
Efficient Polyline Surface Mapping with Strong Error Bounds

Yujie Lian1,∗, Georg Rempfer2,∗, Hadi Askaripoor1, Jonas Landsgesell2 ,and Alois Knoll1

Abstract— We propose a novel surface mapping algorithm
processing sensor data from, e.g., stereo or structure from mo-
tion video, triangulating ultrasonic, lidar, or tactile sensors. The
algorithm does not rely on a grid and instead constructs a set of
polylines as an extremely efficient representation of surrounding
surfaces. We use ridges of a continuous occupancy to extract
surfaces from location measurements which are subject to noise.
Our algorithm for iterative map updates is efficient, stable,
unconditionally convergent, gives strong guarantees about the
map accuracy, and is invariant under permutation of the input
data. It does not suffer from association errors, and operations
such as shape updates, splitting, and merging of surfaces
arise naturally and are not handled separately. The algorithm
corrects wrongly mapped surfaces with future more accurate
measurements, and the polyline approximation of the ridge
can be tuned to arbitrary accuracy. Runtime measurements
demonstrate the feasibility of the approach for embedded
applications.

I. INTRODUCTION

Many applications in autonomous movement of robots and
path planning rely on accurate models of the robots environ-
ment. Maneuvering in tight spaces occupied by irregularly
shaped objects such as warehouses, production facilities,
and private apartments requires information about the shapes
and locations of surrounding objects on a centimeter scale.
At the same time, these functions are often implemented
on low-cost embedded computing platforms. The limited
memory and computational power these platforms provide
make existing environment modeling algorithms based on
grid maps [1] unsuitable for this application as the accuracy
of the environment model is limited by the available memory
and calculation time.

One approach to circumvent the trade-off between map-
ping accuracy, size, and computational resources on em-
bedded platforms is to employ an environment model that
only maps relevant surfaces instead of the whole volume
[2], [3]. Such a model makes more efficient use of the
available resources for multiple reasons: First, empty spaces
containing no surfaces don’t need to be modeled at all;
second, surfaces are of lower dimension than the volume and
require less information to represent; and third, discretization
of the surfaces by means of polygons lends itself naturally
to adaptive resolution schemes, further reducing the compu-
tational cost.

A downside of this class of algorithms is that the mathe-
matical modeling of consistent update schemes is challeng-
ing. While it is straight-forward to apply update schemes

*The first two authors have equal contribution, the order just reflects
alphabetical order.

1Technical University of Munich, Germany
2Robert Bosch GmbH, Germany

based e.g. on Bayes’ rule to grid-based models, thereby
gaining important properties like permutation invariance with
respect to the order of the input data, the same is much
harder to achieve for surface mapping algorithms. Here
new sensor data is either used to create new surfaces, or
associated with existing ones and used to improve their shape
and location accuracy. Since it is impossible in principle
to distinguish perfectly between these two cases, surface
mapping algorithms suffer from association errors: if an
initially created surface is accurate, the algorithm performs
excellently – outliers are detected as such and accurate
measurements are used to further improve the surface model.
If, however, the initially created surface was inaccurate due to
outliers appearing early in its creation, the algorithm rejects
future accurate measurements and potentially uses future
outliers to further worsen the accuracy of the map.

For specific applications, these misassociations and their
consequences might be reduced to acceptable levels by
using heuristics and short measurement buffers that allow
to correct for wrong associations. However, to solve this
problem in general and in a way that can be implemented
on an embedded platform, a novel algorithm is needed. In
this investigation, we aim to produce a proof-of-concept
implementation of a mapping algorithm that represents the
environment as a set of surfaces discretized as polygons.
The algorithm we propose does not rely on a grid but
nevertheless preserves permutation symmetry of the input
data, avoiding the aforementioned association problem by
design. Operations like extending, merging, splitting, and
updating of surfaces arise naturally from the formalism and
don’t require separate handling.

We quantify the accuracy of maps resulting from our
approach and discuss systematic errors in detail. A particular
focus of our proof-of-concept is computational efficiency. We
demonstrate how a combination of fast neighbor search and
an iterative update scheme makes our approach feasible to
be implemented on recent embedded platforms for real-time
mapping.

II. RELATED WORK

Mapping buildings is one of the most important tasks
in perception and navigation of mobile robots. Elfes [1]
proposed occupancy grids for map generation and repre-
sentation, which has been widely applied in robot mapping
problems. Occupancy grids divide the space into cells, each
of which carries am occupancy probability. However, this ap-
proach suffers two major drawbacks: independence between
cells and a necessary trade-off between map resolution, size,
and memory consumption.

IE
C

O
N

 2
02

1
- 4

7t
h

A
nn

ua
l C

on
fe

re
nc

e
of

 th
e

IE
EE

 In
du

st
ria

l E
le

ct
ro

ni
cs

 S
oc

ie
ty

 |
97

8-
1-

66
54

-3
55

4-
3/

21
/$

31
.0

0
©

20
21

 IE
EE

 |
D

O
I:

10
.1

10
9/

IE
C

O
N

48
11

5.
20

21
.9

58
97

95

Authorized licensed use limited to: Technische Universitaet Muenchen. Downloaded on May 11,2022 at 10:14:18 UTC from IEEE Xplore. Restrictions apply.

To overcome the major drawbacks of the occupancy grid
maps, O’Callaghan et al. [4] proposed an approach for
contextual occupancy maps in a continuous manner using
Gaussian processes. The previously estimated surfaces can
then be updated using Bayes’ rule with the new observations.
However, Gaussian processes require hyperparameters that
need to be learned which leads to difficulties in applying
this approach to an online mapping application in real-time.

Early approaches representing the environment as a set of
surfaces used sets of straight lines of infinite extent. Sack
et al. [5] give a review about algorithms making use of this
representation. The main drawbacks of this class of algorithm
are that they lack the ability to represent convex structures,
and that the resulting maps don’t contain information about
the connectivity of surfaces. Later developments focus on the
use of polylines to overcome these limitations. Navarro et
al. [6] demonstrate this approach for online mapping using
an infrared sensor ring. Among all the polyline extraction
methods, only a few are based on a rigorous mathematical
framework. One such method by Pfister et al. [7] constructs
a line-based map that best fits 2D range readings using a
maximum likelihood formalism. Schaefer et al. [8] derive a
consistent algorithm for polyline extraction from 2D laser
row range scans. The core idea is to produce a polyline
representation of the environment that describes the maxi-
mum likelihood environment compatible with the observed
measurements. Ozertem et al. [9] propose a method referred
to as subspace constrained mean shift (SCMS) to construct
polylines as low-dimensional representations for clusters of
points in one and two dimensions. They extend the mean
shift method [10], arriving at the same formalism of principal
curves of a kernel density estimation that we employ in this
investigation. We add to their work by proposing a compu-
tationally efficient method for constructing and updating the
polylines such that they obey strict error bounds.

III. SURFACES AS RIDGES

Our approach defines surfaces in terms of ridges (also
called principal curves) of a continuous occupancy. The
ridges are derived from randomly distributed measurements
of static surfaces.

In order to estimate the true position of a surface, we asso-
ciate each measurement with a Gaussian smoothing kernel.
The superposition of the smoothing kernels has a ridge which
depends on the random realization of measurements. Our
algorithm efficiently computes a discretized version of this
ridge which we refer to as a polyline. While the ridge itself
is subject to random fluctuations arising from the stochastic
nature of the measurements, the polyline representation of
the ridge obeys strictly controllable error bounds.

In the following, we will define the necessary concepts
and discuss the approach in detail.

A. Continuous Occupancy

As input, we expect measurement locations at positions
µi ∈ R2 in a fixed coordinate system. To derive a continuous

occupancy, we associate a two-dimensional normal distribu-
tion Pi(x) as smoothing kernel to each measurement i.

Pi(x) =
1

2π
√
|S|

exp

(
−1

2
〈S−1(x− µi), (x− µi)〉

)
(1)

In the following, the covariance matrix S is a diagonal
matrix with entries σ2. We do not assign any probabilistic
interpretation to these normal distributions, but rather just
use them as smoothing kernels and call the distance σ the
smoothing parameter.

The superposition of the normal distributions of all avail-
able measurements forms the continuous occupancy L(x),
whose value, gradient, and Hessian read

L(x) =
∑
i

Pi(x), (2)

∇L(x) =
∑
i

−Pi(x)(S
−1(x− µi)), (3)

HL(x) =
∑
i

Pi(x){

(S−1(x− µi))⊗ (S−1(x− µi))− S−1}.
(4)

Fig. 1 (left) depicts the continuous occupancy for a sample
set of measurements.

B. Ridge Criterion

We are interested in the ridges or principal curves of the
continuous occupancy. A point is part a ridge if it is a
maximum along the direction of smallest principal curvature
of the continous occupancy. Using the gradient ∇L and
Hessian HL of the occupancy, the ridge criterion can be
expressed in the following way, similar to the definition in
[9]:

HL(x)v1(x) = λ1(x)v1(x) (5)
λ1(x) < 0 (6)

〈∇L(x), v1(x)〉 = 0 (7)

Eq. (5) defines the eigenvector v1 of the Hessian HL. We
assume the eigenvalue λk to be associated with the eigenvec-
tor vk, with λ1 being the smaller of the two eigenvalues. The
eigenvectors point along the directions of principal curvature
of the continuous occupancy L. λ1(x) < 0 requires that the
curvature in this direction to be negative, i.e., x be on a ridge
rather than in a valley. The third Eq. (7) demands that there is
slope only along the direction perpendicular to v1. Therefore,
v1 forms the aforementioned direction along which x is a
maximum. x would form a locally extremal point if x were
also a maximum along the direction perpendicular to v1. This
is possible as there can be peaks and saddle points along a
ridge.

We define the ridge function by taking the absolute of
Eq. (7)

R(x) := |〈∇L(x), v1(x)〉|
!
= 0, (8)

which removes the ambiguity of the sign of the ridge crite-
rion due to the ambiguity of the orientation of the eigenvector
v1(x) simplifying the numerical treatment. Fig. 1 (center)

Authorized licensed use limited to: Technische Universitaet Muenchen. Downloaded on May 11,2022 at 10:14:18 UTC from IEEE Xplore. Restrictions apply.

Fig. 1. Left: Continuous occupancy L (blue-white-red background) resulting from a set of noisy measurements (yellow dots). Center: The ridge function
R from Eq. (8) (black-white background) for the same set of measurements. The black line represents the zero-set of the ridge function – the ridge. Also
shown is a polyline (green) during construction, the new candidate node (yellow end node) is placed one step-size in the from the previous end node in
the direction of v2(x) (yellow arrow). It undergoes relaxation (red arrow) with a relaxation distance that is large enough to warrant insertion of a middle
node (also yellow). The middle node undergoes relaxation onto the ridge as well, and both nodes become part of the polyline approximation of the ridge.
These few polyline segments demonstrate how the algorithm increases the segment size on straight parts of the ridge, and decrease the step-size on curved
segments to maintain a global upper bound for the approximation error. Right: Measurements (red) projected onto the segments of the polyline (blue) to
determine where to terminate the polyline, and where to optimally place the end node to avoid unwarranted extension.

depicts the ridge function, as well as its zero-set, the ridge,
for a sample continuous occupancy.

IV. CONSTRUCTING AND UPDATING THE RIDGE MAP

To take advantage of the local nature of the mapping
problem – measurements only influence mapped surfaces
close to their location – we employ an update scheme that
leaves most of the existing ridge map intact, only updating
it where necessary. We first cluster measurements received
in one cycle whose bounding box defines an update region.
Subsequently, we apply the ridge construction scheme de-
scribed in detail in Sec. V to each of the update regions.
Finally, we replace those parts of the polylines of the global
map that intersect an update region with the respective newly
constructed ones, making sure to connect them properly at
the respective update region boundary intersections.

V. CONSTRUCTING AN INDIVIDUAL RIDGE

In the following, we describe a computationally efficient
trust-region method to approximate ridges by means of poly-
lines with adaptively chosen segment lengths. The algorithm
respects hard error bounds as we will show in the following.
These hard error bounds and the fact that we can tune them to
arbitrarily small values will allow us to quantify systematic
errors of the ridge map in Sec. VI-C.

A. Initial Guesses
During most update steps, the existing ridges will just

be slightly perturbed by new measurements. Therefore, the
intersections of ridges in the current map with the update
region’s boundary form excellent initial guesses. Not all
ridges in the update region necessarily already existed before
the current update. For those that didn’t, the local maxima
of the continuous occupancy form good initial guesses. We
identify those local maxima using a two-dimensional trust-
region Newton optimization scheme with any measurement
not close to an existing polyline as starting point. Since
ridges only exist in regions with measurements, we can
guarantee that all ridges are constructed.

B. Trust-Region Ridge Extension

Given a starting point on a ridge, we efficiently construct
a polyline approximating the complete ridge using a variant
of the trust-region method adapted to our specific problem.
Fig. 1 (center) depicts all steps of the trust-region ridge
extension.

1) Sub-problem of the Modified Trust-Region Method: We
derive a local tangent to the ridge in terms of eigenvectors of
the continuous occupancy. The eigenvector v1(x) associated
with the smaller eigenvalue marks a direction perpendicular
to the ridge as required by Eq. (7). Since the eigenvectors
of the symmetric Hessian HL(x) are perpendicular, the
eigenvector v2(x) associated with the bigger eigenvalue must
therefore be tangent to the ridge. A step along the search
direction v2(x) results in a new candidate node extending
the polyline along the ridge.

2) Candidate Ridge Node Relaxation: However, since the
ridge in general, has non-zero curvature, the new candidate
node will be off the ridge – by how much is determined by
the trust-region step size and the ridge curvature.

Leaving this error uncorrected is not an option, as it would
propagate into all nodes further along the ridge, rendering
its polyline approximation progressively worse. To maintain
strong error bounds, we relax the candidate node back onto
the ridge. We do this by applying Newton’s method for root-
finding to the ridge function. This relaxation only needs to
be done in the direction perpendicular to the last polyline
segment, as it forms a good approximation to the search
direction given by a full two-dimensional Newton update.
A suitable step size based termination criterion allows us to
control the accuracy-runtime trade-off of this step arbitrarily.

We use the distance of the correction during this relaxation
drelaxation as a quality indicator for the linear approximation
of the ridge during the trust-region step size update.

3) Step-Size Update: We implement the step-size control
based on the quality indicator drelaxation in a similar manner
to the original trust-region method [11]: If it takes a large

Authorized licensed use limited to: Technische Universitaet Muenchen. Downloaded on May 11,2022 at 10:14:18 UTC from IEEE Xplore. Restrictions apply.

Fig. 2. A complex scene consisting of multiple corners and straight walls mimicking a typical indoor environment consisting of a 6m wide hallway. Left:
The robot in the simulation moves along a the hallway and around a 90◦ corner, producing measurements (green dots) of the surrounding surfaces while
moving (red trajectory). Center: The continuous occupancy and ridge function (black to white background) are created and updated on the fly. Right: The
resulting ridge map (red and blue polylines). The zoom-in shows systematic corner-cutting.

drelaxation > 0.75σ to relax back onto the ridge, then this
indicates that the step size is too large for the local curvature
and the step-size for the next step is halved. If drelaxation <
0.25σ, then we double the step-size. Otherwise, the step
size remains unchanged. Choosing the step-size adaptively
not only ensures that all of our approximations remain
valid, but also results in polylines with variable segment
sizes that adapt to the ridges’ local curvature. Furthermore,
we can again control the accuracy-runtime trade-off of the
iteration along the ridge arbitrarily by influencing the step-
sizes chosen.

4) Middle Node Insertion: To be able to give accuracy
guarantees not only of the ridge nodes which underwent
relaxation, but also every other point on the segments be-
tween these nodes, we need to control the on-segment error
as well. We assume that the on-segment of a new segment
is smaller than its farthest extrapolated point – the new
candidate node. So special measures are only necessary when
the candidate node overshoots but the relaxation corrects the
candidate node’s error. If the correction exceeds the error
bound requiring a step-size decrease, we insert a middle node
into the new segment and relax that one back onto the ridge
as well.

C. Terminating a Ridge

The termination criterion consists of two conditions.
Firstly, we require that L(x) exceed a minimum threshold
Ltol which is only reached if the desired number of measure-
ments’ distributions overlap to filter outliers. Secondly, the
algorithm terminates when there are no measurements close
to the candidate node. We utilize nearest neighbor search
to find all measurements near the ridge and project them
onto the ridge segments to eliminate the distance contribution
from measurement error in the direction perpendicular to
the ridge (since this is a property of the sensor and not
of the surface geometry). We calculate the distance dprojected
between the closest projected measurement and the candidate
ridge node. If this distance is larger than a given threshold
dtol, the ridge will be terminated. To prevent overshoot of the
last polyline node, we adjust its position in such a way that
the polyline’s end node position coincides with the projected

position of the last measurement as shown in Fig. 1 (right).
This processing step completes the core algorithm for the

efficient construction of polylines as discrete representations
of ridges of the continuous occupancy.

VI. RESULTS

As a metric for the accuracy of the polylines created
by our algorithm, we use the root-mean-square deviation
(RMSD) to measure the difference between the generated
polylines and ground truth surfaces from which sets of
synthetic measurements were created. The RMSD evaluates
the Euclidean distance between a point on a polyline and the
closest point on the ground truth surface. For polylines like
the ones we use, the RMSD can be expressed as:

RMSD =

√√√√ 1∑
i li

∑
i

li

∫ 1

0

dmin (xi + t · [xi+1 − xi])2 dt

(9)

Here xi and xi+1 denote the beginning and end points of
the segments indexed by i that form the polyline and have
a length li = |xi+1 − xi|. The RMSD for a whole map is
calculated as the average of all ridges in the map weighted
with their respective lengths.

A. A Typical Indoor Environment as Benchmark Scene

In this section, the algorithm is applied to a complex scene
that consists of multiple corners and straight walls, as shown
in Fig. 2. The robot in the simulation moves along a hallway
with a 90◦ corner. We create synthetic sensor data for the
scene by first determining which parts of the ground truth
surfaces are within the field-of-view (4m from the robot
position) and unoccluded by other surfaces. We then choose
j positions (with uniform probability distribution) along the
visible surfaces where j is the Poisson distributed number
of measurements per cycle. The number of measurements
from a visible segment is proportional to the segment’s cross-
section from the sensor perspective. Finally, we add Gaussian
noise to the j positions on the segment with a variance
proportional to the distance of the position to the sensor,
and larger in the depth direction than in the transversal

Authorized licensed use limited to: Technische Universitaet Muenchen. Downloaded on May 11,2022 at 10:14:18 UTC from IEEE Xplore. Restrictions apply.

Fig. 3. Accuracy of the polyline approximating a straight wall from the
complex scene in Fig. 2. Shown is the RMSD of the polyline for a range of
different measurement densities (blue triangles). The RMSD values are mean
values of 100 random sets of sensor data for every measurement density to
eliminate the sampling error of the RMSD. The blue corridor marks a 1σ
uncertainty interval for these mean values. The RMSD decreases as ρ−0.5

with the measurement density, as is expected from theoretical arguments.

direction. A number of measurements are created for every
position along the robot trajectory, a cumulative plot of which
is shown in Fig. 2 (left). The ridge map update algorithm
iteratively constructs the whole map as described in Sec. IV
and shown in Fig. 2 (right). Fig. 3 and 4 depict the RMSD
for straight and curved sections of the complex scene in
Fig. 2, respectively. In the following, we investigate how
the measurement density (determined by the sensor set and
the speed of the robot), as well as the smoothing parameter,
influence the accuracy of the resulting surface map.

B. Random Errors

The position of a point on the ridge can be understood
as a weighted average of the locations of surrounding
measurements (with weights deriving from the smoothing
kernel) [9]. This implies that the ridge’s root mean square
deviation scales with ρ−0.5, similar to how the standard
deviation of the estimated mean scales like N−0.5 where N
denotes the sample size. Fig. 3 demonstrates that with our
algorithm we do indeed create polylines that achieve this
theoretical scaling for straight surfaces. This is only possible
because our algorithm allows us to tune the thresholds for the
maximum error of the polyline approximation of the ridge
to arbitrarily small values. Here we tune these thresholds in
favor of accuracy at the expense of calculation time to a level
far below the sampling error of the ridge itself.

C. Systematic Errors due to Limited Curvature

As the zoom-in in Fig. 2 already shows, the ridges cut
corners. Fig. 5 shows this systematic error in detail for low
and high measurement density and negligible discretization
errors of the polyline approximation. The left panel of
Fig. 5 shows that at low measurement density, the systematic
corner-cutting error is masked by the random sampling error.
At high density where these random errors vanish, however,
the systematic corner-cutting error dominates, as the right
panel of Fig. 5 shows.

Fig. 4. Accuracy of the polyline approximating a corner from the complex
scene in Fig. 2. The lines demonstrate how the RMSD depends on the
measurement density for three different smoothing parameters. For small
measurement densities, the RMSD drops with increasing measurement
density for all smoothing parameters due to decreasing random errors similar
to the straight surface in Fig. 3. At high measurement density, where
random errors vanish, the RMSD becomes asymptotically constant due
to systematic corner-cutting errors. These systematic errors decrease with
smaller smoothing parameters and less measurement noise.

Evaluating the systematic corner mapping error reveals
that while the ground truth surface assumes infinite cur-
vature (and zero curvature radius) in the corner, the ridge
reconstructed from the measurements assumes a finite max-
imum curvature with a radius of similar magnitude as the
smoothing parameter used in the reconstruction and the
measurement noise. The ridge is displaced to the inside of
the corner due to an increased measurement density induced
by the ground truth surface’s curvature on the concave
side of the surface. Even without any measurement noise,
the effect would persist due to the smoothing applied to
the measurements when deriving the continuous occupancy,
albeit with a smaller magnitude. This systematic curvature
induced mapping inaccuracy effectively sets a resolution
limit for the surface reconstruction.

The RMSD of the ridge representing the corner shown
in Fig. 4 demonstrates both of these facts: beyond a certain
measurement density the corner-cutting errors dominate over
the random mapping errors and the mapping accuracy does
not improve any further; and the mapping accuracy achieved
in this saturation regime improves with smaller smoothing
parameter.

While these results suggest that small smoothing param-
eters are always optimal, this is not true in practice. In the
low measurement density regime, errors that are not well
represented by the RMSD of the ridges become significant,
such as fragmenting of polylines with a large number of
fragments of incorrect orientation. The measurement density
of the environment is typically highly inhomogeneous since
it depends on the variable speed of the robot as well as details
of the surrounding surfaces. This suggests that an adaptive
resolution scheme optimally choosing the smoothing param-
eter according to the local measurement density might be a
useful extension to the algorithm.

Authorized licensed use limited to: Technische Universitaet Muenchen. Downloaded on May 11,2022 at 10:14:18 UTC from IEEE Xplore. Restrictions apply.

Fig. 5. Comparison of the ridges for a 90◦ corner with two different
measurement densities. For the lower density measurements (left), the ridge
suffers from both random mapping errors and systematic errors at the corner,
while for the higher density measurement set (right), the random mapping
errors decrease to a magnitude far below the systematic errors, which make
up the major part of the inaccuracy. The measurement noise as well as the
smoothing step in the construction of the continuous occupancy limits the
maximum curvature of the ridges, which results in systematic corner-cutting
behavior.

D. Computational Efficiency

We use the complex scene depicted in Fig. 2 for the
runtime evaluations presented here. The environment which
we use to run the algorithm is an Intel Xeon CPU E3-
1505M v5 @ 2.80GHz base / 3.70GHz boost accessing
32GB DDR4 ECC RAM @ 2133MHz with a memory
bandwidth of 34.1GB/s (half of which is available to our
sing-core implementation) running Windows 10 64-bit. The
code implementing the algorithm is compiled using Visual
Studio 2019 in 64-bit release mode with all optimizations
enabled. We time the separate steps of the algorithm for
every map update and show averages for map update with
equal measurement count in Fig. 6. We observe O(n) scaling
of the runtime with the number of measurements, which
indicates that our efforts employing fast neighbor search to
take advantage of the local nature of the update scheme were
successful. If the number of measurements taken into account
for the map update can be constrained to under 100, the
runtime does not exceed 0.5ms. Even for up to 400 measure-
ments in the update region, the runtime typically stays below
1.25ms with peaks of up to 2ms. This computational cost is
well within reach of current embedded systems running the
proposed algorithm online and at high frequency.

Future research will focus on methods to eliminate redun-
dant or irrelevant information from the measurement buffer
to put hard limits in the number of measurements in an
update region. This will allow us to give strong runtime
guarantees.

VII. CONCLUSION

We gave a complete description of a formalism that recon-
structs surfaces from discrete measurement locations in terms
of ridges of a continuous occupancy. We also describe an
algorithm to efficiently produce polyline approximations of
these ridges which obey strict error bounds that can be tuned
to arbitrary precision. The method does not employ a grid
but the resulting map nevertheless is history independent,
which allows the method to always correct initial mapping
errors with future sensor data. In addition to that, operations
such as shape updates, splitting and merging of polylines,

Fig. 6. Average runtime of a map update for one measurement cluster as a
function of the number of measurements in the update region. The stacked
plot also shows how the map update’s runtime distributes over the different
processing steps. Samples for this evaluation come from the simulations of
the complex scene.

and associations of measurements with polylines are not
separately handled. They all arise as natural consequences
of the formalism. We apply the method to a scene consisting
of an indoor hallway and quantify the resulting map accuracy
as a function of the measurement density and the smoothing
parameter of the continuous occupancy. Timing results show
that employing our implementation as part of an embedded
system for online mapping is feasible.

REFERENCES

[1] A. Elfes, “Using occupancy grids for mobile robot perception and
navigation,” Computer, vol. 22, no. 6, pp. 46–57, 1989.

[2] K. R. Laviers and G. L. Peterson, “Cognitive robot mapping with
polylines and an absolute space representation,” in IEEE International
Conference on Robotics and Automation, 2004. Proceedings. ICRA’04.
2004, vol. 4. IEEE, 2004, pp. 3771–3776.

[3] M. A. Movafaghpour and E. Masehian, “Poly line map extraction in
sensor-based mobile robot navigation using a consecutive clustering
algorithm,” Robotics and Autonomous Systems, vol. 60, no. 8, pp.
1078–1092, 2012.

[4] S. O’Callaghan, F. T. Ramos, and H. Durrant-Whyte, “Contextual oc-
cupancy maps using gaussian processes,” in 2009 IEEE International
Conference on Robotics and Automation. IEEE, 2009, pp. 1054–1060.

[5] D. Sack and W. Burgard, “A comparison of methods for line extraction
from range data,” in Proc. of the 5th IFAC symposium on intelligent
autonomous vehicles (IAV), vol. 33, 2004.

[6] D. Navarro, G. Benet, and F. Blanes, “Line-based incremental map
building using infrared sensor ring,” in 2008 IEEE International Con-
ference on Emerging Technologies and Factory Automation. IEEE,
2008, pp. 833–838.

[7] S. T. Pfister, S. I. Roumeliotis, and J. W. Burdick, “Weighted line
fitting algorithms for mobile robot map building and efficient data
representation,” in 2003 IEEE International Conference on Robotics
and Automation (Cat. No. 03CH37422), vol. 1. IEEE, 2003, pp.
1304–1311.

[8] A. Schaefer, D. Büscher, L. Luft, and W. Burgard, “A maximum
likelihood approach to extract polylines from 2-d laser range scans,”
in 2018 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS). IEEE, 2018, pp. 4766–4773.

[9] U. Ozertem and D. Erdogmus, “Locally defined principal curves and
surfaces,” The Journal of Machine Learning Research, vol. 12, pp.
1249–1286, 2011.

[10] Yizong Cheng, “Mean shift, mode seeking, and clustering,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 17,
no. 8, pp. 790–799, 1995.

[11] D. C. Sorensen, “Newtons method with a model trust region mod-
ification,” SIAM Journal on Numerical Analysis, vol. 19, no. 2, pp.
409–426, 1982.

Authorized licensed use limited to: Technische Universitaet Muenchen. Downloaded on May 11,2022 at 10:14:18 UTC from IEEE Xplore. Restrictions apply.

