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A B S T R A C T

This dissertation is a complexity theoretic study of well-known problems
in combinatorial topology. In the first part, an open question concern-
ing the (in)approximability of Morse matching is resolved, and existing
results concerning the parameterized complexity of Morse matching
are improved upon. The first part also provides a complexity-theoretic
explanation for the effectiveness of the apparent pairs gradient. In the
second part, certain natural problems in simple homotopy theory are
shown to be hard from the point of view of parameterized complex-
ity. The third part describes asymptotically fastest known algorithms
for computing minimum 1-homology bases of simplicial complexes by
exploiting the matroid structure of homology bases. In the fourth and
the final part, the notion of cuts is generalized from graphs to simplicial
complexes, and the parameterized complexity of these high-dimensional
cuts is studied. The final part also provides a polynomial time algorithm
for a high-dimensional cut problem in the special case of surfaces. The
unifying theme across the four parts is the value of complexity theory in
the study of problems in combinatorial topology.
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Z U S A M M E N FA S S U N G

Diese Dissertation ist eine theoretische Studie der Komplexität bekannter
Probleme der kombinatorischen Topologie. Im ersten Teil beantworten
wir eine bisher offene Frage zur (mangelhaften) Approximierbarkeit von
Morse Paarungen. Weiter verbessern wir bereits vorhandene Ergebnisse
zur parametrisierten Komplexität von Morse Paarungen. Der erste Teil
beinhaltet auch eine Erklärung der Wirksamkeit des Gradienten der sicht-
baren Paare. Im zweiten Teil zeigen wir, dass natürliche Probleme aus
der "einfachen Homotopietheorie" aus Sicht der parametrisierten Kom-
plexitätstheorie schwierig sind. Im dritten Teil wird der Algorithmus
mit der bisher besten asymptotischen Laufzeit zur Berechnung opti-
maler Basen der ersten Homologie simplizialer Komplexe beschrieben.
Dazu nutzen wir die Struktur eines Matroiden auf der Menge der Basen
der Homologie. Im vierten und letzten Teil verallgemeinern wir den
Begriff eines Schnitts von Graphen auf simpliziale Komplexe und un-
tersuchen die parametrisierte Komplexität dieser höher-dimensionalen
Schnitte. In diesem letzten Teil beschreiben wir auch einen Algorith-
mus für ein höher-dimensionales Schnittproblem auf Flächen mit poly-
nomieller Laufzeit. Das verbindende Thema der vier Teile ist der Wert
der Komplexitätstheorie bei der Untersuchung von Problemen in der
kombinatorischen Topologie.
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In the depth of winter,
I learned that within me,

there lay an invincible summer.

Summer
Albert Camus
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1
I N T R O D U C T I O N

Computational topology is a relatively new area of mathematical research [52,67,
101,120]. In fact, most of the advances in this field have happened only in the last
two decades. From the outset, computational topology has been multi-faceted
and interdisciplinary. While the mathematical foundations of computational
topology are rooted in algebraic topology, geometric topology, commutative
algebra, representation theory and category theory [12,24,29,30,35,48,87,102,111,
128], it also has metric, statistical and machine learning aspects [3,28,36,75,110,
138,144,153]. The applications are wide-ranging from neuroscience and material
science to imaging and dynamical systems [22, 34, 49, 56, 68, 85, 91, 101, 135].
However, arguably the complexity theoretic aspect of computational topology
remains somewhat under-explored. Since the computational problems that arise
in computational topology reduce to either combinatorics or (linear) algebra, a
complexity theoretic exploration of topological problems constitutes a viable
approach. In particular, it is often of interest to design algorithms that come
with some kind of theoretical guarantees or to be able to rule out an entire
class of algorithms for a problem under certain standard complexity theoretic
assumptions. Many of the important computational problems that naturally
arise in computational topology, for instance, the computation of interleaving
distance, are hard for most categories [4, 20, 21]. In these cases, it is often
reasonable to look for approximate solutions or to design algorithms with
respect to suitable parameters. A refined approach to computational complexity
can help bridge the gap between theory and practice. The guiding philosophy of
this thesis is to bring the full machinery of modern theoretical computer science,
i.e., computational complexity theory, approximation algorithms, parameterized
algorithms and randomized algorithms into play. The hope is to obtain a fine-
grained understanding of subtle complexity theoretic aspects in computational
topology. In this section, we expound on our results and place them in the right
context.

In our view, computational topology has two branches: topological data analysis
and algorithmic topology. Topological data analysis is concerned with distilling
topological information from data. The continued success of topological data
analysis relies on developing efficient software tools that extract meaningful
summaries from topological objects associated to data. So, as in the case of
machine learning, topological data analysis is more concerned with practical
performance than with complexity guarantees. Algorithmic topology, on the
other hand, is closer in spirit to computational geometry, where algorithms
for many common problems do not have implementations, and theoretical
guarantees are ubiquitous. The raison d’être of this thesis is to make a case for
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theory, even in the context of practical topological data analysis, and what is
more, a case for the ability of theoretical computer science to bring to the fore
latent structures in mathematical objects. It is this spirit of algorithms in the
service of mathematics that is embodied throughout this work, and functions
as a Leitmotiv in what is otherwise, by design, a topics thesis.

For the most part, in this thesis, we use parameterized algorithms and
approximation algorithms. In what follows, we provide a rationale for our
choice. By way of introduction, we recall the Cobham-Edmonds thesis [43, 69],
which asserts that an optimization problem Π is tractable if there exists an
algorithm for Π with the following properties:

accuracy The algorithm computes the optimal solution.

efficiency The runtime of the algorithm is polynomial in instance size.

Since the development of the theory of NP-completeness, it became increas-
ingly apparent that there exist a large class of problems for which the two
requirements can not be simultaneously satisfied. As pointed out in a recent
survey article [76], there are two ways to relax the above requirements in order
to tame the hardness associated to NP-hard optimization problems.

On the one hand, if one relaxes the accuracy condition and allows solutions
within a factor α of the optimal, one enters the territory of approximation
algorithms. Additionally, it is sometimes convenient to design approximation
algorithms that are randomized. Such algorithms may be either Monte-Carlo
(output an α-approximation with high probability), or Las Vegas (run in ex-
pected polynomial time).

On the other hand, if one relaxes the efficiency condition and allows algo-
rithms with runtime of the form f(k)nO(1), where n denotes the size of the
instance, k denotes an upper bound on a certain parameter of interest that
is expected to be small, and f is any computable (possibly super-polynomial)
function, one enters the domain of parameterized algorithms.

By relaxing both requirements simultaneously, one allows parameterized α-
approximation algorithms, which computes a solution that is an α-approximation
in f(k)nO(1) time. The factor α may depend on the size of the instance, or
it may be a function of the parameter. Both variants are in use, and will be
encountered in this thesis.

It barely needs to be mentioned that the “worst case polynomial time
paradigm” or its relaxations mentioned above are far from perfect. Probably the
most famous counterexample is the simplex method for linear programming,
which does not terminate in polynomial time on all instance families, but is still
the method of choice for most instances in practice [19, 108]. There is a recent
book that addresses shortcomings of worst case analysis of algorithms called
Beyond Worst-Case Analysis of Algorithms [145], which collects several essays on
alternative paradigms that turn out to be more effective in specific scenarios.
Even in context of this thesis, in Paper IV, we had to use an average case version



1.1 discrete morse theory 20

of approximability to explain the effectiveness of the apparent pairs gradient
on random complexes.

In this thesis, for the most part, we study the parameterized complexity and
approximability of some fundamental problems in computational topology.
A brief introduction to parameterized and approximation algorithms can be
found in Chapter 2.

In the subsequent sections, we provide a topic-wise summary of our main
findings. The four topics of investigation in this thesis are: the computa-
tional complexity of discrete Morse theory, simple homotopy theory, minimum
homology basis and high-dimensional cuts.

1.1 discrete morse theory

To begin with, we would like to point out that the principal topological object
of study in this thesis is a simplicial complex, whose definition we recall here,
in order to fix notation.

A k-simplex τ is the convex hull of k+ 1 affinely independent points P in the
Euclidean space of some dimension d > k. Here, k is called the dimension of τ.
Any nonempty subset of P also spans a simplex that we call a face of τ. We say
that τ is a coface of a simplex σ if and only if σ is a face of τ. If the dimensions
of σ and τ differ by one, then we say that σ is a facet of τ, and τ is a cofacet of σ.
We use the notation σ ≺ τ to indicate that σ is a facet of τ. Now, we can define
(geometric) simplicial complexes.

A simplicial complex K is a collection of simplices that satisfies the following
conditions:

• any face of a simplex in K also belongs to K, and
• every non-empty intersection of two simplices σ1,σ2 ∈ K is a face of both
σ1 and σ2.

The set of p-simplices of K is denoted by K(p) and the simplicial complex Kp
induced by the simplices in K(p) is called the p-skeleton of K. The underlying
space of K, denoted by |K|, is the union of simplices of K.

An abstract simplicial complex on a set of vertices V is a collection C of subsets
of V that is closed under inclusion. The elements of C are called its simplices.
The collection of vertex sets of simplices in a geometric simplicial complex
forms an abstract simplicial complex. On the other hand, an abstract simplicial
complex C has a geometric realization |C| obtained by embedding the points in
V in general position in a Euclidean space of sufficiently high dimension. Then,
the geometric simplicial complex associated to C is defined as

⋃
σ∈C |σ|, where

|σ| denotes the span of points in σ. It is not very difficult to show that any two
geometric realizations of an abstract simplicial complex are homeomorphic.
Hence, going forward, we do not distinguish between abstract and geometric
simplicial complexes.
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Figure 1: An optimal gradient vector field on a triangulated dunce hat. In the
figure on the left, the edges along the boundary are glued as indicated
by the labelling and the colors. In the figure on the right, the red
colored simplices are the critical simplices.

Forman’s discrete Morse theory [83, 84] is an elegant combinatorial analogue
of classical Morse theory, applicable to simplicial, and more generally CW com-
plexes. In most cases, it provides a simple and effective method for substantially
reducing the size of a complex while preserving its homotopy type. The most
alluring quality of Forman’s theory is that in spite of being extremely simple in
its formulation, it affords immense theoretical and computational power.

Given a simplicial complex K, a simplex σ ∈ K is said to be free if σ has a
unique cofacet τ in K. An elementary collapse pairs a free face σ to its incident
cofacet τ. Removing this pair of simplices gives rise to a smaller complex that
is (simple) homotopy equivalent to the original one. However, what if one
does not have any free faces in the complex? This happens to be the case with
Zeeman’s dunce hat [161], whose triangulation gives a simplicial complex that
is contractible, but has no free faces, and is therefore not collapsible. In such
cases, discrete Morse theory comes to the rescue by providing a theoretical
framework for establishing homotopy equivalence through internal collapses
that allow pairing of non-free faces. Informally, given a simplicial complex
K, the collection of these internal collapses is called a discrete gradient vector
field (or a Morse matching) on K. Please see Figure 1 for an illustration. The
idea of viewing gradient pairs as internal collapses first appeared in Kozlov’s
exposition of discrete Morse theory [109]. For a brief introduction to discrete
Morse theory, we refer the reader to Section 3.3.

In discrete Morse theory, it is possible that one starts with a simplicial
complex and ends up with a (possibly non-regular) CW complex after executing
a series of internal collapses. The fact that internal collapses induce simple
homotopy equivalances in the cellular category was shown independently by
Päkkilä [129] and Fernandez [79] in their respective thesis works. In particular,
there is is an (n + 1)-deformation from a CW complex K of dimension n
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(equipped with vector field V) to a Morse complex MV (with fewer cells). We
briefly discuss their results in Section 3.4.

Now suppose that a simplicial complex L is contractible. Then, what are the
obstructions to finding a gradient vector field that pairs all but one simplices of
L? This question has a simple answer. The lack of free faces to begin with is a
clear obstruction. Since the dunce hat is contractible, but not collapsible, any
discrete gradient on a dunce hat has at least three critical simplices. We refer
the reader to Figure 1 for an illustration.

Next, we ask a question that is a bit more refined. For instance, suppose that
we begin with a 2-dimensional simplicial complex that does not have free faces.
Then, upon the removal of a few critical simplices, new free faces (of lower
dimension) may arise. The natural question here is: Can we always choose the
simplices that are to be made critical wisely? In particular, is there a polynomial
time algorithm for finding an optimal gradient vector field (that is, a vector
field with fewest number of critical simplices) on a simplicial complex? Based
on Lewiner’s observations, and using a gadget by Eǧecioǧlu and Gonzalez [70],
Joswig and Pfetsch [100] answered this question by showing that the problem
is, indeed, NP-hard even for 2-complexes. Furthermore, they left the question
of approximability of Morse matchings open. Since the problem is NP-hard, we
study it from the point of view of parameterized complexity and approximabil-
ity, and in fact, in Papers I and IV, resolve the open question posed by Joswig
and Pfetsch.

Specifically, we study two variants of the Morse matching problem.
The Max-Morse Matching(MaxMM) can be described as follows: Given

a simplicial complex K, compute a gradient vector field that maximizes the
cardinality of matched (regular) simplices, over all possible gradient vectors
fields on K. Equivalently, the goal is to maximize the number of gradient pairs.
For the complementary problem Min-Morse Matching(MinMM), the goal is
to compute a gradient vector field that minimizes the number of unmatched
(critical) simplices, over all possible gradient vector fields on K. While the
problem of finding an exact optimum are equivalent for MinMM and MaxMM,
as expected, the approximation variants of these problems have vastly different
flavors.

One of the early motivations for our investigations was the experiments
related to the performance of the coreduction algorithm in [86, 137]. It has been
independently corroborated by various research groups that the reduction and
coreduction based discrete gradients drastically reduce the size of simplicial
complexes [86, 99, 137]. This has been observed to be the case for a wide range
of deterministic and random families of complexes. And yet, for Max-Morse

Matching, the approximability bounds provided by coreduction (and other
methods) are dimension dependent, and fairly modest [137]. The vast chasm
between the modest theoretical bounds and the outstanding practical perfor-
mance – in short, the unreasonable effectiveness of the coreduction method
– is one of the enduring mysteries in our investigations. One explanation for
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Figure 2: The figure shows a directed graph G. The single edge {c,d} (shown
in red) is a minimum feedback arc set for G, whereas, the edges
complementary to the minimum feedback arc set induce a maximum
acyclic subgraph, and are shown in blue.

this gap in understanding is that the analysis of the coreduction algorithm
is not particularly tight. But it is far from clear how to improve upon the
analysis in [137]. The coreduction algorithm is an iterative matching strategy,
and deriving approximations bounds for these kind of iterative methods is
extremely challenging. To unravel some of this mystery, in Papers I and IV
of this thesis, we study the parameterized complexity and approximability of
Morse matchings.

In order to prove an inapproximability bound for MaxMM, in Paper I, we
carry out an L-reduction from a classical problem in graph theory that we
describe next. Given directed graph G = (V ,E), the problem of finding a
maximum subset Emax ⊆ E for which the subgraph Gmax = (V ,Emax) has no
directed cycles is called maximum acyclic subgraph (MAS). A feedback arc set is a
set of edges whose removal leaves a directed acyclic graph. The problem of
finding a feedback arc set of minimum cardinality is called minimum feedback
arc set (minFAS). It is easy to check that minFAS is complementary to MAS. See
Figure 2 for an example. A directed degree-3 graph is a directed graph with total
degree (indegree plus outdegree) at most 3. The restriction of the problem MAS
to directed degree-3 graphs is denoted by 3MAS.

The L-reduction from 3MAS to MaxMM, for establishing hardness of approxi-
mation for MaxMM uses a construction based on a modification of the dunce
hat. While the dunce hat has no free faces, in contrast, the modified dunce hat
is collapsible but only through a single free face. The specific triangulation of
the modified dunce used by us in Paper I is as shown in Figure 3. Given a
directed graph G, the reduction constructs a simplicial complex K(G) built by
systematically gluing together building blocks made of the modified dunce hat.
Please refer to Section 4 of Paper I for further details on the construction. While
we will not go into the details of the reduction, we will illustrate it here using
the example in Figure 4. As a consequence of the L-reduction, we establish the
following hardness result.
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Figure 3: The modified dunce hat D. Left: triangulation, with certain distin-
guished simplices highlighted. The complex is collapsible through
the unique free face ω. Right: a discrete gradient VD on D that leaves
only the vertices s, t and the edge η critical.

Theorem 1.1.1 (Theorem 4.1 in Paper I). It is NP-hard to approximate MaxMM
within a factor of

(
1− 1

4914

)
+ ε and UGC-hard to approximate it within a factor of(

1− 1
702

)
+ ε, for any ε > 0.

Remark 1. Here, we use the term UGC-hard to mean that assuming the unique
games conjecture is true, the problem is NP-hard. Another way to state the
second part of the theorem would be: If the Unique Games Conjecture is true,
then MaxMM is NP-hard to approximate within a factor of

(
1− 1

702

)
+ ε, for

any ε > 0. The unique games conjecture is one of the most important open
problems in theoretical computer science today. We refer the reader to the
survey articles [107, 152] for further details on the conjecture.

Furthermore, building on Tancer’s result [150] on NP-completeness of deter-
mining collapsibility of 3-dimensional simplicial complexes, in Paper I, we prove
the following inapproximability result for MinMM for complexes of dimension
d > 3.

Theorem 1.1.2 (Corollary 3.1 in Paper I). For any ε ∈ (0, 1], there exists no
O(n1−ε)-factor approximation algorithm for MinMM, where n denotes the number of
simplices of an input simplicial complex of dimension d > 3, unless P = NP.

Prior to our work in Papers I and IV, Burton et al. [32] had shown that the
related problem of Erasing Number is W[P]-hard with solution size as the
parameter. The erasing number er(K) of a 2-dimensional simplicial complex
K is the minimum number of 2-simplices that need to be removed so that the
resulting complex collapses to a 1-complex. In other words, er(K) is the number
of critical 2-simplices of an optimal gradient vector field on a 2-complex.

Note that one can not infer the W[P]-hardness of MinMM from Burton et al.’s
reduction as the optimal number of critical simplices in their gadget can be of the
order of the size of the complex because of the presence of 1-cycles (even when
the number of critical 2-simplices is small). The questions of approximability of
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Figure 4: Recall from Section 2.2 that an L-reduction from problem A to B
constitutes of two maps. The first map that takes instances of A to
instances of B, and the second map takes solutions of B to solutions
of A. Accordingly, the above figure depicts an example of an L-
reduction from 3MAS to MaxMM. The top figure shows a map that
takes instances of 3MAS (directed graphs) to instances of MaxMM
(simplicial complexes). The bottom figure shows a map that takes
solutions of MaxMM (vector fields) to solutions of 3MAS (directed
acyclic subgraphs). The red simplices in the complex on the bottom
right are the critical simplices. The red edges in the graph on the
bottom left are the feedback edges.
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Figure 5: The figure shows a monotone circuit with a satisfying assignment.
In this example the inputs x0 and x2 are set to 1. The gates that
evaluate to 1 are called satisfied gates and those that evaluate to 0
are called unsatisfied gates. The satisfied gates are shown in red, and
the unsatisfied gates are shown in gray. In this case, we say that the
circuit is satisfied since the output gate is satisfied. Also, we say that
{x0, x2} is a satisfying assignment.

MinMM for 2-complexes, and the question of paramaterized approximability of
MinMM for complexes of general dimension were also open at the time. This
motivated our follow-up work on the complexity of computing optimal Morse
matchings in Paper IV. In order to get a full picture of the complexity of Morse
matchings, we needed to design the reduction gadget in a manner that allowed
filling of 1-cycles that result from the gluing of building blocks of a reduction
gadget. Also, we needed a hard problem to reduce from, a problem for which
W[P]-hardness and (parameterized) inapproximability results were already
known. We concluded that Min-Monotone Circuit Sat(MinMCS) was the
right problem to reduce from. Informally, MinMCS can be described as follows:
Given a monotone digital circuit (that is, a circuit consisting of and-gates and
or-gates), how many inputs need to be activated in order to satisfy the circuit?
For a formal definition, please refer to Section 3.3 of Paper IV. For an illustrative
example, see Figure 5.

The reduction from MinMCS to MinMM in Paper IV is fairly complicated.
So will refrain from discussing the reduction in detail. However, it would
be remiss to not mention that the building block used for constructing the
gadget is a subdivision of the modified dunce hat (Figure 3) from Paper I.
Please refer to Figure 6 for an illustration of the subdivided modified dunce
hat. The subdivision is necessary to ensure that the complex obtained after
identifications is simplicial. Please refer to Section 4.2 of Paper IV for a full
description of the construction of the gadget.

The same construction is used in establishing an L-reduction, a gap-preserving
reduction and an FPT-reduction. As a consequence of this construction (fol-
lowed by an additional technical step), we obtain the following results:
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Figure 6: The figure (a) on the left depicts D1,` that is collapsible through
one free face, namely s1 = {3, 1}. The figure (b) on the right depicts
D2,` that is collapsible through two free faces, namely s1 = {3, 8}
and s2 = {8, 1}. In both subfigures, the edges {1, 2} and {2, 3} on
the right and at the bottom are shown in light grey to indicate that
they are identified to {1, 2} and {2, 3} on the left. The bold edges
highlighted in red and blue are the distinguished edges that are glued
to distinguished edges from other building blocks to form a simplicial
complex K(C) associated to a circuit C.

• MinMM has no approximation within a factor of 2log(1−ε)n, for any ε > 0,
unless NP ⊆ QP,

• the standard parameterization of MinMM is W[P]-hard, and

• Assuming FPT 6= W[P], MinMM with standard parameterization has no
FPT approximation algorithm for any approximation ratio function ρ.

For further details about the reduction refer to Sections 5 and 6 in Paper IV.
To complement the inapproximability results for MinMM on 2-complexes, in
Section 7 of Paper IV, we provide a simple n

logn -factor approximation algorithm
for MinMM on 2-complexes. In Tables 1 to 3, the reader can find a full sum-
mary of parameterized complexity and approximability results concerning the
computation of optimal discrete gradients on simplicial complexes.

Speaking of algorithms with good behavior, there is yet another discrete
gradient algorithm of interest, namely, the apparent pairs gradient, which was
first introduced in the context of stochastic topology, but has now been found
to be very advantageous in speeding up persistence computations [11, 90]. The
apparent pairs gradient can be stated as follows:
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Burton et al. [32] Paper IV
W[P]-hardness of Erasing Number (SP) 3 3

W[P]-hardness of Min-Morse Matching (SP) 7 3

FPT-inapproximability of Min-Morse Matching (SP) 7 3

FPT-algorithm for Min-Morse Matching (TW) 3 7

Table 1: Comparison of results: Parameterized complexity of Morse matching
(dim. > 2). In the table above, SP denotes standard parameterization,
whereas TW denotes treewidth parameterization.

Paper I Paper IV

IA for Min-Morse Matching (dim. > 3) O(n1−ε) 2log(1−ε) n (weaker)
IA for Min-Morse Matching (dim. > 2) 7 2log(1−ε) n

AA for Min-Morse Matching (dim. = 2) 7 O( n
logn)

Table 2: Comparison of results: Approximability of Min-Morse matching. Here,
IA denotes inapproximability, and AA denotes approximation algo-
rithm.

Paper I Results from [137]
IA for Max-Morse Matching (dim. > 2)

(
1− 1

4914

)
+ ε 7

AA for Max-Morse Matching (dim. > 2) 7 d+1
d2+d+1

Table 3: Comparison of results: Approximability of Max-Morse matching, IA
denotes inapproximability, AA denotes approximation algorithm, and
d denotes the dimension of the complex.

Definition 1.1.1 (Apparent pairs gradient [11]). A pair of simplices (σ, τ) of K
an apparent pair of K if both

• σ is the lexicographically highest facet of τ, and

• τ is the lexicographically lowest cofacet of σ.

The collection of all the apparent pairs in a complex K forms a discrete gradient
that is referred to as the apparent pairs gradient.

In Section 8 of Paper IV, we extend Kahle’s techniques for designing discrete
gradients on random clique complexes to Costa–Farber complexes. While we
will not define the various families of random complexes here (See Section 8 of
Paper IV for definitions), we would like to mention that Costa–Farber complexes
constitute a family of complexes that generalize the Linial–Meshulam complexes
as well as the random clique complexes. In Paper IV, we show that for a wide
range of parameter values for Costa–Farber complexes, there exist discrete
gradients for which the ratio of expected number of critical r-simplices to the
expected number of r-simplices (for any fixed dimension r) tends to zero.

Specializing the analysis to Linial–Meshulam complexes, followed by a few
additional steps, we obtain a strong result about the “average case approxima-
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bility” of Morse matchings (for Linial–Meshulam complexes), which we will
state below.

Theorem 1.1.3. For the regimes of Linial-Meshulam complexes Yd(n,p) that satisfy

np→∞ or np→ 0

there exists a discrete gradient V that satisfies E(|V|)
E(|opt|) → 1 as n → ∞, where opt

denotes the optimal gradient on Yd(n,p).

The discrete gradient V, for the most part, is composed of apparent pairs.
Here, we will refrain from providing further details about this result. Instead,
we would like to mention that a statement analogous to Theorem 1.1.3 also
holds for random clique complexes (but has not been explained in that form in
Paper IV).

This concludes our discussion about the discrete Morse theory related results
in this thesis.

1.1.1 Outlook & Future directions

strengthening of algorithmic results In Section 8 of Paper IV,
we study the behavior of the apparent pairs gradient (a deterministic algorithm)
on random complexes. Complementing this idea, it might be interesting
to study the behavior of random variants of the apparent pairs gradient on
deterministic families of dense (or sparse) complexes. In this setting, there
might even be some hope for obtaining worst-case approximability bounds.

strengthening of hardness results For the most part, we believe
that the results in Papers I and IV, along with some of the earlier results that
appeared in literature [32, 100, 137] provide a near-complete picture of the
complexity of computing optimal Morse matchings. A minor strengthening is
still possible. We conjecture that for simplicial complexes of dimension d > 2,
Min-Morse Matching does not admit an f(n)-approximation algorithm for
any f = o(n). In particular, a result of this nature would show that while
the problem is hard for complexes of all dimensions, it is, in fact, slightly
harder for higher dimensional complexes when compared to 2-dimensional
complexes, from an inapproximability standpoint. This would, for instance
rule out an O( n

logn)-factor approximation algorithm for Min-Morse Matching

for complexes of dimension d > 2, providing a contrast with the existence of
such an algorithm for 2-complexes in Section 7 of Paper IV. That said, such
a strengthening would have no bearing in practice, and is only a matter of
complexity theory curiosity.

wider applicability of modified dunce hats In Papers I and
IV, we used modified dunce hats to obtain hardness results for Morse matching



1.2 simple homotopy theory 30

problems, and in Paper II, we use them to obtain parameterized complexity
results for problems in simple homotopy theory. Independent of our work,
modified dunce hats were used by Santamaría-Galvis and Woodroofe to provide
a simpler proof of NP-completeness of the shellability decision problem [147].
This raises the possibility of a wider applicability of these complexes for com-
plexity questions in combinatorial topology.

generating benchmark datasets for morse matchings In
the experiments from [137] it became clear that there are no known instance
families of simplicial complexes that behave poorly with respect to the core-
duction and reduction methods. To fix this anomaly, a natural question to ask
is the following one: Is it possible to define a simple random model built out
of gluing dunce hats geared specifically towards generating hard instances for
Min-Morse Matching for a wide range of parameter values?

1.2 simple homotopy theory

The motivating problem and the starting point of discussion for Paper II was
the topological Andrews-Curtis conjecture, which we state below.

topological andrews-curtis conjecture . If K is a finite con-
tractible CW complex of dimension 2, then K can be 3-deformed to a point.

For a more detailed discussion on the importance of the Andrews-Curtis
(and related) conjectures, we refer the reader to the discussion in Section 3.1.
Most questions in (simple) homotopy theory revolve around computability. For
instance, the algorithmic question related to the Andrews-Curtis conjecture,
namely, the existence on an algorithm for determining triviality of balanced
presentations is still open (See Section 3.1.3 for further details concerning this
question). We wanted to bring algorithmic questions in simple homotopy theory
from the computability realm to the complexity realm, if only, by studying the
problem in restricted settings. In particular, we wanted to explore the possibility
of parameterized algorithms for questions in simple homotopy theory.

In Paper II, motivated by the aforementioned problems, we investigate
the parametrized complexity of a few of variants of the problem of deciding
contractibility. More precisely, we focus on the problem of deciding whether
a given 2-complex admits a simple homotopy to a 1-complex using at most p
expansions, called Erasability Expansion Height. In addition, we consider a
variant, called Ordered Erasability Expansion Height, which requires that all
expansions come at the very beginning of the sequence. It is worth noting that
Erasability Expansion Height and Ordered Erasability Expansion Height

are equivalent for CW complexes for which one can readily swap the order of
expansions and collapses [120, p. 34]. However, for simplicial complexes, the
ordered and unordered expansion heights may differ.



1.2 simple homotopy theory 31

No. Assumptions (A) Conclusion (c)
Impl. 1. {s1} =⇒ s3
Impl. 2. {s2} =⇒ s3
Impl. 3. {s4} =⇒ s3
Impl. 4. {s3, s1} =⇒ s4
Impl. 5. {s3, s4} =⇒ s2
Impl. 6. {s1} =⇒ s2
Impl. 7. {s2, s3, s4} =⇒ s1

Table 4: Implication relation R

We begin the discussion about Paper II with an admission. Our efforts
towards designing an FPT algorithm for Ordered Erasability Expansion

Height and Erasability Expansion Height with respect to one of the most
pliable parameters, that is, the treewidth of the Hasse graph of the complex,
failed. This is because when one allows expansions, the treewidth of the
complex increases in a manner that is difficult to control.

On the other hand, in Section 5 of Paper II, we were able to show that
Erasability Expansion Height and Ordered Erasability Expansion Height

with solution size as the parameter are both W[P]-complete. Moreover, in Sec-
tion 6 of Paper II, we show that the problem of deciding whether a 2-complex
is simple-homotopy equivalent to a 1-complex using only 3-dimensional expan-
sions is NP-complete.

The membership in W[P] and NP of the respective problems crucially exploits
the fact that erasability of 2-complexes can be deterministically checked in
polynomial time, as shown by Tancer [150, Proposition 5].

To establish hardness results, we use an FPT reduction from Axiom Set,
which is defined as follows: Given a finite set S of sentences, an implication
relation R consisting of pairs (A, c), where A ⊆ S and c ∈ S, and a positive
integer p 6 |S|, is there a set S0 ⊆ S, called an axiom set, with |S0| 6 p and a
positive integer n such that if we recursively define

Si := Si−1 ∪ {s ∈ S | ∃A ⊆ Si−1 : (A, s) ∈ R}

for 1 6 i 6 n, then Sn = S?
For example, an Axiom Set instance, with S = {s1, s2, s3, s4} as the set of

sentences, and with the implication relation as described in Table 4, has an
axiom set of size 1. Specifically, {s1} is an axiom set.

Given an Axiom Set instance Π, the reduction constructs a complex K(Π)
whose building blocks consist of modified dunce hats encountered before in
this introduction (in the context of Paper I and Paper IV). Interestingly, we were
able to use the same construction to obtain W[P]-hardness of the unordered and
the ordered variants of expansion height owing to the following equivalence
established in Theorem 8 of Paper II:
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(a) there exists a simple-homotopy equivalence from K(Π) to a 1-dimensional
complex using first at most p expansions, followed by a sequence of only
collapses,

(b) there exists a simple-homotopy equivalence K(Π)�↘ L using at most p
expansions, where L is a 1-dimensional complex, and

(c) there exists an axiom set S0 ⊂ S for Π = (S,R,p) using at most p elements.

Note that we only considered Erasability Expansion Height and Or-
dered Erasability Expansion Height in paper II. The more natural variant
(Expansion Height) would be to study the complexity of determining se-
quences of expansions and collapses (with at most p expansions) that take K
to a point. At that time we did not consider the more natural variant because
the gluings of modified dunce hats in K(Π) give rise to 1-cycles. The technique
for filling 1-cycles was introduced in Paper IV, and chronologically, Paper IV
was written after Paper II. We expect the cycle filling techniques in Paper II to
generalize in a straightforward way to expansion height problems. In particular,
we expect Expansion Height to be W[P]-complete.

1.2.1 Outlook and future directions.

Loosely related to the theme in Paper II is the work by Fernandez [78], in
which she uses discrete Morse theory based algorithms to find 3-deformations
of 2-complexes to points in order to refute some potential counterexamples for
the Andrews-Curtis conjecture.

Developing algorithmic tools in the context of simple homotopy theory is
still a largely unexplored research area. The main open question, of course, is
determining whether the triviality of balanced presentations is decidable.

Devising algorithms for problems in simple homotopy theory in limited
settings, however, could still be fruitful. For instance, it is worth noting that even
the word problem becomes polynomial time solvable in restricted settings [126].
So, are there interesting restricted settings for which the triviality of balanced
presentations question becomes decidable? In a similar vein, one may ask if
there exists an efficient algorithm to determine whether two lens spaces are
simple homotopy equivalent.

1.3 matroids , cycle bases and homology bases

Notation 1. Throughout, In this section, we use n to denote the number of
vertices of a graph (or a complex), m to denote the number of edges of a graph
(or a complex), N to denote the number of simplices in a complex. and g to
denote the rank of the first homology group of a complex.
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minimum cycle bases for graphs . Let graph G = (V ,E) be a
connected graph, and let w : E → R+ be a positive weight function on E. A
subgraph of G which has even degree at every vertex is called a cycle of G. A
cycle C is elementary if C is a connected subgraph in which every vertex has
degree 2. To every cycle C, we associate an incidence vector c indexed by the
edge set E as follows:

ce =

{
1 for e ∈ E
0 for e 6∈ E

}
.

It is easy to check that the set of incidence vectors of cycles forms a vector
space over Z2 called the cycle space of G of dimension ν, where ν = |E|− |V |+ 1.
A cycle basis is a vector space basis of the cycle space.

The weight of a cycle is the sum of the weights of its edges, and the weight
of a cycle basis is the sum of the weights of the basis elements. The problem of
computing a cycle basis of minimum weight is called the minimum cycle basis
problem. Since all weights are assumed to be positive, there always exists a
minimum cycle basis of elementary cycles.

minimum homology bases for complexes . Given a simplicial
complex K, a set of 1-cycles {ζ1, . . . , ζg} is called a homology cycle basis if the
set of classes given by {[ζ1], . . . , [ζg]} forms a homology basis. For brevity, we
abuse notation by using the term “homology basis” for {ζ1, . . . , ζg}. Assigning
non-negative weights to the edges of K, the weight of a cycle is the sum of
the weights of its edges, and the weight of a homology basis is the sum of the
weights of the basis elements.

matroids . A matroid M consists of a pair (S, I ), where S is a finite
ground set and I is a family of subsets of S satisfying the following axioms:

1. ∅ ∈ I ;

2. if I ∈ I and J ⊆ I, then J ∈ I ; and

3. if I,K ∈ I and |I| < |K|, then there is an element e ∈ K \ I such that
I
⋃
{e} ∈ I .

If a set I ⊂ S belongs to I , then it is called an independent set, else it is called a
dependent set. A circuit in a matroid M is a minimal dependent subset of S. All
proper subsets of a circuits are independent sets. A maximal independent set is
called a basis of the matroid.

Matroids admit a very useful property that goes by the name of basis exchange
property: If A and B are distinct bases of a matroid and a ∈ A \ B, then there
exists an element b ∈ B \A such that A(\ {a})

⋃
{b} is again a basis. A weighted

matroid is a matroid M equipped with a weight function w : S → R+ that
additively extends to all subsets of S. From an algorithmic standpoint, the most
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important property of weighted matroids is that there is a greedy algorithm
for these matroids that computes the maximum (minimum) weight basis. It
can be easily checked that B is a minimum weight basis of a matroid if and
only if none of the cycles of B can be exchanged for a shorter cycle while still
preserving linear independence. As an immediate consequence, if the cycles in
two distinct minimum cycle (homology) bases are sorted by weight, then the
ordered sets of sorted weights coincide.

Let the cycle space of G be the ground set S, and let I be defined as follows.

I = {I | I is a linearly independent set of cycles of G}

Then, the pair M = (S, I ) forms a matroid. When combined with a weight
function on edges, it becomes a weighted matroid. Cycle bases of G correspond
to the bases of M .

Analogously, let the nontrivial 1-cycles of a 2-complex K be the ground set
S ′, and let I ′ be defined as follows.

I ′ = {I | I is a subset of some homology basis of K}

Then, the pair M ′ = (S ′, I ′) together with a weight function on the edges
forms a weighted matroid. The homology bases of K are the bases of matroid
M ′.

The cycles in a cycle (homology) basis can be exchanged with other cycles
while preserving independence. This property is key to Lemma 8 and Theorem
9 of Paper III.

1.3.1 Background work on cycle bases

The key structural results for minimum cycle basis can be found in the work of
Horton [94] and de Pina [51]. We briefly recall them here. First we start with a
definition, and then we recall the key theorems.

Definition 1.3.1 (Tight cycles). A simple cycle C in a graph G is tight if it
contains a shortest path between every pair of points in C. The set of all tight
cycles in a graph is denoted by T(G).

Theorem 1.3.1 (Horton [94]). A minimum cycle basis M(G) of a graph G consists
only of tight cycles.

Theorem 1.3.2 (de Pina [51]). Cycles C1 . . . ,Cν form a minimum cycle basis if there
are vectors S1, . . . ,Sν in the cycle space such that for all i, 1 6 i 6 ν, the following
conditions hold:

prefix orthogonality : 〈Cj,Si〉 = 0 for all 1 6 j 6 i.

non-orthogonality : 〈Ci,Si〉 = 1.
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shortness : Ci is a minimum weight cycle in T with 〈Ci,Si〉 = 1.

The vectors S1, . . . ,Sν in Theorem 1.3.2 are called support vectors. The recent
line of algorithmic work [5,51,105,106,121] on the minimum cycle basis problem
strongly rely on Theorem 1.3.2. Building on this line of work, more recently,
Amaldi et al. [5] proved another interesting structural result.

Theorem 1.3.3 (Amaldi et al. [5]). The total length of the tight cycles in an undirected
graph G is at most nν, and can be computed in O(nm) time.

For further details on background and history of this problem, we refer the
reader to some survey articles [18, 104].

1.3.2 Background work on homology bases

For the special case when the input complex is a surface, Erickson and Whit-
tlesey [73] gave a O(N2 logN + gN2 + g3N)-time algorithm. Recently, Bor-
radaile et al. [23] gave an improved deterministic algorithm that runs in
O((h+ c)3n logn+m) where c denotes the number of boundary components,
and h denotes the genus of the surface. For small values of c and h, the
algorithm runs in nearly linear time.

For general complexes, Dey et al. [54] and Chen and Freedman [38] gen-
eralized the results by Erickson and Whittlesey [73] to arbitrary complexes.
Subsequently, introducing the technique of annotations, Busaryev et al. [33]
improved the complexity to O(Nω +N2gω−1), where ω is the exponent of
matrix multiplication. More recently, Dey et al. [53] designed an O(Nω +N2g)

time algorithm by adapting the divide and conquer algorithm for computing
a minimum cycle basis of Kavitha et al. [106] for the purpose of computing a
minimum homology basis.

Note that in Paper III, we focus solely on the bases of the first homology group
since the problem of computing a shortest basis for higher homology groups
with Z2 coefficients was shown to be NP-hard by Chen and Freedman [39].

For further details on background and history of minimum homology basis
and related problems, we refer the reader to the survey article by Erickson [72].

1.3.3 Background work on matrix algorithms

The column rank profile (respectively row rank profile) of an m×n matrix A with
rank r, is the lexicographically smallest sequence of r indices [i1, i2, . . . , ir]
(respectively [j1, j2, . . . , jr]) of linearly independent columns (respectively rows)
of A.

It is well-known that classical Gaussian elimination can be used to compute
the rank profile of an m× n matrix in O(nmr) time. One of the keys to our
design of fast algorithms for minimum cycle and homology basis is the use of
state-of-the-art matrix rank profile algorithms. We recall the main results here.
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Theorem 1.3.4 ( [65, 98]). There is a deterministic O(mnrω−2) time algorithm to
compute the column rank profile of an m×n matrix A with rank r.

Theorem 1.3.5 (Storjohann and Yang [148, 149, 160]). There exists a Monte Carlo
algorithm for computing row (resp. column) rank profile of a (sparse) matrix A with
nnz(A) non-zero entries and rank r that runs in Õ(nnz(A) + rω) time. The failure
probability of this algorithm is 1/2.

1.3.4 A structural result

Previously, Erickson and Whittlesey [73] showed that the minimum homology
basis of a complex K is contained is contained in the tight cycles of its 1-skeleton,
considered as a graph.

Theorem 1.3.6 (Erickson and Whittlesey [73]). With non-negative weights, every
cycle in a shortest basis of H1(K) is tight. That is, if H(K) is any minimum homology
basis of K, then H(K) ⊂ T(K1).

In Paper III, we refine Theorems 1.3.1 and 1.3.6 to prove the following result.

Theorem 1.3.7 (Corollary 11 in Paper III). Given a complex K, let T(K1) denote the
set of tight cycles of K1, and let M(K1) be a minimum cycle basis of K1. Then, there
exists a minimum homology basis H(K) of K such that

H(K) ⊂M(K1) ⊂ T(K1).

1.3.5 Algorithmic results

The state-of-the-art algorithm for the minimum cycle basis computation is
by Amaldi et al. [5], which runs in O(mω) time. In Paper III, we devise a
Monte Carlo algorithm for minimum cycle basis computation that computes
the minimum cycle basis in Õ(mω) time1. Please refer to Section 3 in Paper
III for further details. While our algorithm for minimum cycle basis is slightly
slower than the algorithm by Amaldi et al. [5], it enjoys a simpler high-level
description, and is unique among the recent algorithms for minimum cycle
basis, in the fact that it does not use support vectors (described in Section 1.3.1).

Further, in Paper III, we devise two Monte Carlo algorithms for minimum
homology basis that run in Õ(mω) and O(mω +Nmω−1) time, respectively,
where as before, m denotes the number of edges in the complex, and N denotes
the total number of simplices in the complex. These algorithms improve upon
the state-of-the-art algorithm by Dey et al. [53], which runs in O(Nω +N2g)

time. Please refer to Section 5 in Paper III for further details.
Our algorithms for minimum cycle basis and minimum homology basis are

fast and have a simple high-level description. These algorithms harness the
following facts, observations and results.

1 Here, the Õ() notation hides multiplicative polylogarithmic factors.



1.3 matroids , cycle bases and homology bases 37

1. For minimum cycle basis and minimum homology basis, if one sorts the
candidate cycles by weight and assembles them in a matrix, then the
column rank profile algorithm is a greedy algorithm for minimum basis
computation.

2. The minimum cycle bases and minimum homology bases have a weighted
matroid structure, and hence column rank profile computation returns an
optimal basis for both problems. The matroid structure of these problems
is somewhat underemphasized in literature. The survey paper by Burger
et al. [18] is a notable exception.

3. The matrix of tight cycles is a sparse matrix as proved by Amaldi et al. [5].
See Theorem 1.3.3.

4. The structural result proved in Theorem 1.3.7 was, in fact, the the main
impetus behind Paper III.

5. Some of the state-of-the-art algorithms for column rank profile computa-
tion can be used as blackbox subroutines for computing minimum cycle
basis and minimum homology basis.

1.3.6 Outlook & Future directions

In Paper III, we devised a randomized algorithm for minimum homology basis
with complexity Õ(mω). This naturally leads to the question of how hard
it would be to make significant improvements upon this result. The key to
answering questions of this nature lies in the following result by Edelsbrunner
and Parsa.

Theorem 1.3.8 (Edelsbrunner and Parsa [66]). Let M be an n×n 0-1 matrix with
p non-zero entries. In time O(p), we can build a 2-dimensional simplicial complex
K with O(p) simplices and a piecewise linear function g : |K| → R such that the
horizontal homology class Hhor

1 (K) is isomorphic to the null-space of M and H2(K) is
isomorphic to the null-space of MT .

The so-called horizontal homology classes Hhor
d (K) and vertical homology

classes Hver
d (K) were introduced in [45], and treated at length in [55]. In partic-

ular, we have the following relation: dimHhor
1 (K) + dimHver

1 (K) = β1. Also,
as a consequence of [55, Claim 3.2], Hver

1 (K) can be computed deterministically
in time O(p logp) using the Reeb graph computation algorithm by Parsa [131].
Any algorithm for computing a minimum homology basis reveals β1.

The algorithm for computing minimum homology basis in Paper III runs in
Õ(mω) time, while the lower bound implied by Edelsbrunner and Parsa [66] is
no stronger than Ω(m2) (in the light of Wiedemann’s algorithm). One reason
for this discrepancy is that finding the column rank profile of a matrix is at
least as hard as finding the rank. A second reason is that in order to compute a



1.4 high-dimensional cuts 38

minimum homology basis one needs to first identify a small (and sparse) list
of candidate cycles, which incurs an additional computational overhead. This
leaves open the question of whether a substantial improvement in asymptotic
complexity bounds for computing the minimum homology basis (over the
results obtained in Paper III) is possible.

On a slightly different note, while the complexity of computing any homology
basis, and a minimum homology basis are both closely tied to rank computation,
the situation for cycle bases is quite different. In particular, from any spanning
tree of a graph, one can extract a (fundamental) cycles basis in linear time.
Hence, computing a cycle basis of a graph is achievable in time linear in
the number of edges. In comparison to finding any cycle basis of a graph,
the problem of computing a minimum cycle basis of a graph seems to be a
substantially harder problem, leading naturally to the interesting open question
of establishing fine-grained complexity bounds for the problem of computing a
minimum cycle basis of an undirected graph.

1.4 high-dimensional cuts

1.4.1 Motivation

A graph cut is a partition of the vertices V of a graph G = (V ,E) into two disjoint
subsets (S, S̄). The set of edges C ⊂ E that have one vertex lying in S and
another one lying in S̄ determines a cut-set. See Figure 7 for an illustration.
Typically, the objective function to optimize involves the (weighted) size of the
cut-set. Graph cuts have a ubiquitous presence in theoretical computer science.
Additionally, cuts also have a rich mathematical aspect. For instance, cuts are
also related to the spectra of the adjacency matrix of the graph leading to a
beautiful mathematical theory [42]. Then, there is also a geometric aspect to
cuts that comes from metric embeddings [57]. Cuts have found many real-world
applications in clustering, shape matching,VLSI design, image segmentation
and smoothing, and energy minimization problems in computer vision.

Cut problems are related to flow problems in graphs owing to the duality
between cuts and flows. In fact, the max-flow min-cut theorem says that the
maximum value of flow between a source vertex s and a target vertex t equals
the value of the minimum cut that separates s and t. Figure 8 shows an example
of an s-t cut on an undirected graph.

We begin with the observation that graphs are 1-dimensional simplicial
complexes. As we will argue in the ensuing discussion, cuts have a natural
homological interpretation. Then, it is natural to muse how would the notion
of cuts have been defined had it first emerged in the context of simplicial
complexes. Guided by a higher intuition that comes from topology, cuts as
constructs need not be limited merely to achieve separation. But more generally,
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Figure 7: Partition (S,S) of vertex set V .

one may view cuts as a mechanism to achieve homology modification via removal
of simplices.

For instance, consider the following problem: What is the minimum number
of edges you need to remove from a graph so that the vertices {s, t} do not form
a bounding 0-cycle of a 1-chain over Z2 in the resulting graph? Since we have
an s-t cut if and only if there are no paths connecting s and t, it is easy to check
that this problem is equivalent to finding the minimum s-t cut on graphs! Now,
we ask the analogous question for complexes of higher dimension. In particular,
the question we ask, namely Boundary nontrivialization, is the following
one: Given a bounding Z2 r-cycle ζ in a simplicial complex K, find a set S of
(r+ 1)-dimensional simplices of minimum cardinality so that the removal of S
from K makes ζ nontrivial.

For instance, consider the two complexes L1 and L2 shown in Figures 9

and 10, respectively. For complex L1 shown in Figure 9, let the equator e of the
sphere on the right be the bounding 1-cycle that we want to make nontrivial.
Both hemispheres are bounded by the equator. So, the two highlighted triangles
from the right sphere of the complex L1 constitute the optimal solution for
Boundary nontrivialization. That is, removing these two triangles makes e a
nontrivial 1-cycle. For complex L2 shown in Figure 10, the circle of intersection
of the two spheres, denoted by b, is the bounding 1-cycle of interest. Removing
all the four highlighted triangles from complex L2 makes b a nontrivial 1-cycle.
This also happens to be the optimal solution for making b nontrivial. The global
variant of Boundary nontrivialization, that we refer to as Global Boundary

nontrivialization asks for the smallest number of (r+ 1)-simplices that need
to be removed so that the dimension of the (r+ 1)-th boundary group reduces
by one. The (weighted version of) Global Boundary nontrivialization

generalizes the classical minimum cut problem on undirected graphs.
Complementary to the question of removing the minimal number of (r+ 1)-

simplices in order to make a bounding cycle nontrivial, is the problem of
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Figure 8: The dashed vertical line shows a minimum s-t cut in the graph.

Figure 9: The complex L1 consists of two disjoint triangulated spheres. We do
not show the entire triangulation, only the four triangles of interest.
The boundary of interest is the equator of the larger sphere on the
right.

Figure 10: The complex L2 consists of a triangulation of union of two spheres
that intersect in a circle. As before, we do not show the entire
triangulation, only the four triangles of interest. The boundary of
interest is the circle of intersection of the two spheres.
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removing the minimum number of r-simplices from a complex so that an entire
homology class is destroyed. More formally, the problem Topological Hitting

Set can be described as follows: given a nontrivial Z2 r-cycle ζ in a simplicial
complex K, find a set S of r-dimensional simplices of minimum cardinality so
that S meets every cycle homologous to ζ.

Topological Hitting Set on graphs can be described as follows: Suppose
we are given a graph G with k components. Let C be one of the components
of G. Then, β0(G) = |k|, and each component determines a 0-cycle. So the
question of Topological Hitting Set is to determine the minimum number
of vertices you need to remove so that C is not a component anymore. The
answer is trivial! One needs to remove all the vertices in C. For example in
Figure 11, C2 ceases to be a component if and only if all four vertices in C2
are removed. It is worth noting that it is the unidimensionality of graphs that
makes the problem trivial. What is more, the “cut aspect” of the problem is not
immediately visible for graphs.

In contrast, for higher-dimensional complexes, the problem has a distinct
cut flavor. For instance, consider the planar complex shown in Figure 12.
The minimum number of edges that need to be removed so that every cycle
homologous to ζ is destroyed is three. In Figure 12, an optimal set of edges
is shown in red. Note that the edges happen to be in a “thin” portion of the
complex, justifying our higher-dimensional homological viewpoint that (along
with Boundary nontrivialization) this problem can also be seen as a high
dimensional cut problem. The global variant of Topological Hitting Set

that we call Global Topological Hitting Set asks for the minimum number
of r-simplices that need to be removed so that some r-cycle is destroyed. For
instance, for the complex shown in Figure 12, a set of two edges needs to be
removed in order to destroy the class [ξ], which corresponds to a solution to
Global Topological Hitting Set for that complex.

In this work, we undertake an algorithmic study of the two high-dimensional
cut problems: Boundary nontrivialization and Topological Hitting Set

and their global variants.

topological hitting set on surfaces . The search for a tractable
algorithm for Topological Hitting Set for the special case of surfaces was
motivated by the intuitive example of 1-cycles on a torus, as shown in Figure 13.
From the figure, it is clear that any cycle homologous to ζ must pass through
cocycles η and ϑ. Additionally, ϑ is a cocycle with the smallest set of edges
satisfying this property. Even more, every topological hitting set of ζ has at
least as many edges as the support of ϑ.

Building on the intuition from the example in Figure 13 we provide an
polynomial-time algorithm in Section 5 of Paper V for computing the optimal
solution for Topological Hitting Set on closed triangulated surfaces. Here,
we rely on an interesting characterization of the minimal solutions in terms of
the cocycles of the surface. By a connected cocycle we mean a cocycle that induces
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Figure 11: Graph G with three components

ζ

ξ

Figure 12: The figure shows two cycles that belong to [ζ] in green. Note that
any cycle in [ζ] must pass through at least one of the three red
edges. Thus, the set of red edges constitutes an optimal solution for
Topological Hitting Set on this planar complex.
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Figure 13: The figure shows a triangulated torus T . The cycle ζ is shown in
purple. The cocycles η and ϑ “transversal” to ζ are shown in black.
Any cycle homologous to ζ must pass through at least one of the
edges of η (or ϑ). However, ϑ has a smaller support, and is, therefore,
a more desirable “hitting set”.

a connected component in the dual graph. By a feasible set for input ζ, we mean
a set of edges that meets every cycle homologous to ζ. To begin with, we show
that a minimal solution set is necessarily a nontrivial connected cocycle. Next,
we show that for a connected cocycle η, the following are equivalent:

• η is a feasible set for the input cycle ζ.

• η(γ) = 1 for every cycle in γ ∈ [ζ].

• There exists a cycle γ ∈ [ζ], for which, η[γ] = 1.

Even more, cocycles ϑ for which ϑ(ζ) = 0, and any (cocycles cohomologous to)
linear combinations of such cocycles are not solutions.

Specifically, this allows us to identify the nontrivial cocycles that are solutions
based on a parity-based property. Having this characterization at hand, we
eventually arrive at a very simple 3-step algorithm for Topological Hitting

Set on surfaces that we describe below.

1. Find the optimal cohomology basis of the surface.

2. Sort the basis by ascending order of weights.

3. The lowest weight basis element η for which η(ζ) = 1 is the desired
solution.

For further details on the algorithm for Topological Hitting Set on surfaces,
we refer the reader to Section 5 of Paper V. Finally, we remark that Boundary
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G2G1

Figure 14: In this figure, the graph G1 on the left is a 4-colored graph with
a multicolored 4-clique, whereas the graph G2 on the right is a 4-
colored graph that does not have a multicolored 4-clique.

nontrivialization is trivial for surfaces. In fact, it is easy to check that for
some boundary b and a 2-chain ζ, if ∂ζ = b, then removing any one of the
triangles that appears in the chain ζ makes b nontrivial.

multicolored cliques . A k-clique of a graph G is a complete subgraph
of G with k vertices. A k-coloring of a graph G is an assignment of one of k
possible colors to every vertex of G such that adjacent vertices do not receive
the same color. A graph G equipped with a k-coloring is called a k-colored
graph. A multicolored k-clique in a k-colored graph is a k-clique with a k-coloring.
k-Multicolored Clique asks for the existence of a multicolored k-clique in a
k-colored graph G. k-Multicolored Clique is known to be a W[1]-complete
problem [77]. We establish NP-hardness and W[1]-hardness for Topological

Hitting Set and Boundary nontrivialization by devising FPT-reductions
from k-Multicolored Clique. Please see Figure 14 for an example and a
non-example of a multicolored 4-clique.

w[1]-hardness and np-hardness . For general complexes, in Section
6.1 of Paper V, we show that Topological Hitting Set is W[1]-hard with respect
to the solution size k as the parameter, (and hence, it is also NP-hard). The proof
is based on an FPT-reduction from the k-Multicolored Clique problem. In
this reduction, given a k-colored graph G, we construct a complex K(G). Owing
to this reduction, if there exists an FPT algorithm for Topological Hitting Set

on K(G), then there exists an FPT algorithm for k-Multicolored Clique on G.
Since k-Multicolored Clique is known to be W[1]-hard [77], under standard
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complexity theoretic assumptions, an FPT algorithm for Topological Hitting

Set with solution size as parameter is unlikely to exist.

In addition, in Section 6.2 of Paper V, we show that Boundary nontrivial-
ization is also W[1]-hard with respect to the solution size k as a parameter. The
principles of this reduction follow the lines of the reduction for Topological

Hitting Set, though, here, both the description and the proof of the reduction
are far more involved because of a special kind of subdivision that help avoid
some unhelpful incidences.

fixed-parameter tractability. On the positive side, in Section 7.1
of Paper V, we show that Topological Hitting Set admits an FPT algorithm
with respect to k+ ∆, where ∆ is the maximum degree of the Hasse graph
of the complex K. Here, the main insight is that a minimal solution induces
a connected subgraph in the Hasse graph. Having this insight at hand, the
algorithm follows: If we search across the geodesic ball of every r-simplex in
the complex K, we will find a solution.

In contrast, we observe that Boundary nontrivialization does not admit
this property because minimal solutions can be disconnected. This motivates
the search of another parameter that makes the problem tractable. Exploiting
the set-cover like structure of the problem, in Section 7.2 of Paper V, we show
that Boundary nontrivialization with bounding r-cycles as input has an
O(logn)-approximation FPT algorithm with βr+1 (the Betti number) as the
parameter, when the input complex K is (r+ 1)-dimensional. This provides a
nice contrast with the hardness result: Boundary nontrivialization is W[1]-
hard even for (r+ 1)-dimensional complexes with solution size as the parameter
since the hardness gadget used in Section 6.2 of Paper V is (r+ 1)-dimensional.

Finally, by exploiting the vector space structure of the homology groups and
the boundary groups, in Sections 7.1 and 7.2, we also provide a randomized
FPT algorithm for Global Topological Hitting Set and a randomized FPT
approximation algorithm for Global Boundary nontrivialization respec-
tively.

We believe that the FPT algorithms for Global Topological Hitting Set

and Global Boundary nontrivialization can be derandomized. We also
believe that the gadgets in Section 6 can be used to show W[1]-hardness of
Global Topological Hitting Set and Global Boundary nontrivialization.
However, these two results have not been written yet and are not a part of this
thesis.

1.4.2 Outlook & Future Directions: High-dimensional Cuts and Expansion

Given a graph G = (V ,E), the Cheeger constant (or edge expansion) of a graph G,
denoted by h(G), is defined as
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h(G) = min
{
|E(S,V \ S)|

|S|

∣∣ S ⊆ V , |S| ∈
(
0, |V |

2

]}
.

A sequence of distinct graphs {Gi}
∞
i=1 is called a family of expander graphs if

there exists a constant δ > 0 such that h(Gi) > δ for every i > 1. Expander
graphs have many applications in computer science including design of robust
computer networks, theory of error correcting codes and complexity theory [93].
For instance, Irit Dinur’s simpler proof of the PCP theorem [59] was one of the
landmark applications of expander graphs in complexity theory.

high dimensional expansion. Generalizing the notion of expansion
in graphs to simplicial complexes, a rich theory of high-dimensional expansion
has emerged [116]. Already, in a short time since inception, high dimensional
expanders have found applications in complexity theory [61], coding theory [58,
60], and counting and sampling algorithms [6, 7]. Here, we recall some of the
basic definitions in order to motivate some connections to the ideas developed
in Paper V.

First, note that when working with Z2 coefficients, the subsets S of K(p) are
in one-to-one correspondence with the p-cochains of K. So notationally, we do
not distinguish a set S ⊂ K(p) from the unique cochain associated to it. Further,
let ‖η‖ denote the size of the support of a cochain η. That is,

supp(η) =
{
σ ∈ Kp+1 | η(σ) 6= 0

}
, and ‖η‖ = |supp(η)| .

The cosystolic norm of a p-cochain ϕ is defined as

‖[ϕ]‖ = min{| supp(ϕ+ δψ)| : ψ ∈ Cp−1(K)}.

Note that if we let

ϑ = arg min{| supp(ϕ+ δψ)| : ψ ∈ Cp−1(K)},

then ϑ is the smallest cochain with δϕ as its coboundary.
Then, the p-th coboundary expansion of a complex K is defined as

hp(K) = min
ζ∈Cp(K)\Bp(K)

‖δζ‖
‖[ζ]‖ .

Since a graph is a 1-dimensional complex, letting δS denote the coboundary
of the 0-cochain S, the Cheeger constant can also be written as

h(G) =min
{‖δS‖
‖S‖

∣∣ S ⊆ V , |S| ∈
(
0, V2

]}
= min
S∈C0(G)

‖δS‖
‖[S]‖ .
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Just as the Cheeger constant of disconnected graphs is 0, the p-th coboundary
expansion of complexes with nonzero p-th Betti number is 0. Hence, cobound-
ary expansion is not a very useful notion to study the connectivity of complexes
with nontrivial homology. In such cases, one of the alternative notions used is
the so-called p-th cocycle expansion zp(K) of a simplicial complex K, defined as

zp(K) = min
ζ∈Cp(K)\Zp(K)

‖δζ‖
min

η∈Zp(K)
‖η+ ζ‖ .

Let ξ be a cochain for which zp(K) = ‖δξ‖
min

η∈Zp(K)
‖η+ξ‖ .

Also, let Kδξ be the complex induced by the removal of simplices in the
support of δξ. Let ι be the inclusion map ι : Kδξ ↪→ K. Then, it is easy to check
that the induced map on cohomology ι̂ : Hp(Kδξ)→ Hp(K) is not injective.

Also, we conclude that, ξ ∈ Zp(Kδξ) \Bp(Kδξ) because

• ξ ∈ Zp(Kδξ) since δξ = 0 in Kδξ,

• ξ ∈ Cp(K) \Zp(K) =⇒ ξ 6∈ Bp(K),

• Finally, Bp(Kδξ) ∼= Bp(K) =⇒ ξ 6∈ Bp(Kδξ).

In other words, ξ is a nontrivial cocycle in Kδξ.

Let ϑ = arg min
η∈Zp(K)

‖η+ ξ‖ .

If the cocycle ϑ created by the removal of δξ is large, then intuitively we
can associate the removal of simplices in the support of δξ with the birth of a
large feature. Then, if zp(K) is small, the coboundaries of K are not robust in the
sense that removal of only a few p+ 1-simplices gives rise to large topological
feature. In this sense, the quantity zp(K) captures the essence of robustness
of coboundaries. If there exists a family of complexes K such that for every
K ∈ K , zp(K) is bounded away from 0, then the complexes in K are p-cocycle
expanders. Alternatively, for our purposes, we say that the p-coboundaries of
the complexes in K are robust. There is a further refinement of the notion of
cocycle expansion that is called cosystolic expansion, which we will not define
here. Please refer to [74] for a definition.

cycle expansion. Motivated by the preceding discussion, we will define
a notion analogous to cocycle expansion that we will call the p-th (hitting) cycle
expansion. Let S be a p-chain of K, and let KS be the complex induced by
the removal of simplices in the support of S from K. Let ι : KS ↪→ K be the
natural inclusion map. Then, we say that a p-chain S is a p-topological hitting
set of complex K if the induced map on homology î : Hp(KS)→ Hp(K) is not
surjective. The collection of all p-topological hitting sets of K is denoted by
Tp(K). We say that a nontrivial p-cycle ζ of K is destroyed by the removal of
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simplices in the support of S if [ζ] is not in the image of î. Let ΥSp(K) denote
the set of all non-trivial p-cycles of K that are destroyed by the removal of S.
We define the p-th cycle expansion of a simplicial complex K as

zp(K) = min
S∈Tp(K)

‖S‖
min

ζ∈ΥSp(K)
‖ζ‖ .

Analogous to the earlier discussion,

Let ξS = min
ζ∈ΥSp(K)

‖ζ‖ .

If the smallest cycle ξS created by the removal of S is large, then intuitively
we can associate the removal of S with the death of a large feature. Then, if
zp(K) is small, the cycles of K are not robust in the sense that removal of only a
few p-simplices kills a large topological feature. In this sense, the quantity zp(K)
captures the essence of robustness of cycles. If there exists a family of complexes
K such that for every K ∈ K , the quantity zp(K) is bounded away from 0,
then we say that the complexes in K have p-cycle expansion. Alternatively, for
our purposes, we say that the p-cycles of the complexes in K are robust.

To the best of our knowledge, cycle expansion, as we define it here, has not
been studied before. We believe that it captures “expansion-like” phenomena
in higher dimensions, and studying the properties of this invariant would be of
independent interest. We end this discussion, and also this section with a few
open questions about p-cycle expansion.

1. We established in Paper V that optimal topological hitting sets induce a
connected subgraph in the Hasse graph. What other topological prop-
erties can one establish for topological hitting sets, and what kind of
statements hold true for cycle expanders? Dotterer et al. [62] showed that
if K is a cosystolic expander, then it satisfies Gromov’s topological overlap
property, which can be described as follows. Given a d-dimensional com-
plex K, for every continuous map K→ Rd there exists a point p ∈ Rd that
is contained in the images of a positive fraction µ > 0 of the d-simplices
of K. Complexes that satisfy the topological overlap property are called
topological expanders. The next question we ask is: how is cycle expansion
related to topological expansion?

2. Like in the case of graphs, it is more interesting to look at sparse complexes
that have good expansion properties. In this regard, there is a line of work
in finding infinite families of bounded degree coboundary, cocycle and
cosystolic expanders [74,103,117]. Here, by bounded degree we mean that
each vertex in the complex is incident on a bounded number of simplices.
This raises a natural question: For an integer p > 1, does there exist an
infinite family of bounded degree complexes whose p-th cycle expansion
is bounded below by a fixed constant? It is known that the so-called
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Ramanujan complexes have nontrivial homology, and hence they are not
coboundary expanders [116]. And yet skeletons of Ramanujan complexes
are cosystolic and topological expanders [74]. A natural question arises:
Are Ramanujan (or related) complexes cycle expanders?

Just as graph expanders model the robustness of connectivity in networks,
cocycle expanders and cycle expanders capture the robustness of (co)homology
in complexes.



2
A L G O R I T H M I C P R E L I M I N A R I E S

2.1 parameterized complexity

Notation 2. In this section, we use [m] to denote the set {1, 2, . . . ,m} for any
m ∈N, and [a,b] to denote the set {a,a+ 1, . . . ,b}.

2.1.1 Basic notions from graph theory

An (undirected) graph is a pair G = (V ,E), where V denotes a set of elements
called vertices, and E denotes a set of paired vertices, whose elements are
called edges. A simple graph is a graph that does not have more than one edge
between any two vertices and none of the edges start and end at the same
vertex. In this section, we consider only simple graphs. Simple graphs are
1-dimensional simplicial complexes. A subgraph H = (VH,EH) of a graph
G = (V ,E) is a graph with VH ⊆ V and EH ⊆ E. We say that H is a subgraph
of G induced by the vertex set VH if EH =

(
VH
2

)⋂
E. The deletion of a vertex

v from graph G results in a graph denoted by G− v, which is the subgraph
of G induced by the vertex set V \ {v}. The deletion of an edge e from a
graph G results in a graph G− e = (V ,E \ {e}). The contraction of an edge
f = {u, v} results in a graph G ◦ f = (V ◦ f,E ◦ f), where V ◦ f = V \ {v} and
E ◦ f = E \ {e | v ∈ e}⋃{{u,w} | {v,w} ∈ E,w 6= u}. An graph H is called a minor
of a graph G if H can be obtained from G following a (possibly empty) sequence
of edge contractions, edge deletions and vertex deletions.

A complete graph is a graph in which every pair of distinct vertices is connected
by an edge. A complete graph on n vertices has

(
n
2

)
edges and is denoted by

Kn. A graph G = (V ,E) is called a biparite graph if V can be paritioned into
two disjoint subsets V1 and V2 such that for any two vertices u, v ∈ V , if u
and v belong to the same subset, then {u, v} 6∈ E. A bipartite graph G = (V ,E)
with partition V = V1 t V2 is called a complete bipartite graph if for every
u ∈ V1 and v ∈ V2, the edge {u, v} is in E. A complete bipartite graph with
|V1| = m and |V2| = n is denoted by Km,n. Note that Km,n is isomorphic to
Kn,m. A planar graph is a graph that can be drawn in the Euclidean plane with
vertices represented by points, and edges represented by curves that connect
neighboring vertices such that the edges intersect only at their endpoints.
Equivalently, a planar graph is a graph that can be embedded in a plane.
By Fáry’s theorem [96], planar graphs can be drawn with edges as straight
line segments without crossings. An outerplanar graph is a graph that can be
embedded in the Euclidean plane such that all vertices lie on the outer face. A

50
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path in a graph is a sequence of vertices joined by edges. A tree is a graph in
which any two vertices are connected by exactly one path. A forest is a graph
in which any two vertices are connected by at most one path. Given a graph
G = (V ,E), the complement graph of G, denoted by G = (V ,E), where E is
given by E =

(
V
2

)
\ E.

A vertex cover of a graph is a set of vertices that is incident on every edge of
the graph. A dominating set for a graph G = (V ,E) is a set D ⊂ V such that every
vertex that is not in D is adjacent to at least one vertex in D. An independent
set in a graph is a set of vertices, no two of which are connected by an edge.
It is easy to check that a vertex set S is a vertex cover in a graph G = (V ,E),
if and only if its complement S ′ = V \ S is an independent set in G. Given a
graph G = (V ,E), we say that a set X ⊆ V is a feedback vertex set of G, if the
subgraph of G induced by the vertex set V \ X has no cycles. A k-clique of a
graph G is a complete subgraph of G with k vertices. A k-coloring of a graph
G is an assignment of one of k possible colors to every vertex of G (in other
words, a vertex coloring) such that no two vertices that share an edge receive
the same color. A graph G equipped with a k-coloring is called a k-colored graph.
A multicolored k-clique in a k-colored graph is a k-clique with a k-coloring.

The notions of treewidth, pathwidth and branchwidth were introduced by
Robertson and Seymour in their work on graph minors [140, 141, 142]. Since
these constructs play an important role in parameterized complexity, we provide
a brief description below.

First, we will define the notion of path decompositions. Given a graph
G = (V ,E), a bag (of vertices in V) is simply a subset of vertices of V . Let X be
a collection of bags indexed by W. That is, X = {Xi | i ∈ W}, where each Xi
is a bag of vertices in V . Let P = (W, F) be a path graph whose vertices are in
one-to-one correspondence with the bags in X. A path decomposition of G is a
pair (X,P) that satisfies the following conditions.

• Every vertex of G is in at least one bag. That is,
⋃
i∈W Xi = V .

• For every edge e = {u, v} ∈ E, there exists an element q ∈ W such that
the bag Xq contains both u and v.

• For all i, j,k ∈W, if j is on the path from i to k in P, then Xi
⋂
Xk ⊆ Xj. In

other words, for every v ∈ V , the set of nodes of P whose corresponding
bags contain v induces a sub-path in P.

The width of a path decomposition (X,P) of a graph G is max`∈W |X`|− 1. The
pathwidth pw(G) of a graph G is the minimum possible width over all possible
path decompositions of G. The pathwidth of a graph captures how close a
graph is to a path. For instance, the pathwidth of a path graph with more than
one edges is 1.

The notion of a tree decompositions generalizes the notion of a path decom-
position in a natural way: A tree decomposition of a graph G = (V ,E) is a pair
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(X,T), where T = (W, F) is a tree, and X = {Xi | i ∈W} is a collection of bags of
vertices in V , one for each node of T that satisfy the following conditions.

• Every vertex of G is in at least one bag. That is,
⋃
i∈W Xi = V .

• For every edge e = {u, v} ∈ E, there exists an integer q ∈W such that the
bag Xq contains both u and v.

• For every v ∈ V , the set of nodes of T whose corresponding bags contain
v induces a connected subtree of T.

The width of a tree decomposition (X,T) is max`∈W |X`|− 1. The treewidth
tw(G) of a graph G is the minimum possible width over all possible tree
decompositions of G. The treewidth of a graph is one of the most powerful
tools for designing parameterized algorithms. It measures how tree-like a graph
is. In particular, the treewidth of a tree with more than one edges is 1.

A branch decomposition [81] of a graph G = (V ,E) is a pair (T, τ), where
T = (VT ,ET ) is a tree whose vertices either have degree 1 (leaves) or degree 3
(internal nodes), and τ is a bijection from the set of leaves of T to E. Since T is a
tree, the removal of an edge e ∈ ET from T results in two connected components.
We say that a vertex v ∈ V lies in the cut of e ∈ ET , if there exist leaves t1, t2 ∈ T

in different components with v ∈ τ(t1) and v ∈ τ(t2) . The cut-value γ(e) of an
edge e ∈ ET is the number of vertices v of G that lie in the cut of e. The width
of the branch decomposition (T, τ) is defined as maxe∈ET γ(e). The branchwidth
bw(G) of G is the minimum width over all the branch decompositions of G.
The exposition in [81] provides a helpful illustration.

Theorem 2.1.1 ( [142]). If G is a graph, then

bw(G) 6 tw(G) + 1 6
⌊
3

2
bw(G)

⌋
.

As is evident from Theorem 2.1.1, the notions of branchwidth and treewidth
are closely related. Although the notion of treewidth is the more commonly
encountered one in the design of algorithms, two prominent exceptions are
dynamic programming algorithms and algorithms for planar graphs. In these
two cases, branchwidth is easier to work with [50].

2.1.2 Mathematical origins of parameterized complexity

Parameterized complexity was inspired by Robertson and Seymour’s graph
minor theory. Below, we provide a brief account of the mathematical under-
pinnings of parameterized complexity. For a short and informative account of
graph minor theory we refer the reader to an article by Lovasz [115].

To begin with, it is easy to check that

1. Every graph is a minor of itself.
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2. If K is a minor of H, and H is a minor of G, then K is a minor of G.

Hence, the minor ordering on graphs constitutes a preorder (that is, a reflexive,
transitive relation). A well-quasi-ordering is a preorder that contains neither an
infinite descending chain nor an infinite antichain.

A graph family F is a minor-closed family if any minor of any graph in F

is also a member of F. Examples of minor-closed families of graphs include
forests, planar graphs, and outerplanar graphs.

We say that a graph parameter is minor-closed if it either decreases or remains
the same upon edge contractions, edge deletions and vertex deletions. Examples
of minor-closed graph parameters include vertex cover, feedback vertex set,
treewidth, pathwidth and branchwidth.

The celebrated theorem by Wagner [154] characterizes planar graphs as
graphs that do not have the complete graph K5 or the complete bipartite
graph K3,3 as minors. A far-reaching generalization of Wagner’s theorem is
the Robertson-Seymour theorem. The graph minor theory of Robertson and
Seymour took more than twenty years to develop and is regarded as one of the
monumental feats of modern mathematics. The main result can be stated as
follows.

Theorem 2.1.2 (Robertson-Seymour [143]). Let G be a minor-closed family. Then,
there exists a finite set ob(G), called the obstruction set of G, such that for each graph
G, we have G ∈ G if and only if none of its minors are in ob(G).

It is easy to check that the Robertson-Seymour theorem can be formulated in
the following equivalent way.

Corollary 1 (Robertson-Seymour). Undirected graphs partially ordered by the graph
minor relation forms a well-quasi-ordering.

Given a graph G of size n and a graph H of size c, one of the consequences
of Robertson-Seymour theory is an f(c)n3 time algorithm for checking if H
is a minor of G, where f is a superpolynomial function [139]. This was later
improved to f(c)n2 time algorithm by Kawarabayashi et al. [95]. Combining
these algorithms with Theorem 2.1.2, we obtain the following corollaries.

Corollary 2. There exists polynomial-time algorithm for deciding the membership of a
graph in a minor-closed family.

Corollary 3. Deciding if a minor-closed graph parameter is at most k can be done in
f(k)n2 time, where n denotes the size of the input graph, and f is a superpolynomial
function.

We make a few important remarks about the algorithmic consequences of
the above corollaries.
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Remark 2. The algorithm in Corollary 2 can be used only if the obstruction sets
are known in advance for the specific minor-closed families under consideration.
More often than not, this is not the case. So, without prior knowledge of
obstruction sets, Corollary 2 should be seen as a non-constructive result about
the existence of a polynomial time algorithm.

Remark 3. Distinct values of k in Corollary 3 give rise to distinct minor-closed
graph families. Hence, Corollary 3 is a non-constructive result about the
existence of a non-uniform polynomial time algorithm.

Remark 4. Although the algorithms in Corollaries 2 and 3 are polynomial in
instance size, the hidden constants that depend on some fixed parameters may
be huge.

It is this connection with algorithms and complexity that motivated Downey
and Fellows to initiate the study of parameterized complexity. Please refer
to Downey [64] for an insightful personal account about the origins of pa-
rameterized complexity. It is worth noting that there exist some fundamental
problems arising from graph minor theory for which the best-known param-
eterized algorithms are “galactic” [114]. Galactic algorithms are algorithms
with good-looking asymptotic bounds, but with concrete costs high enough
to prevent their use on scales smaller than the known universe [112]. This can
happen, for instance, when the parameter function grows at the rate of a tower
of exponentials. Designing faster algorithms for these problems is an area of
active research, and gets to the heart of some foundational questions [113, 114].
Having said that, it is also worth mentioning that the current practice of pa-
rameterized algorithms is only loosely connected to foundational algorithmic
questions arising from graph minor theory. In fact, another trend in parame-
terized complexity is to design parameterized algorithms with practical use in
mind [1]. Arguably, the parameterized algorithms in this thesis (specifically
those in Paper V) have reasonable parameter dependence.

2.1.3 Fixed parameter tractability

Parameterized complexity was introduced by Downey and Fellows in [63] as
a refinement of classical complexity theory. The theory hinges on the idea of
developing complexity bounds based on instance size along with an additional
parameter, which might be significantly smaller than the instance size. Table 5

provides a informal summary of key notions in parameterized complexity.
We now provide some formal definitions.

Definition 2.1.1 (Parameterized problem, FPT algorithm [80]). Let Σ be a finite
alphabet, and Σ∗ the set of strings over Σ.

1. A parameter of Σ∗ is a function ρ : Σ∗ → N that associates a natural
number ρ(w) to every input w ∈ Σ∗.
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Classical complexity Parameterized complexity

Instance

Problem A

Instance: Graph G or
complex K of
size n,
r > 0.

Question: Is OPT 6 r?

Problem A ′

Instance: G or K of size
n,
param. 6 k,
r,k > 0.

Parameter: k

Question: Is OPT 6 r?

Algorithms
Polynomial time algorithm:

runs in p(n) time
FPT algorithm:

runs in f(k) · p(n) time
Complexity

classes
NP W-hierarchy

Reductions
Karp reductions

to prove NP-hardness
FPT reductions

to prove W-hardness

Table 5: The table provides a comparative summary of notions in classical
and parameterized complexity. Pardigmatically, the desirable or the
tractable algorithms in classical compexity are the polynomial time al-
gorithms, whereas the tractable algorithms in the parameterized world
are the fixed parameter tractable (FPT) algorithms. Under standard
complexity theoretic assumptions, in the realm of classical complexity,
polynomial time algorithms are ruled out by establishing a Karp reduc-
tion from a known NP-hard problem to the problem at hand. Likewise,
FPT algorithms are ruled out by establishing FPT reductions.

2. A parameterized problem over Σ is a pair (P, ρ) that consists of a set P ⊆ Σ∗
and a parametrization ρ : Σ∗ →N.

3. A parameterized problem (P, ρ) is said to be fixed-parameter tractable or
FPT in the parameter ρ if the question

(x,p) ∈ {(y, ρ(y)) | y ∈ P}
can be decided in running time O(g(p)) · |x|O(1), where g is an arbitrary
computable function of the parameter p. The corresponding decision
algorithm is called a fixed parameter tractable (FPT) algorithm.

solution size as the parameter . Let k-Vertex Cover, k-Clique, k-
Independent Set, and k-Dominating Set denote the vertex cover problem, the
clique problem, the independent set problem, and the dominating set problem,
respectively, each parameterized by the solution size. The formal definitions
are as follows.

Problem 1 (k-Vertex Cover).
Instance: A graph G = (V ,E), and an integer k
Parameter: k

Question: Does there exist a vertex cover in G of size k?
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Problem 2 (k-Clique).
Instance: A graph G = (V ,E), and an integer k
Parameter: k

Question: Does there exist a k-clique in G?

Problem 3 (k-Independent Set).
Instance: A graph G = (V ,E), and an integer k
Parameter: k

Question: Does there exist an independent set in G of size k?

Problem 4 (k-Dominating Set).
Instance: A graph G = (V ,E), and an integer k
Parameter: k

Question: Does there exist a dominating set in G of size k?

Another problem of interest to us is called k−Multicolored Clique.
k−Multicolored Clique asks for the existence of a multicolored k-clique in

a k-colored graph G. Formally, k−Multicolored Clique is defined as follows:

Problem 5 (k-Multicolored Clique).
Instance: A graph G = (V ,E), and a vertex coloring c : V → [k].
Parameter: k.
Question: Does there exist a multicolored k-clique H in G?

In parameterized complexity, one uses FPT reductions to establish hardness
results. We begin with a definition.

Definition 2.1.2 (FPT reduction [80]). We say that there is an FPT reduction from
a parameterized problem (P,k) to a parameterized problem (Q,k ′) if there exists
a function φ that transforms parameterized instances of P to parameterized
instances of Q while satisfying the following properties:

1. φ is computable by an FPT algorithm.

2. φ(x) is a yes-instance of (Q,k ′) if and only if x is a yes-instance of (P,k).

3. There exists a computable function h : N→N such that

k ′(φ(x)) 6 h(k(x)).

The obvious way of turning a minimization problem into a decision problem
is to add a value k to the input instance, and seek a solution with cost at most
k. If we take this value k appearing in the input as the parameter, it is called
the natural parameterization of the minimization problem. Some researchers refer
to such a parameterization as simply “parameterized by solution size”.

For maximization problems, usually it is not clear when one can expect
the solution size to be small. Hence, in most cases it would be unnatural to
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parameterize by solution size. One alternative would be to parameterize the
problem by n− k instead of k, where k is the solution size and n is the in-
stance size. For instance, in the case of the maximum independent set problem,
parameterizing by n− k where k is the solution size, is equivalent to parame-
terizing the minimum vertex cover by the solution size since the complement
of an independent set is a vertex cover. This kind of reparameterization can
substantially affect the complexity of the problem. In fact, the maximum in-
dependent set problem parameterized by solution size is W[1]-hard (a notion
we encounter in Section 2.1.4), whereas the minimum vertex cover problem
parameterized by solution size is fixed parameter tractable. In other words, the
reduction (G,k)→ (G,n− k) is not an FPT reduction from k-Independent Set

to k-Vertex Cover.
From a theoretical standpoint, a parameter can be any function of the input

instance, for example, the treewidth of the input graph, or the maximum degree
of the input graph, or the solution size of some problem. In practice, it is
desirable to establish tractability with respect to a parameter that is expected to
be small for a fairly broad class of interesting instances.

We now provide simple examples of FPT reductions for some classical
problems in complexity theory.

Example 2.1.1 (k-Clique to k-Independent Set). There exists a clique in G of
size k if and only if there exists an independent set in G of size k . Hence, the
reduction (G,k)→ (G,k) is an FPT reduction from k-Clique to k-Independent

Set.

Example 2.1.2 (k-Clique to k-Multicolored Clique). Let (G = (V ,E),k) be
a parameterized instance of k-Clique. Construct a graph H = (VH,EH) as
follows. To each vertex v ∈ V , associate k vertices {vi | i ∈ [k]} in VH. For each
v ∈ V , and i ∈ [k], color vi with color i. Thus, VH = k |V |. In graph H, vertices
of the same color are not connected by an edge. Furthermore,

{
ui, vj

}
∈ EH for

i 6= j if and only if {u, v} ∈ E. It is easy to check that G has a k-clique if and only
if H has a multicolored k-clique. This gives an FPT reduction from k-Clique to
k-Multicolored Clique.

Next, we look at a few examples of FPT algorithms for some standard
problems in graph theory.

The naïve algorithm for k-Vertex Cover checks if any of the
(
n
k

)
vertex

sets of G of size k forms a vertex cover. Clearly, this algorithm is not an FPT
algorithm. However, there exists a simple branching based FPT algorithm for
k-Vertex Cover based on the following observation.

Remark 5. If (G,k) is a yes-instance of k-Vertex Cover, then for every edge
(u, v) ∈ E, either u or v belongs to the solution set. Hence, the graph G has a
vertex cover of size k if and only if at least one of the graphs G−u or G− v has
a vertex cover of size at most k− 1.

Now consider the following recursive algorithm.
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Algorithm 1 FPT algorithm for k-Vertex Cover

1: procedure VCover(G = (V ,E),k)
2: if E = ∅ then
3: return true;
4: else if k = 0 then
5: return false;
6: else
7: Select an edge e = {u, v} ∈ E;
8: return VCover(G− u,k− 1) ∨ VCover(G− v,k− 1);
9: end if

10: end procedure

Note that Algorithm 1 terminates after most k levels of recursion, and
computing G− u from G takes at most O(n) time. Hence, the running time of
the algorithm is O(n · 2k), and k-Vertex Cover ∈ FPT.

treewidth as the parameter . We will briefly discuss one of the
most commonly encountered parameter in parameterized complexity, namely,
treewidth. By Courcelle’s theorem, every graph property definable in the
monadic second-order logic of graphs can be decided in linear time on graphs
of bounded treewidth [50, Theorem 7.11]. Burton and Fellows [31] generalized
Courcelle’s theorem to d-manifolds by showing that if an algorithmic problem
defined on simplicial manifolds can be expressed in monadic second-order
logic, then it can be solved in linear time for triangulations whose dual graphs
have bounded treewidth. However, the hidden constants in the complexity
bounds for these theoretical algorithms (guaranteed by Courcelle’s algorithm
and its extensions) can be prohibitively large.

Having said that, if a graph property admits a monadic second-order logic
formula, then this usually indicates the existence of algorithms with better
parameter dependence. Practitioners of paramaterized complexity typically
use the so-called nice tree decompositions to design dynamic programming
algorithms that are linear in the instance size and have merely exponential
dependence on treewidth. Please refer to [50, Section 7] for more details on
FPT algorithms parameterized by treewidth and [82, Chapter 14.5].for a nice
discussion on monadic second-order logic on graphs.

2.1.4 Fixed parameter intractability

First, we recall some elementary notions from Boolean circuits. In particular, by
an and-node, we mean the digital logic gate that implements logical conjuction
(∧), by an or-node, we mean the digital logic gate that implements logical dis-
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junction (∨), and by a not-node, we mean the digital logic gate that implements
negation (¬).

Definition 2.1.3 (Boolean circuit). A Boolean circuit C is a directed acyclic graph,
where each node is labeled in the following way:

1. every node with in-degree greater than 1 is either an and-node or an
or-node,

2. each node of in-degree 1 is labeled as a negation node,

3. and each node of in-degree 0 is an input node.

Exactly one of the nodes with out-degree 0 is labeled as the output node.

Below, we recall some essential parameterized complexity results concerning
circuits. We use the terms gates and nodes interchangeably. We say that a
gate has fan-in k if its in-degree is at most k. A big gate in a circuit is a gate
with more than two (or some other fixed constant) inputs. The depth of a
circuit is the longest input-output path in the circuit. The weft of a circuit is
the maximum number of big gates on an input-output path. Clearly, depth
of a circuit is always greater than its weft. Alternatively, weft is the largest
number of gates with unbounded fan-in on the input-output path. A gate is
called an ordinary gate if it is neither an input gate nor an output gate. We
denote the nodes and edges in C by V(C) and E(C) respectively. The size of a
circuit C, denoted by |C|, is the total number of nodes and edges in C. That
is, |C| = |V(C)|+ |E(C)|. The Hamming weight of an assignment is the number
of input gates receiving value 1. An assignment on the input nodes induces
an assignment on all nodes according the logical operations on the labels of
the vertices. So given an assignment from the input nodes of circuit C to {0, 1},
we say that the assignment satisfies C if the value of the output node is 1 for
that assignment. Let GI denote the set of input gates of C. Then, an assignment
A can be viewed as a binary vector of size |GI|. In the Weighted Circuit

Satisfiability (WCS) problem, we are given a circuit C and an integer k, and
the task is to decide if C has a satisfying assignment of Hamming weight at
most k. Accordingly, in the Min-Weighted Circuit Satisfiability (MinWCS)
problem, we are given a circuit C, and the task is to find a satisfying assignment
with minimum Hamming weight.

Definition 2.1.4 (W[P]). A parameterized problem Π belongs to the class W[P]
if it can be reduced to the standard parameterization of WCS.

The W-hierarchy is a nested collection of complexity classes in parameterized
complexity theory. A parameterized problem Π is in the class W[t], if every
instance (x,k) of Π can be transformed in FPT-time to a constant depth circuit
with weft at most t, such that (x,k) is a yes-instance if and only if the circuit
has a satisfying assignment of Hamming weight k. In the definition of W[t], t
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is a fixed constant. It is known that FPT = W[0] [63, Chapter 29]. Hence, the
classes in the W-hierarchy can be expressed as:

FPT = W[0] ⊆W[1] ⊆W[2] ⊆ · · · ⊆W[P] ⊆ XP.

Every class in the W-hierarchy is closed under FPT reductions. Fascinatingly,
most naturally arising computational problems belong to either W[1] or W[2].
k-Clique (and k-Independent Set) are canonical W[1]-complete problems,
whereas k-Dominating Set is the canonical W[2]-complete problem. For
a a nice illustration of constant depth weft-1 circuit (weft-2 circuit) for k-
Independent Set (k-Dominating Set), please see Fig. 13.3 in [50].

Several refined results in parameterized complexity are obtained on the basis
of certain hypotheses that have stood the test of time. The two most prominent
hypotheses go by the name of Exponential Time Hypothesis (ETH) and
Strong Exponential Time Hypothesis (SETH). Informally, the two hypotheses
can be stated as follows.

exponential time hypothesis There is no 2o(n) time algorithm for
3-SAT.

strong exponential time hypothesis There is no O∗((2− ε)n)
time algorithm1 for CNF-SAT.

For formal definitions, we refer the reader to [50, Chapter 14]. Several
important results have been proved conditioned on the fact that ETH is true.
For instance, assuming ETH, the W-heirarchy is strict. That is,

FPT = W[0] ( W[1] ( W[2] ( · · · ( W[P] ( XP.

ETH is also an invaluable tool for proving strong quantitative results of the
following kind.

Theorem 2.1.3 (Chen et al. [40]). Assuming ETH, there is no f(k)no(k) algorithm
for k-Clique for any computable function f.

Finally, ETH and SETH are two of the most important hypotheses for proving
fine-grained complexity bounds [157].

2.2 approximation algorithms

The reader is referred to excellent resources [9, 46] for a rigorous and complete
treatment of NP-completeness. Below, we informally recall some key ideas.

An optimization problem Π is called an NP-optimization problem if

• the size of a feasible solution is polynomially bounded in the size of a
valid instance,

1 Here, the notation O∗() is used to suppress multiplicative polynomial factors.
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• the valid instances and feasible solutions can be recognized in polynomial
time, and

• the cost (or the objective function) for a solution is polynomial time
computable.

The natural decision problem associated to an NP-optimization problem lies in
NP. Let x be an instance of an NP-optimization problem Π and k ∈N. For an
instance x of Π, let OPTΠ(x) denote the optimal value of the objective function
of problem Π on input x.

• Then, for minimization problems, the corresponding decision problem
with input (x,k) can be stated as: Is OPTΠ(x) 6 k?,

• And, for maximization problems, the corresponding decision problem
with input (x,k) can be stated as: Is OPTΠ(x) > k?.

The decision problems above are NP-complete. In this section, we restrict our
attention to NP-optimization problems. An α-approximation algorithm A for
an NP-optimization problem Π is a polynomial-time algorithm that computes a
solution within a factor α of the value of an optimal solution. Let cA(x) denote
the value of the objective function of the solution obtained by Algorithm A on
input x.

If Π is a minimization problem, then A is an α-approximation algorithm if
for all instances x of Π,

cA(x)

OPTΠ(x)
6 α.

If Π is a maximization problem, then A is an α-approximation algorithm if
for all instances x of Π,

cA(x)

OPTΠ(x)
> α.

Clearly, for maximization problems, α 6 1 and for minimization problems
α > 1. The factor α is typically a function of the instance size n. If A is
an α-approximation algorithm and B is a β-approximation algorithm for a
minimization problem Π, and if α = o(β), then A is considered a better ap-
proximation algorithm than B. Likewise, if A is an α-approximation algorithm
and B is a β-approximation algorithm for a maximization problem Π, and if
α = ω(β), then A is considered a better approximation algorithm than B.

complexity classes Constant factor approximation algorithms are com-
mon and are often desirable. The class APX is the set of NP-optimization
problems that admit constant-factor approximation algorithms. More generally,
f(n)-APX is the class of problems with an O(f(n))-approximation algorithm.
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For instance, O(logn)-APX or log-APX is the class of problems that have an
O(logn)-approximation algorithm.

In the heirarchy of approximation algorithms, one prefers the so-called
approximation schemes to the O(f(n))-approximation algorithms. For an instance
x of Π and a real number ε > 0, an algorithm A is called an approximation
scheme for Π, if on input (x, ε) it outputs a solution y that satisfies:

• cA(x) 6 (1+ ε) ·OPTΠ(x) if Π is a minimization problem, and

• cA(x) > (1− ε) ·OPTΠ(x) if Π is a maximization problem.

We say that A is a polynomial time approximation scheme (or PTAS) for Π if for
every fixed ε > 0, the running time of A is bounded by a polynomial in the
size of x for every fixed ε (but can be a different for different values of ε). For
instance, an algorithm that runs in O(|x|exp( 1ε )) would be considered PTAS. An
efficient polynomial-time approximation scheme (EPTAS) is a PTAS with running
time of the form f(1ε) · |x|O(1). Finally, A is said to be a fully polynomial time
approximation scheme if the running time of A is bounded by a polynomial in the
size of x and 1

ε . That is, A is an FPTAS if it runs in time (1ε)
O(1) · |x|O(1). The

term PTAS (FPTAS) is used to refer to the class of optimization problems that
admit a PTAS (FPTAS). Assuming P 6= NP, we have the following heirarchy [97,
pg. 20].

FPTAS ( PTAS ( APX ( log -APX.

reductions . An approximation preserving reduction is a polynomial time
procedure for transforming an optimization problem Π1 to an optimization
problem Π2, such that an α-approximation algorithm for Π2 implies an f(α)-
approximation algorithm for Π1, for some function f. Then, if Π1 is hard
to approximate within factor f(α), the reduction implies that Π2 is hard to
approximate within factor α.

A particularly well-studied class of approximation preserving reductions is
given by the L-reductions, which provide an effective tool in proving hardness of
approximability results [130, 158]. Consider an optimization problem Π1 with
a non-negative integer valued objective function cΠ1 . Given an instance x of
Π1, the goal is to find a solution y optimizing the objective function cΠ1(x,y).
Define OPTΠ1(x) as the optimal value of the objective function on input x.

Definition 2.2.1 (L-reduction). An L-reduction (with parameters µ and ν) from
a optimization problem Π1 to another optimization problem Π2 is a pair of
polynomial time computable functions f and g, and fixed constants µ,ν > 0,
satisfying the following conditions:

1. The function f maps instances of Π1 to instances of Π2.

2. For any instance x of Π1, we have

OPTΠ2(f(x)) 6 µOPTΠ1(x).
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3. The function g maps an instance x of Π1 and a solution y of the corre-
sponding instance f(x) of Π2 to a solution of x.

4. For any instance x of Π1, and any solution y of f(x), we have

|cΠ1(x,g(f(x),y)) −OPTΠ1(x)| 6 ν · |(cΠ2(f(x),y) −OPTΠ2(f(x)))| .

If µ = ν = 1, the reduction is strict.

From the definition of L-reduction, it is fairly straightforward to prove the
following lemmas [158].

Theorem 2.2.1. If there is an L-reduction with parameters µ and ν from a minimization
problem Π1 to another minimizaton problem Π2, and there is a (1+ δ)-approximation
algorithm for Π2, then there is a (1+ µνδ)-approximation algorithm for Π1.

Theorem 2.2.2. If there is an L-reduction with parameters µ and ν from a maximization
problem Π1 to another maximization problem Π2, and there is a (1− δ)-approximation
algorithm for Π2, then there is a (1− µνδ)-approximation algorithm for Π1.

Next, we will define another important class of reductions called the PTAS
reductions.

Definition 2.2.2 (PTAS-reduction). Let Π1 and Π2 be two optimization prob-
lems. A PTAS reduction from Π1 to Π2 uses three polynomial-time computable
functions, f, g, and α, that satisfy the following properties:

1. f maps instances of Π1 to instances of Π2.

2. g maps solutions of Π2 to solutions of Π1.

3. α maps the error parameter for Π1 to the error parameter for Π2.

4. Let x be an instance of Π1 and ε be the error parameter for Π1. If a
solution y to f(x) is within a factor of 1+α(ε) of the optimal solution of
Π2, then g maps y to a solution of Π1 that is within a factor of 1+ ε of
the optimal solution of Π1.

It can be shown that an L-reduction is a PTAS reduction. PTAS reductions
play an important role in the theory of approximability since they are used to
define APX-completeness.

Apart from L-reductions and PTAS-reductions, there are many other approx-
imation preserving reductions in use, for instance, A-reductions, P-reductions,
AP-reductions, and so on. We will eschew further discussion on this topic.
Instead we refer the reader to a survey article [47], which treats various ap-
proximation preserving reductions in detail, while also showing how they are
related to each other.
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2.3 parameterized approximability

Parameterized approximability is an extension of the notion of classical approx-
imability. There are several competing alternatives for a suitable notion for
parameterized approximability.

• One of the most common approaches for combining the two paradigms of
parameterized and approximation algorithms is to devise parameterized
approximation algorithms with cost of the solution as the parameter,
and with approximation factor ρ as a function of the parameter. In this
thesis, specifically in Paper IV, we refer to algorithms of this kind as FPT
approximation algorithms with approximation factor ρ.

• Sometimes it is convenient to devise an α-approximation algorithm that
runs in FPT time (for some suitable parameter), where α is a function of
the size of the instance. In Paper V of this thesis, we refer to algorithms
of this kind as α-approximation FPT algorithms.

• An EPTAS (see Section 2.2 for a definition) is a parameterized approxi-
mation algorithm with the quality of approximation as the parameter.

In this section, we provide a brief account of FPT approximation algorithms.
For a full discussion on (variants of) parameterized algorithms we refer the
reader to the recent survey articles [76, 118].

Informally, an FPT approximation algorithm is an algorithm whose running
time is fixed parameter tractable for the parameter cost of the solution and whose
approximation factor ρ is a function of the parameter (and independent of
the input size). For instance, every polynomial time approximation algorithm
with constant approximation factor is automatically an FPT approximation
algorithm, but an approximation algorithm with approximation factor Θ(logn),
where n denotes the input size, is not an FPT approximation algorithm. Next,
following [119], for standard parameterization of minimization problems, we
provide definitions for FPT approximation algorithms and FPT cost approxi-
mation algorithms. Analogous definitions for maximization problems are also
considered in [119].

Definition 2.3.1 (FPT approximation algorithm [119]). Let P be an NP mini-
mization problem, and let ρ : N → R>1 be a computable function such that
k 7→ k · ρ(k) is nondecreasing. An FPT approximation algorithm for P (over some
alphabet Σ) with approximation ratio ρ is an algorithm A with the following
properties:

1. For every input (x,k) whose optimal solution has cost at most k, A

computes a solution for x of cost at most k · ρ(k). For inputs (x,k)
without a solution of cost at most k, the output can be arbitrary.
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2. The runtime of A on input (x,k) is O(g(k) · |x|O(1)) for some computable
function g.

It is often convenient to work with a weaker notion of approximability
where an algorithm is only required to compute the cost of an optimal solution
rather than an actual optimal solution, and to work with decision rather than
optimization problems. With that in mind, the notion of FPT cost approximability
was introduced in [41].

Definition 2.3.2 (FPT cost approximation algorithm [119]). Let P be an NP
minimization problem (over the alphabet Σ), and ρ : N→ R>1 a computable
function. For an instance x of P, let min(x) denote the value of an optimal
solution of x. Then, a decision algorithm A is an FPT cost approximation algorithm
for P with approximation ratio ρ if

1. For feasible instances x of P and parameterized instances (x,k), A satis-
fies:

a) If k > min(x) · ρ(min(x)), then A accepts (x,k).

b) If k < min(x), then A rejects (x,k).

2. A is an FPT algorithm. That is, there exists a computable function f with
the property that for an input (x,k), the running time of A is bounded
by f(k) · |x|O(1) .

It can be readily checked that FPT-approximability implies FPT cost approx-
imability with the same approximation factor. Please refer to Section 3.1 of [41]
for more details.

Theorem 2.3.1 (Chen et al. [41]). Let P be an NP minimization problem over
the alphabet Σ, and let ρ : N → R>1 be a computable function such that k · ρ(k) is
nondecreasing and unbounded. Suppose that P is FPT approximable with approximation
ratio ρ. Then P is FPT cost approximable with approximation ratio ρ.

An immediate consequence of the theorem above is that if P is not FPT cost
approximable with approximation ratio ρ (under certain complexity theory
assumptions), then P is not FPT approximable with approximation ratio ρ
(under the same assumptions).

Gap problems and gap-preserving reductions were originally introduced
in the context of proving the PCP theorem [8] – a cornerstone in the theory
of approximation algorithms. These notions have natural analogues in the
parameterized approximability setting. Below, we follow the definitions as
provided by Eickmeyer et al. [71].

Definition 2.3.3 (gap instance of a parameterized problem [71]). Let P be a
minimization problem, and P ′ its standard parameterization. Let δ : N→ R>1

be a function. An instance (x,k) is a δ-gap instance of P ′ if either min(x) 6 k
or min(x) > k · δ(k).
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Definition 2.3.4 (gap-preserving FPT reduction [71]). Let α,β : N → R>1 be
two computable functions, and let P and Q be two minimization problems. Let
P ′ and Q ′ be the natural parameterizations of P and Q, respectively. We say
that a reduction R from P ′ to Q ′ is a (α,β)-gap-preserving FPT reduction if

1. R is an FPT reduction from P ′ to Q ′ and

2. for every α-gap instance (x,k) of P ′, the instance R(x,k) is a β-gap
instance of Q ′.

Gap-preserving FPT reductions are used to establish FPT-inapproximability.



3
T O P O L O G I C A L P R E L I M I N A R I E S

3.1 simple homotopy theory

Classical homotopy theory studies “continuous deformations” of topological
spaces and maps between them. We recall some of the rudimentary notions in
homotopy theory. But, we will not discuss the fundamental group or the higher
homotopy groups. For an in-depth treatment, we refer the reader to standard
texts in algebraic topology [26, 88, 125, 151].

Definition 3.1.1 (Homotopy). Let A and B be two topological spaces. We say
that the continuous maps f,g : A→ B are homotopic if there exists a continuous
map H : A× [0, 1]→ B with H(x, 0) = f(x) and H(x, 1) = g(x) for all x ∈ X. We
call H a homotopy between f and g, and use the notation f ' g to indicate that
the maps f and g are homotopic.

Definition 3.1.2 (Homotopy equivalence, Contractible space). Given a topo-
logical space X, let idX denote the identity map on X. Two spaces A,B are
said to be homotopy equivalent, if there exist continuous maps f : A → B and
g : B→ A such that g ◦ f ' idA and f ◦ g ' idB. We use the notation A ' B to
indicate that A is homotopy equivalent to B. Each of the maps f and g is called
a homotopy equivalence, and f and g are said to be homotopy inverses of each other.
A topological space is said to be contractible if it is homotopy equivalent to a
one point space.

As the name suggests, homotopy equivalences indeed define an equivalence
relation on topological spaces. See Figure 15 for some examples of homo-
topy equivalent spaces. Next, we look at a very specific kind of homotopy
equivalence that is often encountered in practice.

Definition 3.1.3 ((Strong deformation) retraction). Let B be a topological space,
A ⊂ B a subspace and i : A ↪→ B the inclusion map. Then, a continuous map
r : B → A is called a retraction if r restricts to the identity map on A, that is,
r ◦ i = r. If r : B→ A is a retraction, then A is called a retract of B. Additionally,
if i ◦ r ' idB, then r is called a deformation retraction. Let F : B× [0, 1]→ B be a
homotopy between i ◦ r and idB. If F(b, t) = b for all t ∈ [0, 1] and b ∈ A, then
r is called a strong deformation retracton.

Motivated by the need to obtain a combinatorial description of homotopy
theory, Whitehead introduced the notion of CW complexes, and developed
simple homotopy theory [155, 156]. So, in short, simple homotopy theory is
a refinement of homotopy theory, and hence can be formulated in terms of

67
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(a) Homotopy equivalent to a circle

(b) Contractible space: homotopy equivalent to a one-point space

Figure 15: Examples of homotopy equivalent spaces

combinatorial moves on simplicial and CW complexes. Below, we introduce
some basic notions in simple homotopy theory. For further details, we refer the
reader to Cohen’s book length treatment [44].

In this thesis, we limit ourselves in studying algorithmic problems on sim-
plicial complexes. Yet we will provide a brief account of cellular expansions
and collapses in Section 3.1.2, and discrete Morse theory on CW complexes in
Section 3.3 so that we can connect the two arcs of the story in Section 3.4. But
first we will look at simple homotopy equivalences in the simplicial world.

3.1.1 Simplicial simple homotopy equivalence

Given a simplicial complex K, a simplex σ ∈ K is said to be free if σ has a unique
cofacet τ in K.

Definition 3.1.4 (Elementary collapses and expansions). Let K0 be a simplicial
complex, and let τ,σ ∈ K0 be an m-face and an (m− 1)-face respectively such
that σ ⊂ τ, and σ is free in K0.

We say that K1 = K0 \ {τ,σ} arises from K0 by an elementary collapse of
dimension m or elementary m-collapse, denoted by K0 ↘ K1. Its inverse, the
operation K0 = K1 ∪ {τ,σ} is called an elementary expansion of dimension m or
elementary m-expansion, written K0 ↗ K1. If the complex is implicit from the
context, we denote elementary collapses by↘τσ and elementary expansions by
↗τσ. An elementary collapse or an elementary expansion is sometimes referred
to as an elementary move.

If there exists a sequence of elementary collapses turning a complex K0 into
K1 we write K0 ↘ K1 and say that K0 collapses to K1. If K1 is one-dimensional,
we say that K0 is erasable. If K1 is a single point we call K0 collapsible. Finally,
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K \ {BC,ABC}
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Figure 16: The top figure shows a 2-simplex collapsing to two different 2-horns.
The bottom figure shows a 3-simplex collapsing to two different
3-horns.

we write K0 ↗ K1 to indicate a sequence of expansions and say that K0 expands
to K1.

It follows that an expansion ↗τσ can only be performed in a simplicial
complex K if all codimension 1 faces of τ except for σ are already in K. Hence,
let τ be an m-face of a simplicial complex K, and let σ be one of its (m− 1)-faces.
An (m-dimensional) horn H(τ,σ) associated to the pair (τ,σ) is the simplicial
complex generated by the (m− 1)-faces of τ apart from σ. Figure 16 shows
examples of horns in dimensions 2 and 3.

Definition 3.1.5 (simple homotopy equivalence, simple homotopy graph). Two
simplicial complexes K and L are said to be simple homotopy equivalent or of
coinciding simple homotopy type, written K�↘ L, if there exists a sequence of
elementary expansions and collapses turning one into the other.

The dimension of a simple homotopy equivalence is the maximum of the dimen-
sions of K, L and of any elementary expansion or collapse in the sequence.

The simple homotopy graph is a graph whose nodes are simplicial complexes,
and whose edges correspond to a pairs of complexes related by an elementary
collapses. Naturally, its connected components are in one-to-one correspon-
dence with simple homotopy types.
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3.1.2 Cellular simple homotopy equivalence

Let I be a finite indexing set. Let X be a Hausdorff space, and let {ei | i ∈ I} be a
finite family of open topological cells of varying dimensions. Sometimes we use
the notation edi to emphasize that the cell ei is of dimension d. The collection
of cells

{
edi | i ∈ I,d 6 r

}
is denoted by Xr. Then, we say that X is a finite CW

complex if the following conditions are satisfied.

1. X =
⋃
i∈I
ei and ei

⋂
ej = ∅ when i 6= j.

2. For each cell ei, there is a map ϕi : Bd → X called the characteristic map
of ei, where Bd is a topological ball (that is homeomorphic to Id = [0, 1]d)
of dimension d such that

a) ϕi is a homemorphism from B̊d onto edi , where B̊d denotes the
interior of Bd,

b) ϕi(∂Bd) ⊂ Xd−1.

The map ϕ|∂Bd is called the attaching map for edi . Let J ⊂ I. A subcomplex of a
CW complex X is a subset Y along with a subfamily

{
ej | j ∈ J

}
of the cells of X

such that Y =
⋃
j∈J
ej and the closure of each cell ej, denoted by ēj, is contained

in Y. For example, for every r, the subset Xr, called the r-dimensional skeleton of
X, is a subcomplex of X. A CW complex X is isomorphic to a CW complex Y if
there exists a homeomorphism h : X→ Y such that for every cell e ∈ X, h(e) is
a cell in Y.

Let X be a CW complex, and Y be a subcomplex of X. Then, we say that
a CW complex X collapses to a subcomplex Y by an elementary collapse if the
following conditions are satisfied.

1. There exists two cells ep and fp−1 of X such that X can be expressed as
follows:

X = Y
⋃
ep
⋃
fp−1,

where ep and fp−1 are not in Y.

2. There exists a pair of topological balls (Bp1 , B
p−1
2 ) along with a map

ϕ : B
p
1 → X such that

a) ϕ is a characteristic map for ep.

b) ϕ|
B
p−1
2

is a characteristic map for fp−1.

c) ϕ(Bp−13 ) ⊂ Xp−1, where B
p−1
3 is the topological closure of the

(p− 1)-ball ∂B
p
1 \ B

p−1
2 .

It is easy to check that if X↘ Y, then X is isomorphic to the adjunction space
Y
⋃
ψ

Ip, which is the mapping cylinder of the map ψ : Ip−1 → Y. Hence, there

is a strong deformation retraction from X to Y.
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We say that X collapses to Y (denoted by, X ↘ Y ) if there exists a finite
sequence of elementary collapses

X = X0 ↘ X1 ↘ · · · ↘ Xq = Y.

Equivalently, we say that Y expands to X ( and denote it as Y ↗ X).
We say that there is a deformation from X to Y (written as X�↘Y) if there

exists a finite sequence of operations, each of which is either an elementary
expansion or an elementary collapse. In this case, we say that X and Y have the
same simple homotopy type.

Suppose that X = X0,X1, . . . ,Xp = Y are the complexes that arise in the
formal deformation from X to Y. In this sequence, for every i ∈ [1,p], if
Xi−1 ↘ Xi , then the inclusion map Xi−1 ↪→ Xi is a homotopy equivalence, and
if Xi−1 ↗ Xi, then there is a cellular strong deformation retraction from Xi−1 to
Xi. Furthermore, we say that a complex X n-deforms to Y (written as X�↘n Y)
if every complex Xi, i ∈ [0,p] is at most n-dimensional,

Clearly, Y�↘X if and only if X�↘Y. In particular, simple homotopy
equivalences define an equivalence relation on CW complexes.

Simplicial homotopy equivalences and cellular homotopy equivalences are
related by the following two theorems.

Theorem 3.1.1 (mathoverflow [2], Rourke-Sanderson Appendix B5 [146]). If K
and L are simplicial complexes, then a map f is a simplicial simple homotopy equivalence
between |K| and |L| if and only if it is a cellular simple homotopy equivalence between K
and L with respect to the obvious CW structures on |K| and |L|.

Note that Theorem 3.1.1 justifies the omission of the adjective “simplicial” in
Definition 3.1.5.

Theorem 3.1.2 (Cohen Theorem 7.2 [44]). Every finite CW complex X has the simple
homotopy type of a finite simplicial complex of the same dimension.

Notwithstanding that all the important conjectures in simple homotopy
theory are stated in the CW category, Theorems 3.1.1 and 3.1.2 justify our choice
of limiting the algorithmic considerations in Paper II to simplicial collapses and
expansions.

3.1.3 Simple homotopy theory and combinatorial group theory

We know that a simple homotopy equivalence is a homotopy equivalence, but
is the converse true? In this regard, it is natural to make the following two
conjectures in simple homotopy theory.

conjecture i If there exists a homotopy equivalence from X to Y, then
there exists a simple-homotopy equivalence from X to Y.
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The figure shows a simple homotopy equivalence K0�↘K2.

conjecture ii If f : X→ Y is a homotopy equivalence, then f is a simple-
homotopy equivalence.

The obstruction to a homotopy equivalence f : X→ Y of finite CW-complexes
being a simple homotopy equivalence is the Whitehead torsion τ(f), which
is an element in the Whitehead group Wh(π1(Y)). In the special case when
π1(Y) is trivial or Z, both conjectures are true. In general, Conjecture I and
Conjecture II are false. For a full discussion on the Whitehead torsion, we
refer the reader to [44, 123].

The best known examples of homotopy equivalent complexes that are not
simple homotopy equivalent come from lens spaces [44, 124], which we will
briefly describe.

lens spaces . The three-dimensional lens spaces L(p,q) were introduced
by Tietze in in 1908 [124]. The three-dimensional lens spaces are formed by
taking quotients of S3 by Zp actions. Formally,

Definition 3.1.6 (Lens spaces). Let p and q be coprime integers. Then, the lens
space L(p,q) is defined as the quotient of S3 by a certain free action of Zp that
depends on q:

L(p,q) =

{
(z1, z2) ∈ C2 | |z1|

2 + |z2|
2 = 1

}
(z1, z2) ∼ (ξ · z1, ξq · z2)

,

where ξ = e
2πi
p is a root of unity.

It is easy to check that L(2, 1) = RP3 is the real projective 3-space. For
q1 6= q2, L(p,q1) and L(p,q2) have the same homology groups, and the same
homotopy groups. However, there are finer topological aspects of lens spaces
that may depend on the choice of q. In particular, L(5, 1) and L(5, 2) have the
same homotopy groups, but they are not homotopy equivalent, whereas L(7, 1)
and L(7, 2) are homotopy equivalent, but not simple homotopy equivalent.

For complexes that are simple homotopy equivalent , C.T.C. Wall proved the
following result.
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Theorem 3.1.3 (Wall [150], Matveev [120, Theorem 1.3.1]). Let K and L be two
simplicial (or CW) complexes of the same simple homotopy type and of dimension at
most m > 2. Then, there exists a simple homotopy equivalence of dimension at most
m+ 1, taking one to the other.

For the case m = 2, Theorem 3.1.3 is still open and known as the (topological)
Andrews–Curtis conjecture [10, 120, 127]. On the other hand, it is known that
any contractible 2-complex is also simple homotopy equivalent to a point [156].
Hence, any pair of contractible 2-complexes can be connected by a simple
homotopy equivalence of dimension at most four – but determining whether
we can always decide if such a simple homotopy equivalence exists is an
open question [17], equivalent to the triviality problem for balanced group
presentations [92]. In what follows, we give a brief description of the Andrews–
Curtis and related conjectures.

A presentation of a group is given by a pairs of sets 〈X | R〉, such that if we set
F = F(X) to be the free group on the set of generators X = {x1, x2 . . . xn}, and if
we let N = N(R) be the normal closure of the set of relators R = {r1, r2 . . . rm},
then there is an isomorphism from F/N to G. A presentation of a group is called
balanced if it has the same number of generators and relators.

Given a balanced presentation of a group, the set of moves given by

(ac-1) replace ri by rirj for some j 6= i

(ac-2) replace ri by r−1i , and

(ac-3) replace ri by grig−1 for some word g ∈ F,

is called AC-moves (or Andrews-Curtis moves). We say that a balanced presenta-
tion P of a group is AC-trivializable if P can be reduced to the trivial presentation
(X,X) by applying a series of AC-moves.

andrews-curtis conjecture . If P is a balanced presentation of a
trivial group, then P can be transformed into a trivial presentation by a sequence
of AC-moves.

A weaker form of the Andrews-Curtis conjecture allows two additional moves
for transforming presentations to trivial presentations:

(ac-4) Introduce a new generator x ′ and the corresponding relator x ′,

(ac-5) The converse of the operation above.

The moves AC-1 to AC-5 are called stable AC moves. We say that two presen-
tations P and P ′ are (stably) AC-equivalent if P can be transformed to P ′ by a
series of (stable) AC-moves. We use the notation P ∼ P ′ to indicate that P is
stably AC-equivalent to P ′.

Given a connected CW-complex K, a presentation PK for its fundamental
group can be read off using a procedure described in [92, Section 1.3]:
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1. Choose a vertex v of K as the basepoint.

2. Let T be a spanning tree in the 1-skeleton K1, and let e1, e2 . . . , en be the
edges in K1 \ T .

3. Orient every edge ei ∈ K1 \ T , i ∈ [n]. Every edge ei determines a unique
closed path xi that starts and ends at v: from v to the source of ei, followed
by ei itself, followed by target of ei to v. Let X = {x1, x2 . . . xn}. Then, the
closed paths in X are the generators of π1(|K1|, v), and π1(|K1|, v) = F(X),
that is, the free group over the set X.

4. Let f1, f2 . . . fm be the 2-cells of K. For every j, let φj be the attaching
map of fj.

5. Choose bj in the image of φj, and let λj be the path in K1 from bj to v.
Then, rj = λj ∗φj ∗ λj defines as a word in π1(|K1|, v).

6. Let R = {r1, r2 . . . rm}.

7. The associated presentation PK is given by PK = 〈X | R〉.

If PK and P ′K are obtained from the procedure above with different choices of
spanning trees, base points and attaching maps, then PK ∼ P ′K. We refer the
reader to the PhD thesis by Fernandez [79, Proposition 1.4.4] for a proof.

On the other hand, an inverse of the procedure is also described in [92,
Page 9]. This inverse procedure is easy to describe. Given a presentation
P = 〈x1, x2 . . . xn | r1, r2 . . . rm〉, one defines the complex KP as follows.

1. The 0-skeleton KP
0 of KP consists of a single vertex.

2. The 1-skeleton KP
1 of KP consists of a bouquet of circles with one oriented

edge ei for each generator xi.

3. The 2-cells fj are in one-to-one correspondence with relators rj. Subdivid-
ing the boundaries ∂D2j of the m 2-dimensional disks D2j into polygons,
the attaching map φj : ∂D2j → KP

1 takes each edge (of the polygon) to an
edge of KP

1 or onto the vertex.

Example 3.1.1. It is easy to check that

• the complex KP for the presentation P =
〈
x | x2x−1

〉
is a dunce hat,

• the complex KP ′ for the presentation P ′ =
〈
x1,x2 | x1x2x

−1
1 x−12

〉
is a torus,

and

• the complex KP̂ for the presentation P̂ =
〈
x1,x2 | x1x2x

−1
1 x2

〉
is a Klein

bottle.
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Strikingly, AC-equivalences between presentations give rise to simple ho-
motopy equivalences between complexes [159]. What is even more interesting
is that the expansions and collapses coming from AC-transformations strictly
involve cells of dimension at most 3. Thus, the weak Andrews-Curtis conjecture
is equivalent to the topological Andrews-Curtis conjecture stated below.

topological andrews-curtis conjecture . If K is a finite con-
tractible CW complex of dimension 2, then K can be 3-deformed to a point.

The algorithmic challenge when it comes to the Andrews-Curtis conjecture
is that it is not even clear if the triviality problem of balanced presentations
is decidable. Some of the recent algorithmic work in context of the Andrews-
Curtis concerns with refuting potential counterexamples to the Andrews-Curtis
conjecture [25, 89, 122]. More recently, Fernandez used a discrete Morse theory
based approach to refute some of the suggested potential counterexamples to
the Andrews-Curtis conjecture [78].

One interesting complexity result in this context is by Bridson [27] who
showed that there exists a family of balanced presentations for which the
number of AC-moves required for trivialization grows faster than a tower
of exponentials. As a counterpoint, Bridson notes that for this family of
presentations despite the size of required AC-moves, there exists a cubic time
algorithm [27, 7.3] that can determine triviality.

The (topological) Andrews-Curtis conjecture is related to a slew of other
important conjectures in topology. We will look at at two of the most prominent
ones, namely, the Zeeman conjecture and the Poincaré conjecture.

zeeman conjecture . Given a finite contractible 2-dimensional CW
complex K, the complex K× I is collapsible, where I here denotes the interval
[0, 1].

Since K × I is a 3-complex, Zeeman conjecture (which is also still open)
implies the Andrews-Curtis conjecture.

Next, we look at the Poincaré conjecture which says that if M is a compact
3-manifold without boundary that is homotopy equivalent to S3, then M is
homeomorphic to S3. An equivalent formulation of the Poincaré conjecture is
as follows.

poincaré conjecture . If L is a compact, contractible 3-manifold, then
L is homeomorphic to the 3-ball.

In what was one of the most striking breakthroughs in mathematics, at the
turn of the millennium, Perelman proved the Poincaré conjecture [132, 133, 134].

The Zeeman conjecture implies the Poincaré conjecture by the following
(sketch of an) argument. Let L be a compact, contractible 3-manifold. Then, L
collapses to a 2-complex K which is also contractible. By Zeeman’s conjecture
K× I is collapsible. Hence, L× I is collapsible. Since L× I is a 4-manifold
that collapses to a point, L× I must be a 4-ball. The boundary of L× I is
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homeomorphic to a 3-sphere. So, by construction, L is a compact, contractible
3-manifold that embeds in a 3-sphere. Therefore, L is homeomorphic to a 3-ball.

3.2 simplicial homology and cohomology

In this section, we provide a brief introduction to simplicial homology with
coefficients in Z2. For a general introduction to algebraic topology, we refer the
reader to some standard texts [26, 88, 125, 151].

Let K be a simplicial complex. We consider the formal sums of simplices
with coefficients in Z2, that is, sums of the form

∑
σ∈K(p) aσσ, where each

aσ ∈ {0, 1}. The expression
∑
σ∈K(p) aσσ is called a p-chain. Since chains can

be added to each other, they form an Abelian group, denoted by Cp(K). Since
we consider formal sums with coefficients coming from Z2, which is a field,
Cp(K), in this case, is a vector space of dimension np over Z2. The p-simplices
in K form a (natural) basis for Cp(K). This establishes a natural one-to-one
correspondence between elements of Cp(K) and subsets of K(p), and we will
freely make use of this identification. The boundary of a p-simplex is a (p− 1)-
chain that corresponds to the set of its (p− 1)-faces. This map can be linearly
extended from p-simplices to p-chains, where the boundary of a chain is the
Z2-sum of the boundaries of its elements. The resulting boundary homomorphism
is denoted by ∂p : Cp(K) → Cp−1(K). A chain ζ ∈ Cp(K) is called a p-cycle if
∂pζ = 0, that is, ζ ∈ ker∂p. The group of p-dimensional cycles is denoted by
Zp(K). As before, since we are working with Z2 coefficients, Zp(K) is a vector
space over Z2. A chain η ∈ Cp(K) is said to be a p-boundary if η = ∂p+1c for
some chain c ∈ Cp+1(K), that is, η ∈ im∂p+1. The vector space of p-dimensional
boundaries is denoted by Bp(K).

In our case, Bp(K) is also a vector space, and in fact a subspace of Cp(K). Thus,
we can consider the quotient space Hp(K) = Zp(K)/Bp(K). The elements of the
vector space Hp(K), known as the p-th homology of K, are equivalence classes of
p-cycles, called homology classes where p-cycles are said to be homologous if their
Z2-difference is a p-boundary. For a p-cycle ζ, its corresponding homology
class is denoted by [ζ]. Bases of Bp(K), Zp(K) and Hp(K) are called boundary
bases, cycle bases, and homology bases, respectively. The dimension of the p-th
homology of K is called the p-th Betti number of K, denoted by βp(K).

Using the natural bases for Cp(K) and Cp−1(K), the matrix [∂pσ1 ∂pσ2 · · ·
∂pσnp ] whose column vectors are boundaries of p-simplices is called the p-th
boundary matrix. Abusing notation, we also denote the p-th boundary matrix by
∂p.

The dual vector space of Cp(K) (the vector space of linear maps Cp(K)→ Z2)
is called the space of cochain, which we denote by Cp(K) = Hom(Cp(K), Z2).
Again, there is a natural basis corresponding to the p-simplices of K, with
a p-simplex σ corresponding to the linear map η with values η(σ) = 1 and
η(ρ) = 0 for every other p-simplex ρ 6= σ. The adjoint map to the boundary
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map ∂p+1 : Cp+1(K) → Cp(K) is the coboundary map δp : Cp(K) → Cp+1(K).
Similarly to chains and boundary maps, we may define subspaces of cocycles
Zp(K) = ker δp and coboundaries Bp(K) = imδp+1 ⊆ Zp(K), and form their
quotient Hp(K) = Zp(K)/Bp(K), which is the cohomology of K. Again, for a
p-cocycle η, the corresponding cohomology class is denoted by [η]. The natural
pairing of chains and cochains Cp(K)× Cp(K) → Z2, (ζ,η) 7→ η(ζ) induces a
well-defined isomorphism Hp(K)×Hp(K) → Z2, ([ζ], [η]) 7→ η(ζ), identifying
cohomology as the vector space dual to homology up to a natural isomorphism.

A set of p-cycles {ζ1, . . . , ζg} is called a homology cycle basis if the set of
classes {[ζ1], . . . , [ζg]} forms a homology basis. For brevity, we abuse notation
by using the term (p-th) homology basis for {ζ1, . . . , ζg}. Similarly, a set of p-
cocycles {η1, . . . ,ηg} is called a (p-th) cohomology cocycle basis if the set of classes
{[η1], . . . , [ηg]} forms a cohomology basis.

Assigning non-negative weights to the edges of K, the weight of a cycle is
the sum of the weights of its edges, and the weight of a homology basis is the
sum of the weights of the basis elements. We call the problem of computing a
minimum weight basis of H1(K) the minimum homology basis problem. Similarly,
we call the problem of computing a minimum weight basis of H1(K), the
minimum cohomology basis problem.

3.3 discrete morse theory and erasability

In this section, we provide a brief description of Forman’s discrete Morse theory
on CW complexes. For a comprehensive introduction, we refer the reader
to [83].

Notation 3. Let σ and τ be two cells that belongs to a CW complex K. We write
τ � σ (or σ ≺ τ ) if σ 6= τ and σ ∈ τ̄ , where τ̄ is the closure of τ. In this case,
we say that σ is a face of τ.

Definition 3.3.1 (Discrete Morse function, critical and regular cells). A real-
valued function f on a CW complex K is called a discrete Morse function if

• f is monotonic, i.e., σ ≺ τ implies f(σ) 6 f(τ), and
• for all t ∈ im(f), the preimage f−1(t) is

– either a singleton {σ} (in which case σ is a critical cell)

– or a pair {σ, τ}, where σ is a facet of τ (in which case (σ, τ) form a
gradient pair and σ and τ are regular cells).

Definition 3.3.2 (Discrete gradient vector field). Given a discrete Morse function
f on a CW complex K, the discrete gradient vector field V of f is the collection
of pairs of cells (σ, τ), where (σ, τ) is in V if and only if σ is a facet of τ and
f(σ) = f(τ).

Please see Figure 17 for an example.
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Figure 17: The figure on the left shows a complex K with a discrete Morse
function f on it. The figure on the right shows a discrete gradient
V associated to the function f. Since K has the homotopy type of a
circle, V is an optimal gradient.

Definition 3.3.3 (Sublevel complex). Given a discrete Morse function f on a CW
complex K, and a real number c ∈ R, the sublevel complex K6c is defined as

K6c = {e ∈ K | e ∈ f−1((−∞, c])}.

The next theorem captures the true spirit of Morse theory in the discrete
realm.

Theorem 3.3.1 (Forman [83], Theorems 3.3 and 3.4). Let f be a discrete Morse
function associated with a gradient vector field V on a regular CW complex K.

1. If the interval [a,b] contains no critical cells, then K6b ↘ K6a. Moreover,
K6b \K6a is a union of pairs in V.

2. If σp is the unique critical cell in f−1([a,b]), then K6b is homotopy equivalent
to the space K6a

⋃
ϕBp , where ϕ : ∂Bp → K6a is an attaching map for a cell

of dimension p.

From the first statement of Theorem 3.3.1, we learn that a cellular collapse
can be encoded by a discrete gradient. In particular, if K is a CW complex with
a vector field V, and L ⊆ K is a subcomplex such that K ↘ L, then K \ L is a
union of pairs in V. In this case, we say that the collapse K ↘ L is induced by
the gradient V.

The following theorem highlights the fact that discrete Morse theory leads
to a condensed representation of topological datum, thereby motivating the
algorithmic search for (near-)optimal Morse matchings.

Theorem 3.3.2 (Forman [83], Theorem 10.2). Let K be a CW complex with a
discrete gradient vector field V and let md denote the number of critical cells of V of
dimension d. Then K is homotopy equivalent to a CW complex MV with exactly md
cells of dimension d. We call MV the Morse complex associated to gradient V.
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One also obtains a (small) chain complex from Forman’s theory. In particular,
a discrete gradient vector field on a simplicial complex X with md critical cells
of dimension d gives rise to a chain complex having dimension md in each
degree d, whose homology is isomorphic to that of X. This is the content of
Theorems 7.1 and 7.3 in the expository paper by Forman [84].

Discrete Morse theory on simplicial complexes

We now recall a few notions and results that are particularly useful when
applying discrete Morse theory on complexes that are simplicial.

morse matchings . Discrete gradient vector fields have a useful interpre-
tation in terms of acyclic graphs obtained from matchings on Hasse diagrams,
due to Chari [37]. Let K be a simplicial complex, let HK be its Hasse diagram,
and let M be a matching in the underlying undirected graph HK. Let HK(M)

be the directed graph obtained from HK by reversing the direction of each
edge of the matching M. Then M is a Morse matching if and only if HK(M)

is a directed acyclic graph. Every Morse matching M on the Hasse diagram
HK corresponds to a unique gradient vector field VM on complex K and vice
versa. For a Morse matching M, the unmatched vertices correspond to critical
simplices of VM, and the matched vertices correspond to the regular simplices
of VM.

erasability. Following the terminology used in [13, 70], we make the
following definitions: A maximal face τ in a simplicial complex K is called an
internal simplex if it has no free face. If a 2-complex K collapses to a 1-complex,
we say that K is erasable. Moreover, for a 2-complex K, the quantity er(K) is the
minimum number of internal 2-simplices that need to be removed so that the
resulting complex collapses to a 1-complex. Equivalently, it is the minimum
number of critical 2-simplices of any discrete gradient on K. Furthermore, we
say that a subcomplex L ⊆ K is an erasable subcomplex of K (through the gradient V)
if there exists another subcomplex C ⊆ K with K↘ C (induced by the gradient
V) such that the set of 2-dimensional simplices of these complexes satisfy
the following relation: L(2) ⊆ K(2) \ C(2). We call such a gradient V an erasing
gradient. Finally, we say that a simplex σ in a complex K is eventually free (through
the gradient V) if there exists a subcomplex L of K such that K ↘ L (induced
by V) and σ is free in L. Equivalently, K collapses further to a subcomplex not
containing σ.

3.4 discrete morse theory and simple homotopy theory

In Section 3.3, we learnt from Theorem 3.3.2 that for a simplicial complex K
equipped with a gradient vector field V, the Morse complex MV constructed
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Figure 18: The figure on left shows a 1-dimensional simplicial complex K
equipped with a gradient vector field V = {(A, f3), (B, f2)}. The
figure on the right shows the Morse complex MV that is homotopy
equivalent to K.

using Forman’s theory is homotopy equivalent to K. Figure 18 shows an
example. This raises a natural question: Is K also simple homotopy equivalent
to MV? Päkkilä [129] and Fernandez [79] have independently answered this
question in the affirmative.

Here, we follow the exposition by Fernandez [79]. But before we do that,
we will try to understand the idea through the example in Figure 18. First,
construct a 1-complex L1 which is formed by taking the disjoint union of K and
MV and then identifying the point D to D ′. Then, we use L1 as a 1-skeleton for
building a regular 2-complex L with a single 2-cell e2. The boundary of e2 is
the whole of L1. L looks like a cylinder (with the triangle K as one base and
the circle MV as the other base) squished in order to identify D to D ′. We will
not illustrate the L here, but we will instead rely on the reader’s imagination.
Then, K↗ L via the pair (f ′1, e2), and L↘ MV via the pairs (f1, e2) followed by
(A, f3) and (B, f2). Therefore, we have that K�↘MV. As to how the cell e2 is
obtained, is explained by Lemma 3.4.1 from Fernandez [79, Proposition 6.4.8].

Lemma 3.4.1 (Fernandez [79]). Let X be a CW-complex of dimension at most p, and
let ϕ : ∂Bp → X be the attaching map of a p-cell ep.

If X↘ Y, then X∪ ep�↘p+1 Y ∪ ẽp, where the attaching map ϕ̃ : ∂Bp → X of ẽp

is defined as ϕ̃ = rϕ where r : X→ Y is a strong deformation retract induced by the
collapse X↘ Y.

Proof. Let ı : Y → X be the inclusion map and let r : X → Y be a strong
deformation retract induced by the collapse X↘ Y. Since ır ∼= idX, composing
by ϕ on both sides gives a homotopy ırϕ ∼=H ϕ with H : ∂Bp × I → X that
allows us to perform the following sequence of elementary moves

X∪ϕ Bp ↗e (X∪ϕ Bp)∪ırϕ Bp ∪H Bp × I↘e X∪ırϕ Bp
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that comes from treating H as an attaching map. Finally, the collapse X ↘ Y
induces a collapse X∪ırϕ Bp ↘ Y ∪rϕ Bp since the image of the attaching map
ırϕ is included in Y.

Since the dimension of the complex (X∪ϕ Bp)∪ırϕ Bp ∪H Bp+1 is p+ 1, we
conclude that

X∪ϕ Bp�↘p+1 Y ∪ϕ̃ Bp.

Through an inductive application of Lemma 3.4.1 along with some careful
bookkeeping of attaching maps, Fernandez [79, Theorem 6.4.17] proved the
following refinement of Theorem 3.3.2.

Theorem 3.4.2 (Fernandez [79]). Let X be a regular CW complex of dimension n
equipped with a gradient vector field V. Then, X�↘n+1 MV, where MV is the Morse
complex associated to the gradient V.
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A
PA P E R I : H A R D N E S S O F A P P R O X I M AT I O N F O R M O R S E
M AT C H I N G

Classical Morse theory provides a rich toolkit for analyzing and inferring the
topology of a smooth manifolds by studying the critical points of smooth
functions defined on it. Forman’s discrete Morse theory is a combinatorial
analogue of Morse theory that is applicable to regular CW complexes. It has
become a popular tool in the visualization community, and is actively studied in
algebraic combinatorics. Discrete Morse theory has also found applications as a
preprocessing tool for speeding up computations in topological data analysis.

The principal construct in Forman’s theory is the so-called discrete gradient
vector field defined on a simplicial (or more generally a CW) complex. A
discrete gradient vector field is a collection of facet-cofacet pairs satisfying a
certain acyclicity condition. The simplices that do not belong to any of the pairs
in the gradient are deemed critical. Forman’s theory also has an equivalent
graph theoretic formulation in which the acyclic matchings (also called Morse
matchings) in the Hasse diagram of a simplicial complex correspond to the
discrete gradient vector fields on the simplicial complex. There has been
a lot of practical interest in computing gradient vector fields on simplicial
complexes with (near-)optimal number of critical simplices. The problem of
finding a gradient vector field with the minimum number of critical simplices
in a simplicial complex was shown to be NP-hard by Joswig and Pfetsch, who
also posed its approximability as an open question. In this article, we resolve
the open question by establishing hardness of approximation results for the
maximization and minimization variants of the Morse matching problem.

Following a brief introduction in Section 1, we cover the requisite background
from approximation algorithms and discrete Morse theory in Section 2. In
Section 3, we prove a strong hardness result for the minimization variant of
Morse matching by utilizing Tancer’s result on NP-hardness of determining
collapsibility. In Section 4, we prove a hardness result for the maximization
variant of Morse matching via an L-reduction from the Max-Acyclic Subgraph
problem restricted to degree 3 graphs.

statement of individual contribution. I suggested this project
to my advisor Uli Bauer. I found the main ideas behind the hardness results and
presented them to him. Later, we had several discussions, where more details
were fleshed out, and Uli Bauer made several key suggestions for improvements.
In this collaboration, I was the main author responsible for finding the ideas
and and for writing them down. Since this was the first article of my PhD, I got
some invaluable writing lessons from my advisor.
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Hardness of Approximation for Morse Matching ∗

Ulrich Bauer † Abhishek Rathod ‡

Abstract

Discrete Morse theory has emerged as a powerful tool for a

wide range of problems, including the computation of (per-

sistent) homology. In this context, discrete Morse theory is

used to reduce the problem of computing a topological in-

variant of an input simplicial complex to computing the same

topological invariant of a (significantly smaller) collapsed cell

or chain complex. Consequently, devising methods for ob-

taining gradient vector fields on complexes to reduce the size

of the problem instance has become an emerging theme over

the last decade. While computing the optimal gradient vec-

tor field on a simplicial complex is NP-hard, several heuris-

tics have been observed to compute near-optimal gradient

vector fields on a wide variety of datasets. Understanding

the theoretical limits of these strategies is therefore a fun-

damental problem in computational topology. In this pa-

per, we consider the approximability of maximization and

minimization variants of the Morse matching problem. We

establish hardness results for Max-Morse matching and Min-

Morse matching, settling an open problem posed by Joswig

and Pfetsch [20]. In particular, we show that, for a simpli-

cial complex of dimension d ≥ 3 with n simplices, it is NP-

hard to approximate Min-Morse matching within a factor

of O(n1−ε), for any ε > 0. Moreover, we establish hardness

of approximation results for Max-Morse matching for sim-

plicial complexes of dimension d ≥ 2, using an L-reduction

from Degree 3 Max-Acyclic Subgraph to Max-Morse match-

ing.

1 Introduction

Classical Morse theory [29] provides a method to an-
alyze the topology of a smooth manifold by studying
the critical points of smooth functions defined on it.
Forman’s discrete Morse theory is a combinatorial ana-
logue of Morse theory that is applicable to regular cell
complexes [10]. It has become a popular tool in com-
putational topology and visualization [5, 8, 36], and is
actively studied in algebraic, geometric, and topologi-
cal combinatorics [18, 23, 28]. In Forman’s theory, dis-
crete Morse functions play the role of smooth Morse

∗Research supported by the DFG Collaborative Research

Center TRR 109 Discretization in Geometry and Dynamics.
†mail@ulrich-bauer.org, Technical University of Munich.
‡rathod@ma.tum.de, Technical University of Munich.

functions, whereas discrete gradient vector fields are
the analogues of gradient-like vector fields. Forman’s
theory also has an equivalent graph theoretic formu-
lation [6], in which the acyclic matchings (or Morse
matchings) in the Hasse diagram of a simplicial com-
plex correspond to the discrete gradient vector fields on
the simplicial complex. We shall use the terms gradient
vector fields and Morse matchings interchangeably. In
the next subsection, we will elaborate on the practical
interest [1, 3, 4, 14, 15, 26] in computing gradient vector
fields on simplicial complexes with (near-)optimal num-
ber of critical simplices (unmatched nodes in the Hasse
diagram).

1.1 Motivation The idea of using discrete Morse
theory to speedup the computation of homology [15],
persistent homology [30], zigzag persistence [27], mul-
tidimensional persistence [1], and cellular sheaf coho-
mology [7] hinges on the promise that discrete Morse
theory may reduce the problem of computing homology
groups of an input simplicial complex to computing ho-
mology groups of a smaller collapsed cell or chain com-
plex. In fact, certain state-of-the-art methods for com-
puting homology groups of complexes [15] like RedHom
and CHomP crucially depend on discrete Morse theory.
In a follow-up work, Harker et al. [14] devised a discrete
Morse theory based framework to efficiently compute
the induced map on homology, a problem that arises
in Conley index computations. More recently, Brendel
et al. [3] designed a discrete Morse theory based algo-
rithm to compute (typically small) presentations of the
fundamental group of finite regular CW-complexes, and
certain knot invariants. Despite the wide applicability
of discrete Morse theory (and associated claims of suc-
cess), the reader should be aware that discrete Morse
theory is not a silver bullet for speeding up topological
computations. We advocate a degree of circumspection
in evaluating some of the claims about speedup made
in the literature. In particular, the reductions based on
discrete Morse theory should be considered as heuris-
tics that are often observed to lead to improvements in
practice, but usually do not come with any guarantees
on the size of the reduced chain complex (both in terms
of its rank and the number of nonzero entries of the
boundary matrix) or on the complexity of the result-
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ing homology computation. In other words, there is no
theoretical guarantee that reducing the original chain
complex and computing homology of the reduced com-
plex together is any more efficient than the computation
for the original complex, and observed improvements in
running time might be specific to the implementation.

In terms of computational complexity, it is known
that finding an optimal gradient vector field for a sim-
plicial complex is an NP-hard problem, as shown by
Joswig et al. [20] via a reduction from the erasability
problem introduced by Eǧecioǧlu and Gonzalez [9]. On
the other hand, certain heuristics for Morse matching
have been reported to be highly effective, often achiev-
ing optimality in practice [15, 19, 25]. This naturally
raises the question of approximability: to what extent
is it feasible to obtain near-optimal solutions for Morse
matching in polynomial time? By establishing bounds
on the hardness of approximation, we make it evident
that for certain instances, the otherwise effective heuris-
tics would fail to compute near-optimal Morse match-
ings.

1.2 The Morse Matching Problems The Max-
Morse Matching problem (MaxMM) can be described
as follows: Given a simplicial complex K, compute a
gradient vector field that maximizes the cardinality of
matched (regular) simplices, over all possible gradient
vectors fields on K. Equivalently, the goal is to max-
imize the number of gradient pairs. For the comple-
mentary problem Min-Morse Matching (MinMM), the
goal is to compute a gradient vector field that min-
imizes the number of unmatched (critical) simplices,
over all possible gradient vector fields on K. While
the problem of finding an exact optimum are equivalent
for MinMM and MaxMM, the approximation variants of
these problems have vastly different flavors, as we shall
note in §3 and §4.

1.3 Related work Based on the relationship be-
tween erasability and Morse Matching observed by
Lewiner [24, 25], Joswig et al. [20] established NP-
completeness of the Morse Matching Problem, using
a reduction that is not approximation preserving, and
posing the approximability of Morse matching as an
open problem [20, Sec. 4]. The algorithmic question
of finding optimal discrete Morse functions on simpli-
cial complexes is a well studied problem. Most methods
so far have relied on effective heuristics [2,15,17,20,25].
The first theoretical result in context of Morse match-
ings was established by Burton et al. [4], who developed
a fixed parameter tractable algorithm for computing op-
timal Morse functions on 3-manifolds. More recently,
Rathod et al. [35] proposed the first approximation algo-

rithms for MaxMM on simplicial complexes that provide
constant factor approximation bounds for fixed dimen-
sion.

1.4 Our contributions In §3, using Tancer’s re-
sult [37] about NP-completeness of collapsibility, we
provide a straightforward proof of inapproximability of
MinMM on simplicial complexes with dimension d ≥ 3.
In particular, we prove that, assuming P 6= NP , there is
no O(n1−ε)-factor approximation algorithm for MinMM
for any ε > 0, where n denotes the total number of
simplices in a given complex K. Then, in §4, we prove
that, for any ε > 0, approximating MaxMM for simpli-
cial complexes of dimension d ≥ 2 within a factor of(
1− 1

4914

)
+ ε is NP-hard and approximating it within

a factor of
(
1− 1

702

)
+ ε is UGC-hard. In particular,

this shows that MaxMM has no PTAS unless P = NP .

2 Background and Preliminaries

2.1 Simplicial complexes A k-simplex σ = conv V
is the convex hull of a set V of (k+ 1) affinely indepen-
dent points in Rd. We call k the dimension of σ. We
say that σ is spanned by the points V . Any nonempty
subset of V also spans a simplex, a face of σ. A simplex
σ is said to be a coface of a simplex τ if and only if
τ is face of σ. We say that σ is a facet of τ if σ is a
face of τ with dimσ = dim τ − 1. A simplicial complex
K is a collection of simplices that satisfies the following
conditions:
• any face of a simplex in K also belongs to K, and
• the intersection of two simplices σ1, σ2 ∈ K is either

empty or a face of both σ1 and σ2.
For a complex K, we denote the set of d-simplices

of K by K(d). The n-skeleton of a simplicial complex
K is the simplicial complex

⋃n
m=0K(m). A simplex σ is

called a maximal face of a simplicial complex K if it is
not a strict subset of any other simplex τ ∈ K.

The underlying space of K is the union of its
simplices, denoted by |K|. The underlying space is
implicitly used whenever we refer to K as a topological
space.

An abstract simplicial complex S is a collection of
finite nonempty sets A ∈ S such that every nonempty
subset of A is also contained in S. The sets in S are
called its simplices. For example, the vertex sets of
the simplices in a geometric complex form an abstract
simplicial complex, called its vertex scheme. If K is
a geometric simplicial complex whose vertex scheme is
isomorphic to an abstract simplicial complex S, then
K is a geometric realization of S. It is unique up to
simplicial isomorphism.

We will use the construction of a pasting map [31]
to perform vertex and edge identifications on simplicial
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complexes. Given a finite abstract simplicial complex
L, a labelling of the vertices of L is a surjective map
f : L(0) → C where the set C is called the set of vertex
labels. Then, the set {f(σ) | σ ∈ L} is an abstract
simplicial complex. Let K be a geometric realization.
Then f induces a simplicial quotient map g : |L| → |K|,
called the pasting map associated with f .

In particular, given an equivalence relation ∼ on the
vertices of L, the surjection sending each vertex to its
equivalence class induces a pasting map. We will use
this construction to perform identifications of simplices.
For example, the wedge sum of a collection of pointed
simplicial complexes (complexes with a distinguished
vertex, called the basepoint) can be constructed this way
using the equivalence relation identifying all basepoints.

2.2 Discrete Morse theory and Erasability Our
focus in this paper is limited to simplicial complexes,
and hence we restrict the discussion of Forman’s discrete
Morse theory to simplicial complexes. We refer to [11]
for a compelling expository introduction.

A function f on a simplicial complex K is called a
discrete Morse function if
• f is monotonic, i.e., σ ⊆ τ implies f(σ) ≤ f(τ),

and
• for all t ∈ im(f), f−1(t) is either a singleton {σ} (in

which case σ is a critical simplex ) or a pair {σ, τ},
where σ is a facet of τ (in which case (σ, τ) form a
gradient pair and σ and τ are regular simplices).

Given a discrete Morse function f defined on complexK,
the discrete gradient vector field V of f is the collection
of pairs of simplices (σ, τ), where (σ, τ) is in V if and
only if σ is a facet of τ and f(σ) = f(τ).

Discrete gradient vector fields have a useful in-
terpretation in terms of acyclic graphs obtained from
matchings on Hasse diagrams, due to Chari [6]. Let K
be a simplicial complex, let HK be its Hasse diagram,
and let M be a matching in the underlying undirected
graph HK. Let HK(M) be the directed graph obtained
from HK by reversing the direction of each edge of the
matching M . Then M is a Morse matching if and only if
HK(M) is a directed acyclic graph. Every Morse match-
ingM on the Hasse diagramHK corresponds to a unique
gradient vector field VM on complex K and vice versa.
For a Morse matching M , the unmatched vertices cor-
respond to critical simplices of VM , and the matched
vertices correspond to the regular simplices of VM .

A non-maximal face σ ∈ K is said to be a free face
if it is contained in a unique maximal face τ ∈ K.
If dim τ = dimσ + 1, we say that K′ = K \ {σ, τ}
arises from K by an elementary collapse, denoted by
K ↘e K′. Furthermore, we say that K collapses to
L, denoted by K ↘ L, if there exists a sequence

K = K1,K2, . . .Kn = L such that Ki ↘e Ki+1 for all
i. If K ↘ L, or more generally, if K and L are related
through a sequence collapses and expansions (inverses of
collapses), then the two complexes are simple-homotopy
equivalent type. In particular, K and L are homotopy
equivalent. Furthermore, if K collapses to a point, one
says that K is collapsible and writes K ↘ 0.

A simplicial collapse can be encoded by a discrete
gradient.

Theorem 2.1. (Forman [10], Theorem 3.3) Let K
be a simplicial complex with a discrete gradient vector
field V, and let L ⊆ K be a subcomplex. If K \ L is a
union of pairs in V, then K ↘ L.

In this case, we say that the collapse K ↘ L is induced
by the gradient V. As a consequence of this theorem,
we obtain:

Theorem 2.2. (Forman [10], Corollary 3.5) Let
K be a simplicial complex with a discrete gradient
vector field V and let md denote the number of critical
simplices of V of dimension d. Then K is homotopy
equivalent to a CW complex with exactly md cells of
dimension d.

In particular, a discrete gradient vector field on K with
md critical simplices of dimension d gives rise to a
chain complex having dimension md in each degree d,
whose homology is isomorphic to that of K. This con-
densed representation motivates the algorithmic search
for (near-)optimal Morse matchings.

We will later use the following elementary lemma
about gradient vector fields.

Lemma 2.1. Let K be a connected simplicial complex,
let p be a vertex of K, and let V1 be a discrete gradient on
K with m0 > 1 critical vertices and m critical simplices
in total. Then there exists another gradient vector field
Ṽ on K with p as the only critical simplex of dimension
0 and m− 2(m0 − 1) critical simplices in total.

Proof. Let L be the set of all the 1-simplices paired
with 2-simplices in V. Let Q be the 1-skeleton of K.
Then, by [20, Lemma 4.2], the 1-complex Q \ L is
connected, and one can compute a gradient vector field
V1 on Q \ L with p as the single critical vertex using
depth first search starting from p (see, e.g., [35]). Let
W ⊂ V consist of all gradient pairs of V contained in
K \ (Q \ L) = (K \ Q) ∪ L. Note that, by construction,
W does not contain any pairs of dimensions (0, 1), while
V1 has only such pairs. Since the gradient vector fields
V1 and W are defined on disjoint sets of simplices, it
follows that Ṽ = V1 ∪W is a gradient vector field with
the desired property.
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Corollary 2.1. Given a collapsible simplicial com-
plex K and an arbitrary vertex p ∈ K, there exists a
gradient vector field V on K with p as the unique criti-
cal simplex of V.

Borrowing and extending the terminology used
in [9], we make the following definitions: A maximal
face τ in a simplicial complex K is called an internal
simplex if it has no free face. If a 2-complex K collapses
to a 1-complex, we say that K is erasable. Moreover,
for a 2-complex K, the quantity er(K) is the minimum
number of internal 2-simplices that need to be removed
so that the resulting complex collapses to a 1-complex.
Equivalently, it is the minimum number of critical 2-
simplices of any discrete gradient on K.

Definition 2.1. (Erasable subcomplex) Given a
2-complex K, we say that a subcomplex L ⊆ K is an
erasable subcomplex of K (through the gradient V) if
there exists another subcomplex M ⊆ K with K ↘ M
(induced by the gradient V) such that K \M ⊆ L and
K(2) \M(2) = L(2).

Definition 2.2. (Eventually free) We say that a
simplex σ is eventually free (through the gradient V) in
a complex K if there exists a subcomplex L of K such that
K ↘ L (induced by V) and σ is free in L. Equivalently,
K collapses further to a subcomplex not containing σ.

Lemma 2.2. If L1,L2 are erasable subcomplexes of a
2-complex K, then so is their union.

Proof. Let V1 be a discrete gradient erasing L1, and
V2 a discrete gradient erasing L2. Without loss of
generality, we may assume that both gradients have only
pairs (σ, τ) of dimension (1, 2), and that all such pairs
are in L1 or L2, respectively, and σ is eventually free;
removing all other pairs still yields an erasing gradient.
Now consider the collapse K ↘ M1 induced by V1

and the collapse K ↘ M2 induced by V2. Restricting
the gradient V2 to the subcomplex M1, we obtain a
gradient V12 = {(σ, τ) ∈ V2 | σ, τ ∈M1}. By induction,
each σ appearing in such a pair (σ, τ) is eventually free
inM1, since any 2-simplex ψ ∈M1 that is a coface of σ
other than τ must appear in a pair (φ, ψ) ∈ V12 by the
definition of V12 and the assumption that φ is eventually
free through the gradient V2. Thus, K collapses to a
complex that contains no 2-simplices of either L1 or L2,
as claimed.

Lemma 2.3. If K is an erasable complex, then any
subcomplex L ⊂ K is also erasable.

Proof. Let V be a discrete gradient erasing K. Restrict-
ing the gradient V to the subcomplex L, we obtain a

gradient V ′ = {(σ, τ) ∈ V | σ, τ ∈ L}. Moreover, if τ
is a 2-simplex in L ⊂ K, then τ occurs in a gradient
pair (σ, τ) ∈ V, where some σ ⊂ τ is a 1-simplex in K.
Since L is a simplicial complex, σ is also a simplex in L.
Hence, (σ, τ) ∈ V ′. Thus, every 2-simplex in L occurs
in a gradient pair in V ′, meaning that V ′ is a discrete
gradient erasing L.

2.3 Approximation algorithms An α-approxima-
tion algorithm for an optimization problem is a
polynomial-time algorithm that, for all instances of the
problem, produces a solution whose value is within a
factor α of the value of an optimal solution. The fac-
tor α is called the approximation ratio of the algorithm.
An approximation preserving reduction is a procedure
for transforming an optimization problem A to an opti-
mization problem B, such that an α-approximation al-
gorithm for B implies an h(α)-approximation algorithm
for A, for some function h. Then, if A is hard to approx-
imate within factor h(α), the reduction implies that B
is hard to approximate within factor α.

We will use a particular important and well-studied
class of approximation preserving reductions, called L-
reductions, which provide a simple and effective tool in
proving hardness of approximability results [33,39]. To
give the definition, consider a maximization problem A
with a non-negative integer valued objective function
mA. Given an instance x of A, the goal is to find a solu-
tion y (among a finite set of feasible solutions) maximiz-
ing the objective function mA(x, y). Define OPTA(x) as
the maximum value of the objective function on input
x.

An L-reduction from one optimization problem A to
another optimization problem B is a pair of functions
f and g that are computable in polynomial time and
satisfy the following conditions:

1. The function f maps instances of A to instances of
B.

2. There is a positive constant µ such that, for all
instances x of A,

OPTB(f(x)) ≤ µOPTA(x).

3. The function g maps instances of A and solutions
of B to solutions of A.

4. There is a positive constant ν such that, for
any instance x of A and any solution y of
f(x), we have OPTA(x) − mA(x, g(x, y)) ≤
ν (OPTB(f(x))−mB(f(x), y)) .

If µ = ν = 1, the reduction is strict.
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We will use the following straightforward fact about
L-reductions which appears as Theorem 16.5 in a book
by Williamson and Shmoys [39].

Theorem 2.3. If there is an L-reduction with param-
eters µ and ν from a maximization problem A to an-
other maximization problem B, and there is a (1 − δ)-
approximation algorithm for B, then there is a (1−µνδ)-
approximation algorithm for A.

2.4 Acyclic subgraphs We recall some concepts
and problems from graph theory that will be used
in our reductions. A directed graph G with vertex
set V and edge set E is written as G = (V,E). A
directed graph is called an oriented graph if no pair of
vertices is connected by an anti-parallel pair of edges.
In other words, an oriented graph is a directed graph
without 2-cycles or loops. Note that in contrast to a
general directed graph, an oriented graph always has a
simple underlying undirected graph, which is therefore a
simplicial complex. We will be making use of this fact
in §4.

The problem of finding the maximum acyclic sub-
graph (MAS) of a given directed graph G = (V,E) con-
sists of determining a maximum subset Emax ⊆ E for
which the subgraph Gmax = (V,Emax ) has no directed
cycles. A feedback arc set is a set of edges whose removal
leaves a directed acyclic graph. A minimum feedback arc
set is a feedback arc set of minimum cardinality. The
problem minFAS of finding such a set is thus comple-
mentary to MAS.

A directed degree-3 graph is a directed graph with
total degree (indegree plus outdegree) at most 3. The
restriction of the problem MAS to directed degree-3
graphs is denoted by 3MAS. Moreover, the problem
MAS restricted to oriented graphs is denoted by OMAS,
and the restriction to oriented degree-3 graphs is de-
noted by 3OMAS.

We will show that there is a L-reduction from MAS
to OMAS, allowing us to consider only oriented graphs
later.

Theorem 2.4. There is a strict reduction from MAS to
OMAS, and from 3MAS to 3OMAS.

Proof. The map f transforming an instance of MAS (a
directed graph G) to an instance of OMAS (an oriented
graph f(G)) is given by removing from G all loops and
all pairs of anti-parallel edges. Furthermore, the map g
transforming a solution of OMAS for the instance f(G)
(an acyclic subgraph A of f(G)) to a solution of MAS
for the instance G (an acyclic subgraph B = g(G,A) of
G) is given as follows: Extend the acyclic graph A to a
subgraph B of G by adding for each anti-parallel pair

of edges in G one edge whose orientation is consistent
with the partial order induced by A. By construction,
the subgraph B is still acyclic.

By definition, mOMAS(f(G), A) is the number of
edges in A, and mMAS(G,B) is the number of edges in
B. Let k be the number of pairs of anti-parallel edges
in G. Then,

mMAS(G,B) = mOMAS(f(G), A) + k.

In particular, if A is optimal, this yields

OPTMAS(G) ≥ mMAS(G,B)

= mOMAS(f(G), A) + k

= OPTOMAS(f(G)) + k.

On the other hand, any acyclic subgraph C of G
restricts to an acyclic subgraph C ′ of f(G) by removing
at most k edges. In particular, for an optimal C, we get

OPTMAS(G) = mMAS(G,C)

≤ mOMAS(f(G), C ′) + k

≤ OPTOMAS(f(G)) + k.

Thus, we have

mMAS(G,B) = mOMAS(f(G), A) + k,

OPTMAS(G) = OPTOMAS(f(G)) + k

and thus

OPTOMAS(f(G)) ≤ OPTMAS(G)

and

OPTMAS(G)−mMAS(G,B)

= OPTOMAS(f(G))−mOMAS(f(G), A),

establishing a strict reduction from MAS to OMAS. The
same construction restricts to a strict reduction from
3MAS to 3OMAS.

We state a few known hardness of approximation
results for MAS and related problems.

Theorem 2.5. (Newman [32], Theorem 3) It is
NP-hard to approximate 3MAS to within

(
1 − 1

126

)
+ ε

for any ε > 0.

Moreover, the following result establishes hardness
with respect to the unique games conjecture (UGC) [21].
A problem is said to be UGC-hard (or UG-hard) if the
unique games conjecture implies that the problem is
NP-hard. We refer to [22] for a detailed account on
this conjecture.

Furthermore, Guruswami et al. proved the follow-
ing result, which appears as Theorem 1.1 of [12].
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Theorem 2.6. Let δ ∈ (0, 1
2 ). If for any directed

graph G with an acyclic subgraph consisting of a fraction
(1 − δ) of its edges, one can efficiently find an acyclic
subgraph of G with more than ( 1

2 + δ) of its edges, then
the UGC is false. In particular, it is UGC-hard to
approximate MAS within a factor of 1

2 +δ for any δ > 0.

By Theorem 2.4, the same is true for OMAS.
Moreover, Newman [32] established an approximation
preserving reduction from MAS to 3MAS, with the
following consequence:

Theorem 2.7. (Newman [32], Theorem 5) For
any constant ε > 0, if there exists a

((
1− 1

18

)
+ ε
)
-

approximation algorithm for 3MAS, then there exists
a
(

1
2 + δ

)
-approximation algorithm for MAS for some

constant δ > 0.

From Theorems 2.4, 2.5, 2.6, and 2.7, we conclude:

Corollary 2.2. It is UGC-hard to approximate 3MAS
and 3OMAS within a factor of

(
1− 1

18

)
+ε, and NP-hard

to approximate 3MAS and 3OMAS to within
(
1− 1

126

)
+

ε, for any ε > 0.

3 Hardness of Approximation of Min-Morse
Matching

In this section, we work with abstract connected sim-
plicial complexes. Recall that an abstract simplicial
complex is connected if its 1-skeleton is connected as
a graph.

Definition 3.1. (Amplified complex) Given a
pointed simplicial complex K with n simplices and some
integer c > 0, the amplified complex K̂c is defined as
the wedge sum of m copies of K, with m = nc−1.

Lemma 3.1. Given a complex K of size n and integer
c, consider the amplified complex K̂c of K. Let V̂ be a
gradient vector field on K̂c. Then

(i) K̂c is collapsible if and only if K is collapsible.

(ii) If K is not collapsible, then V̂ has more than nc−1

critical simplices.

Proof. Suppose that the complex K is collapsible. Then
there exists a gradient vector field VK with a unique
critical simplex q ∈ K. Let p be an arbitrarily chosen
distinguished vertex of K that will be used to construct
amplified complex K̂c. Using Corollary 2.1, without loss
of generality the vector field VK has p as its unique
critical simplex. Now the gradient vector field on K̂c,
say V̂, is simply the gradient vector field VK repeated on

each identical copy of K. Since p is the unique critical
simplex of V̂ on K̂c, we conclude that K̂c is collapsible.

Conversely, suppose that the complex K̂c is collapsi-
ble. Then, by Corollary 2.1, we can obtain a gradient
vector field V̂ on K̂c with the distinguished vertex p as
its unique critical simplex. If we consider the gradient
vector field V̂ restricted to any one of the copies of K̂c,
it follows immediately that K is collapsible.

Now suppose that K is not collapsible and V̂ has less
than or equal to nc−1 critical simplices. By Lemma 2.1,
without loss of generality we may assume that V̂ has the
distinguished vertex p as the unique critical vertex. Now
consider V̂ restricted to each of the individual copies of
K. Then clearly at least one of the copies has p as its
unique critical simplex (else we would have more than
nc−1 critical simplices in total). But this immediately
implies that K is collapsible, a contradiction. Hence, if
K is not collapsible, then V̂ has more than nc−1 critical
simplices.

Proposition 3.1. For any ε ∈ (0, 1], if there exists an
O(n1−ε)-factor approximation algorithm for MinMM,
where n denotes the number of simplices of an input
simplicial complex, then there exists a polynomial time
algorithm for deciding collapsibility of simplicial com-
plexes.

Proof. Given any ε ∈ (0, 1], suppose there exists an
O(n1−ε)-factor approximation algorithm for MinMM.
Specifically, there exist p,M > 0 such that for all n ≥
M , the approximation ratio is bounded above by pn1−ε.
Now choose c to be the smallest positive integer with the
property 1

c < ε, i.e., c =
⌊

1
ε + 1

⌋
. Consider an arbitrary

connected complex K with n simplices and construct the
amplified complex K̂c. Note that the total number of
simplices in K̂c is n̂ = (n− 1)nc−1 + 1 = nc−nc−1 + 1.

Also, if n < max{M,p
1

1+cε }, i.e., if n is bounded by a
constant, the collapsibility of K can easily be checked in
constant time. So, without loss of generality, we assume

that n ≥ max{M,p
1

1+cε }.
We now use the following Algorithm B to decide col-

lapsibility of the complex K. We execute the O(n1−ε)-
factor approximation Algorithm A for MinMM on the
amplified complex K̂c. If the number CA of critical sim-
plices returned by Algorithm A is less than nc−1, we
report that the complex K is collapsible, else we declare
that K is not collapsible.

When the complex is collapsible, the number CA
of critical simplices returned by Algorithm A can be
bounded as follows:

CA ≤ pn̂1−ε < p (nc)
1−ε ≤ nc−1.

The bound CA < nc−1 for a collapsible complex K with
n simplices, along with part (ii) of Lemma 3.1, estab-
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lishes the correctness of Algorithm B for determining
collapsibility of the complex K. Also, since n̂ < nc,
Algorithm B runs in time polynomial in n.

Recently, Tancer [37] proved the following theorem
about collapsibility of 3-complexes.

Theorem 3.1. (Tancer [37], Theorem 1) It is NP-
complete to decide whether a given 3-complex is collapsi-
ble.

Corollary 3.1. For any ε ∈ (0, 1], there exists no
O(n1−ε)-factor approximation algorithm for MinMM,
where n denotes the number of simplices of an input
simplicial complex, unless P = NP.

4 Hardness of Approximation for Max-Morse
Matching

In this section, we describe an L-reduction from 3OMAS
to MaxMM, establishing hardness of approximation for
MaxMM. Our construction is based on a modification of
Zeeman’s dunce hat [40]. The dunce hat is a simplicial
complex which is contractible but has no free faces and
is therefore not collapsible. In contrast, the modified
dunce hat is collapsible but only through a single free
face. The triangulation is given in Fig. 1. An equivalent
triangulation has been described by Hachimori [13,
p. 108]. Its number of simplices is minimal among all
complexes that are collapsible through a single free face,
as can be verified by an exhaustive search [34]. The 1-
simplex ω is the unique free face of the modified dunce
hat D.

r

w

t

v

s

us

q

u

q

q

ω

η

φψ

Γ

Figure 1: The modified dunce hat D. Left: triangu-
lation, with certain distinguished simplices highlighted.
Note that the vertices s, q, u appearing multiple times
are identified accordingly. The complex is collapsible
through the unique free face ω. Right: a discrete gra-
dient VD on D that leaves only the vertices s, t and
the edge η critical. The three highlighted arrows (blue,
thick) correspond to pairs in VD that will in some cases
be discarded when assembling a gradient on the entire
complex K(G).

For the remainder of the section, we will use the
following notation: For a graphG = (V,E), the indegree

of a vertex v, in G, is denoted deg−G(v), and its outdegree
is denoted deg+

G(v). We now construct a complex K(G)
from G, and more generally, a complex K(G,H) for any
subgraph H = (VH , EH) of G. Throughout this section,
the graph G denotes an oriented connected degree-3
graph. Note that the connectedness assumption is not
a restriction for the 3OMAS problem.

In order to aid the reader’s intuition, we first outline
the motivation behind some of the design choices for
the gadget, before giving the formal description. Our
aim is to construct a complex K(G) so that there is
a one-to-one correspondence between the cardinality of
a (minimum) feedback arc set (Proposition 4.1) and
the (minimum) number of simplices that need to be
removed from K(G) to make it erasable. To this end, we
start with a disjoint union of copies of D, one for each
edge e ∈ EH , and make identifications of vertices to
obtain a complex K(G) which is homotopy equivalent to
the undirected graph underlying G. However, we make
additional identifications of edges to ensure that any
subcomplex K(G,H), corresponding to a subgraph H,
collapses to a 1-dimensional complex isomorphic to the
undirected graph underlying H if and only if H is
acyclic. In order to obtain an L-reduction, we ensure
that the size of the complex K(G) is linear in size of
graph G.

We now describe the construction of the complexes
K(G,H) and K(G) for an oriented degree-3 graph G, by
classifying the vertices of H into five types.

1. Consider an arbitrary total order ≺ on the edge set
E of G.

2. Start with a disjoint union of copies of D, one for
each edge e ∈ EH , denoted by De.

3. Using the pasting map construction as defined
in §2.1, construct the complex K(G,H) by iden-
tifying some of the distinguished simplices of each
gadget De based on the following rules, as applied
to each vertex v ∈ VH according to its indegree
and outdegree. Note that vertex and edge labels
are as in §1 with a subscript added identifying the
respective copy of D.

(a) For every vertex v ∈ VH with deg−H(v) =
deg+

H(v) = 0, no identifications are made.

(b) For every vertex v ∈ VH with deg−H(v) = 0
and deg+

H(v) > 0, identify all vertices se for
every outgoing edge e ∈ EH .

(c) For every vertex v ∈ VH with deg+
H(v) = 0

and deg−H(v) > 0, identify all vertices te for
every incoming edge e ∈ EH .

Copyright © 2019 by SIAM
Unauthorized reproduction of this article is prohibited2669



(d) For every vertex v ∈ VH with deg−G(v) = 1,
deg+

G(v) = 2, deg−H(v) > 0 and deg+
H(v) > 0,

let k and l denote the outgoing edges of v in
G, with k ≺ l, and let j denote the incoming
edge of v in G.

i. If j, k ∈ EH , identify the 1-simplices
φj ∼ ωk such that the incident vertices
are identified as uk ∼ vj and sk ∼ tj .

ii. Similarly, if j, l ∈ EH , identify ψj ∼ ωl
such that ul ∼ wj and sl ∼ tj .

(e) For every vertex v ∈ VH with deg−G(v) ∈
{1, 2}, deg+

G(v) = 1, deg−H(v) > 0 and
deg+

H(v) > 0, let k (and possibly l, with k ≺ l)
denote the incoming edges of v in G, and let
j denote the outgoing edge of v in G.

i. If j, k ∈ EH , identify the 1-simplices ωj ∼
φk such that uj ∼ vk and sj ∼ tk.

ii. (Similarly, if deg−H(v) = 2 and j, l ∈ EH ,
identify ωj ∼ φl such that uj ∼ vl and
sj ∼ tl.)

4. Furthermore, we define K(G) = K(G,G).

Remark 4.1. We choose an arbitrary linear order
since there is no natural choice to determine some of the
attachments in the construction. Using an (arbitrarily
chosen) linear order on the edge set E of G allows us
to make the construction of complexes K(G,H) explicit
and concrete. While it is clear that different linear or-
ders on the edge set E may result in different complexes,
the hardness results in this section do not depend on the
choice of the linear order ≺.

Remark 4.2. Since G is an oriented graph, it is easy
to verify that K(G,H) is a simplicial complex. Also,
by construction, K(G,H) is a subcomplex of K(G)
whenever H is a subgraph of G.

Remark 4.3. From Fig. 1, we observe that for a mod-
ified dunce hat De, ψe is incident on exactly two 2-
simplices of De. The same holds true for φe. Also,
note that ωe is incident on a unique 2-simplex of De,
namely Γe.

4.1 Structural properties of the reduction

Lemma 4.1. For a subgraph H = (VH , EH) of a di-
rected degree-3 graph G and an edge e ∈ EH :

(i) If ωe is eventually free in K(G,H), then De is
erasable in K(G,H).

(ii) If De is erasable in K(G,H) through a gradient
V, then (ωe,Γe) is a gradient pair in V. If f is a

discrete Morse function with gradient V, then for
any simplex σ ∈ De such that σ /∈ {ωe,Γe} we
have f(ωe) > f(σ).

Proof. Suppose ωe is eventually free in K(G,H). Then
there exists a subcomplex L of K(G,H) such that
K(G,H) ↘ L and ωe is free in L. Note that, by
construction of D, this implies that De is a subcomplex
of L. Now using the gradient specified in Fig. 1 all the 2-
simplices of De can be collapsed, making De erasable in
K(G,H). This proves the first statement of the lemma.
The second statement of the lemma immediately follows
from observing that ωe is the unique free 1-simplex in
complex De, Γe is the unique coface incident on ωe, and
De is erasable in K(G,H) through the gradient V of f .

Lemma 4.2. For a subgraph H of a directed degree-3
graph G and a vertex v ∈ VH with deg+

H(v) = l > 0 and
outgoing edges {d1, . . . , dl} ∈ EH , we have:

(i) If deg−H(v) = 0, then each ωdj is free in K(G,H).

(ii) If deg−H(v) = k > 0, let {e1, . . . , ek} ∈ EH be
the set of incoming edges of v. If there is a
gradient V such that each ωei is eventually free
in K(G,H) through V, then each ωdj is eventually
free in K(G,H) through V as well.

Proof. If deg−H(v) = 0, then each ωdj is free by construc-

tion of K(G,H). Now suppose that deg−H(v) = k > 0
and each ωei is eventually free in K(G,H). From Re-
mark 4.3 and from the construction of the complex
K(G,H), it can be deduced that for any edge dj , the
only 2-simplices incident on ωdj in the complex K(G,H)
are Γdj and one pair of 2-simplices of Dei for each ei.
By assumption, each ωei is eventually free, and so by
part (i) of Lemma 4.1, each Dei is erasable. Hence, by
Lemma 2.2, their union is erasable too. This means that
K(G,H) collapses to a complexM in which each ωdj is
free, proving the claim.

Lemma 4.3. A subgraph H of a directed degree-3 graph
G is acyclic if and only if the corresponding complex
K(G,H) is erasable.

Proof. Suppose that the given subgraph H of G, with
n vertices , is acyclic. Consider an arbitrary total
order on the vertices of H consistent with the partial
order induced by the edges in H, and index the vertices
{v1, v2, . . . , vn} according to this total order. We can
now apply Lemma 4.2 and part (i) of Lemma 4.1
inductively for all vi from v1 to vn−1 to establish the
erasability of Ddj for each of the outgoing edges dj of vi
in H. Hence, the entire complex K(G,H) is erasable.
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To show the reverse implication, we prove that if
H has directed cycles, then K(G,H) is not erasable.
Assume for a contradiction that K(G,H) is erasable
through a gradient V, and let f be a discrete Morse
function with that gradient. Let a, b be two consecutive
edges in a directed cycle of K(G,H). Then, by construc-
tion of K(G,H), either φa ∼ ωb or ψa ∼ ωb, and so by
part (ii) of Lemma 4.1 we have f(ωa) > f(ωb). Applying
this argument to each pair of consecutive edges in the
cycle yields a contradiction. Hence, if H has directed
cycles, then K(G,H) is not erasable.

Lemma 4.4. For any edge e ∈ E(G), the subcomplex
De \ {Γe} is erasable in K(G).

Proof. Consider the discrete gradient specified in Fig. 1
as a gradient Ve onDe ⊆ K(G). First note thatDe\{Γe}
is erasable in De through the gradient Ve \ {(ωe,Γe)}.
Moreover, all 1-simplices ofDe that are paired in Ve with
a 2-simplex do not appear in Dc for any edge c 6= e. It
follows that De \ {Γe} is erasable in K(G).

Lemma 4.5. Let C be a set of 2-simplices such that
K(G)\C is erasable, and let F = {f ∈ E | C∩Df 6= ∅}.
Then F is a feedback arc set of G.

Proof. Each 2-simplex σ ∈ C lies in Df for a unique
f ∈ E, which implies f ∈ F . In particular, σ ∈ C
implies σ 6∈ De for any e ∈ E \ F . Now consider the
subgraph H = (V,E \F ) of G. Then, using Lemma 2.3,
K(G,H) ⊆ K(G) \ C is also erasable. Hence, by
Lemma 4.3, H is acyclic, i.e., F is a feedback arc set
of G.

Proposition 4.1. Given an oriented degree-3 graph
G and the corresponding complex K(G), er(K(G)) =
OPTminFAS(G).

Proof. Given a graph G = (V,E), let F ⊆ E be a min-
imum feedback arc set of G, and let H = (V,E \ F )
be the corresponding maximum acyclic subgraph. We
construct a new complex K′ from K(G) as follows: For
every f ∈ F , we remove {Γf} from Df ⊆ K(G) and
erase Df \ {Γf} in K(G) using Lemma 4.4. Note that
(K(G) \ {Γf | f ∈ F}) ↘ K′. In order to show that
K′ is erasable, it suffices to show erasability of the
pure subcomplex of K′ induced by its 2-simplices. It
is easy to check that the subcomplex of K′ induced
by the 2-simplices in K′ is precisely K(G,H). How-
ever, from Lemma 4.3, we can deduce that K(G,H) is
erasable. This implies that K′ is erasable, and hence
(K(G) \ {Γf | f ∈ F}) is erasable. Since the total num-
ber of 2-simplices that were removed to erase K(G) is
equal to |F | = OPTminFAS(G), we have established that
er(K(G)) ≤ OPTminFAS(G).

Now assume for a contradiction that er(K(G)) <
OPTminFAS(G). Let C be a minimal set of 2-simplices
that need to be removed to erase K(G), i.e., |C| =
er(K(G)). Let F ′ = {f ∈ E | C ∩ Df 6= ∅}. By
Lemma 4.5, the graph (V,E \ F ′) is acyclic and F ′ is
a feedback arc set. Since each 2-simplex lies in De for
some unique e ∈ E, it follows that |F ′| ≤ |C|. We
conclude that |F ′| < OPTminFAS(G), which contradicts
the minimality of OPTminFAS(G). Hence, the claim
follows.

In order to relate the homotopy type of G with that
of K(G), we construct a new complex K̃(G) as follows:

1. Start with a disjoint union of copies of D, one for
each edge in G, denoted by De.

2. Similar to the construction of K(G), the complex

K̃(G) is constructed by identifying some of the
distinguished vertices of each gadget De based on
the following rules, as applied to each vertex of G
based on its indegree and outdegree:

(a) For every vertex of G that has incoming as
well as outgoing edges, identify sj with ti for
every incoming edge i and outgoing edge j of
G.

(b) For every vertex of G that has only incoming
edges, identify all vertices te for every incom-
ing edge e.

(c) For ever vertex of G that has only outgoing
edges, identify all vertices se for every outgo-
ing edge e.

Lemma 4.6. K̃(G) is homotopy equivalent to K(G).

Proof. Comparing the two constructions, first note that
K(G) can be obtained from K̃(G) by further identifying
certain 1-simplices φe ∼ ωf or ψe ∼ ωf (together
with vertices ve ∼ uf or we ∼ uf ) in subcomplexes

De,Df ⊆ K̃(G), where these two 1-simplices already
have a common vertex by the identification te ∼ sf
in the construction of K̃(G), and are otherwise not

connected by another 1-simplex. In both K̃(G) and
K(G), the union of the two 1-simplices is contractible,
and so each complex is homotopy equivalent to the space
that further identifies each such pair of 1-simplices to a
single point [16, Proposition 0.17]. The claim follows.

Lemma 4.7. K̃(G) collapses to the undirected graph
underlying G.

Proof. First note that ωe is free in K̃(G) for each e in G.
Moreover, the only simplices that are possibly shared by
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gadgets Di and Dj for i 6= j are the vertices s and t of
Di and Dj . Therefore, we can use the gradient vector
field depicted in Figure 1 to collapse each gadget De
to the 1-simplex ηe together with the vertices se and
te. Thus, K̃(G) collapses to the subcomplex Q of K̃(G)

induced by these 1-simplices. By construction of K̃(G),
this complex Q is isomorphic to the undirected graph
underlying G.

Corollary 4.1. K(G) is homotopy equivalent to the
undirected graph underlying G.

4.2 Inapproximability results Given an oriented
connected degree-3 graph G = (V,E) and the cor-
responding complex K(G), let OPT3OMAS(G) denote
the optimal value of the 3OMAS problem on G, and
let OPTMaxMM(K(G)) denote the optimal value of the
MaxMM problem on K(G).

We now describe an L-reduction from 3OMAS to
MaxMM. The map K : G 7→ K(G) transforms instances
of 3OMAS (directed graphs) to instances of MaxMM
(simplicial complexes). The map A that transforms
solutions of MaxMM (discrete gradients V on K(G))
to solutions of 3OMAS (acyclic subgraphs A(G,V)) is
defined as follows: Let

F = {f ∈ E | ∃σ ∈ Df : σ is a critical 2-simplex in V} .
By Lemma 4.5, F is a feedback arc set. The corre-
sponding solution A(G,V) for 3OMAS is then simply
the subgraph of G with edges E \ F . The value of the
objective function mMaxMM(K(G),V) is the number of
regular simplices in V; the value of the objective func-
tion m3OMAS(G,A(G,V)) is the number of edges of the
acyclic subgraph, |E \ F |.

For a discrete gradient V on K(G), let n denote the
number of simplices in K(G), let m denote the total
number of critical simplices in V, and let md denote the
number of critical simplices in dimension d. Also, let βd
denote the Betti number of K(G) in dimension d, and
let β be the sum of all Betti numbers.

Lemma 4.8. With the above notation,

mMaxMM(K(G),V) ≤ n− 2m2 − β
and

m3OMAS(G,A(G,V)) ≥ |E| −m2.

Proof. By the Morse inequalities [10, Theorem 3.7], we
have m0 ≥ β0 and

m2 −m1 +m0 = β2 − β1 + β0.

From Corollary 4.1, we have β0 = 1 and β2 = 0. This
gives us:

(4.1) m1 = β1 +m2 + (m0 − β0).

Moreover,

m = m2 +m1 +m0 (by definition)

= 2m2 + β1 + 2m0 − β0 (from Equation (4.1))

= 2m2 + β + 2 (m0 − β0) (since β2 = 0)

≥ 2m2 + β (since m0 ≥ β0).

Hence, mMaxMM(K(G),V) = n−m ≤ n− 2m2 − β.
In the construction of the acyclic subgraph A(G,V),

for every critical 2-simplex in V, we remove at
most one edge in G. Hence, we conclude that
m3OMAS(G,A(G,V)) ≥ |E| −m2.

Lemma 4.9. Given a graph G and the corresponding
complex K(G), we have OPTMaxMM(K(G)) = n −
2 er(K(G))− β = n− 2 OPTminFAS(G)− β.

Proof. First note that for an optimal gradient vector
field on K(G), we have m0 = 1 and m2 = er(K(G)).
The first equality now follows by observing that in
the proof of Lemma 4.8, equality mMaxMM(K(G),V) =
n − 2m2 − β is obtained for β0 = m0. The second
equality immediately follows from Proposition 4.1.

Lemma 4.10. OPTMaxMM(K(G)) ≤ 78 OPT3OMAS(G).

Proof. For the Max-Acyclic Subgraph problem, from
the trivial 1

2 -factor approximation algorithm mentioned
in [38, Ch. 1], one knows that it is always possible to
find an acyclic subgraph AH of a directed graph H that
contains at least half the number of edges in H. Clearly,
this bound continues to hold when the class of graphs
is restricted to degree-3 oriented graphs. This gives the
following inequality:

(4.2) OPT3OMAS(G) ≥ |E|
2
.

First note that the number of simplices in the
modified dunce hat D is 7 + 19 + 13 = 39. The complex
K(G) described in §4 is constructed from a disjoint
union of |E| copies of D with several simplices identified,
giving us

(4.3) n ≤ 39 |E| .

From Lemma 4.9 and Eqs. (4.2) and (4.3) we obtain the
bound

OPTMaxMM(K(G)) ≤ n ≤ 39 |E| ≤ 78 OPT3OMAS(G).

Lemma 4.11. OPT3OMAS(G) −m3OMAS(G,A(G,V)) ≤
1
2 (OPTMaxMM(K(G))−mMaxMM(K(G),V)) .

Proof. By definition, OPT3OMAS(G) = E −
OPTminFAS(G). By Lemma 4.8,

m3OMAS(G,A(G,V)) ≥ |E| −m2.

Copyright © 2019 by SIAM
Unauthorized reproduction of this article is prohibited2672



Hence,

(OPT3OMAS(G)−m3OMAS(G,A(G,V)))

≤ m2 −OPTminFAS(G).
(4.4)

Using Lemma 4.8 and Lemma 4.9, we obtain

(OPTMaxMM(K(G))−mMaxMM(K(G),V))

≥ 2 (m2 −OPTminFAS(G)).
(4.5)

Substituting Equation 4.4 in Equation 4.5, we obtain
the lemma.

Theorem 4.1. It is NP-hard to approximate MaxMM
within a factor of

(
1− 1

4914

)
+ ε and UGC-hard to

approximate it within a factor of
(
1− 1

702

)
+ ε, for any

ε > 0.

Proof. From Lemma 4.10 and Lemma 4.11 we conclude
that the reduction from 3OMAS to MaxMM is an L-
reduction with parameters µ = 78 and ν = 1

2 . By The-
orem 2.3, if there exists a

(
1− 1

µν δ + ε
)
-approximation

algorithm for MaxMM, then there exists a (1− δ + µνε)-
algorithm for 3OMAS. Using Corollary 2.2, we choose
δ = 1

126 to deduce that it is NP-hard to approximate
MaxMM within a factor of

(
1− 1

4914

)
+ ε, and choose

δ = 1
18 to deduce that it is UGC-hard to approximate

MaxMM within a factor of
(
1− 1

702

)
+ ε.

5 Conclusion & Discussion

In this paper, we provide the first hardness of approxi-
mation results for the maximization and the minimiza-
tion variants of the Morse matching problems.

While we established a hardness result for Min-
Morse Matching on simplicial complexes of dimension
d ≥ 3, the question of hardness of approximation
for Min-Morse matching for 2-dimensional simplicial
complexes remains open. We will address this question
in future work.

For the Max-Morse Matching problem on d-
dimensional simplicial complexes, although our work
clears a major hurdle of going beyond NP-hardness, a
gap remains between the best approximability and inap-
proximability bounds. The best known approximation
algorithm for Max-morse matching on simplicial com-
plexes yields an approximation ratio of d+1

d2+d+1 [35]. We
believe that our result and techniques will pave way for
further work in improving the gap, and in placing Max-
Morse Matching in the right kind of approximation-
algorithms related complexity class. In particular,
devising an approximation algorithm for Max-Morse
Matching with an approximation factor independent of
the dimension of the complex, or establishing a hard-
ness of approximation result for Max-Morse Matching

that is dependent on the dimension is a challenging open
problem.

We close the discussion with some additional open
problems. Note that the complex K(G) employed in the
hardness result for Max-Morse Matching described in §4
is not a manifold. Hence, the question of hardness of
approximation for Max-Morse Matching on simplicial
manifolds is open. The best known approximation
algorithm for Max-Morse Matching on d-dimensional
simplicial manifolds has approximation factor 2

d [35].
Finally, we also leave it as an open question to

investigate sharper inapproximability bounds for Max-
Morse Matching on regular cell complexes.

References

[1] M. Allili, T. Kaczynski, C. Landi, and F. Masoni.
Algorithmic construction of acyclic partial matchings
for multidimensional persistence. In W. G. Kropatsch,
N. M. Artner, and I. Janusch, editors, DGCI 2017:
Discrete Geometry for Computer Imagery, pages 375–
387. Springer, 2017.

[2] U. Bauer, C. Lange, and M. Wardetzky. Optimal topo-
logical simplification of discrete functions on surfaces.
Discrete & Computational Geometry, 47(2):347–377,
2012.

[3] P. Brendel, P. Dlotko, G. Ellis, M. Juda, and
M. Mrozek. Computing fundamental groups from
point clouds. Appl. Algebra Eng., Commun. Comput.,
26(1-2):27–48, Mar. 2015.

[4] B. A. Burton, T. Lewiner, J. a. Paixão, and J. Spreer.
Parameterized complexity of discrete Morse theory.
ACM Trans. Math. Softw., 42(1):6:1–6:24, Mar. 2016.

[5] F. Cazals, F. Chazal, and T. Lewiner. Molecular shape
analysis based upon the Morse–Smale complex and the
Connolly function. In Proceedings of the Nineteenth
Annual Symposium on Computational Geometry, SCG
’03, pages 351–360. ACM, 2003.

[6] M. K. Chari. On discrete Morse functions and combi-
natorial decompositions. Discrete Mathematics, 217(1-
3):101–113, 2000.

[7] J. Curry, R. Ghrist, and V. Nanda. Discrete morse the-
ory for computing cellular sheaf cohomology. Found.
Comput. Math., 16(4):875–897, Aug. 2016.

[8] T. K. Dey, J. Wang, and Y. Wang. Graph Reconstruc-
tion by Discrete Morse Theory. In 34th International
Symposium on Computational Geometry (SoCG 2018),
2018.
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Séminaire Lotharingien de Combinatoire, B48c:1–35,
2002.

Copyright © 2019 by SIAM
Unauthorized reproduction of this article is prohibited2673



[12] V. Guruswami, J. H̊astad, R. Manokaran,
P. Raghavendra, and M. Charikar. Beating the
random ordering is hard: Every ordering CSP is ap-
proximation resistant. SIAM Journal on Computing,
40(3):878–914, 2011.

[13] M. Hachimori. Combinatorics of constructible com-
plexes. PhD thesis, Tokyo University, 2000.

[14] S. Harker, K. Mischaikow, M. Mrozek, and V. Nanda.
Discrete Morse theoretic algorithms for computing
homology of complexes and maps. Foundations of
Computational Mathematics, 14(1):151–184, Feb 2014.

[15] S. Harker, K. Mischaikow, M. Mrozek, V. Nanda,
H. Wagner, M. Juda, and P. Dlotko. The efficiency of
a homology algorithm based on discrete Morse theory
and coreductions. In Proc. of 3rd Intl. Workshop on
CTIC, volume 1(1), 2010.

[16] A. Hatcher. Algebraic Topology. Cambridge University
Press, 2002.

[17] P. Hersh. On optimizing discrete Morse functions. Ad-
vances in Applied Mathematics, 35(3):294–322, Sept.
2005.
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In order to obtain a combinatorial description of homotopy theory, White-
head developed a refinement of homotopy theory, called simple homotopy theory.
Simple homotopy theory considers sequences of elementary homotopy equiva-
lences defined on simplicial complexes (or, more generally, CW complexes): an
elementary collapse, which takes a face of a complex contained only in a single
proper coface and removes both faces, and its inverse operation, called an
elementary expansion. Two simplicial complexes are then said to be of the same
simple homotopy type if one can be transformed into the other by a sequence of
elementary collapses and expansions. Complexes of the same simple homotopy
type are homotopy equivalent, but the converse is not always true.

The question of whether a finite contractible 2-dimensional CW complex
K is simple homotopy equivalent to a point through expansions only up to
dimension 3 is a famous open problem known as the Andrews-Curtis conjec-
ture. The Andrews-Curtis conjecture is related to other important problems in
mathematics like the Zeeman conjecture and the Poincaré conjecture. In this
article, motivated by some of the important open problems in simple homotopy
theory, we investigate the parametrized complexity of a few variants of the
problem of deciding contractibility.

In particular, we focus on two problems:

• Decide whether a given 2-dimensional simplicial complex admits a
simple-homotopy to a 1-complex using at most p expansions, called
Erasability Expansion Height.

• Decide whether a given 2-dimensional simplicial complex admits a
simple-homotopy to a 1-complex using at most p expansions, where
all expansions come at the beginning of the sequence, called Erasability

Expansion Height.

In general, the two heights may differ.
We begin with an introduction in Section 1, followed by preliminaries in

Section 2. In Section 3, we describe the variants of the problems for which
complexity bounds are established in later sections. In Section 4, we describe
the main building block used in the reduction, which is a subdivision of the
so-called modified dunce hat introduced in Paper I. In Section 5.1, we prove that
Erasability Expansion Height is W[P]-hard. The proof uses a reduction from
Axiom Set. The same reduction also establishes W[P]-hardness of Ordered

Erasability Expansion Height. In Section 5.2, we show that Erasability
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Expansion Height and Ordered Erasability Expansion Height are both in
W[P], and hence also W[P]-complete. Both results rest on the key observation
that a 2-complex is erasable if and only if greedily collapsing triangles yields
a 1-dimensional complex. In Section 6, we show that as a consequence of the
above reduction, the problem of deciding whether a 2-dimensional simplicial
complex can be shown to be simple-homotopy equivalent to a 1-complex using
only 3-dimensional expansions is NP-complete.

statement of individual contribution. Jonathan Spreer sug-
gested the idea for this project to Uli Bauer during a visit to Munich. Uli Bauer
later involved me in the discussions. In this collaboration, I was the principal
author and I was significantly involved in finding the ideas and carrying out
the scientific work of all parts of this article. Even though I was the main person
responsible for writing up this article, I received substantial writing help from
my collaborators, especially from Jonathan Spreer, in Sections 4 and 5.
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Deciding whether two simplicial complexes are homotopy equivalent is a fundamental problem in
topology, which is famously undecidable. There exists a combinatorial refinement of this concept,
called simple-homotopy equivalence: two simplicial complexes are of the same simple-homotopy type
if they can be transformed into each other by a sequence of two basic homotopy equivalences, an
elementary collapse and its inverse, an elementary expansion. In this article we consider the following
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1 Introduction

Homotopy theory lies at the heart of algebraic topology. In an attempt to make the concept
of homotopy equivalence more amenable to combinatorial methods, Whitehead developed
what turned out to be a combinatorial refinement of the theory, called simple-homotopy
theory. Simple-homotopy theory considers sequences of elementary homotopy equivalences
defined on simplicial complexes (or, more generally, CW complexes): an elementary collapse,
which takes a face of a complex contained only in a single proper coface and removes both
faces, and its inverse operation, called an elementary expansion. Two simplicial complexes are
then said to be of the same simple-homotopy type if one can be transformed into the other by
a sequence of elementary collapses and expansions. Complexes of the same simple-homotopy
type are homotopy equivalent, but the converse is not always true [18], the obstruction
being an element of the Whitehead group of the fundamental group. However, Whitehead
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13:2 Parametrized Complexity of Expansion Height

proved that all homotopy-equivalent complexes with a trivial fundamental group are in
fact of the same simple-homotopy type [19], and thus in this particular case the notions of
simple-homotopy and homotopy coincide.

A presentation of the fundamental group can be read off from a two-dimensional complex
such that the presentation is balanced and describes the trivial group if and only if this complex
is contractible [12]. Since the decidability of the triviality problem for balanced presentations
is open [4], the same is also true for the decidability of contractibility of 2-complexes. Hence,
the decidability of the existence of a simple-homotopy equivalence from a 2-complex to a
point is also open. In contrast, the problem of deciding whether a given complex has trivial
fundamental group is famously undecidable already for 2-complexes through its connection
to the word problem, see, for instance, [5]. It follows that sequences of elementary collapses
and expansions proving simple-homotopy equivalence between a 2-complex and a point can
be expected to be long, if not unbounded. Nonetheless, understanding these sequences offers
a great reward: the statement that any contractible 2-complex contracts to a point using
only expansions up to dimension three is equivalent to a weaker variant [13, p. 34–35] of the
Andrews–Curtis conjecture [1, 20].

In this article, motivated by the aforementioned problems, we investigate the com-
putational (parametrized) complexity of a number of variants of the problem of deciding
contractibility. More precisely, we focus on the problem of deciding whether a given 2-complex
admits a simple-homotopy to a 1-complex using at most p expansions, called Erasibility
Expansion Height. In addition, we consider a variant, called Ordered Erasibility
Expansion Height, which requires that all expansions come at the very beginning of
the sequence. It is worth noting that Erasibility Expansion Height and Ordered
Erasibility Expansion Height are equivalent for CW complexes for which one can readily
swap the order of expansions and collapses [13, p. 34]. However, for simplicial complexes,
the ordered and unordered expansion heights may differ.

In Section 5.1, we prove that Erasibility Expansion Height is W[P]-hard, see
Theorem 8. The proof uses a reduction from Axiom Set. The same reduction also
establishes W[P]-hardness of Ordered Erasibility Expansion Height. Note that a
reduction from Axiom Set is also used by the third author and others in [6] to establish
W[P]-hardness of a parametrized version of Optimal Morse Matching. However, unlike
in [6], the use of combinatorial and topological properties of the dunce hat is a key ingredient
of the reduction used in this paper. In particular, there is only one gadget in the reduction –
a subdivision of the so-called modified dunce hat [3], see Figure 2. In this sense the techniques
used in this paper are also related to recent work by the first and second author in [3], where
they show hardness of approximation for some Morse matching problems.

In Section 5.2, we show that Erasibility Expansion Height and Ordered Erasibil-
ity Expansion Height are both in W[P], and hence also W[P]-complete, see Theorems 8,
13 and 14. Both results rest on the key observation that a 2-complex is erasable if and only
if greedily collapsing triangles yields a 1-dimensional complex (Proposition 11), as shown by
Tancer [17, Proposition 5].

In Section 6 we show that, as a consequence of the above reduction, the problem of deciding
whether a 2-complex can be shown to be simple-homotopy equivalent to a 1-complex using
only 3-dimensional expansions, called Erasibility 3-Expansion Height, is NP-complete,
see Theorem 17.
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2 Definitions and Preliminaries

2.1 Simplicial complexes
A (finite) abstract simplicial complex is a collection K of subsets of a finite ground set V
such that if τ is an element of K, and σ is a nonempty subset of τ , then σ is an element
of K. The ground set V is called the set of vertices of K. Since simplicial complexes are
determined by their facets, we sometimes present simplicial complexes by listing their facets.
A subcomplex of K is a subset L ⊆ K which is itself a simplicial complex. Given a subset
W ⊆ V of the vertices of K, the induced subcomplex on W consists of all simplices of K that
are subsets of W .

The elements of K are referred to as its faces. The dimension of a face is defined to be
its cardinality minus one, and the dimension of K equals the largest dimension of its faces.
For brevity, we sometimes refer to a d-dimensional simplicial complex as a d-complex and
to a d-dimensional face as a d-face. The 0-, 1-, and 2-faces of a d-complex K are called its
vertices, edges, and triangles respectively. Faces of K which are not properly contained in
any other face are called facets. An (m− 1)-face σ ∈ K which is contained in exactly one
m-face τ ∈ K is called free.

The star of a vertex v of complex K, written starK(v), is the subcomplex consisting of
all faces of K containing v, together with their faces. If a map φ : V → W between the
vertex sets of two simplicial complexes K and L, respectively, sends every simplex σ ∈ K to
a simplex φ(σ) ∈ L, then the induced map f : K → L, σ 7→ φ(σ), is said to be simplicial.

2.2 Simple-homotopy
We introduce the basic notions of simple-homotopy used in the present paper. The general
concept of simple-homotopy can be understood independently from the notion of homotopy.
In this sense this article aims to be self-contained. For further reading on homotopy theory
we refer to [11].

In short, a simple-homotopy equivalence is a refinement of a homotopy equivalence. It
can be described purely combinatorially with the help of the following definition.

I Definition 1 (Elementary collapses and expansions). Let K0 be a simplicial complex, and let
τ, σ ∈ K0 be an m-face and an (m− 1)-face respectively such that σ ⊂ τ , and σ is free in K0.

We say that K1 = K0 \ {τ, σ} arises from K0 by an elementary collapse of dimension m
or elementary m-collapse, denoted by K0 ↘ K1. Its inverse, the operation K0 = K1 ∪ {τ, σ}
is called an elementary expansion of dimension m or elementary m-expansion, written
K0 ↗ K1. If the complex is implicit from context, we denote elementary collapses by ↘τ

σ

and elementary expansions by ↗τ
σ. An elementary collapse or an elementary expansion is

sometimes referred to as an elementary move, or simply a move.
If there exists a sequence of elementary collapses turning a complex K0 into K1 we write

K0 ↘ K1 and say that K0 collapses to K1. If K1 is one-dimensional, we say that K0 is
erasable. If K1 is merely a point we call K0 collapsible.

Finally, we write K0 ↗ K1 to indicate a sequence of expansions and say that K0
expands to K1.

It follows that an expansion ↗τ
σ can only be performed in a simplicial complex K if

all codimension 1 faces of τ except for σ are already in K. Hence, let τ be an m-face of
a simplicial complex K, and let σ be one of its (m − 1)-faces. An (m-dimensional) horn
H(τ, σ) associated to the pair (τ, σ) is the simplicial complex generated by the (m− 1)-faces
of τ apart from σ.
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All m-expansions and m-collapses with m > 1 leave the vertex set unchanged.

I Definition 2 (Simple-homotopy equivalence, simple-homotopy graph). Two simplicial com-
plexes K and L are said to be simple homotopy equivalent or of coinciding simple-homotopy
type, written K�↘L, if there exists a sequence S of elementary moves turning one into the
other. In this case, we write S : K�↘L.

The dimension of a simple-homotopy equivalence is the maximum of the dimensions of
K, L and of any elementary expansion or collapse in the sequence.

The graph whose nodes are simplicial complexes, and two nodes are adjacent if their
corresponding complexes are related by an elementary collapse is called simple-homotopy
graph. Naturally, its connected components are in one-to-one correspondence with simple-
homotopy types.

Two simplicial complexes of the same simple-homotopy type are homotopy equivalent,
but the converse is not true, see, for instance, [18]. For simple-homotopy equivalent simplicial
complexes we know the following.

I Theorem 3 (Wall [17], Matveev [13, Theorem 1.3.5]). Let K and L be two simplicial
complexes of the same simple-homotopy type and of dimension at most m > 2. Then there
exists a simple-homotopy equivalence of dimension at most m+ 1, taking one to the other.

For the case m = 2, Theorem 3 is still open and known as the (topological or geometric)
Andrews–Curtis conjecture [2, 13, 15]. On the other hand, it is known that any contractible
2-complex is also simple-homotopy equivalent to a point [19]. Hence, any pair of contractible
2-complexes can be connected by a simple-homotopy equivalence of dimension at most four –
but determining whether we can always decide if such a simple-homotopy equivalence exists is
an open question [4], equivalent to the triviality problem for balanced group presentations [12].

2.3 Parametrized complexity
Parametrized complexity, as introduced by Downey and Fellows in [7], is a refinement of
classical complexity theory. The theory revolves around the general idea of developing
complexity bounds for instances of a problem not just based on their size, but also involving
an additional parameter, which might be significantly smaller than the size. Specifically, we
have the following definition.

I Definition 4 (Parameter, parametrized problem). Let Σ be a finite alphabet.
1. A parameter of Σ∗, the set of strings over Σ, is a function ρ : Σ∗ → N, attaching to every

input w ∈ Σ∗ a natural number ρ(w).
2. A parametrized problem over Σ is a pair (P, ρ) consisting of a set P ⊆ Σ∗ and a

parametrization ρ : Σ∗ → N.

In this article we consider the complexity class W[P] for parametrized problems, following
the definition by Flum and Grohe [8].

I Definition 5 (Complexity Class W[P]). Let Σ be an alphabet and ρ : Σ∗ → N a parametriza-
tion. A nondeterministic Turing machine M with input alphabet Σ is called ρ-restricted if
there are computable functions f, h : N→ N and a polynomial p (with coefficients in the set
of natural numbers) such that on every run with input x ∈ Σ∗ the machine M performs at
most f(k) · p(|x|) steps, at most h(k) · log |x| of them being nondeterministic, where k := ρ(x).
W[P] is the class of all parametrized problems (P, ρ) that can be decided by a ρ-restricted
nondeterministic Turing machine.



U. Bauer, A. Rathod, and J. Spreer 13:5

3 Problems

In this article we consider the following parametrized problems.

I Problem 1 (Erasibility Expansion Height).
Instance: A 2-dimensional simplicial complex K and a natural number p.
Parameter: p.
Question: Is there a path in the simple-homotopy graph connecting K to a 1-complex

using at most p expansions?

I Problem 2 (Ordered Erasibility Expansion Height).
Instance: A 2-dimensional simplicial complex K and a natural number p.
Parameter: p.
Question: Is there a path in the simple-homotopy graph connecting K to a 1-complex

using first at most p expansions, followed by a sequence of only collapses?

In Section 5, we establish W[P]-completenes for Erasibility Expansion Height and
Ordered Erasibility Expansion Height.

The hardness proof works via a parametrized reduction using the Axiom Set problem,
which is a classical NP-complete problem [9, p. 263] that is well-known to be W[P]-complete
with respect to the appropriate parameter [7, p. 473].

I Problem 3 (Axiom Set).
Instance: A finite set S of sentences, an implication relation R consisting of pairs

(U, s) where U ⊆ S and s ∈ S, and a positive integer p ≤ |S|.
Parameter: p.
Question: Is there a set S0 ⊆ S, called an axiom set, with |S0| ≤ p and a positive

integer n such that if we recursively define

Si := Si−1 ∪ {s ∈ S | ∃U ⊆ Si−1 : (U, s) ∈ R}

for 1 ≤ i ≤ n, then Sn = S?

I Remark 6. Note that every instance of Axiom Set can be reduced in polynomial time
to an instance for which every sentence must occur in at least one implication relation:
First iteratively remove all sentences from the instance which do not feature in at least one
implication relation. Then, for each of them, reduce p by one (note that each of them must
necessarily be an axiom). It follows that solving the reduced instance is equivalent to solving
the original instance.

Similarly, note that if there exists an implication (U, s) ∈ R, s ∈ U , we can simply omit
it and, if this deletes s from the instance altogether, decrease p by one.

In Section 6, we show that the following variants of the expansion height problem are
NP-complete.

I Problem 4 (Erasibility 3-Expansion Height).
Instance: A finite 2-dimensional simplicial complex K and a natural number p.
Question: Is there a path in the simple-homotopy graph connecting K to a 1-complex

using at most p expansions, all of which are 3-expansions?

I Problem 5 (Ordered Erasibilty 3-Expansion Height).
Instance: A finite 2-dimensional simplicial complex K and a natural number p.
Question: Is there a path in the simple-homotopy graph connecting K to a 1-complex

using first at most p expansions, all of which are 3-expansions, followed by
a sequence of only collapses?
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4 Contractibility and collapsibility for 2-complexes

The main gadget used in the proof of our main result, Theorem 8, is based on the simplest
2-dimensional contractible complex which is not collapsible to a point – the dunce hat. Hence,
before we describe our main gadget in detail, we start this section by briefly discussing
minimal triangulations of the dunce hat, and a variant that is collapsible through a unique
free edge, the modified dunce hat.

4.1 The dunce hat
In the category of CW complexes, the dunce hat can be obtained by identifying two boundary
edges of a triangle to build a cone and then gluing the third edge along the seam of the first
gluing. The resulting complex does not have a collapsible triangulation. On the other hand,
the dunce hat is known to be contractible [21].

The smallest simplicial complexes realizing this construction have 8 vertices, 24 edges and
17 triangles. There are seven such minimal triangulations of the dunce hat [16]. One such
triangulation, denoted by D, is shown in Figure 1. The dunce hat D has two horns, namely
H({2, 7, 8}, {1, 2, 7, 8}) and H({3, 5, 6}, {1, 3, 5, 6}), and hence admits two 3-expansions,
namely ↗{1,2,7,8}{2,7,8} and ↗{1,3,5,6}{3,5,6} respectively. They are shown by the shaded areas in
Figure 1.
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Figure 1 Left: The 8-vertex triangulation D of the dunce hat. The two expansions turning it
collapsible are highlighted. Right: The 7-vertex triangulation P of the modified dunce hat.

Note that after any of these two expansions we obtain a collapsible complex: After the
expansion ↗{1,2,7,8}{2,7,8} and the collapses ↘{1,2,7,8}{1,7,8} , ↘{1,2,7}{1,7} , and ↘{1,2,8}{1,8} , the edge {1, 2}
becomes free and thus D becomes collapsible. Similarly, starting with ↗{1,3,5,6}{3,5,6} , one may
perform the collapse ↘{1,3,5,6}{1,5,6} and proceed in an analogous way. In particular, this shows
that the dunce hat has the simple-homotopy type of a point, and in fact can be made
collapsible by using a single expansion.

4.2 The modified dunce hat
Rather than working with the dunce hat directly, we base the construction of our gadget for
the proof of Theorem 8 on the modified dunce hat [10]. More precisely, we “insert” a free
edge into the dunce hat. For instance, Figure 1 depicts a triangulation of the modified dunce
hat, which we denote by P, with {1, 3} as the unique free edge. This particular triangulation
of the modified dunce hat uses only 7 vertices, 19 edges, and 13 triangles. The modified
dunce hat has previously been used as a gadget to show hardness of approximation for
Morse matchings [3].
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If we assume that P is part of a larger complex K, in which edge {1, 3} is glued to
triangles not lying in P, then {1, 3} is not free. In this case, the triangles of P can be
collapsed away in essentially two distinct ways. Either, at some point in a simple-homotopy
on K, the edge {1, 3} becomes free and thus the triangles of P collapse, or the triangles of P
become collapsible by performing one of two possible 3-expansions on P. Looking at the
latter case in more detail, we have the following sequences of expansions and collapses:

↗{1,2,5,6}{2,5,6} , ↘{1,2,5,6}{1,5,6} , ↘{1,2,5}{1,5} , ↘{1,2,6}{1,6}

and

↗{2,3,6,7}{2,6,7} , ↘{2,3,6,7}{3,6,7} , ↘{2,3,6}{3,6} , ↘{2,3,7}{3,7} .

In the first case, the edge {1, 2} is freed, in the second case, the edge {2, 3} is freed. Both
sequences can be extended to a collapsing sequence of the entire complex P.

4.3 The main gadget
Our gadget for the proof of Theorem 8 is a subdivided version of the modified dunce hat P
from Section 4.2. More precisely, it is determined by two positive integers m and `, denoted
by Pm,`, and can be constructed from the complex P in essentially two steps.

1. Subdivide the edge {1, 3} of P (m− 1) times, thereby introducing vertices x1, . . . xm−1.
Relabel 1→ x0 and 3→ xm to obtain m free edges fi = {xi−1, xi}, 1 ≤ i ≤ m.

2. Remove the edge {4, 6} and place ` vertex-disjoint copies of the disk

{{cj , aj , yj}, {cj , yj , zj}, {cj , zj , bj}, {dj , aj , yj}, {dj , yj , zj}, {dj , zj , bj}},

1 ≤ j ≤ `, inside the 4-gon in the center of P bounded by 4, 5, 6, and 7. Triangulate the
remaining space in the interior of the 4-gon. This creates edges ej = {yj , zj}, 1 ≤ j ≤ `,
with pairwise vertex disjoint stars disjoint to 4, 5, 6, and 7 (now {4, 6} reappears as
a path from 4 to 6, and thus Pm,` is in fact a proper subdivision of P). See Figure 2
for an illustration.

One key property of Pm,` is that we do not subdivide any faces of P near to the two
available 3-expansions. As a result, again, assuming that Pm,` is part of a larger complex K
where all free edges of Pm,` are glued to other triangles of K outside of Pm,` and thus are
not free, the triangles of Pm,` can be collapsed according to the following observation:
I Remark 7. Let K be a two-dimensional simplicial complex such that Pm,` is a subcomplex
whose vertices do not span any other faces of K (i.e., Pm,` is an induced subcomplex
of K), and K�↘L where L is a 1-complex. Then, at least one of the following three
statements holds true at some point in K�↘L, enabling us to eventually collapse away all
the triangles of Pm,`.
1. one of the edges fi ∈ Pm,` becomes free;
2. one of two 3-expansions on Pm,` : ↗{1,2,5,6}{2,5,6} or ↗{2,3,6,7}{2,6,7} is performed;
3. multiple expansions result in a complex in which all the triangles of Pm,` can be collapsed.
In other words, if one of the edges fi ∈ Pm,` does not become free at some point in K�↘L,
then one is forced to use 3-expansions (either directly on Pm,`, or after performing additional
expansions) to collapse away the triangles of Pm,`.

In Section 5.1 we use this gadget to reduce an instance A = (S,R, p) of Axiom Set
to Erasibility Expansion Height: Every sentence s ∈ S is associated with one copy of
Pm,`, the edges fi correspond to implications (U, s) ∈ R, and the edges ej correspond to
whenever s ∈ U for some implication (U, u) ∈ R.
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Figure 2 The main gadget of the construction Pm,`.

5 Parametrized complexity of Erasibility Expansion Height

In this section, we first prove that Erasibility Expansion Height and Ordered Era-
sibility Expansion Height are W[P]-hard by a reduction from Axiom Set, a prob-
lem known to be W[P]-complete. We then show that the two problems are also con-
tained in W[P].

5.1 W[P]-hardness of expansion height problems
I Theorem 8. Erasibility Expansion Height and Ordered Erasibility Expansion
Height are W[P]-hard problems.

The following lemma is used to assemble the gadgets in our reduction into a simplicial
complex K.

I Lemma 9 (Munkres, [14, Lemma 3.2]). Let C be a finite set, let K be a simplicial complex
with set of vertices V , and let f : V → C be a surjective map associating to each vertex of
K a color from C. The coloring f extends to a simplicial map g : K → Kf where Kf has
vertex set C and is obtained from K by identifying vertices with equal color.

If for all pairs v, w ∈ V , f(v) = f(w) implies that their stars starK(v) and starK(w) are
vertex disjoint, then, for all faces τ, σ ∈ K we have that

τ and g(τ) have the same dimension, and
g(τ) = g(σ) implies that either τ = σ or τ and σ are vertex disjoint in K.

Lemma 9 provides a way of gluing faces of a simplicial complex by a simplicial quotient
map obtained from vertex identifications, and tells us when this gluing does not create
unwanted identifications.

Proof of Theorem 8. We want to reduce Axiom Set to Erasibility Expansion Height.
Fix an instance A = (S,R, p) of Axiom Set such that every sentence s ∈ S is subject to

at least one implication (U, s) ∈ R and such that (U, s) ∈ R implies s 6∈ U . By Remark 6,
this is not a restriction, since every instance of Axiom Set can be reduced to such an
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instance in polynomial time. For every sentence s ∈ S, take a copy Ps of the gadget Pm,` to
model s, where ` ≥ 0 is the number of implications (U, u) ∈ R with s ∈ U and m ≥ 1 is the
number of implications (U, s) ∈ R. Thus, for all values ` ≥ 0 and m ≥ 1 the gadget Pm,` is
a simplicial complex without any unintended identifications. Denote the free edges of Ps by
fsi = {xsi−1, x

s
i}, 1 ≤ i ≤ m, and its edges of type ej by esj = {ysj , zsj}, 1 ≤ j ≤ `.

For a fixed s ∈ S, endow the set of implications (U, s) ∈ R of s with an arbitrary order
(U1, s), . . . , (Um, s). Similarly, for a fixed u ∈ S, order the set of implications in R containing
u arbitrarily as (U1, s1), . . . , (U `, s`). Now for every (Ui, s) ∈ R and every u ∈ Ui = U j (i.e.,
sj = s), glue the edge fsi = {xsi−1, x

s
i} of the gadget Ps to the edge euj = {yuj , zuj } of Pu by

identifying xsi−1 with yuj and xsi with zuj .
Performing these identifications for all implications in R yields a complex, which we

denote by K. Note that, fixing s ∈ S, and 0 ≤ i ≤ m, the only vertices to which xsi can
possibly be identified to in K are yuj , zuj (1 ≤ j ≤ `).

More precisely, using the orderings from above for vertex xsi , let (Ui, s) and (Ui+1, s)
be the i-th and (i+ 1)-st implication of s in R (if i ∈ {0,m} there is only one implication
to consider) and denote their sentences by u1, . . . , ur and u1, . . . , ut, where r = |Ui| and
t = |Ui+1|. Moreover, let Ui (resp. Ui+1) be the jf -th (resp. jg-th) implication where the
sentence uf (resp. ug) occurs, for 1 ≤ f ≤ r (resp. 1 ≤ g ≤ t). Then xsi is identified with zuf

jf

(1 ≤ f ≤ r) and yug

jg (1 ≤ g ≤ t).
Now since every fixed edge of type euj is only identified with one edge of type fsi , those

vertices are not identified with any other vertices of K. Since, by construction, the set of
the vertex stars of zuf

jf
(1 ≤ f ≤ r), yug

jg (1 ≤ g ≤ t), and xsi are pairwise vertex disjoint, we
can apply Lemma 9 to ensure that no unwanted identifications occur in building up K. In
particular, every gadget Ps is a subcomplex of K via the canonical isomorphism given by
the gluing map.

We now show that the following three statements are equivalent for our complex K:
(a) there exists a simple-homotopy equivalence turning K into a 1-dimensional complex

using first at most p expansions, followed by a sequence of only collapses,
(b) there exists a simple-homotopy equivalence K�↘L turning K into a 1-dimensional

complex L using at most p expansions, and
(c) there exists an axiom set S0 ⊂ S for A = (S,R, p) using at most p elements.

We trivially have that (a) =⇒ (b).
In order to show that (c) =⇒ (a), assume that there exists an axiom set S0 ⊂ S of size p,

and perform one 3-expansion on each gadget Pu with u ∈ S0. As described in Section 4.3,
these expansions admit all triangles of these gadgets to collapse. This, in turn, frees all edges
fsi where s ∈ S has an implication (U, s) ∈ R with U ⊂ S0. Consequently, all triangles of
such gadgets Ps can be collapsed. Since S0 is an axiom set, repeating this process eventually
collapses away all tetrahedra and triangles, leaving a 1-complex.

In order to show that (b) =⇒ (c), we start with a few definitions. For a complex K ′
with K�↘K ′, we say that a gadget Ps ⊆ K is touched with respect to a simple-homotopy
sequence S : K�↘K ′ if at some point in the simple-homotopy sequence one of the triangles
of Ps is removed. Otherwise Ps is said to be untouched. Note that even if all triangles of Ps

are present in K ′, Ps might still be touched. Being touched or untouched is a property of
the sequence S : K�↘K ′, not of the complex K ′.

We build the axiom set S0 ⊂ S for A = (S,R, p) in the following way: A sentence s ∈ S is
in S0 if and only if a triangle in Ps is removed by a 3-collapse of the given simple-homotopy
sequence S : K�↘L. We first inductively prove a claim about

Sk = {s ∈ S | Ps is touched by a 3-collapse in the first k moves of K�↘L}.
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We first inductively prove a claim about

Sk = {s ∈ S0 | Ps is by a 3-collapse in the first k moves of K�↘L}.

B Claim 10. For s ∈ S, if the gadget Ps is touched by the first k elementary moves in
S : K�↘L, then s is implied by sentences in Sk.

Proof. First note that all gadgets are untouched in K and S0 = ∅.
By induction hypothesis, if a gadget Ps is touched by one of the first k − 1 moves in

S : K�↘L, then s is implied by sentences in Sk−1.
The induction claim is trivially true if Ps is touched in the first k − 1 moves, or if Ps

is touched by a 3-collapse in the k-th move (s ∈ Sk \ Sk−1), causing the sentence s to be
included in S0.

So, suppose that this is not the case. That is, suppose that Ps is untouched in the
length k−1 prefix S ′ : K�↘K ′ of S : K�↘L and touched by a 2-collapse in the k-th move.
This implies that Sk = Sk−1 and that Ps is a subcomplex of K ′ and one of the edges fsi must
be free in K ′. Now let Pu1 ,Pu2 , . . . ,Puq

be the set of other gadgets containing triangles glued
to fsi in the original complex K (that is, there is an implication ({u1, u2, . . . , uq}, s) ∈ R).
Since none of these triangles are present in K ′, all gadgets Pu1 ,Pu2 , . . . ,Puq

must be touched
in S ′ : K�↘K ′. Thus, either they were touched by a 3-collapse and their corresponding
sentences are part of Sk−1, or they were touched by a 2-collapse and, by the induction
hypothesis, their corresponding sentences are implied by sentences in Sk. It follows that s is
implied by sentences in Sk = Sk−1, proving the claim. C

By assumption, K is simple homotopy equivalent to a 1-complex L. That is, S ′ : K�↘L

eventually removes all triangles from K. Hence, every sentence s ∈ S is touched as a result
of a 2-collapse or a 3-collapse. Let m be the number of elementary moves needed to reach
L starting from K. Then, by Claim 10, Sm = S0 is the desired axiom set. Also, since a
sentence s is included in S0 only if a triangle belonging to gadget Ps is removed as part
of a 3-collapse, and since a triangle belonging to gadget Ps does not belong to any other
gadget Pu for u 6= s, S0 cannot contain more elements than the number of 3-collapses (and
hence 3-expansions).

Finally, we infer W[P]-hardness of Erasibility Expansion Height and Ordered
Erasibility Expansion Height from the above equivalence and the W[P]-hardness of
Axiom Set [7, p. 473]. J

5.2 W[P]-membership of Erasibility Expansion Height
We now show that Ordered Erasibility Expansion Height and Erasibility Expan-
sion Height are in W[P] by describing suitable nondeterministic algorithms for deciding
both problems. We begin with a well-known fact about checking collapsibility of 2-complexes.

I Proposition 11 (Tancer [17], Proposition 5). Let K be a 2-complex that collapses to a
1-complex L and to another 2-complex M . Then M also collapses to a 1-complex.

I Remark 12. The proposition above implies that we can collapse an input 2-complex K
greedily until no more 2-collapses are possible, and if K collapses to a 1-complex L, the
algorithm is guaranteed to terminate with a 1-complex as well.

I Theorem 13. Ordered Erasibility Expansion Height is in W[P].
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Proof. Let K be a simplicial complex with n simplices. First, note that if there exists a
simple homotopy sequence S taking K to a 1-complex with p expansions that all come at
the beginning of the sequence, then there also exists a simple homotopy sequence SM taking
K to a 1-complex where p expansions are followed by collapses such that, for each d, all
collapses of dimension d+ 1 are executed before collapses of dimension d. This follows from
observing that, for any two d-collapses ↘τ

σ and ↘β
α, if the d-collapse ↘τ

σ is executed before
the d-collapse↘β

α in S, then the same can be carried out in SM. Also, in any simple homotopy
sequence S that takes K to a 1-complex, for every d > 2, the number of d-expansions equals
the number of d-collapses in S. This follows from a simple inductive argument starting with
highest dimensional moves.

Denoting the total number of d-collapses, d > 2, in S by q ≤ p, it follows that, if there
exists a simple homotopy sequence S with p expansions that come at the beginning, then
there exists a simple homotopy sequence SM with p expansions in the beginning followed by
q collapses that gives rise to a 2-complex K ′ with O(n3) faces. The faces can be as many
as O(n3) since M does not guess any 2-collapses. Furthermore, if K is erasable through the
simple homotopy sequence S, then K ′ is also erasable, once again, because the 2-collapses of
S can be carried out in the same order in SM. Hence, the non-deterministic Turing machine
M can now be described as follows:
1. Guess p expansions and q collapses non-deterministically to obtain a complex K ′.
2. Deterministically check if K ′ is erasable.
By Remark 12, erasability of K ′ can be deterministically checked in time polynomial in n.

Since any simplex in the desired simple homotopy sequence has at most n+ p vertices,
the number of bits required to encode a single vertex is O(log(n + p)). Also, because the
dimension of the faces involved in expansions and collapses is certainly in O(p), and since
an expansion or a collapse can be fully described by a pair of simplices, the number of bits
required to encode an expansion or a collapse is O(p log(n+ p)). Hence, in order to guess
p + q moves, it suffices for M to guess O(p2 · log(n + p)) bits in total since q ≤ p. Now,
assuming n, p ≥ 2, we have

p2 log(n+ p) ≤ p2 log(np) = p2 log(n) + p2 log(p) ≤ p2(1 + log(p)) log(n).

Hence, for sufficiently large n and p, the number of bits guessed by M is bounded by a
function of the form f(p) logn. Thus, M is a p-restricted Turing machine, and Ordered
Erasibility Expansion Height is in W[P]. J

I Theorem 14. Erasibility Expansion Height is in W[P].

Proof. Assume that there exists a simple homotopy that takes K to a 1-complex using no
more than p expansions. The Turing machine M needs to generate one such sequence. Below,
we show that, in order to achieve this, M does not have to guess an entire simple homotopy
sequence, but only a subsequence, and the remaining part of the sequence can be found
deterministically by M.

Given a 2-dimensional complex K with n faces, M first nondeterministically guesses p
expansions and p collapses, and the order in which they are to be executed. These moves are
referred to in the following as prescribed moves. While these moves are meant to appear in
a specified order, they need not appear consecutively. The moves that are not prescribed
are computed deterministically by M. A simple homotopy sequence of K, that takes K to a
1-complex, in which all the prescribed moves occur as a subsequence, is called a sequence
compatible with the prescribed moves. By assumption, there exists a set of prescribed moves
for which a compatible sequence exists.

ESA 2019
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In order to give a description of M, we introduce some additional terminology. Let Sjq be
an intermediate simple homotopy sequence computed by M, such that the first j prescribed
moves guessed by M form a subsequence of Sjq , q is the total number of moves in Sjq , and
Sjq is a prefix of a set of sequences S compatible with the prescribed set of moves. Let
K�↘Kj

q be the complex obtained by executing the moves in Sjq . Then, a collapse ↘τ
σ in

Kj
q is valid for this prefix if appending the collapse still leaves a compatible prefix. That

is, Sjq appended with the collapse ↘τ
σ (giving Sjq+1) continues to be a prefix of at least one

compatible sequence S ∈ S. A collapse that is not valid is said to be forbidden.
Note that labelling vertices of a complex C by natural numbers determines a lexicographic

order on the simplices of C. The lexicographic order <C on simplices of C can be extended
to a lexicographic order ≺ on collapses as follows: If (↘τ

σ), (↘β
α) are two collapses in C, then

(↘τ
σ) ≺ (↘β

α) if σ <C α.
The Turing machine M for deciding Erasibility Expansion Height can be described

as follows:
1. Guess 2p prescribed moves non-deterministically.
2. Execute 2-collapses in lexicographic order until no more 2-collapses are valid.
3. Repeat until all prescribed moves have been executed:

a. Execute the next prescribed move.
b. Execute 2-collapses in lexicographic order until no more collapses are valid.

Let S be a sequence compatible with an ordered set of prescribed moves X (of cardinality
2p), and let SM be a simple homotopy sequence computed by M as above such that X is
a subsequence of SM. Now, let σ be a free edge associated with a 2-collapse ↘τ

σ in Sjq for
some j and q, where Sjq is a subsequence of SM. If there exist future prescribed moves
including cofaces of σ, then the next prescribed move including cofaces of σ that is not an
expansion involving σ is denoted by m1. Similarly, if there exist future prescribed moves
including cofaces of τ , then the next prescribed move including cofaces of τ that is not an
expansion involving τ is denoted by m2. Note that m2 cannot come before m1 but we may
have m1 = m2. Then, the 2-collapse ↘τ

σ is forbidden if and only if m1 exists and is not
preceded by a future prescribed expansion involving σ or m2 exists, and is not preceded by
a future prescribed expansion involving τ . It follows that, for each free edge, checking if a
collapse is forbidden (or valid) can be done deterministically in time polynomial in p. To see
this note that the most expensive atomic operation is to check if a simplex (of dimension 1 or
2) is a face of a simplex that is at most p dimensional, and the number of prescribed moves
is at most 2p. Altogether, the set of valid collapses can be computed in time polynomial in n
and p, which can also be lexicographically ordered in polynomial time.

Finally, let K ′ denote the complex obtained from K by the sequence SM. Then, the
following claim establishes the effectiveness of the greedy strategy employed by M.
B Claim 15. If there exists a simple homotopy sequence with at most p expansions that
takes K to a 1-complex, then there exists an execution branch of the Turing machine that
terminates successfully, i.e., the complex K ′ obtained by M is a 1-complex.
Proof. Let S be a simple homotopy sequence with p expansions that takes K to a 1-complex.
Let Xe be the ordered set of expansions in S. Thus, |Xe| = p. Moreover, let X+

e (X+
c )

denote the d-expansions (d-collapses) in S with d > 2. As in Theorem 13, by a simple
inductive argument starting from the highest dimension it can be shown that |X+

c | = |X+
e |.

To the p expansions of S, we associate a set Xc of collapses of S as follows: If |X+
c | < p,

then let X−c be an arbitrary set of d-collapses in S with d ≤ 2, and |X−c | = p− |X+
c |. Now,

let Xc = X+
c ∪X−c , so that |Xc| = p. Finally, let the ordered set X of prescribed moves be

the set containing all elements of Xc ∪Xe seen as a subsequence of S.
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We assume that the non-deterministic Turing machine M correctly guesses the speci-
fied sequence of prescribed moves X. It now suffices to show the following claim about
the sequence SM. C

B Claim 16. SM is compatible with the prescribed moves X, and SM takes K to a 1-complex
if S takes K to a 1-complex.

Proof. Let K�↘Kj denote the complex obtained from S after executing the j-th prescribed
move in S. We show that there exists a complex Kj

M obtained from SM after executing the
j-th prescribed move in SM. Also, let T j (T jM ) denote the set of 2-simplices of Kj (Kj

M).
First observe that, K0

M = K exists and that T 0
M = T 0. We now show that the following

claim is inductively true: T jM ⊂ T j for all j ∈ [1, 2p]. Suppose we make the induction
hypothesis that T j−1

M ⊂ T j−1 for some j ∈ [1, 2p]. Then, the set of forbidden collapses for S
and SM are the same until the j-th move in X can be reached. Let τ1 be the first 2-face of
Kj−1 that is removed as part of a 2-collapse after j− 1 prescribed moves have been executed
in S. Without loss of generality, assume that the 2-collapse that removes τ1 is non-prescribed.
Then, there exists an edge σ1 ⊂ τ1 such that τ1 is the unique coface of σ1 in Kj−1. By
induction hypothesis, since T j−1

M ⊂ T j−1 the same is also true for Kj−1
M . Since M greedily

removes every valid collapse it can (in lexicographic order), at some appropriate lexicographic
index, τ1 is also removed from Kj−1

M (possibly along with σ1). Now, let τ1, τ2, . . . , τq−1 be
the first q − 1 2-faces removed from Kj−1 (as part of non-prescribed collapses). Assume
that τ1, τ2, . . . , τq−1 have also been removed from Kj−1

M . By the same reasoning as before,
if τq is the q-th face to be removed from Kj−1

M (as part of non-prescribed collapses), then
τq may also be removed from SM as part of a valid collapse. Hence, by induction, T jM ⊂ T j
for all j ∈ [1, 2p].

Finally, since by assumption, K2p collapses to a 1-complex, by applying arguments
analogous to the induction above, the same is true for K2p

M since T 2p
M ⊂ T 2p. C

Since given a 2-complex with n faces, M non-deterministically guesses 2p moves, as
in Theorem 13, the number of bits guessed by M is bounded by f(p) log(n), where f(p) =
O(p2(1 + log(p))). Hence, M is a p-restricted Turing machine, and Erasibility Expansion
Height is in W[P]. J

6 NP-completeness of Erasibility 3-Expansion Height

Note that the parametrized reduction from Axiom Set to Erasibility Expansion Height
(and Ordered Erasibility Expansion Height) is also a polynomial-time reduction (or
Karp reduction) from Axiom Set to Erasibility 3-Expansion Height (and Ordered
Erasibilty 3-Expansion Height), since the complexity of reduction is independent of the
parameter p and depends only on the size of the input complex. This observation leads us to
the following result.

I Theorem 17. The decision problems Erasibility 3-Expansion Height and Ordered
Erasibilty 3-Expansion Height are NP-hard.

Proof. Since the Axiom Set problem is known to be NP-hard [9], it follows that Erasi-
bility 3-Expansion Height and Ordered Erasibilty 3-Expansion Height are also
NP-hard. J

For the rest of the section, we assume that K is a 2-complex K with n faces and m

vertices. The total number of simplices that one can encounter in any simple homotopy
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sequence of K using only 3-expansions is at most M = O(m4). (Note that the ground set
of K is fixed since we do not allow 1-expansions). Hence, the total number of elementary
moves that may be available at any given point in the sequence is bounded by O(M). That
is, p itself is bounded by O(M).

I Theorem 18. Erasibility 3-Expansion Height is in NP.

Proof. The non-deterministic algorithm M for deciding Erasibility 3-Expansion Height
first guesses at each point in the simple homotopy sequence starting with K, one elementary
move (out of at most O(M) available moves), and constructs a new complex from the move.
The total number of moves made by M is bounded by (n+2p−1

2 ). Finally, M checks if the
final complex is a 1-complex. J

I Theorem 19. Ordered Erasibilty 3-Expansion Height is in NP.

Proof. The non-deterministic algorithmM for deciding Ordered Erasibilty 3-Expansion
Height first guesses at most p 3-expansions followed by an equal number of 3-collapses,
resulting in a 2-complex K ′ with n faces. From Remark 12, the erasability of K ′ can be
deterministically checked in time polynomial in n, proving the claim. J
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B A S I S A N D M I N I M U M H O M O L O G Y B A S I S .

Minimum cycle bases in graphs have several applications from analysis of
electrical networks and biological pathways to surface reconstruction and graph
drawing. Cycle bases of small size offer a compact description that can be
particularly advantageous from an application viewpoint. For this reason, the
problem of computing a minimum cycle basis is a well-studied problem.

In topological data analysis, “holes” of different dimensions in a geometric
dataset are regarded as “features” of the data. Algebraic topology offers a
rigorous language to formalize our intuitive picture of holes, tunnels and
cavities in these geometric objects. Specifically, a basis for the first homology
group H1 can be taken as a representative for the one-dimensional holes in
the geometric object. The advantages of using minimum homology bases are
twofold: firstly, one can bring geometry in picture by assigning appropriate
weights to edges if these weights also correspond to distances between vertices,
and secondly, cycles with smaller support are easier to understand and analyze,
especially visually. In this article, we focus solely on the bases of the first
homology group since the problem of computing a shortest basis for higher
homology groups with Z2 coefficients was shown to be NP-hard by Chen and
Freedman. Hence, going forward, by homology basis, we mean homology basis
for H1.

The article is structured as follows. We begin with an introduction in Section
1. In Section 2.1, we recall some structural results regarding minimum cycle
bases from the works of Horton, de Pina, and Amaldi et al. In Section 2.2, we
recall some of the state-of-the-art results from literature concerning column
rank profile computation. In Section 3, we devise an algorithm for computing
a minimum cycle basis of a graph. This algorithm has a particularly simple
high-level description. In Section 4, we prove a structural result concerning
minimum homology bases for simplicial complexes. In Section 5, we devise two
algorithms for computing minimum homology bases for simplicial complexes,
which improve upon the state-of-the-art algorithms for this problem by Dey et
al. We end the article with a discussion section.

statement of individual contribution. As soon as I had the
idea for this paper, I discussed it with Uli Bauer, who was supportive of the
project, and asked me to write it up. Since I am the sole author of this article, I
am fully responsible for all parts.
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Abstract
We study the problem of finding a minimum homology basis, that is, a shortest set of cycles that
generates the 1-dimensional homology classes with Z2 coefficients in a given simplicial complex K.
This problem has been extensively studied in the last few years. For general complexes, the current
best deterministic algorithm, by Dey et al. [8], runs in O(Nω + N2g) time, where N denotes the
number of simplices in K, g denotes the rank of the 1-homology group of K, and ω denotes the
exponent of matrix multiplication. In this paper, we present two conceptually simple randomized
algorithms that compute a minimum homology basis of a general simplicial complex K. The first
algorithm runs in Õ(mω) time, where m denotes the number of edges in K, whereas the second
algorithm runs in O(mω + Nmω−1) time.

We also study the problem of finding a minimum cycle basis in an undirected graph G with n

vertices and m edges. The best known algorithm for this problem runs in O(mω) time. Our algorithm,
which has a simpler high-level description, but is slightly more expensive, runs in Õ(mω) time.
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1 Introduction

Minimum cycle bases in graphs have several applications, for instance, in analysis of elec-
trical networks, analysis of chemical and biological pathways, periodic scheduling, surface
reconstruction and graph drawing. Also, algorithms from diverse application domains like
electrical circuit theory and structural engineering require cycle basis computation as a
preprocessing step. Cycle bases of small size offer a compact description that is advantageous
from a mathematical as well as from an application viewpoint. For this reason, the problem
of computing a minimum cycle basis has received a lot of attention, both in its general setting
as well as in special classes of graphs such as planar graphs, sparse graphs, dense graphs,
network graphs, and so on. We refer the reader to [15] for a comprehensive survey.

In topological data analysis, “holes” of different dimensions in a geometric dataset
constitute “features” of the data. Algebraic topology offers a rigorous language to formalize
our intuitive picture of holes in these geometric objects. More precisely, a basis for the first
homology group H1 can be taken as a representative of the one-dimensional holes in the
geometric object. The advantages of using minimum homology bases are twofold: firstly,
one can bring geometry in picture by assigning appropriate weights to edges, and secondly,
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smaller cycles are easier to understand and analyze, especially visually. We focus solely
on the bases of the first homology group since the problem of computing a shortest basis
for higher homology groups with Z2 coefficients was shown to be NP-hard by Chen and
Freedman [5].

2 Background and Preliminaries

2.1 Cycle Basis
Let G = (V,E) be a connected graph. A subgraph of G which has even degree for each
vertex is called a cycle of G. A cycle is called elementary if the set of edges form a connected
subgraph in which each vertex has degree 2. We associate an incidence vector C, indexed on
E, to each cycle, so that Ce = 1 if e is an edge of the cycle, and Ce = 0 otherwise. The set of
incidence vectors of cycles forms a vector space over Z2, called the cycle space of G. It is a
well-known fact that for a connected graph G, the cycle space is of dimension |E| − |V |+ 1.
Throughout, we use ν to denote the dimension of the cycle space of a graph. A basis of the
cycle space, that is, a maximal linearly independent set of cycles is called a cycle basis.

Suppose that the edges of G have non-negative weights. Then, the weight of a cycle is the
sum of the weights of its edges, and the weight of a cycle basis is the sum of the weights of
the basis elements. The problem of computing a cycle basis of minimum weight is called the
minimum cycle basis problem. Since we assume all edge weights to be non-negative, there
always exists a minimum cycle basis of elementary cycles, allowing us to focus on minimum
cycle basis comprising entirely of elementary cycles.

A simple cycle C is tight if it contains a shortest path between every pair of points in
C. We denote the set of all tight cycles in the graph by T . Tight cycles are sometimes
also referred to as isometric cycles [1, 15]. Tight cycles play an important role in designing
algorithms for minimum cycle basis, owing to the following theorem by Horton.
I Theorem 1 (Horton [13]). A minimum cycle basisM consists only of tight cycles.

A key structural property about minimum cycle bases was proved by de Pina.
I Theorem 2 (de Pina [7]). Cycles C1 . . . , Cν form a minimum cycle basis if there are vectors
S1, . . . , Sν such that for all i, 1 ≤ i ≤ ν, the following hold:
Prefix Orthogonality: 〈Cj , Si〉 = 0 for all 1 ≤ j ≤ i.
Non-Orthogonality: 〈Ci, Si〉 = 1.
Shortness: Ci is a minimum weight cycle in T with 〈Ci, Si〉 = 1.

The vectors S1, . . . , Sν in Theorem 2 are called support vectors. The recent line of
algorithmic work [1, 7, 16, 17, 18] on the minimum cycle basis problem rely on Theorem 2.
In fact, these algorithms may all be seen as refinements of the algorithm by de Pina, see
Algorithm 1.

Algorithm 1 De Pina’s Algorithm for computing a minimum cycle basis.

1: Initialize Si to the i-th unit vector ei for 1 ≤ i ≤ ν
2: for i← 1, . . . , ν do
3: Compute a minimum weight cycle Ci with 〈Ci, Si〉 = 1.
4: for j ← i+ 1, . . . , ν do
5: Sj = Sj + 〈Ci, Sj〉Si
6: end for
7: end for
8: Return {C1, . . . , Cν}.
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Algorithm 1 works by inductively maintaining a set of support vectors {Si} so that the
conditions of Theorem 2 are satisfied when the algorithm terminates. In particular, Lines 4
and 5 of the algorithm ensure that the set of vectors Sj for j > i are orthogonal to vectors
C1, . . . , Ci. Updating the vectors Sj as outlined in Lines 4 and 5 of Algorithm 1 takes time
O(m3) time in total. Using a divide and conquer procedure for maintaining Sj , Kavitha et
al. [17] improved the cost of maintaining the support vectors to O(mω). See Algorithm 2.

Algorithm 2 Divide and conquer procedure for fast computation of support vectors by Kavitha
et al. [17].

1: Initialize Si to the i-th unit vector ei for 1 ≤ i ≤ ν.
2: MinCycleBasis(1, ν).

3: procedure MinCycleBasis(`, u)
4: if ` = u then
5: Compute a minimum weight cycle C` with 〈C`, S`〉 = 1.
6: else
7: q ← b(`+u)/2c.
8: MinCycleBasis(`, q).
9: C← [C`, . . . , Cq].
10: W← (CT [S`, . . . , Sq])−1CT [Sq+1, . . . , Su].
11: [Sq+1, . . . , Su]← [Sq+1, . . . , Su] + [S`, . . . ., Sq]W.
12: MinCycleBasis(q + 1, u).
13: end if
14: end procedure
15: Return {C1, . . . , Cν}.

I Lemma 3 (Lemma 5.6 in [15]). The total number of arithmetic operations performed in
lines 9 to 11 of Algorithm 2 is O(mω). That is, the support vectors satisfying conditions of
Theorem 2 can be maintained in O(mω) time.

Finally, in [1], Amaldi et al. designed an O(mω) time algorithm for computing a minimum
cycle basis by improving the complexity of Line 5 of Algorithm 2 to o(mω) (from O(m2n)
in [17]), while using the O(mω) time divide-and-conquer template for maintaining the support
vectors as presented in Algorithm 2. The o(mω) procedure for Line 3 is achieved by performing
a Monte Carlo binary search on the set of tight cycles (sorted by weight) to find a minimum
weight cycle Ci that satisfies 〈Ci, Si〉 = 1. An efficient binary search is made possible on
account of the following key structural property about tight cycles.

I Theorem 4 (Amaldi et al. [1]). The total length of the tight cycles is at most nν.

Amaldi et al. [1] also show that there exists an O(nm) algorithm to compute the set of
all the tight cycles of an undirected graph G. See Sections 2 and 3 of [1] for details about
Amaldi et al.’s algorithm.

2.2 Matrix operations
The column rank profile (respectively row rank profile) of an m× n matrix A with rank r, is
the lexicographically smallest sequence of r indices [i1, i2, . . . , ir] (respectively [j1, j2, . . . , jr])
of linearly independent columns (respectively rows) of A. Suppose that {a1, a2, . . . , an}
represent the columns of A. Then, following Busaryev et al. [3], we define the earliest basis
of A as the set of columns E(A) = {ai1 , ai2 , . . . , air}.
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It is well-known that classical Gaussian elimination can be used to compute rank profile
in O(nmr) time. The current state-of-the-art deterministic matrix rank profile algorithms
run in O(mnrω−2) time.

I Theorem 5 ([10,14]). There is a deterministic O(mnrω−2) time algorithm to compute the
column rank profile of an m× n matrix A.

In case of randomized algorithms, Cheung, Kwok and Lau [6] presented a breakthrough
Monte Carlo algorithm for rank computation that runs in (nnz(A) + rω)1+o(1) time, where
o(1) in the exponent captures some missing multiplicative logn and logm factors, and nnz(A)
denotes the number of nonzero entries in A. Equivalently, the complexity for Cheung et al.’s
algorithm can also be written as Õ(nnz(A)+rω). The notation Õ(·) is often used in literature
to hide small polylogarithmic factors in time bounds. While the algorithm by Cheung et al.
also computes r linearly independent columns of A, the columns may not correspond to the
column rank profile. However, building upon Cheung et al.’s work, Storjohann and Yang
established the following result.

I Theorem 6 (Storjohann and Yang [19,20,21]). There exists a Monte Carlo algorithm for
computing row (resp. column) rank profile of a matrix A that runs in (nnz(A) + rω)1+o(1)

time. The failure probability of this algorithm is 1/2.

Once again, the o(1) in the exponent captures some missing multiplicative logn and
logm factors, see [19], and hence the complexity can also be written as Õ(nnz(A) + rω).

2.3 Homology
In this work, we restrict our attention to simplicial homology with Z2 coefficients. For a
general introduction to algebraic topology, we refer the reader to [12]. Below we give a brief
description of homology over Z2.

Let K be a connected simplicial complex. We will denote by K(p) the set of p-dimensional
simplices in K, and np the number of p-dimensional simplices in K. Also, the p-dimensional
skeleton ofK will be denoted byKp. In particular, the 1-skeleton ofK (which is an undirected
graph) will be denoted by K1.

We consider formal sums of simplices with Z2 coefficients, that is, sums of the form∑
σ∈K(p) aσσ, where each aσ ∈ {0, 1}. The expression

∑
σ∈K(p) aσσ is called a p-chain. Since

chains can be added to each other, they form an Abelian group, denoted by Cp(K). Since
we consider formal sums with coefficients coming from Z2, which is a field, Cp(K), in this
case, is a vector space of dimension np over Z2. The p-simplices in K form a (natural) basis
for Cp(K). This establishes a natural one-to-one correspondence between elements of Cp(K)
and subsets of K(p). Thus, associated with each chain is an incidence vector v, indexed on
K(p), where vσ = 1 if σ is a simplex of v, and vσ = 0 otherwise. The boundary of a p-simplex
is a (p− 1)-chain that corresponds to the set of its (p− 1)-faces. This map can be linearly
extended from p-simplices to p-chains, where the boundary of a chain is the Z2-sum of the
boundaries of its elements. Such an extension is known as the boundary homomorphism, and
denoted by ∂p : Cp(K)→ Cp−1(K). A chain ζ ∈ Cp(K) is called a p-cycle if ∂pζ = 0, that is,
ζ ∈ ker ∂p. The group of p-dimensional cycles is denoted by Zp(K). As before, since we are
working with Z2 coefficients, Zp(K) is a vector space over Z2. A chain η ∈ Cp(K) is said to
be a p-boundary if η = ∂p+1c for some chain c ∈ Cp+1(K), that is, η ∈ im ∂p+1. The group
of p-dimensional boundaries is denoted by Bp(K). In our case, Bp(K) is also a vector space,
and in fact a subspace of Cp(K).
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Figure 1 Consider complexes K and L in the figure above with unit weights on the edges.
Since K has no 2-simplices, its 1-skeleton K1 is identical to K itself. The set of cycles C =
{{1, 2, 5}, {1, 4, 8}, {3, 4, 7}, {2, 3, 6}, {1, 2, 3, 4}} constitutes a minimum cycle basis for the respective
1-skeletons K1 and L1 (viewed as graphs). The set C also constitutes a minimum homology basis for
K. The set C′ = {{1, 2, 3, 4}, {3, 4, 7}} constitutes a minimum homology basis for L.

Thus, we can consider the quotient space Hp(K) = Zp(K)/Bp(K). The elements of the
vector space Hp(K), known as the p-th homology group of K, are equivalence classes of
p-cycles, where p-cycles are equivalent if their Z2-difference is a p-boundary. Equivalent cycles
are said to be homologous. For a p-cycle ζ, its corresponding homology class is denoted by
[ζ]. Bases of Bp(K), Zp(K) and Hp(K) are called boundary bases, cycle bases, and homology
bases respectively. The dimension of the p-th homology group of K is called the p-th Betti
number of K, denoted by βp(K). We are primarily interested in the first Betti number
β1(K). For notational convenience, let g = β1(K), and denote the dimension of B1(K) by b.

Using the natural bases for Cp(K) and Cp−1(K), the matrix [∂pσ1 ∂pσ2 · · · ∂pσnp ] whose
column vectors are boundaries of p-simplices is called the p-th boundary matrix. Abusing
notation, we denote the p-th boundary matrix by ∂p. For the rest of the paper, we use n,m
and N to denote the number of vertices, edges and simplices in the complex respectively.

A set of p-cycles {ζ1, . . . , ζg} is called a homology cycle basis if the set of classes
{[ζ1], . . . , [ζg]} forms a homology basis. For brevity, we abuse notation by using the term
“homology basis” for {ζ1, . . . , ζg}. Assigning non-negative weights to the edges of K, the
weight of a cycle is the sum of the weights of its edges, and the weight of a homology basis is
the sum of the weights of the basis elements. The problem of computing a minimum weight
basis of H1(K) is called the minimum homology basis problem. Note that, when the input
simplicial complex is a graph, the notions of homology basis and cycle basis coincide. Please
refer to Figure 1 for an example.

For the special case when the input complex is a surface, Erickson and Whittlesey [11]
gave a O(N2 logN + gN2 + g3N)-time algorithm. Recently, Borradaile et al. [2] gave an
improved deterministic algorithm that runs in O((h+ c)3

n logn+m) where c denotes the
number of boundary components, and h denotes the genus of the surface. For small values
of c and h, the algorithm runs in nearly linear time.

For general complexes, Dey et al. [9] and Chen and Freedman [4] generalized the results
by Erickson and Whittlesey [11] to arbitrary complexes. Subsequently, introducing the
technique of annotations, Busaryev et al. [3] improved the complexity to O(Nω +N2gω−1).
More recently, Dey et al. [8] designed an O(Nω +N2g) time algorithm by adapting the divide
and conquer algorithm for computing a minimum cycle basis of Kavitha et al. [17] for the
purpose of computing a minimum homology basis. Dey et al. also designed a randomized
2-approximation algorithm for the same problem that runs in O(Nω

√
N logN) expected time.
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3 An algorithm for computing minimum cycle basis

Given a graph G = (V,E), let {C1, . . . , C|T |} be the list of tight cycles in G sorted by
weight, and let MT (G) = [C1 C2 . . . C|T |] be the matrix formed with cycles Ci as its columns.
Using Theorem 4, since the total length of tight cycles is at most nν, and since each tight
cycle consists of at least three edges, we have that |T | ≤ nν

3 . Also, the rank of MT (G) is ν
and MT (G) is a sparse matrix with nnz(MT (G)) bounded by nν. This sparsity is implicitly
used in the design of the Monte Carlo binary search algorithm for computing minimum cycle
basis, as described in [1]. We now present a simple and fast algorithm for minimum cycle
basis that exploits the sparsity and the low rank of MT (G) more directly.

Algorithm 3 Algorithm for minimum cycle basis.

1: Compute the sorted list of tight cycles in G, and assemble the matrix MT (G).
2: Compute the column rank profile [i1, i2, . . . , iν ] of MT (G) using Storjohann and Yang’s

algorithm described in [20].
3: Return E(MT (G)).

I Theorem 7. There is a Monte Carlo algorithm that computes the minimum cycle basis in
Õ(mω) time, with failure probability at most 1/2.

Proof. The correctness of the algorithm follows immediately from Theorem 1. For instance,
if E(MT (G)) is not a minimum cycle basis, then let k be the smallest integer such that
the k-th smallest cycle in a minimum cycle basis contained in MT (G) is smaller than the
k-th smallest cycle in E(MT (G)). Since the columns in MT (G) are sorted by weight, the
existence of such a k contradicts the fact that E(MT (G)) is the earliest basis of MT (G).

The list of tight cycles in G can be computed in O(nm) time using the algorithm described
in Section 2 of [1]. Hence, Step 1 of Algorithm 3 takes O(nm log(nm)) time (which in turn is
same as O(nm logn) time). Moreover, using Theorem 6, the complexity of Step 2 is bounded
by Õ(nν + νω). Since n, ν < m, the complexity of Algorithm 3 is bounded by Õ(mω). Using
Theorem 6, the failure probability of the algorithm is at most 1/2. J

4 Minimum homology basis, minimum cycle basis and tight cycles

To begin with, note that since every graph is a 1-dimensional simplicial complex, the minimum
cycle basis problem is a restriction of the minimum homology basis problem to instances
(simplicial complexes) that have no 2-simplices. In this section, we refine this observation by
deriving a closer relation between the two problems.

We assume that we are provided a complex K in which all edges are assigned non-negative
weights. Given a non-negative weight w(σ) for each edge σ, we define the weight of a cycle
z as the sum of the weights of the edges, w(z) =

∑
σ∈z w(σ). Let B = {η1, . . . , ηb} be a

basis for the boundary vector space B1(K) indexed so that w(ηi) ≤ w(ηi+1), 1 ≤ i < b

(with ties broken arbitrarily). Also, let H = {ζ1, . . . , ζg} be a minimum homology basis of
K indexed so that w(ζi) ≤ w(ζi+1), 1 ≤ i < g (with ties broken arbitrarily). Then, the
set C = {η1, . . . , ηb, ζ1, . . . , ζg} is a cycle basis for K1. LetM be a minimum cycle basis of
K1. Every element C ∈ M is homologous to a cycle

∑g
i=1 aiζi where ai ∈ {0, 1} for each

i. Then, for some fixed integers p and q,M = {B1, . . . , Bq, C1, . . . , Cp} is indexed so that
the elements B1, . . . , Bq are null-homologous and the elements C1, . . . , Cp are non-bounding
cycles. Also, we have w(Bj) ≤ w(Bj+1) for 1 ≤ j < q (with ties broken arbitrarily), and
w(Cj) ≤ w(Cj+1) for 1 ≤ j < p (with ties broken arbitrarily).
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I Lemma 8.
1. For every minimum homology basis, w(ζ1) = w(C1).
2. There exists a minimum homology basis H with ζ1 homologous to C1.

Proof. Suppose there exists a minimum homology basis with w(ζ1) < w(C1). Let ζ1 =∑p
i=1 aiCi +

∑q
j=1 bjBj , where ai ∈ {0, 1} for each i and bj ∈ {0, 1} for each j. Since

ζ1 is a non-bounding cycle, there exists at least one i with ai = 1. Let ` ∈ [1, p] be the
largest index in the above equation with a` = 1. Rewriting the equation, we obtain C` =∑`−1
i=1 aiCi +

∑q
j=1 bjBj + ζ1. Since w(ζ1) < w(C1) by assumption, we have w(ζ1) < w(C`)

because w(C`) ≥ w(C1) by indexing ofM. It follows that the basis obtained by exchanging
C` for ζ1, that is, {B1, . . . , Bq, ζ1, C1, . . . , C`−1, C`+1, . . . , Cp} gives a smaller cycle basis than
the minimum one, a contradiction.

Now, suppose there exists a minimum homology basis with w(ζ1) > w(C1). Let C1 =∑g
i=1 aiζi +

∑b
j=1 bjηj . As before, since C1 is not null-homologous, there exists at least one

i with ai = 1. Let ` ∈ [1, g] be the largest index in the above equation with a` = 1. Then,
ζ` =

∑`−1
i=1 aiζi +

∑b
j=1 bjηj + C1. Note that w(ζ`) ≥ w(ζ1) because of the indexing, and

w(ζ1) > w(C1) by assumption. Therefore, the set {C1, ζ1, . . . , ζ`−1, ζ`+1, . . . , ζp} obtained by
exchanging ζ` for C1 gives a smaller homology basis than the minimum one, a contradiction.
This proves the first part of the lemma.

From the first part of the lemma, we have w(ζ1) = w(C1) for every minimum homology
basis. Let H be an arbitrary minimum homology basis. Then, if C1 is not homologous to
ζ1 ∈ H, by using basis exchange we can obtain H = {C1, ζ1, . . . , ζ`−1, ζ`+1, . . . , ζp}, which is
the minimum homology basis with its first element homologous to C1, and having the same
weight as w(C1), proving the claim. J

We now prove a theorem which allows us to harness fast algorithms for minimum cycle
basis in service of improving time complexity of algorithms for minimum homology basis.

I Theorem 9. Given a simplicial complex K, and a minimum cycle basisM = {B1, . . . , Bq,

C1, . . . , Cp} of K1, there exists a minimum homology basis H of K, and a set {Ci1 , . . . , Cig} ⊂
{C1, . . . , Cp} ⊂ M such that, for every k ∈ [1, g], we have Cik homologous to a cycle spanned
by ζ1, . . . , ζk, and w(Cik ) = w(ζk). Moreover, i1 = 1, and ik for k > 1 is the smallest index
for which Cik is not homologous to any cycle spanned by {Ci1 , . . . , Cik−1}. In particular, the
set {Ci1 , . . . , Cig} ⊂ M constitutes a minimum homology basis of K.

Proof. The key argument is essentially the same as for the proof of Lemma 8. Nonetheless,
we present it here for the sake of completeness. We shall prove the claim by induction.
Lemma 8 covers the base case. By induction hypothesis, there is an integer k, and a minimum
homology basis H = {ζ1, . . . , ζg}, for which, vectors {Ci1 , . . . , Cik} ⊆ {C1, . . . , Cp} are such
that, for every j ∈ [1, k], we have Cij homologous to a cycle spanned by ζ1, . . . , ζj , and
w(Cij ) = w(ζj). Let ik+1 be the smallest index for which Cik+1 ∈ {C1, . . . , Cp} is not
homologous to any cycle spanned by {Ci1 , . . . , Cik}.

Suppose that w(ζk+1) < w(Cik+1). Let ζk+1 =
∑p
i=1 aiCi +

∑q
j=1 bjBj . Let ` ∈ [1, p] be

the largest index in the above equation with a` = 1. Then, C` =
∑`−1
i=1 aiCi +

∑q
j=1 bjBj +

ζk+1. From the induction hypothesis, we can infer that ` ≥ ik+1, and hence w(C`) ≥ w(Cik+1)
by indexing ofM. Thus, if w(ζk+1) < w(Cik+1), then we have w(ζk+1) < w(C`). It follows
that, {B1, . . . , Bq, ζk+1, C1, . . . , C`−1, C`+1, . . . , Cp} obtained by exchanging C` for ζk+1 gives
a smaller cycle basis than the minimum one, contradicting the minimality of H.

Now, suppose that w(ζk+1) > w(Cik+1). Let Cik+1 =
∑g
i=1 aiζi+

∑b
j=1 bjηj . Let ` ∈ [1, g]

be the largest index in the above equation with a` = 1. Rewriting the equation, we obtain
ζ` =

∑`−1
i=1 aiζi +

∑b
j=1 bjηj + Cik+1 . Again, using the induction hypothesis, ` ≥ k + 1, and
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hence, w(ζ`) ≥ w(ζk+1) because of the indexing. Since we have assumed w(ζk+1) > w(Cik+1),
this gives us w(ζ`) > w(Cik+1). Hence, the set {Cik+1 , ζ1, . . . , ζ`−1, ζ`+1, . . . , ζp} obtained by
exchanging ζ` for Cik+1 gives a smaller homology basis than the minimum one, contradicting
the minimality of H.

From the first part of the proof, we have established that w(Cik+1) = w(ζk+1). So, if
Cik+1 is not homologous to ζk+1 ∈ H and w(ζk+1) = w(Cik+1), then H = {Cik+1 , ζ1, . . . ,

ζ`−1, ζ`+1, . . . , ζp} obtained by exchanging ζ` for Cik+1 is the desired minimum homology
basis, proving the induction claim. J

Previously, it was known from Erickson and Whittlesey [11] that H is contained in T .

I Theorem 10 (Erickson and Whittlesey [11]). With non-negative weights, every cycle in a
shortest basis of H1(K) is tight. That is, if H is any minimum homology basis of K, then
H ⊂ T .

Using Theorems 1 and 9, we can refine the above observation.

I Corollary 11. Let T denote the set of tight cycles of K1, and letM be a minimum cycle
basis of K1. Then, there exists a minimum homology basis H of K such that H ⊂M ⊂ T .

5 Algorithms for minimum homology basis

To begin with, note that since Cp(K),Zp(K),Bp(K) and Hp(K) are vector spaces, the problem
of computing a minimum homology basis can be couched in terms of matrix operations.

Given a complex K, let {C1, . . . , C|T |} be the list of tight cycles in K1 sorted by weight,
and let MT (K1) = [C1 C2 . . . C|T |] be the matrix formed with cycles Ci as its columns. Then,
the matrix Ẑ = [∂2 | MT (K1)] has O(N +nν) columns and O(N +nν) non-zero entries since
MT (K1) has O(nν) columns and O(nν) non-zero entries by Theorem 4, and ∂2 has O(N)
columns and O(N) non-zero entries. Since Ẑ has m rows, the rank of Ẑ is bounded by m.
This immediately suggests an algorithm for computing minimum homology basis analogous
to Algorithm 3.

Algorithm 4 Algorithm for minimum homology basis.

1: Compute the sorted list of tight cycles in MT (K1), and assemble matrix Ẑ.
2: Compute the column rank profile [j1, j2, . . . , jb, i1, i2, . . . , ig] of Ẑ using Storjohann and

Yang’s algorithm [20], where columns {Ẑjk
} and {Ẑi`} are linearly independent columns

of ∂2 and MT (K1) respectively.
3: Return Columns {Ẑi1 , Ẑi2 , . . . , Ẑig}.

I Theorem 12. Algorithm 4 is a Monte Carlo algorithm for computing a minimum homology
basis that runs in Õ(mω) time with failure probability at most 1

2 .

Proof. The correctness of the algorithm is an immediate consequence of Theorem 9 since,
by definition, ik is the smallest index for which Ẑik is not homologous to any cycle spanned
by {Ẑi1 , . . . , Ẑik−1}.

The list of tight cycles in G can be computed in O(nm) time using the algorithm described
in Section 2 of [1]. Hence, Step 1 of Algorithm 4 takes O(nm logn) time. Moreover, using
Theorem 6, the complexity of Step 2 is bounded by Õ(N + nν +mω), which is the same as
Õ(mω) since N and nν are both in Õ(mω), and the failure probability is at most 1/2. J
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When the number of 2-simplices in complex K is significantly smaller than the number
of edges, the complexity for minimum homology can be slightly improved by decoupling
the minimum homology basis computation from the minimum cycle basis computation, as
illustrated in Algorithm 5.

Algorithm 5 Algorithm for minimum homology basis.

1: Compute a minimum cycle basisM of K1 using the Monte Carlo algorithm by Amaldi
et al. [1]. Let BM be the matrix whose columns are cycle vectors inM sorted by weight.

2: Assemble the matrix Z̃ = [∂2 | BM].
3: Compute the column rank profile [j1, j2, . . . , jb, i1, i2, . . . , ig] of Z̃ using the determin-

istic algorithm by Jeannerod et al. [14], where columns {Z̃jk
} and {Z̃i`} are linearly

independent columns of ∂2 and BM respectively.
4: Return Columns {Z̃i1 , Z̃i2 , . . . , Z̃ig}.

I Theorem 13. Minimum homology basis can be computed in O(mω +Nmω−1) time using
the Monte Carlo algorithm described in Algorithm 5. The algorithm fails with probability at
most ν log(nm) 2−k, where k = m0.1.

Proof. As in Theorem 12, the correctness of the algorithm is an immediate consequence of
Theorem 9. The algorithm fails only when Step 1 returns an incorrect answer, the probability
of which is as low as ν log(nm) 2−k, where k = m0.1, see Theorem 3.2 of [1].

The minimum cycle basis algorithm by Amaldi et al. [1] runs in O(mω) time (assuming
the current exponent of matrix multiplication ω > 2). Furthermore, using Theorem 5, the
complexity of Line 3 is bounded by O(Nmω−1). So, the overall complexity of the algorithm
is O(mω +Nmω−1). J

Note that in Line 3 of Algorithm 5, it is possible to replace the deterministic algorithm by
Jeannerod et al. [14] with the Monte Carlo algorithm by Storjohann and Yang’s algorithm [20].
In that case, the complexity of the algorithm will once again be Õ(mω), and the failure
probability will be at most 1− 1

2 (1− ν log(nm)2−k).
We would like to point out that the complexities of Algorithm 4 and Algorithm 5 are,

in general, not comparable. For instance, for families of complexes with N1−ε = ω(m), for
some ε > 0, Algorithm 4 is faster than Algorithm 5. However, for families of complexes with
N = o(m), Algorithm 5 is faster than Algorithm 4. Moreover, for families of complexes with
g = Θ(N), where, as before, g denotes the rank of H1(K), Algorithms 4 and 5 are both faster
than Dey et al.’s algorithm [8] (which runs in O(Nω +N2g) time).

6 Discussion

In this paper, we show that questions about minimum cycle basis and minimum homology
basis can be naturally recast into the problem of computing rank profiles of matrices, leading
to fast algorithms with simple and elegant high-level descriptions. The column rank profile
(or the earliest basis) of a matrix has previously been used to compute the minimum homology
basis of a simplicial complex [3, 8]. Such a greedy approach that picks, at each step, an
independent cycle of the smallest index, works because of the matroid structure of homology
bases and cycle bases. What’s novel about our approach is that we point out that, for both
problems, independence can be efficiently checked owing to the sparsity of the matrices
comprising of candidate cycles.
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It is also worth noting that for the algorithms presented in this paper, the simplicity of
high-level description doesn’t translate to simple algorithms that can be easily implemented
because the black-box subroutines employed by these algorithms are fairly complex.

Maintenance of support vectors has served as a key ingredient in designing algorithms for
minimum cycle basis since de Pina. Our algorithm, however, does not explicitly maintain
support vectors, and in that sense, is somewhat conceptually different from the recent
algorithms for computing minimum cycle bases.
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Classical Morse theory provides a rich toolkit for analyzing and inferring the
topology of a smooth manifolds by studying the critical points of smooth
functions defined on it. Forman’s discrete Morse theory is a combinatorial
analogue of Morse theory that is applicable to regular CW complexes. It has
become a popular tool in the visualization community, and is actively studied in
algebraic combinatorics. Discrete Morse theory has also found applications as a
preprocessing tool for speeding up computations in topological data analysis.

The principal construct in Forman’s theory is the so-called discrete gradient
vector field defined on a simplicial (or a CW) complex. A discrete gradient
vector field is a collection of facet-cofacet pairs satisfying a certain acyclicity
condition. The simplices that do not belong to any of the pairs in the gradient
are deemed critical. Forman’s theory also has an equivalent graph theoretic
formulation in which the acyclic matchings (also called Morse matchings) in
the Hasse diagram of a simplicial complex correspond to the discrete gradient
vector fields on the simplicial complex. There has been a lot of practical interest
in computing gradient vector fields on simplicial complexes with (near-)optimal
number of critical simplices. The problem of finding a gradient vector field with
the minimum number of critical simplices in a simplicial complex was shown
to be NP-hard by Joswig and Pfetsch, who also posed its approximability as
an open question. In Paper I, we resolved the open question by establishing
hardness of approximation results for the maximization and minimization
variants of the Morse matching problem. This paper is a follow-up paper to
Paper I.

Despite what was already known at the time about the complexity of com-
puting optimal Morse matchings, there were some glaring gaps. For instance,
although Burton et al. proved that the related problem of computing the Erasing
number of a 2-complex is W[P]-hard, it was not clear if computing optimal
Morse matchings parameterized by solution size is also W[P]-hard. The approx-
imability status of the minimization variant of Morse matchings restricted to
2-complexes was also open. The motivation for this paper was to close all the
loose ends and to provide a complete picture for the complexity of computing
optimal Morse matchings.

In Sections 1-3, we start with an the introduction and then follow it up with by
topological and algorithmic preliminaries. In Section 4, we outline the reduction
from Min-Monotone Circuit Sat to Min-Morse Matching (MinMM) on 2-
complexes. As a consequence of this reduction, in Sections 5 and 6, we prove
the following statements.
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• MinMM has no approximation within a factor of 2log(1−ε)n, for any ε > 0,
unless NP ⊆ QP (throughout this paper, log denotes the logarithm by
base 2),

• the standard parameterization of MinMM is W[P]-hard, and
• MinMM with standard parameterization has no FPT approximation algo-

rithm for any approximation ratio function ρ, unless FPT = W[P].
In Section 7, we design anO( n

logn)-factor algorithm for MinMM on 2-complexes
to complement the inapproximability bound from Sections 6.

In Section 8, we observe that Kahle’s techniques for designing discrete
gradients on random clique complexes generalize to Costa–Farber complexes.
Specifically, we show that for a wide range of parameter values, there exist
discrete gradients for which the ratio of expected number of critical r-simplices
to the expected number of r-simplices (for any fixed dimension r) tends to
zero. When (re-)specialized to Linial–Meshulam complexes, we obtain a very
appealing statement about the average case approximability of Morse matchings.
(See Theorem 53). Finally, we conclude the paper in section 9 with a discussion
about future directions.

statement of individual contribution. I am the principal au-
thor of this article. The idea for this work came up during a discussion about
possible related projects after the publication of Article I. After doing some
literature search, I concluded that for the kind of hardness results we were look-
ing for, it would be best to reduce from Min-Monotone Circuit Sat. After
I sketched the high-level ideas, Uli Bauer and I had a discussion, where he
suggested some important simplifications to the ideas I presented. After a few
more discussions, I proved the results and wrote the article. Once the article
was written up, he suggested some expository changes.
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1 Introduction

Classical Morse theory [56] is an analytical tool for studying topology of smooth manifolds.
Forman’s discrete Morse theory is a combinatorial analogue of Morse theory that is applicable
to simplicial complexes, and more generally regular cell complexes [29]. In Forman’s theory,
discrete Morse functions play the role of smooth Morse functions, whereas discrete gradient
vector fields are the analogues of gradient-like vector fields. The principal objects of study
are, therefore, the so-called discrete gradient vector fields (or discrete gradients) on simplicial
complexes. Discrete gradients are partial face-coface matchings that satisfy certain acyclicity
conditions. Forman’s theory also has an elegant graph theoretic formulation [14], in which
the acyclic matchings (or Morse matchings) in the Hasse diagram of a simplicial complex are
in one-to-one correspondence with the discrete gradients on the simplicial complex. For this
reason, we use the terms gradient vector fields and Morse matchings interchangeably.

Discrete Morse theory has become a popular tool in computational topology, image
processing and visualization [6,8,13,36,43,58,62,68], and is actively studied in algebraic and
toplogical combinatorics [37,44, 45,55, 66]. Over the period of last decade, it has emerged a
powerful computational tool for several problems in topological data analysis [21,35,42,61].
Because of the wide array of applications there is a lot of practical interest in computing
gradient vector fields on simplicial complexes with a (near-)optimal number of critical
simplices [2, 7, 11, 12, 32, 33, 47]. The idea of using discrete Morse theory to speed up the
computation of (co)homology [20,33,46], persistent homology [7,57], zigzag persistence [26,52],
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2 Parameterized inapproximability of Morse matching

and multiparameter persistent homology [65] relies on the fact that discrete Morse theory
can be employed to reduce the problem of computing the homology of an input simplicial
complex to that of a much smaller chain complex.

The effectiveness of certain heuristics for Morse matching raises an important question: to
what extent is it feasible to obtain near-optimal solutions for Morse matching in polynomial
time? To this end, inapproximability results for Min-Morse Matching for simplicial
complexes of dimension d ≥ 3 were established in [9]. To this date, however, we are unaware
of any hardness results for Min-Morse Matching on 2-complexes from the perspective of
inapproximability or parameterized complexity (although the related Erasability problem
was shown to be W[P]-hard by Burton et al. [12]). With this paper, we seek to close the
knowledge gap. By establishing various hardness results, we demonstrate the limitations of
polynomial time methods for computing near-optimal Morse matchings. On the other hand,
by devising an approximation algorithm, we make it evident that Min-Morse Matching on
2-complexes is not entirely inapproximable. We also observe that the typical Morse matching
instances drawn from a wide range of parameter values of the Costa–Farber complexes are a
lot easier in contrast to the discouraging worst case inapproximability bounds.

1.1 Related work
Joswig and Pfetsch [39] showed that finding an optimal gradient vector field is an NP-hard
problem based on the relationship between erasability and Morse Matching observed by
Lewiner [48,49]. The erasability problem was first studied by Eǧecioǧlu and Gonzalez [24].
Joswig and Pfetsch also posed the question of approximability of optimal Morse matching as
an open problem. On the positive side, Rathod et al. [60] devised the first approximation
algorithms for Max-Morse Matching on simplicial complexes that provide constant
factor approximation bounds for fixed dimension. Complementing these results, Bauer and
Rathod [9] showed that for simplicial complexes of dimension d ≥ 3 with n simplices, it is
NP-hard to approximate Min-Morse Matching within a factor of O(n1−ε), for any ε > 0.
However, the question of approximability of Min-Morse Matching for 2-complexes is left
unanswered in [9].

Next, Burton et al. [12] showed that the Erasability problem (that is, finding the
number of 2-simplices that need to be removed to make a 2-complex erasable) is W[P]-
complete. We note the W[P]-hardness of erasability can be inferred from our methods as
well, and therefore our result can be seen as a strengthening of the hardness result from [12].
Moreover, our parameterized inapproximability results rely on the machinery developed by
Eickmeyer et al. [25] and Marx [53].

Our reduction techniques have a flavor that is similar to the techniques used by Malgouryes
and Francés [51] and Tancer [69] for proving NP-hardness of certain collapsibility problems.
In particular, Tancer [69] also describes a procedure for ‘filling 1-cycles with disks’ to make
the complex contractible (and even collapsible for satisfiable inputs). Our technique of filling
1-cycles is however entirely different (and arguably simpler) than Tancer’s procedure. Our
work is also related to [9,10] in that we use the so-called modified dunce hats for constructing
the gadget used in the reduction. Recently, modified dunce hats were used to provide a
simpler proof of NP-completeness of the shellability decision problem [64].

1.2 The Morse Matching Problems
The Max-Morse Matching problem (MaxMM) can be described as follows: Given a
simplicial complex K, compute a gradient vector field that maximizes the cardinality of
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matched (regular) simplices, over all possible gradient vectors fields on K. Equivalently, the
goal is to maximize the number of gradient pairs. For the complementary problem Min-
Morse Matching (MinMM), the goal is to compute a gradient vector field that minimizes
the number of unmatched (critical) simplices, over all possible gradient vector fields on K.
While the problem of finding the exact optimum are equivalent for MinMM and MaxMM, the
approximation variants behave quite differently.

Additionally, we define another variant of the minimization problem for 2-dimensional
complexes, namely Min-Reduced Morse Matching (MinrMM). For this problem, we
seek to minimize the total number of critical simplices minus one. This variant is natural,
since any discrete gradient necessarily has at least one critical 0-simplex. It corresponds
to a variant definition of simplicial complexes commonly used in combinatorics, which also
consider the empty set as a simplex of dimension −1.

1.3 Our contributions

Burton et al. [12] This paper
W[P]-hardness of Erasability (SP) 3 3

W[P]-hardness of Min-Morse Matching (SP) 7 3

FPT-inapproximability of Min-Morse Matching (SP) 7 3

FPT-algorithm for Min-Morse Matching (TW) 3 7

Table 1 Comparison of results: Parameterized complexity of Morse matching (dim. ≥ 2). In the
above table, SP denotes standard parameterization, whereas TW denotes treewidth parameterization.

Results from [9] This paper
IA for Max-Morse Matching (dim. ≥ 2)

(
1− 1

4914
)

+ ε 7

IA for Min-Morse Matching (dim. ≥ 3) O(n1−ε) 2log(1−ε) n (weaker)
IA for Min-Morse Matching (dim. ≥ 2) 7 2log(1−ε) n

AA for Min-Morse Matching (dim. ≥ 2) 7 O( n
logn )

Table 2 Comparison of results: Approximability of Morse matching. IA denotes inapproximability.
AA denotes approximation algorithm.

In Section 5, we establish several hardness results for MinrMM, using a reduction from
Min-Monotone Circuit Sat. In particular, we show the following:

MinrMM has no approximation within a factor of 2log(1−ε) n, for any ε > 0, unless
NP ⊆ QP (throughout this paper, log denotes the logarithm by base 2),
the standard parameterization of MinrMM is W[P]-hard, and
MinrMM with standard parameterization has no FPT approximation algorithm for any
approximation ratio function ρ, unless FPT = W[P].
In Section 6, we first show that the W[P]-hardness result and FPT-inapproximability

results easily carry over from MinrMM to MinMM. To the best of our knowledge, this
constitutes the first FPT-inapproximability result in computational topology. Using the
amplified complex construction introduced in [9], we observe that the inapproximability
result also carries over from MinrMM to MinMM. In particular, we show that even for
2-complexes MinMM cannot be approximated within a factor of 2log(1−ε) n, for any ε > 0,
unless NP ⊆ QP, where n denotes the number of simplices in the complex.
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Sections 7 and 8 are concerned with some positive results. First, in Section 7, we design
an O( n

logn )-factor algorithm for MinMM on 2-complexes. Then, in Section 8, we make the
observation that Kahle’s techniques [40] for designing discrete gradients on random clique
complexes generalize to Costa–Farber random complexes. Specifically, we show that for a
wide range of parameter values, there exist discrete gradients for which the ratio of expected
number of critical r-simplices to the expected number of r-simplices (for any fixed dimension
r) tends to zero. Although these methods do not lead to approximation algorithms, they fall
under the general paradigm of beyond worst-case analysis [63].

Note that we do not distinguish between abstract and geometric simplicial complexes
since every abstract simplicial complex can be embedded in a Euclidean space of appropriate
dimension. As a final remark, we believe that with this paper we tie all the loose ends
regarding complexity questions in discrete Morse theory.

2 Topological preliminaries

2.1 Simplicial complexes
A k-simplex σ = convV is the convex hull of a set V of (k + 1) affinely independent points
in Rd. We call k the dimension of σ. We say that σ is spanned by the points V . Any
nonempty subset of V also spans a simplex, a face of σ. A simplex σ is said to be a coface
of a simplex τ if and only if τ is face of σ. We say that σ is a facet of τ if σ is a face of τ
with dim σ = dim τ − 1. A simplicial complex K is a collection of simplices that satisfies the
following conditions:

any face of a simplex in K also belongs to K, and
the intersection of two simplices σ1, σ2 ∈ K is either empty or a face of both σ1 and σ2.
For a complex K, we denote the set of d-simplices of K by K(d). The n-skeleton of a

simplicial complex K is the simplicial complex
⋃n
m=0K

(m). A simplex σ is called a maximal
face of a simplicial complex K if it is not a strict subset of any other simplex τ ∈ K. The
underlying space of K is the union of its simplices, denoted by |K|. The underlying space is
implicitly used whenever we refer to K as a topological space.

An abstract simplicial complex S is a collection of finite nonempty sets A ∈ S such that
every nonempty subset of A is also contained in S. The sets in S are called its simplices. A
subcomplex of K is an abstract simplicial complex L such that every face of L belongs to
K; denoted as L ⊂ K. For example, the vertex sets of the simplices in a geometric complex
form an abstract simplicial complex, called its vertex scheme. Given an abstract simplicial
complex K with n simplices, we can associate a pointed simplicial complex to it by choosing
an arbitrary vertex and regarding it as the distinguished basepoint of K. The mth wedge sum
of K is then the quotient space of a disjoint union of m copies of K with the distinguished
basepoints of each of the copies of K identified.

2.2 Discrete Morse theory and Erasability
We assume that the reader is familiar with simplicial complexes. Section 2.1 summarizes the
key definitions. In this section, we provide a brief description of Forman’s discrete Morse
theory on simplicial complexes. For a comprehensive expository introduction, we refer the
reader to [30].

A real-valued function f on a simplicial complex K is called a discrete Morse function if
f is monotonic, i.e., σ ⊆ τ implies f(σ) ≤ f(τ), and
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for all t ∈ im(f), the preimage f−1(t) is either a singleton {σ} (in which case σ is a
critical simplex) or a pair {σ, τ}, where σ is a facet of τ (in which case (σ, τ) form a
gradient pair and σ and τ are regular simplices).

Given a discrete Morse function f defined on complex K, the discrete gradient vector field V
of f is the collection of pairs of simplices (σ, τ), where (σ, τ) is in V if and only if σ is a facet
of τ and f(σ) = f(τ).

Discrete gradient vector fields have a useful interpretation in terms of acyclic graphs
obtained from matchings on Hasse diagrams, due to Chari [14]. Let K be a simplicial
complex, let HK be its Hasse diagram, and let M be a matching in the underlying undirected
graph HK . Let HK(M) be the directed graph obtained from HK by reversing the direction
of each edge of the matching M . Then M is a Morse matching if and only if HK(M) is a
directed acyclic graph. Every Morse matching M on the Hasse diagram HK corresponds to
a unique gradient vector field VM on complex K and vice versa. For a Morse matching M ,
the unmatched vertices correspond to critical simplices of VM , and the matched vertices
correspond to the regular simplices of VM .

A non-maximal face σ ∈ K is said to be a free face if it is contained in a unique maximal
simplex τ ∈ K. If d = dim τ = dim σ + 1, we say that K ′ = K \ {σ, τ} arises from K by an
elementary collapse, or an elementary d-collapse denoted by K ↘e K ′. Furthermore, we say
that K collapses to L, denoted by K ↘ L, if there exists a sequence K = K1,K2, . . .Kn = L

such that Ki ↘e Ki+1 for all i. If K collapses to a point, one says that K is collapsible.
A simplicial collapse can be encoded by a discrete gradient.

I Theorem 1 (Forman [29], Theorem 3.3). Let K be a simplicial complex with a vector field
V, and let L ⊆ K be a subcomplex. If K \ L is a union of pairs in V, then K ↘ L.

In this case, we say that the collapse K ↘ L is induced by the gradient V . As a consequence
of this theorem, we obtain:

I Theorem 2 (Forman [29], Corollary 3.5). Let K be a simplicial complex with a discrete
gradient vector field V and let md denote the number of critical simplices of V of dimension d.
Then K is homotopy equivalent to a CW complex with exactly md cells of dimension d.

In particular, a discrete gradient vector field on K with md critical simplices of dimension d
gives rise to a chain complex having dimension md in each degree d, whose homology is
isomorphic to that of K. This condensed representation motivates the algorithmic search for
(near-)optimal Morse matchings.

Following the terminology used in [9, 24], we make the following definitions: A maximal
face τ in a simplicial complex K is called an internal simplex if it has no free face. If a 2-
complex K collapses to a 1-complex, we say that K is erasable. Moreover, for a 2-complex K,
the quantity er(K) is the minimum number of internal 2-simplices that need to be removed
so that the resulting complex collapses to a 1-complex. Equivalently, it is the minimum
number of critical 2-simplices of any discrete gradient on K. Furthermore, we say that a
subcomplex L ⊆ K is an erasable subcomplex of K (through the gradient V) if there exists
another subcomplexM⊆ K with K ↘M (induced by the gradient V) such that the set of
2-dimensional simplices of these complexes satisfy the following relation: L(2) ⊆ K(2) \M(2).
We call such a gradient V an erasing gradient. Finally, we say that a simplex σ in a complex
K is eventually free (through the gradient V) if there exists a subcomplex L of K such that
K ↘ L (induced by V) and σ is free in L. Equivalently, K collapses further to a subcomplex
not containing σ.

We recall the following results from [9].



6 Parameterized inapproximability of Morse matching

I Lemma 3 ( [9], Lemma 2.1). Let K be a connected simplicial complex, let p be a vertex
of K, and let V1 be a discrete gradient on K with m0 > 1 critical simplices of dimension 0
and m critical simplices in total. Then there exists a polynomial time algorithm to compute
another gradient vector field Ṽ on K with p as the only critical simplex of dimension 0 and
m− 2(m0 − 1) critical simplices in total.

I Lemma 4 ( [9], Lemma 2.3). If K is an erasable complex, then any subcomplex L ⊂ K is
also erasable.

I Lemma 5. Suppose that we are given a complex K and a set M of simplices in K with
the property that simplices in M have no cofaces in K. Then L = K \M is a subcomplex of
K with the property that the gradient vector fields on K with all simplices in M critical are
in one-to-one correspondence with gradient vector fields on L.

Proof. Given a gradient vector field on L, we extend it to a gradient vector field on K by
making all simplices in M critical. Given a vector field V on K, the restriction V|L is a
gradient vector field on L. J

I Notation 1. For the remainder of the paper, we use [m] to denote the set {1, 2, . . . ,m} for
any m ∈ N, and [i, j] to denote the set {i, i+ 1, . . . , j} for any i, j ∈ N.

3 Algorithmic preliminaries

3.1 Approximation algorithms
An α-approximation algorithm for an optimization problem is a polynomial-time algorithm
that, for all instances of the problem, produces a solution whose objective value is within a
factor α of the objective value of an optimal solution. The factor α is called the approximation
ratio (or approximation factor) of the algorithm.

An approximation preserving reduction is a polynomial time procedure for transforming
an optimization problem A to an optimization problem B, such that an α-approximation
algorithm for B implies an f(α)-approximation algorithm for A, for some function f . Then,
if A is hard to approximate within factor f(α), the reduction implies that B is hard to
approximate within factor α. A particularly well-studied class of approximation preserving
reductions is given by the L-reductions, which provide an effective tool in proving hardness
of approximability results [59,71].

Now, consider a minimization problem A with a non-negative integer valued objective
function mA. Given an instance x of A, the goal is to find a solution y minimizing the
objective function mA(x, y). Define OPTA(x) as the minimum value of the objective function
on input x. An L-reduction (with parameters µ and ν) from a minimization problem A to
another minimization problem B is a pair of polynomial time computable functions f and g,
and fixed constants µ, ν > 0, satisfying the following conditions:

1. The function f maps instances of A to instances of B.
2. For any instance x of A, we have

OPTB(f(x)) ≤ µOPTA(x).

3. The function g maps an instance x of A and a solution of the corresponding instance
f(x) of B to a solution of x.

4. For any instance x of A, and any solution y of f(x), we have

mA(x, g(x, y))−OPTA(x) ≤ ν (mB(f(x), y)−OPTB(f(x))) .
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If µ = ν = 1, the reduction is strict.
We will use the following straightforward fact about L-reductions, which appears as

Theorem 16.6 in a book by Williamson and Shmoys [71].

I Theorem 6. If there is an L-reduction with parameters µ and ν from a minimization
problem A to another minimization problem B, and there is a (1+δ)-approximation algorithm
for B, then there is a (1 + µνδ)-approximation algorithm for A.

3.2 Parameterized complexity
Parameterized complexity, as introduced by Downey and Fellows in [22], is a refinement
of classical complexity theory. The theory revolves around the general idea of developing
complexity bounds for instances of a problem not just based on their size, but also involving
an additional parameter, which might be significantly smaller than the size. Specifically, we
have the following definition.

I Definition 7 (Parameter, parameterized problem [28]). Let Σ be a finite alphabet.

1. A parameter of Σ∗, the set of strings over Σ, is a function ρ : Σ∗ → N, attaching to every
input w ∈ Σ∗ a natural number ρ(w).

2. A parameterized problem over Σ is a pair (P, ρ) consisting of a set P ⊆ Σ∗ and a
(polynomial time computable) parametrization ρ : Σ∗ → N.

3. A parameterized problem (P, ρ) is said to be fixed-parameter tractable or FPT in the
parameter ρ if the question

(x, p) ∈ {(y, ρ(y)) | y ∈ P}

can be decided in running time O(g(p))·|x|O(1), where g : N→ N is an arbitrary computable
function depending only on the parameter p.

FPT reductions provide a principal tool to establish hardness results in the parameterized
complexity landscape.

I Definition 8 (FPT reduction [28]). Given two parameterized problems (P, k) and (Q, k′),
we say that there is an FPT reduction from (P, k) and (Q, k′), if there exists a functions ϕ
that transforms parameterized instances of P to parameterized instances of Q while satisfying
the following properties:

1. ϕ is computable by an FPT algorithm,
2. ϕ(x) is a yes-instance of (Q, k′) if and only if x is a yes-instance of (P, k).
3. There exists a computable function g : N→ N such that k′(ϕ(x)) ≤ g(k(x)).

The natural way of turning a minimization problem into a decision problem is to add
a value k to the input instance, and seek a solution with cost at most k. Taking this
value k appearing in the input as the parameter is called the standard parameterization of
the minimization problem (sometimes also referred to as the natural parameterization). In
general, the parameter can be any function of the input instance, for example, the treewidth
of the input graph, or the maximum degree of the input graph.

Parameterized approximability is an extension of the notion of classical approximability.
Informally, an FPT approximation algorithm is an algorithm whose running time is fixed
parameter tractable for the parameter cost of the solution and whose approximation factor ρ
is a function of the parameter (and independent of the input size). For instance, every
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polynomial time approximation algorithm with constant approximation factor is automatically
an FPT approximation algorithm, but an approximation algorithm with approximation factor
Θ(
√
n), where n denotes the input size, is not an FPT approximation algorithm. Next,

following [53], for standard parameterization of minimization problems, we provide definitions
for FPT approximation algorithms and FPT cost approximation algorithms. Analogous
definitions for maximization problems are also considered in [53].

I Definition 9 (FPT approximation algorithm [53]). Let P be an NP minimization problem,
and let ρ : N→ R≥1 be a computable function such that k 7→ k · ρ(k) is nondecreasing. An
FPT approximation algorithm for P (over some alphabet Σ) with approximation ratio ρ is
an algorithm A with the following properties:

1. For every input (x, k) whose optimal solution has cost at most k, A computes a solution
for x of cost at most k · ρ(k). For inputs (x, k) without a solution of cost at most k, the
output can be arbitrary.

2. The runtime of A on input (x, k) is O(g(k) · |x|O(1)) for some computable function g.

It is often convenient to work with a weaker notion of approximability where an algorithm
is only required to compute the cost of an optimal solution rather than an actual optimal
solution, and to work with decision rather than optimization problems. With that in mind,
the notion of FPT cost approximability was introduced in [15].

I Definition 10 (FPT cost approximation algorithm [53]). Let P be an NP minimization
problem (over the alphabet Σ), and ρ : N → R≥1 a computable function. For an instance
x of P , let min(x) denote its optimal value. Then, a decision algorithm A is an FPT cost
approximation algorithm for P with approximation ratio ρ if

1. For feasible instances x of P and parameterized instances (x, k), A satisfies:

a. If k ≥ min(x) · ρ(min(x)), then A accepts (x, k).
b. If k < min(x), then A rejects (x, k).

2. A is an FPT algorithm. That is, there exists a computable function f with the property
that for an input (x, k), the running time of A is bounded by f(k) · |x|O(1) .

It can be readily checked that FPT-approximability implies FPT cost approximability
with the same approximation factor. Please refer to Section 3.1 of [15] for more details.

I Theorem 11 (Chen et al. [15]). Let P be an NP minimization problem over the alphabet
Σ, and let ρ : N → R≥1 be a computable function such that k · ρ(k) is nondecreasing and
unbounded. Suppose that P is FPT approximable with approximation ratio ρ. Then P is
FPT cost approximable with approximation ratio ρ.

An immediate consequence of the theorem above is that if P is not FPT cost approximable
with approximation ratio ρ (under certain complexity theory assumptions), then P is not
FPT approximable with approximation ratio ρ (under the same assumptions).

Gap problems and gap-preserving reductions were originally introduced in the context
of proving the PCP theorem [5] – a cornerstone in the theory of approximation algorithms.
These notions have natural analogues in the parameterized approximability setting. Below,
we follow the definitions as provided by Eickmeyer et al. [25].

I Definition 12 (gap instance of a parameterized problem [25]). Let δ : N→ R≥1 be a function,
P a minimization problem, and P ′ its standard parameterization. An instance (x, k) is a
δ-gap instance of P ′ if either min(x) ≤ k or min(x) ≥ k · δ(k).
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I Definition 13 (gap-preserving FPT reduction [25]). Let α, β : N→ R≥1 be two computable
functions, and let P and Q be two minimization problems. Let P ′ and Q′ be the natural
parameterizations of P and Q, respectively. We say that a reduction R from P ′ to Q′ is a
(α, β)-gap-preserving FPT reduction if

1. R is an FPT reduction from P ′ to Q′,
2. for every α-gap instance (x, k) of P ′, the instance R(x, k) is a β-gap instance of Q′.

We use gap-preserving FPT reductions to establish FPT-inapproximability.

3.3 Circuits
First, we recall some elementary notions from Boolean circuits. In particular, by an and-node,
we mean the digital logic gate that implements logical conjuction (∧), by an or-node, we
mean the digital logic gate that implements logical disjunction (∨), and by a not-node, we
mean the digital logic gate that implements negation (¬).

I Definition 14 (Boolean circuit). A Boolean circuit C is a directed acyclic graph, where
each node is labeled in the following way:

1. every node with in-degree greater than 1 is either an and-node or an or-node,
2. each node of in-degree 1 is labeled as a negation node,
3. and each node of in-degree 0 is an input node.
Moreover, exactly one of the nodes with out-degree 0 is labeled as the output node.

Below, we recall some essential parameterized complexity results concerning circuits.
We use the terms gates and nodes interchangeably. We say that a gate has fan-in k if its

in-degree is at most k. We say that a gate is an ordinary gate if it is neither an input gate
nor an output gate. We denote the nodes and edges in C by V (C) and E(C) respectively.
The size of a circuit C, denoted by |C|, is the total number of nodes and edges in C. That is,
|C| = |V (C)|+ |E(C)|. The Hamming weight of an assignment is the number of input gates
receiving value 1. An assignment on the input nodes induces an assignment on all nodes. So
given an assignment from the input nodes of circuit C to {0, 1}, we say that the assignment
satisfies C if the value of the output node is 1 for that assignment. Let GI denote the set of
input gates of C. Then, an assignment A can be viewed as a binary vector of size |GI |. In
the Weighted Circuit Satisfiability (WCS) problem, we are given a circuit C and an
integer k, and the task is to decide if C has a satisfying assignment of Hamming weight at
most k. Accordingly, in the Min-Weighted Circuit Satisfiability (MinWCS) problem,
we are given a circuit C, and the task is to find a satisfying assignment with minimum
Hamming weight.

I Definition 15 (W[P]). A parameterized problem W belongs to the class W[P] if it can
be reduced to the standard parameterization of WCS.

A Boolean circuit is monotone if it does not contain any negation nodes. Let C+ be the
class of all monotone Boolean circuits. Then, Min-Monotone Circuit Sat (MinMCS) is
the restriction of the problem MinWCS to input circuits belonging to C+.

The following result seems to be folklore and appears in the standard literature [23,27].

I Theorem 16 (Theorem 3.14 [28]). The standard parameterization of MinMCS is W[P]-
complete.
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Furthermore, Eickmeyer et al. [25] showed that unless W[P] = FPT, MinMCS does not
have an FPT approximation algorithm with polylogarithmic approximation factor ρ. The
FPT-inapproximability result was subsequently improved by Marx [53] as follows.

I Theorem 17 (Marx [53]). MinMCS is not FPT cost approximable, unless FPT = W[P].

Combined with Theorem 11, the above theorem implies that MinMCS is not FPT-approximable
for any function ρ, unless FPT = W[P].
I Remark 18 (Fan-in 2 circuits). We note that it is possible to transform a monotone circuit C
to another monotone circuit C ′ such that both circuits are satisfied on the same inputs, and
every gate of C ′ has fan-in 2. This is achieved as follows: Each or-gate of in-degree k in C is
replaced by a tree of or-gates with in-degree-2 in C ′, and each and-gate of in-degree k in C
is replaced by a tree of and-gates with in-degree-2 in C ′. In each case, we transform a single
gate having fan-in k to a sub-circuit of Θ(k) gates having depth Θ(log k) and fan-in 2. In
fact, it is easy to check that |C ′| is a polynomial function of |C|, and C ′ can be computed
from C in time polynomial in C. Since the number of input gates for C and C ′ is the same,
for the rest of the paper we will assume without loss of generality that an input circuit
instance has fan-in 2.

4 Reducing MinMCS to MinrMM

In this section, we describe how to construct a 2-complex K(C) that corresponds to a
monotone circuit C(V,E). By Remark 18, we assume without loss of generality that C
has fan-in 2. For the rest of the paper, we denote the number of gates in C by n. Also,
throughout, we use the notation j ∈ [a, b] to mean that j takes integer values in the interval
[a, b].

Following the notation from Section 3.1, given a monotone circuit C = (V, E) and
the associated complex K(C), let OPTMinMCS(C) denote the optimal value of the MinMCS
problem on C, and let OPTMinrMM(K(C)) denote the optimal value of the MinrMM problem
on K(C). The value of the objective function mMinrMM(K(C),V) is the number of critical
simplices in V minus one; the value of the objective function mMinMCS(C, I(C,V)) is the
Hamming weight of the input assignment. In Section 4.2, we describe the map K that
transforms instances of MinMCS (monotone circuits C) to instances of MinrMM (simplicial
complexes K(C)), and the map I that transforms solutions of MinrMM (discrete gradients
V on K(C)) to solutions of MinMCS (satisfying input assignments I(C,V) of circuit C).

4.1 The building block for the gadget
We shall first describe a complex that serves as the principal building block for the gadget in
our reduction. The building block is based on a modification of Zeeman’s dunce hat [73]. The
dunce hat is a simplicial complex that is contractible (i.e. has the homotopy type of a point)
but has no free faces and is therefore not collapsible. In contrast, we work with modified dunce
hats [31] that are collapsible through either one or two free edges. The modified dunce hat
has been previously used to show hardness of approximation of Max-Morse Matching [9]
and W[P]-hardness of Erasability Expansion Height [10], and is discussed extensively
in these papers.

Figure 1 depicts two triangulations of modified dunce hats, which we denote by Dm,`.
We use the subscript m, ` to designate the numbers of distinguished edges of Dm,`, which
come in two types: the free edges of Dm,` denoted by si, 1 ≤ i ≤ m, and the edges of type
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Figure 1 The figure (a) on the left depicts D1,` that is collapsible through one free face, namely
s1 = {3, 1}. The figure (b) on the right depicts D2,` that is collapsible through two free faces, namely
s1 = {3, 8} and s2 = {8, 1}. The edges {1, 2} and {2, 3} on the right and at the bottom of both
subfigures are shown in light grey to indicate that they are identified to {1, 2} and {2, 3} on the left.

tj = {yj , zj}, 1 ≤ j ≤ `. These distinguished edges are precisely the edges that are identified
to edges from other building blocks. In Figure 1, we depict D1,`, and D2,`, with distinguished
edges si, and tj highlighted.

Note that, in this paper, we only consider modified dunce hats with either one or two
free edges. That is, for the purpose of this paper, m ∈ {1, 2}. Also, abusing terminology, we
often refer to ‘modified dunce hats’ as simply ‘dunce hats’.
I Remark 19. It is easy to check that after executing a series of elementary 2-collapses, Dm,`

collapses to a complex induced by edges

{{1, 2}, {2, 3}, {2, 6}, {6, 5}, {6, 7}, {6, bi}, {6, ci}, {6, di}, {bi, zi}, {zi, yi}, {yi, ai}} ∪ F

for i ∈ [1, `], and,
F = {{v, 4}} if m = 1, where v = 6, if ` is even, and v = (`−1)/2 + 1 if ` is odd,
F = {s1, {4, 8}} if m = 2 and the collapse starts with a gradient pair involving s2,
F = {s2, {4, 8}} if m = 2 and the collapse starts with a gradient pair involving s1.

The edges that are left behind after executing all the 2-collapses are highlighted using
examples in Figure 2. (a) depicts the case where ` is odd and m = 1. (b) depicts the case
where ` is even, m = 2 and the collapse starts with a gradient pair involving s1.

4.2 Construction of the complex K(C) and the map I(C,V)
Given a circuit C, we first explain the construction of an intermediate complex K ′(C).
We use the notation D(i,j)

m,` to refer to the j-th copy of the the dunce hat associated to
gate i, having m s-edges and ` t-edges. Sometimes, we suppress the subscript, and use the
notation D(i,j) to talk about D(i,j)

m,` . As illustrated in Figure 3, to each input gate Gi we
associate a dunce hat D(i,1). To the output gate Go, we associate n copies of dunce hats
{D(o,j)}nj=1. Moreover, Figure 4 depicts how we associate to each ordinary gate Gi n blocks
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Figure 2 The figure (a) on the left depicts D1,3 that is collapsible through a unique free face,
namely s1 = {3, 1}. The complex D1,3 collapses to the subcomplex induced by the highlighted edges.
When s1 cannot be made free (because of edge identifications from other dunce hats), then s1 and
Γ1 are made critical. In any case, the remaining 2-collapses are executed as shown in figure (a). The
figure (b) on the right depicts D2,2 that is collapsible through two free faces, namely s1 = {3, 8} and
s2 = {8, 1}. There exists a collapsing sequence for D2,2 starting from the gradient pair (s1,Γ1) such
that D2,2 collapses to the subcomplex induced by the highlighted edges. A symmetric statement
can be made for a collapse starting from (s2,Γ2).

{1D(i,j), 2D(i,j), 3D(i,j)}nj=1. The superscript to the left indexes dunce hats internal to the
block. We call 3D(i,j) the output component of block j associated to Gi. Likewise, we call
1D(i,j) and 2D(i,j) the input components of block j associated to Gi. If Gp serves as one of
the two inputs to Gq, we say that Gp is a predecessor of Gq, and Gq is the successor of Gp.

A simplex labeled σ in Dm,` is correspondingly labeled as σ(p,j) in D(p,j)
m,` , (respectively

as kσ(p,j) in kD(p,j)
m,` ). We call the unique s-edge of the dunce hat associated to an input gate

Gi, namely s(i,1)
1 , its feedback edge. As depicted in Figure 4, for an ordinary gate Gp, for

each j ∈ [1, n], the s2 edges of 1D(p,j) and 2D(p,j), namely 1s
(p,j)
2 and 2s

(p,j)
2 respectively,

are called the feedback edges of the j-th block associated to Gp. For an ordinary gate Gp, for
each j ∈ [1, n], the s1 edges of 1D(p,j) and 2D(p,j), namely 1s

(p,j)
1 and 2s

(p,j)
1 respectively,

are called the input edges of the j-th block associated to Gp. For the output gate Go, the s1

and s2 edges of D(o,j), namely s(o,j)
1 and s(o,j)

2 respectively, are called the input edges of the
j-th copy associated to Go.

To bring the notation of the edges closer to their function in the gadget, for the rest of
the paper, we use the following alternative notation for s-edges. We denote the feedback
edges s(i,1)

1 , 1s
(p,j)
2 and 2s

(p,j)
2 described above as s(i,1)

f , s(p,j)
f1

and s(p,j)
f2

respectively. Also,
we denote the input edges 1s

(p,j)
1 , 2s

(p,j)
1 , s(o,j)

1 and s
(o,j)
2 described above by s(p,j)

ι1 , s(p,j)
ι2 ,

s
(o,j)
ι1 and s(o,j)

ι2 respectively. Please see Figure 5 for an example.
We start with a disjoint union of dunce hats (or blocks) associated to each gate. Then,

for an ordinary gate Gp that is a predecessor of Gq, for all j, k ∈ [1, n] two distinct t-edges
from the j-th copy (output component of the block) associated to Gq are identified to the
two feedback edges of the k-th block associated to Gp. Also, for all j, k ∈ [1, n] a t-edge from
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the output component of the k-th block associated to Gp is identified to an input edge of the
j-th copy (block) associated to Gq.

For an input gate Gp that is a predecessor of Gq, for all j ∈ [1, n], a t-edge from the j-th
copy (output component of the block) associated to Gq is identified to the feedback edge of
the unique dunce hat associated to Gp. Also, for all j ∈ [1, n], a t-edge from the dunce hat
associated to Gp is attached to the input edge of the j-th copy (block) associated to Gq.

Moreover, these identifications are done to ensure that: a feedback edge of a copy (block)
associated to Gp is free only if all the copies (output components of all the blocks) associated
to all the successors of Gp have been erased, and an input edge of a copy (block) associated
to Gq is free only if the unique copy (all the output components of all the block) associated to
the predecessors of Gp have been erased. Please refer to Figure 5 for an example illustrating
the identifications.

It is important to note that the gluing is done so that the s-edges from two different copies
(blocks) associated to the same gate are never identified as an outcome of gluing, nor do they
intersect in a vertex. In particular if Gp is a gate with Gp1 and Gp2 as inputs, where, for
instance, if Gp1 is an input gate and Gp2 is an ordinary gate, then for every k ∈ [1, n], s(p,k)

ι1

is identified to a unique t-edge from the dunce hat associated to Gp1 , and s
(p,k)
ι2 is identified

to n t-edges each from a block associated to Gp2 . These are the only identifications for
edges s(p,k)

ι1 and s(p,k)
ι2 . For every non-output gate Gp, let θp denote the number of successors

of Gp. Then, for all k ∈ [1, n], s(p,k)
f1

and s(p,k)
f2

each have θpn identifications from t-edges
coming from each of the blocks associated to each of the successors of Gp. These are the
only identifications for s(p,k)

f1
and s(p,k)

f2
. If Gp is an input gate, then s(p,1)

f is identifies to θpn
t-edges from blocks associated successors of Gp. Finally, the input s-edges of the k-th copy
associated to the output gate Go is identified to either one or n t-edges coming from dunce
hats associated to predecessor gates, depending on whether the predecessor is an input gate
or an ordinary gate. We refrain from providing indices for the identified t-edges as this would
needlessly complicate the exposition.

For every non-input gate Gi, set φi = 1 if the first input to Gi is from an input gate, and
set φi = 2n otherwise. Similarly, for every non-input gate Gi, set ψi = 1, if the second input
to Gi is from an input gate, and set ψi = 2n otherwise.

Now we can readily check the following: In our construction, for a dunce hat 3D(i,j)
m,`

associated to an ordinary gate Gi, we have m = 1 or m = 2 (depending on whether it is an
and-gate or an or-gate), and ` = θin+ φi +ψi. For dunce hats 2D(i,j)

m,` and 1D(i,j)
m,` associated

to an ordinary gate Gi, we have m = 2, and ` = 1. For a dunce hat D(i,j)
m,` associated to an

output gate Gi, we have m = 1 or m = 2, and ` = φi + ψi. Finally, for the dunce hat D(i,1)
m,`

associated to an input gate Gi, we have m = 1 , and ` = θin.
I Remark 20. We reindex the dunce hats described above using the indexing set Ξ. That is,
for every dunce hat in K ′(C) there exists a unique ζ ∈ [1, |Ξ|] such that Dζ

m,` identifies the
dunce hat of interest. Sometimes in our exposition it is more convenient to refer to dunce
hats with a single index as opposed to using two or three indices in the superscript.

Let ζ be the indexing variable, and Ξ the indexing set as described in Remark 20. For
a dunce hat Dζ

m,`, we call the complex induced by the edges {{1ζ , 2ζ}, {2ζ , 3ζ}, {2ζ , 6ζ},
{6ζ , bζk}, {b

ζ
k, z

ζ
k}} (i.e., the pink edges of Dm,` in Figure 2) the stem of Dζ

m,`. Then, in
complex K ′(C), let H be the 1-dimensional subcomplex formed by the union of stems of
Dζ
m,`, for all ζ ∈ [1, |Ξ|]. We call H the stem of the complex K ′(C). It can be shown that a

basis for the first homology group of the complex K ′(C) is supported by the edges in the
stem of the complex. The complex K(C) is formed as follows: We first assemble the minimal
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i

s1

Associated dunce hat D(i,1)Input gate Gi

a

b

output

s1 s2

D(i,j)

n associated copies {D(i,j)}nj=1Output OR gate Gi

a

b

output

s1

D(i,j)

n associated copies {D(i,j)}nj=1Output AND gate Gi

Figure 3 In all three figures, the distinguished edges are highlighted. The top figure shows an
input gate and the dunce hat associated to it. We conceive the input gate as activated when the
associated dunce hat has a critical 2-simplex in it. If the dunce hat doesn’t have critical 2-simplices,
then s1 must be paired to its coface for the dunce hat to be erased. The edge s1 supports a feedback
mechanism. In particular, if all the dunce hats associated to the output gate are erased without
activating Gi, then we need an alternative means to erase Gi, which is provided by s1. The figure in
the middle (resp. bottom) shows an output or-gate (resp. an output and-gate) and the associated
n copies of dunce hats. In both cases, the j-th copy consists of a single dunce hat D(i,j), where
j ∈ [1, n]. The idea behind the dunce hat associated to the or-gate is that if either s1 or s2 is free,
then D(i,j) can be erased. The idea behind the dunce hat associated to the and-gate is that if s1 is
free, then D(i,j) can be erased. Finally, we have n copies instead of a single copy per gate to ensure
that optimum values of MinMCS and MinrMM are the same.
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x

y

x ∨ y

1D(i,j)

s1 s2 s1 s2

2D(i,j)

s1 s2

3D(i,j)

n associated blocks {1D(i,j), 2D(i,j), 3D(i,j)}nj=1Non-output OR gate Gi

a

b

a ∧ b

1D(i,j)

s1 s2 s1 s2

2D(i,j)

s1

3D(i,j)

n associated blocks {1D(i,j), 2D(i,j), 3D(i,j)}nj=1Non-output AND gate Gi

Figure 4 The figure on the top (resp. bottom) shows a non-output or-gate (resp. a non-output
and-gate) and the associated n blocks of dunce hats. In both cases j-th block consists of 3 dunce hats
{1D(i,j), 2D(i,j), 3D(i,j)}, where j ∈ [1, n]. All distinguished edges are highlighted, and identical
color coding indicates identifications. That is, red edges are glued to red edges and green to green.
The arrows on the highlighted edges show the orientations of identifications. The idea behind the
blocks associated to the or-gate is that if either the s1 edge of 1D(i,j) or the s1 edge of 2D(i,j) is free,
then all three dunce hats in the j-th block can be erased. The idea behind the blocks associated to
the and-gate is that if the s1 edge of 1D(i,j) and the s1 edge of 2D(i,j) are free, then all three dunce
hats in the j-th block can be erased. For each block, the dark and the light blue s2 edges of 1D(i,j)

and 2D(i,j) respectively support a feedback mechanism. In particular, if the dunce hats associated
to the output gate are erased then, we need an alternative means to erase all the dunce hats, since
the satisfaction of the output gate is all we really care about. Finally, we have n blocks instead of a
single block per gate to ensure that optimum values of MinMCS and MinrMM are the same.
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s1 = sι1 s2 = sf1 s1 = sι2 s2 = sf2

2D(q,j)

s1 s2

3D(q,j)

j-th block 1D(q,j), 2D(q,j), 3D(q,j)Non-output OR gate Gq
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b

y

1D(p,k)

s1 = sι1 s2 = sf1 s1 = sι2 s2 = sf2
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3D(p,k)

k-th block 1D(p,k), 2D(p,k), 3D(p,k)}Non-output AND gate Gp

x

s1 = sf

Associated dunce hat D(i,1)Input gate Gi

Figure 5 In this figure we depict the part of the complex associated to the (partial) circuit
that implements z = (a ∧ b) ∨ x, where x is an input to the circuit. Identical color coding
indicates identifications, and the arrows indicate orientations of idenitifications. Here we only
show identifications for j-th block of Gq and k-th block of Gp for arbitrary j, k ∈ [1, n]. Similar
identifications occur across all respective associated blocks.
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cycle basis of the stem of the complex K ′(C) in a matrix M and then make this matrix
upper-triangular. Then, each cycle (column in M) is filled with a triangulated disk, giving
us the desired complex K(C). Please refer to Section 4.3 for further details.

I Remark 21 (Design choices for ordinary gates). At this point we would like to remark that, in
principle, one could construct a complex for circuits with arbitrary fan-ins wherein the or-gate
and and-gate like behaviour can easily be implemented with a single (suitably sub-divided)
dunce hat having two or more free edges. The problem with this approach is that it is much
harder to control where the 1-cycles in the complex appear, and this makes the cycle filling
procedure far more technical. This motivates our approach to first pass to circuits with fan-in
two and then implement or-gates and and-gates with blocks of three instead of single dunce
hats. As we shall see later, this leads to a straightforward instance-independent description
of the 1-homology basis of K ′(C), which in turn simplifies cycle filling.

Given a gradient vector field Ṽ on K, we construct the map I(C, Ṽ) as follows: For every
input gate Gi whose associated dunce hat has a critical 2-simplex in Ṽ , we set I(C, Ṽ)(Gi) = 1.
Please refer to Appendix A.2 for further details.

4.3 Construction of the complex K(C)
From the identifications described in Section 4.2, it is easy to check that H is, in fact, a
connected graph. The procedure for constructing K(C) is described in Algorithm 1.

Algorithm 1 Procedure for constructing K(C) from K′(C)

1: K(C)← K ′(C)
2: . Initially, K(C) consists only of simplices from K ′(C).
3: Compute a minimal cycle basis B of H with Z2 coefficients
4: Assemble the basis vectors in a matrix M
5: Make M upper-triangular using column operations
6: . The columns of M now represent a new basis B′ of the cycle space of H.
7: . Let {eji} denote the edges of a cycle zi ∈ B′. Let ni denote the number of edges in zi.
8: for i← 1, |B′| do
9: Add a new vertex vi to K(C)

10: for j ← 1, ni do
11: Add to K(C) a 2-simplex σji = eji ∗ vi for each edge eji of zi
12: Add to K(C) all of the faces of simplices σji
13: end for
14: end for
15: D← K(C) \K ′(C)
16: Return K(C),D

In the construction described in Algorithm 1, the star of the vertex vi may be viewed as
a ‘disk’ that fills the cycle zi. See Figure 6 for an illustration.

I Remark 22. It can be shown that

the second homology groups H2(K ′(C)) and H2(K(C)) are trivial,
the classes {[zi]} are nontrivial and form a basis for H1(K ′(C)), where B′ = {zi} as
in Algorithm 1, and
K(C) is contractible.
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However, our hardness results can be established without proving any of the statements
above. Having said that, it is important to bear in mind that the procedure of going from
K ′(C) to K(C) is, in fact, a 1-cycle filling procedure. As will be clear in the following section,
the reason for using the basis B′ instead of B is to make edges associated to successive pivot
entries in matrix M free after collapsing all 2-simplices that fill the preceding cycle.

To establish hardness results, we introduce some additional notation. Given a monotone
circuit C = (V, E) let K(C) be its associated complex. Now let OPTMinMCS(C) denote
the optimal value of the MinMCS problem on C, and let OPTMinrMM(K(C)) denote the
optimal value of the MinrMM problem on K(C). The value of the objective function
mMinrMM(K(C),V) is the number of critical simplices in V minus one; the value of the
objective function mMinMCS(C, I(C,V)) is the Hamming weight of the input assignment.

4.4 Reducing MinMCS to MinrMM: Forward direction
Given a circuit C, suppose that we are given an input assignment A that satisfies the circuit
C = (V (C), E(C)). Let S be the set of gates that are satisfied by the assignment, and let
I(S) be the set of input gates that are assigned 1. Clearly, I(S) ⊂ S, and also the output
gate Go ∈ S. Let S = V (C) \ S denote the set of gates that are not satisfied by the input A.
Clearly, the subgraph CS of C induced by the gates in S is a connected graph. Also, since
C is a directed acyclic graph, the induced subgraph CS is also directed acyclic. Let ≺S be
some total order on S consistent with the partial order imposed by CS, and let ≺C be some
total order on V (C) consistent with the partial order imposed by C.

Next, given an assignment A on C, we describe how to obtain a gradient vector field V
on K(C). We denote the complex obtained after i-th step by Ki(C).

Step 1: Erase satisfied input gates

First, for every input gate Gi ∈ S, we make Γ(i,1)
1 critical. By Lemma 5, this is akin to

removing Γ(i,1)
1 from D(i,1). Next, we make all s(i,1)

f for all Gi ∈ S critical. We then use
Lemma 56 from Appendix A.1 to erase all the dunce hats D(i,1) associated to satisfied input
gates Gi, giving K1(C).

Step 2: Forward collapsing

Assume throughout Step 2 that the gates in S are indexed from 1 to |S| so that

for all Gi, Gj ∈ S, i < j ⇔ Gi ≺S Gj .

I Lemma 23. Let Gp ∈ S \ I(S). Suppose that all the gates in I(S) have been erased, and
for all gates Gk ∈ S \ I(S) with k < p the associated dunce hats 3D(k,r) for all r ∈ [1, n] have
been erased. Then, the dunce hats 3D(p,j), for all j ∈ [1, n] associated to Gp can be erased.

Proof. Let Gp1 and Gp2 be inputs to Gp. Assume without loss of generality that Gp1 , Gp2

are non-input gates. By our assumption on indexing, p1 < p and p2 < p. By construction,
the only identifications to s(p,j)

ι1 ∈ 1D(p,j) are from t-edges that belong to 3D(p1,r) for all
r ∈ [1, n], and the only identifications to s(p,j)

ι2 ∈ 2D(p,j) are from t-edges that belong to
3D(p2,r) for all r ∈ [1, n]. We have two cases:
I Case 1. Assume that Gp is a satisfied or-gate. Then, either Gp1 ∈ S or Gp2 ∈ S. Without
loss of generality, we assume that Gp1 ∈ S. Then, for all j, s(p,j)

ι1 become free since, by
assumption, the dunce hats 3D(p1,r) associated to Gp1 have been erased. So using Lemma 55
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from Appendix A.1, for all j, 1D(p,j) can be erased. For each j, the unique identification to
3s

(p,j)
1 is from a t-edge in 1D(p,j). Hence, for all j, 3s

(p,j)
1 becomes free, making it possible to

erase 3D(p,j) for all j.

I Case 2. Now, assume that Gp is a satisfied and-gate. Then, both Gp1 ∈ S and Gp2 ∈ S.
Thus, for all j, s(p,j)

ι1 and s(p,j)
ι2 become free since, by assumption, all the dunce hats 3D(p1,p)

for all p ∈ [1, n] associated to Gp1 and all dunce hats 3D(p2,q), for all q ∈ [1, n] associated
to Gp2 have been erased. So, using Lemma 55 from Appendix A.1, for all j ∈ [1, n], 1D(p,j)

and 2D(p,j) can be erased. For all j ∈ [1, n], the only two edges identified to 3s
(p,j)
1 belong

to 1D(p,j) and 2D(p,j) respectively. Hence, for all j ∈ [1, n], 3s
(p,j)
1 becomes free, making

it possible to erase 3D(p,j) for all j ∈ [1, n]. Thus, the dunce hats 3D(p,j) for j ∈ [1, n]
associated to Gp can be erased.

The argument is identical for the case when Gp1 or Gp2 is an input gate. J

I Lemma 24. All dunce hats associated to the output gate are erased.

Proof. Note that a satisfying assignment A that satisfies the circuit, in particular, also satisfies
the output gate. A simple inductive argument using Lemma 23 proves the lemma. J

After applying Step 1, we apply Step 2, which comprises of executing the collapses
described by Lemmas 23 and 24. This immediately gives us the following claim.

B Claim 25. If there exists an assignment satisfying a circuit C with Hamming weight m,
then there exists a gradient vector field on K(C) such that after making m 2-cells critical,
all the dunce hats 3D(p,j) associated to the satisfied non-output gates Gp and all dunce hats
associated to the output gate can be erased.

The complex obtained after erasing executing Step 2 is denoted by K2(C). We have,
K1(C)↘ K2(C).

I Remark 26. Note that the forward collapses do not erase all the dunce hats associated
to satisfied gates. For instance, for a satisfied or-gate Gp, if one of the input gates, Gp1 ,
is satisfied and the other, Gp2 , is not, then 1D(p,j) and 3D(p,j) will be erased, but 2D(p,j)

will not be erased. The dunce hats associated to the unsatisfied gates and the unerased
dunce hats associated to the satisfied gates are erased in the next step while executing the
backward collapses.

Step 3: Backward collapsing

Assume throughout Step 3 that the gates in V (C) are indexed from 1 to n so that

for all Gi, Gj ∈ V (C), i < j ⇔ Gi ≺C Gj .

The idea behind backward collapsing is that the feedback edges become successively free
when one starts the collapse from dunce hats associated to highest indexed gate and proceeds
in descending order of index.

I Lemma 27. If all the dunce hats associated to gates Gk, where k > i, have been erased,
then the dunce hats associated to Gi can be erased.

Proof. We have three cases to verify:
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I Case 1. First, assume that Gi is an ordinary gate. The only identifications to edges
s

(i,j)
f1
∈ 1D(i,j) and s(i,j)

f2
∈ 1D(i,j) respectively are from the t-edges in dunce hats associated

to successors of Gi. By assumption, all dunce hats 3D(k,p) associated to ordinary gates Gk
where k > i have been erased, and all dunce hats D(o,q) associated to the output gate Go
have been erased. Hence, s(i,j)

f1
and s(i,j)

f2
are free, for every j. Therefore, for every j, dunce

hats 1D(i,j) and 2D(i,j) can be erased.

I Case 2. If Gi is an unsatisfied gate, then for all j, the only identifications to s-edge(s) of
3D(i,j) are from t-edges of 1D(i,j) and 2D(i,j). So the s-edge(s) of 3D(i,j) become free for all
j, allowing us to erase 3D(i,j), for all j. Thus, all dunce hats associated to Gi can be erased.

I Case 3. Now assume that Gi is an input gate. Then, the unique s-edge of the unique copy
associated to Gi is identified to t-edges of dunce hats associated to successors of Gi. Since,
by assumption, all dunce hats associated to gates Gk, where k > i, have been erased, s(i,1)

1
becomes free, allowing us to erase D(i,1).

Note that in the proof of this lemma, for ordinary satisfied gates only Case 1 may be relevant,
whereas for ordinary unsatisfied gates both Case 1 and Case 2 apply. J

B Claim 28. If there exists an assignment satisfying a circuit C with Hamming weight m,
then there exists a gradient vector field on K(C) with exactly m critical 2-cells.

Proof. We prove the claim by induction. The base step of the induction is provided
by Claim 25. Then, we repeatedly apply the steps below until all gates in K(C) are erased:

1. Choose the highest indexed gate whose associated dunce hats haven’t been erased.
2. Apply the collapses described in Lemma 27 to erase dunce hats associated to Gk.

J

The complex obtained after erasing all dunce hats in K(C) is denoted by K3(C). We
have, K1(C)↘ K2(C)↘ K3(C).

Step 4: Deleting critical 1-simplices

Note that in complex K3(C), the s-edges s(i,1)
f from D(i,1), for all Gi ∈ S have no cofaces.

Since they were already made critical in Step 1, by Lemma 5, we can delete s(i,1)
1 from K3(C)

for all Gi ∈ S, and continue designing the gradient vector field on the subcomplex K4(C)
obtained after the deletion.

Step 5: Removing dangling edges

Since the 2-collapses executed in Steps 1-3 are as described in Remark 19 and Figure 2,
it is easy to check that for each Dζ1

m,` ⊂ K(C), the edges that remain are of the form: {{1, 2}ζ1 ,

{2, 3}ζ1 , {2, 6}ζ1 , {5, 6}ζ1 , {7, 6}ζ1 , {bk, 6}ζ1 , {ck, 6}ζ1 , {dk, 6}ζ1 , {bk, zk}ζ1 , {zk, yk}ζ1 , {yk, ak}ζ1}
∪F for k ∈ [1, `], and,

F = {{v, 4}} if m = 1, where v = 6, if ` is even, and v = (`−1)/2 + 1 if ` is odd,
F = {sζ1

1 , {4, 8}ζ1} if m = 2 and sζ1
2 is removed as part of a 2-collapse,

F = {sζ1
2 , {4, 8}ζ1} if m = 2 and sζ1

1 is removed as part of a 2-collapse.
We now execute the following 1-collapses (1-3 highlighted in green, and 4 highlighted in

blue as illustrated in Figure 2).
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1. Since 5ζ1 , 7ζ1 , ck
ζ1 , and dkζ1 are free for all k ∈ [1, `], for all Dζ1

m,` ⊂ K(C), we execute
the following collapses for all k ∈ [1, `], for all Dζ1

m,` ⊂ K(C):

(5ζ1 , {5, 6}ζ1), (7ζ1 , {7, 6}ζ1), (cζ1
k , {ck, 6}ζ1), and (dζ1

k , {dk, 6}ζ1).

2. Since the vertices 4ζ1 are free for all Dζ1
m,` ⊂ K(C), for all Dζ1

m,` ⊂ K(C):

if m = 1, we execute the collapse (4ζ1 , {4, v}ζ1), where v = 6, if ` is even, and
v = (`−1)/2 + 1 if ` is odd,
if m = 2, we execute the collapse (4ζ1 , {4, 8}ζ1).

3. Now, akζ1 become free for all k ∈ [1, `], for all Dζ1
m,` ⊂ K(C). So, we execute the collapses

(akζ2 , {ak, yk}ζ2) for all k ∈ [1, `], for all Dζ1
m,` ⊂ K(C).

4. Now, 8ζ1 become free for all Dζ1
2,` ⊂ K(C). So, for all Dζ1

2,` ⊂ K(C):

If sζ1
2 was removed as part of a 2-collapse, we execute the collapse (8ζ1 , sζ1

1 ),
else if sζ1

1 was removed as part of a 2-collapse, we execute the collapse (8ζ1 , sζ1
2 ).

Note that because of the identifications, there may exist several Dζ2
m,` ⊂ K(C) with points

yk
ζ2 ∈ Dζ2

m,` that are identical to 8ζ1 . So, the above collapses (8ζ1 , sζ1
r ), r ∈ [1, 2] may

appear as (ykζ2 , {yk, zk}ζ2) in other dunce hats Dζ2
m,` ⊂ K(C).

The complex obtained after collapsing all the dangling edges is denoted by K5(C).
So far, we have, K1(C)↘ K2(C)↘ K3(C) and K4(C)↘ K5(C).

Step 6: Collapsing the cycle-filling disks

The 1-complex H formed by the union of stems of Dζ
m,`, for all ζ ∈ [1, |Ξ|] described

in Section 4.3 is clearly a subcomplex of K5(C). Let D = K(C) \K ′(C) be the set described
in Algorithm 1 obtained while building K(C) from K ′(C). It is, in fact, easy to check that
K5(C) = H tD. Next, we show that H is a connected graph.

I Lemma 29. H is connected.

Proof. First note that for every ζ ∈ [1, |Ξ|], the stem of Dζ
m,` is connected. In particular,

the stem of Dζ
m,` connects 1ζ and 3ζ to zζk all k ∈ `.

Suppose Gi and Gj are two gates in C such that Gi is the predecessor of Gj . Then, in
every dunce hat associated to Gi, there exists a t-edge that is connected to an s-edge to every
dunce hat associated to Gj . That is, for all p, q ∈ [1, n] there exists a z(i,p)

k that is identified
to either 1(j,q) or 3(j,q). Thus, the stems of Gi are connected to the stems of Gj . Now, since
C itself is a connected directed acyclic graph, it follows that the complex H which is the the
union of stems of Dζ

m,`, for all ζ ∈ [1, |Ξ|] is also connected. J

Now, as in Algorithm 1, let M be the upper-triangular matrix whose columns represent
a basis B′ of the cycle space of H. The cycle zi is represented by column M i. Let ni denote
the number of edges in zi. Let the vertices vji ∈ zi, j ∈ [1, ni] and the edges eji ∈ zi, j ∈ [1, ni]
be indexed so that e1

i represents the lowest entry (that is the pivot) for column M i, and vji
and vj+1

i form the endpoints of eji . Simplices σji are indexed so that the vertices incident
on σji are vji and vj+1

i and vi. Please refer to Figure 6 for an example of a cycle zi with six
edges. The procedure to collapse all the disks in K5(C) ⊂ K(C) corresponding to cycles
zi ∈ B′ is described in Algorithm 2.
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Figure 6 The above figure shows a triangulated disk that fills the cycle zi. Here, e1
i is the pivot

edge of zi. The gradient field starts with a gradient pair that includes the pivot edge.

Algorithm 2 Procedure for collapsing cycle-filling disks

1: for i← 1, |B′| do
2: Execute the collapse (e1

i , σ
1
i ).

3: for j ← 2, ni do
4: Execute the collapse ({vi, vji }, σji ).
5: end for
6: Execute the collapse (vi, {vi, v1

i }).
7: end for
8: Return T .

Note that in Algorithm 2, it is possible to execute the collapse (e1
i , σ

1
i ) for each i because

the matrix M of basis B′ is upper-triangular. This guarantees that after collapsing all the
disks corresponding to cycles zk, k ∈ [1, i− 1], e1

i is free.
Denote the complex obtained at the end of Algorithm 2 as T .

Step 7: Collapsing the tree

Now observe that Algorithm 2 removes all simplices in D from K5(C). So, in particular,
T ⊂ H ⊂ K5(C). Moreover, the pivot edges e1

i from cycles zi are also removed as part of
2-collapses in Line 2 of Algorithm 2. In other words, T = H \⋃|B

′|
i=1{e1

i }, where B′ forms a
basis for cycle space of H.

B Claim 30. T is a tree.

Proof. By Lemma 29, H is connected. Removal of each edge e1
i from H, decreases the β1 of

H by 1, whereas β0 of H is unaffected. Hence, T is connected. Moreover, since we destroy
all |B′| cycles of H, T has no cycles, proving the claim. J
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Next, we greedily collapse the tree T to a vertex v0 ∈ K(C), which can be done in time
linear in the size of T . Finally, we make v0 critical.

Let V be the collection of gradient pairs arising out of all the collapses from Steps
1-7. Also, note that K1(C) is obtained from K(C) by deletion of m critical 2-simplices.
Then, K1(C) ↘ K3(C). Then, K4(C) is obtained from K3(C) by deleting m critical
1-simplices. Then, K5(C) is obtained from K4(C) by executing some 1-collapses. Finally,
K5(C)↘ T ↘ v0. So, using Lemma 5, we conclude that given a circuit C with a satisfying
assignment A of Hamming weight m, we can obtain a vector field V on K(C) with m critical
2-simplices, m critical 1-simplices and a single critical vertex. Now, for a circuit C if the
assignment A is, in fact, optimal, that is, assuming m = OPTMinMCS(C), then MinrMM for
complex K(C) has a solution of size (2m+ 1)− 1 giving us the following proposition.

I Proposition 31. OPTMinrMM(K(C)) ≤ 2 ·OPTMinMCS(C).

We highlight the entire collapsing sequence in Figure 2 (a) and (b). First we perform the
2-collapses as described in Steps 2-3. Then, the 1-collapses for highlighted edges (in green)
are executed. This is followed by 1-collapses for highlighted edges (in blue), whenever these
edges are available. These edges may not be available if they are involved in 2-collapses in
other dunce hats, or if they are made critical. After executing the above collapses, for edges
in green and blue, we first execute the 2-collapses to erase all the cycle-filling disks, which
leaves behind a tree supported by the edges in pink. The tree is then collapsed to a point.

5 Hardness results for Min-Reduced Morse Matching

For maps K and I described in Section 4.2, we can establish the following relations.

I Proposition 32. OPTMinrMM(K(C)) ≤ 2 ·OPTMinMCS(C).

Proof. For proof, please refer to Proposition 31 in Section 4.4. J

I Proposition 33. mMinrMM(K(C), Ṽ) ≥ 2 ·mMinMCS(C, I(C, Ṽ))

Proof. For proof, please refer to Proposition 62 in Appendix A.2. J

I Proposition 34. OPTMinrMM(K(C)) = 2OPTMinMCS(C).

Proof. For proof, please refer to Proposition 64 in Appendix A.2. J

I Proposition 35.

mMinMCS(C, I(C,V))−OPTMinMCS(C) ≤ 1
2mMinrMM(K(C),V)−OPTMinrMM(K(C)))

Proof. Combining Propositions 32 and 33 proves the claim. J

We will use the following straightforward fact about L-reductions.

I Theorem 36 (Williamson, Shmoys [71]). If there is an L-reduction with parameters µ and
ν from a minimization problem A to a minimization problem B, and there is a (1 + δ)-
approximation algorithm for B, then there is a (1 + µνδ)-approximation algorithm for A.

Next, we shall use the following result by Alekhnovich et al. [1].

I Theorem 37 (Theorem 3, [1]). Unless NP ⊆ QP, there is no polynomial time algorithm
which can approximate MinMCS within a factor of 2log(1−ε) n, for any ε > 0.
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I Theorem 38. MinrMM cannot be approximated within a factor of 2log(1−ε) n, for any ε > 0
unless NP ⊆ QP.

Proof. From Proposition 33 and Proposition 35, we conclude that the reduction from MinMCS
to MinrMM is a strict reduction with parameters µ = 2 and ν = 1

2 . By Theorem 36, if there
exists a (1 + δ)-approximation algorithm for MinrMM, then there exists a (1 +µνδ)-algorithm
for MinMCS. Using Theorem 37, the claim follows. J

Denote the standard parameterizations for MinMCS and MinrMM by MinMCS′ and
MinrMM′ respectively. Using the map K : C → K(C) that transforms instances of MinMCS
to instances of MinrMM, we define a new map K̂ : (C, k) → (K(C), k′) that transforms
instances of MinMCS′ to instances of MinrMM′, where we set k′ = 2k.

I Proposition 39. The map K̂ from MinMCS′ to MinrMM′ is

1. an FPT reduction,
2. a (δ, δ′)-gap preserving reduction for every function δ, where δ′(k) = δ(

⌊
k
2
⌋
).

Proof. 1. First note that, using Proposition 34, for any value of parameter k,

OPTMinMCS(C) ≤ k ⇔ OPTMinrMM(K(C)) ≤ 2k.

Then, the conclusion follows immediately from observing that complex K(C) can be
constructed in time polynomial in the size of C.

2. Suppose an instance (C, k) is a δ-gap instance of MinMCS′. That is, either OPTMinMCS(C) ≤
k or OPTMinMCS(C) ≥ kδ(k). So, we have two cases to check:
Uusing Proposition 34,

OPTMinMCS(C) ≤ k ⇒ OPTMinrMM(K(C)) ≤ 2k = k′.
If OPTMinMCS(C) ≥ kδ(k)⇒ OPTMinrMM(K(C)) ≥ 2kδ(k) = k′δ(k′2 ) = k′δ′(k′). J

I Theorem 40. 1. MinrMM is W[P]-hard.
2. MinrMM has no fixed-parameter tractable approximation algorithm with any approximation

ratio function ρ, unless FPT = W[P].

Proof. The first statement follows immediately from Proposition 39 and Theorem 16.
Eickmeyer et al. [25] provides a standard template to carry over FPT inapproximability

results using gap preserving FPT reductions. Accordingly to prove the second statement,
we closely follow the line of argument from [25, Corollary 12]. In this case, the strong FPT
inapproximability result for MinMCS from Theorem 17 is carried over to MinrMM. We first
reduce MinMCS′ to the approximation variant of MinrMM′. Assume there exists an FPT cost
approximation algorithm for MinrMM with approximation ratio ρ, where ρ is any computable
function.

Given an input (C, k) for MinMCS′, we first use the construction described in the proof
of [25, Theorem 6]. Using this construction, we obtain a circuit C of size |C| = f(k) · |C|O(1)

for some computable function f in FPT time (with parameter k), such that
(C ′, α(k)) is a δ-gap instance for some α : N→ N and δ : N→ R>1,
and ρ(2α(k)) < δ(α(k)).

Note that satisfying the second condition becomes possible since we have no restriction on
the function δ.

Using the FPT gap-preserving reduction described in Proposition 39 from MinMCS to
MinrMM on the δ-gap instance (C,α(k)), we get a δ′-gap instance (K(C), 2α(k)) of MinrMM′
with δ′(2α(k)) = δ(α(k)). We run A on (K(C), ρ(2α(k)) · 2α(k)).
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If OPTMinrMM(K(C)) ≤ 2α(k), then

ρ(2α(k)) · 2α(k) ≥ ρ(OPTMinrMM(K(C))) ·OPTMinrMM(K(C))

and A accepts. If, on the other hand, OPTMinrMM(K(C)) ≥ δ′(2α(k))2α(k) then

ρ(2α(k)) · 2α(k) < δ(α(k)) · 2α(k) = δ′(2α(k)) · 2α(k) ≤ OPTMinrMM(K(C)),

and A rejects.
Hence, using such an algorithm A we could devise an FPT cost approximable algorithm

for MinMCS some computable function ρ, which in turn would imply W[P] = FPT us-
ing Theorem 17. J

6 Hardness results for Min-Morse Matching

Denoting the standard parameterizations for MinMM by MinMM′, we now consider the map
K̃ : (K, p) 7→ (K, p + 1) that transforms instances of MinrMM′ (simplicial complexes) to
instances of MinMM′ (identical simplicial complexes).

I Proposition 41. The map K̃ from MinrMM′ to MinMM′ is

1. an FPT reduction,
2. a (δ, δ′)-gap preserving reduction for every function δ, where δ′(p) = (p−1)δ(p−1)+1

p .

Proof. 1. By definition, OPTMinMM(K) = OPTMinrMM(K) + 1. So, for any value of p,

OPTMinrMM(K) ≤ p⇔ OPTMinMM(K) ≤ p+ 1.

So, the conclusion follows immediately.
2. Suppose an instance (K, p) is a δ-gap instance of MinrMM′. That is, either OPTMinrMM(K) ≤

p or OPTMinrMM(K) ≥ pδ(p). So, we have two cases to check:
If OPTMinrMM(K) ≤ p, then

OPTMinMM(K) ≤ p+ 1 = p′.

If OPTMinrMM(K) ≥ pδ(p), then

OPTMinMM(K) ≥ pδ(p) + 1 = p′δ(p′). J

Combining Theorem 40 and Proposition 41, we obtain the following result:

I Theorem 42. MinMM is W[P]-hard. Furthermore, it has no fixed-parameter tractable
approximation algorithm within any approximation ratio function ρ, unless FPT = W[P].

I Definition 43 (Amplified complex). Given a pointed simplicial complex K with n simplices,
the amplified complex K̂ is defined as the wedge sum of n copies of K.

I Lemma 44. For any 2-complex K, OPTMinMM(K̂) = n ·OPTMinrMM(K) + 1.

Proof. It is easy to check that the optimal vector field on K̂ is obtained by repeating the
optimal vector field on K on each of the n copies of K in K̂, while making the distinguished
vertex of K̂ the unique critical vertex in K̂. J

I Lemma 45. Using a vector field V̂ on K̂ with m+ 1 critical simplices, one can compute a
vector field V on K with at most

⌊
m
n

⌋
+ 1 critical simplices in polynomial time.
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Proof. Using Lemma 3, we can assume without loss of generality that V̂ has the distinguished
vertex as its unique critical simplex. Restricting V̂ to each of the n copies of K, the claim
follows. J

I Proposition 46. For a fixed ε > 0, let ρ = f(n), where f(n) = o(n). Then, for any
δ ∈ (0, 1) and % = f(n)− δ, if there exists a %-factor approximation algorithm for MinMM,
then there exists a ρ-factor approximation algorithm for MinrMM.

Proof. For a complex K, the optimal value of MinrMM on K is denoted by OPTMinrMM(K).
Suppose that there exists a %-factor approximation algorithm A for MinMM. If we apply A
on K̂, then using Lemma 44, we obtain a vector field with at most % (n ·OPTMinrMM(K) + 1)
critical simplices. Then, using Lemma 45, we can compute a vector field V on K with at
most m(V) critical simplices, where

m(V) ≤
⌊
% · n ·OPTMinrMM(K) + %− 1

n

⌋
+ 1

≤
⌊
% ·OPTMinrMM(K) + %− 1

n

⌋
+ 1

≤ b% ·OPTMinrMM(K)c+
⌊
%− 1
n

⌋
+ 2 using bx+ yc ≤ bxc+ byc+ 1

= b% ·OPTMinrMM(K)c+ 2 using
⌊
%− 1
n

⌋
= 0 for large n,

which gives us

m(V)− 1 ≤ % ·OPTMinrMM(K) + 1
m(V)− 1 ≤ ρ ·OPTMinrMM(K)− δ ·OPTMinrMM(K) + 1

≤ ρ ·OPTMinrMM(K) assuming OPTMinrMM(K) > 1
δ
.

The above analysis shows that one can obtain a ρ-factor approximation algorithm for MinrMM
assuming a % factor approximation algorithm for MinMM. Note that n 1

δ is bounded by a
polynomial in n given the fact that 1

δ is a constant. So, we can assume without loss of
generality that OPTMinrMM(K) > 1

δ based on the observation by Joswig and Pfetsch [39]
that if OPTMinrMM(K) ≤ c, for some constant c, then one can find the optimum in O(nc)
time. J

Combining Theorem 38 and Proposition 46, we conclude that for a fixed ε > 0, MinMM
cannot be approximated within a factor of 2log(1−ε) n − δ, for any δ > 0, unless NP ⊆ QP.
But, in order to get rid of the δ-term in the inapproximability bound for MinMM, we can
do slightly better by allowing ε to vary. To make this precise, suppose there exists an ι > 0
such that MinMM can be approximated within a factor of 2log(1−ι) n, and let δ ∈ (0, 1). Then,
using Proposition 46, this would give a 2log(1−ι) n + δ approximation algorithm for MinrMM.
However, one can always find an ε > 0 such that 2log(1−ι) n + δ = O(2log(1−ε) n). Then, for
sufficiently large n, 2log(1−ι) n + δ < 2log(1−ε) n.

Hence, the assumption of a 2log(1−ι) n-factor approximation algorithm for MinMM contra-
dicts Theorem 38. We can thus make the following claim.

I Theorem 47. For any ε > 0, MinMM cannot be approximated within a factor of 2log(1−ε) n,
unless NP ⊆ QP.
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7 An approximation algorithm for Min-Morse Matching

In this section, we assume without loss of generality that the input complex K is connected.
The algorithm can be described as follows. Given a 2-complex K, let n be the number
of 2-simplices. Assume without loss of generality that logn is an integer that divides n.
Partition the set of 2-simplices of K arbitrarily into logn parts each of size n

logn . Writing
S for the partition, we note that the power set P (S) of the parts has n elements. The
2-simplices that belong to a part s ∈ S is denoted by K(2)

s . Each element of P (S) gives us
a subset Ŝ of S. To each Ŝ we can associate a binary incidence vector j(Ŝ) of length logn
in the natural way. Let K̂ be a complex induced by the 2-simplices belonging to the parts
that belong to some Ŝ ⊂ S. In this case, we may also write K̂ as K̂ = K(j(Ŝ)) to emphasize
the data from which K̂ can be constructed. Compute such a complex K̂ for each subset Ŝ,
and let Ŝmax be the subset of largest cardinality whose induced complex K̂max is erasable.
In particular, K̂max ↘ L where L is a 1-complex. Make all the 2-simplices in K \ K̂max
critical. The gradient on K̂max is comprised of the erasing gradient of K̂max, namely V2,
combined with the optimal gradient for L, namely V1. In what follows, we will show that
this simple algorithm provides a O( n

logn )-factor approximation for Min-Morse Matching
on 2-complexes.

I Lemma 48. Let K̂max = K(j(Ŝ)) for some Ŝ. Let wj be the Hamming weight of j(Ŝ), and
let γ = logn− wj. Then, every Morse matching on K has at least γ critical 2-simplices.

Proof. Suppose that there exists a gradient vector field V2 with µ critical 2-simplices where
µ < γ. Let Ψ denote the critical 2-simplices of V2. Define K̂(2)

new as follows:

K̂(2)
new =

⋃

s∈S,
Ψ∩K(2)

s =∅

K(2)
s .

As before, let K̂new be the complex induced by simplices in K̂(2)
new. Then, K̂new ⊂ K \ Ψ.

However, K \Ψ is erasable via gradient V2. So, by Lemma 4, K̂new is erasable. But this
contradicts the maximality of K̂max, proving the claim. J

We denote the critical k-simplices of V2 ∪ V1 by ck.

I Lemma 49. The gradient vector field V2∪V1 over K has at most β1−β2 + 1 + 2γ ·
(

n
logn

)

critical simplices.

Proof. From Lemma 48, we have

c2 = γ ·
(

n

logn

)
. (1)

By [39, Lemma 4.2], K1 is connected, and one can compute a gradient vector field V1 on K1

with a single critical vertex in linear time using depth first search starting from an arbitrary
vertex in K1 (see, e.g., [60]). We have by [29, Theorem 1.7],

c0 − c1 + c2 = β0 − β1 + β2.

Since β0 = c0 = 1, we have,

c2 − β2 = c1 − β1. (2)
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Thus, combining Equation (1) and Equation (2), we have

c1 = β1 − β2 + γ ·
(

n

logn

)
.

The claim follows. J

I Theorem 50. The exists a O( n
logn )-factor approximation algorithm for Min-Morse

Matching on 2-complexes.

Proof. To begin with, we know from Tancer [69, Proposition 5] that a 2-complex is erasable if
and only if greedily collapsing triangles yields a 1-dimensional complex. That is, erasability of
a complex can checked in polynomial time. Since we check the erasability of O(n) complexes
each of size O(n), the algorithm terminates in polynomial time.

Now, let Vmin be an optimal gradient vector field. By Lemma 48, Vmin has at least γ
critical 2-simplices. By weak Morse inequalities [29, Theorem 1.7], the number of critical
1-simplices of Vmin is at least β1, and the number of critical 0-simplices of Vmin is β0 = 1.
Thus, an optimal gradient vector field has at least O(γ + β1) critical simplices. Combining
this observation with Lemma 49, it follows that the algorithm described in this section
provides an O( n

logn )-factor approximation for Min-Morse Matching on 2-complexes. J

8 Morse matchings for Costa–Farber complexes

The strong hardness results established in Section 6 belie what is observed in computer
experiments for both structured as well as random instances [33, 60]. In particular, the
structured instances generated by Lutz [38, 50] and by the RedHom and CHomP groups [33]
and the random instances that come from Linial–Meshulam model [54] and the Costa–Farber
model (referred to as type-2 random complexes in [60]) turn out to be ‘easy’ for Morse
matching [60]. We use the terms ‘easy’ and ‘hard’ in an informal sense. Here, by easy
instances, we mean those instances for which simple heuristics give near-optimal matchings,
and by hard instances we mean instances for which known heuristics produce matchings that
are far from optimal. Unfortunately, the approximation bounds in [60], and in Section 7
of this paper do not explain the superior performance of simple heuristics in obtaining
near-optimal matchings. Below, we provide some justification for this phenomena from the
lens of random complexes. We start with the definition of the apparent pairs gradient [7].
Apparent pairs gradient is a powerful optimization tool in softwares like Ripser [7] and
Eirene [34] that compute persistent homology of Rips filtrations.

Let K be a d-dimensional simplicial complex, and let V denote the set of vertices in K.
Suppose that the vertices in V are equipped with an indexing. For two simplices σ, τ ∈ K,
we write σ ≺K τ if σ comes before τ in the lexicographic ordering.

Following [7], we call a pair of simplices (σ, τ) of K an apparent pair of K if both

σ is the lexicographically highest facet of τ , and
τ is the lexicographically lowest cofacet of σ.

As observed in [7, Lemma 3.5], the collection of all the apparent pairs in X(n,p) forms a
discrete gradient on X(n,p). We denote this gradient by V1.

In [40,41], (a variation of) the apparent pairs gradient was used to construct matchings
with provably few critical simplices on Vietoris-Rips complexes built on a random set of
points in space (and on random clique complexes). The Morse numbers from this matching
are then used to obtain upper bounds on the Betti numbers of respective degrees. In what
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follows, we observe that the apparent pairs gradient also provides very efficient matchings
for an even larger class of random combinatorial complexes, namely, the multiparameteric
complexes of Costa and Farber [16,17,18,19]. Our analysis closely follows Kahle’s work on
random clique complexes [40, Section 7].

The Costa–Farber complex X(n,p) on a vertex set V of size n and a probability vector
p = {p1, . . . , pn−1} can be described as follows. First, add all the vertices in V to the complex
X(n,p). Next, include every possible edge independently with probability p1. So far, this is the
same as the Erdős–Rényi graph G(n, p1). That is, the 1-skeleton X1 = G(n, p1). Subsequently,
for every 3-clique in G(n, p1), include a 2-simplex independently with probability p2 to obtain
the 2-skeleton X2. More generally, consider an r-simplex σ defined on an r+ 1-element vertex
set Vr ⊂ V . If all the simplices of the set ∂σ are present in Xr−1, then include σ in Xr with
probability pr. Do this for every for every r + 1-element subset of V to obtain the r-skeleton
Xr. Following this process for every r ∈ [n− 1] gives the complex Xn−1 = X(n,p).

Note that the Costa–Farber model generalizes both the d-dimensional Linial–Meshulam
model Yd(n, p) as well as the random clique complex model X(n, p). For instance, when
p1 = p and pi = 1 for i ∈ [2, n − 1], we obtain the random clique complex model with
parameter p. When pi = 1 for i ∈ [d− 1], pd = p, and pi = 0 for i ∈ [d+ 1, n− 1], we recover
the d-dimensional Linial–Meshulam model with parameter p.

Let σ = {v0, v1 . . . vr} be an r-dimensional simplex of X(n,p), where the vertices are
labelled so that vi ∈ [n]. Then, σ is a critical simplex in V1 if and only if:

1. σ ∈ X(n,p), and
2. Every lexicographically lower cofacet τ of σ is not in X(n,p). That is, if τ = σ

⋃ {v′}
and v′ ≺K vr, then τ 6∈ X(n,p).

Using independence, the probability that σ is critical is given by

r∏

i=1
p
(r+1
i+1)
i

(
1−

r+1∏

`=1
p
(r+1
` )

`

)v0−1

Let mr denote the total number of critical r-simplices. Since there are
(
n−j
r

)
possible choices

for σ with v0 = j, and since v0 ∈ [1, n− r], we obtain the following expression for E(mr).

E(mr) =
n−r∑

j=1

(
n− j
r

) r∏

i=1
p
(r+1
i+1)
i

(
1−

r+1∏

`=1
p
(r+1
` )

`

)j−1

≤
(
n

r

) r∏

i=1
p
(r+1
i+1)
i

n−r∑

j=1

(
1−

r+1∏

`=1
p
(r+1
` )

`

)j−1

≤
(
n

r

) r∏

i=1
p
(r+1
i+1)
i

∞∑

j=1

(
1−

r+1∏

`=1
p
(r+1
` )

`

)j−1

=
((

n

r

) r∏

i=1
p
(r+1
i+1)
i

)
·
(
r+1∏

`=1
p
−(r+1

` )
`

)

Let cr denote the total number of r-simplices in X(n,p). Then, the expected number of
r-simplices in X(n,p) is given by

E(cr) =
(

n

r + 1

) r∏

i=1
p
(r+1
i+1)
i .
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Therefore,

E(mr)
E(cr)

≤

((
n
r

) r∏
i=1

p
(r+1
i+1)
i

)
·
(
r+1∏
`=1

p
−(r+1

` )
`

)

(
n
r+1
) r∏
i=1

p
(r+1
i+1)
i

= (r + 1)

(n− r)
r+1∏
`=1

p
(r+1
` )

`

When r is a fixed constant,

E(mr)
E(cr)

= O

(
1
n

r+1∏

`=1
p
−(r+1

` )
`

)
. (3)

Assuming the denominator n
r+1∏
`=1

p
(r+1
` )

` →∞, we obtain E(mr)
E(cr) = o(1).

The second gradient.

Kahle [40, Section 7] describes an alternative method for designing gradients on random
clique complexes with parameter p1 for which the following holds true.

E(mr)
E(cr)

=
(
r+2

2
)(

n
r+2
)

(
n
r+1
) pr1. (4)

To establish Equation (4), Kahle considers the following strategy: Randomly match every
r-simplex to one of its facets. This strategy doesn’t give you a discrete gradient on the nose
as there will be r − 1-simplices that are matched to more than one cofacets, and there might
also be some cycles. These events are termed as bad events. It suffices to make one pair
of simplices critical per bad event. Once the corresponding simplices associated to all bad
events are made critical, one indeed obtains a discrete gradient V2. Bounding the expected
number of bad events Br therefore gives a bound on the expected number of critical simplices.
It is then shown that the total number of bad events for dimension r is given by

E(Br) =
(
r + 2

2

)(
n

r + 2

)
p
(r+2

2 )−1
1 .

This is because each bad event contains at least one pair of r-simplices meeting in an
(r−1)-simplex. The total number of vertices involved are, therefore, r+ 2. So there are

(
n
r+2
)

choices of (r + 2)-vertex sets, and for every choice of an (r + 2)-vertex set, there are
(
r+2

2
)

choices of pairs of adjacent r-simplices. Finally, for such a bad pair to be actually present
all but one edge must be present among all the (r + 2) vertices. The expected number of
simplices of dimension r is given by

E(cr) =
(

n

r + 1

)
p
r(r+1)

2
1 .

Dividing the two, we obtain

E(Br)
E(cr)

=
(
r+2

2
)(

n
r+2
)

(
n
r+1
) pr1. (5)

Note that if r is a fixed constant, and npr1 → 0, then

E(Br)
E(cr)

= o(1).
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Kahle’s method [40] for constructing gradients on (typically) sparse random clique
complexes easily extends to the Costa–Farber model, and Equation (5) generalizes as follows:

E(Br)
E(cr)

=
(
r+2

2
)(

n
r+2
)

(
n
r+1
)

r∏

j=1
p
(rj)
j .

Let r be a fixed constant, and mr denote the critical simplices of V2. Then, we obtain

E(Br)
E(cr)

= E(mr)
E(cr)

= O


n

r∏

j=1
p
(rj)
j


 . (6)

When the parameters p in X(n,p) are such that

n

r∏

j=1
p
(rj)
j → 0, we obtain E(mr)

E(cr)
= o(1).

Note that n
∏r+1
`=1 p

(r+1
` )

` → ∞ typically leads to dense complexes, while n
∏r
j=1 p

(rj)
j → 0

typically leads to sparse complexes. From Equations (3) and (6), in both cases, we obtain
very good discrete gradients for typical instances. In particular, we obtain the following
theorem.

I Theorem 51. Let r be a fixed dimension. Then, for the regimes of Costa–Farber complexes
X(n,p) that satisfy

n
r+1∏

`=1
p
(r+1
` )

` →∞ or n
r∏

j=1
p
(rj)
j → 0

there exist respective discrete gradients that satisfy E(mr)
E(cr) = o(1).

The following statement is obtained by specializing the above analysis to Linial–Meshulam
complexes.

I Corollary 52. For the regimes of Linial-Meshulam complexes Yd(n, p) that satisfy

(np→∞ and r + 1 = d) or (np→ 0 and r = d)

there exist respective discrete gradients that satisfy E(mr)
E(cr) = o(1).

In other words, the above corollary says that if (p = o( 1
n ) and r + 1 = d), or if (p = ω( 1

n )
and r = d) for Linial–Meshulam complexes Yd(n, p), then there exist respective discrete
gradients that satisfy E(mr)

E(cr) = o(1).
To further refine our analysis, we now define a gradient U on the entire Linial–Meshulam

complex Yd(n, p) as follows:
when np→∞, let U be the apparent pairs gradient on Yd(n, p).
when np→ 0, U is comprised of

the apparent pairs gradient for matching k−1-simplices to k-simplices for k ∈ [d−1]
V2 for matching the remaining (d− 1)-simplices to d-simplices.

Also, let opt be the optimal discrete gradient on Yd(n, p). Then, the following holds true.

I Theorem 53. For the regimes of Linial-Meshulam complexes Yd(n, p) that satisfy

np→∞ or np→ 0

the discrete gradient U satisfies E(|U|)
E(|opt|) → 1 as n→∞.
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For proof, we refer the reader to Appendix B.
We would like to contrast the above observations with a known result from literat-

ure. We start with a definition. If a d-dimensional simplicial complex collapses to a
d − 1-dimensional complex, then we say that it is d-collapsible. The following result con-
cerning the d-collapsibility threshold was established by Aronshtam et al. [3, 4]. See also
Theorem 23.3.17 in Chapter 23 of [70].

I Theorem 54 ( [3,4]). There exists a dimension dependent constant cd for Linial–Meshulam
complexes Yd(n, p) such that

If p ≥ c
n where c > cd then with high probability Yd(n, p) is not d-collapsible,

and if p ≤ c
n where c < cd then Yd(n, p) is d-collapsible with probability bounded away

from zero.

Therefore, from Theorems 53 and 54, we conclude that away from the d-collapsibility
threshold, we expect to have very good gradients. It is natural to ask what happens at
the threshold? In relation to what is known for hard satisfiability instances [67, 72], are
complexes of dimension larger than 2 sampled at the collapsibility thresholds of Yd(n, p) and
more generally X(n,p) hard? The experiments in [60] do not address this question. Secondly,
for 2-complexes is it possible to define a simple random model built out of gluing dunce hats
geared specifically towards generating hard instances for Min-Morse Matching for a wide
range of parameter values? We are optimistic about affirmative answers to both questions,
but leave this topic for future investigation.

9 Conclusion and Discussion

In this paper, we establish several hardness results for Min-Morse Matching. In particu-
lar, we show that for complexes of all dimensions, Min-Morse Matching with standard
parameterization is W[P]-hard and has no FPT approximation algorithm for any approxima-
tion factor. We also establish novel (in)approximability bounds for Min-Morse Matching
on 2-complexes. While we believe that this paper provides a nearly complete picture of
complexity of Morse matchings, we conclude the paper with two remarks.

Strengthening of hardness results

We conjecture that for complexes of dimension d > 2, Min-Morse Matching does not
admit an f(n)-approximation algorithm for any f = o(n). In particular, a result of this
nature would show that while the problem is hard for complexes of all dimensions, it is,
in fact, slightly harder for higher dimensional complexes when compared to 2-dimensional
complexes, from an inapproximability standpoint.

Hardness of other related combinatorial problems

In [10], the complexity of the following problem (Erasability Expansion Height) was
studied: Given a 2-dimensional simplicial complex K and a natural number p, does there
exist a sequence of expansions and collapses that take K to a 1-complex such that this
sequence has at most p expansions? A more natural variant (Expansion Height) would be
to study the complexity of determining sequences of expansions and collapses (with at most
p expansions) that take K to a point. From what we understand, the only obstruction in [10]
towards considering the complexity of determining whether K is simple homotopy equivalent
to a point with bounded number of expansions is that the gadgets used in [10] have 1-cycles.
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We believe that an immediate application of the cycle filling method introduced in this paper
would be towards establishing W[P]-completeness for Expansion Height.
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A Reducing MinMCS to MinrMM

A.1 Structural properties of the reduction
Note that Lemmas 55 and 56 appear as Lemmas 4.1 and 4.4 in [9], but with slightly different
notation. For the sake of completeness, we restate the lemma with the notation introduced
in this paper.

I Lemma 55. For a circuit C = (V (C), E(C)), let F is a discrete Morse function on K(C)
with gradient V:

(i) If sζi ∈ Dζ
m,` is eventually free in K(C), then Dζ

m,` is erasable in K(C).
(ii) Suppose that Dζ

m,` is erasable in K(C) through a gradient V,

If m = 1, then
(
sζ1,Γ

ζ
1

)
is a gradient pair in V, and for any simplex σζ ∈ Dζ

1,` such
that σζ /∈ {sζ1,Γζ1} we have F (sζ1) > F (σζ).
If m = 2, then

(
sζ1,Γ

ζ
1

)
∈ V or

(
sζ2,Γ

ζ
2

)
∈ V, and for any simplex σζ ∈ Dζ

m,` such
that σζ /∈ {sζi ,Γζi } for i = {1, 2}, then we have, max(F (sζ1), F (sζ2)) > F (σζ).

Proof. Suppose sζi is eventually free in K(C). Then there exists a subcomplex L of K(C)
such that K(C)↘ L and sζi is free in L. Note that, by construction of Dm,`, this implies that
Dζ
m,` is a subcomplex of L. Now using the gradient specified in Figure 2 all the 2-simplices of

Dζ
m,` can be collapsed, making Dζ

m,` erasable in K(C). This proves the first statement of the
lemma. The last two statements of the lemma immediately follows from observing that the
s-edges are the only free edges in complex Dζ

m,`, the simplices {Γζi } are the unique cofaces
incident on edges {sζi } respectively, and Dζ

m,` is erasable in K(C) through the gradient V of
F . J

I Lemma 56. For any input gate Gi, the subcomplex D(i,1) \ {Γ(i,1)
1 } is erasable in K(C).

Proof. Under the reindexing scheme described in Remark 20, let ζ1 be such that D(i,1) = Dζ1 .
Consider the discrete gradient specified in Figure 2 (a) as a gradient V(i,1) on D(i,1) ⊆ K(C).
First note that D(i,1)\{Γ(i,1)} is erasable in D(i,1) through the gradient V(i,1)\{(s(i,1)

1 ,Γ(i,1))}.
Moreover, all 1-simplices of D(i,1) that are paired in V(i,1) with a 2-simplex do not appear in
Dζ2 for any edge ζ1 6= ζ2. It follows that D(i,1) \ {Γ(i,1)

1 } is erasable in K(C). J

A.2 Reducing MinMCS to MinrMM: Backward direction
We intend to establish an L-reduction from MinMCS to MinrMM. To this end, in Sec-
tion 4.2 and Section 4.3 we described the map K : C 7→ K(C) that transforms instances of
MinMCS (monotone circuits) to instances of MinrMM (simplicial complexes). In this section,
we seek to construct a map I that transforms solutions of MinrMM (discrete gradients V on
K(C)) to solutions of MinMCS (satisfying input assignments I(C,V) of circuit C). Recall
that mMinrMM(K(C),V) denotes the objective value of some solution V on K(C) for MinrMM,
whereas mMinMCS(C, I(C,V)) denotes the objective value of a solution I(C,V) on C for
MinMCS.

Suppose that we are given a circuit C = (V (C), E(C)) with n = |V (C)| number of nodes.
Also, for a vector field Ṽ on K(C), we denote the critical simplices of dimension 2, 1 and 0
by m2(Ṽ),m1(Ṽ) and m0(Ṽ) respectively. Then, by definition,

mMinrMM(K(C), Ṽ) = m2(Ṽ) +m1(Ṽ) +m0(Ṽ)− 1. (7)
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In Section 4.4, we designed a gradient vector field V on K(C) with m2(V) = m,m1(V) = m

and m0(V) = 1, for some m ≤ n. We have from [29, Theorem 1.7],

m0(Ṽ)−m1(Ṽ) +m2(Ṽ) = m0(V)−m1(V) +m2(V).

which gives m0(Ṽ)−m1(Ṽ) +m2(Ṽ) = 1. Since m0(Ṽ) ≥ 1, this gives, for any vector field Ṽ
on K(C), the following inequality

m2(Ṽ) ≤ m1(Ṽ). (8)

In particular, from Equation (7) and Equation (8), we obtain

mMinrMM(K(C), Ṽ) ≥ 2m2(Ṽ). (9)

Now, if m2(Ṽ) ≥ n, we set I(C, Ṽ) to be the set of all input gates of C. Clearly, this
gives a satisfying assignment and using Equation (9) also satisfies

mMinrMM(K(C), Ṽ) ≥ 2 ·mMinMCS(C, I(C, Ṽ)).

So, for the remainder of this section, we assume that m2(Ṽ) < n. In particular, for any
non-output gate Gi with n blocks, at most n− 1 of them may have critical 2-simplices.

I Definition 57 (2-paired edges). Given a vector field V on a 2-complex K, we say that an
edge e ∈ K is 2-paired in V if it is paired to a 2-simplex in V.
I Definition 58 (properly satisfied gates). Suppose that we are given a circuit C, and a vector
field Ṽ on the associated complex K(C). Then,

1. an ordinary gate Gq is said to be properly satisfied if there exists a j ∈ [1, n] such that

for an or-gate Gq at least of the two edges s(q,j)
ι1 , s

(q,j)
ι2 is 2-paired (in Ṽ), or

for an and-gate Gq both the edges s(q,j)
ι1 , s

(q,j)
ι2 are 2-paired (in Ṽ),

in both cases, the j-th block has no critical 2-simplices;
2. an input gate Gi is said to be properly satisfied if the dunce hat associated to it contains

at least one critical 2-simplex,
3. the output gate Go is said to be properly satisfied if Go is an or-gate and at least one of

the two inputs gates of Go is properly satisfied, or if Go is an and-gate and both input
gates of Go are properly satisfied.

I Lemma 59. Suppose that Gk is a non-output gate that is properly satisfied. Then,

1. if Gk is an or-gate, then at least one of the two gates that serve as inputs to Gk is also
properly satisfied.

2. if Gk is an and-gate, then both gates that serve as inputs to Gk are also properly satisfied.

Proof. Assume without loss of generality that Gk is an and-gate, and the two inputs that
go into Gk, namely G` and Gj are both input gates. Since Gk is properly satisfied, there
exists p ∈ [1, n] such that s(k,p)

ι1 , s
(k,p)
ι2 are 2-paired and the p-th block of Gk has no critical

2-simplices. Now suppose that either G` or Gj is not properly satisfied. For the sake of
argument, suppose that G` is not properly satisfied. That is, D(`,1) has no critical 2-simplices
and s(`,1)

f is 2-paired. Note that s(k,p)
ι1 is identified to a t-edge in D(`,1). Using Lemma 55,

we obtain F̃ (s(`,1)
f ) > F̃ (s(k,p)

ι1 ). Since 3s
(k,p)
1 occurs as a t-edge in 1D(k,p), using Lemma 55,

we obtain F̃ (s(k,p)
ι1 ) > F̃ (3s

(k,p)
1 ). Combining the two inequalities we obtain

F̃ (s(`,1)
f ) > F̃ (3s

(k,p)
1 ) (10)
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Moreover, s(`,1)
f is identified to a t-edge in 3D(k,p), and by assumption 3D(k,p) has no critical

2-simplices and, hence 3s
(k,p)
1 is 2-paired. Therefore, once again, using Lemma 55, we obtain

F̃ (3s
(k,p)
1 ) > F̃ (s(`,1)

f ) (11)

Since Equation (10) and Equation (11) combine to give a contradiction, we conclude that G`
is properly satisfied. All combinations of Gk as an {and-gate, or-gate}, and G` and Gj as
{or-gates, input gates, and-gates} give similar contradictions, proving the claim. J

I Lemma 60. Given a Morse function F̃ on K(C) with vector field Ṽ, the output gate Go
is properly satisfied.

Proof. Assume without loss of generality that Go is an or-gate, and the two inputs to Go,
namely G` and Gj are non-input and-gates. Let k ∈ [1, n] be such that the k-th copy of
Go has no critical 2-simplices. Such a k exists because by assumption we have less than n
critical simplices. Now, suppose that neither G` nor Gj is properly satisfied.

Since, G` is not properly satisfied there exists a p ∈ [1, n] such that either s(`,p)
ι1 or s(`,p)

ι2

is not 2-paired and p-th block has no critical 2-simplices (because by assumption we have less
than n critical simplces). Assume without loss of generality that s(`,p)

ι1 is not 2-paired. Then,
s

(`,p)
f1

is 2-paired. Using Lemma 55, we obtain F̃ (s(`,p)
f1

) > F̃ (3s
(`,p)
1 ). Now, s(o,k)

ι1 is identified
to a t-edge in 3D(`,p). So, using Lemma 55, we obtain F̃ (3s

(`,p)
1 ) > F̃ (s(o,k)

ι1 ). Combining
the two inequalities, we obtain,

F̃ (s(`,p)
f1

) > F̃ (s(o,k)
ι1 ). (12)

Similarly, there exists a q ∈ [1, n] such that either s(j,q)
ι1 or s(j,q)

ι2 is not 2-paired. Assume
without loss of generality that s(j,q)

ι1 is not 2-paired. Hence, we can show that

F̃ (s(j,q)
f1

) > F̃ (s(o,k)
ι2 ). (13)

Combining Equation (12) and Equation (13), we obtain:

max(F̃ (s(`,p)
f1

), F̃ (s(j,q)
f1

)) > max(F̃ (s(o,k)
ι1 ), F̃ (s(o,k)

ι2 )). (14)

But, s(`,p)
f1

and s(j,q)
f1

appear as t-edges in D(o,k). So, once again, using Lemma 55,

max(F̃ (s(o,k)
ι1 ), F̃ (s(o,k)

ι2 )) > F̃ (s(`,p)
f1

) and max(F̃ (s(o,k)
ι1 ), F̃ (s(o,k)

ι2 )) > F̃ (s(j,q)
f1

),

which combine to give:

max(F̃ (s(o,k)
ι1 ), F̃ (s(o,k)

ι2 )) > max(F̃ (s(`,p)
f1

), F̃ (s(j,q)
f1

)) (15)

Since Equation (14) and Equation (15) combine to give a contradiction, we conclude that Go
is properly satisfied, and at least one of the two gates G` and Gj are also properly satisfied.
All combinations of Go as an {and-gate, or-gate}, and G` and Gj as {or-gates, input gates,
and-gates} give similar contradictions, proving the claim. Moreover, if Go is a properly
satisfied and-gate, then both G` and Gj are also be properly satisfied. J

Now, we construct the map I(C, Ṽ) as follows: For every input gate G` whose associated
dunce hat is properly satisfied, we set I(C, Ṽ)(G`) = 1. That is, our assignment I(C, Ṽ)(·)
ensures that an input gate is satisfied if and only if it is properly satisfied.
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B Claim 61. With input assignment I(C, Ṽ)(·), the circuit C is satisfied.

Proof. We prove the following claim inductively: Every gate of C that is properly satisfied
is also satisfied.

To begin with, let ≺C be some total order on V (C) consistent with the partial order
imposed by C. Assume that the gates in C are indexed from 1 to |C| so that

for all Gi, Gj ∈ C, i < j ⇔ Gi ≺C Gj .

Let P denotes the set of properly satisfied gates. Let i1, i2, . . . i|P| denote the indices of
the properly satisfied gates, where ik > ik−1 for all k. By repeated application of Lemma 59,
it follows that Gi1 is an input gate. Then, from our construction of I(C, Ṽ)(·), we can
conclude that Gi1 is also satisfied, giving us the base case.

Now, we make the inductive hypothesis that the gates Gi1 . . . Gik−1 are satisfied. Suppose
that Gik is an or-gate. Then, by Lemma 59, one of the inputs to Gik , say Gij is properly
satisfied. As a consequence of our indexing we have j ∈ [1, k− 1], and owing to the inductive
hypothesis, Gij is satisfied. But, since Gik is an or-gate, this implies that Gik is also satisfied.
Suppose that Gik be an and-gate. Then, by Lemma 59, both the inputs to Gik , say Gij , Gip
are properly satisfied. As a consequence of our indexing we have j, p ∈ [1, k − 1], and owing
to the inductive hypothesis, Gij , Gip are satisfied. But, since Gik is an and-gate, this implies
that Gik is also satisfied, completing the induction.

Finally, using Lemma 60, the output gate is properly satisfied, and by the argument
above it is also satisified. J

An immediate consequence of Claim 61 is the following:

m2(Ṽ) ≥ mMinMCS(C, I(C, Ṽ)) (16)

I Proposition 62. mMinrMM(K(C), Ṽ) ≥ 2 ·mMinMCS(C, I(C, Ṽ))

Proof. This follows immmediately by combining Equation (9) and Equation (16). J

Now, if the gradient vector field Ṽ is, in fact optimal for K(C), then Ṽ has a single
critical 0-simplex. That is, m0(Ṽ) = 1 Recall that in Section 4.4, we designed a gradient
vector field V on K(C) with m2(V) = m,m1(V) = m and m0(V) = 1, for some m ≤ n.
From [29, Theorem 1.7], we have

m0(Ṽ)−m1(Ṽ) +m2(Ṽ) = m0(V)−m1(V) +m2(V).

which gives us

−m1(Ṽ) +m2(Ṽ) = 0 (17)

From Equation (17), we conclude that OPTMinrMM(K(C)) = 2m2(Ṽ).
By Equation (16), we have

m2(Ṽ) ≥ mMinMCS(C, I(C, Ṽ)).

Since by definition

mMinMCS(C, I(C, Ṽ)) ≥ OPTMinMCS(C),

we have the following proposition

I Proposition 63. OPTMinrMM(K(C)) ≥ 2OPTMinMCS(C).

Combining Proposition 31 and Proposition 63, we obtain the following proposition.

I Proposition 64. OPTMinrMM(K(C)) = 2OPTMinMCS(C).
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B Morse matchings for Linial–Meshulam complexes

For Linial–Meshulam complexes Yd(n, p),

when np→∞, let U be the apparent pairs gradient on Yd(n, p).
when np→ 0, U is comprised of

the apparent pairs gradient for matching k−1-simplices to k-simplices for k ∈ [d−1]
V2 for matching the remaining (d− 1)-simplices to d-simplices.

The apparent pairs gradient, and the gradient V2 are as described in Section 8.
Let V be the vertex set of Yd(n, p), and v′ be the lexicographically lowest vertex of V .
For each r ∈ [0, d], let cr denote the total number of r-dimensional simplices in Yd(n, p).

Let mr denote the total number of critical r-simplices of U and mr be the total number of
regular simplices of U . Also, let nr and nr denote the total number of critical r-simplices
and regular r-simplices respectively of the optimal discrete gradient on Yd(n, p).

I Lemma 65. All the k-simplices of Yd(n, p) for k ∈ [0, d−2] are matched by U . In particular,
nk = mk = ck for k ∈ [d− 2], and n0 = m0 = V − 1.

Proof. Let σ be a k-simplex, where k ∈ [d− 2]. If v′ ∈ σ, then (σ \ {v} , σ) ∈ U , whereas if
v′ 6∈ σ, then (σ, σ ∪ {v′}) ∈ U . That is for k ∈ [0, d− 2], nk = mk = 0, and nk = mk = ck.
On the other hand, any vertex v 6= v′ is matched to the edge {v, v′}. J

Note that

E(|U|)
E(|opt|) = E(2|U|)

E(2|opt|) = E(
∑d
k=0mk)

E(
∑d
k=0 nk)

Case 1: np→∞

By definition,

md ≥ cd−1 −md−1 − cd−2 (18)

Also since the complex is d-dimensional, we get

nd ≤ cd−1. (19)

Using Equations (18) and (19) and Lemma 65, we obtain

E(
d∑

k=0
nk) ≤ E(

d−1∑

k=0
ck + cd−1) =

d−1∑

k=0
ck + cd−1.

E(
d∑

k=0
mk) ≥ E(

d−2∑

k=0
ck + cd−1 −md−1 + cd−1 −md−1 − cd−2)

=
d−1∑

k=0
ck + cd−1 − cd−2 − 2E(md−1).
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Therefore,

E(|U|)
E(|opt|) = E(

∑d
k=0mk)

E(
∑d
k=0 nk)

≥
∑d−1
k=0 ck + cd−1 − cd−2 − 2E(md−1)

∑d−1
k=0 ck + cd−1

= 1 + −cd−2 − 2E(md−1)
∑d−1
k=0 ck + cd−1

.

Using Corollary 52, and the fact that in Yd(n, p), cjck → 0 for j < k and j, k ∈ [0, d− 1], we
conclude that

E(|U|)
E(|opt|) → 1.

Case 2: np→ 0

Since a regular (d− 1)-simplex is paired to either a d-simplex or a (d− 2)-simplex, we obtain

nd−1 ≤ cd + cd−2, (20)

md−1 ≥ cd −md + cd−2 − cd−3. (21)

Therefore, using Equations (20) and (21) and Lemma 65,

E(|U|)
E(|opt|) = E(

∑d
k=0mk)

E(
∑d
k=0 nk)

≥
∑d−2
k=0 ck + (E(cd)− E(md) + cd−2 − cd−3) + (E(cd)− E(md))∑d−2

k=0 ck + E(cd) + cd−2 + E(cd)

= 1 + −cd−3 − 2E(md)∑d−2
k=0 ck + cd−2 + 2E(cd)

.

Using Corollary 52, and the fact that in Yd(n, p), cjck → 0 for j < k and j, k ∈ [0, d− 1], we
conclude that

E(|U|)
E(|opt|) → 1.
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Generalizing the notion of cuts from graphs to simplicial complexes, we study
two problems.

• Boundary nontrivialization which can be described as follows: Given
a bounding Z2 r-cycle ζ in a simplicial complex K, find a set S of (r+ 1)-
dimensional simplices of minimum cardinality so that the removal of S
from K makes ζ nontrivial.

• Topological Hitting Set which can be described as follows: Given
a nontrivial Z2 r-cycle ζ in a simplicial complex K, find a set S of r-
dimensional simplices of minimum cardinality so that S meets every
cycle homologous to ζ.

We also study the global variants of the problem that we call Global Bound-
ary nontrivialization and Global Topological Hitting Set, respectively.

The first four sections of the paper consist of a well-motivated introduc-
tion, followed by requisite background on homology with Z2 coefficients and
parameterized complexity.

Surfaces. Our first result, explained in Section 5, is the following: Topo-
logical Hitting Set admits a polynomial-time algorithm on triangulations of
closed surfaces. At the heart of our proof lies an appealing characterization of
the optimal solutions in terms of the cocycles of the surface, which is of inde-
pendent interest. Specifically, we show that a minimal solution set is necessarily
a nontrivial cocycle. Further, we show that the following are equivalent: 1. A
connected cocycle η is a feasible set for the input cycle ζ. 2. Every cycle in [ζ]

intersects a connected cocycle η in an odd number of edges. 3. One of the cycles
in [ζ] intersects a connected cocycle η in an odd number of edges. In particular,
this allows us to identify the nontrivial cocycles that are solutions based on
a parity-based property. Having this characterization at hand, we proceed to
characterize cohomology classes that are solutions. Eventually, we arrive at a
very simple 3-step algorithm for Topological Hitting Set on surfaces.

W[1]-hardness and NP-hardness. For general complexes, in 6.1, we show
that Topological Hitting Set is W[1]-hard with respect to the solution size
k as the parameter, (and hence, it is also NP-hard). The proof is based on a
reduction from the k-Multicolored Clique problem. Here, the reduction shows
the essence of hardness: its description is short, but its proof exposes various
“behaviors” that we find interesting. In particular, the forward direction requires

192
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a nontrivial parity based argument, while the reverse direction shows how to
“trace” a solution through the complex.

In addition, in 6.2, we show that Boundary nontrivialization is also
W[1]-hard with respect to the solution size k as a parameter. The principles
of this reduction follow the lines of the reduction for Topological Hitting

Set, though, here, both the description and the proof of the reduction are more
involved because of subdivisions that help avoid some unhelpful incidences.

Fixed-parameter tractability. On the positive side, in Section 7.1, we show
that Topological Hitting Set admits an FPT algorithm with respect to k+∆,
where ∆ is the maximum degree of the Hasse graph of the complex K. Here,
the main insight is that a minimal solution must be connected. Having this
insight at hand, the algorithm follows: If we search across the geodesic ball of
every r-simplex in the complex K, we will find a solution.

In contrast, we observe that Boundary nontrivialization does not admit
this property because minimal solutions can be disconnected. This motivates
the search of another parameter that makes the problem tractable. Exploit-
ing the set-cover like structure of the problem, in Section 7.2, we show that
Boundary nontrivialization with bounding r-cycles as input has anO(logn)-
approximation FPT algorithm with βr+1 (the Betti number) as the parameter,
when the input complex K is (r+ 1)-dimensional. It is worth noting that Bound-
ary nontrivialization is W[1]-hard even for (r+ 1)-dimensional complexes
with solution size as the parameter since the hardness gadget used in 7.2 is
(r+ 1)-dimensional.

Finally, by exploiting the vector space structure of the homology groups and
the boundary groups, in Sections 7.1 and 7.2, we also provide a randomized
FPT algorithm for Global Topological Hitting Set and a randomized FPT
approximation algorithm for Global Boundary nontrivialization respec-
tively.

statement of individual contribution. I had been reading some
literature of high-dimensional expansion, and I wanted to understand these
questions from a complexity standpoint. So I suggested the questions addressed
in this paper as a research project to my two collaborators. In this collaboration,
I was the principal author and I was significantly involved in finding the ideas
and carrying out the scientific work of all parts of this article. I was in charge
of writing down this article. After the writeup was ready, I made several
expository and corrective changes based on the feedback I received from my
collaborators.
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Abstract
Cut problems form one of the most fundamental classes of problems in algorithmic graph theory.
For instance, the minimum cut, the minimum s-t cut, the minimum multiway cut, and the minimum
k-way cut are some of the commonly encountered cut problems. Many of these problems have been
extensively studied over several decades. In this paper, we initiate the algorithmic study of some cut
problems in high dimensions.

The first problem we study, namely, Topological Hitting Set (THS), is defined as follows:
Given a nontrivial r-cycle ζ in a simplicial complex K, find a set S of r-dimensional simplices of
minimum cardinality so that S meets every cycle homologous to ζ. Our main result is that this
problem admits a polynomial time solution on triangulations of closed surfaces. Interestingly, the
optimal solution is given in terms of the cocycles of the surface. For general complexes, we show
that THS is W[1]-hard with respect to the solution size k. On the positive side, we show that THS
admits an FPT algorithm with respect to k+ d, where d is the maximum degree of the Hasse graph
of the complex K.

We also define a problem called Boundary Nontrivialization (BNT): Given a bounding r-
cycle ζ in a simplicial complex K, find a set S of (r+1)-dimensional simplices of minimum cardinality
so that the removal of S from K makes ζ non-bounding. We show that BNT is W[1]-hard with
respect to the solution size as the parameter, and has an O(logn)-approximation FPT algorithm
for (r + 1)-dimensional complexes with the (r + 1)-th Betti number βr+1 as the parameter. Finally,
we provide randomized (approximation) FPT algorithms for the global variants of THS and BNT.

2012 ACM Subject Classification Theory of computation→ Computational geometry; Mathematics
of computing → Algebraic topology

Keywords and phrases Algorithmic topology, Cut problems, Surfaces, Parameterized complexity,
FPT algorithms

1 Introduction

A graph cut is a partition of the vertices of a graph into two disjoint subsets. The set of
edges that have one vertex lying in each of the two subsets determines a so-called cut-set.
Typically, the objective function to optimize involves the size of the cut-set. Graph cuts have
a ubiquitous presence in theoretical computer science. Cuts are also related to the spectra of
the adjacency matrix of the graph leading to a beautiful mathematical theory [14]. Cuts have
also found many real-world applications in clustering, shape matching, image segmentation
and smoothing, and energy minimization problems in computer vision.

Cut problems are related to flow problems in graphs due to the duality between cuts
and flows. In fact, the max-flow min-cut theorem tells us that the maximum value of flow
between a vertex s and and vertex t equals the value of the minimum cut that separates s
and t. Figure 1 shows an example of an s-t cut on an undirected graph.

Incidentally, graphs happen to be 1-dimensional simplicial complexes. And some of the
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Figure 1 The dashed vertical line shows a minimum s-t cut in the graph.

Figure 2 The complex L1 consists of two disjoint triangulated spheres. We do not show the entire
triangulation, only the four triangles of interest. The boundary of interest is the equator of the
larger sphere on the right.

Figure 3 The complex L2 consists of a triangulation of union of two spheres that intersect in a
circle. As before, we do not show the entire triangulation, only the four triangles of interest. The
boundary of interest is the circle of intersection of the two spheres.
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cut problems have a natural homological interpretation. For instance, consider the following
problem: What is the minimum number of edges you need to remove from a graph so that
the vertices {s, t} do not form a bounding 0-cycle of a 1-chain over Z2 in the resulting graph?
Since we have an s-t cut if and only if there are no paths connecting s and t, it is easy to
check that this problem is equivalent to finding the minimum s-t cut on graphs! It is natural
to ask the analogous question for complexes of higher dimension. In particular, the question
we ask, namely Boundary Nontrivialization, is the following one: Given a bounding Z2
r-cycle ζ in a simplicial complex K, find a set S of (r + 1)-dimensional simplices of minimum
cardinality so that the removal of S from K makes ζ nontrivial.

For instance, consider the two complexes L1 and L2 shown in Figures 2 and 3, respectively.
For complex L1 shown in Figure 2, let the equator e of the sphere on the right be the bounding
1-cycle that we want to make nontrivial. Both hemispheres are bounded by the equator. So,
the two highlighted triangles from the right sphere of the complex L1 constitute the optimal
solution for Boundary Nontrivialization. That is, removing these two triangles makes e
a nontrivial 1-cycle. For complex L2 shown in Figure 3, the circle of intersection of the two
spheres is the bounding 1-cycle of interest denoted by b. Removing all the four highlighted
triangles from complex L2 makes b a nontrivial 1-cycle. This also happens to be the optimal
solution for making b nontrivial.

Complementary to the question of removing the minimal number of r + 1-simplices in
order to make a bounding cycle nontrivial, is the problem of removing the minimum number
of r-simplices from a complex so that an entire homology class is destroyed. More formally,
the problem Topological Hitting Set can be described as follows: given a nontrivial
Z2 r-cycle ζ in a simplicial complex K, find a set S of r-dimensional simplices of minimum
cardinality so that S meets every cycle homologous to ζ.

Topological Hitting Set on graphs can be described as follows: Suppose we are given
a graph G with k components. Let C be one of the components of G. Then, β0(G) = |k|, and
each component determines a 0-cycle. So the question of Topological Hitting Set is to
determine the minimum number of vertices you need to remove so that C is not a component
anymore. The answer is trivial! One needs to remove all the vertices in C. For example in
Figure 4, C2 ceases to be a component if and only if all four vertices in C2 are removed. It
is worth noting that it is the unidimensionality of graphs that makes the problem trivial.
What is more, even the ‘cut’ aspect of the problem is not immediately visible for graphs.

In contrast, for higher-dimensional complexes, the problem has a distinct cut flavor. For
instance, consider the planar complex shown in Figure 5. The minimum number of edges that
need to be removed so that every cycle homologous to ζ is destroyed is three. In Figure 5,
an optimal set of edges is shown in red. Note that the edges happen to be in a ‘thin’ portion
of the complex, justifying our standpoint that (along with Boundary Nontrivialization)
this problem can also be seen as a high dimensional cut problem.

In this work, we undertake an algorithmic study of the two high-dimensional cut problems:
Boundary Nontrivialization and Topological Hitting Set.

1.1 Related work

Duval et al. [21] study the vector spaces and integer lattices of cuts and flows associated to
CW complexes and their relationships to group invariants. Ghrist and Krishnan [26] prove a
topological version of the max-flow min-cut theorem for directed networks using methods
from sheaf theory. Then, there is also a long line of work on cuts in surface embedded
graphs [2, 3, 8, 9, 10,11], which is algorithmic in spirit and is loosely related to our work.
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Figure 4 Graph G with three components

ζ

ξ

Figure 5 The figure shows two cycles that belong to [ζ] in green. Note that any cycle in [ζ] must
pass through at least one of the three red edges. Thus, the set of red edges constitutes an optimal
solution for Topological Hitting Set on this planar complex.
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There is a growing body of work on parameterized complexity in topology [1,4,5,6,28,30,
31,35], and much of this paper can be characterized as such.

During the preparation of this article, we became aware of a recent paper by Maxwell
and Nayyeri [32] that studies problems similar to the ones we define but from a completely
different point of view. While our focus was on surfaces and parameterized complexity,
the main focus of their work was to find out the extent to which the conceptual and the
algorithmic framework of max-flow min-cut duality generalizes to the case of simplicial
complexes. While we focus only on cuts, they study both cuts and flows.

We summarize the main results of Maxwell and Nayyeri [32] as we understand them: They
define a topological max-flow and a topological min-cut problem, and also a combinatorial
min-cut problem. They show that unlike in the case of graphs, computing maximum integral
flows and combinatorial cuts on simplicial complexes is NP-hard. Moreover, they describe
conditions under which the linear program gives the optimal value of a combinatorial cut,
and also provide a generalization of the Ford-Fulkerson algorithm to the case of simplicial
complexes. Their definition of combinatorial cut coincides with our definition of Boundary
Nontrivialization, except for some important differences: they are interested in real
coefficients and co-dimension one cycles, whereas we work with Z2 coefficients and cycles of
all dimensions. We implore the reader to look up their interesting results [32].

We note that while their paper is in the same spirit as ours, their focus is quite different
from ours, and there is very little overlap in terms of hardness or algorithmic results. In
particular, they show NP-hardness for combinatorial cuts with real coefficients, and we show
NP-hardness and W[1]-hardness for the same problem with Z2 coefficients.

2 Summary of results

Surfaces. Our first result, expounded in Section 5, is the following: Topological Hitting
Set admits a polynomial-time algorithm on triangulations of closed surfaces. At the heart of
our proof lies an appealing characterization of the optimal solutions in terms of the cocycles
of the surface, which is of independent interest. Specifically, we show that a minimal solution
set is necessarily a nontrivial cocycle. Further, we show that the following are equivalent:
1. A connected cocycle η is a feasible set for the input cycle ζ. 2. Every cycle in [ζ] intersects
a connected cocycle η in an odd number of edges. 3. One of the cycles in [ζ] intersects a
connected cocycle η in an odd number of edges.

In particular, this allows us to identify the nontrivial cocycles that are solutions based on
a parity-based property. Having this characterization at hand, we proceed to characterize
cohomology classes that are solutions. Eventually, we arrive at a very simple 3-step algorithm
for Topological Hitting Set on surfaces.

We remark that Boundary Nontrivialization is trivial for surfaces. In fact, it is easy
to check that for some boundary b and a 2-chain ζ, if ∂ζ = b, then removing any one of the
triangles that appears in the chain ζ makes b nontrivial.

W[1]-hardness and NP-hardness. For general complexes, in Section 6.1, we show that
Topological Hitting Set is W[1]-hard with respect to the solution size k as the parameter,
(and hence, it is also NP-hard). The proof is based on a reduction from the k-Multicolored
Clique problem. Here, the reduction shows the essence of hardness: its description is short,
but its proof exposes various “behaviors” that we find interesting. In particular, the forward
direction requires a nontrivial parity based argument, while the reverse direction shows how
to “trace” a solution through the complex.
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In addition, in Section 6.2, we show that Boundary Nontrivialization is also W[1]-
hard with respect to the solution size k as a parameter. The principles of this reduction
follow the lines of the reduction for Topological Hitting Set, though, here, both the
description and the proof of the reduction are more involved because of subdivisions that
help avoid some unhelpful incidences.

Fixed-parameter tractability. On the positive side, in Section 7.1, we show that Topo-
logical Hitting Set admits an FPT algorithm with respect to k + ∆, where ∆ is the
maximum degree of the Hasse graph of the complex K. Here, the main insight is that a
minimal solution must be connected. Having this insight at hand, the algorithm follows: If
we search across the geodesic ball of every r-simplex in the complex K, we will find a solution.

In contrast, we observe that Boundary Nontrivialization does not admit this property
because minimal solutions can be disconnected. This motivates the search of another
parameter that makes the problem tractable. Exploiting the set-cover like structure of the
problem, in Section 7.2, we show that Boundary Nontrivialization with bounding r-
cycles as input has an O(logn)-approximation FPT algorithm with βr+1 (the Betti number)
as the parameter, when the input complex K is (r + 1)-dimensional. It is worth noting
that Boundary Nontrivialization is W[1]-hard even for (r + 1)-dimensional complexes
with solution size as the parameter since the hardness gadget used in Section 6.2 is (r + 1)-
dimensional.

By exploiting the vector space structure of the homology groups and the boundary
groups, in Sections 7.1.1 and 7.2.1, we provide a randomized FPT algorithm for Global
Topological Hitting Set and a randomized FPT approximation algorithm for Global
Boundary Nontrivialization respectively.

3 Preliminaries

3.1 Simplicial complexes
A k-simplex σ is the convex hull of a set V of (k + 1) affinely independent points in the
Euclidean space of dimension d ≥ k. We call k the dimension of σ. Any nonempty subset
of V also spans a simplex, which we call a face of σ. A simplex σ is said to be a coface of
a simplex τ if and only if τ is face of σ. We say that σ is a facet of τ , and τ a cofacet of
σ, if σ is a face of τ with dim σ = dim τ − 1. We denote a facet-cofacet pair by σ ≺ τ . A
simplicial complex K is a collection of simplices that satisfies the following conditions:

any face of a simplex in K also belongs to K, and
the intersection of two simplices σ1, σ2 ∈ K is either empty or a face of both σ1 and σ2.
An abstract simplicial complex K on a set of vertices V is a collection of subsets of V that

is closed under inclusion. The elements of K are called its simplices. An abstract simplicial
complex L is said to be a subcomplex of K if every simplex of L belongs to K.

The collection of vertex sets of simplices in a geometric simplicial complex forms an
abstract simplicial complex. On the other hand, an abstract simplicial complex K has a
geometric realization |K| obtained by embedding the points in V in general position in a
high-dimensional Euclidean space. Then, the complex |K| is defined as

⋃
σ∈K |σ|, where |σ|

denotes the span of points in σ. It is not very difficult to show that any two geometric
realizations of an abstract simplicial complex are homeomorphic. Hence, going forward, we
do not distinguish between abstract and geometric simplicial complexes.

The star of a vertex v of complex K, written starK(v), is the subcomplex consisting of all
faces of K containing v, together with their faces.



Ulrich Bauer, Abhishek Rathod, Meirav Zehavi 7

Let V be the vertex set of K, W be the vertex set of L and φ be a map from V to W . If
for every simplex {v0, v1, . . . , vr} ∈ K, the vertices {φ(v0), φ(v1), . . . , φ(vr)} span a simplex
in L, then the φ induces a map, say f , from K to L. The induced map f : K→ L, is said to
be simplicial.

We will denote by K(p) the set of p-dimensional simplices in K, and np the number of
p-dimensional simplices in K. The complex induced by K(p) is called the p-dimensional
skeleton of K, and is denoted by Kp. Given a simplicial complex K, we denote by the HK,
the Hasse graph of K, which is simply the graph that has a node for every simplex of the
complex, and an edge for every facet-cofacet pair. Given a triangulated closed surface K,
we denote by DK, the dual graph of K, which is simply the graph that has a node for every
2-simplex and an edge connecting two nodes if the corresponding 2-simplices are incident on
a common edge in the complex. The stellar subdivision of a simplex (or a polytope) is the
complex formed by taking a cone over its boundary.
I Notation 1. We use [m] to denote the set {1, 2, ...,m} for any m ∈ N.

3.2 Homology and cohomology
In this work, we restrict our attention to simplicial homology with Z2 coefficients. For a
general introduction to algebraic topology, we refer the reader to [27]. Below we give a brief
description of homology over Z2.

Let K be a connected simplicial complex. We consider formal sums of simplices with Z2
coefficients, that is, sums of the form

∑
σ∈K(p) aσσ, where each aσ ∈ {0, 1}. The expression∑

σ∈K(p) aσσ is called a p-chain. Since chains can be added to each other, they form an
Abelian group, denoted by Cp(K). Since we consider formal sums with coefficients coming
from Z2, which is a field, Cp(K), in this case, is a vector space of dimension np over Z2.
The p-simplices in K form a (natural) basis for Cp(K). This establishes a natural one-to-one
correspondence between elements of Cp(K) and subsets of K(p), and we will freely make use
of this identification. The boundary of a p-simplex is a (p − 1)-chain that corresponds to
the set of its (p− 1)-faces. This map can be linearly extended from p-simplices to p-chains,
where the boundary of a chain is the Z2-sum of the boundaries of its elements. The resulting
boundary homomorphism is denoted by ∂p : Cp(K)→ Cp−1(K). A chain ζ ∈ Cp(K) is called
a p-cycle if ∂pζ = 0, that is, ζ ∈ ker ∂p. The group of p-dimensional cycles is denoted by
Zp(K). As before, since we are working with Z2 coefficients, Zp(K) is a vector space over Z2.
A chain η ∈ Cp(K) is said to be a p-boundary if η = ∂p+1c for some chain c ∈ Cp+1(K), that
is, η ∈ im ∂p+1. The vector space of p-dimensional boundaries is denoted by Bp(K).

In our case, Bp(K) is also a vector space, and in fact a subspace of Cp(K). Thus, we can
consider the quotient space Hp(K) = Zp(K)/Bp(K). The elements of the vector space Hp(K),
known as the p-th homology of K, are equivalence classes of p-cycles, called homology classes
where p-cycles are said to be homologous if their Z2-difference is a p-boundary. For a p-cycle
ζ, its corresponding homology class is denoted by [ζ]. Bases of Bp(K), Zp(K) and Hp(K) are
called boundary bases, cycle bases, and homology bases, respectively. The dimension of the
p-th homology of K is called the p-th Betti number of K, denoted by βp(K).

Using the natural bases for Cp(K) and Cp−1(K), the matrix [∂pσ1 ∂pσ2 · · · ∂pσnp ] whose
column vectors are boundaries of p-simplices is called the p-th boundary matrix. Abusing
notation, we also denote the p-th boundary matrix by ∂p.

The dual vector space of Cp(K) (the vector space of linear maps Cp(K)→ Z2) is called
the space of cochain, denoted by Cp(K) = Hom(Cp(K),Z2). Again, there is a natural basis
corresponding to the p-simplices of K, with a p-simplex σ corresponding to the linear map η
with values η(σ) = 1 and η(ρ) = 0 for every other p-simplex ρ 6= σ. The adjoint map to
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the boundary map ∂p+1 : Cp+1(K) → Cp(K) is the coboundary map δp : Cp(K) → Cp+1(K).
Similarly to chains and boundary maps, we may define subspaces of cocycles Zp(K) = ker δp
and coboundaries Bp(K) = im δp+1 ⊆ Zp(K), and form their quotient Hp(K) = Zp(K)/Bp(K),
which is the cohomology of K. Again, for a p-cocycle η, the corresponding cohomology class is
denoted by [η]. The natural pairing of chains and cochains Cp(K)×Cp(K)→ Z2, (ζ, η) 7→ η(ζ)
induces a well-defined isomorphism Hp(K) × Hp(K) → Z2, ([ζ], [η]) 7→ η(ζ), identifying
cohomology as the vector space dual to homology up to a natural isomorphism.

A set of p-cycles {ζ1, . . . , ζg} is called a homology cycle basis if the set of classes
{[ζ1], . . . , [ζg]} forms a homology basis. For brevity, we abuse notation by using the term
(p-th) homology basis for {ζ1, . . . , ζg}. Similarly, a set of p-cocycles {η1, . . . , ηg} is called a
(p-th) cohomology cocycle basis if the set of classes {[η1], . . . , [ηg]} forms a cohomology basis.

Assigning non-negative weights to the edges of K, the weight of a cycle is the sum of the
weights of its edges, and the weight of a homology basis is the sum of the weights of the basis
elements. We call the problem of computing a minimum weight basis of H1(K) the minimum
homology basis problem. Similarly, we call the problem of computing a minimum weight
basis of H1(K), the minimum cohomology basis problem.
I Notation 2. Since there is a 1-to-1 correspondence between the p-chains of a complex K
and the subsets of K(p), we abuse notation by writing ∂C in place of ∂(

∑
σ∈C σ), for C ⊂ K(p).

Likewise, for p-cochains δ(
∑
τ∈C′ τ), we often write δC′.

We also abuse notation in the other direction. That is, we treat chains and cochains as
sets. For instance, sometimes we say that a (co)chain γ intersects a (co)chain ζ, when we
actually mean that the corresponding sets of simplices of the respective (co)chains intersect.
Also, we say that a simplex σ ∈ ζ, when indeed the simplex σ belongs to the set associated
to ζ.

3.3 Parameterized complexity
Let Π be an NP-hard problem. In the framework of Parameterized Complexity, each instance
of Π is associated with a parameter k. Here, the goal is to confine the combinatorial explosion
in the running time of an algorithm for Π to depend only on k. Formally, we say that Π is
fixed-parameter tractable (FPT) if any instance (I, k) of Π is solvable in time f(k) · |I|O(1),
where f is an arbitrary computable function of k.

A weaker request is that for every fixed k, the problem Π would be solvable in polynomial
time. Formally, we say that Π is slice-wise polynomial (XP) if any instance (I, k) of Π is
solvable in time f(k) · |I|g(k), where f and g are arbitrary computable functions of k. In other
words, for a fixed k, Π has a polynomial time algorithm, and we refer to such an algorithm
as an XP algorithm for Π. Nowadays, Parameterized Complexity supplies a rich toolkit to
design FPT and XP algorithms [16,20,24].

Parameterized Complexity also provides methods to show that a problem is unlikely to
be FPT. The main technique is the one of parameterized reductions analogous to those
employed in classical complexity. Here, the concept of W-hardness replaces the one of
NP-hardness, and for reductions we need not only construct an equivalent instance in FPT
time, but also ensure that the size of the parameter in the new instance depends only on the
size of the parameter in the original one.

I Definition 1 (Parameterized Reduction). Let Π and Π′ be two parameterized problems.
A parameterized reduction from Π to Π′ is an algorithm that, given an instance (I, k) of Π,
outputs an instance (I ′, k′) of Π′ such that:

(I, k) is a yes-instance of Π if and only if (I ′, k′) is a yes-instance of Π′.
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k′ ≤ g(k) for some computable function g.
The running time is f(k) · |Π|O(1) for some computable function f .

If there exists such a reduction transforming a problem known to be W[1]-hard to another
problem Π, then the problem Π is W[1]-hard as well. Central W[1]-hard problems include,
for example, deciding whether a nondeterministic single-tape Turing machine accepts within
k steps, Clique parameterized by solution size, and Independent Set parameterized by
solution size. To show that a problem Π is not XP unless P = NP, it is sufficient to show
that there exists a fixed k such that Π is NP-hard. If the problem Π is in NP for a fixed
k then it is said to be in para-NP, and if is NP-hard for a fixed k then it is said to be
para-NP-hard.

Now, suppose that the parameter k does not depend on the sought solution size, but it is
a structural parameter. Then, we say that a minimization (maximization) problem Π admits
a c-approximation FPT (with respect to k) if it admits a f(k) · |I|O(1)-time algorithm that,
given an instance (I, k) of Π, outputs a solution for (I, k) that is larger (smaller) than the
optimal solution for (I, k) by a factor of at most c. When the parameter k does depend
on the sought solution size, the notion of a c-approximation FPT algorithm is defined as
well, but this definition is slightly more complicated and is not required in this paper. For
more information on Parameterized Complexity, we refer the reader to recent books such
as [16,20,24].

4 Problem definitions

In this section, we define the two key problems of interest, namely, Topological Hitting
Set and Boundary Nontrivialization along with their global variants, namely, Global
Topological Hitting Set and Global Boundary Nontrivialization, respectively.
Also, we observe that all four problems lie in NP and in XP with respect to the solution
size as the parameter.

4.1 Topological Hitting Set

Problem 1 (Topological Hitting Set).
Instance: Given a d-dimensional simplicial complex K, a natural number k, a natural

number r < d and a non-bounding cycle ζ ∈ Zr(K).
Parameter: k.
Question: Does there exists a set S of r-dimensional simplices with |S| ≤ k such

that S meets every cycle homologous to ζ?

Let KC denote the complex obtained from K upon removal of the set of r-simplices C
along with all the cofaces of the simplices in C. In particular, the homology class [ζ] does not
survive in KC .

Let {αi} for i ∈ [βr(KC)] be a homology basis for KC. The inclusion map ι : KC ↪−→ K
induces a map ι̂ : Zr(KC)→ Zr(K) and also a map ι̃ : Hr(KC)→ Hr(K). Let α̂i = ι̂(αi). Let
A denote the matrix with nontrivial r-cycles α̂i as its columns. Let M denote the matrix
[A | ∂r+1(K)] and C(M) the column space of M. The following lemma ensures polynomial
time verification for the decision variant of Topological Hitting Set.

I Lemma 2. ζ /∈ column space of M if and only if S meets every cycle homologous to ζ.
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Proof. (=⇒) Let ρ be a cycle homologous to ζ such that S does not meet ρ. Then, ρ ∈ C(M)
since it survives in KC . The claim follows from observing that ζ is homologous to ρ.

(⇐=) Suppose that S meets every cycle that is homologous to ζ. Thus, at least one
simplex is removed from every cycle homologous to ζ. Then, a cycle homologous to ζ (in K)
is not present in KC . The claim follows. J

Lemma 2 provides an easy way to check if a set constitutes a feasible solution.

I Theorem 3. Checking if a set S is a feasible solution to Topological Hitting Set
amounts to solving a linear system of equations, and can be done in O(nω) time, where ω is
the exponent of matrix multiplication, and n is the size of the complex.

I Corollary 4. Topological Hitting Set is in NP, and is in XP with respect to the
solution size k as the parameter.

We now define the global variant of Topological Hitting Set.

Problem 2 (Global Topological Hitting Set).
Instance: Given a d-dimensional simplicial complex K, a natural number k, a natural

number r < d.
Parameter: k.
Question: Does there exists a set S of r-dimensional simplices with |S| ≤ k such

that the induced map on homology ι̃ : Hr(KS)→ Hr(K) is non-surjective?

For a complex L, let Hr(L) denote an r-th homology basis of L. It is well-known that
such a basis can always be computed in polynomial time.

I Theorem 5. Global Topological Hitting Set is in NP, and in XP with respect to
the solution size k as the parameter.

Proof. S is a solution for Global Topological Hitting Set if and only if one of the
two conditions is satisfied:

βr(KS) < βr(K) or
βr(KS) ≥ βr(K) and in the column rank profile of the matrix [∂r+1(K) |Hr(KS)], of the
last βr(KS) columns, exactly βr(K) columns are nonzero.

The two conditions can be verified in polynomial time, proving the claim. J

4.2 Boundary Nontrivialization

Problem 3 (Boundary Nontrivialization).
Instance: Given a d-dimensional simplicial complex K, a natural number k, a natural

number r < d and a bounding cycle ζ ∈ Br(K).
Parameter: k.
Question: Does there exists a set S of r+ 1-dimensional simplices with |S| ≤ k such

that removal of S from the K makes ζ non-bounding?

I Theorem 6. Boundary Nontrivialization is in NP, and is in XP with respect to the
solution size k as the parameter.

Proof. A set S is a solution if and only if the system of equations ∂r+1(KS) · x = ζ has no
solution, which can be checked in polynomial time. J
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The global variant of Boundary Nontrivialization can be described as follows.

Problem 4 (Global Boundary Nontrivialization).
Instance: Given a d-dimensional simplicial complex K, and a natural number k.
Parameter: k.
Question: Does there exists a set S of r+ 1-dimensional simplices with |S| ≤ k such

that the column space of ∂r+1(KS) is a strictly smaller subspace of the
column space of ∂r+1(K)?

I Theorem 7. Global Boundary Nontrivialization is in NP, and is in XP with
respect to the solution size k as the parameter.

Proof. It is easy to check in polynomial time if the column space of ∂r+1(KS) is a strictly
smaller subspace of ∂r+1(K). J

5 Topological Hitting Set on surfaces

In this section we describe a polynomial time algorithm for Topological Hitting Set on
surfaces. Let ζ be a nontrivial 1-cycle in a triangulated closed surface K. The algorithm for
surfaces has a very simple high-level description as detailed in Algorithm 1.
I Notation 3. Note that if we evaluate the r-cocycle η at an r-cycle ζ, then by linearity,

η(ζ) = η(
∑

σi∈ζ
σi) =

∑

σi∈ζ
η(σi).

Because of Z2 addition, η(ζ) is either 0 or 1.

Algorithm 1 The algorithm for Topological Hitting Set on surfaces with input cycle ζ

1: Find the optimal cohomology basis of K with unit weights on edges.
2: Arrange the cocycles in the basis in ascending order of weight.
3: Pick the smallest weight cocycle η with η(ζ) = 1.

In what follows, we will establish a series of structural results about the solution set for
Topological Hitting Set on surfaces in order to prove the correctness of Algorithm 1.
We begin with a few definitions.

I Definition 8 (Connected cocycles). A cocycle η is said to be connected if it induces a
connected component in the dual graph, else we say that it is disconnected.

In Lemma 11, we show that a minimal solution is, in fact, a connected cocycle. Since
cocycles can be potential solutions for Topological Hitting Set, we make the following
definitions.

I Definition 9. We say that a cocycle η is said to be a feasible set if every cycle ζ ′ ∈ [ζ]
meets η in an edge. A cocycle that is not a feasible set, is said to be an infeasible set.

Next, we provide a useful characterization of cocycles that constitute feasible sets.

I Lemma 10. If there exists a cycle in [ζ] that intersects a connected cocycle η in an odd
number of edges, then every cycle in [ζ] intersects η in an odd number of edges.
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Proof. Suppose that a cycle γ ∈ [ζ] intersects η in an odd number of edges. Let γ′ = γ + ∂σ.
We claim that γ′ intersects η in an odd number of edges. We have four cases to consider.

1. The simplex boundary ∂σ is not incident on η. Then, the homologous cycle obtained by
addition of ∂σ maintains odd incidence.

2. The simplex boundary ∂σ intersects η in two edges and both edges also belong to γ.
Then, addition of ∂σ to γ reduces the number of incident edges on η by two, and the
number stays odd.

3. The simplex boundary ∂σ intersects η in two edges and none of the edges belong to γ.
Then, addition of ∂σ to γ increases the number of incident edges on η by two, and the
number stays odd.

4. The simplex boundary ∂σ intersects η in two edges one of which belongs to γ. Then,
upon addition of ∂σ to γ, the incident edge is exchanged with the non-incident one, and
the incidence number stays the same.

Figure 6 illustrates the four cases. Any cycle in [ζ] can be obtained by adding simplex
boundaries

∑
i ∂σi to γ. So, applying the four cases inductively, we see that every cycle in

[ζ] has odd incidence on η. J

Note that any connected cocycle η induces a cycle graph which is a subgraph of the dual
graph DK of the surface K. We denote the cycle graph by Cη.

I Lemma 11. A minimal solution set is a cocycle η that induces a circle subgraph Cη in the
dual graph DK.

Proof. Let e1 be an edge in the minimal solution set S. Let σ be a 2-simplex incident on
e1, and let e2 and e3 be the other two edges incident on σ. Let γ ∈ [ζ] be a cycle with e1
as the unique edge incident on S. We know that such a cycle exists because of minimality
of S. Then, there exists a cycle γ′ = γ + ∂σ with e2 and e3 incident on it. Since γ and γ′
differ only by a boundary ∂σ, using the fact that e1 is the unique edge incident on S, either
e2 or e3 must be incident on S. Without loss of generality, assume that e2 is incident on S.
Now, consider the 2-simplex τ 6= σ incident on e2. Using the same argument as before, and
proceeding by induction, we obtain a sequence of edges in S starting from e1, each connected
by a 2-simplex. Then, there must exist a sequence starting at e1 and ending at an edge e′
such that both e′ and e1 are incident on a common cofacet ρ 6= σ, for if this is not the case,
then we can find a a cycle γ′ ∈ [ζ] which is not incident on S. The sequence of edges from e1
to e′ forms a cocycle, say η, where η ⊂ S.

Targeting a contradiction, assume that η 6= S. By Lemma 63, S induces a connected
subgraph in the Hasse graph, which implies that there exists an edge e′ ∈ S \ η and a
2-simplex τ such that e′ ≺ τ and the other two edges e1, e2 ≺ τ belong to η. Let γ be a cycle
with e1 as the unique edge from S incident on it, and let γ′ be a cycle with e′ as the unique
edge from S incident on it. Let B be the set of boundaries of 2-simplices added to γ in order
to obtain γ′ from γ. Since γ intersects η in an odd number of edges, using Lemma 10, any
cycle homologous to γ will also intersect η in an odd number of edges. Hence, γ′ is incident
on at least one of the edges of η. But this contradicts the existence of γ′ since by assumption,
γ′ is not incident on η. Therefore, an edge e′ ∈ S \ η that shares a cofacet incident on two of
the edges of η does not exist.

Finally, using Lemma 63 from Section 7.1, for any edge f ′ ∈ S \ η, and a cofacet ρ of f ′,
there must be a path in the dual graph from ρ to a 2-simplex % incident on two of the edges
of η. But for such a path to exist, there must exist an edge e′ ∈ S \ η and a 2-simplex τ such
that e′ ≺ τ and the other two edges e1, e2 ≺ τ belong to η. But we showed that such an edge



Ulrich Bauer, Abhishek Rathod, Meirav Zehavi 13
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(IV)
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γ4
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Figure 6 In this figure, we illustrate the four cases discussed in Lemma 10. Let ζ be the input
cycle and γ ∈ [ζ]. The dotted edges in the topmost figure belong to γ. Let η be a cocycle that meets
γ in an odd number of edges. The edges of η in each of the 5 figures are shown in pink. The part of
γ that does not intersect η is shown in black and the part of γ that intersects η is shown in pink. As
shown in the topmost figure, γ intersects η in three (pink-dotted) edges. In the four cases labelled
(I-IV), γi = γ + ∂σi, where i ∈ [4]. As before, for every i ∈ [4], the edges of γi that intersect the
edges of η are shown as pink-dotted edges and the edges of γi that do not intersect η are shown as
black-dotted edges. Note that in each of the four cases, the number of pink-dotted edges is odd.
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A
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τ
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f1

P
f2

Q

f ′

Figure 7 The cocycle η is shown in red. e1, e2, e
′, f ′ and τ are as in Lemma 11. Note that there

exists a path from e′ to f ′ in the dual graph.

e′ does not exist. So, the set S \ η is empty. Since η = S, the claim follows. Please refer to
Figure 7 for an example. Note that the final part of the argument is specific to surfaces. J

I Lemma 12. A trivial cocycle is not a minimal solution set.

Proof. Let η be a trivial cocycle. Then, η = δ(S), where S is a collection of points. Let e
be an edge of η. By the assumption on minimality of the solution set, there exists a cycle
ζ ′ ∈ [ζ] such that e is the only edge of η incident on ζ ′. One of the vertices of e, say v1,
belongs to S. We write the cycle ζ ′ as a sequence of vertices v1, v2, . . . , vq = v1, for some
q, such that an edge connects subsequent vertices, the sequence starts and ends at v1, and
the edge {vq−1, v1} = e. Then, the path from v1 to vq−1 must pass through a vertex v′ such
that v′ ∈ S. But this is only possible if ζ ′ also contains an edge of η other than e, which in
turn, contradicts the minimality of the solution set. Hence, a trivial cocycle is not a minimal
solution set. See Figure 8 for an example. J

Lemmas 11 and 12 combine to give the following theorem.

I Theorem 13. A minimal solution set is a nontrivial cocycle.

I Lemma 14. If a connected cocycle η intersects a cycle ζ0 ∈ [ζ] in m edges, then there
exists another cycle γ ∈ [ζ] such that γ also intersects η in m edges, and the intersection of
γ and η induces a connected component in the dual graph.

Proof. To begin with, note that the intersection of ζ0 ∈ [ζ] with η induces a (possibly
disconnected) subgraph of the cycle graph Cη, which we denote by Cζ0

η . Both Cη and Cζ0
η

are subgraphs of the dual graph DK. Let C1, . . . , Ck be the k connected components of Cζ0
η .

If k = 1, then the lemma is already satisfied. So without loss of generality, assume k > 1.
We say that a component Ci is a neighbor of a component Cj if there exists a vertex in Ci
that has a path to a vertex in Cj that does not intersect the edges of Cζ0

η . It is easy to check
that every component of Cζ0

η has exactly two (possibly non-distinct) neighbors. Choose any
two neighboring components Ci and Cj of Cζ0

η . Let v ∈ Ci and v′ ∈ Cj be two vertices that
have a simple path P with vertices v = u1, u2, . . . , u` = v′ such that P does not intersect the
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Figure 8 The edges in purple and red together form a trivial cocycle η given by δ(A+ C + E +
O +Q+G+M +K + I). If η forms a minimal solution set, then it intersects a cycle ζ′ ∈ [ζ] in a
unique edge, say, edge DC. But any path that passes through DC must pass through another edge
of η. In this example, DC-CQ-QM-MN is one such path.

edges of Cη. Every vertex ut corresponds to a simplex σt in K. Now, adding the simplex

boundaries
∑̀
t=2

∂σi to ζ0 gives rise to a cycle homologous to ζ0 such that Ci has one vertex

(and one edge) more and Cj has one vertex (and one edge) less. We repeat this process
inductively until all edges are ‘transported’ from Cj to Ci and Cj becomes empty. That is,
the new cycle ζ1 we obtain is homologous to ζ0 and has k − 1 components. We denote the
subgraph induced by intersection of ζ1 and η by Cζ1

η .
We apply the same procedure to Cζ1

η as above and get a a cycle ζ2 ∈ [ζ] whose induced
subgraph Cζ2

η has k − 2 components. Proceeding inductively, we finally obtain a cycle
γ = ζk−1 ∈ [ζ] whose induced subgraph Cζk−1

η is a connected subgraph of the dual graph.
Moreover, by design, the total number of edges in every induced graph Cζiη for i ∈ [0, k − 1]
is m. J

I Lemma 15. The following are equivalent.
(a.) A connected cocycle η is a feasible set for the input cycle ζ.
(b.) Every cycle in [ζ] intersects a connected cocycle η in an odd number of edges.
(c.) There exists a cycle in [ζ] that intersects a connected cocycle η in an odd number of

edges.

Proof. (a.) =⇒ (b.) Assume that there exists a cycle ξ ∈ [ζ] that intersects η in an even
number of edges. The intersection of ξ with η induces a (possibly disconnected) subgraph
of Cη, which we denote by Cξη . Using Lemma 14, there exists another cycle γ homologous
to ξ such that γ intersects η in the same number of edges, and the intersection of γ and
η induces a connected graph in the dual graph, which we denote by Cγη . There are two
cases:
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(I)

(II)

(III)

ζ0

ζ ′

ζ ′′

ζ1

C1

C1

C1

C1

C2

C2

C2

C3

C3

C3

C3

η

η

η

η

σ1

σ1

σ1

σ1

σ2

σ2

σ2

σ2
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σ3

σ3

σ3

σ4

σ4

σ4

σ4
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Figure 9 In this figure, we provide an illustrative example of the cycle modification technique
from Lemma 14. As in Figure 6, the edges of a cycle that intersect the edges of the cocycle η are
shown as pink-dotted edges and the edges of a cycle that do not intersect η are shown as black-dotted
edges. The cocycle η is shown in pink. The intersection of ζ0 and η induces a disconnected subgraph
Cζ0
η of the dual graph with several components, only three of which are shown, namely, C1, C2 and
C3. Here, C1 and C2 are neighbors, and C2 and C3 are neighbors. The path from C1 to C2 in DK
consists of simplices σ1, σ2, σ3 (which are vertices in the dual graph). So we add ∂σ2 + ∂σ3 to ζ0 to
obtain ζ′. Next, we add ∂σ3 + ∂σ4 to ζ′ to obtain ζ′′. Finally, we add ∂σ4 + ∂σ5 to ζ′′ to obtain ζ1.
The number of connected components of Cζ1

η is one less than the number of connected components
of Cζ0

η . This was achieved by ‘transporting’ edges in C2 to C1.
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σ4
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Figure 10 In this figure, we provide an illustrative example of the cycle modification scheme
in ((a.) =⇒ (b.)) from Lemma 15. As in Figures 6 and 9, the edges of a cycle that intersect the
edges of the cocycle η are shown as pink-dotted edges and the edges of a cycle that do not intersect
η are shown as black-dotted edges. The cocycle η is shown in pink. The intersection of γ and η
induces a connected graph in the dual graph, namely Cγη . The number of edges in Cγη is even. Let
γ′ = γ + ∂σ2 + ∂σ4 + ∂σ6. The cycle γ′ does not intersect η.

Case 1 Cγη is not identical to Cη (the cycle graph induced by the entire cocycle η), and
Cγη is a path graph P with vertices u1, u2, . . . , um+1, where each vertex ui is distinct
and corresponds to a simplex σi in K.

Case 2 Cγη is the same as the entire cycle graph Cη with vertices u1, u2, . . . , um, um+1,
where um+1 = u1.

In either case, upon adding the simplex boundaries
m/2∑
i=1

∂σ2i to γ, we obtain a cycle that

has an empty intersection with η. That is, there exists a cycle in [ζ] which does not meet
η in any of its edges. In other words, η is an infeasible set.

(b.) =⇒ (a.) This is true by the definition of a feasible set.
(c.) =⇒ (b.) This is the content of Lemma 10.
(b.) =⇒ (c.) This is trivially true. J

This completes the proof.

Using Notation 3, Lemma 15 can be written as follows.

I Lemma 16. The following are equivalent.
(a.) A connected cocycle η is a feasible set for the input cycle ζ.
(b.) For a connected cocycle η, and any cycle ζ ′ ∈ [ζ], η(ζ ′) = 1.
(c.) For a connected cocycle η, there exists a cycle ζ ′ ∈ [ζ] such that η(ζ ′) = 1.
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I Lemma 17. A connected cocycle η is a feasible set if and only if a connected cocycle
cohomologous to it is a feasible set.

Proof. A cocycle η′ cohomologous to η can be written as η′ = η+δ(S), where S is a collection
of vertices. Then, by linearity,

η′(ζ) = η(ζ) + δ(S)(ζ) = η(ζ) +
∑

v∈S
δ(v)(ζ).

δ(v) is a connected trivial cocycle. So, using Lemma 12 and ¬((c.) =⇒ (a.)) in Lemma 16,
δ(v)(ζ) is 0 for every v ∈ S. Hence, η′(ζ) = 1 if and only if η(ζ) = 1. So, the claim follows
from ((c.) =⇒ (a.)) in Lemma 16. J

Next, we prove an important generalization of Lemma 17.

I Lemma 18. Let k > 1 be an integer. Let ηi for i ∈ [k] be connected cocycles. On the one
hand, if ηi for i ∈ [k] are infeasible sets for the input cycle ζ, then any cocycle ϑ cohomologous

to
k∑
i=1

ηi is an infeasible set. On the other hand, if ηk is a feasible set, and ηi for i ∈ [k − 1]

are infeasible sets for the input cycle ζ, then any cocycle ϑ cohomologous to
k∑
i=1

ηi is a feasible
set.

Proof. A cocycle ϑ cohomologous to
k∑
i=1

ηi can be written as
k∑
i=1

ηi + δ(S) where S is a
collection of vertices. Then, by linearity,

ϑ(ζ) =
k∑

i=1
ηi(ζ) + δ(S)(ζ) =

k∑

i=1
ηi(ζ) +

∑

v∈S
δ(v)(ζ).

Using Lemmas 12 and 16, δ(v)(ζ) = 0 for every v ∈ S, and ηi(ζ) = 0 for i ∈ [k − 1]. Hence,
ϑ(ζ) = 1 if and only if ηk(ζ) = 1. So, the claim follows from Lemma 16. J

I Remark 19 (Computing optimal (co)homology basis for surfaces). For simplicial complexes
with n vertices, m edges and N simplices in total, we recall some of the known results
from literature. For the special case when the input complex is an surface, Erickson
and Whittlesey [22] devised a O(N2 logN + gN2 + g3N)-time algorithm for computing
an optimal homology basis. Borradaile et al. [2] improved on this result by providing a
O((h+ c)3

n logn+m)-time algorithm for the same problem. Here c denotes the number of
boundary components, and h denotes the genus of the surface. Dlotko [2] generalized the
algorithm from [22] for computing an optimal cohomology basis for surfaces. For general
complexes, Dey et al. [17, 18], Chen and Freedman [12], Busaryev et al. [7], and Rathod [34]
provided progressively faster algorithms for computing an optimal homology basis.

Although we expect this to be fairly well known, for the sake of completeness, we describe
an algorithm for computing minimum cohomology basis of a triangulated surface that uses
the minimum homology basis algorithm as a subroutine.

I Lemma 20. The minimum cohomology basis problem on surfaces can be solved in the
same time as the minimum homology basis problem on surfaces.

Proof. Let K be a surface with a weight function w on its edges. Let K̂ be the dual cell
complex of K. Then, to every edge e of K there is a unique corresponding edge ê in K̂. We
now define a weight function on the edges of K̂ in the obvious way: w(ê) = w(e). Let K̂′ be
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the simplicial complex obtained from the stellar subdivision of each of the 2-cells of K̂. The
weight function on edges of K̂ is extended to a weight function on edges of K̂′ by assigning
weight ∞ to every newly added edge during the stellar subdivision. Such a complex K̂′ can
be computed in linear time. It is easy to check that the cocycles of K are in one-to-one
correspondence with the cycles of K̂, and the cycles of K̂ are in one-to-one correspondence
with finite weight cycles of K̂′. Moreover, if η is a cocycle of K, and if η̂ and η̂′ are the
corresponding cycles in K̂ and K̂′, respectively, then w(η) = w(η̂) = w(η̂′). Hence, computing
a minimum homology basis for K̂′ gives a minimum cohomology basis for K. J

I Theorem 21. Algorithm 1 provides a polynomial time algorithm for computing an optimal
solution for Topological Hitting Set on surfaces.

Proof. Let {νi | i ∈ [m]} be an optimal cohomology basis for K. Then, by Theorem 13,
any optimal solution set is a cocycle. So, we can let k be the smallest integer for which a
cocycle cohomologous to some cocycle in the span of {νi | i ∈ [k]} is a feasible solution set.
Because the algorithm confirms that each νi, i ∈ [k − 1] is an infeasible set, by Lemma 18,

any connected cocycle cohomologous to
k−1∑
i=1

νi is an infeasible set. On the other hand, since

there exists a feasible set θ =
∑
ji

νji + νk + β where ji ∈ [k − 1], and β is a coboundary, by

Lemma 18, νk =
∑
ji

νji + β + θ is also a feasible set. Because {νi | i ∈ [m]} is an optimal

cohomology basis, νk is, in fact, a minimal solution set.
From Lemma 20, we know that Step-1 of Algorithm 1 can be computed in polynomial

time. Step-2 can be implemented by a simple sorting algorithm. Finally, Step-3 can be
executed in linear time. J

I Remark 22. The algorithmic results in this section motivate severals questions: To what
extent can this machinery be extended from surfaces to general complexes?

1. Are the optimal solutions sets for Topological Hitting Set nontrivial cocycles for
general complexes? To the best of our knowledge, this question is open.

2. Can the optimal solution sets for Topological Hitting Set be computed efficiently
for general complexes? We answer this question in the negative in Section 6.1 by
showing that for general complexes Topological Hitting Set is NP-hard and W[1]-
hard. Intriguingly, for the gadgets used in the reduction the optimal solution sets
for Topological Hitting Set are cocycles! So they do not provide (a family of)
counterexamples for the first question.

3. We believe that it should be possible to dualize the hardness results of Chen and
Freedman [13] to show that computing an optimal cohomology basis for general complexes
is NP-hard. So, in general, knowing that the optimal solutions sets are cocycles is not
enough to guarantee tractability. One also needs an efficient algorithm for computing an
optimal cohomology basis.

6 W[1]-hardness results

In this section, we obtain W[1]-hardness results for Topological Hitting Set and
Boundary Nontrivialization with respect to the solution size k as the parameter via
parameterized reductions from k-Multicolored Clique. We begin this section by recalling
some common notions from graph theory.

A k-clique in a graph G is a complete subgraph of G with k vertices. Next, a k-coloring
of a graph G is an assignment of one of k possible colors to every vertex of G (that is, a
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vertex coloring) such that no two vertices that share an edge receive the same color. A
graph G equipped with a k-coloring is called a k-colored graph. Then, a multicolored k-clique
in a colored graph is a k-clique with a k-coloring. k-Multicolored Clique asks for the
existence of a multicolored k-clique in a k-colored graph G. We remark that reducing from
k-Multicolored Clique is a highly effective tool for showing W[1]-hardness [23]. Formally,
k-Multicolored Clique is defined as follows:

Problem 5 (k-Multicolored Clique).
Instance: Given a graph G = (V,E), and a vertex coloring c : V → [k].
Parameter: k.
Question: Does there exist a multicolored k-clique H in G?

I Theorem 23 (Fellows et al. [23]). k-Multicolored Clique is W[1]-complete.

6.1 W[1]-hardness for Topological Hitting Set
For i ∈ [k], the subset of vertices of color i is denoted by Vi. Clearly, the vertex coloring c
induces a partition on V :

V =
k⋃

i=1
Vi, and Vi

⋂
Vj = ∅ for all i, j ∈ [k].

We now provide a parameterized reduction from k-Multicolored Clique to Topological
Hitting Set. For r = |V | − 1, we define an (r+ 1)-dimensional complex K(G) associated to
the given colored graph G as follows.

Vertices.

The set of vertices of K(G) contains the disjoint union of the vertices V in the graph G, the
set of colors [k], and an additional dummy vertex d. Altogether, we have r + k + 2 vertices
in K(G) so far. In what follows, further vertices are added to K(G).

Simplices.

Below, we describe the simplices that constitute the complex K(G).

The cycle ζ. First, add the r-simplex V corresponding to vertex set V of the graph G. Next,
add the r-simplices (V \{u})⋃ {d} for every u ∈ V . The collection of these r+2 simplices
of dimension r forms a nontrivial r-cycle ζ.

The simplices in X1. X1 = {σi | i ∈ [k]} .

For every color i ∈ [k],
add an (r + 1)-simplex σi = V

⋃ {i}.

I Definition 24 (Admissible and undesirable facets of σi). A facet (V \ {v})⋃ {i} of σi is
said to be undesirable if and only if v 6∈ Vi. All other facets of σi are deemed admissible.
In particular, V is admissible.
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τvi,j τuj,i

αvi

αvi

βv,ui,j
βv,ui,j

αuj

αuj
σi σj

V V

d

V

Figure 11 The figure shows some of the attachments in complex K(G). In particular, αvi is the
common face of τvi,j and σi, αuj is the common face of τuj,i and σj , and βv,ui,j is the common face of
τvi,j and τuj,i. The dashed lines indicate identifications along facets. The set of r-simplices supported
by the vertices V

⋃
{d} forms a nontrivial r-cycle in K(G).
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The idea here is that including an admissible simplex of the form (V \ {v})⋃ {i} in S
is akin to picking the vertex v of color i for constructing the colorful clique. Including
undesirable simplices in the solution will be made prohibitively expensive as the coloring
specified by undesirable simplices is incompatible with the coloring c that the graph G
comes equipped with.

The simplices in X2. X2 =
{
τvi,j | i ∈ [k], v ∈ Vi, j ∈ [k] \ {i}

}
.

For every color i ∈ [k],
for every vertex v in Vi and every color j ∈ [k] \ {i},
∗ add an (r + 1)-simplex τvi,j = (V \ {v})⋃{i, j}.

I Definition 25 (Admissible and undesirable facets of τvi,j). The admissible facets of τvi,j
are:

(V \ {v, u})⋃{i, j} with u ∈ Vj and {u, v} ∈ E, and
(V \ {v})⋃{i},

A facet of τvi,j that is not admissible is undesirable.

The intuition here is that picking an admissible facet of the form (V \ {v, u})⋃{i, j} is
akin to picking the edge {u, v} of color {i, j} for constructing the colorful clique, whereas
the admissible facet (V \ {v})⋃{i} is common with σi. Including undesirable simplices
in the solution will be made prohibitively expensive (as explained later). Undesirable
simplices of τvi,j correspond either to coloring that is incompatible with c or with edges
that are not even present in E.

Undesirable and inadmissible simplices. The undesirability of certain r-simplices is imple-
mented in the gadget as follows: Let m = n3. Then, to every undesirable r-simplex
ω = {v1, v2, . . . , vr+1}, associate m new vertices Uω = {uω1 , uω2 , . . . , uωm}. Now introduce
m new r + 1-simplices

Υω = {µi(ω) = {v1, v2, . . . , vr+1, u
ω
i } | i ∈ [m]}

that are cofacets of ω. See Figure 12 for an illustrative example.
I Definition 26 (Set of inadmissible simplices associated to an undesirable simplex ω). The
set of r-simplices in {{facets of µi(ω)} | i ∈ [m]} is denoted by [ω].The simplices in the
set [ω] are said to be inadmissible. In particular, ω itself is inadmissible.

Further, note that the set of vertices in Uω and r-simplices in Υω are unique to ω. As we
observe later, introducing these new simplices makes inclusion of ω in the solution set
prohibitively expensive. Denote by Y the set of all r + 1-simplices added in this step.

This completes the construction of complex K(G). It is easy to check that the inadmissible
and admissible simplices of K(G) partition the set of r-simplices of K(G).
I Notation 4. The admissible facets (V \ {v})⋃ {i} and (V \ {v, u})⋃{i, j} are denoted by
αvi and βv,ui,j , respectively. For every vertex v ∈ V of color i, there is a facet αvi . For every
edge {u, v} ∈ E, there is a facet βv,ui,j , where i is the color of v and j is the color of u.
I Remark 27 (Meaning of superscripts and subscripts of simplices). A simple mnemonic for
remembering the meaning of the notation for simplices is as follows: the indices in the
subscript are the included colors, and the vertices in the superscript indicate the vertices
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ω

uω
1

µ1
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2

µ2

uω
3

µ3

uω
i

µi

uω
m−2

µm−2

uω
m−1

µm−1

uω
m

µm

Figure 12 For every undesirable simplex ω = {v1, v2, . . . , vr+1} m new vertices Uω =
{uω1 , uω2 , . . . , uωm} are added to K(G). Moreover, m new r + 1-simplices Υω = {µi(ω) =
{v1, v2, . . . , vr+1, u

ω
i } | i ∈ [m]}, where ω ≺ µi(ω) for every i ∈ [m] are also added to K(G).

The facets of µi(ω) for every i ∈ [m] are the inadmissible simplices associated to ω and denoted by
[ω].

excluded from V . For instance, βv,ui,j is the full simplex on the vertex set (V \ {v, u})⋃{i, j}.
In this case, colors i and j are included and vertices u and v are excluded. The same
notational rule applies for αvi , σi and τvi,j .
I Remark 28 (Correspondence between colors and vertices in αvi β

v,u
i,j and τvi,j). In our notation,

the first color corresponds to the first vertex, the second color to the second vertex, and so
on. For instance,

In αvi , vertex v is of color i.
In βv,ui,j , v is of color i and u is of color j.
In τvi,j , v is of color i and the vertex associated to color j is not specified. It is, in fact,
chosen through a facet βv,ui,j ≺ τvi,j .

Choice of parameter.

Let (k +
(
k
2
)

+ 1 =
(
k+1

2
)

+ 1) be the parameter for Topological Hitting Set on the
complex K(G).
I Remark 29 (Size of K(G)). We note that every subset of vertices of G is a simplex in
K(G). However, K(G) is represented implicitly, and the simplices of dimensions other than
r and r + 1 are not used in the reduction. Thus, although K(G) as a simplicial complex is
exponential in the size of G, the reduction itself is polynomial in the size of G because the
number of r and r + 1 dimensional simplices of K(G) are polynomial in size of G, even after
inadmissible simplices.

I Lemma 30. If there exists a multicolored k-clique H = (VH , EH) of G, then there exists a
topological hitting set S for ζ consisting of

(
k+1

2
)

+ 1 r-simplices.

Proof. We construct a set S of r-simplices that mimics the graphical structure of H as
follows:

Sα =
{
αvi | v ∈ Vi∩ VH

}
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Sβ =
{
βv,ui,j | v ∈ Vi, u ∈ Vj , {i, j} ∈ EH

}

First, set S = {V }⋃Sα
⋃Sβ . Next, note that every cycle ζ ′ ∈ [ζ] can be expressed as

ζ ′ = ζ +
∑

νi∈X ′
∂νi +

∑

µj∈Y′
∂µj

for some X ′ ⊂ X1
⋃X2 and Y ′ ⊂ Y. Let X ′1 = X ′∩X1, and X ′2 = X ′∩X2. Now, we claim

that removing S from K(G) destroys every cycle ζ ′ ∈ [ζ]. We show this by establishing that
the coefficient in every ζ ′ ∈ [ζ] of at least one of the simplicies of S is 1. In other words,
S⋂ ζ 6= ∅ for every ζ ′ ∈ [ζ].

Case 1: X ′ = ∅. Then, V ∈ S has coefficient 1 in cycle ζ ′. This is because simplices in Y
are not incident on V , and V ∈ ζ.

Case 2: X ′
1 6= ∅,X ′

2 = ∅. Then, the cycle ζ ′ can be written as

ζ ′ = ζ +
∑

σj∈X ′1

∂σj +
∑

µ`∈Y′
∂µ`

Then, every αvj ∈ S for σj ∈ X ′1 and v ∈ VH ∩ Vj has coefficient 1 in cycle ζ ′. This is
because αvj ∈ ∂σj for every σj ∈ X ′1, but αvj 6∈ ζ and αvj 6∈ ∂µ` for any µ` ∈ Y ′.

Case 3: X ′
1 = ∅,X ′

2 6= ∅. This case is identical to Case-1, because V ∈ S has coefficient 1
in cycle ζ ′.

Case 4: X ′
1 6= ∅, X ′

2 6= ∅. If every simplex τvp,q ∈ X ′2 is such that v ∈ Vp \ VH , then this
case becomes identical to Case 2. So we will assume without loss of generality that the
set X ′′2 =

{
τvp,q | p, q ∈ [k], v ∈ Vp

⋂
VH , τ

v
p,q ∈ X ′2

}
is non-empty. For some {u, v} ∈ EH

and u ∈ Vq, v ∈ Vp, if τvp,q ∈ X ′′2 and τuq,p 6∈ X ′′2 , then the coefficient of βv,up,q ∈ S in ζ ′ is 1
because the only two (r + 1)-simplices incident on βv,up,q are τvp,q and τuq,p. So, without loss
of generality assume that the symmetric simplex τuq,p is also in X ′′2 . In other words, |X ′′2 |
is even. Note that for every τvp,q ∈ X ′′2 , exactly one facet of τvp,q lies in Sα, namely αvp.
Hence the cardinality of the multiset T =

{
∂τvi,j

⋂Sα | τvi,j ∈ X ′′2
}
is even. Let σi ∈ E if

and only if the cardinality of the set
{
τvi,j ∈ X ′′2 | αvi ∈ ∂τvi,j

⋂Sα
}
is even, and σi ∈ O if

and only if the cardinality of the set
{
τvi,j ∈ X ′′2 | αvi ∈ ∂τvi,j

⋂Sα
}
is odd. It is easy to

check that X ′1 ⊆ O
⋃ E . Note that since |T | = |O|+ |E|, |O| must be even.

Now, if σi ∈ E
⋂X ′1, then the coefficient of αvi ∈ S in ζ ′ is 1 because the only (r + 1)-

simplices incident on αvi are
{
τvi,j ∈ X ′′2 | αvi ∈ ∂τvi,j

}⋃{σi}, and |
{
τvi,j ∈ X ′′2 | αvi ∈ ∂τvi,j

}
|

is even when σi ∈ E . So, without loss of generality assume that E ⋂X ′1 is empty. That is,
we assume that X ′1 ⊆ O. But if, σ ∈ O \ X ′1, then the coefficient of αvi ∈ Sα in ζ ′ is 1 be-
cause in that case the only (r+1)-simplices incident on αvi will be

{
τvi,j ∈ X ′′2 | αvi ∈ ∂τvi,j

}

which has odd cardinality. So, we assume that O = X ′1. But if O = X ′1, then V ∈ S has
coefficient 1 in ζ ′ because O is even and V ∈ ζ. This completes the proof. Please see
Figure 13 for the final part of the argument. J

The next few lemmas provide a method to extract a multi-colored k-clique from G given
a solution set R for Topological Hitting Set on K(G).

I Lemma 31. If there exists a cycle ζ ′ ∈ [ζ] such that only the inadmissible simplices of R
have coefficient 1 in ζ ′, then the size of R is at least m.

Proof. We consider two cases.
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τvi,j τuj,i

αvi

αvi

βv,ui,j
βv,ui,j

αuj

αuj
σi σj

V V

|T |

d

V

|X ′1|

Figure 13 Like in Figure 13, the dashed lines indicate identifications along facets. Additionally,
in this figure, τvi,j and τuj,i belong to X ′′

2 , σi and σj belong to X ′
1, and αvi and αuj belong to Sα. T

accounts for all the incidences of the boundaries of simplices in X ′′
2 on simplices in Sα. The final

part of the argument in Case 4 of Lemma 30 is depicted here. In Case 4 of Lemma 30, we use the
fact that |T | is even. Also, if |T | is even and if the coefficient of all the simplices of S \ {V } have
coefficient 0 in some cycle ζ′ ∈ [ζ], then X ′ = O, and O has even cardinality. But if this is so, then
the coefficient of V in ζ′ is (1 + |O|) mod 2 = 1.
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Case 1: A cycle ζ ′ has a unique inadmissible simplex ν with coefficient 1 in R.
Suppose that ν = {v1, v2, . . . , vr+1} is, in fact, an undesirable simplex. Assume that ν is
the unique simplex in R with coefficient 1 in ζ ′. Let µi = {v1, v2, . . . , vr+1, u

ν
i }, i ∈ [m]

be the inadmissible simplices in [ν]. Then, a simplex in R will have coefficient 1 in the
cycle ζ ′i = ζ ′ + ∂µi only if one of the simplices in ∂µi \ {ν} for every i ∈ [m] belongs to
R. Since ∂µi \ {ν} for i ∈ [m] are disjoint sets, the size of R is at least m.
Next, suppose ν = {v1, v2, . . . , vr+1} ∈ [ω], where ω is a undesirable simplex, and ν 6= ω.
Then, ω is a facet of µj(ω) for some µj(ω) = {v1, v2, . . . , vr+1, u

ν
j }, j ∈ [m]. Since ζ ′ ∈ [ζ]

is a cycle, all simplices in ∂µj(ω) must have coefficient 1 in ζ ′. Then, a simplex in R will
have coefficient 1 in each of the cycles ζ ′i = ζ ′+∂µi(ω)+∂µj(ω), i ∈ [m]\{j} only if one of
the simplices in ∂µi(ω)\{ν} for each i belongs to R, where µi(ω) = {v1, v2, . . . , vr+1, u

ν
i }.

Also, the cycle ζ ′′ = ζ + ∂µj(ω) has a simplex in R with coefficient 1 only if ω ∈ R.
Hence, in both cases, the size of R is at least m.

Case 2: A cycle ζ ′ has multiple inadmissible simplices with coefficient 1 in R.
More generally, suppose there exist more than one inadmissible simplices in R with
coefficient 1 in ζ ′, for some cycle ζ ′ ∈ [ζ]. For an undesirable simplex ω, we say that [ω]
belongs to ζ ′ if it there exists a simplex in [ω] that has coefficient 1 in ζ ′. Let J be an
indexing set for the undesirable simplices of K(G) whose classes belong to ζ ′. That is, for
all j ∈ J , [ωj ] belongs to ζ ′. Define the sets P and Q as follows.

P = {µi(ωj) | j ∈ J, i ∈ [m], a simplex in ∂µi(ωj) \ {ωj} belongs to ζ ′ and R}.

and

Q = {µk(ωj) | j ∈ J, k ∈ [m], µk(ωj) 6∈ P}.

Define ζQ as follows.

ζQ = ζ ′ +
∑

µi(ωj)∈P,
j∈J

∂µi(ωj) +
∑

µk(ωj)∈Q,
j∈J

∂µk(ωj).

for all Q ⊂ Q.
Then, a simplex in R will have coefficient 1 in each of the cycles ζQ if and only if one
of the r-simplices in ∂µk(ωj) for every µk(ωj) ∈ Q belongs to R. Clearly, |P +Q| ≥ m,
proving the claim. J

I Lemma 32. Let R be a solution set for Topological Hitting Set on complex K(G)
such that |R| ≤

(
k+1

2
)

+ 1. Then,

(1.) V ∈ R.
(2.) For every σi, there is at least one simplex αvi (with v ∈ Vi) that is included in R.
(3.) For every unordered pair (i, j), where i, j ∈ [k], there exists a simplex βv,ui,j for some v, u

that is included in R.
(4.) |R| = |AR| =

(
k+1

2
)

+ 1, where AR denotes the set of admissible simplices of R.
Proof. If ζ ′ ∈ [ζ] is such that ζ ′

⋂
AR = ∅, then we are forced to include some simplex

ω ∈ ζ ′ in R such that ω is inadmissible. In that case, Lemma 31 applies and we are forced
to include at least m simplices. But, if we include more than n3 facets in R, we exceed the
budget of

(
k+1

2
)

+ 1. So, going forward, we assume that at least one simplex in AR has
coefficient 1 for every ζ ′ ∈ [ζ].

Note that if at least one simplex in AR has coefficient 1 for every cycle in [ζ], then we do
not need inadmissible simplices in R. We now prove the four statements of the lemma.
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(1.) Since V is the only admissible facet of ζ, it must be included.
(2.) Since ζ ′ = ζ + ∂σi is a cycle homologous to ζ, and the coefficient of V in ζ ′ is zero, the

admissible simplices in ζ ′ are given by the set {αvi | v ∈ Vi}. One of the simplices in
this set must be included in R for each i, for R to be a solution set.

(3.) Note that for a fixed i and j ∈ [k] \ {i} unless some admissible facet βv,ui,j for some v, u
is included in R, the coefficient of all admissible simplices in ζ ′ = ζ + ∂σi +

∑
v∈Vi

∂τvi,j

will be zero. The claim follows.
(4.) This follows from the first three parts of the lemma. By (1.) we must include V in R,

by (2.) we must include at least k α faces in R, and by (3.), we must include at least(
k
2
)
faces n R. Since

(
k
2
)

+ k + 1 =
(
k+1

2
)

+ 1, the claim follows. J

I Lemma 33. If |R| =
(
k+1

2
)

+ 1, then one can obtain a k-clique H of G from R.

Proof. If |R| =
(
k+1

2
)

+ 1, then using (4.), |R| = |AR|. Therefore, R consists entirely of
admissible simplices. We now provide four conditions that characterize a solution of size(
k+1

2
)

+ 1.
As noted in Section 6.1 (1.), V is part of any solution set. Using Section 6.1 (2.), for R

to be a solution set, at least one facet (other than V ) of σi for every i must belong to R.

Condition 1. For every i ∈ [k], the only facet of σi (other than V ) that belongs R is an
admissible simplex αvi , for some v ∈ Vi.

Now, αvi is incident on k − 1 simplices, namely, τvi,j for all j 6= i. Using Section 6.1 (3.),
for R to be a solution, we must include in R at least one admissible facet βv,ui,j of τvi,j (for
all j 6= i).
Condition 2. For every v ∈ Vi such that αvi ∈ R, and every j ∈ [k] \ {i}, the only facet of

τvi,j (other than αvi ) that belongs R is an admissible simplex βv,ui,j , for some u ∈ Vj .
Note that βv,ui,j is also incident on both τuj,i and τuj,i. Then, since there must exist an
admissible simplex in R with coefficient 1 in ζ ′ = ζ + ∂σi + ∂τvi,j + ∂τuj,i, it is necessary
that at least one facet of τui,j other than βv,ui,j is included in R. That is, αuj must be
included in R.
Repeating the same argument for every σi and every τvi,j , it is easy to check that the only
way to construct R without exceeding the budget of

(
k+1

2
)

+ 1 is by making these choices
consistent. Thus, we obtain two additional conditions.
Condition 3. for every i and v such that αvi ∈ R, and every j ∈ [k] \ {i}, if αvi is in R, and

βv,ui,j is in R, then αuj is in R.
Condition 4. for every i and v if αvi 6∈ R (from choices made for σi’s in Condition 1.), then

for every j ∈ [k] \ {i}, the facet βu,vi,j of τvi,j in not included in R.
The fact that such a set R is indeed a solution set follows the same argument as in

Claim 30. It is clear that such a solution set R satisfies Conditions 1-4 if and only if
|R| =

(
k+1

2
)

+ 1. If any of the conditions are not satisfied, then either we are forced to choose
more than one vertices per color, or we have that the choice of vertices u, v in βv,ui,j that is
included in R as per Section 6.1 (3.) for pairs (i, j) and (j, i) is inconsistent. In both cases,
|R| ≥

(
k+1

2
)

+ 1.
Finally, the graph H is constructed from R by first including one vertex v per color i for

every αvi ∈ R, and the edges {u, v} for every simplex βv,ui,j ∈ R. J

Lemma 30 and Lemma 33 together provide a parameterized reduction from k-Multicolored
Clique to Topological Hitting Set. Using Theorem 23, we obtain the following result.

I Theorem 34. Topological Hitting Set is W[1]-hard.
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6.2 W[1]-hardness for Boundary Nontrivialization
Next, we provide a parameterized reduction from k-Multicolored Clique to Bound-
ary Nontrivialization. This reduction bears some similarities with reduction from
k-Multicolored Clique to Topological Hitting Set. So towards the end, we skip
some of the details that are common to both the reductions.

Recalling some notation from Section 6.1

In Section 6.1, given a k-colored graph G = (V,E), we defined two sets of (r + 1)-simplices,
namely, X1 and X2.

X1 = {σi | i ∈ [k]} ,

where σi = V
⋃ {i}, and

X2 =
{
τvi,j | i ∈ [k], v ∈ Vi, j ∈ [k] \ {i}

}
,

where τvi,j = (V \ {v})⋃ {i, j}.
Furthermore, recall from Section 6.1, that for every i ∈ [k], and v ∈ Vi, then

αvi = (V \ {v})
⋃
{i}

is an admissible facet of σi and τvi,j respectively.
Also, for every i ∈ [k], j ∈ [k] \ {i}, v ∈ Vi, u ∈ Vj , and {u, v} ∈ E,

βv,ui,j = (V \ {v, u})
⋃
{i, j}

is an admissible facet of τvi,j and τuj,i respectively.

Overview of the reduction for Boundary Nontrivialization

In this section, given a k-colored graph G = (V,E), an r-dimensional complex L(G) is
constructed, where r = |V | − 1. Here, we provide an overview of the construction.

Let σi = V
⋃ {i} as in Section 6.1, and let ∂̂σi be the r-complex ∂σi \ {V }. The complex

∆̂σi is formed from ∂̂σi by the so-called S-subdivision of some of the faces of ∂̂σi. The
S-subdivision of a simplex is described in Section 6.2.1. The construction of ∆̂σi from ∂̂σi is
described in Algorithm 3. The lexicographically highest simplex of an S-subdivided face of
∂̂σi is a distinguished simplex in ∆̂σi. The simplices in ∂̂σi that are not distinguished are
called undesirable. We wish to exclude undesirable simplices from solutions of small size.
To implement the undesirability of simplices, we add further simplices to ∆̂σi. The newly
added simplices and the undesirable simplices are together called inadmissible simplices of
∆̂σi. That completes the high-level description of ∆̂σi. Next, a subcomplex Z1 is built out
of the union of subcomplexes ∆̂σi. That is,

Z1 =
⋃

i∈[k]

∆̂σi.

Let T = |V | · (k−1). It is easy to check that |X2| = T . Let t ∈ [T ] be an indexing variable
such that there is a unique t that corresponds to a triple (i, j, v), where i ∈ [k], j ∈ [k] \ {i}
and v ∈ Vi. Now, for every t ∈ [T ], add a new set of vertices Vt. Here the vertex set Vt is in
one-to-one correspondence with the vertex set (V \ {v})⋃{i, j}. Let τvi,j be the full simplex
on the vertex set Vt. The complex ∆τvi,j is formed from ∂τvi,j following an S-subdivision of
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some of the faces of ∂τvi,j . The construction of ∆τvi,j from ∂τvi,j is described in Algorithm 4.
The distinguished, undesirable, and inadmissible simplices of ∆τvi,j are built in a manner
analogous to the distinguished, undesirable and inadmissible simplices of ∆̂σi. For further
details, please refer to Section 6.2.2. Next, a subcomplex Z2 is built out of the union of
subcomplexes ∆τvi,j . That is,

Z2 =
⋃

i∈[k]
v∈Vi

⋃

j∈[k]\{i}
∆τvi,j .

The complex L(G) is obtained from G by identifying the distinguished faces of Z1
⋃Z2

as per the procedure described in Algorithm 5. The distinguished faces upon identifications
are called the admissible simplices of L(G). In what should remind the reader of the notation
used in Section 6.1, for every i ∈ [k], and v ∈ Vi, there is an admissible simplex denoted by αvi
that belongs to L(G). And for every i ∈ [k], j ∈ [k] \ {i} with v ∈ Vi, u ∈ Vj and {u, v} ∈ E,
there is an admissible simplex βv,ui,j that belongs to L(G). The admissible simplices of L(G)
encode the connectivity and coloring information of G. Analogous to the construction of
the complex K(G) described in Section 6.1, in complex L(G), αvi is an admissible r-simplex
belonging to the simplicial manifolds ∆̂σi and ∆τvi,j , where ∆̂σi and ∆τvi,j are subcomplexes
of L(G). Also, βv,ui,j of is an admissible r-simplex belonging to the simplicial manifolds ∆τvi,j
and ∆τuj,i. We ask the reader to compare Figures 11 and 16.

Finally, Proposition 50 and Lemma 60 combine to show that the k-multicolored cliques
of G are in one-to-one correspondence with

(
k+1

2
)
-sized solutions for Boundary Nontrivi-

alization with L(G) as the instance. In fact, the reduction is a parameterized reduction
that establishes the W[1]-hardness of Boundary Nontrivialization as a consequence.
I Remark 35. Note that we use the notation ∂̂σi and ∆̂σi for the complexes associated to
σi, and ∂τvi,j and ∆τvi,j for the complexes associated to τvi,j . This disparity in notation (that
is the use of ˆ for σi) is to remind the reader that in the case of ∂̂σi, a face is deleted from
simplex boundary of σi, whereas in the case of ∂τvi,j , the full simplex boundary is used.

6.2.1 S-subdivisions of simplices
Next, we recall a lemma from Munkres [33, Lemma 3.2] that will be used to provide a
guarantee that the complex described in Section 6.2.2 is, in fact, a simplicial complex.

I Lemma 36 (Munkres, [33, Lemma 3.2]). Let L be a finite set of labels. Let K be a simplicial
complex defined on a set of vertices V . Also, let f : V → L be a surjective map associating
to each vertex of K a label from L. The labeling f extends to a simplicial map g : K→ Kf
where Kf has vertex set V and is obtained from K by identifying vertices with the same label.

If for all pairs v, w ∈ V , f(v) = f(w) implies that their stars starK(v) and starK(w) are
vertex disjoint, then, for all faces η, ω ∈ K we have that

η and g(η) have the same dimension, and
g(η) = g(ω) implies that either η = ω or η and ω are vertex disjoint in K.

Lemma 36 provides a way of gluing faces of a simplicial complex by a simplicial quotient
map obtained from vertex identifications. In particular, Lemma 36 provides conditions under
which the gluing does not create unwanted identifications, and the resulting complex thus
obtained is also a simplicial complex. Now, we describe a special kind of subdivision, which
we call an S-subdivision of a d-simplex, with a later application of Lemma 36 in mind.
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Let ν be an d-simplex, and let U be the vertex set of ν equipped with an ordering �ν .
We construct a complex Cν obtained from a subdivision of ν such that an r-simplex Ω ∈ Cν
has the following property: for every vertex v ∈ Ω, (starCν v)

⋂
U = ∅. The construction of

the complex Cν is described in Algorithm 2.

Algorithm 2 S-subdivision of simplex ν

1: procedure S-subdivide(ν,�ν)
2: Let U denote the vertices of ν;
3: Let C0 ← {ν}; Ω1 ← ν; U0 ← U ;
4: for i = 1 to 2(d+ 1) do
5: Perform a stellar subdivision of Ωi to obtain Ci from Ci−1;
6: Let vi be the new vertex introduced during the stellar subdivision;
7: Ui ← Ui−1

⋃ {vi} ;
8: Extend �ν as follows: Set vi �ν v for all v ∈ Ui−1;
9: Let Ωi+1 be the lexicographically highest d-simplex of Ci;
10: end for
11: Cν ← Ci;
12: return Cν , Ω2(d+1)+1;
13: end procedure

Please refer to Figure 14 for an illustrative example. In Figure 14, U = {A,B,C} and
Ω = {G,H, I}, and the stars of G, H and I do not intersect U .

I Remark 37. The total number of d-simplices in Ci for i ∈ [0, d+ 1] are 2i · d+ 1. So Cν has
2d(d+ 1) + 1 d-simplices. Also, by construction, Ω2(d+1)+1 is the lexicographically highest
d-simplex of Cν .

I Lemma 38. For every i ∈ [2(d+1)+1], Ωi is the full simplex on the d+1 lexicographically
highest vertices of Ci−1.

Proof. This is trivially true for i = 1 as C0 has only d + 1 vertices. Suppose that the
statement of the lemma holds true for all i ∈ [j] for some j > 1. Let {u0, u1, . . . , ud} be the
vertices of Ωj where uk �ν uk−1 for k ∈ [d]. Then, by construction, Ωj+1 = {u1, . . . , ud, vj},
which coincides with the set of lexicographically highest vertices of Cj . J

I Lemma 39. Let vi be the vertex introduced during the i-th iteration of the algorithm. If
{u, vi} is an edge in Cν , then it has two types.

(type-1) vi �ν u, or
(type-2) u �ν vi and there are at most d vertices wj, j ∈ [d] such that u �ν wj �ν vi.

Proof. In complex Ci, vi has degree d + 1. In particular, denoting the vertices of Ωi by
{u0, u1, . . . , ud}, the edges {vi, uk} for k ∈ [0, d] belong to Ci. So all edges of Ci incident on
vi are of type-1.

Moreover, for every i′ > i, every vertex v′ 6= vi of Ωi′ satisifes v′ �ν vi by Lemma 38.
Hence, the newly added edges in Ci′ for i′ > i that are incident on vi are of type-2. Again,
using Lemma 38 inductively, there can be at most (d+ 1) such vertices v′ in the final complex
Cν . J

I Proposition 40. Let v be a vertex of Ω2(d+1)+1. Then, (starCν v)
⋂
U = ∅.
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Figure 14 The figure shows a specific subdivision of the 2-simplex ABC defined on d+ 1 = 3
vertices. The vertices that are higher in the alphabetical order are also higher with respect to
the ordering �. For instance, G � D � A. The above triangulation is obtained as follows: First,
the simplex ABC is stellar subdivided by the introduction of the vertex D. Since BCD is the
lexicographically highest simplex, it is the only one that is stellar subdivided by the introduction
of the vertex E. Then, CDE which is the lexicographically highest simplex is subdivided by the
introduction of the vertex F , and so on. Note that at each step the lexicographically highest vertices
always span a simplex, and that simplex is the one that is subdivided. For instance, after the first
subdivision, BCD is a simplex, after the second subdivision CDE is a simplex, after the third
subdivision DEF is a simplex, and so on. The process stops after 2(d+ 1) subdivisions. In this case,
we perform six subdivisions. The total number of d-simplices introduced is 2d(d+ 1) + 1, which in
this case is 13. Note that the vertices A,B and C do not lie in the respective stars of the vertices of
the highlighted triangle GHI.
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Proof. The complex Cν has 3(d + 1) vertices totally ordered by �ν . By Lemma 38, the
vertices of Ω2(d+1)+1 are the highest d + 1 vertices ordered by �ν . By construction, the
vertices in U are are the lowest d+ 1 vertices ordered by �ν .

By Lemma 39, the vertices of Ω2(d+1)+1 do not have any edges in common with vertices
in U . The claim follows. J

6.2.2 Description of the reduction
We now give a detailed description of the reduction. As before, associated to a k-colored
graph G = (V,E), we define an r-dimensional complex L(G) as follows.

Vertices.

Let V ′ = V
⋃

[k], and r = |V | − 1. Then, |V ′| = r + k + 1. Include the vertex set V ′ in L(G).
In what follows, we add further vertices to L(G).

Ordering relation �V ′ on vertices of L(G).

We now impose the following ordering relation on V ′. Enumerate the vertices of G according
to a fixed total order V = {v1, v2, . . . , vr+1}. For every color i ∈ [k] and j ∈ [r + 1], we have
i �V ′ vj . For i2 ≥ i1, we have i2 �V ′ i1, and for j2 ≥ j1, we have vj2 �V ′ vj1 .
I Remark 41 (Implementing undesirability). The undesirability of certain r-simplices is im-
plemented in the gadget as follows: Let m = n3. Then, to every undesirable r-simplex
ω = {v1, v2, . . . , vr+1}, associate m new vertices Uω = {uω1 , uω2 , . . . , uωm}. For every ` ∈ [m],
let µ` = {v1, v2, . . . , vr+1, u

ω
` }. Now introduce m(r + 1) new r-simplices

Υω = {{facets of µ`} \ {ω} | ` ∈ [m]} .

Note that for any two undesirable simplices ω1 and ω2 we have, Uω1
⋂Uω2 = ∅ and

Υω1
⋂

Υω2 = ∅. As observed later, introducing these new simplices makes inclusion of
ω in the solution set prohibitively expensive. Please refer to Figure 15 for an illustrative
example. For undesirable simplices, we denote the set of r-simplices in Υω

⋃
ω by [ω]. For

admissible simplices, [ω] = ω.

Gadgets.

The complex L(G) is constructed by gluing the distinguished faces of two types of gadgets.
Next, we describe these two types of gadgets.

Gadgets of type-1.

The construction of gadgets of type-1 is explained in detail in the pseudocode of Algorithm 3.
Below, we provide a high-level sketch.

First, we describe the subroutine SubdivideDelta1. In this subroutine, given an index
i ∈ [k], we begin our construction with the complex ∂̂σi = {facets of σi} \ {V }, where as in
Section 6.1, σi = V

⋃ {i}. The vertices of ∂̂σi inherit an order from �V ′ .

I Definition 42 (Pre-admissible and non-pre-admissible simplices of ∂̂σi). For every v ∈ Vi,
the simplices avi = (V \ {v})⋃ {i} are called the pre-admissible simplices of ∂̂σi, and all
other simplices of ∂̂σi are called non-pre-admissible.
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Figure 15 For every undesirable simplex ω = {v1, v2, . . . , vr+1} m new vertices Uω =
{uω1 , uω2 , . . . , uωm} are added to L(G). Furthermore, m(r + 1) new r-simplices Υω =
{{facets of µ`} \ {ω} | ` ∈ [m]} are added to L(G). The r-simplices in Υω

⋃
ω are denoted by

[ω].

The procedure S-Subdivide described in Section 6.2.1 takes an r-simplex ν as input and
returns a subdivision of ν along with the (lexicographically highest) distinguished simplex
from within the subdivided simplex. For every pre-admissible simplex avi , its subdivision is
denoted by Cvi , and the distinguished simplex of Cvi is denoted by αvi (σi). The complex C is
formed by taking the union of the subdivided pre-admissible simplices.

Let A denote the collection of distinguished simplices in C, and let W denote the set of
non-pre-admissible r-simplices of ∂̂σi. Since there are Vi pre-admissible simplices for color i,
|A| = |Vi|. Finally, the complex ∆̂σi is formed by taking the union of the non-pre-admissible
simplices, namely W , with the collection of subdivisions of the pre-admissible simplices,
namely C. We end the description of SubdivideDelta1 with one last definition.

IDefinition 43 (Undesirable simplices of ∆̂σi). At the end of the procedure SubdivideDelta1,
the simplices in ∆̂σi \A are called the undesirable simplices of ∆̂σi.

In procedure TypeZ1, the complex Z1 is constructed. To begin with, the subroutine
SubdivideDelta1 is invoked for every i ∈ [k], which returns the complex ∆̂σi along with
its distinguished simplices Aσi . Next, we add further simplices to ∆̂σi in order to implement
undesirability of simplices as per Remark 41. As per the notation used in TypeZ1, ∆̂σi \Aσi
are the undesirable simplices of ∆̂σi. Then, to every undesirable simplex ω ∈ ∆̂σi \Aσi , we
add (r + 1)m simplices Υω to ∆̂σi, completing the construction of ∆̂σi. The complex Z1
is then given by the union of all simplices in ∆̂σi for every i. We end the description of
TypeZ1 with a definition.

I Definition 44 (Inadmissible simplices of ∆̂σi). At the end of the procedure TypeZ1, the
simplices in ∆̂σi \Aσi are the inadmissible simplices of ∆̂σi.

Gadgets of type-2.

We now provide a high-level description of gadgets of type-2, the pseudocode of which is
provided in Algorithm 4. The type-2 gadgets are indexed by t.
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∆̂σi ∆̂σj

∆τuj,i∆τvi,j

∂V

αvi (σi) αuj (σj)

βv,ui,j (τuj,i)βv,ui,j (τvi,j)
αuj (τuj,i)αvi (τvi,j)

Figure 16 The figure depicts the construction of L(G) via identifications of various gadgets
as described in Algorithm 5. In particular, the dashed red lines show identifications of the (red)
congruent faces of type-1 gadgets (shown in green) and type-2 gadgets (shown in blue). The dashed
black line shows identifications of the (red) congruent faces of two distinct type-2 gadgets. Note that
some of the red dashed lines are only partially drawn. The red faces are the lexicographically highest
distinguished faces obtained by S-subdivisions described in Section 6.2.1. The construction of the
type-1 green gadgets is described in Algorithm 3, and the construction of the type-2 blue gadgets is
described in Algorithm 4. Note that the full simplex with vertex set V (or its subdivision) does not
appear as a simplex in any of the type-1 gadgets. In fact the type-1 gadget are r-manifolds with ∂V
as their common boundary, and the dashed purple lines depict precisely that. The type-2 gadgets
are topological r-spheres.
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Algorithm 3 Construction of complex ∆̂σi

1: procedure SubdivideDelta1(i)
2: σi ← V

⋃ {i};
3: Let ∂̂σi be the r-complex ∂σi \ {V };
4: The vertex set U of ∂̂σi is ordered by �, obtained by restricting �V ′ to U ;
5: Every r-simplex avi = (V \ {v})⋃ {i} of ∂̂σi with v ∈ Vi is deemed pre-admissible;
6: Let W denote the set of r-simplices of ∂̂σi that are not pre-admissible;
7: A← ∅; C← ∅;
8: for each pre-admissible simplex avi of ∂̂σi do
9: Cvi , αvi (σi)← S-subdivide(avi ,�);
10: A← A

⋃{αvi (σi)};
11: C← C

⋃
Cvi ;

12: end for
13: ∆̂σi ← C

⋃
W ;

14: return ∆̂σi, A; . The simplices in ∆̂σi \A are undesirable.
15: end procedure

16: procedure TypeZ1
17: Z1 ← ∅;
18: for i = 1 to k do
19: ∆̂σi, Aσi ← SubdivideDelta1(i) ;
20: The simplices in Aσi are the distinguished simplices of ∆̂σi;
21: The simplices in ∆̂σi \Aσi are deemed the undesirable simplices of ∆̂σi;
22: for every undesirable simplex ω in ∆̂σi do . as described in Remark 41
23: Add (r + 1)m simplices Υω to ∆̂σi;
24: end for . The simplices in ∆̂σi \Aσi are inadmissible.
25: Z1 ← Z1

⋃
∆̂σi;

26: end for
27: end procedure
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First, we describe the subroutine SubdivideDelta2. In this subroutine, given a vertex
v ∈ Vi a color j 6= i, and an index t, we introduce a vertex set Vt whose vertices are in one-to-
one correspondence with the vertices (V \ {v})⋃{i, j}. Let τvi,j be the full (r+ 1)-simplex on
Vt, and ∂τvi,j be the complex induced by the facets of τvi,j . The vertices of ∂τvi,j are ordered
according to the same rules as �V ′ .

I Definition 45 (Pre-admissible and non-pre-admissible simplices of ∂τvi,j). The simplices avi =
Vt \ {jt} for every v ∈ Vi, and the simplices bv,ui,j = Vt \ {ut}, where u ∈ Vj and {u, v} ∈ E
are also said to be the pre-admissible simplices of ∂τvi,j. All other r-simplices of ∂τvi,j are
deemed non-pre-admissible.

We invoke the procedure S-Subdivide described in Section 6.2.1 to subdivide the pre-
admissible simplices of ∂τvi,j . The subdivision of a pre-admissible simplex bv,ui,j is denoted
by Cv,ui,j and the distinguished simplex of Cv,ui,j is denoted by βv,ui,j (τuj,i). The subdivision of
a pre-admissible simplex αvi (τvi,j) is denoted by Cvi and the distinguished simplex of Cvi is
denoted by avi . The complex C is formed by taking the union of the subdivided pre-admissible
simplices. Furthermore, the collection of all the distinguished simplices of the subdivided
pre-admissible simplices is denoted by A. It is easy to check that, |A| = k. Finally, the
complex ∆τvi,j is formed by taking the union of the non-pre-admissible simplices, namely W ,
with the collection of subdivisions of the pre-admissible simplices, namely C. We conclude
the description of SubdivideDelta2 with a definition.

I Definition 46 (Undesirable simplices of ∆τvi,j). At the end of procedure SubdivideDelta2,
the simplices in ∆τvi,j \A are said to be the undesirable simplices of ∆τvi,j.

In the procedure TypeZ2, the complex Z2 is constructed. To do this, the subroutine
SubdivideDelta2 is invoked for every color i, every vertex v in Vi, and every color j
where j 6= i, which returns the complex ∆τvi,j , along with its set of distinguished simplices
Aτv

i,j
. Next, we add further simplices to ∆τvi,j , for every v ∈ Vi and j ∈ [k] \ {i}, in order

to implement undesirability of simplices as per Remark 41. We start the construction
with the undesirable simplices of ∆τvi,j , namely ∆τvi,j \Aτvi,j . To every undesirable simplex
ω ∈ ∆τvi,j \ Aτvi,j , we add (r + 1)m simplices Υω to ∆τvi,j , completing the construction of
∆τvi,j . The complex Z2 is then given by the union of all simplices in ∆τvi,j for every i ∈ [k],
every vertex v ∈ Vi and every j ∈ [k] \ {i}. We conclude the description of TypeZ2 with a
definition.

I Definition 47 (Inadmissible simplices of ∆τvi,j). At the end of procedure TypeZ2, the
simplices in ∆τvi,j \Aτvi,j are the inadmissible simplices of ∆τvi,j.

Attachments.

Let K′ = Z1
⋃Z2. Then, complex L(G) is formed from K′ after making the attachments

described in Algorithm 5.
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Algorithm 4 Construction of complex ∆τvi,j
1: procedure SubdivideDelta2(v, i, j, t)
2: Let Vt ← ∅;
3: for every u ∈ V \ v do
4: Add a vertex ut to Vt;
5: end for
6: Vt ← Vt

⋃{it, jt};
7: Let τvi,j be the full (r + 1)-simplex on Vt;
8: Let ∂τvi,j be the r-complex induced by the facets of τvi,j ;
9: The vertices Vt of ∂τvi,j are in a natural one-to-one correspondence to a subset of

vertices in V ′. The ordering �t on Vt is defined using the same rules as for �V ′ ;
10: The r-simplex avi = Vt \ {jt} is deemed pre-admissible;
11: The r-simplices

{
bv,ui,j | bv,ui,j = Vt \ {ut}, where u ∈ Vj and {u, v} ∈ E

}
are also

deemed pre-admissible;
12: Let W denote the set of r-simplices of ∂τvi,j that are not pre-admissible;
13: Cvi , αvi (τvi,j)← S-subdivide(avi ,�t);
14: A← {αvi (τvi,j)}; C← Cvi ;
15: for each pre-admissible simplex bv,ui,j of ∂τvi,j do
16: Cv,ui,j , β

v,u
i,j (τuj,i)← S-subdivide(bv,ui,j ,�t);

17: A← A
⋃{βv,ui,j (τuj,i)};

18: C← C
⋃

Cv,ui,j ;
19: end for
20: ∆τvi,j ← C

⋃
W ;

21: return ∆τvi,j , A; . The simplices in ∆τvi,j \A are undesirable.
22: end procedure

23: procedure TypeZ2
24: Z2 ← ∅; t = 0;
25: for i = 1 to k do
26: for every vertex v in Vi, and a color j ∈ [k] \ {i} do
27: t = t+ 1;
28: ∆τvi,j , Aτvi,j ← SubdivideDelta2(v, i, j, t) ;
29: The simplices in Aτv

i,j
are the distinguished simplices of ∆τvi,j ;

30: The simplices in ∆τvi,j \Aτvi,j are deemed the undesirable simplices of ∆τvi,j ;
31: for every undesirable simplex ω in ∆τvi,j do . as described in Remark 41
32: Add another (r + 1)m simplices Υω to ∆τvi,j ;
33: end for . The simplices in ∆τvi,j \Aτvi,j are inadmissible.
34: Z2 ← Z2

⋃
∆τvi,j ;

35: end for
36: end for
37: end procedure
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Algorithm 5 Construction of complex L(G)

1: for every v ∈ Vi and j 6= i do
2: Identify the r-simplices: αvi (τvi,j) ∼ αvi (σi), where the identifications of vertices are

consistent with respective lexicographic orderings. Denote the identified simplex by αvi ;
3: end for
4: for every edge {u, v} ∈ E with v ∈ Vi and u ∈ Vj do
5: Identify the r-simplices: βv,ui,j (τuj,i) ∼ βv,ui,j (τvi,j), by respecting the respective lexico-

graphic orderings. Denote the identified simplex by βv,ui,j ;
6: end for

I Definition 48 (Admissible simplices of L(G)). The simplices αvi for every i ∈ [j] and v ∈ Vi,
and the simplices βv,ui,j for every edge {u, v} ∈ E with v ∈ Vi and u ∈ Vj are said to be the
admissible simplices of L(G).

I Proposition 49. The complex L(G) formed from identifying vertices in K′ is a simplicial
complex.

Proof. This follows immediately from Lemma 36 and Proposition 40. J

This completes the construction of complex L(G). Please refer to Figure 19 for a schematic
illustration.

Choice of input boundary.

For the abstract simplex V , let ∂V denote the set of facets of V . Note that although
V 6∈ L(G), every facet of V is in L(G). In fact, the complex ∆̂σi for every i, is a simplical
r-manifold with ∂V as its boundary. We choose ∂V as our input boundary that we want to
make nontrivial.

Choice of parameter.

Let
(
k +

(
k
2
)

=
(
k+1

2
))

be the parameter for Boundary Nontrivialization on the complex
L(G).

I Proposition 50. If there exists a k-clique H of G such that every vertex of H has a
different color, then a set of

(
k+1

2
)
r-simplices in L(G) meets every chain ξ with ∂ξ = ∂V .

Proof. As in Section 6.1, we construct a set S of r-simplices that mimics the graphical
structure of H as follows:

Sα =
{
αvi | v ∈ Vi∩ VH

}

Sβ =
{
βv,ui,j | v ∈ Vi, u ∈ Vj , {i, j} ∈ EH

}

Set S = Sα
⋃Sβ .

Now we want to show that at least one element from the solution set S has coefficient 1 in
every chain ξ that satisfies ∂ξ = ∂V . Thus, we aim to show that removing S from L(G) makes
∂V nontrivial. Before we proceed, we introduce some notations and definitions. To begin
with let A denote the set of all admissible simplices in L(G) (described in Definition 48).
I Notation 5. For an r-simplex ω, let [ω]ξ denote the simplices of [ω] in ξ.

I Definition 51 (Type-1 gadget belonging to chain ξ). If there exists an r-simplex ω ∈ ∆̂σi\A
such that ∂([ω]ξ) = 1, then we say that σi belongs to ξ.
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I Definition 52 (Type-2 gadget belonging to chain ξ). If there exists an r-simplex ω ∈ ∆τvi,j\A
such that ∂([ω]ξ) = 1, then we say that τvi,j belongs to ξ.

Before we can finish the proof of Proposition 50, we need a few auxillary lemmas. For
the lemmas that follow, we let ξ be a chain that satisfies ∂ξ = ∂V .

Figure 17 The figure depicts the gadget ∆̂σi in a simplistic manner, that is, without the full
triangulation and without the inadmissible simplices. Also, in this figure, σi belongs to ξ. That is,
there exists an r-simplex ω ∈ ∆̂σi \ A such that ∂([ω]ξ) = 1. The simplices of ∆̂σi that lie in A
are shown in red. Then, according to Lemma 53, the boundary of the part of the complex in green
equals the boundary of triangles in red (i.e., the black edges) + ∂V (shown in purple).

I Lemma 53. If σi belongs to ξ, then ∂
((

∆̂σi \ A
)⋂

ξ
)

= ∂V + ∂
(

∆̂σi
⋂A

)
.

Proof. Please refer to Figure 17 for an illustration of the statement of the lemma. Since σi
belongs to ξ, there exists an r-simplex ω1 ∈ ∆̂σi \ A such that ∂([ω1]ξ) 6= 0. This implies
that there exists a facet ς of ω1 such that ς ∈ ∂([ω1]ξ) and ς 6∈ ∂ξ. Hence, there must be
an r-simplex ω2 with ς as a facet such that ω2 ∈ ∆̂σi \ A, ∂([ω2]ξ) 6= 0 and ς vanishes in
∂([ω1]ξ + [ω2]ξ). Repeating the argument above, we inductively add classes [ωj ]ξ, where
ωj ∈ ∆̂σi \ A such that ∂([ωj ]ξ) 6= 0. Note that by construction,

⋃
j [ωj ]ξ =

(
∆̂σi \ A

)⋂
ξ,

where j indexes the simplices in ∆̂σi \ A. Clearly, the induction stops when ∂(
⋃
j [ωj ]ξ) =

∂V + ∂
(

∆̂σi
⋂A

)
. J

Figure 18 The figure is a simplistic depiction of gadget ∆τvi,j . In particular, the full triangulation
and the the inadmissible simplices of ∆τvi,j are not shown. In this figure, τvi,j belongs to ξ. That is,
there exists an r-simplex ω ∈ ∆τvi,j \ A such that ∂([ω]ξ) = 1. The simplices of ∆τvi,j that lie in A
are shown in red. Then, according to Lemma 54, the boundary of the part of the complex in blue
equals the boundary of triangles in red (i.e., the black edges).
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I Lemma 54. If τvi,j belongs to ξ, then ∂
((

∆τvi,j \ A
)⋂

ξ
)

= ∂
(
∆τvi,j

⋂A
)
.

Proof. The argument is identical to the proof of Lemma 53. Please refer to Figure 18 for an
illustration of the statement of the lemma. J

I Lemma 55. The cardinality of the set {i ∈ [k] | σi belongs to ξ} is odd.

Proof. Please see (the bottom portion of) Figure 19 for an illustration of the statement of the
lemma. First, note that by construction, ∂V

⋂
∂ (S) = ∅. Then, using Lemma 53, we have

∂V ⊂ ∂
(

(∆̂σi \ A)
⋂
ξ
)
for every σi that belongs to ξ. Since ∂V only occurs in the boundaries

of type-1 gadgets and ∂ξ = ∂V , the cardinality of the set {i ∈ [k] | σi belongs to ξ} must be
odd. J

I Lemma 56. If ∂ξ
⋂S = ∅, and if σi belongs to ξ for some i ∈ [k], then the cardinality of

I =
{
τvi,j

∣∣∣ v ∈ Vi
⋂
VH , j ∈ [k] \ {i} and τvi,j belongs to ξ

}

is odd. On the other hand, if σi does not belong to ξ, then I is even.

Proof. Please see (the middle portion of) Figure 19 for an illustration of the statement of
the lemma.

Case 1: σi belongs to ξ.
Since H is a multicolored clique, for color i, there exists a vertex v ∈ Vi

⋂
VH . Hence, by

construction, αvi ∈ S. Moreover, αvi is the only r-simplex that is common to ∆̂σi and
∆τvi,j for every τvi,j ∈ I. Note that S ⊆ A, and simplices in A have disjoint boundaries.
Since σi belongs to ξ, we obtain

∂αvi ⊂ ∂
(

∆̂σi
⋂
S
)
⊂ ∂

(
∆̂σi

⋂
A
)

= ∂
((

∆̂σi \ A
)⋂

ξ
)
. (1)

where the last equality uses Lemma 53.
Moreover for every τvi,j ∈ I, we obtain

∂αvi ⊂ ∂
(

∆τvi,j
⋂
S
)
⊂ ∂

(
∆τvi,j

⋂
A
)

= ∂
((

∆τvi,j \ A
)⋂

ξ
)
, (2)

where the last equality uses Lemma 54.
For j ∈ [k] \ {i} such that τvi,j 6∈ I,

∂
((

∆τvi,j \ A
)⋂

ξ
)

= 0, (3)

which is a simple consequence of Definition 52.
Using the assumption ∂ξ

⋂S = ∅, and Equations (1)–(3) we get

((I + 1) mod 2) · ∂αvi ⊂ ∂ξ.

Since ∂ξ = ∂V , and αvi
⋂
∂V = ∅, I + 1 should be even, proving the first claim.

Case 2: σi does not belong to ξ.
In this case,

∂αvi ⊂ ∂
(

∆̂σi
⋂
S
)
⊂ ∂

(
∆̂σi

⋂
A
)
6⊂ ∂

((
∆̂σi \ A

)⋂
ξ
)
,
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Even

Odd Odd

Odd

∆̂σi ∆̂σj

∆τuj,i∆τvi,j

∂V

αvi (σi) αuj (σj)

βv,ui,j (τuj,i)βv,ui,j (τvi,j)
αuj (τuj,i)αvi (τvi,j)

Figure 19 As in the case of Figure 16, this figure also depicts some of the gadgets of L(G).
However, we depict only those gadgets that belong to some chain ξ. See Definitions 51 and 52 for
what it means for a gadget to belong to a chain. The dashed red lines show identifications of the
(red) congruent faces of type-1 gadgets that belong to ξ to the (red) congruent faces of type-2 gadgets
that belong to ξ. The dashed black line shows identifications along the (red) congruent faces of two
distinct type-2 gadgets that belong to ξ.
The odd count of purple dashed lines is the content of the Lemma 55. The odd count of each group
of red dashed lines in the middle is the content of Lemma 56. Hence, for every purple dashed line,
there is a group of red dashed lines of odd cardinality. On the one hand, since an odd sum of odd
numbers is odd, by Lemmas 55 and 56, the total number of red dashed lines should be odd. On the
other hand, Lemma 57 says that the cardinality of the red dashed lines (counted from above) is
even. The main idea of Proposition 50 which uses Lemmas 55–57, and a proof by contradiction is
that an odd sum of odd numbers cannot be even.
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where the last non-inclusion follows from ∂
((

∆̂σi \ A
)⋂

ξ
)

= 0 (as a simple consequence
of Definition 51). But for every τvi,j ∈ I, we still have

∂αvi ⊂ ∂
(

∆τvi,j
⋂
S
)
⊂ ∂

(
∆τvi,j

⋂
A
)

= ∂
((

∆τvi,j \ A
)⋂

ξ
)
.

which gives

(I mod 2) · ∂αvi ⊂ ∂ξ.

Since ∂ξ = ∂V , and αvi
⋂
∂V = ∅, I should be even, proving the second claim. J

I Lemma 57. Assuming ∂ξ
⋂S = ∅, we define the set P as

P =
{

(i, j)
∣∣∣ σi and τvi,j for some v ∈ Vi

⋂
VH belong to ξ

}
.

Then, |P| is even.

Proof. Please see (the top portion of) Figure 19 for an illustration of the statement of the
lemma. First, we define P ′ as follows.

P ′ =
{

(i, j)
∣∣∣ τvi,j for some v ∈ Vi

⋂
VH belongs to ξ

}
.

Suppose (i, j) ∈ P ′ for some i ∈ [k], and j 6= i. Since H is a multicolored clique, for color
i, there exists a vertex v ∈ Vi

⋂
VH . Also, there exists a vertex u ∈ Vj

⋂
VH and an edge

{u, v} ∈ EH . By construction of S, βv,ui,j ∈ S. Once again, we will use the facts: 1. S ⊆ A,
and 2. the simplices in A have disjoint boundaries.
For every τvi,j ∈ I, we obtain

∂βv,ui,j ⊂ ∂
(

∆τvi,j
⋂
S
)
⊂ ∂

(
∆τvi,j

⋂
A
)

= ∂
((

∆τvi,j \ A
)⋂

ξ
)
, (4)

where the last equality uses Lemma 54.
Moreover, by construction, βv,ui,j belongs to only two gadgets of L(G): ∆τuj,i and ∆τvi,j .
Using ∂ξ = ∂V and ∂V

⋂
∂βv,ui,j = ∅, we deduce that ∂βv,ui,j 6⊂ ∂ξ. Then, using ∂ξ

⋂S = ∅,
we have

∂βv,ui,j ⊂ ∂
((

∆τuj,i \ A
)⋂

ξ
)

(5)

But this forces τuj,i to belong to ξ, and hence the pair (j, i) belongs to P ′. Therefore, using
Equations (4) and (5), P ′ is of even cardinality. Now, define P ′′ as follows.

P ′′ =
{

(i, j)
∣∣∣ τvi,j for some v ∈ Vi

⋂
VH belongs to ξ, and σi does not belong to ξ

}
.

By inductively applying Case 2 of Lemma 56, we deduce that P ′′ is of even cardinality.
Finally, P = P ′ − P ′′. Hence, P is of even cardinality. J

Now, observe that if the conditions of Lemmas 55–57 are simultaneously satisfied, then
we reach a contradiction. This is because using Lemmas 55 and 56, |P| is an odd set of odd
numbers and hence odd, whereas according to Lemma 57, |P| is even. So if the chain ξ has
∂V as its boundary, then the assumption ∂ξ

⋂S = ∅ cannot be satisfied. This concludes the
proof of Proposition 50. J

I Lemma 58. If there exists a chain ξ′ with ∂ξ′ = ∂V such that only the inadmissible
simplices of R have coefficient 1 in ξ′, then the size of R is at least m.
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Proof. We skip the proof since it is identical to the proof of Lemma 31. J

I Lemma 59. Let R be a solution set for Boundary Nontrivialization on complex
L(G). Then,

1. For every ∆̂σi, there is at least one facet αvi with v ∈ Vi that is included in R.
2. For every unordered pair (i, j), where i, j ∈ [k], there exists a simplex βv,ui,j for some v, u

that is included in R.
3. If |R| ≤

(
k+1

2
)
, then |R| = |AR| =

(
k+1

2
)
, where AR denotes the set of admissible simplices

of R.

Proof. The proof is analogous to the proof of Section 6.1. We repeat it here for the sake of
clarity and completeness.

Let AR denote the set of admissible simplices of R. If ξ is such that ∂ξ = ∂V and
ξ
⋂
AR = ∅, then we are forced to include inadmissible simplices. In that case, Lemma 58

applies, and R is of cardinality at least m = n3. But, if we include a total of (more than) n3

facets in R, we exceed the budget of
(
k+1

2
)
. So, going forward, we assume that at least one

simplex in AR has coefficient 1 in every chain ξ, where ξ = ∂V .
Note that if at least one simplex from AR has coefficient 1 in every chain ξ with ξ = ∂V ,

then we do not need simplices that are inadmissible in R. Next, we prove the three claims in
the lemma.

1. Let ξ = ∆̂σi for some i ∈ [k]. Then, ∂(∆̂σi) = ∂V . So if we do not include an admissible
simplex αvi for some v ∈ Vi in R, then we would be forced to include some inadmissible
simplices of ∆̂σi.

2. Next, for some fixed i and j ∈ [k] \ {i}, let ξ = ∆̂σi +
∑
v∈Vi

(∆τvi,j). Then, ∂(∆̂σi) +
∑
v∈Vi

∂(∆τvi,j) = ∂V . So unless some admissible facet βv,ui,j for some v, u is included in R,
the coefficient of all admissible simplices in ξ will be zero, and we would be forced to
include inadmissible simplices, which according to Lemma 58 is prohibitively expensive.

3. The third claim follows immediately from the first two. J

I Lemma 60. If |R| = |AR| =
(
k+1

2
)
, then one can obtain a k-clique H of G from R.

Proof. Structurally the proof is identical to Lemma 33. The roles of σi and τui,j are played
by ∆̂σi and ∆τvi,j , respectively. Moreover, there is a difference of 1 in the cardinality of
solution set R, because for Topological Hitting Set, we need to remove V whereas the
simplex V is not a part of the complex L(G) in Boundary Nontrivialization. J

Proposition 50 and Lemma 60 together provide a parameterized reduction from k-
Multicolored Clique to Boundary Nontrivialization. Using Theorem 23, we obtain
the following result.

I Theorem 61. Boundary Nontrivialization is W[1]-hard.

7 FPT algorithms

7.1 FPT algorithm for Topological Hitting Set
In Section 6.1 we showed that Topological Hitting Set is W[1]-hard with the solution
size k as the parameter. This motivates the search of other meaningful parameters that make
the problem tractable. With that in mind, in this section, we prove an important structural
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property about the connectivity of the minimal solution sets for Topological Hitting
Set. First, we start with a definition.

I Definition 62 (Induced subgraphs in Hasse graphs). Given a d-dimensional complex K with
Hasse graph HK, and a set S of r-simplices for some r < d, the subgraph of HK induced by
S is the union of S with the set of (r + 1)-dimensional simplices incident on S.

I Lemma 63. Given a d-dimensional complex K, a minimal solution of Topological
Hitting Set for a non-bounding cycle ζ ∈ Zr(K) for some r < d induces a connected
subgraph of HK.

Proof. Let HS be the subgraph of the Hasse graph HK induced by a minimum topological
hitting set S of a non-bounding cycle ζ ∈ Zr(K). Targeting a contradiction, assume there
exist two components C1 and C2 such that C1 and C2 have no edges in common. Note
that we do not assume that C1 and C2 are connected components, merely that they are
components that do not share an edge. Since S is minimal, there exists a cycle φ ∈ [ζ] that
is incident on an r-simplex in C1 but not on any r-simplices in C2, and a cycle ψ ∈ [ζ] that
is incident on an r-simplex in C2 but not on any r-simplices in C1. Then, φ = ψ + ∂b, for
some (r + 1) chain b. Let b′ be an (r + 1)-chain obtained from b by removing exactly those
(r + 1)-simplices that are incident on C1. Now, let φ′ = ψ + ∂b′. By construction, φ′ is not
incident on C1. Also, because C1 and C2 are disconnected, the simplices removed from b to
obtain b′ are not incident on C2. Hence, φ′ is not incident on C2. In other words, φ′ ∈ [ζ]
does not meet S, and S is not a hitting set, a contradiction. Therefore, the induced subgraph
of S is connected. J

Note that the path from any r-simplex to a neighboring r-simplex in the Hasse graph is
of size 2. So it follows from Lemma 63 that any minimal solution of size at most k lies in
some geodesic ball of radius 2k of some r-simplex in the Hasse graph. In particular, if we
search across the geodesic ball of every r-simplex in the complex K, we will find a solution
if one exists. So, if we choose k + ∆, where ∆ is the maximum degree of the Hasse graph,
the search becomes tractable. In fact, we can even count the number of minimal solutions.
We remark that the degree ∆ of the Hasse graph HK is bounded when the dimension of the
complex is bounded and the number of incident cofacets on every simplex is bounded.

Algorithm 6 FPT Algorithm for Topological Hitting Set with k + ∆ as the parameter

1: min← |K|; SOL = K;
2: for each r-simplex τ of K do
3: Consider the set Sτ of all simplices within the graph distance 2k (in HK) of τ .
4: if a connected subset S ⊆ Sτ with |S| ≤ k is a hitting set of ζ and |S| < min then
5: min = |S|; SOL = S;
6: end if
7: end for
8: if min < k then return SOL;
9: end if

Correctness.

The correctness of the algorithm immediately follows from Lemma 63.
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Complexity.

Note that in Line 4 of Algorithm 6, we need to enumerate only the connected subsets S of
cardinality less than or equal to k. We use Lemmas 64 and 65 by Fomin and Villanger [25]
that provide very good bounds for enumerating connected subgraphs of graphs. First, we
introduce some notation.
I Notation 6. The neighborhood of a vertex v is denoted by nbd(v) = {u ∈ V : u, v ∈ E},
whereas the neighborhood of a vertex set S ⊆ V is set to be nbd(S) =

⋃
v∈S N(v) \ S.

I Lemma 64 ( [25, Lemma 3.1]). Let G = (V,E) be a graph. For every v ∈ V , and b, d ≥ 0,
the number of connected vertex subsets C ⊆ V such that

1. v ∈ B,
2. |B| = b+ 1, and
3. |nbd(B)| = d

is at most
(
b+d
b

)
.

I Lemma 65 ( [25, Lemma 3.2]). All connected vertex sets of size b+ 1 with f neighbors of
an n-vertex graph G can be enumerated in time O(n2 · b · (b+ d) ·

(
b+d
b

)
) by making use of

polynomial space.

In Algorithm 6, b = O(k) and d = O(k∆). Therefore,
(
b+ d

b

)
=
(
O(k∆)
O(k)

)
≤ (k∆)O(k) = 2O(k log(k∆)). (6)

Hence, by Lemma 65, for a single r-simplex, the number of connected sets enumerated in
Line 4 is O(n2 ·O(k) ·O(k∆) · 2O(k log(k∆))) = O(n5 · 2O(k log(k∆))) time. Since we do this for
every r-simplex τ in K, the total time in enumerating all candidate sets in Lines 4-6 is at
most O(n6 · 2O(k log(k∆))). Using Theorem 3, one can check if the set is a feasible solution in
time O(nω), where ω is the exponent of matrix multiplication. Hence, the algorithm runs in
O(n6+ω · 2O(k log(k∆))) time, which is fixed parameter tractable in k + ∆.

I Theorem 66. Topological Hitting Set admits an FPT algorithm with respect to the
parameter k + ∆, where ∆ is the maximum degree of the Hasse graph and k is the solution
size. The algorithm runs in O(n6+ω · 2O(k log(k∆))) time.

7.1.1 Randomized FPT algorithm for Global Topological Hitting Set
Ostensibly, Global Topological Hitting Set looks a lot harder than Topological
Hitting Set. However, this is not really the case. Fortunately, we can exploit the vector
space structure of homology to design a randomized algorithm for Global Topological
Hitting Set that uses the deterministic FPT algorithm for Topological Hitting Set
as a subroutine.

Algorithm 7 Randomized FPT Algorithm for Global Topological Hitting Set with k + ∆
as the parameter

1: Find the r-th homology basis of K. Denote the basis by B. Here, |B| = βr(K).
2: Arrange the cycles in B in a matrix. Denote the matrix by B.
3: Let x be a uniformly distributed random binary vector of dimension βr(K).
4: With B · x as the input cycle, and k + ∆ as the parameter, invoke Algorithm 6.
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I Proposition 67. The probability that a minimal topological hitting set of the cycle B · x is
the optimal solution to Global Topological Hitting Set is at least 1/2.

Proof. Note that the total number of nontrivial r-th homology classes of K is 2βr(K). Let S
be a optimal solution to Global Topological Hitting Set. Then, because of the vector
space structure of homology groups, the total number of nontrivial homology classes of KS is
at most 2βr(K)−1. In other words, S is a topological hitting set of at least 2βr(K)−1 nontrivial
classes. Let C be the set of r-th homology classes for which S is a topological hitting set.
Then, the probability that a uniformly random homology class chosen by B · x belongs to C
is at least 2βr(K)−1

2βr(K) = 1
2 . J

From the proposition above, the following corollary follows immediately.

I Corollary 68. Algorithm 7 is a randomized FPT algorithm for Global Topological
Hitting Set with k + ∆ as the parameter.

7.2 FPT approximation algorithm for Boundary Nontrivialization

It turns out that we do not have a connectivity lemma analogous to Lemma 63 for Boundary
Nontrivialization. For instance, consider the triangulation of a sphere as the input complex
K, and let the boundary that needs to be made nontrivial be the equator of the sphere.
Then, the two triangles at the north pole and the south pole constitute an optimal solution
for Boundary Nontrivialization, as the removal of these triangles makes the boundary
nontrivial. Clearly, the solution set consisting of these two triangles is not connected. Please
refer to Figure 2 from Section 1. So it is not clear if there is an FPT algorithm for Boundary
Nontrivialization with k + ∆ as the parameter.

This motivates the search of another parameter that makes the problem tractable. To
this end, we first make a few elementary observations.

I Lemma 69. If there are two (r + 1)-chains ξ and ξ′ with b as a boundary, then their sum
is an (r + 1)-cycle. Also, if an (r + 1)-chain ξ has b as a boundary, and ζ is an r + 1-cycle,
then ξ + ζ has b as a boundary.

Proof. If ∂ξ = b and ∂ξ′ = b, then we have ∂(ξ + ξ′) = 0.
Next, if ∂ξ = b and ∂ζ = 0, then we have ∂(ξ + ζ) = b. J

In other words, the number of chains that have b as a boundary is precisely 2dim Zr+1(K).
When the complex is (r + 1)-dimensional, Zr+1(K) = Hr+1(K). So, for (r + 1)-dimensional
complexes we provide an FPT approximation algorithm with βr+1(K) as a parameter. Let B
be the (r + 1)-th boundary matrix of complex K. The algorithm can be described as follows.
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Algorithm 8 FPT approximation algorithm for Boundary Nontrivialization

1: B′ ← B; X = {};
2: while B′ · x = ζ has a solution do
3: X ← X ∪ {x}.
4: Y ← the set of all chains generated from odd linear combinations of elements in X.
5: Let Y denote the matrix with the chains of Y as its columns.
6: Let R be the collection of row indices of Y and C be the collection of column indices.
7: In the natural way, interpret R as a collection of sets, C as a collection of elements,

and Y as the incidence matrix between sets and elements.
8: Solve the Set Cover problem approximately for the instance described above using

the greedy method [36, Chapter 2.1].
9: Let S ⊆ R be the approximate solution for the setcover problem.
10: Let B′ be the matrix formed by deleting from B the columns specified by the

r + 1-simplices in S.
11: end while
12: Return S.

I Lemma 70. The algorithm terminates in O(2ββn ·min(n, 2β)) time, where β = βr+1(K)+1
and n is the number of simplices in K.

Proof. First, we note that the algorithm terminates. This is because in each iteration of
the while loop we add a vector x that is linearly independent to the vectors in set X. By
Lemma 69, the number of iterations is bounded by β = βr+1(K) + 1. With an appropriate
choice of data structures, Lines 4 and 5 can be executed in O(2βn) time. Note that the
resulting matrix Y has O(2β) columns and O(n) rows.

The most expensive step in the while loop is Line 8. A simple implementation of the
greedy approximation algorithm for Set Cover runs in O(2βn·min(n, 2β)) time [15, Chapter
35.3]. J

I Lemma 71. When the while loop terminates S covers every chain whose boundary is ζ.
The set S returned at Line 11 provides an O(logn)-factor approximation to Boundary
Nontrivialization.

Proof. This follows from the fact that after deleting some columns of B specified by set S,
if the loop terminates, then the new matrix B′ has no solution to the equation B′ · x = ζ.
The algorithm provides an O(logn) factor approximation because we use the approximation
algorithm for Set Cover as a subroutine in Line 8. J

Lemma 70 and Lemma 71 combine to give the following theorem.

I Theorem 72. Boundary Nontrivialization has an O(logn)-factor FPT approximation
algorithm that takes bounding r-cycles as input on (r + 1)-dimensional complexes, and runs
in O(2ββn ·min(n, 2β)) time, where β = βr+1(K) + 1 and n is the number of simplices in K.

7.2.1 Randomized FPT approximation algorithm for Global Boundary
Nontrivialization

As in the case of Global Topological Hitting Set in Section 7.1.1, we now exploit the
vector space structure of the boundary group to design a randomized algorithm for Global
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Boundary Nontrivialization that uses the deterministic FPT approximation algorithm
for Boundary Nontrivialization as a subroutine.

Algorithm 9 Randomized FPT approximation algorithm for Global Topological Hitting
Set with β as the parameter

1: Find a basis B for the column space of ∂r+1(K).
2: Arrange the bounding cycles from B in a matrix B.
3: Let x be a uniformly distributed random binary vector of dimension |B|.
4: With B · x at the input boundary, and β as the parameter, invoke Algorithm 8.

I Proposition 73. Let R be a minimal set of simplices whose removal from K makes
B · x nontrivial. The probability that R is the optimal solution to Global Boundary
Nontrivialization is at least 1/2.

Proof. The total number of elements in the range of B is 2|B|. Let S be a optimal solution to
Global Boundary Nontrivialization. Suppose that c is a bounding cycle that is made
nontrivial by removal of S from K. Then, c 6∈ im(∂r+1(KS)). Suppose that c′ is a bounding
cycle that continues to be trivial following removal of S from K. That is, c′ = ∂r+1(KS) · x
for some x. Then, c + c′ 6∈ im(∂r+1(KS)), for otherwise, there would exist a vector y such
that c + c′ = ∂r+1(KS) · y, which gives c = ∂r+1(KS) · (x + y), a contradiction.

Now, assume that none of the bounding cycles in the basis B are made nontrivial by
the removal of S from K. But that implies that any linear combination of cycles in B also
belongs to im(∂r+1(KS)). This contradicts the existence of c. So there exists at least one
bounding cycle b ∈ B which is made nontrivial by the removal of S. Let BS be the subset of
cycles in B that are made nontrivial by the removal of S. Then, we have two cases:

Case 1: Suppose b is the only cycle in BS .
Now, let z be any cycle that lies in the span of B \ {b}. By the argument above, b + z is
also made nontrivial by the removal of S. So, the total number of bounding cycles that
are made nontrivial by the removal of KS is 2|B|−1.

Case 2: Suppose BS \ {b} is nonempty.
Then, one obtains a new set of vectors B′ from B as follows: For every a 6= b ∈ B such
that a is made nontrivial by the removal of S and a + b is in im(∂r+1(KS)), replace a
by a + b. It is easy to check that B′ is also a basis for the column space of ∂r+1(K).
Moreover, if z′ is any cycle that lies in the span of B′ \ {b}, then b + z′ is also made
nontrivial by the removal of S. So, the total number of bounding cycles that are made
nontrivial by the removal of KS is at least 2|B|−1.

From the above analysis, we conclude that there are at least 2|B|−1 bounding r-cycles
that are made nontrivial by the removal of S. Let C be the set of bounding r-cycles for which
S is a Boundary Nontrivialization solution. Then, the probability that a uniformly
random bounding cycle chosen by B · x belongs to C is at least 2|B|−1

2|B| = 1
2 . J

From the proposition above, we obtain the following corollary immediately.

I Corollary 74. Global Boundary Nontrivialization has an O(logn)-factor randomized
FPT approximation algorithm for r-th homology on (r+ 1)-dimensional complexes, with β as
the parameter. The algorithm runs in O(2ββn ·min(n, 2β)) time.
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8 Conclusion and Discussion

In this paper, we devise a polynomial time algorithm for Topological Hitting Set on
closed surfaces. We believe that our algorithm should also easily generalize to surfaces with
boundary.

Moreover, we show how certain cut problems generalize naturally from graphs to simplicial
complexes, motivating a complexity theoretic study of these problems. For future work, it
remains to be shown that Global Topological Hitting Set and Global Boundary
Nontrivialization are also W[1]-hard. We believe that the W[1]-hardness reductions
for Topological Hitting Set and Boundary Nontrivialization can be extended
to establish hardness results for the global variants. Finally, a theoretical future direction
of our work is to investigate how (the global variants of) Topological Hitting Set
and Boundary Nontrivialization may be used to study high dimensional expansion in
simplicial complexes [19,29].
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