areas.
We also observe permanent occlusions that occur due to the
parked cars, pedestrians crossing in front of the vehicles,
the traffic jam, and overtaking vehicles. In addition, we check
the number of points inside object 3D bounding boxes as
given in Table 1. In all difficulty levels defined for KITTI,
the mean number of points inside objects decreases with
the distance considerably. Also, comparing mean number of
points for the training and validation splits, validation split
seems to be more challenging since the objects contain less
points in average. The dashes for the easy difficulty level
indicate that there is no object in that distance bin.

B. METRICS
We utilize average precision (AP) metric to measure the
performance of the network as it is recommended in the
KITTI 3D object detection benchmark.1 The AP is calculated
through 40 recall points as also stated in [67]. IoU threshold
is 0.7 for car class and 0.5 for pedestrian and cyclist classes
for AP calculation.

1http://www.cvlibs.net/datasets/kitti/eval_object.php
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FIGURE 3. Multi-frame feature alignment strategies for the temporal
features.

TABLE 1. Mean number of lidar points in object 3D bounding boxes
according to the distance and KITTI difficulty level.

C. LOSS FUNCTION
We utilize the original multi-task loss function used in Frus-
tum PointNet [43], which consists of mask, center, heading
class, size class, heading regression, size regression, the T-Net
center regression, and corner losses shownwith Lmask , Lcenter ,
Lh−c, Ls−c, Lh−r , Ls−r , LT−c, and Lcorner respectively. The
classification losses are realized with softmax loss and the
regression ones are with the smooth-L1 loss. We add a cosine
distance loss between the object-level features of an object
in the current (F ti ) and the preceding (F t−1i ) frames to the
multi-task loss of the Frustum PointNet. This loss function
aims to force the network to form the feature in the previous
frame with a different set of points. The cosine distance loss
is shown in Eq. 1, where the υ and the ω are feature vectors,

between which the distance is measured.

Lcos(υ, ω) = 1−

∑l
k=1 υkωk√∑l

k=1 υ
2
k

√∑l
k=1 ω

2
k

(1)

The multi-task loss function is constructed as shown in
Eq. 2, where α, β, and γ are the weights of the 3D box losses,
corner loss, and the cosine distance loss.

Ltotal = Lmask + α(Lcenter + Lh−c + Ls−c + Lh−r
+Ls−r + LT−c + βLcorner )+ γLcos (2)

D. EXPERIMENTS & ABLATIONS
We compare 3D AP results of multi-frame object-level
temporal fusionwith the FrustumPointNet baseline and state-
of-the-art 3D detectors on KITTI tracking dataset for car,
pedestrian, and cyclist classes. In addition, we conduct abla-
tion studies to investigate validity of the results.

Our method requires 2D bounding boxes and unique track
IDs of boxes. For the state-of-the-art comparison, we uti-
lize perturbed ground-truth 2D detections and ground-truth
track IDs for the baseline Frustum PointNet and also for our
method. We conduct an ablation study to show method’s per-
formance with the predicted track IDs obtained by SORT [32]
and Deep SORT [33] 2D tracking methods. We also study
effects of different sequence lengths (τ ). tau = 1means using
a fully-connected layer instead of GRUs to keep a similar
depth. Third ablation discusses results of feature alignment
strategies explained in III-G as well as results of training with
the cosine distance loss on the proposed strategies. As a fourth
ablation, we compare GRU-based fusion with LSTM-based
fusion and a simple convolution-based temporal fusion. In the
convolution-based fusion, we use two convolutional layers to
obtain the temporal feature vector (zti ) instead of a recurrent
layer. Our fifth ablation compares the results according to the
depth of features to be aggregated temporally. The Frustum
PointNet max-pools the point features in its Amodal 3D
Box Estimation PointNet and concatenates the max-pooled
features with the k-length class vector. This is called as the
global feature. Two FC layers are added after the global fea-
ture.We call the output of the first FC layer as fc1 and use it in
all our experiments as the temporal feature vector (zti ). In this
ablation, we also take the global features as zti and compare
with the fc1 features. Finally, we study the extent of features
by temporally fusing scene-level features. We compare the
scene-level fusion with our object-level fusion results.

E. IMPLEMENTATION DETAILS
The object-specific global feature in the amodal 3D box
estimation PointNet is processed with two FC layers and an
output layer for the prediction of the box parameters. The
FC layers have (512,256) units. We use output of the first
FC layer (512) as F ti . The features of the same object from
the previous time steps ({F t−τ+1i , . . . ,F t−1i }) are kept in the
memory and fed during training. The rest of the network is
kept the same as the v1 version of the Frustum PointNet.

VOLUME 9, 2021 143143



E. Erçelik et al.: 3D Object Detection With Multi-Frame RGB-Lidar Feature Alignment

FIGURE 4. Successive scenes from our validation ssplit of the KITTI multi-object tracking dataset. (a) Drive 11, (b) Drive 15, (c) Drive 16, (d) Drive 18.

TABLE 2. KITTI 3D AP results pedestrian (IoU = 0.5) and cyclist (IoU = 0.5) classes on KITTI tracking validation drives.

FIGURE 5. Qualitative comparison of the pedestrian class between the baseline Frustum PointNet [43] and the proposed method (Ours) for successive
frames (Green: Ground-truth, Red: Detection). For simplicity, we only show the detection (red boxes) for the zoomed-in crops. The baseline can detect the
pedestrians as shown in the dashed rectangular at time-step t . However, it confuses the localization of the bounding boxes in the following frames.
On the other hand, our method can detect and keep the 3D boxes correctly in all the scenes.

We also utilize the same training hyperparameters as the
Frustum PointNet. The number of points in a frustum is
fixed and taken as 1024, which is randomly sampled. We
train each parameter set for at least 5 times and take the

best resulting checkpoint for evaluation. All the training and
validation steps took place in a Docker container, which runs
Python 3.6 and Tensorflow 1.15, and on a single Nvidia RTX
2080 GPU with an Intel Xeon E3-1225 v5 3.30GHz CPU.
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FIGURE 6. Qualitative comparison between the baseline Frustum PointNet [43] and Ours with temporal fusion on cyclist class (Green: Ground-truth, Red:
Detection). We omit the ground-truth boxes in the zoomed-in crops for simplicity. Even though the Frustum PointNet was able to localize the cyclist
correctly at time-step t , it misses the object in the upcoming frames. However, Ours with the temporal fusion can localize the object and keep the
bounding box in the successive time-steps correctly.

TABLE 3. Tracking ablation results for three classes on KITTI tracking validation drives.

TABLE 4. KITTI 3D AP results car (IoU = 0.7) class on KITTI tracking
validation drives.

V. RESULTS & DISCUSSION
In this section, we show and discuss the efficacy of
the proposed object-level temporal feature fusion for 3D
object detection task. We first share our quantitative and
qualitative results and then provide the ablation results
explained in IV-D.

A. COMPARISON OF 3D DETECTION PERFORMANCE
We compare our method with other 3D detection architec-
tures and with the baseline Frustum PointNet [43] on the
KITTI tracking validation set. As seen from Table 2, our
method outperforms the compared detectors in the moderate
difficulty for pedestrian and cyclist classes. In this table,
we also provide our results for Ours (w/ Cent), which utilizes
object-level features extended with the center prediction from

T-Net as explained in III-F. Adding centers improves the 3D
AP for the cyclist class. Cyclist is the least-represented class
among all classes and we think that adding extra information
helps network to learn how to localize the cyclist objects. For
the car class, we also outperform the baseline in the moderate
difficulty given in Table 4.
Our qualitative results indicate how our method outper-

forms the Frustum PointNet baseline for the far-away or
occluded objects, which reflect a small number of points com-
paring to the closer objects. In Figure 5, Frustum PointNet
misses the previously-detected pedestrians in the following
frames. In this case, there are two pedestrians approaching
each other, which causes the detector to miss the farther-away
pedestrian. However, our method can keep the localization of
the 3D box correctly. Figure 6 and 7 show that our method
can detect the far-away cyclist and car objects quite accu-
rately in all frames, respectively. However, Frustum PointNet
without temporal fusion suffers from the localization problem
and misses the previously-detected objects in the successive
frames.

B. ABLATION STUDIES
1) COMPARISON FOR 2D TRACKING PERFORMANCE
The 3D detection performance of our method highly depends
on the 2D tracking accuracy used to match object-level
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FIGURE 7. Qualitative comparison of 3D detection results between the baseline Frustum PointNet [43] and Ours with temporal fusion on car class
(Green: Ground-truth, Red: Detection). The baseline detects the object in the first frame, but misses the object afterwards. However, our temporal fusion
model can detect and keep the detected box in the successive frames as well. For simplicity, we show only the detected boxes (red) in the crops t , t + 1,
and t + 2. At t + 3, the baseline cannot predict the orientation correctly, whereas our method (Ours) can predict the heading consistently.

TABLE 5. Tau ablation results for three classes on KITTI tracking validation drives.

features in time. Therefore, we also evaluate our method
using SORT [32] and Deep SORT [33] 2D trackers. We train
our method with the ground-truth track IDs and evaluate on
the KITTI validation set with predicted track IDs. Results are
given in Table 3. Comparing to the ground-truth tracking,
the AP values decrease for all classes and difficulty levels,
which would also require fine-tuning of the trained network
with the predicted track IDs.

2) COMPARISON OF SEQUENCE LENGTH
We evaluate our results with different sequence lengths as
seen in Table 5. The best results are obtained with τ = 3
for pedestrian and car classes, however we obtained the best
score for the cyclist class with τ = 8. Comparing tau > 1
with tau = 1 results, the improvement originates from the
temporal fusion, but not from the additional depth in the
architecture comparing to the Frustum PointNet baseline.

3) COMPARISON OF THE FEATURE ALIGNMENT STRATEGIES
We also validate our choice of placement of the temporal
fusion module in the architecture in Table 6. The best results
are obtained mostly using Ours version. In this strategy,

training the network with the temporal features acts as an aux-
iliary loss for the prediction of the center and the orientation
since the feature in the current frame is shared. This helps
learning more representative features for the shared layers.

In Table 7, we also provide training results using the
cosine loss on the object-level features from two subsequent
frames. Except the car class for Ours, training with cosine
loss improves the results for all fusion strategies.

4) COMPARISON OF TEMPORAL FUSION TYPE
GRU is our main choice for multi-frame fusion. We also
test using convolutional layers and LSTM layers instead of
GRU separately as explained in IV-D. As shown in Table 8,
GRU-based feature aggregation outperforms convolution-
based method for all classes in the moderate difficulty level.
However, LSTM provides better results for all difficulty lev-
els of the Cyclist class even though GRU performs better than
LSTM for Car and Pedestrian classes.

5) COMPARISON OF FEATURE DEPTH
We also evaluate the performance of our multi-frame align-
ment method according to the depth of features. As explained
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TABLE 6. Ablation of the feature alignment strategies: AP on KITTI
validation for three classes.

TABLE 7. Ablation of training with cosine loss for feature alignment
strategies: AP on KITTI validation for three classes.

TABLE 8. Ablation of layer type for multi-frame fusion AP on KITTI object
tracking validation set for three classes.

in IV-D, we use global features as the object-specific feature
vectors instead of using the output of the first FC layer, fc1.
global features have a larger dimension than fc1 features and

TABLE 9. Ablation of feature depth AP on KITTI object tracking validation
set for three classes.

TABLE 10. Ablation of feature extent AP on KITTI object tracking
validation set for three classes.

they represent lower-level features of the objects comparing
to the fc1 features. As the results in Table 9 indicate, fc1
performs better for the Car class. However, global features
provide better results for Pedestrian and Cyclist classes.
Pedestrian and Cyclist classes are mostly represented with
a smaller number of points comparing to the Cars. We think
that lower-level featuresmight be required for the aggregation
of features in multiple frames. Hence, the two classes are
detected better using the global features for the multi-frame
alignment.

6) COMPARISON OF FEATURE EXTENT
Our multi-frame alignment method makes use of object-level
features to improve 3D object detection quality. We also
compare our method with the scene-level multi-frame feature
alignment. We obtain the temporal features using all of the
points in the frustum instead of using object-level segmenta-
tion. Thus, the features represent a larger field. The results
are given in Table 10. Comparing to our object-level fusion,
detection accuracy decreases drastically for all classes. This
result also indicates the importance of spatial alignment of
features in a scene-level feature fusion.

VI. CONCLUSION
This study introduced a multi-frame RGB-lidar fusion frame-
work to decrease 3D object detection inconsistency across
multiple frames. The proposed method achieves this by
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aggregating object-level features of the same object from
multiple frames to improve 3D object detection quality.

Experimental validation shows that our approach increases
the performance of already existing networks. Extending
Frustum PointNet with the proposed temporal feature aggre-
gation strategy improved the 3D detection performance
by 6.5%, 4%, and 6% for car, pedestrian, and cyclist classes.

Future work can extend the proposed multi-frame detec-
tion framework with additional modalities such as radar.
The robustness of other multi-modal fusion systems can be
increased with the proposed temporal aggregation idea.
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