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Abstract

Devising data-driven solutions to patient-specific biomechanical modeling or implant
design facilitates the personalization of therapy planning and the prediction of surgery
outcomes. Leveraging the recent advancements in deep learning and ever-increasing
volumes of medical images being generated every day will improve the data-driven ap-
proaches in this regard. Individualized therapy planning embraces a broad range of
applications and topics. In this publication-based dissertation, we aim for personalized
anatomy modeling using deep learning and medical imaging. We explore the ideas of
generating 3D biomechanical models for the spine and cranial implant design.

The balance of the spine is an essential factor in the development of degeneration, pain,
and the outcome of spinal surgery. It should be analyzed in an upright, standing position
to ensure physiological loading conditions and visualize load-dependent deformations.
Despite the complex 3D shape of the spine, this analysis is currently conducted using
2D sagittal balance radiographs. All frequently used 3D imaging techniques require the
patient to be scanned in a prone position.

We present a fully automatic method based on a deep neural network (DNN) to
reconstruct the 3D shape of the spine from orthogonal 2D radiographs and vertebral
centroid annotations. We train the DNN model on synthetic data, successfully deploy
it on real-world clinical data, and reconstruct the 3D spinal pose in an upright standing
position.

The proposed model for 3D reconstruction of the spine requires vertebral centroid
annotation as one of the inputs. To automate the entire process and avoid manual work,
we introduce another DNN model for accurate vertebrae localization and labeling in
sagittal and coronal radiographs and to obtain the centroid annotations for the former
model.

Automatic patient-specific implant designing is an understudied research area. The
possibility of automatically designing patient-specific implants could reduce the surgery
time and facilitates surgery planning. We explore the idea of designing the patient-
specific implants from CT scans of defective skulls. We introduce a DNN model to
design the 3D cranial implants. In the proposed method, the shape reconstruction is
performed in two steps due to memory constraints. The 3D shape is reconstructed in
low resolution first, and then another DNN model refines the results from the first step
in 2D.
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Zusammenfassung

Die Entwicklung datengesteuerter Lösungen für die patientenspezifische biomechanis-
che Modellierung oder das Implantatdesign erleichtert die Personalisierung der Thera-
pieplanung und die Vorhersage von Operationsergebnissen. Die Nutzung der jüngsten
Fortschritte im Bereich Deep Learning und der ständig wachsenden Menge an medizinis-
chen Bildern, die täglich generiert werden, wird die datengesteuerten Ansätze in dieser
Hinsicht verbessern. Die individualisierte Therapieplanung umfasst ein breites Spektrum
an Anwendungen und Themen. In dieser publikationsbasierten Dissertation streben wir
eine personalisierte Anatomiemodellierung mithilfe von Deep Learning und medizinis-
cher Bildgebung an. Wir erforschen die Ideen zur Generierung von biomechanischen
3D-Modellen für die Wirbelsäule und das Design von Schädelimplantaten.

Das Gleichgewicht der Wirbelsäule ist ein wesentlicher Faktor für die Entwicklung
von Degeneration, Schmerzen und das Ergebnis von Wirbelsäulenoperationen. Sie sollte
in einer aufrechten, stehenden Position analysiert werden, um physiologische Belas-
tungsbedingungen zu gewährleisten und belastungsabhängige Verformungen zu visu-
alisieren. Trotz der komplexen 3D-Form der Wirbelsäule wird diese Analyse derzeit
mit 2D-Sagittal-Balance-Röntgenaufnahmen durchgeführt. Alle häufig verwendeten 3D-
Aufnahmeverfahren erfordern, dass der Patient in liegender Position aufgenommen wird.

Wir stellen eine vollautomatische Methode vor, die auf einem tiefen neuronalen Netzw-
erk (DNN) basiert, um die 3D-Form der Wirbelsäule aus orthogonalen 2D-Röntgenbildern
und Wirbelschwerpunktbeschriftungen zu rekonstruieren. Wir trainieren das DNN-
Modell auf synthetischen Daten, setzen es erfolgreich auf realen klinischen Daten ein
und rekonstruieren die 3D-Wirbelsäulenhaltung in einer aufrechten, stehenden Position.

Das vorgeschlagene Modell für die 3D-Rekonstruktion der Wirbelsäule benötigt die
Annotation der Wirbelschwerpunkte als eine der Eingaben. Um den gesamten Prozess zu
automatisieren und manuelle Arbeit zu vermeiden, führen wir ein weiteres DNN-Modell
zur genauen Lokalisierung und Beschriftung von Wirbeln in sagittalen und koronalen
Röntgenbildern ein, um die Schwerpunktbeschriftungen für das erste Modell zu erhalten.

Automatisches patientenspezifisches Implantatdesign ist ein wenig untersuchter
Forschungsbereich. Die Möglichkeit, patientenspezifische Implantate automatisch zu en-
twerfen, könnte die Operationszeit reduzieren und die Operationsplanung erleichtern.
Wir untersuchen die Idee, patientenspezifische Implantate aus CT-Scans von defekten
Schädeln zu entwerfen. Wir führen ein DNN-Modell zum Design der 3D-Schädelimplantate
ein. In der vorgeschlagenen Methode wird die Formrekonstruktion aufgrund von Spe-
icherbeschränkungen in zwei Schritten durchgeführt. Die 3D-Form wird zunächst in
niedriger Auflösung rekonstruiert, und dann verfeinert ein weiteres DNN-Modell die
Ergebnisse aus dem ersten Schritt in 2D.
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1 Introduction

The continuous improvement in medical imaging made it essential for the diagnosis and
treatment of patients. Due to ever-increasing volumes of complex data generated by
imaging techniques, introducing new image analysis methods is needed to assist medical
doctors. Nowadays, machine learning provides such methods for helping doctors in
diagnosis, prognosis, and therapy planning.

Patient-specific biomechanical models enable us to personalize the therapy planning
and surgery outcome prediction. In this publication-based dissertation, we aim at de-
signing personalized models of spine and also cranial implant using deep learning and
medical imaging. The primary objective of spine-related sections is to devise data-driven
solutions for individualized therapy planning in back pain patients. After that, we study
patient-specific implant design based on image data. We will leverage deep learning
and image processing methodologies to propose new solutions for 3D spine modeling
applicable in biomechanical analysis and 3D cranial implant design.

1.1 Contributions

This dissertation introduces different methods for processing 2D/3D images, shape re-
construction, and completion using deep learning. We applied the proposed methods
in different applications, including spinal images and skull scans. More specifically, our
contributions belong to the following fields:

• Developing a data processing pipeline, facilitating the medical image annotation,
segmentation. This set of tools include DRR generation from CT scan, vertebral
subregion segmentation, vertebral landmark detection. Generating the input to
biomechanical analysis software like Simpack automatically.

• A deep neural network for localization and labeling vertebrae on radiographs. We
introduce a residual coordinated corrector module on top of a Fully Convolutional
Neural Network (FCN) to enforce the spinal shape and regress the vertebral cen-
troid coordinates and labels.

• A deep neural network for inferring the 3D standing spinal posture from 2D radio-
graphs. This network fuses the shape information from orthogonal 2D radiographs
and reconstructs the 3D shape. We proposed a training scheme on synthetic data
and successfully deployed the trained model on clinical radiographs due to lack of
training data.
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• A deep neural network for predicting the cranial implants given the defective skull.
This network predicts the 3D shapes in low resolution and refines the prediction
in 2D.

1.2 Outline of thesis

This thesis comprises three parts. In the beginning, we provide background information
to the reader about concepts essential to this thesis’s comprehension. Next, we present
our works on spine. Finally, we introduce our approach for patient specific cranial
implant design.

• Chapter 2 reviews the medical and technical background related to patient-specific
bone modeling, including spine anatomy and spinal disorders in general, describes
different medical imaging techniques applied for studying the spine and related
analysis methods. This chapter also introduces the data processing pipelines de-
veloped for the works introduced in subsequent chapters.

• Chapter 3 introduces a deep learning method for vertebrae localization and label-
ing in spinal radiographs. Detecting and labeling vertebra in the radiograph is
challenging due to the large field of view, heavy tissue overlay, and noise. Most
of the works for vertebra labeling were on CT images; our work was one the first
methods proposed for radiographs. We proposed a new architecture, robust to
occlusion by enforcing the spinal shape.

• Chapter 4 presents a new deep learning based approach for synthesizing 3D shapes
from 2D orthogonal images. An upright spinal pose (i.e., standing) under natu-
ral weight-bearing is crucial for biomechanical analysis. 3D volumetric imaging
modalities (e.g. CT and Magnetic Resonance Imaging (MRI)) are performed in
patients lying down. On the other hand, radiographs are captured in an upright
pose but result in 2D projections. This work aims to integrate the two realms, i.e.,
it combines the upright spinal curvature from radiographs with the 3D vertebral
shape from CT imaging for synthesizing an upright 3D model of the spine, loaded
naturally. Specifically, we propose a novel neural network architecture working
vertebra-wise, termed TransVert, which takes orthogonal 2D radiographs and in-
fers the spine’s 3D posture. We apply this model specifically to spinal radiographs.
Applying this model to 2D radiographs enables us to generate 3D standing spinal
postures applicable in biomechanical analysis of the spine. Training this model
was a challenging task since the 3D ground-truths for radiographs are not avail-
able. Thus, we trained the model on synthetic data by simulating radiographs
from CT images. However, the spinal CT scans available in the hospital are usu-
ally not the full field of view to decrease the scan size and save more disk space.
Thus, the resulting 2D digitally reconstructed radiographs from CT images were
not similar enough to real radiographs. We obtained large-scale datasets from lung
scans where the lungs and ribs were available in the scan and created our synthetic
dataset.
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• Chapter 5 introduces a novel approach for designing patient-specific cranial im-
plants using deep neural networks. Due to Graphics Processing Unit (GPU) mem-
ory limitations, we devised a solution composed of two sub-networks functioning
on 3D and 2D images with low and high resolutions. Our model performs on
3D data in low resolution since a 2D model lacks a holistic 3D view of both the
defective and healthy skulls. The first sub-network is designed to complete the
shape of the downsampled defective skull. The second sub-network upsamples the
reconstructed shape slice-wise. We train both the 3D and 2D networks in tandem
in an end-to-end fashion, with a custom hierarchical loss function. Our proposed
solution accurately predicts a high-resolution 3D implant in the challenge test case
in terms of dice-score and the Hausdorff distance.

• Chapter 6 concludes the thesis by discussing the work presented in the following
and suggesting directions for future work.
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2 Background

In this chapter, we present the technical and medical background related to this thesis.
We talk about the imaging modalities we used in this thesis, primarily radiographs
and CT scans. We review the prior works on patient-specific therapy planning, mainly
focused on the spine. We also review the related works on patient-specific implant design.
Finally, we introduce the tools we developed to process the spinal scans and use them
in our upcoming chapters.

2.1 Medical imaging modalities

Radiography and CT imaging demonstrate the x-ray absorption in human tissue, de-
pending on the atoms or molecules’ linear attenuation coefficient in the body tissue.

2.1.1 Radiograph

In spinal radiographs, the patient is in an upright standing position; the spine carries
the bodyweight load, which affects the spinal posture. Upright standing radiographs
are used for studying degenerative spine disorders and osteoporosis. The body is a 3D
object, but radiographs are 2D. Thus, some information is lost. In spinal radiographs,
the spine is overlaid with soft tissue and ribs; this makes detection and diagnosis more
difficult. However, radiograph devices are faster and more accessible compared to other
imaging apparatus.

2.1.2 Biplanar X-rays

EOS is a 2D/3D X-ray imaging system, which takes simultaneous anterior-posterior and
lateral 2D entire body images. Since in this imaging system, two orthogonal view images
are taken at the same time, the resulting images could be used in 3D reconstruction
using statistical models, which has applications related to scoliosis and sagittal balance
[1]. This imaging technique is validated for studying pelvic and lower-limb deformity,
and pathology in adult and pediatric populations [1].

One of the main advantages of this technique is that the patient is exposed to a lower
dose of radiation than conventional X-rays. Although this imaging offers the possibility
to reconstruct 3D models from the images, a trained operator is required for this purpose,
and it is not done automatically. The other drawback is that EOS technology is not cost-
effective, hindering its applicability and thus the lack of its presence in clinical routine
[2, 1].
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2.1.3 Computed tomography

Contrary to radiographs, the CT imaging is 3D, but usually, the patient is in a prone
position. Thus the spine is not carrying the body weight, and the curve is different from
the patient’s radiograph. However, we have the 3D information of the spine without
occlusion. In a CT scanner, there is a rotating X-ray source combined with detectors.
The emitted X-rays from the source traverse the object and then reach the detector.
The X-ray attenuation depends on the materials in an object. While capturing the scan,
the source and detectors are rotated, and all directions of the object are acquired. The
difference in X-ray attenuation while traversing objects allows for an image reconstruct-
ing that reflects the absorption coefficients of different tissues by inverting the Radon
transform [3]. Normally Hounsfield units (HU) of −1000 belongs to air, 0 HU represents
water and bone is above 200 HU.

2.2 Clinical conditions

Throughout this dissertation, we introduce methods with applications related to the
spine and cranial implant design. We review the relevant clinical conditions briefly in
this section.

2.2.1 Back pain

The spine underpins the body and the organ design, and it has a significant part in
movement and body load bearing. It plays a vital role in protecting the spinal cord from
injury, and external mechanical stress [4]. Degenerative spinal disorders are a significant
cause of back pain and are among the most common indications for spinal surgery.
Prevalence of chronic back pain is one of the major causes of disability. Biomechanical
factors mainly cause back pain [5, 4]. In aged patients, osteoporosis makes the diagnosis
for the pain cause more complicated. Surgery is often required to treat instability-related
pain and to restore the balance of the spine. However, when and how to perform surgery
remains a highly subjective decision based on the surgeon’s experience. Thus, designing
methods for quantitative patient-specific biomechanical models is dearly needed. Studies
on spine biomechanics are involved in different areas [4], quantitative imaging [6], Finite
Element Modeling (FEM) of vertebrae [7], alignment analysis [8] and biomechanical
models [9].

2.2.2 Cranioplasty

Cranioplasty is a surgery to repair injured skulls, where a part of the skull bone is
removed. The damages to the skull could be caused by brain tumor surgery, severe head
trauma, or bone loss due to infection. Fig. 2.1 illustrates of a defective 3D model of
skull. A Patient Specific Implant (PSI) is required to re-establish the skull with desired
mechanical and anatomical functionality and provide the patient with a higher quality of
life in cranioplasty surgery [10, 11]. Designing PSI is time-consuming, and the surgery
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is done after the implant is designed and produced. Thus, devising automatic and
reliable implant design solutions will accelerate the surgery procedure and decrease the
costs substantially [12]. Regarding the recent achievements in 3D printing, the designed
3D models of implants could be printed rapidly. Currently, for designing the cranial
implants, the CT scan of the patient’s head is used to segment the skull bone, and the
segmentation is converted to a 3D model. Next, the resulting 3D skull model is utilized
as a guide for Computer-aided Design (CAD) procedure of the implant [13]. The current
approaches for designing the implants are based on the assumption of symmetry in the
skull, while this assumption is not correct when the skull is deformed [10]. According
to the recent advancements in shape processing using deep learning, there is a potential
for employing these methods to process personalized implant design.

Figure 2.1: A 3D model of a defective skull.

2.3 Image registration

There are different tasks for processing and analyzing the medical images, including seg-
mentation, registration, reconstruction. The focus of this dissertation is on registration
and 3D reconstruction of bone shape. We introduce the tasks and review the related
work in this section. Image registration or image matching is the process of aligning two
or more moving images to a target image. The purpose of this process is to transform the
input images that best align the target image. Image registration has important appli-
cations in medical image analysis for image fusion or segmentation. Image fusion using
registration includes aligning images from the different modalities (like CT, MRI and
Positron Emission Tomography (PET)), different time stamps. Thus, integrating the
useful information from two or more images. Image registration is also used for anatom-
ical segmentation in medical imaging by deforming shape templates, namely atlas, to a
target image and generating the corresponding segmentation map. Image registration
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has been applied for different human organs in 2D and 3D images: brain, retina, spine,
heart, spine, pelvis, vascular structures, bones, knee, prostate, lung [14].

In image registration, the term fixed image or target image is defined as the image
the remains unchanged, and the moving image is defined as the image which is trans-
formed to match the fixed(target) image. A significant number of registration algorithms
have been proposed. However, in any registration procedure, image modality selection,
the feature space, a similarity metric, a transformation function, and an optimization
algorithm are common steps. Registration algorithms could be classified into different
categories depending on the data dimensionality, transformation elasticity (rigid, affine,
deformable), learning-based models vs. optimization-based algorithms. Fu et al. [15],
and Oliveira et al. [14] did comprehensive reviews on registration solutions and pro-
vide taxonomies of different deep learning-based registration approaches and traditional
approaches for registration.

Registration algorithm could be classified based on the feature space information.
The feature space could be the raw voxels, the intensity gradients, or structural infor-
mation extracted from images, like segmentation maps, edges, surfaces, or graphs. Some
algorithms work on the information from the frequency transformation of images. Reg-
istration algorithms could also be labeled as global or local registration if they leverage
the entire image or focus on parts of the image.

In optimization-based registration methods, an optimization algorithm is employed
to search iteratively to find the optimal geometric transformation to warp the moving
image and match the target image. Based on the similarity metric or the objective
function (cost function), the optimization algorithm could be defined as a minimization
or maximization task. Usually, an initial alignment or pre-registration leads to a faster
converges of the registration.

The iterative searching nature of optimization-based registration algorithms makes it
time intensive. Some methods are proposed for leveraging GPU computing power [16]
to accelerate this process.

For minimizing the objective function, either the similarity measure between the im-
ages is used, or some defined landmarks are extracted. The distances between the cor-
responding landmarks in the target and moving image are subjected to minimize. The
detected landmarks and extracted features are required to be invariant to geometrical
transformations to set up a reliable registration pipeline.

The other criterion for classifying the registration algorithms is based on the geometric
transformations applied to moving images. The geometric transformations are divided
into rigid and deformable categories. In rigid transformation we have 6 Degrees of
Freedom (DOF) for a 3D space. Three of the parameters are for translation and 3
for rotation. The non-rigid transformation class includes the similarity transformation
(translation, rotation, and uniform scaling), affine (translation, rotation, scaling, and
shear), projective, and curved. The curved transformation is also called a deformable
transformation.

The affine geometric transformation is usually defined with homogeneous coordinates.
Thus, a 4x4 matrix is used to represent the transformation. In the following, we define
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an affine transformation including scaling and rotation about each axis:

Taffine = R(θx) ∗R(θy) ∗R(θz) ∗ T (S), (2.1)

R(θx) =


1 0 0 0
0 cos(θx) − sin(θx) 0
0 sin(θx) cos(θx) 0
0 0 0 1

 (2.2)

R(θx) =


1 0 0 0
0 cos(θx) − sin(θx) 0
0 sin(θx) cos(θx) 0
0 0 0 1

 (2.3)

R(θy) =


cos(θy) 0 sin(θy) 0

0 1 0 0
− sin(θy) 0 cos(θy) 0

0 0 0 1

 (2.4)

R(θz) =


cos(θz) − sin(θz) 0 0
sin(θz) cos(θz) 0 0

0 0 1 0
0 0 0 1

 (2.5)

T (S) =


Sx 0 0 0
0 Sy 0 0
0 0 Sz 0
0 0 0 1

 (2.6)

Affinevf = τ(Taffine), (2.7)

where R(θx), R(θy), R(θz) represent rotation about X, Y , Z axes and and T (Sx),
T (Sy) and T (Sz) represent the scaling factor for each dimension. The Affinevf is the
affine vector field, and τ() is the function to generate an affine vector field given the
transformation matrix.

Rigid registration is usually used to match rigid objects like bones or applied as a
pre-registration step before a deformable registration. The latter use case’s importance
is to limit the search space and avoid converging to a local minimum before running a
complex registration with more number of parameters to be optimized [17, 18, 14].

Similarly, the affine registration is also used as a pre-registration step. In some cases, it
is applied as the second step registration after rigid transformation and before deformable
registration [19, 14].

These pre-registration steps are increasingly necessary when dealing with low-resolution
data with a low signal-to-noise ratio, like ultrasound or X-ray images. They help apply
a rough alignment of moving image and target image before applying the complicated
transformation with higher degrees-of-freedom. Especially in medical imaging, where
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most human anatomy are deformable structures, reliable non-rigid registration algo-
rithms are of high importance.

Deformable registration could be defined as free-form transformation. Any deforma-
tion is allowed, and controlled deformations, where the physical properties could be
considered constraints while calculating the transformation parameters. Free-form al-
gorithms are ill-conditioned and hard to regularize. Usually, in free-form deformation
algorithms, a grid of control points is defined to regularize the deformation. To deter-
mine the local deformations, the points in that grid are moved individually in a way that
optimizes the objective function. The transformation between control points is calcu-
lated by interpolation. There are different options for interpolating the transformation
for the points between the control points, e.g., linear interpolation, nearest neighbor,
B-spline interpolation [20, 21, 22, 23].

In B-spline registration, the image transformation is defined as a combination of ba-
sis functions. During the registration process, the optimal coefficients for these basis
functions maximize the similarity measure.

Some deformable registration approaches model the deformation as an elastic trans-
formation of a set of solid objects. Thus the entire group is deformable while it is solid
locally. One example of such an item is the spine, a deformable object but composed of
vertebrae, which are rigid objects. The idea is that the internal elastic forces of the solid
oppose the deformation, and the external forces driven by the similarity measure try
to deform the data to fit the target shape. The other deformable registration approach
based on solid properties of object is Thin-plate splines (TPS) methodology [24, 25]. In
TPS based registration the control point movements are constrained to bending energy
[26].

An essential property of deformable registration algorithms is preserving the topol-
ogy of structures in the images. In other words, the transformation is required to be
diffeomorphic. It means that the transformation should be invertible and differentiable
mapping with differentiable inverse [14]. Dalca et al. in [27] and Krebs et al. in [28]
propose probabilistic deep neural networks for diffeomorphic registration. The free-form
deformable registration algorithms can be diffeomorphic if regularized by a penalty term
to the similarity function to avoid non-smooth deformations.

2.3.1 Similarity measures

Generally, the objective function for optimization in deformable registration problems
is composed of two terms. The first term describes the voxel level similarity or struc-
ture similarity. While the second term is used as a regularization term and aimed for
penalizing and smoothing the deformation field [23, 14, 15].

Deep Learning has transformed medical image analysis recently, with the state of the
art performance in medical image segmentation, classification, registration, and recon-
struction. Given large-scale datasets, deep neural networks can automatically extract
intermediate, and high-level features from image data automatically [29]. Automatic fea-
ture extraction leads to superior performance compared to the machine learning methods
working with handcrafted features. Generally, the building blocks of a registration work-
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flow are an image deformation model, an objective function for measuring the agreement
or alignment of images, and an optimization algorithm for minimizing the objective func-
tion. For training a deep neural network to register a moving image to a target image,
in a supervised fashion, we need a dataset of aligned images. However, recently there
were works on training the networks in an unsupervised scheme. For this goal, they
employ the conventional intensity-based registration metrics into a learning problem to
update network parameters for registration. The popular metrics for measuring the im-
age alignments are normalized cross-correlation [30], mean-squared error [27] and LCC
metric [28]. Currently, the most important limitation of registration algorithms is the
traditional image agreement functions [31].

Thus, studies on learning metrics for this task are of interest. There have been studies
on deep metric learning for registration with both supervised and unsupervised ap-
proaches [32, 33, 34]. One strategy for this purpose is to train the network to distinguish
the registered and unregistered images. However still, one major limitation of these
methods is the requirement for aligned training data. This requirement is increasingly
necessary when working with multimodal images that are not obtainable simultaneously.

Spatial Transformer Networks introduced in [35], are neural networks for predicting
the transformation given image data. Once the network predicts the spatial transfor-
mation parameters, they employ a differentiable image resampling method to apply the
transformation. Next, based on the application, the resampled image is fed to another
sub-network for a down-stream task. In [23] for example, they employed the Spatial
Transformer Networks (STN) idea for segmentation medical images by registering a
shape template. First, a convolutional network is used to estimate the transformation
parameters. Next, the shape template is transformed by differentiable resampling, and
the resulting shape is compared to the target segmentation mask. Finally, the error is
backpropagated to the previous layers to update the parameters.

One of the most common tasks in medical imaging is the automatic alignment of two or
more medical images from the same modality or different imaging modalities. Alignment
is usually done by defining a metric for measuring the alignment between the pair of
images and an optimization algorithm for maximizing the alignment or minimizing the
disagreement between the moving and target image [15].

2.3.2 Atlas and registration based segmentation

Segmentation by registration is a popular method in the medical imaging community.
There are various algorithms introduced for this purpose[23]. One common approach is
multi-atlas registration, in which a dataset of atlases with labels and a similarity metric
is used to select matching images. While testing, images are compared to examples in the
atlas dataset, and the labels of matching images are used as segmentation candidates.
This approach is not precise enough; thus, a refinement step could be applied to the
selected segmentation candidates. It could also be used on images at patch level [36]. In
[37] and [38] authors propose template registration methods to segment medical images.
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2.4 Shape modeling

Shape models and priors are popular in 3D computer vision, and medical imaging and
are widely used for shape reconstruction. The shape models are mainly generated based
on a population of shapes manually and not acquired by a learning-based solution. In
recent years, there have been works to show that generative models like Variational
Autoencoder (VAE)s and Generative Adversarial Network (GAN)s could be used to
generate and learn 3D shapes with details [39, 40, 41].

2.4.1 Statistical shape model

Statistical Shape Model (SSM) is widely used for reconstructing anatomical shapes (e.g.,
bones) in medical applications. A statistical model bone represents the average shape
and shape variations of a given shape population. The idea is to reduce the dimensional-
ity of the shapes and model every data sample using a limited number of control points.
For example, reconstructing a complete skull given a defective shape or partially visible
shape is the task of finding the set of parameters. The resulting shape best matches
the input shape, except in the defective region. One common approach is using Prin-
ciple Component Analysis (PCA) and defining shapes as a linear combination of shape
components.

Recently deep learning solutions have emerged in segmentation, shape completion,
registration, and shape reconstruction. We review the state-related work in each task
using deep learning briefly in the following.

One of the shape representation methods is the mesh-based format. Typically, mesh-
based models are used for simulating complex physical systems for different applications.
Pfaff et al. [42] propose MESHGRAPHNETS, a deep learning method for mesh-based
simulation with graph networks. Their solution is a mixture of encoder and decoder
networks with a message passing mechanism; their model is trained to pass messages on
mesh graphs.

2.4.2 Shape completion

3D shape completion is one of the fundamental fields of study in computer vision and
has critical medical imaging applications. 3D shape completion from sparse annotation
is a special case of 3D shape reconstruction from a single-view 2D image [43]. A major
number of papers on this topic focus on 3D reconstruction. 3D shape reconstruction from
one or multiple 2D images is an ill-posed inverse problem [43]. One common approach in
3D computer vision is to integrate shape priors into models. However, recently with the
advancements in deep learning, the models can learn the 3D shapes and generate new
images, given large-scale datasets. Our focus is on generating 3D shapes given 2D images
with sparse annotations and completing 3D forms given defective shapes throughout this
thesis. The former topic aims to infer the 3D spine posture from 2D radiographs, and
the latter topic aims to design cranial implants automatically.
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The current solution for 3D shape completion is based on either data-driven or learning-
based methods. In a data-driven approach, the shape prior is defined based on learned
shapes, and the shape completion is formulated as an optimization problem over the
latent space [44, 45, 46, 47]. In general, these approaches perform better on real-world
data. On the other hand, learning-based solutions work with full direct supervision to
learn the shape of synthetic data [48]. The learning-based approaches are faster as they
can infer the 3D shape in a single forward pass, compared to the iterative optimiza-
tion process of shape inference in data-driven approaches. But one of the drawbacks
of learning-based methods is the requirement for full supervision and demanding large
datasets.

Several deep learning-based solutions have been introduced for the problem of shape
completion. In learning-based solutions, the shape completion is done by supervision
from synthetic data. To tackle the memory limit problem, in [49] authors use octrees
to work with higher-resolution shapes. Other approaches either work on low-resolution
shapes in voxel space (for example, 323) or take a patch-based approach to work on
high-resolution results. Working on real-world data, accessing full supervision is not
feasible. To alleviate this problem, most of the proposed models are on synthetic data
or leverage the shape priors to constrain the space of possible shapes [48].

In medical image, there exists prior work on inferring 3D segmentation from 2D an-
notations in [50] they do 3D segmentation using sparsely annotated volumes, and [51]
segmentation based on Maximum Intensity Projection (MIP) images. However, they
require the input image and do not put any constraint on the anatomical shape.

2.4.3 3D reconstruction from 2D images

In recent years, 3D reconstruction from 2D images has been a hot topic for computer
vision researchers. In [41, 52, 53, 54] propose methods for 3D shape reconstruction from
single view images working with full supervision. It means that the dataset required
to train those models is made of images and corresponding 3D shapes in pairs. These
models mostly work on synthetic data. In [55, 56, 57, 58, 59] they take advantage of
self-supervision by enforcing reconstruction consistency from different views. In [48] the
object types are used to employ a weak supervision training scheme.

2.4.4 Shape completion for cranial implant design

As introduced earlier in this chapter, automatic cranial implant design has been an
under-researched field. Recently Li et al. [60] proposed an automatic methodology for
cranial implant design. They also organized a challenge on automatic cranial implant de-
sign in conjunction with MICCAI 2020. As a result, some deep learning-based solutions
were proposed for this problem. In this challenge, the problem statement is to design
models to infer the 3D cranial implant shape given the defective skull as input. Fig. 2.2
presents a defective skull and corresponding cranial implant. The immediate solution is
to find a method to complete the defective skull shape first. Next, the difference between
the predicted skull shape and the defective skull represents the cranial implant. To this
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end, the proposed methods were mostly based on encoder-decoder architectures with
skip connections, similar to U-net [61]. For example, in [62], adopted a coarse-to-fine
framework to generate the target implants in two steps; First, they employ a deep neu-
ral network to predict the coarse shape of the implant in 3D. Next, another network is
trained for refining the predictions from the first step in 2D.

(a) defective skull (b) cranial implant

Figure 2.2: A 3D model of defective skull and corresponding cranial implant.

2.4.5 3D reconstruction of spine from 2D images

The balance of the spine is an essential factor for the development of spinal degeneration,
pain, and the outcome of spinal surgery. It must be analyzed in an upright, standing
position to ensure physiological loading conditions and visualize load-dependent defor-
mations. Despite the complex 3D shape of the spine, this analysis is currently performed
using 2D radiographs, as all frequently used 3D imaging techniques require the patient
to be scanned in a prone position.

Biomechanical load analysis of the spine in an upright standing position is highly
warranted in various spine disorders to understand their cause and guide therapy [63].
Typical approaches for load estimation either use a computational shape model of the
spine for all patients or obtain a subject-specific spine model from a 3D imaging modality
such as MRI or CT [64]. Although MRI and CT images can capture 3D anatomical
information, they need the patient to be in a prone or supine position (lying flat on a
table) during imaging. However, to analyze the spinal alignment in a physiologically
upright standing position under weight-bearing, orthogonal 2D plain radiographs are
the de facto choice. A combination of both these worlds is of clinical interest to fully
assess the true bio-mechanical situation, i.e., to capture the patient-specific complex
pathological spinal arrangement in a standing position with full 3D information [65, 64,
66].

As much spatial information is lost when projecting a 3D object in only two 2D
planes, a random object cannot reliably be reconstructed from two orthogonal projec-
tions. However, the spine follows strong anatomical rules that are repeated only with

14



2.4 Shape modeling

slight variations in any patient. Typical projections, i.e., lateral and a.p. radiographs,
cover most of these variations, both on a local (per vertebra) and global (overall spinal
alignment) level.

Literature offers a wealth of pre-existing registration-based methods for relating 2D
radiographs with 3D CT or MR images. In [66], the authors propose a rough manual
registration of 3D data to 2D sagittal radiographs for the lumbar vertebrae. For the
same purpose, in [67], manual annotations of the vertebral bodies are used as a guide-
line for measuring the vertebral orientations in the upright standing position. These
methods are time and manual labor-intensive and thus prone to error. Moreover, both
of these works use only the sagittal radiographs for vertebra positioning while ignoring
the coronal reformation, a strong indicator of the spine’s natural curvature. Aiming at
this objective, [68] introduced an automatic 3D–2D spine registration algorithm. The
authors propose a multi-stage optimization-based registration method by introducing
a metric for comparing a CT projection with a radiograph. However, this metric is
hand-crafted, parameter-heavy, and not learning-based, limiting its generalizability and
inference speed. In [69, 70, 71], the 3D shape of the spine is reconstructed using a bipla-
nar X-ray device called ‘EOS’. The system’s advantage is the low radiation dose required
and that both projections are acquired simultaneously, allowing for a direct spatial cor-
respondence between the two planes. Hindering its applicability is the high device cost
and thus the lack of its presence in clinical routine. Recently, the problem of reconstruct-
ing 3D shapes given 2D images has been explored using deep learning approaches. An
approach was proposed in [72], where they introduce a deep neural network to synthesize
3D CT images given orthogonal radiographs using adversarial networks. However, this
model is highly memory intensive and fails to synthesis smaller anatomies like vertebrae
in 3D. Moreover, it has been evaluated only on DRR, and its clinical applicability in
real radiographs remains to be validated. In [73] and [74] the authors design a model to
generate a 3D given multiple arbitrary view 2D images. But the input images include
only the object of interest without background, which does not apply to medical images
like spinal radiographs. In our previous work for inferring the 3D standing spine posture
[2] we introduce a new deep neural network architecture to combine the 2D orthogonal
image information and reconstruct a 3D shape. Since the vertebrae are heavily occluded
by soft tissue and ribs in the radiograph, the reconstruction is challenging. In some
cases, the output shape is far from a vertebral shape.

The idea of incorporating shape priors in the model have been explored by [23] [75]
[76] [77]. However, considering only the vertebral shape priors for reconstructing spine
posture is not enough for our application. Most of the ideas proposed for using shape
priors in deep neural networks are for a single object. In contrast, the spine shape is more
complicated as it is made of multiple objects (vertebrae) connected and deforming sub-
ject to human anatomy constraints. Thus, defining a prior for explaining intervertebral
constraints and spinal shape is crucial here.

A few works have modeled the spinal shape. For instance, in [78] authors designed
an automatic framework segmenting vertebrae from arbitrary CT images with a full
spine surface model. To create the model, they first scanned a commercially available
plastic phantom to create the template, and then they manually registered it to ten
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actual scans of the entire spine. In [79] authors learned a statistical shape model of the
spine by independently learning three models, one for each level (cervical, thoracic and
lumbar). Thus, their per-level models do not learn the shape correlations across the
full spine. Other probabilistic models, different from the shape surface models, such as
probabilistic atlas [80], graph models [81], hidden markov models [82] and hierarchical
models[83][84][85] have also been proposed. For example, Ruiz et al. [80] proposed a
probabilistic atlas of the spine. By co-registering 21 CT scans, a probability map is
created, which can be used to segment and detect the vertebrae with a special focus on
ribs suppression. Schmidt et al. [81] proposed a probabilistic graphical model for the
location and identification of the vertebrae in MR images. In both cases, full spines were
observed at train time, and the proposed methods cannot be used to infer the shape of
the full spine from a partial observation. But non of the works mentioned above are
incorporated in a deep learning model for training and inference.

2.5 Spine image analysis tools

Biomechanical analysis of the spine requires patient-specific 3D models and biomechani-
cal representation of vertebral joints. The current approaches for this analysis are mostly
done manually, which makes it highly time-consuming. Thus devising methods to pro-
cess these data automatically is beneficial. [86] is one of the first works published recently
to automate the process of generating patient-specific biomechanical models of the spine
for surgery.

We developed a set of scripts for processing the spinal data. This set of tools were
used in the works introduced in the following chapters of this dissertation. Thus, intro-
ducing the data processing tools would ease understanding the workflow in the following
chapters. The tools introduced here have also been used for other works on spine biome-
chanical analysis that will be published in the future.

Here we introduce the labels defined for each vertebra and vertebral subregion. Ta-
ble 2.1 gives an overview of the vertebral labels and Table 2.2 presents the labels used
for defining vertebral subregion.

Vertebral levels
label val-
ues

C1-C7 1-7

T1-T12 8-19

L1-L6 20-25

Table 2.1: Vertebral labels.

2.5.1 Vertebral subregion segmentation

For segmenting the vertebral subregions, we took an atlas registration-based segmen-
tation approach. We used the labels introduced in Table 2.2 for defining the vertebral
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vertebral subregions
frontal
direction

axial di-
rection

lateral
direction

label
value

vertebral body com-
plete

- - - 40

vertebral arch - - - 41

spinous process - - - 42

transverse process - - left 43

transverse process - - right 44

articulate process - superior left 45

articulate process - superior right 46

articulate process - inferior left 47

articulate process - inferior right 48

vertebral body vertical
cortex

- - - 49

vertebral body whole
trabecular compart-
ment

- - - 50

vertebral endplate - superior - 52

vertebral endplate - inferior - 53

Table 2.2: Vertebral subregions labels.
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Figure 2.3: Vertebral subregion segmentation and muscle insertion points detection pipeline
block-diagram. The yellow boxes are the input/output files, while the green boxes
are processing steps.

subregions in the atlas. Given a new CT scan, we follow the procedure below to segment
subregions of vertebrae automatically.

• First, we segment it automatically using a deep neural network trained on a large-
scale vertebra segmentation dataset [87]. In the resulting segmentation map, each
vertebra has a distinct integer intensity, indicating its label as explained in Ta-
ble 2.1.

• We detect each vertebra as a separate object and extract a bounding box around
it.

• For each vertebra, we select the corresponding vertebra from the atlas and reg-
ister it to the target with 6 DOF, namely ”rigid registration”. We optimize the
alignment between the atlas vertebra and target vertebra by updating the location
in 3D (X, Y, Z) and Rotation about each axis. Once the registration is done, we
apply the transformation to the atlas subregions to match the transformed atlas
mask.
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• Aiming to increase the match between the transformed atlas and the target ver-
tebra, we take the transformed mask from the previous step and apply an affine
registration 12 DOF to match the target vertebra. Once the transformation is
calculated, we apply it to the corresponding vertebral shape with subregions.

• We take a step further and apply to a deformable registration on the previous step
results to improve the fine shape details, wherein the number of parameters to
optimize is equal to the number of voxels in the image times three.

Fig. 2.3 illustrates the steps for subregion segmentation procedure.In the following,
we elaborate on each step introduced above. Fig. 2.4 depicts an example of spine seg-
mentation map and Fig. 2.5 shows the corresponding vertebral subregion segmentation
image.

Figure 2.4: A spine segmentation example.
Figure 2.5: Vertebral subregion segmentation

of the spine.

2.5.2 Optimal spinal image viewer

Evaluating 3D scans of the spine and segmentation quality is a cumbersome task. Sum-
marizing the essential 3D shape information and visualizing the result in a 2D snapshot
can accelerate this procedure significantly. This idea particularly helps when creating a
high-quality, large-scale dataset for training Deep Learning (DL) models. Due to differ-
ent vertebral orientations, selecting the mid-slice of a scan and the segmentation image
would not be enough for visualizing all vertebrae completely. In Fig. 2.6 this problem
is demonstrated. To alleviate this issue, we define a curved 3D surface to cover most of
each vertebra and unfold it on a 2D plane. The steps for this task are as follows:

• Segmenting the subregions as explained in the last subsection.
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• Calculating the center of mass of the vertebral body and vertebral process for each
vertebra.

• Fit a spline to the sets of vertebral body center of mass and vertebral center of
mass

• Calculating the line connecting the corresponding voxels on the curves calculated
earlier.

• the set of lines in the preceding step, represents a curved plane in 3D, sampling
the corresponding voxel in image and segmentation and projecting to 2D yields
the snapshot with the maximum possible view of each vertebra.

Fig. 2.7 shows some examples of generated snapshots.

Figure 2.6: Examples spinal of CT slices from different views.
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Figure 2.7: Snapshots with complete spine visibility. We define a curved 3D surface to cover
most of each vertebra and unfold it on a 2D plane. The left image depicts the raw
image, and the right one is the raw image overlaid with segmentation maps.

2.5.3 Vertebral endplate detection

Given the vertebral subregions, we separate the vertebral bodies and detect vertebral
endplates by making projections along the spinal axis. Detecting endplates automatically
facilitates the procedure for biomechanical analysis.

2.5.4 Muscle insertion point detection

After detecting the subregions, we detect the muscle insertion points by selecting the out-
ermost points of subregions. These points are also required for biomechanical analysis.
In Fig. 2.8 the detected muscle insertion points for all vertebra are visualized.

Detection of the vertebral endplates and muscle insertion points is a starting point
for individualized therapy planning in back pain patients. Individualizing biomechanical
models allows personalized therapy planning and outcome prediction after spine surgery.
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Figure 2.8: Vertebral landmarks and subregions. The subregions and labels are explained in
Table 2.2.

2.5.5 Output for multibody simulation

Simpack [88] is a Multibody System Simulation (MBS) software designed for simulat-
ing the non-linear motion of the mechanical systems. The dynamic motion, coupling
forces, and stress in 3D models could be predicted and visualized using this software
package. Simpack is mainly applied in the automotive, engine railway, and wind energy
industry sectors. However, this software could be used for other applications, including
biomechanical simulations. We developed a script to convert the spine analysis tool-
box’s output to a Simpack readable input. After that, the generated input data could
be used to start the simulation in Simpack. Thus, the entire process from imaging to
biomechanical analysis could be done automatically for each patient.

2.5.6 Cobb angle calculation

For evaluating and treating scoliosis, the spinal curve is required. Cobb angle is a
measure of the spinal deformity in scoliosis. Cobb angles estimation is currently done
manually given the spinal radiographs, as demonstrated in Fig. 2.9. This process is
labor-intensive and prone to error. There are studies to automate this process on spinal
radiographs [89]. Using the spinal landmark detection procedure introduced in the pre-
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Figure 2.9: AP view spinal radiographs are used for scoliosis evaluation.

vious section, we can estimate the spinal curve and then calculate the Cobb angles
automatically in 3D data. To calculate the Cobb angles, first, we estimate the spinal
curve by fitting a curve to the vertebral centroids. Next, we calculate the normal to
the curve at each vertebral endplate. The angles between the normal vectors at cer-
tain vertebrae give us the Cobb angles. Cobb angle is a measurement of the degree of
side-to-side spinal deformities in scoliosis.

Once the centroid of vertebral bodies is calculated, we follow the steps below to cal-
culate the Cobb angles.

• In the first step, we fit a curve of degree 3 to the centroids of vertebrae and calculate
the first derivative of the curve.

• Next, we calculate the maximum and minimum slope of the curve with respect to
Z dimension.
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• We calculate the normal vectors to the curve at the points detected from the
previous step.

• The angle between the vectors from the previous step determines the Cobb angle.

2.5.7 Digitally reconstructed radiographs

The size of objects (towards the scan’s periphery) is larger in radiographs compared to
their true size due to the cone-beam of the gamma-ray source. Fig. 2.10 depicts this
effect. Generation of the DRR is performed using a ray-casting approach, wherein a line
is drawn from the radiation source (focal point) to every single pixel on the DRR image,
and the integral of the CT intensities over this line are calculated.

beams

X-ray source

Volume data

X-ray detector

Figure 2.10: Schematic X-ray imaging. The size of the object is larger in radiographs compared
to their true size due to the cone-beam of the gamma-ray source.

For training the model introduced in Chapter 3 of this dissertation, we needed to
train the model on synthetic data. We simulated the spinal radiographs from CT scans.
Parameters for this generation include the radiation source-to-detector (= 180cm in this
work) and the source-to-object distance (= 150cm here). In Fig. 2.11 a sagittal and a
coronal view DRR generated from a CT scan is illustrated.

24



2.5 Spine image analysis tools

Figure 2.11: Sagittal and coronal view DRRs, generated from a 3D CT image.
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3 Vertebral Labelling in Radiographs:
Learning a Coordinate Corrector to
Enforce Spinal Shape

This chapter has been published as peer-reviewed paper and is presented here with mi-
nor modifications.
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Synopsis: This work introduces a deep learning method for vertebrae localization
and labeling in spinal radiographs. Detecting and labeling vertebra in the radiograph is
challenging due to the large field of view, heavy tissue overlay, and noise. Most of the
works for vertebra labeling were on CT images; our work was one of the first methods
proposed for radiographs. We proposed a new architecture robust to occlusion by en-
forcing the spinal shape. In our approach, the model has a holistic view of the input
image irrespective of its size. Our model predicts the labels and vertebrae locations in
two steps: Firstly, a is used to estimate the vertebrae location and label by predict-
ing 2D Gaussians. Then, we introduce the Residual Corrector (RC) component, which
extracts each vertebral centroid’s coordinates from the 2D Gaussians and corrects the
location and label estimations by considering the entire image. The functionality of the
RC component is differentiable. Thus, it can be merged to the deep neural network and
trained end-to-end with other sub-networks.

contributions of thesis author: algorithm design and implementation, experiment
design and composition of manuscript.
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3.1 Abstract

Localizing and labeling vertebrae in spinal radiographs has important applications in
spinal shape analysis in scoliosis and degenerative disorders. However, due to tissue
overlaying and size of spinal radiographs, vertebrae localization and labeling are chal-
lenging and complicated. To address this, we propose a robust approach for landmark
detection in large and noisy images and apply it on spinal radiographs. In this approach,
the model has a holistic view of the input image irrespective to its size. Our model pre-
dicts the labels and locations of vertebrae in two steps: Firstly, a FCN is used to estimate
the vertebrae location and label, by predicting 2D Gaussians. Then, we introduce the
Residual Corrector (RC) component, that extracts the coordinates of each vertebral cen-
troid from the 2D Gaussians, and correct the location and label estimations by taking
into account the entire image. The functionality of the RC component is differentiable.
Thus, it can be merged to the deep neural network, and trained end-to-end with other
sub-networks. We achieve identification rates of 85.32% and 52.28% for sagittal and
coronal views and localization distance of 4.57 mm and 5.33 mm in sagittal and coronal
views radiographs, respectively.

3.2 Introduction

Localization and labeling in spine is applicable in Cobb angle calculation, surgery plan-
ning, bio-mechanical load analysis, diagnosing vertebral fractures or other pathologies.
Analysing the shape of the spine in scoliosis and degenerative disorders should be per-
formed in an upright standing position, which is captured using 2D radiographs. Thus,
vertebrae localization and labeling is of crucial importance on radiographs, while most
of the work for vertebrae labeling has been performed on CT scans.

Vertebrae localization and labeling in radiographs are challenging tasks, due to over-
laying tissue and noise. Particularly, in lumbar spine the vertebrae are superimposed by
heterogenious soft tissue. Thus the vertebrae’s intensity looks different from the ones in
the other regions. Another challenge is the large size of the spinal radiographs, as they
include the entire spine. The latter issue makes it difficult to design a network with a
receptive field, covering the entire image. For the same reason, applying available deep
neural network architectures to process these images is sub-optimal. On the other hand,
applying fully connected layers to address this problem is not feasible as well, as it leads
to increasing the parameters, and limits the performance of the network only to fixed
size images.

The related works for vertebrae localization and labeling are mostly on CT scans.
Usually, an FCN is employed to estimate a heat map of points of interest, then, a second
module is applied on the heat map to predict the locations and labels more accurately.
The main difference between various methods is mostly in the the second module.

In [90] and [91] Yan et al propose a deep FCN being trained with deep supervision
followed by message passing or convolutional LSTM to improve the predictions. In [92]
the authors propose to regress a heat map and then regress the landmarks using FCNs.
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In their approach, the field of view in the input images is variable. While, we always
have complete spine image in the input. In [93] and [94] used regression forests label
the vertebra, but the limitation of their model is limited field of view. To address the
problem of limitation in field of view, the authors in [95] used Multilayer Perceptron
(MLP) networks to capture the long-range context features. In the same direction, in
[96] the authors introduce an adversarial framework for localization and identification of
vertebrae in CT scans. They use an energy-based discriminator in an adversarial setting
to correct the labels predicted by the FCN.

While the related works mentioned above, are on CT, we address the problem of
vertebrae labeling and localization in spinal radiographs. This task is more challenging
due to tissue overlay and noise. We devise a model with unlimited receptive field and
enforcing the spinal shape. Our solution is a two-level supervision approach. First, we
estimate the rough location of landmarks by predicting 2D Gaussians using a FCN. At
this level, the 2D Gaussian image is compared to the ground truth 2D Gaussians. Next,
we introduce the RC component, to convert the Gaussians predicted in the previous step,
to coordinate format and then correct the coordinates. In this way, the dimensionality of
the data decreases from h×w to 2×24, where h and w are height and width of the input
image respectively and 24 is the number of vertebrae. For each vertebra, 2 parameters
are estimated as 2D coordinates. In other words, we can decrease the dimensionality of
data from input images with variable size to a fixed size of 2×24, as long as the input
image includes the entire spine. The functionality of the RC component is differentiable.
Therefor, the entire network is trainable in an end-to-end fashion.

Our model design, leverages both the texture features and spinal shape (inter vertebral
spatial relation) to localize and label the cervical, thoracic and lumbar vertebrae. We
train and test our model on two datasets. One including radiographs of sagittal view
and the other one a dataset of coronal view radiograph.

3.2.0.1 Contributions.

1) We design a robust and accurate deep neural network architecture, with two level of
supervision, applicable to landmark detection, on large images. 2) We design residual
corrector (RC) component, a differentiable module to convert centroids predicted as
2D Gaussian images to coordinates, and then correct them. 3) Finally, we achieve
identification rate of 80.55% for both coronal and sagittal view, localization distance of
7.71 mm and 7.59 mm for sagittal view and coronal view respectively.

3.3 Methodology

3.3.0.1 Annotations.

The output of the FCN is compared to ground-truth Gaussian images. Similar to [96],
the ground-truth Gaussian image Y ∈R(h×w×25) is a 25-channeled, 2D image with each
channel corresponding to each of the 24 vertebrae (C1 to L5), and one for the background;
h and w are height and width of the input image respectively. Each channel is constructed
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Figure 3.1: Overview of the model.

as a Gaussian heat map of the form yi = e−||x−µi||
2/2σ2

, x∈R2 where µi is the location of
the ith vertebra and σ controls the spread. The background channel is constructed as,
y0= 1−max(yi).

3.3.0.2 Architecture.

Fig. 3.1 gives an overview of our proposed model. It is composed of two sub-networks:
U-net[61] as a FCN, and the RC component, which is highlighted with a dashed-line box
in Fig. 3.1.

In the RC component, first the centroid coordinates are extracted using soft-argmax
method. In this way, the dimensionality of the data decreases from h×w to 2×24, where
24 is the number of vertebrae. For each vertebra, 2 parameters are estimated as 2D
coordinates. In other words, we can decrease the dimensionality of data from input
images with variable size to a fixed size of 2×24, as long as the input image includes the
entire spine. After that, we have a residual block of fully-connected layers to 1) correct
the location of the estimated coordinates and 2) increase the receptive field of the model.
Since the receptive field of the model covers the entire input image, it can capture long-
range dependencies in the inputs with fewer network layers and parameters compared to
the FCN approaches with similar receptive field. As soft-argmax is differentiable, we can
train the fully-connected layers along with the FCN end-to-end and variable size input
images. The fully connected layers in RC component sub-network, give a holistic view of
the input image to the network and leads to global consistncy of the estimated vertebral
coordinates and labels. i.e. the order of label and also morphological consistency of the
spine.

3.3.0.3 Training.

The FCN sub-network, predicts 2D Gaussians, the predicted image in this level is com-
pared to the ground truth Gaussian image. For this, we use the loss function introduced
in [96], which measures the L2 distance supported by a cross-entropy loss over the soft-
max excitation of the FCN prediction and ground truth Gaussian image.
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LGaussian = ||Y − Ỹ ||2, (3.1)

Lce = H(softmax(Y ), softmax(Ỹ )), (3.2)

Limg = LGaussian + Lce, (3.3)

Where Ỹ is the predicted Gaussian image, Y is the target Gaussian image and H
is the cross-entropy function. Next, using our RC component we extract the centroid
coordinates and correct them. For this stage, we use a Smooth Absolute(Huber) loss to
compare the predicted coordinates to the ground truth.

Lcoordinate =

{
1
2 ||C − C̃||

2 for |C − C̃| ≤ 1,(
|C − C̃| − 1/2

)
otherwise.

(3.4)

Finally, the total loss is the sum of the loss at the first and second stages.

Ltotal = Limg + Lcoordinates, (3.5)

3.3.0.4 Inference.

Once the model is trained, for inference the input image is fed to the FCN sub-network,
the result is a multi-channel image with the same size of the input image. In the result-
ing image, each vertebral centroid is predicted as a 2D Gaussian in the corresponding
channel. Next, this multi-channel image is fed to the RC component. In the RC com-
ponent, the coordinates of the Gaussians are extracted using the soft-argmax function.
Then, the extracted coordinates are corrected by the residual fully-connected layers.

3.4 Experiments and Results

3.4.0.1 Datasets.

We work with an in-house dataset of 122 patients for each we have the coronal and
sagittal radiographs, we also have the vertebral centroids annotations of them. We
selected 100 cases randomly for training and 22 cases for validation. The radiographs
are mostly from old patients, some cases with scoliosis or metal insertion. we augmented
the data by rotation the images 2, -2, 5 and -5 degrees. We create two separate datasets
out of this dataset, one for coronal view and the other one for sagittal view radiographs.

3.4.0.2 Experiments.

We carry out four experiments to validate our approach: 1) First, we train only U-net to
localize and label the vertebral centroids on sagittal view. 2) We train U-net on coronal
view radiographs. 3) Next, in order to improve the performance of the model, we add
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(a) Sagittal view radiographs

(b) Coronal view radiographs

Figure 3.2: Testing the model on sagittal coronal radiographs. The predicted centroids are
plotted in red dots and the ground truth centroids in green crosses, the numbers
indicate the vertebral label.
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the RC component to the model and train the model sagittal view. 4) We train the
model with RC component on coronal view radiographs.

We implement our network in the Pytorch framework and use a Quadro P6000 GPU
for training the model. In all experiments, the initial learning rate is 0.0001 and Adam
is used as optimizer, and the models are trained for 150 iterations.

3.4.0.3 Evaluation.

To evaluate the performance of our network, we use the identification rates(id.rate) and
localisation distances (dmean and dstd) in mm [93]. Table 3.1 compares the performance
of U-net and our model, trained on sagittal view radiographs. Similarly, Table 3.2 reports
the performance of U-net and our model, trained on coronal view radiographs.

Measure U-net U-net+RC
Id.rate 61.3% 85.32%
dmean 11.54 mm 4.57 mm
dstd 12.73 mm 3.84 mm

Table 3.1: Quantitative performance comparison of U-net and our model on sagittal view ra-
diographs.

Measure U-net U-net+RC
Id.rate 44.5% 52.63%
dmean 12.32 mm 5.33 mm
dstd 11.12 mm 5.94 mm

Table 3.2: Quantitative performance comparison of U-net and our model on coronal view ra-
diographs

We did not compare our results to vertebrae labeling methods on CT, as they are
tested on another modality. The results suggest that the residual correction approach,
improves the performance of the model significantly. Due to the limited receptive field
of U-net, the localization and labeling are not accurate. The RC component takes the
entire spinal shape into account and learn the inter vertebral spatial relation. Therefore,
it can correct the predictions of U-net, by enforcing the true shape of spine.

Fig. 3.2 demonstrates examples of testing our model on coronal and sagittal images.
The results suggests that our model is robust against metal insertion and treatment
effects visible in the radiographs. Also it is robust against shift and small rotations. As
it is shown in Fig. 3.2, our model handles variable size radiographs in both sagittal and
coronal view. Finally, our model performs on the raw image data, without preprocessing
or employing another network to localize the spine and all of the calculations are done
in a single forward pass.
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3.5 Conclusion

Processing large medical images using fully convolutional networks is suboptimal due
to limitation of the receptive field and large size of spinal radiographs. Also, it is not
feasible to apply fully-connectd layers to these networks to compensate the limitation
of receptive fields, as it increases the number of parameters, significantly. Downscaling
the images leads to losing details and makes the network prone to error. We propose an
architecture to extract the local features using a fully convolutional network and learn
the global shape of the spine using a residual corrector module. Finally, our model is
robust against treatment effects in radiographs and can localize and label the vertebra
in a single forward pass.
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This chapter has been published as peer-reviewed paper and is presented here with mi-
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Synopsis: This work presents a new deep learning based approach for synthesizing
3D shapes from 2D orthogonal images. An upright spinal pose (i.e., standing) under
natural weight-bearing is crucial for such biomechanical analysis. 3D volumetric imag-
ing modalities (e.g. CT and MRI) are performed in patients lying down. On the other
hand, radiographs are captured in an upright pose but result in 2D projections. This
work aims to integrate the two realms, i.e., it combines the upright spinal curvature
from radiographs with the 3D vertebral shape from CT imaging for synthesizing an up-
right 3D model of the spine, loaded naturally. Specifically, we propose a novel neural
network architecture working vertebra-wise, termed TransVert, which takes orthogonal
2D radiographs and infers the spine’s 3D posture. We apply this model specifically to
spinal radiographs. Applying this model to 2D radiographs enables us to generate 3D
standing spinal postures applicable in biomechanical analysis of the spine. Training this
model was a challenging task since the 3D ground-truths for radiographs are not avail-
able. Thus, we trained the model on synthetic data by simulating radiographs from CT
images. However, the spinal CT scans available in the hospital are usually not the full
field of view to decrease the scan size and save more disk space. Thus, the resulting
2D digitally reconstructed radiographs from CT images were not similar enough to real
radiographs. We obtained large-scale datasets from lung scans where the lungs and ribs
were available in the scan and created our synthetic dataset.

contributions of thesis author: algorithm design and implementation, generating
the synthetic training data, experiment design and composition of manuscript.
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4.1 Abstract

The treatment of degenerative spinal disorders requires an understanding of the individ-
ual spinal anatomy and curvature in 3D. An upright spinal pose (i.e. standing) under
natural weight bearing is crucial for such bio-mechanical analysis. 3D volumetric imag-
ing modalities (e.g. CT and MRI) are performed in patients lying down. On the other
hand, radiographs are captured in an upright pose, but result in 2D projections. This
work aims to integrate the two realms, i.e. it combines the upright spinal curvature from
radiographs with the 3D vertebral shape from CT imaging for synthesizing an upright
3D model of spine, loaded naturally. Specifically, we propose a novel neural network
architecture working vertebra-wise, termed TransVert, which takes orthogonal 2D ra-
diographs and infers the spine’s 3D posture. We validate our architecture on digitally
reconstructed radiographs, achieving a 3D reconstruction Dice of 95.52%, indicating an
almost perfect 2D-to-3D domain translation. Deploying our model on clinical radio-
graphs, we successfully synthesise full-3D, upright, patient-specific spine models for the
first time.

4.2 Introduction

A biomechanical study of spine and its load analysis in upright standing position is an
active research topic, especially in cases of spine disorders [63]. Most common approaches
for load estimation on the spine either use a general computational model of the spine
for all patients or acquire subject-specific models from MRI or CT [64]. While these
typical 3D image acquisition schemes capture rich 3D anatomical information, they
require the patient to be in a prone or supine position (lying on one’s chest or back),
for imaging the spine. But, analysis of the spine’s shape and vertebral arrangement
needs to be done in a physiologically upright standing position under weight bearing,
making 2D plain radiographs a de facto choice. A combination of both these worlds is
of clinical interest to fully assess the bio-mechanical situation, i.e. to capture patient-
specific complex pathological spinal arrangement in a standing position and with 3D
information [65, 64, 66].

In literature, numerous registration-based methods have been proposed for relating
2D radiographs with 3D CT or MR images. In [66], the authors propose a rough manual
registration of 3D data to 2D sagittal radiographs for the lumbar vertebrae. For the
same purpose, in [67], manual annotations of the vertebral bodies are used as guideline
for measuring the vertebral orientations in upright standing position. These methods are
time and manual-labour-intensive and thus prone to error. Moreover, both these works
use only the sagittal radiographs for vertebra positioning, while ignoring the coronal
reformation which is a strong indicator of the spine’s natural curvature. Aiming at this
objective, [68] introduced an automatic 3D–2D spine registration algorithm, where the
authors propose a multi-stage optimization-based registration method by introducing a
metric for comparing a CT projection with a radiograph. However, this metric is hand-
crafted, parameter-heavy, and is not learning-based, thus limiting its generalizability.
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Figure 4.1: Overview of 2D image to 3D shape translation. The network inputs are 2D orthog-
onal view vertebrae patches and the centroid indicating the vertebra of interest.

In [69], the 3D shape of the spine is reconstructed using a biplanar X-ray device called
‘EOS’. Hindering its applicability is the high device cost and the lack of its presence in a
clinical routine. Recently the problem of reconstructing 3D shapes given 2D images have
been explored using deep learning approaches. An approach closest to ours was proposed
by Ying et al. [72], where they introduce a deep neural network to synthesize 3D CT
images given orthogonal radiographs using adversarial networks. However, this model is
highly memory intensive and fails to synthesise smaller anatomies like vertebrae in 3D.
Moreover, it has been evaluated only on DRR, and its clinical applicability remains to
be validated.

4.2.0.1 Motivation

The problem of 3D reconstruction of a spine in an anatomically upright position from
2D radiograph images relies on retrieving information from radiographs, which are 2D
projections of a 3D object. Spine’s sagittal reformation captures crucial information
in the form of the vertebral body’s and process’ shape and its orientation around the
sagittal (left-right) axis. However, its orientation around the cranio-caudal and anterior-
posterior axes is obfuscated (cf. Fig. 4.1).

This information is available when combining sagittal with coronal reformations (or
lateral with a.p. radiographs). Motivated by this, we propose a fully-supervised, com-
putationally efficient, and registration-free approach combining sagittal and coronal 2D
images to synthesise the vertebra’s 3D shape model. Specifically:

• We introduce a novel FCN architecture for fusing orthogonal radiographs to gen-
erate 3D shapes.

• We identify an approach for training the network on synthetically generated ra-
diographs from CT, being supervised by the CT’s 3D vertebral masks.

• Validating our approach, we achieve dice score of 95.52% on digitally recon-
structed radiographs. We also successfully reconstruct 3D, patient-specific spine
models on real clinical radiographs.
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Figure 4.2: Architecture of TransVert. Our model is composed of sagittal and coronal 2D
encoders (self-attention module in red), a ‘map&fuse’ block, and a 3D decoder.

4.3 Methods

Generating 3D shapes from 2D information is an ill-posed problem. For solving this, we
utilize information from two orthogonal radiographs and an annotation on the vertebra
of interest while relying on the shape prior learnt by the network.

4.3.1 TransVert: Translating 2D information to 3D shapes

The network performing 2D-to-3D synthesis needs to address the following requirements:
First, it needs to appropriately combine information in the sagittal and coronal projec-
tions to recover 3D information. Second, recovering 3D shapes from 2D projections
is inherently an ill-posed problem, requiring incorporation of prior knowledge. Lastly,
the size of certain vertebra (towards the scan’s periphery) is larger in radiographs com-
pared to their true size due to the cone-beam of gamma-ray source. This effect should
be negated when reconstructing the 3D model, i.e. the mapping should not be purely
image-based. We address these requirements by proposing the TransVert architecture.

4.3.1.1 Overview

TransVert takes four 2D inputs, the sagittal and coronal vertebral image patches and
their corresponding annotation images indicating the Vertebra of Interest (VOI). Denot-
ing the 2D vertebral sagittal and coronal reformations by xs and xc, and their corre-
sponding VOI annotation by ys and yc, we desire the vertebra’s full-body 3D shape, y,
as a discrete voxel-map:

y = G(xs, xc, ys, yc), (4.1)

whereG denotes the mapping performed by TransVert. In our case, the VOI-annotation
image is obtained by placing a disc of radius 1 around the vertebral centroid. In
Section A.4, we analyze denser annotation choices (vertebral body and full vertebral
masks). Ideally, training the TransVert mapping requires radiograph images and their
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4.3 Methods

corresponding ‘real world’ 3D spine models. However, this correspondence does not exist
and is, in fact, the problem we intend to solve. Thus, TransVert is trained on sagittal
and coronal DRR constructed from CT images. It is supervised by the corresponding CT
images’ voxel-level, vertebral segmentation masks. As DRRs are similar in appearance
to real radiographs, a DRR-trained TransVert architecture paired with a robust training
regime, can be readily deployed on clinical radiographs.

4.3.1.2 Architecture

TransVert consists of three blocks: a 2D sagittal encoder, a 2D coronal encoder, and a
3D decoder. The three blocks are combined by a ‘map&fuse’ block. Refer to Fig. A.3
for a detailed illustration. The map&fuse block is responsible for mapping 2D rep-
resentations of each the sagittal and coronal views into intermediate 3D latent rep-
resentations followed by fusing them into a single 3D representation by channel-wise
concatenation. This representation is then decoded into a viable 3D voxelized repre-
sentation by the decoder. Note that the intermediate 3D representation is constructed
from orthogonal views. Therefore, map&fuse block consists of anisotropic convolutions,
with an anisotropy along the dimensions that need to be expanded. For example: the
anterior-posterior dimension needs to be expanded for a coronal view. Consequently, the
convolutional strides and padding directions are orthogonal for each of the view. At the
network encoders’ input, the vertebral images and VOI-annotations are combined using
a self-attention layer. It was empirically observed that the attention mechanism yielded
a better performance than a naive fusion by concatenating them as multiple channels.

4.3.1.3 Loss

Using solely a regression loss leads to converging to a local optimum where a mean (or
median) shape is predicted, especially in the highly varying regions of the vertebra such
as the vertebral processes. This is rectified by augmenting the loss with an adversar-
ial component which checks the validity of a prediction at a global level. Therefore,
TransVert is trained in a fully supervised manner by optimizing a combination of an `1
distance-based regression loss and an adversarial loss based on the least-squared GAN
(LSGAN, [?]). Formally, the TransVert and the Discriminator combination is trained
by minimizing the following losses:

LG = αG||y −G(xs, xc, ys, yc)||1 + αD (D(G(xs, xc, ys, yc))− 1)2 and (4.2)

LD = (D(y)− 1)2 +D(G(xs, xc, ys, yc))
2, (4.3)

where D represents the discriminator network and G represents the TranVert. αG and
αD are weights of loss terms and fixed to αG = 10 and αD = 0.1. Note that y is binary
valued containing {0, i}, where i ∈ {8, 9, . . . 24} denotes the vertebral index from T1 to
L5. Forcing the network to predict the vertebral index implicitly incorporates an addi-
tional prior relating the shape to the vertebral index. Details about the discriminator
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4 Inferring the 3D Standing Spine Posture from 2D Radiographs

architecture and the adversarial training regime are provided in the supplemental mate-
rial. The network is implemented with Pytorch framework on a Quadro P6000 GPU. It
is trained till convergence using an Adam optimizer with initial learning rate is 0.0001.

4.4 Results

In this section, we describe the creation of DRRs, present an ablative study quantitatively
analyzing the contribution of various architectural components, compare various VOI-
annotation types, and finally deploy TransVert on real clinical radiographs.

4.4.1 Data

Recall that TransVert works with two data modalities: it is trained on DRRs extracted
from CT images while being supervised by their corresponding 3D segmentation mask,
and it is deployed on clinical radiographs.

4.4.1.1 CT data

We work with two datasets: a publicly available dataset for lung nodule detection with
800 chest CT scans [97], and an in-house dataset with 154 CT scans. In all, we work
with ∼ 12k vertebrae split 5 : 1 forming the training and validation set, reporting 3-fold
cross validated results. Note that very few lumbar vertebrae are visible in [97] as it is
lung-centred.
Data Preparation: The CT scans are segmented using [4] and the generated masks
are validated by an experienced neuro-radiologist in order to consider only accurate
ones for the study. These vertebral masks are used for supervision. Generation of the
corresponding DRR is performed using a ray-casting approach [98], wherein a line is
drawn from the radiation source (focal point) to every single pixel on the DRR image
and the integral of the CT intensities over this line are calculated. Parameters for
this generation include the radiation source-to-detector (= 180cm in this work) and the
source-to-object distance (= 150cm here). Post the generation of the sagittal and coronal
DRR, patches of size 64×64 are extracted around each vertebral centroid, constituting
the image input to TransVert. The second input, viz. the VOI-annotation, can be
extracted from the projected segmentation mask.

4.4.1.2 Clinical radiographs

We clinically validate TransVert on real long standing radiographs in corresponding
lateral and anterior-posterior (a.p.) projections obtained in 30 patients. Acquisition
parameters such as source-to-detector and source-to-object distances were similar to
those used for DRR generation. Vertebral centroids needed for the VOI-annotations
were automatically generated on both views using [99].
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4.4 Results

4.4.1.3 Data normalization

TransVert is trained on DRRs and tested on clinical radiographs. These data modalities
have different intensity ranges, requiring normalization. We observe that z-score nor-
malization works well, i.e. I = (I−µI)/σI, where µI and σI are the mean and standard
deviation of the image I.

4.4.2 Experiments

We perform three sets of experiments validating our proposed approach, aimed at
analysing the architectural aspects of TransVert, the data fed into it, and finally its
applicability in a clinical setting. Note that a quantitative comparison with the ground
truth can be performed only in experiments dealing with DRRs and CT images. Per-
formance evaluation of various settings is compared by computing Dice coefficient and
Hausdorff Distance between the predicted 3D vertebral mask and its ground truth from
the CT mask.

4.4.2.1 Analysing TransVert’s architecture

The proposed architecture for TransVert consists of the following architectural choices:
fusion of sagittal and coronal views, anisotropic convolutions in the map&fuse block,
a self-attention layer combining the image and the VOI-annotation, and finally, an ad-
versarial component on the loss function. An ablative study over these components is
reported in Table A.1. First, do we need two views?. For this, we evaluate the perfor-
mance of a model that tries to reconstruct 3D shape from only a sagittal image. Next, do
we need anisotropic convolutions?. For this, we compare two versions of map&fuse: one
with a simple outer product for combining the orthogonal views (Naive View-Fusion)
and one with the proposed anisotropic convolutions (TransVert). Observe that a simple
fusion of views already outperforms a ‘sagittal only’ reconstruction. Also, anisotropic
convolutions outperform fusion of views using outer-products. This can be attributed to
the 2D-to-3D learning component involved in the latter. Lastly, do we need the bells &
whistles on top of TransVert? Observe that incorporating the self-attention layer in the
encoders and an adversarial training regime progressively improved performance, result-
ing in a Dice of 95.5% and a Hausdorff Distance of 5.11 mm. Fig. A.6 illustrates the 3D
shape models reconstructed using the proposed architecture. Extracting a point cloud
(with 2048 points) from these shapes, we also illustrate a point-wise Chamfer distance
map. Observe that a vertebra’s posterior region (vertebral process) is hardly visible in
the image inputs. Despite this, TransVert is capable of recovering the process, albeit
with a certain disagreement between the prediction and ground truth.

4.4.2.2 Analysing VOI-annotation type

Recall that alongside the image input, TransVert requires an auxiliary input indicating
the vertebra of interest. We argue that a vertebral centroid suffices. In this study
we show that our choice of vertebral centroid performs at a level comparable to a far
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4 Inferring the 3D Standing Spine Posture from 2D Radiographs

Figure 4.3: Shape modelling with TransVert on DRRs: First column indicates the image input.
Second and third columns visualise the ground truth (GT) vertebral mask and the
fourth visualises the predicted 3D shape model. Last column shows an overlayed
Chamfer distance map between point clouds of GT and prediction.

Setup Dice (%) Hausdorff (mm)

Sagittal only 88.40 7.43

Naive View-Fusion (Outer Product) 92.59 6.45

TransVert 94.75 5.75

TransVert + Self Attn. 95.31 5.27

TransVert + SelfAttn + Adv. 95.52 5.11

Table 4.1: Architectural ablative study: The performance progressively improves with addition
of each component. (Vertebral centroids are the VOI-annotations here.

denser full-vertebra annotation as reported in Table 4.2. We compare our centoids-to-
vertebra (C2V) setup to two other, denser annotations: one where the vertebral body
is annotated in the DRR (B2V) and one where the full vertebral body is annotated
(Vertebra to Vertebra (V2V)).

As baseline, we include a setup without any VOI-annotation as an auxiliary input.
Note that including the annotation input offers approximately 20% improvement in
the mean Dice coefficient. Observe that a most dense V2V annotations and our C2V
annotations perform comparably with only < 1% difference. Therefore, C2V is an
obvious choice owing to the ease of marking centroids, more so because of existing
automated labelling approaches.
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4.5 Conclusion

Input Dice (%) Hausdorff (mm)

No annotation 76.44 14.74

V2V 96.24 4.18

B2V 95.67 4.95

C2V 95.31 5.27

Table 4.2: VOI annotation study:
Performance drop
from a denser (V2V)
to a sparser annota-
tion (C2V) is minor,
while annotation effort
decreases manifold.

4.4.2.3 2D-to-3D translation in clinical radiographs

TransVert works with individual vertebral images and their centroids. A 3D model of
the spine can be constructed by stacking the predicted 3D vertebrae models at their
corresponding 3D centroid locations. Vertebra’s position along the axial and coronal
axes is obtained from the sagittal reformation and its sagittal position from the coronal
reformation. Fig. A.8 illustrates the results of this process. The top row visualises a
3D spine reconstruction based on 2D DRRs and compares it with the ground truth.
More importantly, the bottom row depicts a successful deployment of TransVert in re-
constructing the 3D, patient-specific posture of upright standing spine. Note that no
3D ground truth spine model exists for these cases. We visualise the 2D overlay of the
segmentation on the radiographs, and the sagittal and coronal view of its 3D shape
model, the former overlaid on the radiograph too. Observe that the 3D model’s posture
matches with that of the radiographs.

4.5 Conclusion

We propose TransVert, a novel architecture trained to infer a full-3D spine model from
2D sagittal and coronal radiographs and sparse centroid annotations. We identify an
approach to train TransVert on DRRs in a fully-supervised manner. Along with an
ablative study on TransVert’s architectural components, we show a successful use case
of deploying it on a real-world clinical radiograph.
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Figure 4.4: Full 3D spine models: (Top row) Comparison of a DRR-based spine model recon-
struction with its CT ground truth mask. (Bottom row) 3D patient-specific spine
models constructed from real clinical radiographs.
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Synopsis: This work introduces a novel approach for designing patient-specific cra-
nial implants using deep neural networks. Due to GPU memory limitations, we devised
a solution composed of two sub-networks functioning on 3D and 2D images with low and
high resolutions. Our model performs on 3D data in low resolution since a 2D model
lacks a holistic 3D view of both the defective and healthy skulls. The first sub-network
is designed to complete the shape of the downsampled defective skull. The second sub-
network upsamples the reconstructed shape slice-wise. We train both the 3D and 2D
networks in tandem in an end-to-end fashion, with a custom hierarchical loss function.
Our proposed solution accurately predicts a high-resolution 3D implant in the challenge
test case in terms of dice-score and the Hausdorff distance.

contributions of thesis author: algorithm design and implementation, experiment
design and composition of manuscript.
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5 Cranial Implant Design

5.1 Abstract

Designing of a cranial implant needs a 3D understanding of the complete skull shape.
Thus, taking a 2D approach is sub-optimal, since a 2D model lacks a holistic 3D view of
both the defective and healthy skulls. Further, loading the whole 3D skull shapes at its
original image resolution is not feasible in commonly available GPUs. To mitigate these
issues, we propose a fully convolutional network composed of two subnetworks. The first
subnetwork is designed to complete the shape of the downsampled defective skull. The
second subnetwork upsamples the reconstructed shape slice-wise. We train both the 3D
and 2D networks in tandem in an end-to-end fashion, with a hierarchical loss function.
Our proposed solution accurately predicts a high-resolution 3D implant in the challenge
test case in terms of dice-score and the Hausdorff distance.

5.2 Introduction

Cranial implant design is a crucial task for clinical planning of cranioplasty [100]. Previ-
ous works mainly rely on freely available CAD tools for cranial implant design [101, 102,
103, 104]. The time requirements and need for expert intervention for these approaches
are a major hindrance for fast and in-prompt deployment. The AutoImplant challenge
aims to look for simple and easy-to-use automatic solution that can accurately predict
cranial implants. Keeping this in mind, we tailor our proposed solution to best fit the
requirements of clinicians.

Previous literature [105] tend to exploit the geometric symmetry and predict cranial
implant based on the unaffected skull region. Nevertheless, this results in a suboptimal
solution, since the human skull is not perfectly symmetric in reality. These solutions
also fall short when the implant is not exclusively in one hemisphere. Morais et al. [106]
used a deep 3D encoder-decoder [2, 87, 107] network to reconstruct the incomplete skull
in low-resolution space. While the low-resolution space facilitates faster processing, the
quality of the reconstruction lacks minute local anatomical detail. In the Autoimplant
baseline paper [108], a similar approach is taken where the authors first localize the
defective region in the skull and then predict the implant using an encoder-decoder
network. While this pipeline is suitable for modular design of accurate defective region
detection and implant prediction, the network is not end-to-end trainable, and thus any
error during the first stages would penalize the implant prediction.

In this approach, we try to alleviate this by relying on coarse-scale implant prediction
in 3D followed by fine-scale enhancement of the predicted implant. We identify that 3D
is most suitable to predict the implant since anatomical consistency is best captured by a
3D receptive field compared to any local 2D slices. However, to reduce the memory and
computational power, we first predict the implant in a down-sampled defective skull.
Subsequently, we enhance the predicted implant slice wise by a 2D decoder network.
Thus our solution becomes end-to-end trainable and also is efficient at the same time
for the high-resolution implant prediction task.
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5.3 Method

Figure 5.1: Few Training sample: The first row depicts rendered 3D volumes of four randomly
selected defective scan from the training dataset. The second row shows the corresponding
ground truth cranial implant.

5.3 Method

The dataset is created by artificially generating the defect in the scan [108]. Thus the
original skull would be the ground truth for the implant prediction task. We leverage
this availability of the target label and cast the implant prediction task as a supervised
volumetric reconstruction task. At the core of our method lies a 3D encoder-decoder
network. This network takes the low-resolution defective skull as input and predicts a
low-resolution implant at the output. We argue that the implant prediction task lies in
a lower-dimensional manifold since the key properties to predict implant are the inner
and outer surface consistency. Hence, a down-sampled input space is sufficient for a
coarse-scale identification of the implant region. A simple element-wise subtraction of
the reconstructed skull and the input will produce the desired implant. This approach
is in line with the shape completion literature [109, 110, 111, 48, 112]. Next, we need
to upsample the predicted implant, which can be done in several ways. Classical ap-
proaches, such as spline-based interpolation, can be a simple choice. Alternatively, a
decoder network proved to be superior in the super-resolution task [113, 114]. Hence, we
incorporate a second module in our method, a 2D up-sampler. This up-sampler takes
selected axial slices during training and predicts the up-sampled version of it. To be
able to train the both the network jointly and also fit the data in the GPU memory, we
select N random slices out of the reconstructed shape and select the corresponding slices
from the original scale Ground Truth. The error between the predicted slice and the
ground truth skull is used to train the 2D decoder. The high-resolution reconstruction
error, along with the 3D shape completion error, contributes to the training of the 3D
encoder-decoder.
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Figure 5.2: Schematic overview of our proposed pipeline for predicting the cranial implant.
The downsampled defective scan goes through an encoder-decoder based shape completion
network. During training, N number of random reconstructed skull goes through a second
decoder network for high-resolution reconstruction. For the 3D shape completion, we use
a volumetric `1 norm, and for the 2D refinement task, we use summation of 2D `1 loss.

5.3.1 Network Architecture & Loss Function

In the following, we describe the architecture of two subnetworks in our model and the
loss functions used to train the model.

5.3.1.1 3D Encoder-Decoder:

Encoder-decoder type network has been previously used in bio-physical simulation [115],
image segmentation [116] etc. Our 3D network has three sequential components, such
as an encoder, bottleneck, and a decoder. The encoder further compresses the input
signals into a more compact representation, which is processed in the bottleneck unit to
extract useful features. These features go through the decoder part to reconstruct the
complete skull. The complete architecture is as follows:
IN1 → CN1

64 → CN2
64 → CN2

64 → RB64 → RB64 → RB64 → RB64 → TC2
64 → TC2

64 →
C1

1 → OUT1

where IN1 and OUT1 is input and output volume respectively with single channel,
CN s

#ch is convolution with stride s and output channel #ch followed by batch norm and
ReLU, TCs#ch is transposed convolution with stride s and output channel #ch followed
by batch norm and ReLU, RB#ch is residual block consists of two successive unit of
convolution with stride 1 and output channel #ch followed by instance norm and ReLU,
and Cs#ch is convolution with stride s and output channel #ch followed by sigmoid. Note
that all convolution and norm layers described here are 3D.

5.3.1.2 2D Decoder Upsampler:

The 2D upsampler network consists of four residual blocks, followed by the nearest
neighborhood upsampling layer and a final convolution layer. The residual blocks refine
the low-resolution reconstructed scans to incorporate anatomical consistency, which aids
precise high-resolution skull at the output. We concatenate the corresponding slice of
the defective scan along with the reconstructed scan and pass it as an input to the
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5.3 Method

2D upsampler. This helps to correct any location-wise mismatch in the 3D shape-
completion task. Borrowing a few notations defined in the previous paragraph, the
complete architecture is given below:
IN2 → CN1

64 → SE64 → RB64 → SE64 → RB64 → SE64 → RB64 → SE64 → RB64 →
NN

sqrt(512/180)
64 → NN

sqrt(512/180)
64 → C1

1 → OUT1

where SE#ch is ‘squeeze and excitation’ layer and NN s
#ch is Nearest Neighborhood

(NN) upsample with scale factor s and output channel #ch followed by instance norm
and ReLU. Note that all convolution and norm layers described here are 2D.

5.3.1.3 Loss Function:

Let’s denote the ground truth data at original scale as IG, downsampled ground truth
data Ig, defective 3D volume at original scale as ID, downsampled defective 3D volume
as Id, the functional form of the 3D encoder-decoder network as S(), and the functional
form of the 2D upsampler network as U() respectively. The cranial implant is predicted
as follows:

Cranial Implant = U(S(Id)) \ ID (5.1)

where \ denotes set difference. The total loss function of our method is as follows:

Ltotal = L3D + L2D (5.2)

L3D = ‖S(Id)− Ig‖`1 (5.3)

L2D =
∑
i∈Ω

‖U(S(Id)
i)− IiG‖`1 (5.4)

where Ω is the set of random slices

5.3.2 Implementation

We realize our model in PyTorch. We trained the networks with Adam optimizer and a
learning rate of 0.0001. We used an Nvidia Quadro P6000 GPU. The batch size for the 3D
network was 1, so one volume per iteration. We downsampled the original 3D vol-
ume by a factor of 512

180 in all dimension because that is the largest 3D volume
we can fit in our GPU along with the 2D decoder module. The downsampled
3D volume is zero-padded in the z-dimension to make it 180× 180× 180. After
predicting the completed 3D shape in low resolution, we sample 10 slices randomly along
the Z-axis and concatenate them channel-wise with the downsampled corresponding slice
from the defective skull and feed them to the upsampler decoder. We can’t fit the entire
volume with the original scale in the memory, so we have to select 2D slices. In order
to avoid overfitting, we select the slices randomly. It is important to note that, after
downsampling the volume with a 512

180 scaling factor, every 3 slices along Z-axis in the
original scale correspond to 1 slice in the downsampled volume. Thus, after reconstruct-
ing the 3D shape, we have a set of selected slices using random indices and three sets
of [random indices/0.35], [random indices/0.35]+1 and [random indices/0.35]+2. We
select the corresponding slices from the defective scan and downsample them in 2D to
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5 Cranial Implant Design

be concatenated with the slices from the predicted shape. Thus, the batch size for the
upsampler decoder network is 30.

5.3.2.1 Inference:

For inference, similarly, a downsampled volume is fed to the network, and it is recon-
structed in low resolution using the first sub-network. After that, all of the slices along
the Z-axis are fed to the upsampler decoder, one-by-one, and stacked in volume to re-
construct the shape in 3D. Subsequently, we subtract the defective input scan from
the high-resolution reconstructed scans to estimate the cranial implant. Finally, as a
post-processing step, we erode and dilate the segmentation consequently with a sphere
structure with a radius of 2 to remove the noise. Subsequently, we select the largest
component in the segmentation map, using connected component analysis.

5.4 Experimental Results

Table 5.1: Our score on the validation dataset

Method Dice HD-distance

Ours (Transposed Conv) 0.8363 10.6570

Ours (NN Upsampling) 0.9358 7.6100

We work with 100 data samples split 5 : 1 forming the training and validation set.
We validate our approach by comparing the constructed implants to the ground truth,
using the Dice score and the Hausdorff distance. The validation results are presented
in Table 5.1. We experimented with two variations of our 2D decoder model.
In the first case, we trained the original decoder, and in the second case,
we replace the NN upsampling layers of the 2D decoder with transposed
convolution layers. We observe that the 2D decoder with NN upsampling layers
performs significantly better than the decoder with transposed-convolution layers. We
attribute this to the over parameterization during the upsampling step. Since the image
is binary in nature, the nearest neighborhood upsampling layer is sufficient for this task.

Table 5.2: Our score on the 100 test cases.

Method Dice HD-distance

Baseline [108] 0.8555 5.1825

Ours (NN Upsampling) 0.8957 4.6019

Finally, we tested our model on the challenge test set and report the results for cases
000 ∼ 099 in Table 5.2. Our model outperforms the baseline method proposed in [108]
both in the Dice score and Hausdorff distance. We did not report the results on cases
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5.5 Conclusion

Figure 5.3: Qualitative results: The first row depicts four rendered 3D volume of defective scan
from the test dataset. The second row shows the reconstructed skull by our method of
the corresponding defective skull. The third row is the corresponding cranial implant
predicted by our method. We observe that our method generalizes well and accurately
reconstruct the skull to predict the cranial implants.

100 ∼ 109, since the location of the defect is very different from the training set, and the
model could not predict the implant. Fig. 5.3 shows the qualitative results of randomly
selected scans from the test data set. Visual inspection also confirms that our model
estimates accurate cranial implants for these cases. The source code of our model is
accessible from https://github.com/mlentwicklung/autoimplant.

5.5 Conclusion

We provide an efficient and compact solution for the AutoImplant 2020 challenge, which
is suitable for fast and easy deployment. Our key innovation is the incorporation of a
two-stage reconstruction policy, where the first stage predicts a coarse-scale implant, and
the second stage super-resolve it to a high-resolution one. We achieve accurate implant
prediction on the validation dataset. Our model is end-to-end in the high-resolution
space and thus can serve as a baseline for developing more complex models aiming to
better learn the anatomically invariant implant prediction.
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6 Conclusion & Outlook

This publication-based dissertation presents methods for processing the 2D and 3D spinal
scans; it also covers some techniques for predicting cranial implant design. In total, this
work includes three publications and one manuscript currently being under review for
publication. Chapters 3 to 5 are self-contained and in their original form. Appendix A
provides additional unpublished work which might evolve in the future. This chapter
provides an overview of the previous chapters and concludes with the directions for
future work.

This thesis’s contributions are related to deep learning-based shape completion, ver-
tebral detection and labeling in X-ray images, 2D/3D shape inference, predicting 3D
cranial implants, 2D/3D registration, prior based 3D shape reconstruction and registra-
tion.

We presented a deep neural network for detecting and labeling the vertebra on radio-
graphs in Chapter 3. Detecting and labeling vertebra in the radiograph is a challenging
task due to the heavy tissue overlay and noise. Most of the works for vertebra labeling
were on CT images, and our work was one of the first methods proposed for radiographs.
We proposed a new model architecture, robust to vertebra occlusion, by enforcing the
spinal shape.

In Chapter 4 presents our work on deep learning based inference of 3D spinal postures
from 2D radiographs. An upright spinal pose (i.e., standing) under natural weight-
bearing is crucial for such biomechanical analysis. 3D volumetric imaging modalities (e.g.
CT and MRI) are performed in patients lying down. On the other hand, radiographs are
captured in an upright pose but result in 2D projections. This work aims to integrate
the two realms, i.e., it combines the upright spinal curvature from radiographs with the
3D vertebral shape from CT imaging synthesizing an upright 3D model of the spine,
loaded naturally. Specifically, we propose a novel neural network architecture working
vertebra-wise, termed TransVert, which takes orthogonal 2D radiographs and infers the
spine’s 3D posture.

In Chapter 5 we presented a deep neural architecture for designing a cranial implant.
Due to GPU memory limitations, we devised a solution composed of two subnetwork
functioning on 3D and 2D images with low and high resolutions. Our model performs
on 3D data in low resolution since a 2D model lacks a holistic 3D view of both the
defective and healthy skulls. The first subnetwork is designed to complete the shape of
the downsampled defective skull. The second subnetwork upsamples the reconstructed
shape slice-wise. We train both the 3D and 2D networks in tandem in an end-to-end
fashion, with a custom hierarchical loss function. Our proposed solution accurately
predicts a high-resolution 3D implant in the challenge test case in terms of dice-score
and the Hausdorff distance.

53



6 Conclusion & Outlook

In continuation of our work form Chapter 4 we explored the idea of incorporating
shape priors into the deep neural architecture to generate the 3D standing spine posture
from 2D orthogonal spinal radiographs. To increase the robustness to noise and tissue
overlay in radiographs, we introduced an anatomy-aware model for reconstructing the
spinal postures in 3D. Our proposed model is informed of the spinal curve and each ver-
tebral type shape by integrating shape priors into the network architecture. Our model
learns to deform the provided shape templates to generate 3D shapes. Thus, during
the training phase, the network estimates the deformation field required to register the
shape templates to the target shapes. The model comprises different subnetworks for
encoding the input data and decoder subnetworks to estimate the deformable and affine
deformation fields for individual vertebra. The results of this work will be published as
a journal paper in the future.

As in many other fields, recent deep learning progress has strongly influenced the
latest medical imaging approaches. This influence includes registration tasks as well.
Traditionally, the registration process is defined as an optimization problem, and the
deformation parameters are estimated in an iterative procedure, which makes it time-
intensive and prone to error. In our approach, once the model is trained, the registration
is conducted in a single forward pass with higher accuracy and robustness.

Deep convolutional networks have demonstrated remarkable performance on medical
imaging, while for shape processing tasks, working in voxel space and applying convolu-
tional networks might be sub-optimal.

The emerging field of research in geometric deep learning aims at transferring the
concepts of deep learning to non-euclidean domains. Non-euclidian domains include
learning on graphs, meshes[42, 117] and variants of which are starting to find applica-
tion in medical image computing such as automatic implant design and organ shape
processing.

Due to the ever-increasing number of parameters in deep neural networks, the demand
for training data to feed the networks is swelling. However, providing annotated data,
especially for segmentation tasks, is not feasible. Devising weakly supervised learning
and self-supervised learning to take advantage of unlabeled or sparsely labeled data is
important.
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A Appendix: Anatomy-aware Inference of
the 3D Standing Spine Posture from 2D
Radiographs

Unpublished work presented as part of the thesis.

A.1 Abstract

The balance of the spine is an important factor for the development of spinal degenera-
tion, pain and the outcome of spinal surgery. It must be analyzed in an upright, standing
position to ensure physiological loading conditions and visualize load-dependent defor-
mations. Despite the complex 3D shape of the spine, this analysis is currently performed
using 2D radiographs, as all frequently used 3D imaging techniques require the patient
to be scanned in a prone position. To overcome this limitation, we propose a deep neural
network to reconstruct the 3D spinal pose in upright standing position, loaded naturally.
Specifically, we propose a novel neural network architecture, that takes orthogonal 2D
radiographs and infers the spine’s 3D posture using vertebral shape priors. In this work,
we define vertebral shape priors using an atlas and a spine shape prior, incorporating
both into our proposed network architecture. We validate our architecture on digitally
reconstructed radiographs, achieving a 3D reconstruction Dice of 0.95, indicating an al-
most perfect 2D-to-3D domain translation. Validating the reconstruction accuracy of a
3D standing spine on real data is infeasible due to the lack of a valid ground truth. Hence,
we design a novel experiment for this purpose, using an orientation invariant distance
metric, to evaluate our model’s ability to synthesize full-3D, upright, and patient-specific
spine models. We compare the synthesized spine shapes from clinical upright standing
radiographs to the same patient’s 3D spinal posture in the prone position from CT.

A.2 Introduction

A biomechanical load analysis of the spine in an upright standing position is highly
warranted in various spine disorders to understand their cause and guide therapy [63].
Typical approaches for load estimation either use a computational shape model of the
spine for all patients or obtain a subject-specific spine model from a 3D imaging modality
such as magnetic resonance imaging (MRI) or computed tomography (CT) [64]. How-
ever, eventhough MRI and CT images can capture 3D anatomical information, they need
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the patient to be in a prone or supine position (lying flat on a table) during imaging.
However, to analyze the spinal alignment in a physiologically upright standing position
under weight bearing, orthogonal 2D plain radiographs (as depicted in Fig. A.1) are the
de facto choice. A combination of both these worlds is of clinical interest to fully assess
the true bio-mechanical situation, i.e. to capture the patient-specific complex patholog-
ical spinal arrangement in a standing position with full 3D information [65, 64, 66].

As much spatial information is lost when projecting a 3D object in only two 2D
planes, a random object cannot reliably be reconstructed from two orthogonal projec-
tions. However, the spine follows strong anatomical rules, that are repeated only with
slight variations in any patient. Typical projections, i.e. lateral and a.p. radiographs,
cover most of these variations, both on a local (per vertebra) and global (overall spinal
alignment) level. Motivated by this, we propose a fully-supervised, computationally effi-
cient, and robust approach combining sagittal and coronal 2D images to synthesise each
vertebra’s 3D shape model by deforming shape templates, forming a complete patient
specific spine model.

Training a model for 3D shape synthesis from 2D images, requires 3D supervision.
However, for 2D clinical radiographs we do not have the corresponding 3D shape of
spine. Thus, we introduce a training approach using synthetically generated radiographs
from 3D CT, with full supervision from the CT’s 3D vertebral masks.

Furthermore, to stabilize the model, we incorporate spinal and vertebral shape priors,
and train our model to estimate the deformation field to warp an atlas and generate the
3D shape [118]. In machine learning, shape priors help to reduce the search space of
possible solutions, improving the accuracy and plausibility of solutions [23]. Priors are
particularly effective when data are unclear, corrupt, with low signal-to-noise ratio or
when training data are scarce [23]. As we apply our model on clinical radiographs subject
to noise and heavy tissue overlay, incorporating shape priors into the model can enhance
robustness against such artefacts in real-world data. As the task is to synthesize not
only individual vertebral shapes, but also the complete spinal alignment, we show that
additionally including a spine shape prior as global information improves the results.

As the position of the patient differs in prone 3D imaging and upright radiographs,
the orientation of the generated radiograph-based 3D vertebrae are different from the
CT scan of the same patient. Thus, to quantitatively compare the vertebral shapes
of the model and ground truth, we need a metric invariant to the orientation for the
comparison of the generated vertebral shapes to those from CT scan of the same patient.
For this purpose we use an orientation-invariant metric.

Specifically:

• We introduce an anatomy-aware deep neural network for fusing orthogonal radio-
graphs to generate a 3D spine model. We define this 3D shape synthesis as a
hybrid registration problem in which the network estimates vector fields to deform
vertebral shape templates to achieve shape synthesis.

• Validating our approach using 3 different metrics, we achieved scores of 0.95,
5.70 mm and 0.17 for Dice, Hausdorff distance and normalized weighted spec-
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A.2 Introduction

tral distance (nWESD) on digitally reconstructed radiographs. We successfully
reconstructed 3D, patient-specific spine models on real clinical radiographs.

• Validating the success in a clinical setting required a novel experimental setup.
We designed an experiment to compare the results on clinical radiographs to the
vertebral shapes from the same patient’s 3D scan. Since the two spine postures
are dissimilar, the orientation of corresponding individual vertebrae are different
in each posture. Thus, we use nWESD as a metric which is invariant to rigid
transformations, to conduct a vertebra-by-vertebra comparison, and achieve the
nWESD score of 0.13.

A.2.1 Related Work

The literature offers a wealth of pre-existing registration-based methods [119, 120, 77,
27, 121, 122] for relating 2D radiographs to 3D CT or MR images. In [66], the authors
employ coarse manual registration for aligning 3D data to 2D sagittal radiographs for
the lumbar vertebrae. Similarly, in [67], manually annotated vertebral bodies on 2D
radiographs are used to measure the vertebral orientations in an upright (standing) po-
sition. Such solutions are time-consuming, labor-intensive, and are vulnerable to error.
Note that both the works only employ sagittal reformations to position the vertebrae.
They ignore the coronal reformation contains significant information about the spine’s
natural curvature, especially in abnormal cases. Other approahes for this purpose in-
troduce an automated 3D–2D spine registration algorithm [68], [123], wherein authors
suggest a multi-stage registration method by introducing a comparison metric for a CT
projection and a radiograph. Since this metric is parameter-heavy and hand-crafted, the
generalizability and inference speeds of these methods are limited. In [69], the 3D shape
of the spine is reconstructed using a biplanar X-ray device called ‘EOS’. The advantage
of the system is the low radiation dose required and that both projections are acquired
simultaneously, allowing for a direct spatial correspondence between the two planes.
Hindering its applicability is the high device cost and thus the lack of its presence in
clinical routine.

The problem of reconstructing 3D shapes from 2D images has recently been explored
using deep learning methods. For example, in [72], adversarial training is used to syn-
thesize 3D CT images given to orthogonal radiographs. For a scale of spinal scans, this
method is memory intensive and also fails to synthesize smaller 3D anatomies such as
the vertebrae. Note that this method has been evaluated on digitally reconstructed ra-
diographs (DRR) only, thus requiring further validation for its clinical usage. In [73]
and [74], the authors design a model to generate a 3D shape given multiple arbitrary
view 2D images. However, the input images include only the object of interest without
background, which is not applicable to medical images like spinal radiographs. In our
previous work on inferring the 3D standing spine posture [124], we introduce a new deep
neural network architecture termed TransVert, to combine the 2D orthogonal image in-
formation and reconstruct a 3D shape. Since the vertebrae are heavily occluded by soft
tissue and ribs in the radiographs, the reconstruction is challenging and in some cases the
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output shape is far from a vertebral shape. The idea of incorporating shape priors into
the neural network models have been explored by [23, 75, 76, 77, 125]. However, for our
application, considering only the vertebral shape priors when reconstructing the spine
posture is not enough. Most of the ideas proposed for using shape priors in deep neural
networks are for a single object, while the spine shape is more complicated as it is made
of multiple objects (vertebrae) connected to each other and deforming subject to some
constraints from human anatomy. Thus, defining a prior for explaining intervertebral
constraints and the spinal shape is crucial here.

A few works have modeled the spinal shape [126]. For instance, in [78] the authors pro-
posed an automatic framework that segments vertebrae from arbitrary CT images with
a complete spine model. They first scanned a commercially available plastic phantom
to generate the the template. Next, they manually registered it to ten actual full spine
scans. Authors learned a statistical form model of the spine in [79] by independently
studying three models for cervical, thoracic and lumbar regions. Thus, their models do
not learn the shape correlations across the full spine. [126]

Other probabilistic models, such as probabilistic atlas [80], graph models [81], Hidden
Markov Models [82] and hierarchical models [83, 84, 85] have also been proposed. For
instance in [80] authors proposed a probabilistic atlas of the spine. By co-registering
21 CT scans, a probability map is created which can be used to segment and detect
the vertebrae with a special focus on ribs suppression. In [81] the authors proposed a
probabilistic graphical model for the location and identification of the vertebrae in MR
images. In both cases full spines were observed at training time. But none of the works
mentioned above are incorporated in a machine learning model for reconstructing 3D
shape of spine from 2D images.

A.3 TransVert+: From 2D images to 3D shapes

Our network estimates the vector field that deforms a discrete atlas to the desired ver-
tebral shape. As a final goal we require the network to generate a 3D posture of the
spine given two orthogonal 2D radiographs. For synthesizing 3D data from 2D informa-
tion, the the following requirements are desired: First, for efficient recovery of 3D shape
information from sagittal and coronal projections, the network needs to integrate the
information from these projectins appropriately. Second, recovering 3D shapes from 2D
projections is inherently an ill-posed problem, requiring incorporation of prior knowledge.
This knowledge includes vertebral shapes and the shape of the spine (spinal curvature).
We incorporate a spine atlas as a shape prior into our network architecture, to enforce
vertebral shape constraints. We also define the spinal curve by atlas vertebral centroids,
for enforcing the shape of the spine. In addition to image data, we include the verte-
bral labels as an additional annotation attached to the network input. Fig. A.2 depicts
orthogonal input image patches with corresponding centroid annotations, indicating the
vertebra of interest in that patch. We take a registration approach for shape synthesis
and propose the TransVert+ network architecture.
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A.3 TransVert+: From 2D images to 3D shapes

Figure A.1: Lateral and anterior-posterior (a.p.) view radiographs of 3 patients with spinal
curvature annotation. Considering the vertebral centroid coordinates and spinal
curvature facilitates determining the scale and the vertebral orientation.

A.3.1 Overview

TransVert+ takes five inputs, of which four are 2D images of the sagittal and coronal
vertebral image patches (xs and xc) and their corresponding annotation images (ys and
yc) indicating the vertebra-of-interest (VOI). In our case, the VOI-annotation image
is obtained by placing a disc of radius 1 around the vertebral centroid. The image
patches and the corresponding annotation images are illustrated in Fig. A.2. The fifth
input is a vector of floats denoting the coordinates of the vertebral centroids (~C v) in a
global spine coordinate system, for providing the model with a holistic view of the spinal
curve for more consistency. We desire a function G that outputs the vertebra’s full-body
3D shape, y, which is represented as a discrete voxel-map by deforming the vertebral
shape templates (yt):

y = G(xs, xc, ys, yc, ~C
v) ◦ yt. (A.1)

We formulate this shape synthesis as a registration problem in which vertebral shape
templates are deformed to obtain desired shapes. This includes both global affine trans-
formations (scaling and 3D rotation for each vertebra, considering the global spinal
shape) and local deformations on the vertebral surface. We denote them as two sub-
tasks,

G(xs, xc, ys, yc, ~C
v) = Ga +Gd, (A.2)
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Sagittal DRR vertebra & Centroid
annotation

Coronal DRR vertebra & Centroid
annotation

Figure A.2: Vertebral image patches with corresponding annotations. The network inputs are
2D orthogonal view vertebrae patches and the centroid indicates the vertebra of
interest.

Ga = AffineDecoder(xs, xc, ys, yc, ~C
v), (A.3)

Gd = DeformableDecoder(xs, xc, ys, yc), (A.4)

where G denotes the mapping performed by TransVert+. The transformation G is sep-
arated into affine (Ga) and deformable (Gd) transformations. When inferring the affine
transformation the entire spinal shape is considered, while for inferring the deformable
transformation individual vertebral shape features are taken into account. We will elab-
orate more on this in the next sections.

Ideally, training the TransVert+ model requires radiograph images and their corre-
sponding ‘real world’ standing 3D spine models. However, this correspondence does not
exist. It is, in effect, the issue we aim to address. Thus, TransVert+ is trained on
sagittal and coronal digitally reconstructed radiographs (DRR) generated from prone
CT images with supervision from the voxel-level, vertebral segmentation masks of the
corresponding CT images. Since DRRs are similar in appearance to real radiographs,
one can deploy a DRR-trained TransVert+ model on clinical standing radiographs.

Generating 3D shapes from 2D information is an ill-posed problem. We model this
task as a registration problem. Given 2D orthogonal information we estimate vector
fields to deform shape templates to match the target 3D shape. We introduce a novel
deep neural architecture to fuse the 2D information from orthogonal views and estimate
the vector field required to maximize the alignment of the deformed template and the
target shape. More specifically, to infer 3D spinal shapes, given 2D orthogonal radio-
graphs and vertebral centroid coordinates in the global coordinate system, our model
predicts a vector field to deform each vertebral shape template to match the target. The
vector fields are predicted by considering each vertebral shape locally and also consid-
ering the spinal curvature globally. We show that incorporating the global spinal shape
information improves the performance of the model. Our model is composed of two
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Figure A.3: Architecture of TransVert+. Our model is composed of sagittal and coronal 2D
encoders, an affine 3D decoder and a deformable 3D decoder. The down-scaled
shape templates are concatenated with the features extracted by encoders and fed
to the decoders. The centroid coordinates in the global spine coordinate system
are concatenated with the affine decoder feature maps. The ⊗, ⊕ and operators
represent warping, addition and concatenation respectively.

encoders for each view, an affine decoder and an deformable decoder. In the following
sections we describe the model architecture and training scheme in detail.

A.3.2 Network Architecture

Fig. A.3 demonstrates a block diagram of the model and its subnetworks. The model is
composed of two encoders, one for each view (a sagittal encoder and a coronal encoder)
and two decoders (an affine decoder and a deformable decoder). The input to the en-
coders is the image patch of the vertebra from the radiograph and the centroid annotation
on the vertebra of interest. The features extracted using the encoders are concatenated
to the global centroid coordinates and fed to the affine decoder (to estimate the affine
transformation parameters for each vertebra) and the deformable decoder (which is a
fully convolutional network to estimate the deformation for each voxel). Finally the
affine and deformable vector fields are summed to produce the final displacement field,
which is used to warp the template and produce the 3D shape model.

A.3.2.1 Sagittal and Coronal Encoders

The architecture of sagittal and coronal encoders are designed differently. In Fig. A.4
the architecture for each view is visualized. Each encoder is designed to reconstruct the
missing third dimension of the 2D input. Therefore, they contain anisotropic convolu-
tions with the longer side along the dimension that needs to be expanded. For instance,
for a coronal input the anterior-posterior dimension needs to be expanded. For the same
reason, the convolutional strides and padding directions are orthogonal for each of the
views. We empirically observed that, employing ‘squeeze and excitation’ block in the
network results in a better performance than a naive fusion by concatenating the mul-
tiple channels. As input to the encoders, the vertebral images and VOI-annotations are
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Figure A.4: Architecture of the orthogonal encoders, which employ anisotropic convolutions,
with an anisotropy along the dimensions that need to be expanded. We use ‘squeeze
and excitation’ blocks (depicted in red) to fuse the image features and annotation
features.

combined using a ‘squeeze and excitation’ block (depicted in red )[127]. In our previous
work [124] we showed that, using encoders for each view with anisotropic convolutions,
outperforms using a single encoder or fusing input 2D data by outer product of the
orthogonal 2D images.

A.3.2.2 Affine Decoder

Since the vertebrae are not completely visible in the radiographs, generating the 3D
spine model given only the encoded features for each vertebra separately could lead to
inaccurate orientation.

Including the vertebral centroid coordinates in the global coordinate system provides
the model with a holistic shape of the spine. For example, Fig. A.1 demonstrates lateral
and anterior-posterior (a.p.) view radiographs of three different patients. The distance
between the centroids determines the scale. Also, if one fits a curve to all of the vertebral
centroids, the orientation of each vertebra should be almost perpendicular to the curve
at each vertebral centroid. Although defining the orientation of the vertebrae and the
other constraints like inter-vertebral distance need accurate vertebral landmark detection
on radiographs, our experiments show that we can train an Multi Layer Perceptron
(MLP) to estimate the 3D affine parameters, given only the vertebral centroids and the
information extracted by the encoders.
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Figure A.5: Visualization of coronal and sagittal image patches from three vertebrae. First and second
columns are the coronal and sagittal image patches, third column shows one slice of the
predicted deformation field and last column is the corresponding slice in the resulting
shape.

Since the features calculated by the encoders for data samples in a batch are inde-
pendent of each other, we need an intra-batch fusion mechanism to give the model a
holistic view of the features from different spinal regions. We assume that the vertebrae
in a batch are from the same spine and in order (we train the model in this way). For
intra-batch fusion, we flatten the features from both encoders and also the down-scaled
vertebral shape templates and concatenate them with the vertebral centroid coordinates,
for all vertebrae. These inputs are fed into our affine subnetwork, which is a MLP.

For each vertebra, the affine subnetwork estimates four parameters: the scaling factor
(S), and the rotation about each axis (θx, θy, θz). After the transformation matrix is
created, the corresponding affine vector field is calculated. We do not include translation,
since the input image patches are extracted in such a way that the vertebral centroid is
at a fixed location in the image patch.

θx, θy, θz, S = AffineDecoder(xs, xc, ys, yc, ~C
v), (A.5)
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Taffine = R(θx) ∗R(θy) ∗R(θz) ∗ T (S), (A.6)

R(θx) =


1 0 0 0
0 cos(θx) − sin(θx) 0
0 sin(θx) cos(θx) 0
0 0 0 1

 (A.7)

R(θy) =


cos(θy) 0 sin(θy) 0

0 1 0 0
− sin(θy) 0 cos(θy) 0

0 0 0 1

 (A.8)

R(θz) =


cos(θz) − sin(θz) 0 0
sin(θz) cos(θz) 0 0

0 0 1 0
0 0 0 1

 (A.9)

T (S) =


S 0 0 0
0 S 0 0
0 0 S 0
0 0 0 1

 (A.10)

Affinevf = τ(Taffine), (A.11)

where the Affinevf is the affine vector field and τ() is the function to generate an
affine vector field given the transformation matrix.

A.3.2.3 Deformable Decoder

In parallel with affine parameter estimation for rough alignment between the template
and target shapes, we synthesize the finer details. We design a subnetwork termed the
“deformable decoder” for estimating local shape deformations. The deformable decoder
is a fully convolutional network. The inputs to this network are the intermediate 3D
latent representation calculated by the encoders with the down-scaled (the same size
as 3D latent representation) shape template as an extra channel. Including the shape
template as another input channel helps the model to infer the differences between the
template and target shapes. The deformable decoders’s output is a 3D vector field with
target volume resolution. Contrary to the affine decoder, which estimates the affine
transformation parameters based on the entire batch, the deformable decoder is focused
on single data samples in the batch, to consider the finer shape details for each sample,

Deformablevf = DeformableDecoder(xs, xc, ys, yc). (A.12)
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A.3 TransVert+: From 2D images to 3D shapes

Figure A.6: Shape modelling with TransVert+ on DRRs: The first column indicates the image
input. The second and third columns visualize the ground truth (GT) vertebral
mask, and the fourth visualizes the predicted 3D shape model. The last column
shows an overlayed Chamfer distance map between point clouds of GT and pre-
diction.

A.3.3 Learning

We train the model using the `1 distance between the deformed templates and the target
vertebral shapes in the voxel space. To regularize the deformations, we incorporate a
smoothing term in the cost function. Solely using a regression loss leads to convergence
to a local optimum in which a mean (or median) shape is predicted, especially in the
highly varying regions of the vertebra such as the vertebral processes. We have,

Ltotal = αpL`1 + αsLsmooth (A.13)

L`1 = ||y −G(xs, xc, ys, yc, yt, ~C
v) ◦ yt||1 (A.14)

Lsmooth =
1

X.Y.Z

∫ X
0

∫ Y
0

∫ Z
0 ||G(xs, xc, ys, yc, yt, ~C

v)||1dxdydz,
(A.15)

where αp and αs are weights for the network prediction and smoothness terms respec-
tively, and are fixed to αp = 10 and αs = 0.1. Note that y contains an integer value of
{0, i}, where i ∈ {8, 9, 2̇4} represents the vertebral index from T1 to L5. Constraining
the network to predict the vertebral index implicitly requires it to learn relating the
vertebral index to the shape as a prior.

In order to impose a constraint for locally smooth deformations and a minimum dis-
placement solution for our registration problem, we add Lsmooth to penalize the `1−norm
of the deformation field.

The network was implemented with the Pytorch framework on a Quadro P6000 GPU.
It was trained until convergence using the Adam optimizer [128] with an initial learning
rate of 0.0001.
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Setup Dice Hausdorff (mm) nWESD
AffTransVert 0.8847 12.40 0.3181
DefTransVert 0.9405 9.08 0.2430

TransVert 0.9426 7.93 0.2779
TransVert+ 0.9510 5.70 0.1797

Table A.1: Architectural ablation study: The performance progressively improves with addi-
tion of each component. While TransVert outperforms the separate Affine and
Deformable TransVert models, including both of the Affine and the Deformable
decoders in TrasVert+ model performs better than TransVert.

Setup T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 L1 L2 L3 L4

Aff 0.89 0.87 0.87 0.88 0.87 0.87 0.87 0.87 0.88 0.89 0.90 0.90 0.90 0.88 0.87 0.85
Def 0.93 0.94 0.93 0.93 0.93 0.95 0.95 0.96 0.96 0.97 0.96 0.95 0.94 0.93 0.90 0.91
TVert 0.94 0.93 0.94 0.94 0.95 0.95 0.95 0.96 0.96 0.97 0.96 0.95 0.94 0.93 0.91 0.91
TVet+ 0.95 0.93 0.94 0.95 0.95 0.95 0.96 0.96 0.97 0.97 0.97 0.96 0.96 0.95 0.92 0.92

Table A.2: Vertebra-wise comparison of different architectures (Affine, Deformable, TransVert
and TransVert+) using Dice scores. A higher score indicates better performance.

A.4 Validation

Training the TransVert+ model requires radiograph images and their corresponding
3D spine shapes. However, this correspondence does not exist. Therefore, we train
TransVert+ on sagittal and coronal DRRs generated of CT images and supervised by
the corresponding CT images’ vertebral segmentation masks. In this section, we describe
the process of generating DRRs, report an ablative study on architectural choices, and
evaluate TransVert+’s performance on clinical radiographs.

A.4.1 Data

Recall that TransVert+ works with two data modalities: it is trained on DRRs extracted
from CT images and is deployed on clinical radiographs.

A.4.1.1 CT data

We employed two sets of data: First, a public dataset for lung nodule detection with
800 chest CT scans [97], and second, an in-house dataset with 154 spinal CT scans.
Overall, we work with ∼ 12K vertebrae split 5 : 1 forming the training and validation
set and report 5-fold cross-validated results. Of note, [97] is a lung-centred dataset,
thus consisting of few lumbar vertebrae. All of spinal CT scans were resampled to 1mm
resolution and segmented using [4]. Next, an experienced neuro-radiologist approved
the generated masks to consider only accurate ones for the study. Consequently, we
excluded 50 cases from the datset.

We employ a ray-casting approach [98] to construct DRRs from CT scan. In this
method, we define lines from the radiation source (focal point) to every single pixel on
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Setup T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 L1 L2 L3 L4 L5

Aff 12.6 10.5 10.8 11.3 11.3 11.3 11.6 11.6 11.9 12.2 12.7 13.0 13.1 13.4 13.8 14.8 14.5
Def 9.1 8.4 8.5 8.4 8.7 8.5 8.6 8.7 8.9 8.8 9.2 8.9 9.0 9.5 10.1 10.2 10.5
TVert 7.4 7.2 7.3 7.2 7.9 7.5 7.4 7.5 7.5 7.6 8.0 7.8 7.8 8.4 8.9 9.3 9.1
TVert+5.6 5.0 5.0 4.9 5.1 5.0 5.1 5.2 5.2 5.3 5.5 5.4 5.4 5.9 6.5 8.4 8.5

Table A.3: Vertebra-wise comparison of different architectures using Hausdorff distance. A
lower distance indicates better performance.

Setup T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 L1 L2 L3 L4 L5

Aff 0.31 0.29 0.33 0.26 0.28 0.34 0.32 0.32 0.34 0.32 0.31 0.29 0.28 0.29 0.33 0.38 0.37
Def 0.21 0.21 0.25 0.24 0.28 0.24 0.25 0.27 0.25 0.23 0.20 0.26 0.30 0.16 0.24 0.35 0.36
TVert 0.24 0.24 0.24 0.23 0.29 0.27 0.27 0.26 0.24 0.22 0.22 0.24 0.28 0.27 0.36 0.38 0.40
TVert+0.15 0.13 0.16 0.10 0.19 0.18 0.20 0.15 0.12 0.22 0.19 0.11 0.15 0.15 0.29 0.31 0.30

Table A.4: Vertebra-wise comparison of different architectures using nWESD distance. A lower
distance indicates better performance.

the DRR image and calculate the integral of the CT intensities over these lines. In this
simulation we assign (180cm) and (150cm) to the radiation source-to-detector distance
and the source-to-object distance parameters respectively. An example of orthogonal
DRRs generated from a CT scan is shown in Fig. A.7. Once the sagittal and coronal
DRRs are generated, the inputs for TransVert+ are constructed by extracting image
patches of size 64×64 around each vertebral centroid. Similarly, the VOI-annotations
were also extracted automatically from the projected segmentation mask.

A.4.1.2 Clinical radiographs

We validate TransVert+ on clinical, standing radiographs (pairs of lateral and anterior-
posterior projections) aquired from 30 patients. Before deploying our TransVert+ model
on the clinical radiographs, we resample all radiographs to 1mm resolution. Image
acquisition parameters such as the source-to-detector and source-to-object distances were
similar to those used for DRR generation. We employed [99, 129] to automatically
generate the vertebral annotations on both views.

A.4.1.3 Image normalization

We trained TransVert+ on DRRs and tested it on real clinical radiographs. To enable a
transfer of learning between between these modalities, we need to normalize the intensi-
ties to a similar range. Therefore, we employ z-score normalization, i.e. I = (I−µI)//σI ,
where µI and σI are the mean and standard deviation of the image I, respectively.
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A.4.2 Metrics

The Dice score is the most popular measurement for evaluating segmentation accuracy
and measures the overlap between two binary images. However, the Dice score is a poor
measure of segmentation accuracy when the shapes to be compared are not “blob-like”.

Another popular metric for segmentation evaluation is the Hausdorff distance. The
Hausdorff distance between two segmentations represented as surface meshes is the max-
imum distance from vertices on the first mesh to the vertices on the second mesh.

The measurements like the Dice score, average many local errors measured at each
voxel. Thus, a segmentation that is largely correct with a few major shape errors will
have the same score as a segmentation that is only slightly wrong everywhere.

As mentioned before, we do not have the 3D ground truth for the clinical radiograph
of a patient. We can acquire the 3D CT segmentation of the same patient. However,
because of difference in spinal posture the vertebral orientations are different and we
cannot compare the 3D vertebrae reconstructed from clinical radiographs to the ones
from CT using Dice score or Hausdorff distance. Thus, we desire a rotation-invariant
metric to evaluate the model performance on clinical radiographs, for each individual
vertebra.

The normalized weighted spectral distance (nWESD) [130, 131] is a global shape
measure based on heat trace analysis via the Laplace operator. The eigenvalues of the
Laplacian of a shape are strongly connected to the shape’s geometric properties, such
as its volume, surface area and mean curvature. The Laplace spectrum is invariant to
isometric transformations (rigid transformations), and changes continuously as a shape’s
boundary is transformed. Thus, because of rotational invariance, we can use this metric
for comparing the 3D vertebral shapes reconstructed from the patient’s clinical radio-
graphs to the vertebral shapes from his 3D CT segmentations.

The weighted spectral distance (WESD) between two binary segmentations Ωλ and
Ωξ is defined as

ρ(Ωλ,Ωξ) = [

∞∑
n=1

(
|λn − ξn|
λnξn

)p]

1/p

, (A.16)

where d indicates the dimensionality of the binary segmentations, λn and ξn denote
eigenvalues of the segmentations Ωλ and Ωξ, and p ∈ R with p > d/2.

The normalized WESD (nWESD) is derived using the fact that WESD converges as
N → ∞ (even though each eigenvalue spectrum is divergent) and is bounded above by
W (Ωλ,Ωξ) (for details, see [130]). Therefore, the (finite) nWESD ρ̄N (Ωλ,Ωξ) can be
defined as:

ρ̄N (Ωλ,Ωξ) =
ρN (Ωλ,Ωξ)

W (Ωλ,Ωξ)
∈ [0, 1) (A.17)

ρN (Ωλ,Ωξ) = [

N∑
n=1

(
|λn − ξn|
λnξn

)p]

1/p

, (A.18)
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Figure A.7: Orthogonal DRRs of a patient and reconstructed 3D spine model. DRRs are
generated to from CT scans and our model is trained to reconstruct the 3D spine
shape from DRRs.

A.4.3 Experiments

In order to analyze the contribution of various architectural components of the TransVert+
and to validate it’s performance on clinical radiographs, we propose three sets of experi-
ments. The performance evaluation in various settings was compared by computing the
Dice coefficient, Hausdorff distance and normalized weighted spectral distance (nWESD)
between the predicted 3D vertebral mask and the ground truth CT mask, where appro-
priate.

A.4.3.1 Analysing TransVert+’s architecture

The proposed architecture for TransVert+ consists of the following architectural choices:
fusion of sagittal and coronal views with shape prior, the affine decoder and a convo-
lutional decoder to estimate the displacement field for each vertebrae. We performed
an ablative study over these components. First, we evaluated the performance of the
model working only with the affine decoder. Second, we trained the model solely with
the deformable decoder to estimate the deformation fields. Third, we repeat the perfor-
mance our previous model TransVert, in which we did not incorporate the shape priors,
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Figure A.8: Full 3D spine models: 3D patient-specific spine models constructed from real clini-
cal radiographs. Each sagittal and coronal view radiograph pair is from a different
patient.

where we estimate the vertebral shapes directly in the voxel space without registration.
Firnally, we give results for TransVert+.

The results are reported in Table A.1. As we expected, the affine results are not better
that TransVert, since the model roughly aligns the shape template to the target and the
results lack shape details. Training the model with a deformable decoder performs better
than the affine model. The deformable model achieves an average Dice score of 0.9405,
close to that of TransVert model (0.9426). In the Hausdorff distance metric, TransVert
performs better but for the nWESD metric, the defromable model achieves a better score.
Finally, our main TransVert+ model which incorporates the global shape information
of spinal curvature using the affine decoder and takes care of the local shape details
using the deformable decoder, outperformed all of the previous models in all metrics.
For a detailed comparison of the methods, in Tables A.2, A.3 and A.4 we report the
mean Dice score, Hausdorff distance and nWESD distance for each vertebra. Fig. A.5
depicts coronal and sagittal image patches from three vertebrae, mid-slice of the resulting
estimated displacement field and vertebral shape. Fig. A.6 shows an example point cloud
(with 2048 points) from the predicted and ground truth shapes, along with a point-wise
Chamfer distance map. Observe that the vertebra’s posterior region (vertebral process)
is hardly visible in the image inputs. In spite of this, TransVert+ was able to reconstruct
the 3D shape of vertebral process.
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Figure A.9: Comparing vertebral shapes to the ones predicted from radiographs using
TransVert (Blue) and TransVert+ (Orange) using the nWESD metric. The mean
nWESD metric for TransVert+ is lower than TransVert, indicating a better per-
formance.

A.4.3.2 2D-to-3D translation in clinical radiographs

TransVert+ generates 3D shapes of each vertebra. To reconstruct the 3D shape of the
full spine, we stack the predicted vertebral shapes at their corresponding 3D centroid
locations. We obtain the sagittal and coronal centroid coordinates elements from sagit-
tal and coronal reformations, respectively. Fig. A.8 depicts the results of deploying
TransVert+ for reconstructing the 3D, patient-specific posture of the upright standing
spine. As stated, there is no 3D ground truth spinal model for the clinical radiographs.
Observe the matched reconstruction of the 3D spine posture to the spinal posture in
radiographs.

A.4.3.3 Quantitative evaluation of performance on clinical radiographs

We quantitatively evaluated the performance of our model on clinical radiographs in
two patients for whom we have CT scans in addition to orthogonal standing radio-
graphs. Using our TransVert model and the TransVert+ model proposed in this work,
we generated the 3D shapes of the vertebrae given the 2D clinical radiographs. Then
we compared each vertebra to the corresponding one from the CT scan segmentation
masks, which refer to the same object but in a different orientation. Conventional met-
rics like the Dice score or Hausdorff are not applicable in this case, but we can use
the nWESD metric as it is invariant to rigid transformations (including rotation). The
resulting nWESD scores are demonstrated in Fig. A.9, where the mean nWESD was
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0.13 for TransVert+. To verify that the performance improvements of TransVert+ over
TransVert on clinical radiographs were statistically significant, we conducted an ANOVA
analysis on the nWESD scores, yielding p− value = 0.001 and showing the statistically
significant improvement.

To appreciate the difference of spine posture in the standing and lying down positions,
we illustrate the two cases we used in this experiment in Fig. A.10. The spine postures
reconstructed from radiographs in upright standing position are depicted in left and the
ones from CT are depicted in right side of the figure.

A.5 Conclusion

We introduced TransVert+, a neural network architecture to reconstruct a full 3D spinal
model from 2D orthogonal radiographs by deforming vertebral shapes. We proposed a
supervised approach to train the model on synthetic data (DRRs) and transfer the
trained model to radiographs. We demonstrated an improved performance of the model
after incorporating shape priors into the model and separating the registration problem
into affine and deformable registrations. We improved upon the state-of-the-art in three
different metrics for this task. Finally, we successfully validated our model on real-world
clinical radiographs and quantitatively compared the results to CT segmentations of the
same patient for the first time. The approach we proposed could be used to simulate the
spinal posture in standing position under weight bearing, and used in bio-mechanical
analysis.
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Figure A.10: Comparing 3D reconstructions of the standing spinal posture from clinical radio-
graphs (green) to the spinal posture of the same patient in lying-down position
from CT imaging (yellow) in two different patients. In the upright-standing pos-
ture the spine is under natural weight bearing which leads to a different spinal
curve.
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