
DEPARTMENT OF INFORMATICS
TECHNICAL UNIVERSITY OF MUNICH

Bachelor’s Thesis in Informatics

Transport of Discontinuous Densities with
Artificial Neural Networks

Michael Plainer

DEPARTMENT OF INFORMATICS
TECHNICAL UNIVERSITY OF MUNICH

Bachelor’s Thesis in Informatics

Transport of Discontinuous Densities with
Artificial Neural Networks

Transport von Unstetigen Dichten mit
Künstlichen Neuronalen Netzwerken

Author: Michael Plainer
Supervisor: Prof. Dr. Christian Mendl
Advisor: Dr. Felix Dietrich
Submission Date: September 15, 2021

I confirm that this bachelor’s thesis is my own work and I have documented all sources
and material used.

Munich, September 15, 2021 Michael Plainer

Abstract

Nearly all real-world measurements can only record a part of the underlying truth
due to technical limitations. In many fields, full comprehension of the system requires
an understanding of how the unmeasurable inputs or states map to the measurable
outputs. In cases where many individual measurements are performed, the density
of the observation can be approximated with histograms. They count the frequency
at which measurements fall in a given range. Each observed sample corresponds to
exactly one unknown point in the input space that has been mapped by a function
to produce exactly this recorded output. When the distribution of these points in
the original input space is known (e.g. uniformly distributed), a transport function
describing this mapping can be found. Identifying this transport function is the main
objective of this thesis. The field of transportation theory is dedicated to finding these
transportation maps between two (probability) measures that are optimal according
to a metric. Those approaches can fail to identify the true underlying transport map,
for example if it is not bijective or when the recorded density is discontinuous. Recon-
structing this true underlying transport map can be done by employing an observation
process that measures consecutive outputs of moving points. This reconstruction pro-
cedure is implemented with artificial neural networks and demonstrated by examples.
Separately to the transport of measures, another network is implemented that learns the
underlying dynamical system based on the observation process, allowing to extrapolate
the movement of the points. Apart from fictitious examples, the procedure is also
applied to reconstruct the shape of a simulated cell by synthesizing image data (e.g.
produced by a microscope) and observing moving bacteria on the cell’s surface.

iii

Contents

Abstract iii

1. Introduction 1

2. State of the Art 3

2.1. Fundamentals . 3
2.1.1. Measure theory . 3
2.1.2. Transportation theory . 5
2.1.3. Manifolds and embeddings . 7

2.2. Transport of densities with normalizing flows 8
2.2.1. Artificial neural networks . 11
2.2.2. Normalizing flows with artificial neural networks 13

2.3. Transport of discontinuous densities . 15

3. Transport of Discontinuous Densities with Artificial Neural Networks 17

3.1. Overview . 17
3.1.1. Problem description . 18
3.1.2. Transporting densities with normalizing flows 19
3.1.3. Direct transport of discontinuous densities 21

3.2. Reconstruction of one-dimensional discontinuous densities 23
3.2.1. Observational process and time delay embedding 23
3.2.2. Unfolding discontinuous densities 25
3.2.3. Reconstructing the underlying manifold 26
3.2.4. Transport of continuous densities 28
3.2.5. Varying underlying densities . 29
3.2.6. Number of time delays . 31

3.3. The dynamical system . 32
3.3.1. Learning the system with a neural network 33
3.3.2. Architecture and training . 34
3.3.3. Results . 35

3.4. Approach for higher-dimensional discontinuous densities 37
3.4.1. Two-dimensional discontinuous densities 37
3.4.2. Constructing a diffeomorphic surface with time delays 38

iv

Contents

3.4.3. Parametrization with manifold learning 39
3.4.4. Recovering the underlying manifold 42
3.4.5. Transporting marginal to joint densities 43
3.4.6. Learning the dynamic in higher dimensions 45

3.5. Learning the shape of a cell from image data 47

4. Conclusion 50

Appendix A. Normalizing flows with Pyro and PyTorch 52

Bibliography 54

v

1. Introduction

Conducting experiments, measuring their results, and adapting theories is the estab-
lished scientific method. In many cases, the complete state of the underlying system can
only be observed partially but not completely. However, access to a predictive system
state is often needed to progress understanding and to create new results. Projecting
a three-dimensional object to a two-dimensional picture, for example, already loses
essential information that might be needed in some scenarios. Similarly, in scientific
processes, observing measurements usually involves taking multiple samples, where
the exact underlying process that produces the measurements is unknown—otherwise
samples could be perfectly simulated. The number of underlying inputs needed to
accurately map a point from the input space to the observed space varies. In some cases,
an underlying one-dimensional space with a (complicated) map might be sufficient to
express the observed values.

Measurements can be processed in multiple different ways, one of which is to create
a histogram. With histograms, recorded values are categorized into non-overlapping
ranges (i.e. bins) and the number of items in each bin is counted. The higher the
frequency of a bin compared to others, the more likely a new sample falls into it. This
process estimates the underlying density and can give a lot of insight on its own [49,
p. 18]. For example, a satellite image could be used to create a two-dimensional
histogram (i.e. a heat map) that shows where most people live. As bins get smaller and
the sample size larger, this histogram converges to the true density of the population.

The main focus of this thesis is to reconstruct the true relation that maps between
the unknown input space and the observed measurements, and vice versa. It pays
particular emphasis to the case where the observed density suggests singularities, as it
does in various real-world fields [1, 9, 43]. The optimal transport problem is one way to
solve this and was first formulated by Monge [44]. It describes the problem of finding
an optimal way to map between two densities [70, 71]. In this context, optimal typically
means to minimize the distance individual points must be moved within the space.

Implementations of the optimal transport problem such as the numeric approach
presented in [14] often fail to identify the true underlying relation, especially when
discontinuous densities are involved [45]. Similarly, we will see that other approaches,
such as normalizing flows [66, 67], can fail too. However, identifying the true system
is needed in fields such as domain adaption [13]. In this thesis, we will follow the

1

1. Introduction

procedure proposed in [45] to reconstruct the true underlying relation. Moosmüller,
Dietrich, and Kevrekidis rely in [45] on an observation process that collects multiple
measurements from the underlying moving points, instead of only collecting single
values. In the previous example of the satellite image producing the heat map, this
would mean that multiple pictures are taken to record people’s movement. With these
additional time delayed measurements, individual points (e.g. people) can be observed
and finding the true relation becomes possible (up to isometry). The ideas of Takens’
theorem [2, 48, 68] are used to find a similar (i.e. diffeomorphic) solution.

This thesis reproduces most results of the underlying paper [45] but adapts and
extends its approach to use artificial neural networks for transportation between the
densities. For this, neural normalizing flows are used that can find a series of invertible
functions transporting between a simple and a complicated density [38, 50]. The
reconstruction procedure is also exercised with a practical application. A microscope
takes two-dimensional pictures of a simulated three-dimensional spherical cell with
bacteria moving on its surface. Since the picture is only a partial reconstruction of
the space, a circle is recorded instead of a sphere. Using our adjusted transportation
procedure, the three-dimensional position of the bacteria can be reconstructed. As
the bacteria lie on the surface, this reconstructs the cell’s shape from two-dimensional
measurements alone. The reconstruction often still produces some unexpected artifacts,
thus further research is required.

We also illustrate and implement learning of the underlying dynamical system.
Understanding the dynamics, allow to predict and extrapolate the movement of the
underlying points. To do this, an artificial neural network approximating the vector
field that defines the underlying movement is trained based on the ideas presented
in [57], but additionally incorporates data from the observation process.

This thesis is composed of two main chapters. In Chapter 2, the current state of
the art is presented containing mostly the mathematical foundations and theoretical
background needed. Chapter 2 also introduces the origin and use of transportation
theory, illustrates how normalizing flows can transport measures, and summarizes
and discusses the paper [45] this thesis builds upon. Chapter 3 focuses on the concrete
problems and implementation of our adapted procedure. It presents the reconstruction
procedure by explaining it with a one-dimensional example and then illustrates how
it can be generalized to solve higher-dimensional problems. It continues by showing
how neural networks can be used to learn the dynamical system and concludes with a
demonstration of the reconstruction of the shape of a simulated cell.

2

2. State of the Art

Density transportation allows us to find a function that can transform one density to
another. This can and has been used over the last years in a variety of fields, especially
in economics. For example, it can be used to match machines to resources to maximize
throughput, or to determine the price of assets when the price depends on the value
of other financial assets [25]. In this part, we will see that there is a lot of research
concerning the transport of densities available and will discuss relevant ones.

This chapter is devoted to the current state of the art in density transportation with
focus on discontinuous densities. It serves as an introduction to the field, beginning
with the mathematical fundamentals in Section 2.1 that are needed for the rest of this
thesis. There, we will discuss the underlying definitions for densities, transportation
theory, and also give intuition for manifolds. Afterwards, we will take a look at
normalizing flows in Section 2.2, a procedure that learns an underlying distribution and
allows transportation from and to densities based on a sequence of “simple” functions.
Artificial neural networks are described in this section as well. They can facilitate
this process to make the model of normalizing flows more expressive. This chapter
concludes with an extensive review of [45] in Section 2.3 that is the foundation for this
thesis. The definitions for a discontinuous density are presented and the problem with
existing approaches is outlined. To conclude, the modified approach is presented that
allows finding the “true” transport map, even for discontinuous densities.

2.1. Fundamentals

This section is dedicated to presenting (mathematical) background knowledge. If the
reader is already familiar with this knowledge, they can safely continue with Section 2.2.
Especially Section 2.1.1 is very technical in nature and serves more as a theoretical
underpinning than a necessity for understanding this thesis.

2.1.1. Measure theory

In many different fields, the goal is to measure something, such as the length of an
interval, the volume of an object, or the probability of some event happening. While
(basic) probability theory does not require measure theory, many aspects become easier

3

2. State of the Art

or get a more concise definition with it [55, Ch. 1]. The next paragraphs mostly follow
the definitions from [55, Ch. 2–3] and give a brief overview of measure theory with a
focus on the probabilistic background.

The triple (X,A, µ) is called a measure space and is the core underlying object of
measure theory. X is a set and describes the general space we operate in. In this
thesis X ⊆ R

n will always be the case. A is a σ-algebra over X, meaning that it is a set
of subsets of X that contains all measurable objects (i.e. subsets). µ is the measure itself:
a function that assigns every measurable object a non-negative volume. The following
definitions formalize these descriptions.

Definition 1 (σ-Algebra). Given a set of subsets A ⊆ P(X), it is a σ-algebra of X if

1. X ∈ A,

2. if A ∈ A so is its complement (X \ A) ∈ A,

3. if countable many A1, A2, . . . ∈ A, so is their union ∪i Ai ∈ A.

Definition 2 (measure). The function µ : A → R
+ ∪ {∞} is a measure if

1. µ(∅) = 0,

2. if all countable many pairwise disjoint A1, A2, . . . ∈ A can be measured individually to

calculate the combined volume µ (∪i Ai) = ∑i µ (Ai).

Additionally, it is called a probability measure if µ (X) = 1 also holds.

Those definitions might seem daunting at first, but when taking a more practical ap-
proach they become more intuitive. µ can measure all the elements of our σ-algebra A

and thus it can also measure the complete set X. If µ can measure a set Y, the comple-
ment can be trivially measured by subtracting the volume of Y from the volume of the
complete space X. Similarly, if multiple disjoint sets can be measured, the complete
volume can be measured by summing up the individual parts. Note that µ can only
measure objects of the underlying σ-algebra A, and usually there are multiple ways
with which the volumes can be assigned by a measure µ.

As this thesis is about probability and densities, we will focus on probability measures
specifically. Every probability measure can be thought of as a probability function P

and vice versa. This gives existing concepts new interpretations in measure theory. In
classical discrete probability theory, the density can be thought of as the probability
for a random variable to have a specific value (i.e. P [X = x]). In the continuous case,
this does not hold anymore, since the probability for a single event P [X = x] is always

4

2. State of the Art

0 and the density at an individual point can be greater than 1. The density of the
uniform distribution on [0, 0.5], for example, is 2 in this range. Continuous densities, as
in the opposite of discrete densities, allow us to calculate the probability of an area by
calculating the integral. Such a continuous density is illustrated in Figure 2.1.

−2 0 2

z

0.0

0.1

0.2

0.3

0.4

D
en

si
ty

Density of N (0, 1)

Figure 2.1.: This plot shows the density of the standard normal distribution. While the
probability for an individual point is zero, it can be calculated for a range of z. The
area highlighted in orange corresponds to the z values that occur 25% of the time.

In measure theory, the integral over a density that describes the probability of a range
becomes a way to express one measure with the means of another. Typically, one uses
the simplest measure for such an expression, the Lebesgue measure λ. It measures the
length of an interval or, in higher dimensions, the volume [55, Ch. 1]. If the measure
µ is absolutely continuous with respect to λ (meaning that ∀A ∈ A : λ (A) = 0 =⇒

µ (A) = 0), µ can be re-expressed by λ with the density fµ such that

µ (A) =
∫

A
fµ(x) dλ(x), with fµ : X → R

+, (2.1)

as stated by the Radon-Nikodym theorem. This gives densities a different and, in some
cases, more intuitive and flexible interpretation.

2.1.2. Transportation theory

Optimal transportation theory aims to move mass from one density to another while
minimizing a defined cost [12]. Optimal transport was first formalized by Monge in
1781 [44] describing the problem of finding the best way to move a heap of soil into a
hole (e.g. with a shovel) [70, 71]. Usually, the “best” transport is described by the one
that minimizes the overall distance that “shovels full of dirt” have to be moved [71].
Later, the work of Kantorovich on couplings [34, 35] led to a relaxation of the original
problem and it has since been referred to as the Monge-Kantorovich problem [70,

5

2. State of the Art

71]. Contrary to Monge’s problem, Kantorovich’s formulation allows the mass at an
individual point to be split and moved to multiple destinations [53, 70]. This relaxation
led to more progress and a rebirth of the field of transportation theory over the past
few decades [71]. In the following, we will focus on the formulation of Monge using
modern notation.

Going back to the original interpretation, the pile and the hole both have their own
distinctive shape and need to have the same volume for the sand to exactly fill up the
hole [70]. Thus, the goal is to transform one function to another with equal volume. In
this work, the scale of those functions does not matter, so all the volumes are scaled to
1. As for the probability measures, µ and ν with their respective underlying measure
spaces X and Y (omitting the σ-algebras) are used. This notation and the problem are
visualized in Figure 2.2.

fµ

fν

X
Y

y

x

T (·)

Figure 2.2.: Two density functions fµ and fν can be seen with their underlying spaces X

and Y, and their respective measures µ and ν. Continuing the example from earlier, the
goal is to transport the heap of sand fµ into the hole fν. Every point of mass x ∈ X is
transported to some y ∈ Y based on a transport map T.

The aim is to find a function that transforms the original measure µ into ν, the
so-called push-forward measure. A map T : X → Y pushes µ forward to ν if T satisfies

ν (A) = µ ({T (x) ∈ A | x ∈ X}) = µ
(

T−1 (A)
)

. (2.2)

for all measurable sets A ⊆ Y. To say that ν is the push-forward of µ, we write ν =

T#µ [42, 45, 53]. Intuitively, Equation 2.2 enforces the constraint that every bit of volume
in the measure ν (e.g. sand) has to come from an equally sized volume in µ. This map
T can be seen as a function that takes a single point of mass from X and maps it to Y

(e.g. move one shovel of sand). The push-forward T#µ on the other hand moves an
entire probability measure instead of just single points [53].

6

2. State of the Art

Since this thesis is about transporting densities, it makes sense to reformulate Equa-
tion 2.2 by plugging in the definition for densities from Equation 2.1, yielding to

ν (A) =
∫

A
fν (y) dλ (y) =

∫

T−1(A)
fµ (x) dλ (x) = µ

(

T−1 (A)
)

. (2.3)

While finding any arbitrary push-forward measure might be enough under some
circumstances, generally, the goal is to find one that is optimal in some regard. For
this, a cost function is needed that governs the optimization process and determines
the optimal transport map. The cost function c : X × Y → R

+ describes the cost of
moving one unit of mass, namely x ∈ X, to y ∈ Y [70]. With this definition, the optimal
push-forward map

min
T

{

∫

X
c(x, T(x))dµ(x)

∣

∣

∣

∣

T#µ = ν

}

(2.4)

that minimizes the cost globally can be found [42, 53, 70]. While in principle any arbi-
trary cost function can be used to define the optimum, in practice, the squared Euclidean
distance is typically chosen. It is well-researched, many algorithms are optimized for
it [5, 23, 53], and there exists a unique, monotonically increasing solution [45].

Optimal transport and the theory behind it have gained much attention over the
last decades. Its applications range from brain tractograms to better understand nerve
tracts [22] to various economic areas [25].

2.1.3. Manifolds and embeddings

While the basic notion of manifolds is rather intuitive, especially in the lower-dimensional
case, a precise definition can be difficult to formulate and to grasp [40, Ch. 1]. For this
thesis, no mathematical notation for manifolds is needed and this section only serves as
a brief introduction. For a more technical definition and treatment see for example [40].

Manifolds are an extension of curves and surfaces into a higher dimension [69, p. 47]
that one can think of as an arrangement of points. By this definition, all objects of the
“real” world can be thought of as manifolds. For example, a string can be seen as a
curve and thus a manifold, or a sheet of paper that can be viewed as a bounded plane.

A key property of all manifolds is their intrinsic dimension. It can be interpreted
as the minimum number of parameters needed to describe a single point on such
a manifold [40, Ch. 1]. For a curve for example, a single parameter, such as the
cumulative length, is enough to describe every point uniquely. Thus, the dimension of
every curve is one, and it is a one-dimensional manifold. Analogously for a surface, a
x and a y coordinate can be used to describe every point locally, meaning that it is a
two-dimensional manifold.

7

2. State of the Art

A hollow sphere on the other hand is generally an object that can only be visualized
in three dimensions. But contrary to intuition, it is a two-dimensional manifold. Two
coordinates, the longitude and latitude are sufficient to describe a point on the sphere,
but they are not continuous functions [40, Ch. 1]. This local two-dimensionality can be
experienced every day—locally, the earth can be seen as flat, but this assumption does
not hold anymore when viewing the object as a whole.

And this is the second important property of manifolds: an n-dimensional manifold
can be described locally around each point as the Euclidean space R

n [40, Ch. 1].
But, that does not mean that it can be embedded into an R

n-dimensional Euclidean
space. Here, embedding can be taken literally and describes whether one object can
“hold” another. Mathematically, it means finding a diffeomorphic function to put one
manifold into another space [69, Ch. 3]. In this context, a function is diffeomorphic if
it is invertible on the image of the function and both the function and the inverse are
smooth (i.e. differentiable) [38, 50].

Although the sphere is a two-dimensional manifold, it cannot be embedded into two
dimensions but only in three or more. Whitney’s theorems [73] give a limit on how many
dimensions are needed to embed a manifold. In this thesis, embeddings are crucial to
transport densities, and we will assume that there is access to multiple time delayed
measurements. Based on the embedding results of Whitney’s theorems, Packard,
Crutchfield, Farmer, and Shaw [48], Aeyels [2], and Takens [68] describe a way to use
time delays to reconstruct the system attractor [45].

These ideas, referred to as Takens’ theorem, state that with enough time delays
collected, a diffeomorphic version of the underlying manifold can be reconstructed.
Generally, one needs to collect 2d + 1 time delayed measurements of a dynamical
system to find such an embedding, with d ∈ N being the dimension of the underlying
manifold. The use of this theorem will become clearer in later sections and serves as
the theoretical foundation.

2.2. Transport of densities with normalizing flows

In recent machine learning applications, the core goal is often to approximate the
underlying distribution given a set of measurements (i.e. samples) [38, 50]. Doing
this accurately enough enables two main things: 1) create more data by generating
new points based on the underlying distribution, and 2) determine how likely a
measurement is, or falls into a certain range (e.g. applicable in outlier detection) [38].
Over the last few years, the first objective has been worked on extensively.

One major contribution in this field that has received significant attention are genera-

8

2. State of the Art

tive adversarial networks (GANs) [26] proposed by Goodfellow et al. They combine two
models: a generator and a discriminator. The generator creates new samples while the
discriminator tries to distinguish them from the original dataset [26]. With this setup,
the two models can train each other. This simple yet powerful approach leads to many
advantages [42], such as its great sampling dynamics [26, 38]. GANs also have their
drawbacks such as that this configuration does not allow determining the density of
new points (i.e. the second item from the enumeration before) [38].

Similarly to GANs, normalizing flows (NF) [66, 67] are also probabilistic generative
models that try to learn the underlying distribution in an unsupervised manner [38].
Due to their construction, they allow for efficient sampling and scoring of data points.
Apart from outlier detection, this can be useful in many areas, such as in classifying
samples, or calculating the expectation of the process [49, p. 12]. It can also be used to
validate the model with statistical tests, such as a one-sample goodness-of-fit test [33,
49]. NFs are a crucial part of this thesis and will be discussed in the following.

The general goal of normalizing flows is to find a series of invertible functions that
transform an observed complicated distribution to a simple known distribution (e.g.
normal distribution). When applied, those functions can then gradually transform
samples from one distribution to the space of a simple one, as visualized in Figure 2.3.
This setup is also the origin for the name normalizing flow. The data points flow
through the function(s) until the “normal” form is reached [38]. Since the functions
are computationally invertible by construction, the reverse direction that transforms a
normal density into the complicated density, is also feasible.

Figure 2.3.: On the left, 5, 000 samples are shown that are drawn from a “complicated”
two-dimensional distribution. Through a series of three diffeomorphic functions, those
samples are transported to a two-dimensional standard-normal distribution (left to
right). In the right-most frame, points that follow a true standard-normal distribution
are plotted beneath the transformed samples in gray for comparison.

More formally, assume that the measured samples are real valued D-dimensional
vectors x1, x2, · · · ∈ R

D drawn from a complicated distribution. Flow-based modeling
tries to express each of those data points x by applying a transformation T to a random

9

2. State of the Art

variable u of dimension D [50]. With the correct choice of T, the distribution is then
defined by

x = T(u) with u ∈ R
D, u ∼ fu(u). (2.5)

fu is the probability density function of u and is almost always the density of a normal
distribution (typically the standard normal) [38, 49, 50]. The goal—and also the difficult
part—is to find an approximation of T based on the observed samples that also has an
(easy to find) inverse. More specifically, T needs to be diffeomorphic, meaning that the
inverse exists, and both the function and its inverse are differentiable [38, 50].

Under those conditions, the change of variables formula [8, pp. 194–197] can be
applied and the target density function fx can be reformulated by the means of the
simple known density to

fx (x) = fu

(

T−1 (x)
)

|det JT (u)|−1

= fu

(

T−1 (x)
)

|det JT−1 (x)| ,
(2.6)

as is done in [38, 50]. JT (u) is the D × D Jacobian

JT (u) =
[

∂T
∂u1

· · · ∂T
∂uD

]

=









∂T1
∂u1

· · · ∂T1
∂uD

...
. . .

...
∂TD
∂u1

· · · ∂TD
∂uD









, (2.7)

containing all first-order partial derivatives of T. T is then the push-forward of fu to fx,
namely fx = T# fu [38]. Note that this is the push-forward of a density, not a measure as
used before. The change of variable can be viewed as T warping the underlying space
to fit the densities and |det JT (u)| correcting the volume so fx still integrates to 1 [50].

While this gives us a way to express the new density fx based on fu with a given
transformation T, it says nothing about its existence or how to approximate it. It has
been formally and constructively proven that, under reasonable assumptions for the
densities fu and fx, there exists a diffeomorphism T that pushes fu forward to fx [7, 50].
Constructing this arbitrarily complex diffeomorphism may be difficult and evaluating
this function at a point, inverting it, or calculating the determinant of the Jacobian
may be computationally infeasible. To overcome this problem, one typically uses a
composition of multiple simple diffeomorphic base functions [38]. These diffeomorphic
transforms can then be applied in sequence:

T = T1 ◦ · · · ◦ TN . (2.8)

This composition of diffeomorphisms can be seen as a single complex diffeomorphic

transformation. It can still be inverted easily by inverting each function individually

10

2. State of the Art

and reversing the order. |det JT (u)| can also be calculated by applying the chain rule
from calculus, and multiplying the individual |det JTi

(u)| [38, 50].

From those multiple individual functions, a complex diffeomorphism can be con-
structed. The flexibility and complexity of those base functions determine the compu-
tational performance and the expressiveness [38, 50]. A trade-off between those two
needs to be found. One intuitive approach would be to perform a linear transformation
such that

Ti (x) = Ax + b with A ∈ R
D×D, b ∈ R

D. (2.9)

Those linear flows are simple and easy to calculate, but they bring some inherent prob-
lems. The most crucial disadvantage is that when starting with a normal distribution, a
linear transform will only result in another normal distribution with different expecta-
tion and variance [38]. Meaning that a unimodal normal distribution could never be
transformed into a higher-modal distribution. The same holds for distributions of the
exponential family [38]. Another issue lies in the fact that some operations (such as the
determinant of the Jacobian) generally take O(D3). Especially for higher-dimensional
data this might become a problem. To circumvent it, special matrix forms could be used,
but while diagonal matrices are easy to work with, they cannot express correlation
between dimensions. Triangular matrices are hence often a good middle ground [38].

2.2.1. Artificial neural networks

With the popularity and advantages of neural networks one might be wondering
if and how they can be applied in the context of normalizing flows. In practice,
neural networks are often used to implement the individual diffeomorphic composite
functions T1, . . . , TN (see Equation 2.8) [50]. This section serves as a brief overview
of artificial neural networks and can be safely skipped by readers familiar with the
foundations. It is loosely based on [3].

A neural network can be viewed as a function Θ with many internal parameters that
govern how an input x is mapped to an output y. The goal is to adapt those parameters
in a way that function behaves as desired. Typically, this neural network consists
of multiple so-called layers, each of which containing neurons. In its simplest form,
the neurons of one layer are only connected to the neurons in the subsequent layer.
The first layer serves as the input of the function and is referred to as the input layer.
Analogously, the last layer is the actual output of the function and is the output layer.
This structure is depicted in Figure 2.4.

Based on the input of the function (i.e. the values of the neurons in the input layer),
the values propagate through the network. The value of neurons in layers after the
input layer are simply a weighted sum of the values of the preceding neurons, as

11

2. State of the Art

x1

x2

x3

Input
Layer

Hidden
Layer(s)

y1

y2

y3

Output
Layer

Figure 2.4.: An artificial neural network consisting of three layers. The circles depict
the neurons, and the arrows indicate connections between them. A classical neural
network can be visualized as a directed acyclic graph.

indicated by the arrows in Figure 2.4. Those weights are the internal parameters of
the function and subject to optimization. More formally, the value of a neuron n

is ∑m∈N(n) Φ (Wm
n m). With N(n) being the neurons that are connected to n, Wm

n ∈ R

the weight of the connection between neurons n and m, and Φ an in principle arbitrary
function. It is the so-called activation function and ensures that the network can learn
non-linear relations. Often, the sigmoid function 1

1+e−x is used.
Another important function is the loss function that defines how accurate the output

is compared to the ground truth. There are many choices available, but often the mean
squared error function is used. With this loss function and samples to compare the
output to, an optimization problem can be solved that minimizes the error. The most
common technique to solve this optimization problem relies on backpropagation [61],
a procedure that determines the gradients of the weights based on the results of
the loss function. An optimizer can then adjust the weights based on the gradients
and approximate the optimum step-by-step. One simple such optimizer is stochastic
gradient descent [58].

The success and ease of this optimization process is greatly governed by the hyper-
parameters of the artificial neural network. Such as the number and size of layers,
the optimizer used, and the specific choice of functions (e.g. activation, loss). Those
hyper-parameters are often searched by an algorithm or determined by trial and error.
Once suitable hyper-parameters are found, and the neural network has been trained, it
can be used in the desired scenario to make predictions for previously unseen data.

12

2. State of the Art

2.2.2. Normalizing flows with artificial neural networks

Artificial neural networks have proven to be a versatile tool in a wide variety of
problems and are also used at the core of many normalizing flows algorithms. But two
major issues prevent arbitrary complex networks from becoming a drop-in replacement
for classical transformations. When the artificial neural network is the function T

itself, the inverse T−1 must exist. Generally, networks can be constructed in a way that
the inverse exists [30] but calculating it may become computationally infeasible with
a complex neural network. The second issue is of the same nature: calculating the
determinant of the Jacobian [50]. While the problem of invertibility can be overcome by
imposing restrictions on the weights and activation function [30], ensuring an easy way
to calculate the determinant requires a more elaborate architecture.

There are multiple ways to change the construction of those Ti to overcome these two
problems and use arbitrarily complex neural networks. One of the more prominent
ways are coupling flows that were introduced by Dinh, Krueger, and Y. Bengio in [17].

Coupling flows

Coupling flows are constructed such that the inverse of the transform and the determi-
nant of the Jacobian can be trivially obtained [17]. To achieve this, the authors propose to
split the input vector x ∈ R

D into two parts x1:d−1, xd:D. The first part is used to compute
parameters Θ with an arbitrarily complex neural network Θ (x1:d−1) = NN (x1:d−1).
The first part of the input vector, x1:d−1, remains unmodified, but the resulting param-
eters Θ are used as an input for a diffeomorphic function g, the coupling transform. g

maps xd:D, the second part of the input, based on Θ. More concisely,

y1:d−1 = x1:d−1

yd:D = g (xd:D; Θ (x1:d−1)) .
(2.10)

This architecture is illustrated in Figure 2.5.
When incorporating the artificial neural network this way, the complete process can

now be easily inverted. Since the first part of x has not been changed, the neural
network can be rerun to create the same parameters Θ again. And since g has a
computationally efficient inverse by construction, it can be determined based on the
parameters Θ. Moreover, as shown in [17], the Jacobian has a triangular form, meaning
that the determinant simply equals the determinant of g [38]. So, an arbitrary complex
neural network can be used without the need to invert it or to calculate the determinant
of the Jacobian of the network itself.

Two questions remain unanswered: how to partition the vector x into two parts,
and how to choose g. Typically, the vector x is simply split in half [38] but in some

13

2. State of the Art

yx

xd:D

x1:d−1 y1:d−1

yd:D

Θ (·)
Coupling Network

g (·; ·)
Coupling Transform

Figure 2.5.: This figure visualizes the forwards pass of coupling flows. The coupling
network only operates on part of the data, x1:d−1, and outputs the parameters used to
transform the other part, xd:D, with the actual coupling transform g [38, 50].

architectures, more elaborate methods are used [18]. Regarding the second question,
usually the coupling transform g is applied to every element individually. The neural
network then returns one parameter for each dimension, where those dimensions often
have their own function g [38]. More formally,

yd:D = (gd (xd:D; Θd (x1:d−1)) , . . . , gD (xd:D; ΘD (x1:d−1))) . (2.11)

For the specific choice for the coupling transform(s), there are many possibilities,
as listed in [38]. In the original paper [17], a simple additive coupling g (x; Θ) =

x + Θ or affine coupling g (x; Θ) = Θ1x + Θ2 is used. But these transforms are not
universally expressive and multiple coupling flow layers are needed to describe complex
distributions [38, 50]. When stacking multiple coupling layers after another, it is often
useful to permute the input vector x to improve the model’s expressiveness [21, 38, 50].

Neural spline flows

While these aforementioned simple coupling transforms are often sufficient, more so-
phisticated approaches such as those based on splines typically yield better results [21].
Splines [62, 63] are a way to interpolate between multiple points. Typically, polynomials
of the same degree are used to connect two points (so-called knots) [38]. As the degree
of the polynomials increases, more degrees of freedom for the parameters become
available while still connecting neighboring knots. Those degrees of freedoms are
usually filled by enforcing constraints on the derivatives. In most applications, splines
consist of only low order polynomials that are easy to invert and calculate [50]. The
number and position of those knots parameterize the actual function.

There are multiple instances where different forms of splines have been used as
a coupling transform, such as in [20, 21, 46]. Contrary to those, Durkan, Bekasov,

14

2. State of the Art

Murray, and Papamakarios propose in [21] an approach based on monotonic rational-
quadratic splines. This special spline is a piecewise function that divides two quadratic
polynomials. The neural network that determines Θ (x1:d−1) of the coupling flow
outputs the parameters for the splines (i.e. knots and derivatives) [21]. Each xi is then
transformed with its own rational-quadratic spline [21].

This approach is a direct replacement of the affine or additive layers described
in [17] for the coupling transform g. The experiments performed in [21] show that
neural splines can learn complex distributions more quickly and need fewer parameters
compared to other transformations, while still working in higher dimensions.

Library for normalizing flows in Python

Many open-source implementations for normalizing flows in Python are available but
since they are relatively new, few implementations provide a mature API. For this
thesis, we decided to use neural spline flows with a coupling architecture. They provide
enough flexibility for the given problems and learn relatively quickly. As for the specific
library, Pyro [6, 54] was used. It builds on top of the machine learning framework
PyTorch [51] and adds functionality for working with probabilities.

2.3. Transport of discontinuous densities

Normalizing flows are a great tool to transport densities, and particularly their invert-
ibility allows them to be used in a variety of fields. As we will see later, this invertibility
is the reason that normalizing flows often fail to approximate the true underlying
transport map. Especially, when dealing with discontinuous densities finding the
transport map with normalizing flows directly is usually not possible.

We will now revisit the definition of densities and define what makes a density
discontinuous. Similarly to [45], only two types of discontinuous functions are of interest
in this thesis: those with a jump discontinuity, and those diverging to infinity.

Definition 3 (Discontinuity). A density function f has a jump discontinuity at a ∈ R if

lim
x→a−

f (x) ̸= lim
x→a+

f (x). (2.12)

A density function f diverges to infinity at a ∈ R if

lim
x→a−

f (x) = ∞ or lim
x→a+

f (x) = ∞. (2.13)

While it may not be intuitive at first, discontinuous densities can arise easily even
with a “nice” underlying definition. For this, we will look at densities defined by

15

2. State of the Art

their push-forward from the uniform density. When pushing a continuous density fµ

forward with T to fν, discontinuities can arise depending on certain properties of T. For
a point x where the map T is flat or folded (i.e. T′(x) = 0), the new density fν diverges
to infinity at this point. A jump discontinuity can either be caused by a non-continuous
derivative of the transport map or might arise if T is non-injective [45].

The basic scenario described in [45] is that objects are distributed uniformly on an
unknown manifold, move with the same pattern, and measure variables. Often, those
measurements only reveal a part of the variables (i.e. only some dimensions of the
manifold) and the goal is to reconstruct it fully. This can be seen as reconstructing the
original underlying map T. Moosmüller, Dietrich, and Kevrekidis do this by relying
on a so-called observation process capable of measuring subsequent values. This section
summarizes the main ideas of [45] and while it is particularly important as a foundation
for the main part, Chapter 3, some parts may be hard to understand at first and will
become clearer with the examples presented later.

When the sampling process of some variables gives rise to discontinuous densities, it
can become difficult to determine the true underlying relation (i.e. manifold). For a
complete understanding of the process and to make new predictions, knowledge of
this exact manifold is needed. A typical way to recover such a manifold is to solve the
optimal transportation problem to map the observed density to the original space with
minimal cost. This results in a manifold that will produce an identical density but might
be different from the real manifold. Such a direct approach is tried in Section 3.1.3 with
a normalizing flow that yields “incorrect” results. In [45] and in this thesis, the major
point of interest is to find the true underlying manifold.

With only a single measurement, reconstruction of this true manifold is not possible.
To overcome this problem, the authors of [45] use Takens’ theorem (see Section 2.1.3) and
collect multiple measurements from each moving object on the underlying manifold.
With those additional measurements, a diffeomorphic manifold can be constructed that
is then used as a starting point instead of the discontinuous density itself.

While this observation process adds more data, the dimensions typically do not
match anymore making it incompatible with transportation. To overcome this issue, the
map is parametrized such that the manifold can be embedded in a lower dimension.
With this step, transportation is again possible and as this version of the manifold is
already diffeomorphic to the underlying true solution, classical transport algorithms
can reconstruct the true underlying manifold (up to isometry). Another advantage of
this process is that by increasing the dimension with time delays, observed densities
with a lower dimension than the original underlying manifold can be transported, for
example densities of marginal or conditional distributions. This would not be possible
without this procedure, as transportation only works with matching dimensions.

16

3. Transport of Discontinuous Densities

with Artificial Neural Networks

The work presented in [45] is the foundation of this thesis. Many of the ideas of [45]
are discussed in this chapter and some of the results recreated. The one-dimensional
example from [45] is reproduced in Section 3.2.1 to Section 3.2.3 and the ideas of the
two-dimensional case are used in Section 3.4.1 to Section 3.4.5. We extend the ideas
so that artificial neural networks (with normalizing flows) are applied and show most
intermediate steps that were left out in the original work.

This chapter begins with Section 3.1 where the concrete problem is presented with
the help of an example. How normalizing flows can be applied to the problem and
why a direct solution can fail is the first topic discussed. Section 3.2 then continues
by presenting a way to overcome the problems of the direct approach by including an
observation process to recover the manifold. After some additional notes regarding this
procedure, a second problem is presented in Section 3.3 that is not discussed in [45]. For
the observation process, we assume that objects move on the underlying manifold and
time delayed measurements can be taken. This section is dedicated to the underlying
dynamical process and how it can be learned with neural networks.

These sections only look at the problem in the one-dimensional case. Section 3.4
is devoted to describing how these procedures can be generalized by applying them
to a two-dimensional toy example. It also discusses how a marginal or a conditional
density can be transported to a joint density. Section 3.5 shows how this process could
be applied in the real world by recovering the manifold of a simulated cell by observing
the movement of bacteria on it.

3.1. Overview

The theoretical part already describes the process and requirements for recovering a
manifold in detail. This section is dedicated to giving a clear overview and intuition of
the problem itself and shows how normalizing flows can be used in practice. With this
knowledge, we try to apply normalizing flows directly to solve the presented problem.

17

3. Transport of Discontinuous Densities with Artificial Neural Networks

3.1.1. Problem description

We will begin with an exemplary one-dimensional problem because it is the easiest to
follow. Thus, only one-dimensional values that give rise to a discontinuous density
are measured. These discontinuous densities can arise in many scientific areas [1,
9, 43] but imagine a simple use case, where cars drive on a highway. The cars are
uniformly distributed on the highway, and they all measure a variable y, for example,
the temperature. In addition, each car has a unique position x on the highway, but
that location is unknown. Only the cars’ measurements of the temperature y at their
respective positions can be observed. This results in an unordered list of temperatures
without any access to the underlying position x on the highway. Our goal is to recon-
struct the function y = T (x) that describes the temperature y over the highway. The
uniform distribution of the cars on the highway in combination with the map T cause
the recorded density which is discontinuous in this case.

Such a concrete example, with a specific choice for T, is shown in Figure 3.1 and
will be used throughout this section and in almost all one-dimensional cases. The map
used is identical to the one used in [45], and in Section 3.2 we will follow the presented
ideas to reconstruct it. Note that we assume T(x) to be unknown, as its reconstruction
would not be required otherwise.

0.00 0.25 0.50 0.75 1.00

y

D
en

si
ty

Histogram of y

0.00 0.25 0.50 0.75 1.00

x

0.00

0.25

0.50

0.75

1.00

y

Real transport to y

Figure 3.1.: The recorded histogram of y-values is illustrated on the left. It has a
jump discontinuity at y = 0.5. On the right, the true unknown underlying relation
y = T(x) = −2(1 − x)3 + 3

2 (1 − x) + 1
2 is plotted.

While this and all other plots are abstract and do not use practical measures such as
the temperature, the car analogy is used throughout this thesis to aid explanation. So, y

is the feature that can be measured, the temperature, and x is the unknown underlying
space, such as the relative position on the highway.

The discontinuity of the recorded histogram in Figure 3.1 might leads us to believe
that the underlying map is very complicated. As illustrated in Figure 3.1 it is a simple,

18

3. Transport of Discontinuous Densities with Artificial Neural Networks

non-invertible folded map that causes the discontinuities. The measurements themselves
are uniformly distributed on x (i.e. the highway), but y values smaller than 0.5 can
only be produced by the first half of the manifold. Values larger or equal to 0.5 can
be observed twice, at the start and the end of the highway. This causes the jump in
the observed histogram at y = 0.5 because suddenly the same temperature is recorded
more often. The fold of the map causes the divergence to infinity at y = 1 for infinitely
many cars. This is because the gradient of T is zero at x = 0.5, and y = T (0.5) = 1. As
the gradient approaches zero, many cars measure a temperature arbitrarily close to 1,
resulting in a high probability for y ∈ [1 − ε, 1] and a small positive ε.

The map T is a push-forward of fx to the density fy = T# fx, and thus, the underlying
distribution of the cars is crucial. When changing either T or fx, the results change and
a different density fy is observed.

3.1.2. Transporting densities with normalizing flows

For now, we will take a step back from this concrete example and investigate how
normalizing flows can be applied. In the theoretical part of this thesis, we discussed
that NFs can find push-forwards, so they are capable of finding the same type of
transformation we are looking for. In Section 3.1.3 we will try to find the push-forward
T with a normalizing flow. But first, we will discuss in this section how NFs can be
used to transport between arbitrary densities.

Throughout the thesis, normalizing flows are used to express (unknown) compli-
cated probability distributions by the means of a simpler, known distributions. More
specifically, they are used to find an invertible transport map between the density
of a uniform distribution and the target density. While the theory behind normaliz-
ing flows itself has been discussed thoroughly in Section 2.2, the aim of the following
is to show their versatility in practice and to get a better feel on how they can be applied.

It is important to keep in mind that normalizing flows operate on samples that follow
the target distribution and can “flow” through the function(s) to transport them back
and forth between the simple source and the complicated target. For that, we use neural
spline flows with a coupling architecture in higher dimensions. To fit the transport
function T that pushes the normal density forward, the training process maximizes
the so-called (log) likelihood function [38]. This likelihood function describes the
probability for given samples to happen.

T is then adjusted by an optimizer based on a loss function. To determine the loss, the
samples are transported to the simple distribution with T−1, where the (log) likelihood
can be calculated. For a known distribution, such as the normal distribution, the
probability for a sample can be efficiently determined. Once T has been approximated

19

3. Transport of Discontinuous Densities with Artificial Neural Networks

well enough, it can be used as a push-forward. A concrete implementation that uses
normalizing flows to transport a normal to a uniform density is found in Appendix A.

Normalizing flows use simple functions, which often lack expressiveness, to transport
points. One check to ensure that the architecture is flexible enough, is whether it is
capable of changing the modality of a distribution. If too simple transformations are
used, such as only linear ones, a normal distribution can only be transported to another
normal with different variance and mean [38]. To demonstrate versatility, Figure 3.2
illustrates a NF approximating a bimodal distribution. While the function T produces
some slight deviations and some unexpected bumps or dents, it learns the density
accurately. With the push-forward T, transportation in both directions is now possible.

−3 −1 1 3

D
en

si
ty

Applied normalizing flow

−3 −1 1 3

D
en

si
ty

Approximated bimodal

Figure 3.2.: On the left, a histogram of a bimodal normal distribution is visualized
in light blue. By applying the normalizing flow T−1 to each sample, the dark blue
histogram arises. It approximates the density of a normal distribution (green). The right
figure shows the inverse direction. Sampling new points from the normal distribution
and transporting them with T (blue) to reproduce the original histogram (black).

In many cases, mapping to and from a normal distribution is not enough if one
wants to transport a complicated density to another arbitrary density. This could be
useful, for example, if the distribution of pictures of faces is learned and one wants
to interpolate between two faces, as is done in [37]. This can be achieved with a
rather simple trick: both densities are mapped with a normalizing flow to the density
of a normal distribution. To go from one distribution to the other, samples are first
transported to the known normal distribution and then mapped into the other space.
This process has been visualized in Figure 3.3, where the previous bimodal distribution
is transported to a trimodal distribution (and vice versa).

For this transport, two normalizing flows, T1 and T2, have to be learned. Transporting
a sample from the bimodal to the trimodal distribution can then be done with T2 ◦

T−1
1 . While this is only an approximation, it works well enough in practice. Such

a concatenation of the push-forwards T1, and T2 is illustrated in Figure 3.4. This
intermediate step allows finding a push-forward of an arbitrary source and target.

20

3. Transport of Discontinuous Densities with Artificial Neural Networks

−3 −1 1 3

D
en

si
ty

−3 −1 1 3

D
en

si
ty

−3 −1 1 3

D
en

si
ty

Transportation of a bimodal density to a trimodal density

Figure 3.3.: This illustration shows a transport between two unknown normal densities
with different modality. A bimodal density (left) can be transported to a normal
density (center) with the inverse of a normalizing flow. Transporting the samples with
another normalizing flow result in the trimodal density (right). The black histograms
in the left and right plot show the original samples, whereas the colored histograms
(blue / orange) show points transported from bimodal to trimodal or vice versa. The
middle figure shows the density of a normal distribution (green), and the density of
the transported bimodal distribution (blue) and trimodal distribution (orange).

It is worth noting that in those aforementioned examples, the densities have always
been pushed forward from the density of a normal distribution. In this thesis on the
other hand, the source distribution is typically assumed to be uniform. As most other
libraries supporting normalizing flows, Pyro allows the use of any known distribution as
a base distribution. But in Pyro, some errors with uniform densities were encountered
when elements fall out of the uniform bounds. To overcome this issue, a second
transformation can be added that maps back and forth from the normal density. This
could be done with uniform samples and training another normalizing flow, but the
more elegant approach that has been used in this thesis, relies on the Gaussian Φ and
Φ−1. These can be used to transport back and forth between the uniform and normal
density, as described for example in [24, Appendix A].

Further, it should be mentioned that normalizing the samples before the learning
process to have mean 0 and variance 1 greatly aids in the learning process. Libraries
such as scikit-learn [52] provide functions to easily (de-)normalize matrices.

3.1.3. Direct transport of discontinuous densities

In the previous sections, we discussed and saw that normalizing flows can find a
push-forward function given a simple known density and samples following another
complicated distribution. We will now continue with the in Section 3.1.1 proposed
problem and with the previous analogy: uniformly distributed cars on a highway

21

3. Transport of Discontinuous Densities with Artificial Neural Networks

−3 −1 1 3

z ∼ N (0, 1)

−3

−1

1

3

z
∼

b
i-

o
r

tr
im

o
d

al Density transports

−3 −1 1 3

z ∼ bimodal

−3

−1

1

3

z
∼

tr
im

o
d

a
l

Bi- to trimodal

Figure 3.4.: The left figure visualizes the individual push-forward maps showing
how mass from a normal distribution can be transported to a bimodal or a trimodal
distribution. The blue function transports z to the bimodal density, whereas the orange
transports it to the trimodal density. The concatenation describing how to push the
bimodal density forward to the trimodal density is visualized in the right plot.

measure the temperature y at their respective position, and the goal is to reconstruct the
function T. As mentioned before, the function T is a push-forward from the uniform
density. Thus, we can try to use NFs to find this push-forward. So, we continue as in
the previous section and learn a NF transporting a uniform density to the observed
samples (i.e. the temperatures). Figure 3.5 visualizes the results of this process.

The first observation that becomes apparent when looking at this figure is that
while the normalizing flow approximates the underlying density well, it does not
find the true transport map T. In some scenarios, finding an arbitrary push-forward
might be sufficient, especially when only new samples need to be drawn from a com-
plicated distribution. As for the example where T describes the temperature of the
highway, identifying the true underlying system is required to make correct predictions.

Folded maps are surjective and therefore not invertible, but normalizing flows are
constructed so that the underlying function must be invertible. Thus, NFs cannot find
any maps that are folded [38, 50]. Approaches relying on solving the optimal transport
problem to find transport maps can face similar problems. Solving the optimal transport
problem proposed by Monge with the usual cost function of c (a, b) = ∥a − b∥2 yields
a unique monotonically increasing solution (i.e. not folded) [45]. In this example
presented, the normalizing flow approximates this optimal solution.

Especially with discontinuous densities, the true underlying map is likely to be
folded and thus such an approach will not lead to the correct solution. Even in the
continuous case, there are scenarios where multiple different transport maps exist and
the true relation cannot be found, as will be discussed in Section 3.2.4.

22

3. Transport of Discontinuous Densities with Artificial Neural Networks

0.00 0.25 0.50 0.75 1.00

y

D
en

si
ty

Approximated y-density

0.00 0.25 0.50 0.75 1.00

x

0.00

0.25

0.50

0.75

1.00

y

Transports to y

Figure 3.5.: This figure illustrates the push-forward a normalizing flow finds (orange)
when directly applied to the observed distribution of y values. The plot on the left
shows the true recorded histogram (blue) compared to new samples drawn from the
uniform distribution and then transported with the normalizing flow. On the right, the
push-forward function of the normalizing flow is compared to the real unknown map
T (blue). In the push-forward that has been found, the discontinuity of the derivative
at y = 0.5 causes the jump discontinuity in the density [45].

3.2. Reconstruction of one-dimensional discontinuous densities

In the previous section, we saw that normalizing flows (and optimal transport ap-
proaches) fail to recover the underlying manifold when the map is folded, even in some
continuous cases [45]. The goal of this thesis is the identification of the real underlying
map regardless of whether it is folded. Therefore, the process must be adapted such
that it can approximate the true T. In the following, we will continue the above example
with the ideas from [45] to perform reconstruction.

3.2.1. Observational process and time delay embedding

We saw that normalizing flows find unfolded, and for discontinuous densities non-
differentiable maps. When the requirement is to reconstruct only a differentiable map
from the measurements, one can use the approach presented in [45, Appendix A], but
we want to find the correct solution. With the current measuring process of y, one can
never be certain whether the approximated map is the true underlying relation. For
example, it could be that on some part of the road a different asphalt is used, explaining
the abrupt change in the gradient of the temperature, and making the solution found
by the normalizing flow the correct one. To overcome this issue, the measurement
process has to be changed to be more systematic than only collecting single values. As
proposed in [45], an observation process is used that follows an unknown but consistent

dynamical process where the underlying variable(s) change.

23

3. Transport of Discontinuous Densities with Artificial Neural Networks

Continuing with the car analogy, this means that all cars move on the highway with
the same speed, that is, the objects move on the underlying manifold with a consistent
motion. Instead of only measuring the value y (i.e. the temperature) at a specific point
in time, access to subsequent values at later positions on the manifold (i.e. highway),
(yn, yn+1, . . .), are required. Since all cars move at the same speed, the difference in
x, while unknown, is consistent over all cars. This difference does not need to be
consistent over time delayed measurements. For example, the second measurement
could be one second after the first, while the third is one minute after the second.

Takens’ theorem (see Section 2.1.3) states that with enough time delayed measure-
ments, the time delays can be used to create a diffeomorphic embedding of the manifold
we are looking for [45]. For one-dimensional problems, as the one we are currently
discussing, the theorem says that up to three time delays are needed. For the example
presented in this section, even two time delayed measurements are sufficient.

With this knowledge of consecutive values, and the fact that the embedding is
diffeomorphic, reconstruction of the true underlying manifold T becomes feasible.
Intuitively, the local movement of the underlying objects can be used to verify a solution.
Figure 3.6 shows the diffeomorphic time delay embedding for the measurement process
and example discussed before.

−0.5 0.0 0.5 1.0

yn+1

0.00

0.25

0.50

0.75

1.00

y
n

Time delay embedding

Figure 3.6.: The time delay embedding given two consecutive measurements of y,
namely (yn+1, yn) = (T (x + τ) , T (x)) is depicted in this plot. It results in a curve that
is diffeomorphic to T. The constant offset τ does not affect the diffeomorphism itself,
but changes the “width” of the fold and can be unknown.

While this illustrated curve is not the solution T, it looks “very similar” to it. Takens’
theorem says that this curve is diffeomorphic to the true underlying manifold and
hence folded the same way. Only an invertible (and differentiable) function is required
to map it to the correct solution. Thus, no new folds need to be added and normalizing
flows can be used again. This diffeomorphic embedding contains more data than the
original histogram, and, from now on, will be used instead. The original histogram can
be recovered by projecting the data points onto the plotted y-axis.

24

3. Transport of Discontinuous Densities with Artificial Neural Networks

3.2.2. Unfolding discontinuous densities

While this diffeomorphic curve contains more information, it cannot be used as a
starting point by itself. First of all, it is two-dimensional, and it needs to be transported
to a one-dimensional space x. Secondly, in the previous sections, and especially when
trying the direct transport in Section 3.1.3, we saw that folded transport maps cannot
be constructed by most algorithms. The diffeomorphic curve also has a fold that causes
the same issues. To overcome those problems, this curve must be cleverly encoded to
still allow the added information from the time delay to be used.

Moosmüller, Dietrich, and Kevrekidis propose in [45] to resolve the problem by
unfolding the underlying density, on which the following section is based on. In
this one-dimensional case, the time delay embedding is a curve with respective posi-
tions (yn+1, yn). Assume for a moment that the transport function T is known. With it,
the true underlying diffeomorphic curve c (x) = (T (x + τ) , T (x)) can be defined.

There is an intuitive approach to unfold a curve: parametrizing it by its arc length.
When interpreting a function as a string, the arc length describes the length of this
string up to a given point and is monotonically increasing. It is formally defined as

arcl (x) =
∫ x

0
∥c′(t)∥dt, (3.1)

for a curve c(t) and in this case x ∈ [0, 1]. The major advantage of this parametrization
by the arc length of a curve is that it does not have any folds because it is monotonically
increasing. When measuring a string (i.e. a curve) it can only become longer.

The map T is not known (yet), and hence neither the curve c nor the arc length can be
described exactly. With a large enough number of samples, both can be approximated
numerically. The arc length can be determined by calculating the cumulative Euclidean
distance of neighboring points

√

(p − q)2. The results when numerically parametrizing
the diffeomorphic curve by its arc length are illustrated in Figure 3.7.

This unfolding process allows us to overcome the aforementioned problems of the
folded time delay embedding while still retaining the additional information. By only
looking at the arc length s, the new unfolded version gives rise to a one-dimensional
continuous density. Secondly, this process allows us to describe the underlying one-
dimensional manifold, the curve, with only a single parameter. The arc length of the
curve can be seen as the single intrinsic state that describes the properties of the system.
With this, the dimensions now match and a transport to a one-dimensional uniform
density is possible. It also gives us information about the system itself, namely that
a transport to only one parameter is sufficient (i.e. the highway is one-dimensional).
Without those problems, this reparametrization of the time delay embedding can be
used as the intermediate space to reconstruct the true underlying transport map T.

25

3. Transport of Discontinuous Densities with Artificial Neural Networks

−0.5 0.0 0.5 1.0

yn+1

0.00

0.25

0.50

0.75

1.00

y
n

Time delay embedding

0.00 0.25 0.50 0.75 1.00

Position on (yn+1, yn)

0

1

2

s

Arc length of (yn+1, yn)

0 1 2

s

D
en

si
ty

Density of arc length

Figure 3.7.: The process of parametrizing the time delay embedding by its arc length is
illustrated. On the left, Figure 3.6 is shown again that displays the time delay embedding
(yn+1, yn). The monotonically increasing and hence unfolded parametrization of this
time delay embedding is depicted (center) with the corresponding arising continuous
density of the arc length s (right).

3.2.3. Reconstructing the underlying manifold

This unfolding process allows us to once again apply a normalizing flow to find a
transport map. But contrary to Section 3.1.3, the density is now continuous and based
on a diffeomorphic manifold. Hence, the normalizing flow can now approximate
an invertible push-forward of the uniform density that will be isometric to the true
underlying transport map. Meaning that the normalizing flow can find the true map,
with sufficient knowledge about x (e.g. the range).

The steps before can be seen as pre-processing the data such that classical transporta-
tion works. The normalizing flow that can now be learned is capable of transporting
points x ∼ U[0,1] to the arc length s and vice versa. Figure 3.8 shows the results of a
trained normalizing flow and that the underlying density can be approximated well.

With the car analogy, the normalizing flow can map the position of a car on the
highway to a position on a diffeomorphic highway. With it, each temperature can be
mapped to the position on the highway, allowing to reconstruct previously unknown
information. To be able to go in both directions, and to finalize reconstruction, a
map from the arc length s to the temperature yn, y (s) : s 7→ yn has to be found.
A computationally inefficient method would be to re-measure the arc length of the
diffeomorphic curve and stop once it has the desired length s. This yields a position on
the curve (yn+1, yn), allowing reconstruction of the measured value yn.

As only samples are collected, the complete function of the time delay embedding
is unknown, and the diffeomorphic curve and its arc length have to be approximated.
In the implementation for this thesis, the first tuple (yn+1, yn) for which the arc length
is greater or equal the desired s is returned. When there are only a few data points

26

3. Transport of Discontinuous Densities with Artificial Neural Networks

0 1 2

s

D
en

si
ty

Approximated s-density

Figure 3.8.: This plot compares the true density created by the arc length of the time
delay embedding (blue), and new points sampled from the uniform distribution and
transported with the learned normalizing flow (orange).

available, it might be necessary to perform interpolation between the arc lengths.
Based on this implementation, every arc length can be mapped to the original yn

with y (s), as seen in Figure 3.9. When taking a closer look at this function, we can see
that it already somehow resembles the map we are looking for. And intuitively this
makes sense because we unfolded a diffeomorphic version of curve, and to transform
the unfolded version back (i.e. to refold it), the mapping needs the correct folds.

0 1 2

s

0.25

0.50

0.75

1.00

y
n

y(s)

Figure 3.9.: Plot of y (s) that maps each point of the arc length to the respective yn. A
slightly different version of this map can be constructed to recover yn+1.

With all the steps done before, and enough information about x, the true underlying
manifold can be reconstructed, and new points sampled. A point x is transported with
the normalizing flow f (x) to an arc length s, and then with y (s) mapped into the
underlying folded space. This results in the complete function T (x) = y (f (x)), and
the corresponding density, as visualized in Figure 3.10.

Note that, when the underlying space is unknown, the exact manifold cannot be
reconstructed but only a diffeomorphic copy of it. As a simple example, imagine that
the true bounds on x are not [0, 1] but [0, 100]. The reconstructed manifold would then

27

3. Transport of Discontinuous Densities with Artificial Neural Networks

0.00 0.25 0.50 0.75 1.00

x

D
en

si
ty

Reconstructed y-density

0.00 0.25 0.50 0.75 1.00

x

0.00

0.25

0.50

0.75

1.00

y

Reconstructed transport

Figure 3.10.: This figure compares the ground truth (blue) with the approximated
solution (orange). The true manifold could be approximated (right) which will result
in a nearly identical density when sampling new points (left).

be defined on a different range and thus only be diffeomorphic to the true manifold.
Similarly in higher dimensions, the variables could be swapped. In this thesis, sufficient
knowledge for the complete reconstruction is assumed.

The reconstruction of the original underlying transport map has only minor devia-
tions. With this approximation, the temperature y on a position x on the highway can
be determined, without measuring a single x value. In the reconstructed map at x = 1,
a vertical bar can be seen. Because the NF is only an approximation, when it yields an
arc length greater than the length of the curve itself, it will be mapped to zero in this
implementation. As there does not exist a point on the time delay embedding for such
points out of range, there is no single correct way to resolve this problem.

In this section, we saw that by directly applying a transport algorithm such as
normalizing flows, the correct solution cannot always be found, especially when the
underlying map is folded. Discontinuous densities are often caused by folded maps
and thus require explicit attention. To overcome this problem, multiple time delayed
measurements were collected that can be used to find a diffeomorphic version of the
underlying manifold. By unfolding the density of the time delay embedding, the
dimensionality could be reduced, and we ensured that an invertible map is sufficient.
This unfolded version can be used to find a normalizing flow, allowing reconstruction.
When refolding the values, the map T can be evaluated at arbitrary positions.

3.2.4. Transport of continuous densities

In the previous sections, we discussed that the classical approach can even fail to
identify the true manifold for continuous densities. We will now see that time delays
are always required when needing to ensure that the identified transport is correct.

28

3. Transport of Discontinuous Densities with Artificial Neural Networks

We begin by looking at a density without a jump discontinuity, produced by ȳ =

T (x) = −4x2 + 4x. While this map is again folded, it is not “cut-off” as before, but
every y value corresponds to exactly one of two x values. Thus, the arising density
of this transport map, Figure 3.11 (left), has no jump discontinuity. A normalizing
flow, Figure 3.11 (right), cannot find the true map as it only finds invertible solutions.

0.00 0.25 0.50 0.75 1.00

ȳ

D
en

si
ty

Histogram of ȳ

0.00 0.25 0.50 0.75 1.00

x

0.00

0.25

0.50

0.75

1.00

ȳ

Transports to ȳ

Figure 3.11.: The left plot shows the density that can be observed when one of the two
transport functions plotted in the right is used. The blue folded map (right) was used
to create the samples, but as this function is non-invertible it cannot be found directly.
A normalizing flow finds the orange curve (right).

This again shows that the problem described arises mostly with folded transport
maps, regardless of whether the density has a jump discontinuity or not. Still, the
density presented here is discontinuous, as it diverges to infinity at ȳ = 1. This time,
the solution is also differentiable. As transport maps are not unique, an additional
observation process is needed to be certain that the correct solution was found. This
also holds for continuous densities, as illustrated by a simple transport map where the
isometric version is found by the normalizing flow shown in Figure 3.12.

One can even construct examples, where the normalizing flow (with a specific
algorithm) finds a different solution than the isometric one. These examples show the
importance of multiple observations and a process that can identify the true system, up
to an orthogonal map, described in this thesis, based on [45].

3.2.5. Varying underlying densities

Up until now, we have assumed that the density we are transporting to is uniform. In
the car example, this means that the cars are uniformly distributed on the highway.
Since normalizing flows are used, any known base density can be used instead. To
be more precise, the two-step normalizing flow procedure illustrated in Section 3.1.2,
allows transport to any complicated density if enough samples are provided to learn
that distribution.

29

3. Transport of Discontinuous Densities with Artificial Neural Networks

0.00 0.25 0.50 0.75 1.00

ŷ

D
en

si
ty

Histogram of ŷ

0.00 0.25 0.50 0.75 1.00

x

0.00

0.25

0.50

0.75

1.00

ŷ

Transports to ŷ

Figure 3.12.: Similarly to Figure 3.11, this plot shows two different transport maps
(right) that both produce the density on the left. ŷ = T (x) = − 1

2 x2 − 1
2 x + 1 (blue) is the

actual function used for sampling, but the normalizing flow approximates the isometric
version (orange). Without additional data, the correctness cannot be determined.

In Figure 3.13, the same procedure to reconstruct the underlying manifold as before
is applied but the assumptions were changed. Instead of transporting the density of the
arc length to a uniform density, these push-forwards illustrate the same process with a
density from the standard normal distribution, and a bimodal distribution. Thus, the
cars on the highway would be distributed accordingly.

−2 0 2

x

0.00

0.25

0.50

0.75

1.00

y

Normal transport to y

−2 0 2

x

0.00

0.25

0.50

0.75

1.00

y

Bimodal transport to y

Figure 3.13.: These plots show that different push-forwards are found, when the base
density is changed. Only the transport to the intermediate arc length is changed but
otherwise the process kept identical. On the left, the push-forward for points drawn
from a standard normal distribution are shown. In the plot on the right, the same is
shown for the bimodal distribution from Section 3.1.2.

Note that the analogy of a highway might not make sense anymore with an unre-
stricted base distribution, such as the standard normal. A uniform distribution has
clear bounds that one can imagine as the start and end of the road. And while the tails
of the density of unbounded densities can become arbitrarily small, they never reach
zero, meaning that the highway would need to be infinitely long.

30

3. Transport of Discontinuous Densities with Artificial Neural Networks

3.2.6. Number of time delays

Takens’ theorem gives a clear upper limit on the number of delays needed for a time
delay embedding to be diffeomorphic. In practice, it might be desired to collect
as few time delays as possible to reduce cost and time. In the previous example
(see Section 2.1.3), two time delays from the three necessary were sufficient to find a
diffeomorphic embedding. In this section, we will look at the benefit when increasing
the number of collected time delays even further than Takens’ theorem requires.

With the clear upper limit provided by Takens’ theorem, the answer might seem to
be that collecting more than 2d + 1 time delays is unnecessary. Figure 3.14 visualizes
how the previous example changes with additional time delays.

0.00 0.25 0.50 0.75 1.00

Position on (yn, yn+1, . . .)

0

2

4

6

A
rc

le
n

g
th

s

0.00 0.25 0.50 0.75 1.00

Position on (yn, yn+1, . . .)

0

6

12

18

G
ra

d
ie

n
t

0 2 4 6

s

0

1

2

D
en

si
ty

(yn, yn+1)

(yn, yn+1, yn+2)

(yn, yn+1, yn+2, yn+3)

(yn, yn+1, yn+2, yn+3, yn+4)

Number of Time Delays

Figure 3.14.: Indicated by different colors, this figure shows the arc length with increas-
ing number of time delays (left), the corresponding gradient (center), and the density
(right). In this example, two time delays are sufficient for a diffeomorphic embedding
and up to three are generally needed. The gradient of the arc length (center) becomes
smoother with more time delays, even when exceeding the maximum number of time
delays required.

Those smoother gradients of the arc length make the resulting densities also smoother
which can be beneficial when using machine learning. As the relations become more
linear, artificial neural networks (e.g. used in normalizing flows) can potentially learn
and express the underlying relation more quickly and with fewer neurons. While
this might not be a problem in those toy examples presented, when data becomes
higher-dimensional, reducing the training time might be required.

31

3. Transport of Discontinuous Densities with Artificial Neural Networks

3.3. The dynamical system

Reconstruction of the underlying manifold gives much information about the stationary
system, which was the highway x and the corresponding temperature y in the previous
example. With the introduction of time delays, the underlying objects needed to
move on a stationary system (i.e. the manifold). In this section, the goal is to learn
the underlying dynamical system—the movement of the objects—with time delayed
measurements. More specifically, a dynamical system is a process where a single
vector s serves as the intrinsic state and fully determines the future of the system [28].
Continuing with the car analogy, this means that we want to investigate how the cars’
measured temperature changes when it drives along the road. Throughout this section,
we will continue the previous one-dimensional example and also use the same data.

Even in the simple scenario of only a single measurement yn it is difficult to predict
subsequent yn+k values. Because folded maps are not injective, a single measurement
can correspond to multiple positions. Thus, an individual yn does not uniquely
determine the position on the underlying manifold. With this ambiguity, predicting
the future is difficult, because it is usually not possible to decide which of the intrinsic
states is the correct one.

For example, assume the same folded curve as before (see Figure 3.1) that could
describe the temperature on a highway. A measurement from a car could have been
taken on the left side of this folded map (i.e. first half of the highway), meaning the
temperature will increase in the next timestep, or, it could have been measured on the
second half and it will decrease with the movement of the car.

But when describing the system in a different way, prediction of the next state
can become easier. For instance, learning the dynamical system of the time-delay
embedding is possible, because a point on the curve (yn+1, yn) uniquely identifies the
state and allows prediction how the system will change (i.e. rate of increase / decrease).
Using this tuple as the intrinsic state and learning the corresponding dynamical system
of the time delay embedding comes with some difficulties. Although the system of the
diffeomorphic curve is two-dimensional, prediction of the next state can only be done
for points on this one-dimensional curve (yn+1, yn). While this increase in dimension
allows us to overcome the initial problem, it increases complexity without adding
higher-dimensional information.

In the previous sections, we were able to use a single dimension to parametrize the
underlying curve and hence saw that the intrinsic dimension is one. When using the
arc length parametrization as the single state of the system, all information can still be
encoded without increasing the dimension. As the parametrized function is monotoni-
cally increasing, every arc length has a unique position on this curve making prediction

32

3. Transport of Discontinuous Densities with Artificial Neural Networks

easier. Since we also saw that there is a mapping y (s) : s 7→ yn, the dynamical system
of yn (i.e. the temperature) can be learned by using s as the intrinsic state instead. This
parametrization allows us to learn the underlying dynamics and predict the observed
temperatures at the next timestep, all without increasing the dimension.

Given this apparent advantage, this section is dedicated to learning the nonlinear
dynamic of the (unfolded) system. In the one-dimensional case, understanding the
dynamics is equivalent to learning the steepness of the curve to estimate the position
at the next timestep. Thus, the goal is to learn the gradient. Such dynamical systems
are typically described with differential equations [57]. In the higher-dimensional case,
this corresponds with learning the underlying vector field [2]. In all dimensions, it
describes where to and how quickly a point on this field would “flow” into a direction
when imagining the vector field / gradient as water with turbulence [65]. For more
information on vector fields and gradients see for example [64], and [65] is a great
introduction for dynamical systems themselves. The extension of this concept in higher
dimensions is sketched in Section 3.4.6.

3.3.1. Learning the system with a neural network

There are many ways to learn the dynamics of a nonlinear system [28, 39], but in
this thesis, the method presented in [57, Sec. III.3] is used. There, Rico-Martínez et

al. propose to use an artificial neural network that is integrated with a fourth order
Runge-Kutta integrator. Runge-Kutta is a family of methods that allow numerical
integration and can be used to solve ordinary differential equations. [4] and especially
[4, Ch. 4] serves as a great introduction for numerical integration, available methods,
and contains much information regarding ordinary differential equations. The method
proposed in [57] is more thorough than needed for this simple scenario. Thus, the
following only describes the necessary parts to solve the scenario tackled in this thesis
with slightly adapted notation. Otherwise, it is very similar to [57, Sec. III.3].

The goal is to learn the underlying vector field of the parametrized version. This
possibly higher-dimensional gradient f we are looking for, serves as the right-hand side
of the ODE

s⃗n
′ = f (⃗sn) , with s⃗ ∈ R

d, f : R
d → R

d, (3.2)

where s⃗n are the coordinates of the d-dimensional space. Continuing the one-dimensional
example from before, this means that s⃗n is the arc length with a dimension of d = 1.
This unknown function f is the vector field and describes the underlying dynamical
system. To approximate it with the observed data, a neural network is used as the
function f itself.

33

3. Transport of Discontinuous Densities with Artificial Neural Networks

The weights of the network f have to be adjusted such that it approximates the
gradient correctly. When training a neural network with supervised learning, some
inputs and outputs of the function need to be pre-determined for the neural network
to learn, and the weights to be adjusted accordingly. In this case, there are only
measurements for the arc length itself, but not for the gradient. To be able to compare
the output of the network f (i.e. the gradient) with the measured arc length, the neural
network is integrated numerically with Runge-Kutta [57]. Given the current state of
the system s⃗n, this numerical integration method can approximate the subsequent state
s⃗n+1 with ⃗̂sn+1 by

⃗̂sn+1 = s⃗n +
1
6

(

k⃗1 + 2⃗k2 + 2⃗k3 + k⃗4

)

, (3.3)

with
k⃗1 = hf (⃗sn)

k⃗2 = hf

(

s⃗n +
k⃗1

2

)

k⃗3 = hf

(

s⃗n +
k⃗2

2

)

k⃗4 = hf
(

s⃗n + k⃗3

)

,

(3.4)

as formulated in [57]. This can be used for learning the correct f, up to a global
fourth-order error of O

(

h4
)

that depends on the step size h [4].
With Runge-Kutta, the right-hand side of the ODE (i.e. the neural network f) can be

used to continue the “flow” of the dynamical system. In this one-dimensional example,
this means that with a single position on the arc length sn, and the gradient f, the arc
length at the next time step sn+1 can be approximated with ŝn+1.

3.3.2. Architecture and training

We will now apply this method proposed by Rico-Martínez et al. to learn the dynamical
system of the arc length that in turn allows us to understand the dynamical system of
the temperature. As data, we use the previously collected points on the arc length. As
only samples are available, the arc length was approximated numerically and thus a
monotonically increasing list of sn values is available. Based on those points, tuples of
(sn, sn+1) can be created: sn would be an arc length and sn+1 the subsequent arc length
in the list. This gives inputs and outputs that can be used to train f.

In the car analogy, the goal is to predict the temperature observed by a moving car at
subsequent timesteps. In this construction, we assume that at one timestep, each car
drives to the exact position of the following car. If this is not desired, additional data

34

3. Transport of Discontinuous Densities with Artificial Neural Networks

has to be collected. For example, collecting (yn, yn+1, yn+2, yn+3) can also be used to
create sn = (yn, yn+1), and sn+1 = (yn+2, yn+3) with possibly a different step size.

Now that the training data has been acquired, the following procedure is executed
for random (sn, sn+1) tuples to train the neural network:

1. Apply the neural network f four times with input as described in Equation 3.4.

2. Calculate ŝn+1, the approximation of sn+1, with Runge-Kutta from Equation 3.3.

3. Adjust the weights of f based on the difference between ŝn+1 and sn+1.

4. Repeat with 1. until the global error is sufficiently small.

In the following, we will first look at the design decisions of the neural network
and then discuss the results in the next section. For the timestep h, dt = 1

sample size is
used with a sample size of 50, 000 (i.e. number of cars on the highway). This small h

ensures that the underlying space is in [0, 1] and it also normalizes the values to sane
boundaries so that training the neural network is more efficient and accurate.

As for the internal architecture used, this constructed example is very small and
hence a very basic neural network is sufficient. It contains two fully connected hidden
layers with 20 neurons each. For the activation function, the sigmoid function has been
used to ensure non-linear expressiveness. To train the neural network, the data set is
split into random batches of 300 samples. Every 300 processed samples of sn, sn+1, the
sum of their losses is calculated, and the weights updated accordingly. To calculate the

loss function, the mean absolute error ∑
300
i=1 ∥si+1−ŝi+1∥

300 is used [51]. Based on this loss, the
weights are adjusted by the AMSGrad optimizer, which is a variant of Adam [36, 56].

PyTorch [51] was used for implementing this approach. For the neural network
following the schematics proposed in [57, Sec. III.3] itself, the implementation by [15]
was used only with slight alterations.

3.3.3. Results

With this internal architecture and choice of hyper-parameters, the neural network
can be trained for a few hundred epochs (i.e. times the training data is processed
fully) to correctly approximate the true underlying f. With further fine-tuning of hyper-
parameters such as the learning rate, the training could be achieved faster. Figure 3.15
shows the approximation of this neural network f, the right-hand side of the ODE. As
is apparent, the overall approximations are very accurate.

Learning the dip of the gradient to nearly zero is difficult for the neural network to
approximate and needs many epochs. To ease this problem, more neurons might be

35

3. Transport of Discontinuous Densities with Artificial Neural Networks

0.00 0.25 0.50 0.75 1.00

Position on (yn+1, yn)

0

2

4

6

G
ra

d
ie

n
t

Derivative of s

0.00 0.25 0.50 0.75 1.00

Position on (yn+1, yn)

0

1

2

s

Arc length of (yn+1, yn)

0.00 0.25 0.50 0.75 1.00

y

D
en

si
ty

Approximated y-desity

Figure 3.15.: Those plots compare the performance of the neural network (green) with
the true values (blue). The gradient (left) can be reconstructed by taking the measured
arc length values sn and calculating f (sn). By integrating the gradient f numerically,
the arc length can be reconstructed (center). The right plot shows the histogram of
y-values created by the integrated, neurally approximated arc length.

beneficial. Collecting more time delays, as discussed in Section 3.2.6, makes this bump
flatter and the resulting function smoother, and facilitates the learning process.

As the function f is the gradient, it can be used to solve the initial value problem for
s0 = 0. When imagining the gradient as the turbulence in water, this would mean that
a leaf on this water is placed at the start and then observed as it moves according to
the flow. Solving for the positions of the leaf at specific points in time can be done with
Runge-Kutta by applying Equation 3.3 repeatedly. The more sophisticated initial value
problem solver provided in SciPy [72] was used for Figure 3.15 (center).

One has to keep in mind that while we were able to reconstruct this arc length
completely by solving the initial value problem in this one-dimensional case, it has a
different meaning. Intuitively, this solution means that a car starts at the beginning
of the highway and records the arc length while it drives along. Before, there were
multiple cars that recorded their own respective temperature. This difference becomes
apparent, when looking at the problem in a higher-dimensional case, as the manifold
cannot be reconstructed anymore. This will be discussed in Section 3.4.6.

With this procedure, the underlying dynamical process could be learned. Meaning
that the neural network allows us to continue the movement of an object on the under-
lying manifold and observe it at arbitrary timesteps. Together with the reconstructed
map, this can give much insight about the system and can be used for an even better
understanding of the underlying system.

36

3. Transport of Discontinuous Densities with Artificial Neural Networks

3.4. Approach for higher-dimensional discontinuous densities

In the previous sections, the one-dimensional case has been extensively discussed.
When extending the problem to higher dimensions, some parts, especially those
regarding the parametrization and unfolding, cannot be trivially transferred. This is
mostly because the arc length, the function used for the unfolding procedure, cannot
be used for higher-dimensional manifolds. This section is dedicated to extending the
one-dimensional approach to work in higher dimensions. This is done by investigating
a two-dimensional problem that again follows [45]. With this increase in dimensionality,
the procedure will not only be generalized but also allows for more applications.
One such application is presented in Section 3.4.5, where we will see that in higher
dimensions the underlying procedure does not only allow us to find the underlying
manifold but even enables us to transport densities when the dimensions do not match.

3.4.1. Two-dimensional discontinuous densities

The analogy of cars moving on a highway and measuring their respective temperature
can be slightly adjusted such that it makes sense in the two-dimensional case. Instead of
cars, we could imagine ships on an ocean, as suggested by [16]. For this analogy to work
properly, the curvature of the earth needs to be ignored. For the third dimension, this
could be easily changed to spaceships moving in the universe, but the two-dimensional
scenario will be sufficient to explain the higher-dimensional concepts.

Imagine ships uniformly distributed on a two-dimensional ocean (x, β1) sailing
with a consistent motion in β1-direction, where each of those ships measures the
temperature β2. Figure 3.16 is based on [45] and illustrates measurements that could be
observed in such a scenario. While in the previous example the underlying manifold
that produced this discontinuous density was one-dimensional (i.e. a curve), this time,
the unknown manifold is two-dimensional (i.e. a surface), as seen in the bottom center
of Figure 3.16. A two-dimensional discontinuous density is recorded (top left) because
the underlying map is again folded. Apart from the difference in dimensions, this
problem is very similar to the one-dimensional case.

In this example, each ship can measure the temperature β2 and also one coordinate
of the ocean, β1. We can imagine this with people living on an island on the edge of
the ocean that have a telescope. For each ship, the inhabitants can tell how far “left” or
“right” it is (i.e. measure one coordinate). Measuring how far away each ship is (i.e.
recording the x value) is not possible. Thus, two of the three variables can be measured,
namely β1, and β2. Of course, this is just an example to make the concept more feasible
and the concrete measurements can be arbitrary.

37

3. Transport of Discontinuous Densities with Artificial Neural Networks

−1.0 −0.5 0.0 0.5 1.0

β1

−2

−1

0

1

2
β

2

Histogram of β1, β2

↑

−→

−0.2 0.0 0.2
0.0

2.5

5.0

7.5

Histogram of β1 =
2
3 , β2

β2

−2−1012

β
1

−1.0

−0.5

0.0

0.5

1.0

x

−1.0

−0.5

0.0

0.5

1.0

Surface β2 = x
3
− x ∗ β1

Figure 3.16.: In this example, a two-dimensional histogram (top left) with the val-
ues β1, β2 can be observed. As it becomes difficult to look at a two-dimensional density,
the plot at the top right depicts a discontinuous slice of this density at β1 = 2

3 . Instead
of uniformly sampling on a single axis as before, the density was created by sampling
uniformly from the plane x, β1 ∈ [−1, 1] (center right) and determining the value on
the cusp surface β2 (x, β1) = x3 − β1x (center).

3.4.2. Constructing a diffeomorphic surface with time delays

In this example, the recorded two-dimensional density of (β1, β2) and the space orig-
inally uniformly sampled from (x, β1) are both two-dimensional. This means that
similarly to Section 3.1.3, a normalizing flow can be trained that directly maps between
those two measures. Such a direct transport with normalizing flows is visualized
in Figure 3.17. As the underlying map is once again folded, the same problem as before
is faced and it cannot be reconstructed immediately.

To overcome this issue, the procedure proposed by [45] is repeated. Similar to the
one-dimensional case, the first step is to look at multiple time delayed measurements of
the moving underlying objects. In this case, all objects (i.e. ships) move on the manifold
in β1-direction with consistent speed (i.e. the wind is the same for the complete ocean).

38

3. Transport of Discontinuous Densities with Artificial Neural Networks

−1.0 −0.5 0.0 0.5 1.0

β1

−2

−1

0

1

2

β
2

Recreated (β1, β2)-density

β2

−2−1012

β
1

−1.0
−0.5
0.0
0.5

1.0

x

−1.0
−0.5
0.0
0.5

1.0

Direct transport

Figure 3.17.: The density (left) can be reconstructed when performing a direct transport
with an underlying folded map. The reconstructed surface (right) can never be the real
solution (right, translucent), as normalizing flows find invertible maps.

By Takens’ theorem, up to five dimensions are needed to find a diffeomorphic time
delay embedding. In Figure 3.18 (left), a plot of the time delays

(

[β1]n+1 , [β2]n , [β2]n+1

)

with three dimensions is illustrated. In this case, it becomes difficult to see if three
dimensions are sufficient to embed the manifold. To make it easier to visualize, and to
facilitate training under some circumstances, PCA is applied.

Principal component analysis (PCA) [29] can be seen as a way of rotating the
underlying space such that the axes are ordered by the variance they express. Those
axes are referred to as principal components (PCs) and the first principal component
(PC1) explains most of the change in the data. In plots, axes are typically scaled
automatically, so data is often not only rotated in PCA space but the axes also scaled.

The PCA version of the time delays in Figure 3.18 (right) is a better visualization of
the surface, shows that those observations are sufficient for a diffeomorphic embedding,
and contains all the folds needed. In the following, and also in all subsequent examples,
the PCA version will be used as the diffeomorphic version instead of the time delays
(

[β1]n+1 , [β2]n , [β2]n+1

)

themselves.

3.4.3. Parametrization with manifold learning

While the arc length allows the parametrization of every one-dimensional manifold in
a way that it becomes unfolded, it cannot be used to parametrize higher-dimensional
manifolds. For this, a more elaborate process is required. In the following, one way of
parametrization is described with the two-dimensional manifold presented before.

39

3. Transport of Discontinuous Densities with Artificial Neural Networks

[β1]
n+1

−0.5
0.0

0.5
1.0 [β

2
] n

−2
−1

0
1

[β
2
] n
+

1

−2

0

2

Diffeomorphic surface

PC
2 PC 1

P
C

3

PCA of time delays

Figure 3.18.: In the left plot the time delays
(

[β1]n+1 , [β2]n , [β2]n+1

)

are visualized. It is
not clear whether this version is diffeomorphic. The right plot shows the same data
but transformed by PCA. While it does not reconstruct the underlying manifold, it is a
diffeomorphic version. The coloring changes along the second principal component.

When looking at the diffeomorphic surface in Figure 3.18 (right), it can be seen
that it is a two-dimensional manifold (i.e. a surface) embedded into three dimensions.
By construction, and because this is a diffeomorphism, it is known that the intrinsic
dimension of this manifold is two. To transport to a two-dimensional uniform density,
the dimension has to be reduced by reparametrizing the surface.

This parametrization (i.e. the unfolding) can be done with nonlinear manifold learning.
Intuitively, this surface we are looking for can be imagined as a crumbled sheet of paper
in three dimensions. While three coordinates are required to address a position on this
surface, it is still a piece of paper with only two dimensions. The goal of manifold
learning is to find a way to describe it as a two-dimensional object again. This is done
by finding a (non-)linear way of mapping every point in three dimensions such that
it lies on a flat plane again. There are many algorithms available that solve this problem.

Moosmüller, Dietrich, and Kevrekidis use in [45] so-called diffusion maps (DMAPs) [10]
with a Mahalanobis-like metric [19] to reduce the dimension. In this thesis, DMAPs
are used for the core process without the Mahalanobis distance. Diffusion maps are a
nonlinear manifold learning technique that are based on a diffusion process. In those,
a Markov matrix describing the probability to move from one data point to another is
constructed. The probability is higher, the closer two points are in the feature space
according to some measure (i.e. a kernel function). The eigenfunctions of this matrix
(i.e. eigenvectors of a function) are then used to calculate the position embedded in a
lower dimension [10]. Apart from the original paper for DMAPs [10], a great concise

40

3. Transport of Discontinuous Densities with Artificial Neural Networks

introduction to the topic of manifold learning can be found in [31].
One major aspect of manifold learning techniques is that they typically need to know

the intrinsic dimension beforehand. As all examples in this thesis are constructed,
the intrinsic dimension is always known or easy to find out. With a sufficiently small
dimension, the manifold can be visualized and hence the intrinsic dimension inferred
by looking at a plot. Once the dimension becomes higher than three, this cannot be
done anymore. A dimension estimation algorithm such as the one presented in [60]
can be used in higher dimensions.

Continuing with the original problem, we now know that algorithms exist to find a
(non-)linear embedding of a higher-dimensional manifold in a lower dimension. This
process is the parametrization needed that can unfold the density and is used as a
substitute for the arc length in higher dimensions. For this thesis, DMAPs are used
provided by the library datafold [41].

In Figure 3.19 DMAP and another manifold learning algorithm are applied to the PCA
version of the time delay embedding. In this case, different manifolding algorithms
can find an embedding relatively easily. Of course, every algorithm has its own
parameters that possibly require fine-tuning. Only the embedding found by DMAP
shown in Figure 3.19 (left) will be used in the next sections.

DMAP embedding Modified LLE embedding

Figure 3.19.: Lower-dimensional embeddings of the diffeomorphic surface from Fig-
ure 3.18 (right) are visualized. Ideally, a perfect rectangle (i.e. a plane) is found. On
the left, the DMAP algorithm has been applied with a continuous nearest neighbor
kernel function. The plot on the right shows the embedding performed with a modified
version of locally linear embedding (LLE) [59, 74]. Modified LLE is another manifold
learning technique available in Python with [52]. Both algorithms can embed the
surface into two-dimensional space. The coloring changes with the second principal
component PC2 from the diffeomorphic surface in Figure 3.18 (right). From the color
gradient, we see that points are mapped differently by those algorithms.

41

3. Transport of Discontinuous Densities with Artificial Neural Networks

3.4.4. Recovering the underlying manifold

With the parametrization of the surface in two dimensions, we can continue analogously
to the one-dimensional scenario, as in Section 3.2.3. Namely, we train a normalizing
flow that learns to map points from a two-dimensional uniform distribution U[−1,1]2 to
the embedding space displayed in Figure 3.19 (left).

The normalizing flow allows transportation from the space of time delays (3D) to
a point on the uniform plane (2D). With this, plotting the reconstructed manifold is
already possible and this might be sufficient for some scenarios. But the goal discussed
in this thesis is to be able to transport in both directions. Most importantly, the ability
to go from a uniformly distributed point to the time delay space allows sampling new
points on the underlying surface and thus can be used to reconstruct the density.

Both, the normalizing flow and the application of PCA are invertible. The only step
where invertibility has not yet been discussed is the DMAP. And while there is no easy
way to invert DMAP itself, geometric harmonics [11] can be used to learn a mapping that
goes from the embedded space Ψ to the constructed diffeomorphic space X.

Geometric harmonics refer to a special class of wave functions that are solutions of
an eigenproblem of a kernel matrix. Based on the Nyström method [47], geometric
harmonics can interpolate data on arbitrary manifolds. The manifold learning library
used, datafold [41], also implements those, allowing us to solve the pre-image problem
f−1 : Ψ → X, which is the inverse direction of the DMAP process. For the following,
it is sufficient to know that geometric harmonics allow us to find a function from the
embedding to the true underlying higher-dimensional manifold. The results of learning
the pre-image f−1 : Ψ → X with geometric harmonics are visualized in Figure 3.20.

With this pre-image mapping f−1, both directions become feasible and the underlying
manfiold can be reconstructed by sampling. This is done similar to the one-dimensional
case by transporting uniform samples (2D) with a normalizing flow to the parametriza-
tion (2D embedding). This surface is then refolded by mapping the points with the
geometric harmonics to the PCA of the diffeomorphic surface (3D). By applying the
inverse of the PCA, the position on

(

[β1]n+1 , [β2]n , [β2]n+1

)

recovers the original β2.
The results of this complete process are depicted in Figure 3.21.

With increasing dimensions, approximating the correct solution requires some ad-
ditional fine-tuning. The results presented here show that the essential parts, and
especially the fold, are well captured. Future work is needed for further improvement,
specifically at the tails of the map. The part of the approximation where improvement
seems most promising is the function f−1. This can either be done by using a different
process or by improving hyper-parameters and the learning process.

42

3. Transport of Discontinuous Densities with Artificial Neural Networks

PC
2 PC 1

P
C

3

Pre-image reconstruction

PC
2 PC 1

P
C

3

Interpolation

Figure 3.20.: In the left plot, the points from the two-dimensional DMAP embedding
are transported back into three dimensions with f−1. The color scheme in the left figure
is according to PC2 of the previously constructed diffeomorphic surface. Points are
shifted to the center and thus not mapped back perfectly to their original position. The
right figure shows points sampled from U[−1,1]2 that are transported with a normalizing
flow to the DMAP space and then mapped with f−1. The color gradient in this plot is
not based on PC2 of the diffeomorphic surface but changes with PC2 of this plot.

3.4.5. Transporting marginal to joint densities

In all previous examples, direct transportation from the observed space to the original
space was possible because the known intrinsic dimension matched the one of the
observed space. In the following, we will look at how a measurement of merely a
marginal density p (β2) can be used to recover the underlying manifold, and with
it, the joint density p (β1, β2). This was proposed by [45], and the same cusp surface
from Figure 3.16 (center) is used to explain the concept.

Namely, the function of the surface is β2 (x, β1) = x3 − β1x and it produces a
discontinuous joint density, as seen before. This time, we assume that only β2 can be
observed. Previously, we had the example of ships on the ocean, where those ships
could measure the temperature β2, and additionally there is a person on an island
capable of measuring the coordinate β1 with a telescope. Now, there is no island and
only the temperature can be recorded. The density that arises with this example is
illustrated in Figure 3.22.

Unlike in previous examples, this one-dimensional density cannot be directly trans-
ported to two dimensions because of the mismatching dimensions. With an observation
process, the dimensionality can be artificially increased with time delays. In this section,
the objects (i.e. the ships) are still uniformly distributed on the manifold (i.e. the sea),
but this time, they all move in x-direction. Similarly to the one-dimensional example
from Section 3.2.1, we begin by collecting one additional time delay

(

[β2]n , [β2]n+1

)

43

3. Transport of Discontinuous Densities with Artificial Neural Networks

−1.0 −0.5 0.0 0.5 1.0

β1

−2

−1

0

1

2

β
2

Reconstructed (β1, β2)-density

β2
−2

−1
0

1
2

β 1

−1.0
−0.5

0.0
0.5

1.0

x

−1.0
−0.5

0.0
0.5
1.0

Reconstructed transport

Figure 3.21.: The reconstructed density of (β1, β2) is shown in the left, and the right
visualizes the approximated manifold with the real solution plotted translucently.
Compared to the direct approach presented in Figure 3.17, this solution contains a fold.

−2 −1 0 1 2

β2

D
en

si
ty

Histogram of β2

Figure 3.22.: The marginal density of β2 can be seen, where the distribution is deter-
mined by the cusp surface. It is again discontinuous, but the jumps are more subtle.

to create the diffeomorphic manifold. As seen in Figure 3.23 (left), contrary to the
one-dimensional example, this plot has overlaps and does not look like a curve. Thus,
more time delays need to be collected for a diffeomorphic version. In Figure 3.23 (right),
when collecting

(

[β2]n , [β2]n+1 , [β2]n+2

)

instead, a non-overlapping surface can be
found. This visual process is not possible in higher dimensions, but one can use dimen-
sion estimation algorithms [60] to find the intrinsic dimension of the manifold [45].

With this procedure, the dimension was increased, and a diffeomorphic version
of the manifold can be reconstructed. From that point onwards, this scenario is
identical to the one before. By learning how to unfold and refold the density with
DMAPs and geometric harmonics, and transporting this parametrized surface with a
normalizing flow to a two-dimensional uniform density, the underlying manifold can
be reconstructed. The results of this reconstruction process are depicted in Figure 3.24.

44

3. Transport of Discontinuous Densities with Artificial Neural Networks

−2 −1 0 1 2

[β2]n

−2

0
[β

2
] n
+

1

No time delay embedding

PC
2 PC1

P
C

3

PCA of time delays

Figure 3.23.: The left image shows that an embedding with one additional time delay
overlaps and is thus not diffeomorphic. In the right image, the PCA of three time delays
does not overlap and illustrates a diffeomorphic time delay embedding. The coloring
scheme for the three-dimensional plots is according to the first principal component.

The results presented face the same issues as reconstruction did in Section 3.4.4 and
need further work to better approximate the real manifold. In this case, it is even more
impressive that a transportation can be found, because previously it was not possible at
all. And not only any arbitrary transport map could be found, but the real underlying
surface could be approximated up to numerical errors. This shows a major benefit
when using this procedure instead of classical transportation theory.

3.4.6. Learning the dynamic in higher dimensions

As discussed in Section 3.3, when the underlying map is folded, the observed state
is often insufficient to predict the future behavior of the dynamical system. In the
one-dimensional case, this problem was overcome by using the parametrization instead
of the observed measurement y directly. As the arc length of the curve is monotonically
increasing, and is thus invertible, the future could be predicted deterministically. This
section is dedicated to how this concept can be used for higher-dimensional manifolds,
where the parametrization by arc length is not possibly anymore.

Before, the parametrization by arc length has been substituted by DMAPs and
geometric harmonics. These extensions can also be made here by using the position on
the DMAP embedding as the intrinsic state. With subsequent measurements from the
moving objects, the dynamical system of higher-dimensional manifolds can be learned
analogously to the one-dimensional case described in Section 3.3.1. When the mapping
to and from the embedding is accurate enough, learning it on this parametrization can
be advantageous, as the lower dimension reduces unnecessary computational overhead.
Most algorithms, especially machine learning ones, can benefit from this pre-processing
step, as they do not need the complexity to express a higher-dimensional manifold.

45

3. Transport of Discontinuous Densities with Artificial Neural Networks

DMAP embedding

β2
−2

−1
0

1
2

β 1

−1.0
−0.5

0.0
0.5

1.0

x

−1

0

1

Reconstructed transport

−2 −1 0 1 2

β2

D
en

si
ty

Reconstructed β2-density

−1.0 −0.5 0.0 0.5 1.0

β1

−2

−1

0

1

2

β
2

Reconstructed (β1, β2)-density

Figure 3.24.: The top left image shows the two-dimensional embedding that can be
found for the PCA of the diffeomorphic surface. The top right illustration shows the
reconstructed underlying manifold and the original one printed translucently. With
this manifold, the marginal density of β2 (bottom left) and the joint density of (β1, β2)
(bottom right) can be reconstructed.

But, as we saw in the previous section, it is not always trivial to use manifold learning
to approximate the truth well enough, especially when the transformation has to be
performed in both directions. This parametrization step is not strictly necessary because
the time delay embedding itself gives every point a unique state—the position on the
manifold in higher-dimensional space. Thus, when learning the dynamical system, the
position on the time delay embedding, or the PCA of it, can be used as the intrinsic state.

For the actual training process, every measurement s⃗n requires a successor state s⃗n+1.
In the one-dimensional example, we simply used the arc length tuples as states and
interpreted them as a car that moves to the position of the next car in one timestep.
This did not require any change in the observation process, but in higher dimensions a
“next” point does not trivially exist anymore.

46

3. Transport of Discontinuous Densities with Artificial Neural Networks

Depending on the actual physical measurement process underlying the observations,
one might need to follow an object for even more time delays to be able to infer the
subsequent states on the time delay embedding. In some cases, it is sufficient to keep
the current measurement process unaltered. With the ship analogy, it might be possible
to interpret the measurements as a row of ships. After each timestep, every ship in that
row sails to the next position, and so on. This results in multiple lists (i.e. columns
of ships’ measurements) where the successor states are known. In other cases, the
measurements are unordered, and the objects need to be followed for a longer time.

By integrating the neural network f that approximates the vector field, the complete
arc length was reconstructed in the one-dimensional example before. In higher di-
mensions, the manifold cannot be fully reconstructed anymore by solving the initial
value problem. Solving it will only result in the trajectory of a single object with its
corresponding measurements. When again viewing this vector field as turbulence in
water (e.g. a river), this makes more sense. A leaf is placed on the start and its positions
observed as it floats on the water. The river is higher-dimensional, but the leaf (i.e. a
single underlying object) is only a point moving through that space. This will always
result in a curve that does not reconstruct the movement of the complete river.

3.5. Learning the shape of a cell from image data

All previous examples were very abstract and only the analogies made them somehow
directly applicable to the real world. While the data in this section is still artificially
generated, it aims to illustrate a more practical use case for the reconstruction of the
underlying manifold. In this scenario, movement of bacteria on a single cell is simulated
and recorded by a series of pictures. These two-dimensional pictures only record partial
information about the three-dimensional position of bacteria on the cell’s surface. The
goal is to learn the underlying “rules” for the movement of bacteria on this cell, when
the microscope records the film. This movement is guided by the shape of the cell, and
thus we want to reconstruct the true underlying manifold.

Single-cell biology, see for example [32], has become an interesting topic for many
biologists over the last few years, due to the increase in computational power and better
microscopes becoming available. Understanding the behavior of objects on the cell can
be useful in a variety of biological applications. When observing viruses, or bacteria
that can penetrate cells, finding out where they move to could be useful to determine
the most probable points of entry. It could also be interesting to observe how the cell’s
surface changes when infected with bacteria or to simply determine the difference
between various cell types and compare them.

47

3. Transport of Discontinuous Densities with Artificial Neural Networks

Contrary to before, the goal in this section is only to recover the shape of the cell,
instead of also approximating the underlying density. Figure 3.25 shows the simulated
image data that will be used for reconstruction. The bacteria are uniformly distributed
on the cell’s surface [27] and move according to a sine wave up and down. A time
series of the (x, y)-coordinates of each bacterium relative to the cell can be observed.
Since cells are translucent, bacteria can even be observed when they are “behind” the
cell. Further, with this construction, the paths do not intersect, otherwise the procedure
would find a higher-than-three-dimensional manifold that describes the movement, not
the shape itself. The resulting density when only collecting two coordinates is again
discontinuous, because the map is folded (multiple times). Singularities arise where the
gradient is zero: at the equator and the poles. Due to this, and because the dimensions
do not match, classical transport to a three-dimensional manifold is not possible.

x

−1.0
−0.5

0.0
0.5

1.0
y

−1.0

−0.5
0.0

0.5
1.0

z

−1.0

−0.5

0.0

0.5

1.0

Bacteria on cell

−1 0 1

x

−1.0

−0.5

0.0

0.5

1.0

y

2D projection of bacteria

−1 0 1

x

−1.0

−0.5

0.0

0.5

1.0

y

Histogram of (x, y)

Figure 3.25.: The left illustration shows the generated image data with the movement
of three bacteria. As the microscope can only take two-dimensional images, the center
plot shows what the microscope might observe when directly looking at the cell from
the top. The arising discontinuous density is seen in the right figure.

The simulation is implemented in such a way that a single “column” of bacteria
rotates around the sphere. They move according to a sine wave along the great
circle they lie on. The recorded film gives access to (x, y)-coordinates at specific
timesteps. With this data, reconstruction of the sphere is nearly identical to the
previous examples. Takens’ theorem limits the number of time delays to 5, hence the
measurements (xn, yn, xn+1, yn+1, xn+2, yn+2) are sufficient for a diffeomorphic version
of the cell. Visually, this cannot be verified anymore because the dimension is too high.
As we did in Section 3.4, PCA is applied to this time delay embedding of which the
first three principal components are visualized in Figure 3.26 (left).

48

3. Transport of Discontinuous Densities with Artificial Neural Networks

Analogously to before, a three dimensional embedding is constructed with DMAP,
and a normalizing flow trained to transport this embedding to the density of the
uniform distribution U[−1,1]3 . In Section 3.4, the manifold was two-dimensional (as
is in this case) but it could be embedded into two dimensions. While a sphere can
be parameterized by the longitude and latitude, it needs three dimensions for an
embedding. Thus, transportation is performed to a three-dimensional uniform density.

In previous examples, and figures, the manifold was reconstructed by sampling
new points that were transported with geometric harmonics. This can also be done
here, but as we are only interested in the shape of the cell, the inverse direction will
be omitted. Figure 3.26 (right) shows the approximated reconstructed shape. The
results need some further fine-tuning to perfectly approximate the cell, but this section
demonstrates real-world applicability of this thesis and serve as a proof of concept.
Learning the dynamical system of the bacteria itself could also be interesting, when the
movement of the objects on the cells needs to be investigated.

PC2

PC 1

P
C

3

PCA of time delays

x

−1.0
−0.5

0.0
0.5

1.0

y
−1.0

−0.5

0.0

0.5
1.0

z

−1.0

−0.5

0.0

0.5

1.0

Reconstructed cell

Figure 3.26.: The first three principal components of the six-dimensional time delay
embedding are shown in the left figure. The right plot shows the reconstruction of the
cell by transporting (x, y) with the presented procedure to U[−1,1]3 and adding z.

49

4. Conclusion

In this thesis, we investigated the dynamical process of objects moving on (higher-
dimensional) unknown manifolds. When the measurement process only gives partial
information regarding the position of those objects on the manifold, the observed
behavior can seem complex, even for simple manifolds. The case where the observed
density of those partial measurements is discontinuous was particularly important in
this thesis because those singularities suggest that the underlying map might be folded.
Most transportation algorithms—including normalizing flows—fail to reconstruct the
true structure of the underlying manifold when the map is folded.

To recover the true underlying manifold, a simple measurement process is already
insufficient to decide whether the found solution is the correct one because the functions
only differ in the pointwise mapping. As a solution, an observation process that follows
the underlying objects and collects multiple time delayed measurements was employed.
With enough time delays, Takens’ theorem states that a diffeomorphic version of
the true manifold can be constructed. As the number of time delays is typically
larger than the intrinsic dimension, the lower-dimensional manifold is embedded
into a higher dimension. By using manifold learning—DMAPs in this thesis—the
lower-dimensional parametrized manifold can be learned and transported back to the
original (unknown) space with normalizing flows. Geometric harmonics complete
reconstruction by allowing transformation back into the higher dimension, so the
transport can map in both directions.

This observation process enables reconstruction of the true underlying manifold (up
to diffeomorphism) as well as the learning of the underlying dynamical system. To
illustrate this, a neural network was trained that acts as the underlying vector field (i.e.
the right-hand side of a corresponding ODE) that can be used to predict subsequent
states. To train this neural network, the vector field is numerically integrated one step
with Runge-Kutta and the output is then compared to the ground truth.

Learning the dynamical process and identifying the true underlying system (or a
diffeomorphic version of it), can be applied in many fields and used in various contexts
where measurements are taken. In the last section, we illustrated this versatility with an
example that shows how the shape of a simulated cell can be reconstructed by observing
the movement of bacteria on it. This example demonstrates real world-applicability
of the thesis, even when conventional measurement processes (e.g. photography) are

50

4. Conclusion

used. We also saw that the area of normalizing flows is a promising new research field
that is worth exploring further.

Most approximations, especially in the one-dimensional case, can already be useful
and be applied in practice. Higher-dimensional examples may require more fine-tuning,
as highlighted in the illustrative-examples and when reconstructing the manifold of the
cell (i.e. sphere). During testing, normalizing flows approximated the target density
well. Hence, we suggest improving the application of manifold learning with DMAPs,
and the pre-image mapping with geometric harmonics. Once better reconstruction
in the examples presented in this thesis is feasible, the procedure can be applied to
real-world examples with potentially inaccurate data.

The latest version of this thesis, and the accompanying source code are available
at https://github.com/plainerman/density-transport. Note that the provided im-
plementation is not ready for production but intended as a proof of concept.

51

https://github.com/plainerman/density-transport

A. Normalizing flows with Pyro and

PyTorch

In this thesis, the library Pyro [6, 54] was used for normalizing flows. To illustrate how a
NF can be trained, Listing A.1 shows an exemplary implementation to find the transport
between a uniform and a normal density. spline_transform is the approximated
transport function T, capable of mapping from the normal density to the uniform
density. The inverse function T−1 can be calculated with spline_transform.inv. This
code excerpt along with the complete implementation to produce the figures presented
in this thesis, and the code for this document itself can be found at https://github.
com/plainerman/density-transport.

52

https://github.com/plainerman/density-transport
https://github.com/plainerman/density-transport

A. Normalizing flows with Pyro and PyTorch

1 import numpy, torch, pyro.distributions as dist

2 from tqdm import tqdm

3
4 samples = numpy.random.random((10000, 2)) # draw uniform samples

5 dataset = torch.tensor(samples, dtype=torch.float)

6
7 base_dist = dist.Normal(torch.zeros(2), torch.ones(2)) # standard normal

8
9 spline_transform = dist.transforms.spline_coupling(2, count_bins=16) # T

10 flow_dist = dist.TransformedDistribution(base_dist, [spline_transform])

11
12 optimizer = torch.optim.Adam(spline_transform.parameters(), lr=1e-2)

13
14 steps = 1000

15 iterator = tqdm(range(steps), desc="Training NF")

16 for step in iterator:

17 optimizer.zero_grad()

18
19 # optimize based on maximum likelihood of dataset

20 loss = -flow_dist.log_prob(dataset).mean()

21 loss.backward()

22 optimizer.step()

23
24 flow_dist.clear_cache()

25 iterator.set_postfix(loss=loss.item()) # update progress bar

26
27 # draw new samples

28 new_samples = flow_dist.sample(torch.Size([1000,])).detach().numpy()

29 # transport observed uniform samples with inverse of T to standard normal

30 normal_samples = spline_transform.inv(dataset).detach().numpy()

Listing A.1: This code example implements a transport from the uniform to a standard
normal density. With 10, 000 uniform random samples, and a neural spline flow with
16 bins, new samples can be drawn or the original uniform points transported to the
normal space. When a different two-dimensional distribution should be learned, only
line 4 needs to be adjusted.

53

Bibliography

[1] J. Adler, I.-M. Sintorn, R. Strand, and I. Parmryd, “Conventional analysis of
movement on non-flat surfaces like the plasma membrane makes brownian
motion appear anomalous,” Communications biology, vol. 2, p. 12, 2019. doi:
10.1038/s42003-018-0240-2.

[2] D. Aeyels, “Generic observability of differentiable systems,” SIAM Journal on

Control and Optimization, vol. 19, no. 5, pp. 595–603, 1981, issn: 0363-0129. doi:
10.1137/0319037.

[3] C. C. Aggarwal, “An introduction to neural networks,” in Neural Networks and

Deep Learning, C. C. Aggarwal, Ed., Cham: Springer International Publishing,
2018, pp. 1–52, isbn: 978-3-319-94462-3. doi: 10.1007/978-3-319-94463-0_1.

[4] U. M. Ascher and L. R. Petzold, Computer methods for ordinary differential equations

and differential-algebraic equations. Philadelphia: Society for Industrial and Applied
Mathematics, 1998, isbn: 978-0-89871-412-8.

[5] J.-D. Benamou, B. D. Froese, and A. M. Oberman, “Numerical solution of the
optimal transportation problem using the monge–ampère equation,” Journal of

Computational Physics, vol. 260, pp. 107–126, 2014, issn: 0021-9991. doi: 10.1016/
j.jcp.2013.12.015.

[6] E. Bingham, J. P. Chen, M. Jankowiak, F. Obermeyer, N. Pradhan, T. Karaletsos,
R. Singh, P. Szerlip, P. Horsfall, and N. D. Goodman, “Pyro: Deep Universal
Probabilistic Programming,” Journal of Machine Learning Research, 2018.

[7] V. I. Bogachev, A. V. Kolesnikov, and K. V. Medvedev, “Triangular transformations
of measures,” Sbornik: Mathematics, vol. 196, no. 3, pp. 309–335, 2005, issn: 1064-
5616. doi: 10.1070/SM2005v196n03ABEH000882.

[8] V. I. Bogachev, Measure theory. Berlin: Springer, 2007, isbn: 978-3-540-34513-8.

[9] L. Chen and R. K. Mehra, “A study of nonlinear filters with particle flow induced
by log-homotopy,” in Signal Processing, Sensor Fusion, and Target Recognition XIX, I.
Kadar, Ed., ser. SPIE Proceedings, SPIE, 2010, p. 769 706. doi: 10.1117/12.853001.

[10] R. R. Coifman and S. Lafon, “Diffusion maps,” Applied and Computational Harmonic

Analysis, vol. 21, no. 1, pp. 5–30, 2006, issn: 1063-5203. doi: 10.1016/j.acha.
2006.04.006.

54

https://doi.org/10.1038/s42003-018-0240-2
https://doi.org/10.1137/0319037
https://doi.org/10.1007/978-3-319-94463-0_1
https://doi.org/10.1016/j.jcp.2013.12.015
https://doi.org/10.1016/j.jcp.2013.12.015
https://doi.org/10.1070/SM2005v196n03ABEH000882
https://doi.org/10.1117/12.853001
https://doi.org/10.1016/j.acha.2006.04.006
https://doi.org/10.1016/j.acha.2006.04.006

Bibliography

[11] R. R. Coifman and S. Lafon, “Geometric harmonics: A novel tool for multiscale out-
of-sample extension of empirical functions,” Applied and Computational Harmonic

Analysis, vol. 21, no. 1, pp. 31–52, 2006, issn: 1063-5203. doi: 10.1016/j.acha.
2005.07.005.

[12] C. Cotar, G. Friesecke, and C. Klüppelberg, “Density functional theory and
optimal transportation with coulomb cost,” Communications on Pure and Applied

Mathematics, vol. 66, no. 4, pp. 548–599, 2013, issn: 0010-3640. doi: 10.1002/cpa.
21437.

[13] N. Courty, R. Flamary, and D. Tuia, “Domain adaptation with regularized optimal
transport,” in Machine Learning and Knowledge Discovery in Databases, ser. Lecture
Notes in Computer Science, T. Calders, F. Esposito, E. Hüllermeier, and R. Meo,
Eds., vol. 8724, Berlin, Heidelberg: Springer Berlin Heidelberg, 2014, pp. 274–289,
isbn: 978-3-662-44847-2. doi: 10.1007/978-3-662-44848-9_18.

[14] M. Cuturi, “Sinkhorn distances: Lightspeed computation of optimal transport,”
in Advances in Neural Information Processing Systems, C. J. C. Burges, L. Bottou, M.
Welling, Z. Ghahramani, and K. Q. Weinberger, Eds., vol. 26, Curran Associates,
Inc., 2013.

[15] L. Dickmanns and M. Sellami, Masters practicum mlcms, https://github.com/
ldickmanns/masters-practicum-mlcms, commit: 13b99fb2b37d1c2d4bd2, 2020.

[16] F. Dietrich, Chair of Scientific Computing in Computer Science, Department of
Informatics, Technical University of Munich, personal communication, https:
//fd-research.com, Jul. 28, 2021.

[17] L. Dinh, D. Krueger, and Y. Bengio, “Nice: Non-linear independent components
estimation,” in 3rd International Conference on Learning Representations, ICLR 2015,

San Diego, CA, USA, May 7-9, 2015, Workshop Track Proceedings, Y. Bengio and
Y. LeCun, Eds., 2015.

[18] L. Dinh, J. Sohl-Dickstein, and S. Bengio, Density estimation using real nvp, 2016.
arXiv: 1605.08803v3.

[19] C. J. Dsilva, R. Talmon, C. W. Gear, R. R. Coifman, and I. G. Kevrekidis, “Data-
driven reduction for a class of multiscale fast-slow stochastic dynamical systems,”
SIAM Journal on Applied Dynamical Systems, vol. 15, no. 3, pp. 1327–1351, 2016.
doi: 10.1137/151004896.

[20] C. Durkan, A. Bekasov, I. Murray, and G. Papamakarios, Cubic-spline flows, 2019.
arXiv: 1906.02145v1.

[21] C. Durkan, A. Bekasov, I. Murray, and G. Papamakarios, Neural spline flows, 2019.
arXiv: 1906.04032v2.

55

https://doi.org/10.1016/j.acha.2005.07.005
https://doi.org/10.1016/j.acha.2005.07.005
https://doi.org/10.1002/cpa.21437
https://doi.org/10.1002/cpa.21437
https://doi.org/10.1007/978-3-662-44848-9_18
https://github.com/ldickmanns/masters-practicum-mlcms
https://github.com/ldickmanns/masters-practicum-mlcms
https://github.com/ldickmanns/masters-practicum-mlcms/tree/13b99fb2b37d1c2d4bd27629b4eaabae14522f57
https://fd-research.com
https://fd-research.com
https://arxiv.org/abs/1605.08803v3
https://doi.org/10.1137/151004896
https://arxiv.org/abs/1906.02145v1
https://arxiv.org/abs/1906.04032v2

Bibliography

[22] J. Feydy, P. Roussillon, A. Trouvé, and P. Gori, “Fast and scalable optimal trans-
port for brain tractograms,” in Medical Image Computing and Computer Assisted

Intervention – MICCAI 2019, ser. Lecture Notes in Computer Science, D. Shen,
T. Liu, T. M. Peters, L. H. Staib, C. Essert, S. Zhou, P.-T. Yap, and A. Khan, Eds.,
vol. 11766, Cham: Springer International Publishing, 2019, pp. 636–644, isbn:
978-3-030-32247-2. doi: 10.1007/978-3-030-32248-9_71.

[23] B. D. Froese and A. M. Oberman, “Convergent finite difference solvers for
viscosity solutions of the elliptic monge–ampère equation in dimensions two and
higher,” SIAM Journal on Numerical Analysis, vol. 49, no. 4, pp. 1692–1714, 2011,
issn: 0036-1429. doi: 10.1137/100803092.

[24] C. Gaetan and X. Guyon, Spatial Statistics and Modeling. New York, NY: Springer
New York, 2010, isbn: 978-0-387-92256-0. doi: 10.1007/978-0-387-92257-7.

[25] A. Galichon, Optimal transport methods in economics. Princeton: Princeton Univer-
sity Press, 2018, isbn: 978-0-691-18346-6.

[26] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,
A. Courville, and Y. Bengio, “Generative adversarial nets,” Advances in Neural

Information Processing Systems, vol. 27, 2014.

[27] D. C. Hall, “Sampling random directions within an elliptical cone,” Computer

physics communications, vol. 219, pp. 87–90, 2017, issn: 0010-4655. doi: 10.1016/j.
cpc.2017.05.010.

[28] A. Hefny, C. Downey, and G. J. Gordon, “Supervised learning for dynamical
system learning,” in Advances in Neural Information Processing Systems, C. Cortes, N.
Lawrence, D. Lee, M. Sugiyama, and R. Garnett, Eds., vol. 28, Curran Associates,
Inc., 2015.

[29] H. Hotelling, “Analysis of a complex of statistical variables into principal com-
ponents,” Journal of Educational Psychology, vol. 24, no. 6, pp. 417–441, 1933, issn:
0022-0663. doi: 10.1037/h0071325.

[30] C.-W. Huang, D. Krueger, A. Lacoste, and A. Courville, “Neural autoregressive
flows,” in Proceedings of the 35th International Conference on Machine Learning, J. Dy
and A. Krause, Eds., ser. Proceedings of Machine Learning Research, vol. 80,
PMLR, 2018, pp. 2078–2087.

[31] A. J. Izenman, “Introduction to manifold learning,” Wiley Interdisciplinary Reviews:

Computational Statistics, vol. 4, no. 5, pp. 439–446, 2012, issn: 1939-5108. doi:
10.1002/wics.1222.

56

https://doi.org/10.1007/978-3-030-32248-9_71
https://doi.org/10.1137/100803092
https://doi.org/10.1007/978-0-387-92257-7
https://doi.org/10.1016/j.cpc.2017.05.010
https://doi.org/10.1016/j.cpc.2017.05.010
https://doi.org/10.1037/h0071325
https://doi.org/10.1002/wics.1222

Bibliography

[32] J. P. Junker and A. van Oudenaarden, “Every cell is special: Genome-wide studies
add a new dimension to single-cell biology,” Cell, vol. 157, no. 1, pp. 8–11, 2014.
doi: 10.1016/j.cell.2014.02.010.

[33] C. Kacper, S. Heiko, and G. Arthur, “A kernel test of goodness of fit,” International

Conference on Machine Learning, pp. 2606–2615, 2016, issn: 1938-7228.

[34] L. V. Kantorovich, “On the translation of masses,” Dokl. Acad. Nauk SSSR, vol. 37,
no. 7-8, pp. 227–229, 1942.

[35] L. V. Kantorovich, “On a problem of monge,” Uspekhi Mat. Nauk, vol. 3, no. 2,
pp. 225–226, 1948.

[36] D. P. Kingma and J. Ba, Adam: A method for stochastic optimization, 2014. arXiv:
1412.6980v9.

[37] D. P. Kingma and P. Dhariwal, “Glow: Generative flow with invertible 1x1 con-
volutions,” in Advances in Neural Information Processing Systems, S. Bengio, H.
Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett, Eds.,
vol. 31, Curran Associates, Inc., 2018.

[38] I. Kobyzev, S. Prince, and M. Brubaker, “Normalizing flows: An introduction
and review of current methods,” IEEE transactions on pattern analysis and machine

intelligence, vol. PP, 2020. doi: 10.1109/TPAMI.2020.2992934.

[39] J. Langford, R. Salakhutdinov, and T. Zhang, “Learning nonlinear dynamic
models,” in Proceedings, twenty-sixth international conference on machine learning,
L. Bottou and M. Littman, Eds., United States: ICML, 2009, pp. 1–8, isbn: 978-1-
60558-516-1. doi: 10.1145/1553374.1553451.

[40] J. M. Lee, Introduction to topological manifolds, ser. Graduate texts in mathematics.
New York and London: Springer, 2000, vol. 202, isbn: 0-387-98759-2.

[41] D. Lehmberg, F. Dietrich, G. Köster, and H.-J. Bungartz, “Datafold: Data-driven
models for point clouds and time series on manifolds,” Journal of Open Source

Software, vol. 5, no. 51, p. 2283, 2020. doi: 10.21105/joss.02283.

[42] N. Lei, K. Su, L. Cui, S.-T. Yau, and D. X. Gu, A geometric view of optimal transporta-

tion and generative model, 2017. arXiv: 1710.05488v2.

[43] D. Marchenko, D. V. Evtushinsky, E. Golias, A. Varykhalov, T. Seyller, and O.
Rader, “Extremely flat band in bilayer graphene,” Science advances, vol. 4, no. 11,
eaau0059, 2018. doi: 10.1126/sciadv.aau0059.

[44] G. Monge, “Mémoire sur la théorie des déblais et des remblais,” Histoire de

l’Académie Royale des Sciences de Paris, pp. 666–704, 1781.

57

https://doi.org/10.1016/j.cell.2014.02.010
https://arxiv.org/abs/1412.6980v9
https://doi.org/10.1109/TPAMI.2020.2992934
https://doi.org/10.1145/1553374.1553451
https://doi.org/10.21105/joss.02283
https://arxiv.org/abs/1710.05488v2
https://doi.org/10.1126/sciadv.aau0059

Bibliography

[45] C. Moosmüller, F. Dietrich, and I. G. Kevrekidis, “A geometric approach to the
transport of discontinuous densities,” SIAM/ASA Journal on Uncertainty Quantifi-

cation, vol. 8, no. 3, pp. 1012–1035, 2020. doi: 10.1137/19M1275760.

[46] T. Müller, B. McWilliams, F. Rousselle, M. Gross, and J. Novák, Neural importance

sampling, 2018. arXiv: 1808.03856v5.

[47] E. J. Nyström, “Über die praktische Auflösung von Integralgleichungen mit
Anwendungen auf Randwertaufgaben,” Acta Mathematica, vol. 54, no. 0, pp. 185–
204, 1930, issn: 0001-5962. doi: 10.1007/BF02547521.

[48] N. H. Packard, J. P. Crutchfield, J. D. Farmer, and R. S. Shaw, “Geometry from
a time series,” Physical Review Letters, vol. 45, no. 9, pp. 712–716, 1980, issn:
0031-9007. doi: 10.1103/PhysRevLett.45.712.

[49] G. Papamakarios, Neural density estimation and likelihood-free inference, 2019. arXiv:
1910.13233v1.

[50] G. Papamakarios, E. Nalisnick, D. J. Rezende, S. Mohamed, and B. Lakshmi-
narayanan, “Normalizing flows for probabilistic modeling and inference,” Journal

of Machine Learning Research, vol. 22, no. 57, pp. 1–64, 2021.

[51] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,
N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison,
A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and S. Chintala, “Pytorch: An
imperative style, high-performance deep learning library,” in Advances in Neural

Information Processing Systems 32, H. Wallach, H. Larochelle, A. Beygelzimer, F.
d’Alché-Buc, E. Fox, and R. Garnett, Eds., Curran Associates, Inc., 2019, pp. 8024–
8035.

[52] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M.
Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D.
Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay, “Scikit-learn: Machine
learning in Python,” Journal of Machine Learning Research, vol. 12, pp. 2825–2830,
2011.

[53] G. Peyré and M. Cuturi, “Computational optimal transport,” Foundations and

Trends in Machine Learning, vol. 11, no. 5-6, pp. 355–607, 2019.

[54] D. Phan, N. Pradhan, and M. Jankowiak, Composable effects for flexible and accelerated

probabilistic programming in numpyro, 2019. arXiv: 1912.11554v1.

[55] D. Pollard, A user’s guide to measure theoretic probability, ser. Cambridge series
in statistical and probabilistic mathematics. Cambridge: Cambridge University
Press, 2002, isbn: 978-0-521-80242-0.

58

https://doi.org/10.1137/19M1275760
https://arxiv.org/abs/1808.03856v5
https://doi.org/10.1007/BF02547521
https://doi.org/10.1103/PhysRevLett.45.712
https://arxiv.org/abs/1910.13233v1
https://arxiv.org/abs/1912.11554v1

Bibliography

[56] S. J. Reddi, S. Kale, and S. Kumar, On the convergence of adam and beyond, 2019.
arXiv: 1904.09237v1.

[57] R. Rico-Martínez, K. Krischer, I. G. Kevrekidis, M. Kube, and J. L. Hudson,
“Discrete- vs. continuous-time nonlinear signal processing of cu electrodissolution
data,” Chemical Engineering Communications, vol. 118, no. 1, pp. 25–48, 1992, issn:
0098-6445. doi: 10.1080/00986449208936084.

[58] H. Robbins and S. Monro, “A stochastic approximation method,” The Annals

of Mathematical Statistics, vol. 22, no. 3, pp. 400–407, 1951, issn: 0003-4851. doi:
10.1214/aoms/1177729586.

[59] S. T. Roweis and L. K. Saul, “Nonlinear dimensionality reduction by locally linear
embedding,” Science (New York, N.Y.), vol. 290, no. 5500, pp. 2323–2326, 2000, issn:
0036-8075. doi: 10.1126/science.290.5500.2323.

[60] A. Rozza, G. Lombardi, M. Rosa, E. Casiraghi, and P. Campadelli, “Idea: Intrinsic
dimension estimation algorithm,” in Image analysis and processing - ICIAP 2011,
ser. Lecture notes in computer science, 0302-9743, G. Maino and G. L. Foresti,
Eds., vol. 6978, Heidelberg: Springer, 2011, pp. 433–442, isbn: 978-3-642-24084-3.
doi: 10.1007/978-3-642-24085-0_45.

[61] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning representations
by back-propagating errors,” Nature, vol. 323, no. 6088, pp. 533–536, 1986, issn:
0028-0836. doi: 10.1038/323533a0.

[62] I. J. Schönberg, “Contributions to the problem of approximation of equidistant
data by analytic functions. part a. on the problem of smoothing or graduation. a
first class of analytic approximation formulae,” Quarterly of Applied Mathematics,
vol. 4, no. 1, pp. 45–99, 1946, issn: 0033-569X. doi: 10.1090/qam/15914.

[63] I. J. Schönberg, “Contributions to the problem of approximation of equidistant
data by analytic functions. part b. on the problem of osculatory interpolation. a
second class of analytic approximation formulae,” Quarterly of Applied Mathematics,
vol. 4, no. 2, pp. 112–141, 1946, issn: 0033-569X. doi: 10.1090/qam/16705.

[64] G. Strang, Calculus. Wellesley, Mass.: Wellesley-Cambridge Press, 1991, isbn:
978-0-9614088-2-4.

[65] S. H. Strogatz, Nonlinear dynamics and chaos: With applications to physics, biology,

chemistry and engineering, Second Edition. Philadelphia, PA: Westview Press, 2015,
isbn: 978-0-8133-4910-7.

[66] E. G. Tabak and C. V. Turner, “A family of nonparametric density estimation
algorithms,” Communications on Pure and Applied Mathematics, vol. 66, no. 2,
pp. 145–164, 2013, issn: 0010-3640. doi: 10.1002/cpa.21423.

59

https://arxiv.org/abs/1904.09237v1
https://doi.org/10.1080/00986449208936084
https://doi.org/10.1214/aoms/1177729586
https://doi.org/10.1126/science.290.5500.2323
https://doi.org/10.1007/978-3-642-24085-0_45
https://doi.org/10.1038/323533a0
https://doi.org/10.1090/qam/15914
https://doi.org/10.1090/qam/16705
https://doi.org/10.1002/cpa.21423

Bibliography

[67] E. G. Tabak and E. Vanden-Eijnden, “Density estimation by dual ascent of the
log-likelihood,” Communications in Mathematical Sciences, vol. 8, no. 1, pp. 217–233,
2010, issn: 1539-6746. doi: 10.4310/CMS.2010.v8.n1.a11.

[68] F. Takens, “Detecting strange attractors in turbulence,” in Dynamical Systems and

Turbulence, Warwick 1980, D. A. Rand and L.-S. Young, Eds., ser. Lecture Notes in
Mathematics, vol. 898, Berlin: Springer, 1981, pp. 366–381, isbn: 978-3-540-38945-3.
doi: 10.1007/bfb0091924.

[69] L. W. Tu, An Introduction to Manifolds. New York, NY: Springer New York, 2011,
isbn: 978-1-4419-7400-6.

[70] C. Villani, Topics in Optimal Transportation, ser. Graduate studies in mathematics,
1065-7339. Providence, R.I. and Great Britain: American Mathematical Society,
2003, vol. v. 58, isbn: 0-8218-3312-X.

[71] C. Villani, Optimal transport: Old and new, ser. Grundlehren der mathematischen
Wissenschaften, 0072-7830. Berlin and London: Springer, 2009, vol. 338, isbn:
978-3-540-71050-9.

[72] P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy, D. Cournapeau,
E. Burovski, P. Peterson, W. Weckesser, J. Bright, S. J. van der Walt, M. Brett,
J. Wilson, K. J. Millman, N. Mayorov, A. R. J. Nelson, E. Jones, R. Kern, E. Larson,
C. J. Carey, İ. Polat, Y. Feng, E. W. Moore, J. VanderPlas, D. Laxalde, J. Perktold,
R. Cimrman, I. Henriksen, E. A. Quintero, C. R. Harris, A. M. Archibald, A. H.
Ribeiro, F. Pedregosa, P. van Mulbregt, and SciPy 1.0 Contributors, “SciPy 1.0:
Fundamental Algorithms for Scientific Computing in Python,” Nature Methods,
vol. 17, pp. 261–272, 2020. doi: 10.1038/s41592-019-0686-2.

[73] H. Whitney, “Differentiable manifolds,” The Annals of Mathematics, vol. 37, no. 3,
p. 645, 1936, issn: 0003-486X. doi: 10.2307/1968482.

[74] Z. Zhang and J. Wang, “MLLE: Modified locally linear embedding using multiple
weights,” vol. 19, Jan. 2006, pp. 1593–1600.

60

https://doi.org/10.4310/CMS.2010.v8.n1.a11
https://doi.org/10.1007/bfb0091924
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.2307/1968482

	Abstract
	Contents
	Introduction
	State of the Art
	Fundamentals
	Measure theory
	Transportation theory
	Manifolds and embeddings

	Transport of densities with normalizing flows
	Artificial neural networks
	Normalizing flows with artificial neural networks

	Transport of discontinuous densities

	Transport of Discontinuous Densities with Artificial Neural Networks
	Overview
	Problem description
	Transporting densities with normalizing flows
	Direct transport of discontinuous densities

	Reconstruction of one-dimensional discontinuous densities
	Observational process and time delay embedding
	Unfolding discontinuous densities
	Reconstructing the underlying manifold
	Transport of continuous densities
	Varying underlying densities
	Number of time delays

	The dynamical system
	Learning the system with a neural network
	Architecture and training
	Results

	Approach for higher-dimensional discontinuous densities
	Two-dimensional discontinuous densities
	Constructing a diffeomorphic surface with time delays
	Parametrization with manifold learning
	Recovering the underlying manifold
	Transporting marginal to joint densities
	Learning the dynamic in higher dimensions

	Learning the shape of a cell from image data

	Conclusion
	Appendix Normalizing flows with Pyro and PyTorch
	Bibliography

