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Abstract

Active safety functions that intervene in dangerous driving situations the driver is
not able to control, e.g., by emergency braking or steering, have great potential to
increase automotive safety by reducing the number as well as the severity of colli-
sions. Such automated vehicular safety functions use the measurements of sensors
sensing the environment of the vehicle in order to interpret the driving situation and
trigger appropriate actions in dangerous driving situations such as emergency brake
or steer interventions. As a consequence, they are typically very vulnerable to sensor
imperfections and unavoidable measurement errors have a negative impact on both
the safety and the satisfaction of the customer, which has to be taken into account
when designing automated vehicular safety systems. Nevertheless, there is still no
general design methodology with which both sensors and functions for a variety of
automated vehicular safety systems can be systematically designed while taking both
the unavoidable sensor measurement errors and the customer satisfaction into account.

Therefore, such a methodology for the robust design of automated vehicular safety
systems considering unavoidable sensor measurement errors, which aims at designing
them such that the customer requirements are fulfilled in a robust manner despite
unavoidable sensor measurement errors, is developed in this thesis. To this end, ideas
from integrated circuit design, a completely different application area, are transferred
to the design of automated vehicular safety systems, which marks a paradigm shift, by
exploiting the analogies to the integrated circuit design with a well-established worst-
case design approach. In particular, three basic design problems are considered, which
application engineers having to select sensors with appropriate properties and to adjust
the functions in the development of automated vehicular safety systems are typically
confronted with, namely, the function design for given sensors, the sensor design for a
given function as well as the joint function and sensor design, which are formulated
as optimization problems. Different possibilities for designing both functions and
sensors of automated vehicular safety systems by solving the formulated optimization
problems solely based on simulations of the automated vehicular safety system under
design, which make the developed design methodology applicable to various automated
vehicular safety systems, are suggested. Besides the Monte Carlo simulation, which
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Abstract

is a straightforward possibility, the worst-case distance approach already applied
in the integrated circuit design is considered as an alternative and adapted to the
robust design of automated vehicular safety systems. They are compared with respect
to the applicability to different automated vehicular safety systems, accuracy and
computational complexity.

The developed methodology for the robust design of automated vehicular safety
systems considering unavoidable sensor measurement errors is applied to two typical
examples for automated vehicular safety systems, namely, an automatic emergency
braking (AEB) and an automatic emergency steering (AES) system. The considered
numerical examples demonstrate that the adaptation of the worst-case distance approach
to the robust design of automated vehicular safety systems can significantly reduce
the required number of simulations of the automated vehicular safety system under
design by replacing an expensive Monte Carlo simulation requiring a huge number of
simulations of the automated vehicular safety system for a comparable accuracy, and
with this the computational complexity, the load for simulation servers as well as the
time and expenses needed for the development of automated vehicular safety systems.
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corresponding to the worst-case distances βn (horizontally and
vertically striped areas including dashed violet and magenta linear
boundaries, respectively) in the plane where ε [n] = µn for n 6= n1, n2. 90

xv



LIST OF FIGURES

5.2 Exemplary individual error acceptance region partition Aε,b,i,
b ∈ {L,U}, (green area possibly including dashed orange
boundary) with either a finite lower bound qL,i if b = L or a finite
upper bound qU,i if b = U for E = 1 sensor measurement error
ε [n] at a time instant tn under the assumption that the function
must decide for an intervention based on the sensor measurements
y [n3] and y [n4] at the time instants tn3 and tn4 at least once
using the decision rule f (·;ϕ) such that qi ≥ qL,i if b = L or
qi ≤ qU,i if b = U, and its relationship to the error regions
Iε,n without intervention, where f (y [n] ;ϕ) = 0 and µ is not
included, approximated by the error regions Îε,n corresponding to
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Introduction 1
The first chapter explains the background behind and the motivation for the robust
design of sensors and functions1 considering sensor measurement errors in vehicular
safety before it gives an overview of related work representing the state of the art,
states the contributions of the thesis and ends with an outline of it.

1.1 Background and Motivation

Currently, the automotive sector faces and is exposed to four disruptive technology-
driven trends, namely, electrification, connectivity, diverse mobility and autonomous
driving, which have been identified by the study whose results have been published
in [1]. While electrification, connectivity and diverse mobility refer to electric vehicles,
i.e., vehicles with electric motors, the communication of vehicles with each other, the
infrastructure, the cloud or any other entity that may affect them called vehicle-to-
everything (V2X) communication and the shift from car ownership to car sharing,
respectively, autonomous driving is about self-driving vehicles, which do not need
human input for performing the dynamic driving task, and has become a term that is
more and more used synonymously with automated driving.

The SAE International standard J3016 of the Society of Automotive Engineers
(SAE) published in [2] and summarized in [3] categorizes the driving automation into
six levels, which are shown in Table 1.1. The degree of driving automation increases
from level 0 to level 5. While the human driver alone performs the driving task in
level 0, a driver assistance system executes either steering or acceleration/decelera-
tion in level 1 and one or more driver assistance systems execute both steering and
acceleration/deceleration in level 2 for specific driving modes, i.e., types of driving
scenarios with characteristic dynamic driving task requirements, e.g., merging on a
highway, with the expectation that the human driver performs all remaining aspects of
the dynamic driving task. In levels 3 and 4, an automated driving system performs all
aspects of the dynamic driving task for specific driving modes with and without the

1In automotive engineering, the word “function” refers to an application implemented in a vehicle in
order to fulfill a particular purpose and is not to be confused with a mathematical function.
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SAE
Level

Name Narrative Definition

Human driver monitors the driving environment

0
No

Automation

the full-time performance by the human driver of all as-
pects of the dynamic driving task, even when enhanced by
warning or intervention systems

1
Driver

Assistance

the driving mode-specific execution by a driver assistance
system of either steering or acceleration/deceleration using
information about the driving environment and with the
expectation that the human driver performs all remaining
aspects of the dynamic driving task

2
Partial

Automation

the driving mode-specific execution by one or more driver
assistance systems of both steering and acceleration/decel-
eration using information about the driving environment
and with the expectation that the human driver performs
all remaining aspects of the dynamic driving task

Automated driving system (“system”) monitors the driving environment

3
Conditional
Automation

the driving mode-specific performance by an automated
driving system of all aspects of the dynamic driving task
with the expectation that the human driver will respond
appropriately to a request to intervene

4
High

Automation

the driving mode-specific performance by an automated
driving system of all aspects of the dynamic driving task,
even if a human driver does not respond appropriately to a
request to intervene

5
Full

Automation

the full-time performance by an automated driving system
of all aspects of the dynamic driving task under all roadway
and environmental conditions that can be managed by a
human driver

Table 1.1: Levels of driving automation defined by SAE International standard J3016
(taken from [3]).
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expectation that the human driver will respond appropriately to a request to intervene,
respectively. Finally, level 5 is characterized by the full-time performance of all aspects
of the dynamic driving task by an automated driving system under all roadway and
environmental conditions that can be managed by a human driver.

Although a lot of research is still required in order to make the vision of full au-
tomation come true, several advanced driver assistance systems (ADASs) that perform
at least temporarily single aspects of the dynamic driving task are already available.
In general, the operation mode of driver assistance systems can be classified by the
type of vehicle guidance into three categories [4]. Category A consists of informing
functions, which only indirectly affect the vehicle guidance by providing the human
driver with information from the environment perception via the human-machine
interface (HMI). Typical examples are the traffic sign recognition, which informs the
driver about detected traffic signs, e.g., by displaying the current speed limit, and the
lane departure warning, which informs the driver about an unintended departure of
the current driving lane, e.g., by a vibration of the steering wheel. In contrast to the
functions of category A, the continuously automating functions forming category B
have direct influence on the vehicle guidance, which comes with a division of the
execution of the dynamic driving task among the human driver and the functions while
the human driver can always override the functions. Typically, those functions are
comfort functions like the Adaptive Cruise Control (ACC), which automatically adapts
the velocity of the vehicle to that of the vehicle driving in front of it, and the lane keep
assist, which automatically steers to keep the vehicle in the current driving lane. As
the functions of category B, the intervening emergency functions forming category
C directly influence the vehicle guidance. However, in contrast to the functions of
category B, they do this only in near-accident situations that cannot be controlled by
the human driver and, as they are superior in these situations, the human driver cannot
override them. Typically, those functions are vehicular safety functions like automatic
emergency braking (AEB) and automatic emergency steering (AES) functions, whose
goal is to automatically brake in front of and evade obstacles, respectively.

Such vehicular safety functions form a part of vehicular safety, where three domains,
namely, active, passive and tertiary safety, can be distinguished with respect to the five
phases involved in an accident according to the European Automobile Manufacturers
Association called Association des Constructeurs Européens d‘Automobiles (ACEA)
[4]. While active safety is relevant in the first three phases and passive safety in the
phases 3 and 4, tertiary safety is relevant in the last phase as illustrated in Figure 1.1.
The first phase is normal driving, which ends with the occurrence of a critical situation,
which starts the phase of danger. The point of no accident avoidance marks the
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Phase 1
normal drive

Phase 2
danger

Phase 3
collision

unavoidable

Phase 4
during collision

Phase 5
after collision

active safety,
advanced driver assistance passive safety tertiary safety

critical
situation

point of no
accident avoidance first impact end of

collision

Figure 1.1: The five phases involved in an accident according to the ACEA as well as
the relevance of active, passive and tertiary safety in those phases (taken from [4]).

environment customerfunctionsensors

measurements actions

Technische Universität München Professur für Methoden der Signalverarbeitung

Joint Function and Sensor Design (1)

Christoph Stöckle Design of Functions and Sensors in Vehicular Safety 1/1Figure 1.2: General setting in which an automated vehicular safety function is embed-
ded.

transition from this phase to the subsequent phase, in which a collision is unavoidable.
This phase is followed by the phase during the collision from the first impact to the end
of the collision, which is the beginning of the last phase, namely, the phase after the
collision. The goal of active safety is to prevent the occurrence of a critical situation
in the first phase, defuse an occurred critical situation in the second phase or reduce
the force of the unavoidable impact in the third phase while passive safety aims at
protecting the occupants during an unavoidable collision in the phases 3 and 4, e.g.,
by an airbag. In the last phase after the collision, rescue actions have to be taken, e.g.,
an emergency call, which is the task of tertiary safety.

Active safety functions that intervene in dangerous driving situations the driver
is not able to control like AEB and AES functions have great potential to increase
automotive safety by reducing the number as well as the severity of collisions. As
depicted in Figure 1.2, such automated vehicular safety functions use the measurements
of sensors sensing the environment of the vehicle in order to interpret the driving
situation and trigger appropriate actions in dangerous driving situations, e.g., an
emergency brake or steer intervention. Consequently, they are typically very vulnerable
to sensor imperfections and unavoidable measurement errors have a negative impact on
both the safety and the satisfaction of the customer. For example, sensor measurement
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errors in AEB and AES systems cause the problem that an emergency brake or steer
intervention might not be triggered although it is necessary or, on the contrary, a false
alarm might occur. Therefore, these unavoidable sensor measurement errors have to
be taken into account.

1.2 Related Work and State of the Art

The following works deal with the uncertainty vehicular safety systems are exposed to as
caused by sensor measurement errors and errors in the prediction of the unknown future
evolution of a situation, and represent the state of the art. For calculating the collision
probability under measurement and prediction uncertainty, [5–10] present Monte-
Carlo-based methods whereas [11] replaces the expensive Monte Carlo sampling by
the Unscented Transformation (UT) and [12,13] provide analytical solutions. Collision
detection algorithms using the collision probability computed by Monte-Carlo-, UT-
and machine-learning-based methods are compared in [14]. [15] presents a criticality
measure, which can be used for trajectory planning including collision avoidance in the
presence of measurement and prediction errors, and [16] a method for motion planning
in automated driving under measurement and prediction uncertainty while [17–19]
discuss collision avoidance systems whose decision for an intervention explicitly takes
the measurement and prediction uncertainty into account. Methods for identifying
the optimal emergency maneuver considering the pedestrian’s injury risk, positioning
errors and uncertain future movements are described in [20, 21].

The fusion of data from different sensors in autonomous vehicles requires accurate
estimates of the location uncertainty resulting from the sensor measurement errors to
achieve a high fusion accuracy. Therefore, [22] tackles the problem of predicting the
location uncertainty in form of covariance matrices based on a neural network.

Based on Monte Carlo simulations, [23] investigates the effect of sensor measure-
ment errors on the uncertainty of collision warning criteria used in collision warning
systems, [24] examines their impact on the performance of a situation assessment
algorithm for a collision prevention assistant and [25] analyzes their influence on the
accuracy of predicted collision parameters like the time-to-collision (TTC) used in
predictive passive safety systems. The authors of [11] use the UT also for comput-
ing the probability distribution of the TTC under measurement uncertainty in [26].
Closed-form expressions for the probability distributions of criticality measures used
in ADASs like the TTC, which are subject to the uncertainty in the prediction of the
future evolution of a situation and sensor measurement errors, are derived in [27]. The
framework presented there is applied in [28] in order to analyze the impact of predic-
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tion uncertainty and sensor measurement errors on the performance of AEB systems.
While closed-form expressions for the worst-case performance of a collision avoidance
system in the presence of prediction and measurement errors are derived in [29], [30]
presents a statistical analysis of the vehicle motion estimation from features in the
environment under the influence of sensor measurement errors using closed-form
expressions and [31] obtains analytical results for the relationship between sensor
measurement errors and the resulting errors in the pose of the vehicle determined by
odometry.

A methodology for setting the parameters of rear-end collision warning and avoid-
ance algorithms based on statistical performance metrics that allow to take the uncer-
tainty caused by erroneous sensor measurements of the current state in the driving
scenario and predictions of the unknown future development of the state into account is
proposed by the authors of [32]. In [33], a measure for the robustness of decision func-
tions used in active safety systems for deciding on interventions to sensor measurement
errors is introduced, which can also help to derive requirements for the errors and tune
the decision functions, i.e., adjust the values of their parameters. [34] uses analytic
statistical modeling for the analysis of object detection with stereo vision for collision
warning, which makes it possible to predict the uncertainty in object location and
obtain optimal thresholds in the presence of measurement errors. In [35, 36], sensor
parameters are derived from requirements for the vehicle localization accuracy based
on a probabilistic model taking sensor measurement errors into account. However,
there is still no general design methodology with which both sensors and functions for
a variety of automated vehicular safety systems can be systematically designed while
taking both the unavoidable sensor measurement errors and the customer satisfaction
into account in contrast to other areas of engineering science, e.g., civil and mechanical
engineering as well as integrated circuit design, where general design procedures were
introduced early on to deal with unavoidable parameter tolerances and deficiencies as
well as their influence on the system performance [37–43].

1.3 Contributions of the Thesis

In this thesis, a new methodology for the robust design of automated vehicular safety
systems considering unavoidable sensor measurement errors, which aims at designing
them such that the customer requirements are fulfilled in a robust manner despite un-
avoidable sensor measurement errors, is developed. To this end, ideas from integrated
circuit design, a completely different application area, are transferred to the design of
automated vehicular safety systems, which marks a paradigm shift, by exploiting the
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analogies to the integrated circuit design with the well-established worst-case design
approach presented in [39–43]. The result is the first general design methodology with
which both sensors and functions for a variety of automated vehicular safety systems
can be systematically designed while taking both the unavoidable sensor measurement
errors and the customer satisfaction into account.

In particular, three basic design problems are considered, which application engi-
neers having to select sensors with appropriate properties and to adjust the functions
in the development of automated vehicular safety systems are typically confronted
with, namely, the function design for given sensors, the sensor design for a given
function as well as the joint function and sensor design. Each of these three basic
design problems is formulated as an optimization problem, whose solution yields the
optimal sensor parameter values, the best decision rule for triggering the respective
action by the function and the optimal function parameter values of the automated
vehicular safety system under design with respect to a quality measure that is defined
to measure to what extent the function meets the customer requirements in a robust
manner despite the unavoidable sensor measurement errors. Moreover, application
engineers are provided with design spaces that represent the requirements the sensors
have to fulfill such that the customer requirements are met in a robust manner despite
the unavoidable sensor measurement errors to the desired extent, which is of particular
importance for the overall design task in an industrial environment. The solution
of the optimization problems formulated for the sensor as well as joint function and
sensor design minimizes the costs inside the design spaces such that the customer
requirements are met in a robust manner despite the unavoidable sensor measurement
errors to the desired extent at minimal costs.

Different possibilities for a simulation-based evaluation of the quality measure are
suggested, which allows to design both functions and sensors of automated vehicular
safety systems by solving the formulated optimization problems solely based on simu-
lations of the automated vehicular safety system under design and makes the developed
design methodology applicable to various automated vehicular safety systems. Besides
the Monte Carlo simulation, which is a straightforward possibility, the worst-case
distance approach already applied in the integrated circuit design is considered as an
alternative and adapted to the robust design of automated vehicular safety systems.
They are compared with respect to the applicability to different automated vehicular
safety systems, accuracy and computational complexity.

The developed methodology for the robust design of automated vehicular safety
systems considering unavoidable sensor measurement errors is applied to two typical
examples for automated vehicular safety systems, namely, an AEB and an AES system,
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which, in part, has already been published in [44–46] for the AEB system and in [47] for
the AES system. These application examples provide a complete picture of the system
model, the formulation of the design problems at hand as optimization problems using
the proposed design methodology and their solution based on closed-form expressions
for the quality measure or solely based on simulations of the AEB or AES system
under design without the need for deriving closed-form expressions for the quality
measure. Deriving such closed-form expressions would also not be viable for the
complex automated vehicular safety systems in practice and therefore the developers of
such systems have to resort to a simulation-based design. In particular, the model of the
AEB system has been kept as simple as possible in order to illustrate the basic principle
of the design methodology and allow for the derivation of results in closed form at
several points for an accurate evaluation of the design methodology. The considered
numerical examples demonstrate that the adaptation of the worst-case distance approach
to the robust design of automated vehicular safety systems can significantly reduce
the required number of simulations of the automated vehicular safety system under
design by replacing an expensive Monte Carlo simulation requiring a huge number of
simulations of the automated vehicular safety system for a comparable accuracy, and
with this the computational complexity, the load for simulation servers as well as the
time and expenses needed for the development of automated vehicular safety systems.

A tutorial-style explanation of how the ideas from the integrated circuit design can
be transferred to the design of automated vehicular safety systems and the resulting
methodology allows to systematically design both functions and sensors such that the
customer requirements are fulfilled in a robust manner despite unavoidable sensor
measurement errors can be found in [48].

1.4 Outline of the Thesis

After introducing the system model in Chapter 2, Chapter 3 gives a general overview
of a robust system design as performed in integrated circuit design. Based on this, the
proposed methodology for the robust design of automated vehicular safety systems
considering unavoidable sensor measurement errors is developed by formulating the
design tasks at hand as optimization problems and defining the used quality measure
in Chapter 4 while Chapter 5 deals with the simulation-based evaluation of this quality
measure for the design of automated vehicular safety systems solely based on simula-
tions of the automated vehicular safety system under design. The developed design
methodology is applied to the robust design of an AEB system and an AES system in
Chapter 6 and Chapter 7, respectively. Finally, Chapter 8 concludes the thesis with a
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summary and an outline of possible future work.
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System Model for Automated
Vehicular Safety Systems 2

Formulating the robust function and sensor design considering sensor measurement
errors for automated vehicular safety systems as optimization problems, which allow
for a systematic solution of the design problems, requires a mathematical model of
the overall system. This system model can be split into a mathematical representation
of the considered driving scenario in which the automated vehicular safety system is
applied and a stochastic model of the automated vehicular safety system itself including
sensor measurement errors.

2.1 Mathematical Representation of the Driving Scenario

As illustrated in Figure 2.1, a driving scenario consists of the ego vehicle, which is
equipped with the automated vehicular safety system under consideration, and one or
more standing or moving objects, which might be other road users like other vehicles,
motorcycles, bicycles and pedestrians or obstacles on the road, e.g., building material
deposited at construction sites. The objects considered in this thesis are vehicles, and
the motion of each vehicle in general and the ego vehicle in particular during a driving
maneuver is described by the following system of differential equations for curvilinear
motion from [49]:

ẋ (t) = v (t) cos (ψ (t)) , (2.1)
ẏ (t) = v (t) sin (ψ (t)) , (2.2)
v̇ (t) = alon, (2.3)

ψ̇ (t) = min

(
alat
v (t)

,
v (t)

rmin

)
. (2.4)

In this motion model, which is an extension of the standard curvilinear motion model
stated in [50] by the turn radius rmin of the vehicle, the state of the vehicle at time t
is represented by the state vector [x (t) , y (t) , v (t) , ψ (t)]T consisting of four state
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ego vehicle

vehicle

bicycle
vehicle

motorcycle

pedestrians

construction site

Figure 2.1: A typical driving scenario.
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yw

xw

xv

yv

x (t)

y (t)

v (t)

ψ (t)

Figure 2.2: State of a vehicle at time t.

variables, which are the coordinates x (t) and y (t) of its center of gravity with respect
to the xw- and yw-axis of a world coordinate system determining its position, its longitu-
dinal velocity v (t) and its yaw angle ψ (t) with respect to the world coordinate system
at time t as visualized in Figure 2.2. Furthermore, alon and alat are the longitudinal
and the lateral acceleration, respectively.

Solving the system of differential equations for a given initial state [x (tstart) ,

y (tstart) , v (tstart) , ψ (tstart)]
T of the vehicle at the beginning of the driving maneuver

starting at time tstart and ending at time tend yields the trajectory during the driving
maneuver given by the function

[tstart, tend] → R4, t 7→


x (t)

y (t)

v (t)

ψ (t)

 , (2.5)

i.e., the sequence of states [x (t) , y (t) , v (t) , ψ (t)]T for the time t in the time interval
[tstart, tend]. Apart from special cases where a closed-form solution exists, the system
of differential equations has to be solved numerically as that of more complex motion
models like the single- and twin-track motion models (see, e.g., [51]), which can easily
be used instead of the curvilinear motion model considered in this thesis for increased
model accuracy.

Once the trajectory for the time interval [tstart, tend] is known, the state [x (t) , y (t) ,
v (t) , ψ (t)]T of the vehicle at time t ∈ [tstart, tend] completely determines the position
of all points of its contour at time t. The contour is represented by a sequence of
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points and each point is defined by its time-independent coordinates in the vehicle
coordinate system whose xv- and yv-axis are aligned with the longitudinal and lateral
axis of the vehicle, respectively, and whose origin is fixed at its center of gravity as
visualized in Figure 2.2. If a point of the contour has the coordinates (xv, yv) in the
vehicle coordinate system of the vehicle with the state [x (t) , y (t) , v (t) , ψ (t)]T at
time t, its coordinates (xw (t) , yw (t)) in the world coordinate system are given by the
coordinate transformation

[
xw (t)

yw (t)

]
=

[
cos (ψ (t)) − sin (ψ (t))

sin (ψ (t)) cos (ψ (t))

][
xv

yv

]
+

[
x (t)

y (t)

]
(2.6)

from coordinates in the vehicle coordinate system to coordinates in the world coordinate
system.

Hence, each driving maneuver of a vehicle starting at time tstart ≥ t0 and ending
at time tend ≥ tstart in the considered driving scenario starting at time t0 is completely
characterized by the initial state [x (tstart) , y (tstart) , v (tstart) , ψ (tstart)]

T of the vehicle
at the beginning of the driving maneuver, the longitudinal and the lateral acceleration
alon and alat, respectively, as well as the turn radius rmin of the vehicle. The trajecto-
ries of exemplary driving maneuvers with [x (tstart) , y (tstart) , v (tstart) , ψ (tstart)]

T =[
0, 0, 20 m

s , 0
]T, rmin = 5m and the three different inputs alon = −5 m

s2
and alat = 0,

alon = 0 and alat = 5 m
s2

as well as alon = −5 m
s2

and alat = 5 m
s2

are depicted in
Figure 2.3 at time instants t = 0, 0.5 s, 1 s, 1.5 s, 2 s from tstart = 0 to tend = 2 s. As-
suming that the final state of each involved vehicle in the considered driving scenario
at the end of a driving maneuver is its initial state at the beginning of the subsequent
driving maneuver, the state of the whole dynamic system at time t can be described by
N state variables collected in the state vector x (t) ∈ RN , which are the state variables
of the involved vehicles at this time instant or combinations thereof that are relevant for
the considered automated vehicular safety system, and the whole considered driving
scenario, to which the considered automated vehicular safety system is exposed, can
be represented by Nξ scenario parameters collected in the vector ξ ∈ RNξ , which
are the elements of the initial state vector x0 = x (t0) of the dynamic system at the
beginning of the driving scenario, the time instants at which driving maneuvers of the
involved vehicles not initiated by the automated vehicular safety system start, their
longitudinal and lateral accelerations during these driving maneuvers, their turn radii
as well as the coordinates of the points sufficiently describing their contours in the
vehicle coordinate systems.
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2.1 Mathematical Representation of the Driving Scenario

xw
5m

yw

5m

(a) alon = −5 m
s2

and alat = 0

xw
5m

yw

5m

(b) alon = 0 and alat = 5 m
s2

xw
5m

yw

5m

(c) alon = −5 m
s2

and alat = 5 m
s2

Figure 2.3: Trajectories of exemplary driving maneuvers of a vehicle with
[x (tstart) , y (tstart) , v (tstart) , ψ (tstart)]

T =
[
0, 0, 20 m

s , 0
]T, rmin = 5m and different

inputs alon and alat depicted at time instants t = 0, 0.5 s, 1 s, 1.5 s, 2 s from tstart = 0

(left) to tend = 2 s (right).
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sensors functionx [n]

ε [n]

y [n]
f (y [n] ;ϕ)

Figure 2.4: General mathematical model of automated vehicular safety systems includ-
ing sensor measurement errors.

2.2 Stochastic Model of the Automated Vehicular Safety System

A general mathematical model of automated vehicular safety systems including sensor
measurement errors is depicted in Figure 2.4. It consists of a stochastic model of the
senors including their measurement errors and a mathematical model of the automated
vehicular safety function.

2.2.1 Stochastic Model of the Sensors

The sensors take measurements with a sampling rate fs at time instants

tn =
n

fs
(2.7)

with the discrete time index n = 0, 1, . . . and deliver the measurement vector y [n] ∈
RM consisting of the measurements of M quantities observed by the sensors at the
time instant tn based on the state x [n] = x (tn) of the dynamic system at the time
instant tn under the influence of E measurement errors made by the sensors at the
time instant tn, which are collected in the error vector ε [n] ∈ RE . Consequently, the
measurements y [n] are a function of the state x [n] and the measurement errors ε [n]:

y : RN × RE → RM , (x [n] , ε [n]) 7→ y [n] = y (x [n] , ε [n]) . (2.8)

In the special case of directly measuring theN =M state variables x [n] withE =M

additive measurement errors ε [n] at the time instant tn, for example, this function is
the sum of the state x [n] and the measurement errors ε [n], i.e.,

y [n] = y (x [n] , ε [n]) = x [n] + ε [n] . (2.9)

The unavoidable sensor measurement errors ε [n] are modeled as random variables
forming a discrete-time stochastic process {ε [n] : n ∈ N0} where the measurement
errors ε [n1] and ε [n2] at different time instants tn1 and tn2 , n1, n2 ∈ N0, n1 6= n2,
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2.2 Stochastic Model of the Automated Vehicular Safety System

are assumed to be statistically independent. Furthermore, the measurement errors ε [n]
at the time instant tn are assumed to be Gaussian and follow the normal distribution
with mean µn ∈ RE and covariance matrix Cn ∈ RE×E , i.e., ε [n] ∼ N (µn,Cn)

has the probability density function (pdf)

fε[n] (ε [n]) =
1√

(2π)E det (Cn)
exp

(
−1

2
(ε [n]− µn)

T C−1
n (ε [n]− µn)

)
,

(2.10)
where the mean µn and the covariance matrix Cn might depend on the state x [n] and
thus on the time instant tn. The dependence of the mean µn and the covariance matrix
Cn on the state x [n] is represented by the functions

µ (·;σµ) : RN → RE ,x [n] 7→ µn = µ (x [n] ;σµ) (2.11)

parameterized by the parameter vector σµ ∈ RNµ consisting of Nµ parameters
depending on the choice of the sensors and

C (·;σC) : RN → RE×E ,x [n] 7→ Cn = C (x [n] ;σC) (2.12)

parameterized by the parameter vector σC ∈ RNC consisting of NC parameters de-
pending on the choice of the sensors too, respectively. Systematic sensor measurement
errors, which might result from a wrong calibration of the sensors for example, can be
incorporated in form of a non-zero mean µn of the sensor measurement errors ε [n]
whereas µn = 0 holds in the absence of any systematic sensor measurement errors.
An example for a state-dependent and thus time-dependent covariance matrix of the
sensor measurement errors is

Cn = C (x [n] ;σC) = diag (|x [n]| � σC) (2.13)

in the special case of E =M additive measurement errors ε [n] when directly mea-
suring the N =M state variables x [n] at the time instant tn according to (2.9). As
it is a diagonal matrix, the sensor measurement errors ε [n] at the time instant tn are
uncorrelated and statistically independent. Its i-th diagonal element, the variance of
the i-th of the sensor measurement errors ε [n] at the time instant tn, is the product
between the absolute value of the i-th of the state variables x [n] at the time instant tn
and the i-th of the parameters σC ∈ (R+)

E , and increases with increasing absolute
value of the respective state variable that is measured. With increasing parameters σC ,
the variances also increase. Hence, the parameters σC can be interpreted as a relative
measure for the measurement accuracy of the sensors with respect to the absolute
values of the state variables x [n].
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In certain scenarios, the assumption of Gaussian sensor measurement errors ε [n]
might be justified [23] and their Gaussian covariance matrix Cn could also result
from signal processing with a filter like the Extended Kalman Filter [5]. Even if this
Gaussian assumption is not justified, one can still proceed with the Gaussian random
variables ε [n], which can be considered as a kind of virtual sensor measurement errors,
as they can be transformed by an appropriate function

T : RE → RE
′
, ε [n] 7→ ε′ [n] = T (ε [n]) (2.14)

to random variables ε′ [n] with a different probability distribution modeling the actual
sensor measurement errors and this transformation can be considered to be part of the
sensors. If the function

y′ : RN × RE
′ → RM ,

(
x [n] , ε′ [n]

)
7→ y [n] = y′ (x [n] , ε′ [n]

)
(2.15)

maps the actual sensor measurement errors ε′ [n] together with the state x [n] to the
measurements y [n] at the time instant tn as the function y in (2.8) maps the virtual
sensor measurement errors ε [n] together with the state x [n] to the measurements
y [n] at the time instant tn, the latter can be expressed as

y (x [n] , ε [n]) = y′ (x [n] , ε′ [n]
)
= y′ (x [n] ,T (ε [n])) , (2.16)

where the transformation T from virtual to actual sensor measurement errors is em-
bedded.

In this stochastic model of the sensors, the sensors are determined by the Nσ =

Nµ +NC + 1 sensor parameters collected in the vector

σ =

σµ

σC

fs

 ∈ RNσ , (2.17)

namely, the Nµ parameters σµ and the NC parameters σC of the mean and the
covariance of their measurement errors, respectively, as well as their sampling rate fs,
which describe their properties.

2.2.2 Mathematical Model of the Automated Vehicular Safety Function

The automated vehicular safety function derives safety-relevant information from
the sensor measurements y [n] at the time instant tn in order to interpret the current
driving situation and uses a decision rule in order to decide on whether to intervene by
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2.2 Stochastic Model of the Automated Vehicular Safety System

triggering an appropriate action for mitigating a dangerous driving situation, e.g., an
emergency brake or steer intervention. Such a decision rule can be represented by a
decision function

f (·;ϕ) : RM → {0, 1} ,y [n] 7→ f (y [n] ;ϕ) (2.18)

parameterized by the parameter vector ϕ =
[
ϕ1, ϕ2, . . . , ϕNϕ

]T ∈ RNϕ consisting
of Nϕ adjustable parameters ϕi, i = 1, 2, . . . , Nϕ. It maps the measurements y [n]

to the function value f (y [n] ;ϕ), which can only be 0 or 1. As long as the decision
rule is not fulfilled, i.e., f (y [n] ;ϕ) = 0, the function does not trigger the respective
action, and, as soon as the decision rule is fulfilled for the measurements y [n] at a
time instant tn, i.e., f (y [n] ;ϕ) = 1, the function triggers the respective action. The
smallest n for which f (y [n] ;ϕ) = 1 is the discrete time index

nd = min
n∈N0

n s.t. f (y [n] ;ϕ) = 1 (2.19)

that corresponds to the time instant

td = tnd =
nd
fs

(2.20)

at which the measurements y [nd] leading to triggering the action are made. The time
that elapses between this time instant td and the time instant

ta = td + δ =
nd
fs

+ δ (2.21)

at which the triggered action starts due to latencies, e.g., caused by evaluating the
decision rule, is captured by a fixed delay δ ∈ R+

0 .
Once an action is triggered by the function, this intervention is performed automati-

cally such that the driver does not have any control over it as it is assumed that the driver
cannot handle the detected dangerous driving situation alone. In this mathematical
model of the automated vehicular safety function, the function is determined by the
Nϕ adjustable parameters ϕ of its decision rule.
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Robust System Design 3
In other areas of engineering science, e.g., civil and mechanical engineering as well
as integrated circuit design, general design procedures were introduced early on to
deal with unavoidable parameter tolerances and deficiencies as well as their influence
on the system performance [37–43]. Due to several analogies, the well-established
worst-case design approach applied to integrated circuits in [39–43] is of particular
interest for the robust design of automated vehicular safety systems considering sensor
measurement errors and helps to formulate it as optimization problems based on the
mathematical model for automated vehicular safety systems introduced in the previous
chapter. Before formulating these optimization problems in the next chapter, this
chapter gives a general overview of such a robust system design in order to understand
how it can be transferred to the robust design of automated vehicular safety systems.

3.1 Problem Formulation for Robust System Design

The system performance is measured in terms of Nf performance properties fi,
i = 1, 2, . . . , Nf , collected in the performance vector f =

[
f1, f2, . . . , fNf

]T ∈ RNf .
These performance properties f are quantities of interest that have to lie in certain ac-
ceptance intervals such that the system is considered to operate in a proper or acceptable
way, e.g., the minimum output voltage of an integrated circuit. The acceptance interval
for the ith performance property fi is denoted as [fL,i, fU,i] with the lower and upper
bound fL,i and fU,i, respectively. If a lower bound fL,i does not exist, fL,i → −∞, and
if an upper bound fU,i does not exist, fU,i → ∞. Hence, the performance acceptance
region can be expressed as

Af =
{
f ∈ RNf : fL,i ≤ fi ≤ fU,i, i = 1, 2, . . . , Nf

}
. (3.1)

It is the set of all values of the performance properties f that lie in the acceptance
intervals and can thus be represented by the intersection of the individual performance
acceptance region partitions

Af ,L,i =
{
f ∈ RNf : fi ≥ fL,i

}
and Af ,U,i =

{
f ∈ RNf : fi ≤ fU,i

}
, (3.2)
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in the ith of which only the ith performance property fi is restricted to not lie below
the lower bound fL,i and above the upper bound fU,i of the corresponding acceptance
interval [fL,i, fU,i], respectively:

Af =

Nf⋂
i=1

Af ,L,i ∩ Af ,U,i. (3.3)

In the special cases fL,i → −∞ and fU,i → ∞, the corresponding individual per-
formance acceptance region partitions simplify to Af ,L,i = RNf and Af ,U,i = RNf ,
respectively.

The performance properties f are dependent on Np parameters pj ,
j = 1, 2, . . . , Np, of the system collected in the parameter vectorp =

[
p1, p2, . . . , pNp

]T ∈
RNp , e.g., the oxide thickness, the length and the width of transistors in an integrated
circuit, and thus a function of them:

f : RNp → RNf ,p 7→ f (p) . (3.4)

For this function, there is usually no closed-form expression of f (p) due to the high
complexity of systems in practice like an integrated circuit such that the evaluation of
f at given parameter values p requires a numerical simulation of the system. It maps
the given parameter values p, which are the input of the simulation, to the respective
values of the performance properties f , which are the output of the simulation. The
Np parameters p of a system can be split into Nd deterministic design parameters dj ,
j = 1, 2, . . . , Nd, Ns statistical parameters sj , j = 1, 2, . . . , Ns, and Nθ operating
parameters θj , j = 1, 2, . . . , Nθ, collected in the vectors d = [d1, d2, . . . , dNd

]T ∈
RNd , s = [s1, s2, . . . , sNs ]

T ∈ RNs and θ = [θ1, θ2, . . . , θNθ
]T ∈ RNθ , respectively:

p =

ds
θ

 . (3.5)

In contrast to the deterministic design parameters d like the length and width of
transistors in an integrated circuit, the values of the statistical parameters s fluctuate
as, e.g., the oxide thickness and the perturbations of length and width of transistors in
manufactured integrated circuits due to unavoidable manufacturing tolerances. These
parameters are modeled by Gaussian random variables, i.e., s ∼ N (s0,C) has the
pdf

fs (s) =
1√

(2π)Ns det (C)
exp

(
−1

2
(s− s0)

T C−1 (s− s0)

)
, (3.6)
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with the mean s0 and the covariance matrix C. As a consequence, the performance
properties f = f (p) = f (d, s,θ), which are a function of these statistical parameters
s, are random variables as well and their values fluctuate too as, e.g., in manufactured
integrated circuits. Because of these fluctuations, the performance properties f might
or might not lie in the acceptance intervals [fL,i, fU,i], i = 1, 2, . . . , Nf , such that
the system might fulfill or violate the performance specifications fL,i ≤ fi ≤ fU,i,
i = 1, 2, . . . , Nf , defined by the acceptance intervals. The fluctuations of the statistical
parameter values can be taken into account by using the probability Y that the system
fulfills all given performance specifications, which is the definition of the yield in [42]
for manufactured integrated circuits, as quality measure:

Y = P

Nf∧
i=1

fL,i ≤ fi ≤ fU,i

 = P (f ∈ Af ) . (3.7)

The yield measures the percentage of manufactured integrated circuits with an accept-
able performance whereas 1 − Y is a measure for the percentage of manufactured
integrated circuits with an unacceptable performance, which have to be rejected. The
design goal is to determine the values for the deterministic design parameters d of
the system under design such that the probability Y that the system fulfills all given
performance specifications becomes maximum. Focusing on this goal, the robust
system design can be formulated as the following optimization problem:

dopt = argmax
d∈Nd

Y. (3.8)

The maximization of the probability Y of fulfilling the performance specifications,
the quality measure, with respect to the deterministic design parameters d for system
optimization results in the optimal values dopt for the deterministic design parameters
d of the system under design.

Besides the classes of deterministic design parameters d and statistical parameters
s, the operating parameters θ, e.g., the temperature an integrated circuit is exposed
to, form a third class of the parameters p. In contrast to the statistical parameters s,
they are ranging parameters for which no statistical knowledge in form of a probability
distribution is available but only a range of possible values. The range of the jth

operating parameter θj can be defined by the tolerance interval [θL,j , θU,j ] in which
it may lie with the lower bound θL,j and the upper bound θU,j . Combining the toler-
ance intervals [θL,j , θU,j ] of all Nθ operating parameters θj ,j = 1, 2, . . . , Nθ, via the
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Cartesian product yields the tolerance region

Tθ =
{
θ ∈ RNθ : θL,j ≤ θj ≤ θU,j , j = 1, 2, . . . , Nθ

}
= [θL,1, θU,1]× [θL,2, θU,2]× . . .× [θL,Nθ

, θU,Nθ
] .

(3.9)

As the performance properties f = f (p) = f (d, s,θ) are a function of the
deterministic design parameters d, statistical parameters s and operating parameters θ,
the probability Y = Y (d,θ) of fulfilling the performance specifications is a function
of both the deterministic design parameters d and the operating parameters θ:

Y : RNd × RNθ → [0, 1] , (d,θ) 7→ Y (d,θ) . (3.10)

Consequently, the optimal values dopt for the deterministic design parameters d of the
system under design obtained by the maximization of the probability Y of fulfilling
the performance specifications in (3.8) are dependent on the operating parameters
θ. So far, it has been assumed that the operating parameters θ are fixed, i.e., have
specific values that do not change over time, such that the optimal values dopt for the
deterministic design parameters d have to be obtained only once for these values of the
operating parameters θ by the maximization (3.8) in the design phase. However, the
operating parameters θ are ranging parameters whose nature is that their values can
vary within the tolerance region Tθ. Due to the dependency of the optimal values dopt

for the deterministic design parameters d on the operating parameters θ, these optimal
values dopt, which have been obtained by the maximization (3.8) for one instance of the
operating parameters θ in the design phase, are not optimal anymore when the values of
the operating parameters θ deviate from this one instance. Therefore, the deterministic
design parameters d would have to be adapted to the values of the operating parameters
θ by the maximization (3.8) whenever they change, which is impossible in case of
already manufactured integrated circuits whose deterministic design parameters d like
the transistor length and width cannot be changed anymore. In order to overcome
this problem, the optimal values dopt for the deterministic design parameters d have
to be made independent of the operating parameters θ. This independence can be
achieved by taking the whole tolerance region Tθ of the operating parameters θ already
in the design phase before manufacturing the integrated circuits into account, i.e., by
determining the optimal values dopt for the deterministic design parameters d such
that they are optimal not only for one instance of the operating parameters θ but for
the whole tolerance region Tθ of them. One possibility for this is using the worst-case
probability of fulfilling the performance specifications, i.e., the minimum probability

YWC = min
θ∈Tθ

Y (3.11)
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of fulfilling the performance specifications in the whole tolerance region Tθ of the
operating parameters θ, as new quality measure. By maximizing this new quality
measure, the optimal values dopt for the deterministic design parameters d of the
system under design can be obtained again as in [42] for integrated circuits:

dopt = argmax
d∈Nd

YWC = argmax
d∈Nd

min
θ∈Tθ

Y. (3.12)

The minimization of the probability Y = Y (d,θ) of fulfilling the performance
specifications, which is a function of both the deterministic design parameters d and
the operating parameters θ, with respect to the operating parameters θ eliminates
the dependency on the operating parameters θ such that the resulting worst-case
probability YWC = YWC (d) of fulfilling the performance specifications is a function
of the deterministic design parameters d only:

YWC : RNd → [0, 1] ,d 7→ YWC (d) . (3.13)

This makes the optimal values dopt for the deterministic design parameters d ob-
tained by maximizing the worst-case probability YWC of fulfilling the performance
specifications independent of the operating parameters θ as desired.

Another possibility for making the optimal values dopt for the deterministic de-
sign parameters d independent of the operating parameters θ, which, however is not
considered in the following and just stated for completeness, is using the alternative
probability

Y = P

∀θ ∈ Tθ :

Nf∧
i=1

fL,i ≤ fi ≤ fU,i

 = P (∀θ ∈ Tθ : f ∈ Af ) (3.14)

for the maximization (3.8) as in [43], which incorporates the whole tolerance region
Tθ of the operating parameters θ. It is the probability that the system fulfills all given
performance specifications not only for one instance of the operating parameters θ but
for the whole tolerance region Tθ of them. Due to the incorporation of the whole range
Tθ of the operating parameters θ, the so defined probability Y is already independent
of them and a function of the deterministic design parameters d only as the worst-case
probability YWC of fulfilling the performance specifications, for which this property
has been enforced artificially:

Y : RNd → [0, 1] ,d 7→ Y (d) . (3.15)

Again, this makes the optimal values dopt for the deterministic design parameters d
obtained by maximizing the probability Y independent of the operating parameters θ
as desired.
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3.2 Simulation-Based Robust System Design

The maximization of the quality measure, i.e., the worst-case probability YWC of
fulfilling the performance specifications in (3.12), requires several evaluations of the
probability Y of fulfilling the performance specifications. As there is usually no closed-
form expression for the performance properties f as a function of the parameters p
defined in (3.4) and it can only be evaluated by numerical simulations of the system,
this is also the case for the probability Y of fulfilling the performance specifications
as a function of the deterministic design parameters d and operating parameters θ
defined in (3.10).

3.2.1 Monte-Carlo-Based Robust System Design

A straightforward possibility for obtaining a value of the probability Y of fulfilling the
performance specifications for given deterministic design parameters d and operating
parameters θ at least approximately is estimating it by a Monte Carlo simulation. In
the Monte Carlo simulation, M realizations s1, s2, . . . , sM of all involved random
variables, i.e., the statistical parameters s, are generated at random according to their
probability distribution, which might be the Gaussian distribution N (s0,C) with
the pdf in (3.6) or any other probability distribution. Each realization sm, m =

1, 2, . . . ,M , together with given deterministic design parameters d and operating
parameters θ, which form the parameters

pm =

 d

sm
θ

 , (3.16)

is mapped to the respective values fm = f (pm) = f (d, sm,θ) of the performance
properties f according to (3.4) by a system simulation. In theseM random experiments,
it is counted how often the values of the samples fm of the performance properties f
lie in the acceptance intervals [fL,i, fU,i], i = 1, 2, . . . , Nf , to obtain the frequency

ŶM =
M1,M

M
(3.17)

of fulfilling all performance specifications fL,i ≤ fi ≤ fU,i, i = 1, 2, . . . , Nf , asso-
ciated with these acceptance intervals, i.e., fm ∈ Af , which is an estimate for the
probability Y of fulfilling these performance specifications, i.e., f ∈ Af , which is
defined in (3.7).

26



3.2 Simulation-Based Robust System Design

Defining the performance acceptance function as the indicator function

δAf
: RNf → {0, 1} ,f 7→ δAf

(f) =

{
1, f ∈ Af

0, f /∈ Af

, (3.18)

which indicates whether f ∈ Af , i.e., the performance properties f fulfill all per-
formance specifications, with the function value 1, allows to express the number of
the samples fm of the performance properties f that fulfill all performance specifica-
tions and the frequency of fulfilling all performance specifications in the Monte Carlo
simulation as

M1,M =

M∑
m=1

δAf
(fm) (3.19)

and

ŶM =
1

M

M∑
m=1

δAf
(fm) , (3.20)

respectively. Hence, the Monte Carlo simulation can be interpreted as an estimator,
which estimates the probability Y of fulfilling the performance specifications from the
random observations fm = f (d, sm,θ), m = 1, 2, . . . ,M :

ŶM :
(
RNf

)M → [0, 1] , (f1,f2, . . . ,fM ) 7→ ŶM (f1,f2, . . . ,fM ) . (3.21)

As the samples s1, s2, . . . , sM of the statistical parameters s are independent
and identically distributed (i.i.d.) according to the probability distribution of s, the
corresponding outputs δAf

(fm) = δAf
(f (d, sm,θ)), m = 1, 2, . . . ,M , of the

performance acceptance function δAf
, each of which is 1 with the probability

P
(
δAf

(fm) = 1
)
= P

(
δAf

(f (d, sm,θ)) = 1
)

= P
(
δAf

(f (d, s,θ)) = 1
)
= P

(
δAf

(f) = 1
)

= P (f ∈ Af ) = Y

(3.22)

and 0 with the probability

P
(
δAf

(fm) = 0
)
= 1− P

(
δAf

(fm) = 1
)
= 1− Y, (3.23)

are the results of Bernoulli trials whose success probability is the probability Y of
fulfilling the performance specifications and thus i.i.d. Bernoulli random variables
forming a Bernoulli process. As a consequence, the number M1,M of the samples fm
of the performance properties f in the M Bernoulli trials with the success probability
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Y that fulfill all performance specifications, which represents a success in those trials,
is a binomially distributed random variable with the probability mass function (pmf)

fM1,M
(k) = P (M1,M = k) =

(
M

k

)
Y k (1− Y )M−k (3.24)

and the possible values k = 0, 1, . . . ,M , which is denoted as M1,M ∼ B (M,Y ). As
the mean and variance of the i.i.d. Bernoulli distributed random variables δAf

(fm)

are

E
[
δAf

(fm)
]
= 1 · P

(
δAf

(fm) = 1
)
+ 0 · P

(
δAf

(fm) = 0
)

= P
(
δAf

(fm) = 1
)
= Y

(3.25)

and

Var
[
δAf

(fm)
]
= E

[
δ2Af

(fm)
]
− E2

[
δAf

(fm)
]

= 1 · P
(
δAf

(fm) = 1
)
+ 0 · P

(
δAf

(fm) = 0
)
− Y 2

= Y − Y 2 = Y (1− Y ) ,

(3.26)

respectively, the corresponding binomially distributed random variable M1,M , which
is expressed as the sum of these random variables δAf

(fm) in (3.19), has the mean

E [M1,M ] =

M∑
m=1

E
[
δAf

(fm)
]
=

M∑
m=1

Y =MY (3.27)

and the variance

Var [M1,M ] =

M∑
m=1

Var
[
δAf

(fm)
]
=

M∑
m=1

Y (1− Y ) =MY (1− Y ) . (3.28)

Furthermore, the estimate ŶM for the probability Y of fulfilling the performance
specifications is a scaled version of the binomially distributed random variable M1,M

in the interval [0, 1] as expressed in (3.17) with the pmf

fŶM (y) = P
(
ŶM = y

)
= P

(
M1,M

M
= y

)
= P (M1,M =My)

= fM1,M
(My) =

(
M

My

)
YMy (1− Y )M(1−y) ,

(3.29)

the possible values y = 0, 1
M , . . . , 1, the mean

E
[
ŶM

]
=

E [M1,M ]

M
=
MY

M
= Y (3.30)
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and the variance

Var
[
ŶM

]
=

Var [M1,M ]

M2
=
MY (1− Y )

M2
=
Y (1− Y )

M
. (3.31)

Since the expected value E
[
ŶM

]
of the estimate is the true probability Y of

fulfilling the performance specifications, the estimator ŶM = ŶM (f1,f2, . . . ,fM )

for the probability Y of fulfilling the performance specifications stated in (3.21) is
unbiased. In case of an unbiased estimator, the mean squared error (MSE) between
the estimate and the parameter to be estimated is given by the variance of the estimate.
Hence, the MSE between the estimate ŶM and the true probability Y of fulfilling the
performance specifications is

E

[(
ŶM − Y

)2]
= Var

[
ŶM

]
=
Y (1− Y )

M

M→∞−−−−→ 0, (3.32)

which converges to 0 as the number of samples or observations fm and system simu-
lations M in the Monte Carlo simulation tends to infinity.

Chebyshev’s inequality applied to the estimate, i.e., the random variable ŶM , reads

P
(∣∣∣ŶM − E

[
ŶM

]∣∣∣ ≥ ε
)
≤

Var
[
ŶM

]
ε2

(3.33)

for all ε > 0. With the mean of the estimate ŶM in (3.30) and its variance in (3.31),
this inequality becomes

P
(∣∣∣ŶM − Y

∣∣∣ ≥ ε
)
≤ Y (1− Y )

Mε2
. (3.34)

Hence,

P
(∣∣∣ŶM − Y

∣∣∣ > ε
)
≤ P

(∣∣∣ŶM − Y
∣∣∣ ≥ ε

)
≤ Y (1− Y )

Mε2
M→∞−−−−→ 0, (3.35)

which implies that
P
(∣∣∣ŶM − Y

∣∣∣ > ε
)

M→∞−−−−→ 0. (3.36)

This means that the estimate ŶM converges in probability to the true probability Y of
fulfilling the performance specifications to be estimated as the number of samples or
observations fm and system simulations M in the Monte Carlo simulation tends to
infinity, which is also known as the weak law of large numbers:

ŶM
p−−→ Y for M → ∞. (3.37)
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Therefore, the estimator ŶM = ŶM (f1,f2, . . . ,fM ) for the probability Y of fulfilling
the performance specifications stated in (3.21) is consistent.

The statistical knowledge about the estimate ŶM is completely captured by its pmf
fŶM (y) stated in (3.29). Theoretically, the required number of samples or observations
fm and system simulations M in the Monte Carlo simulation for a desired estimation
accuracy, e.g., specified in form of a confidence interval

[
ŶM −∆Y, ŶM +∆Y

]
of

length 2∆Y around the random estimate ŶM which shall contain the true probability
Y of fulfilling the performance specifications with a desired probability κ, the desired
confidence level, could be derived from it. Unfortunately, it cannot be derived in closed
form due to the special structure of the pmf fŶM (y) of the estimate ŶM , which is
a scaled binomially distributed random variable. However, an approximation of the
underlying binomial distribution by a Gaussian distribution makes the derivation of
such a closed-form expression for the required number of samples or observations fm
and system simulations M in the Monte Carlo simulation possible.

The Central Limit Theorem applied to the number of the samples fm of the per-
formance properties f that fulfill all performance specifications, i.e., the binomially
distributed random variable M1,M expressed as the sum of the i.i.d. Bernoulli dis-
tributed random variables δAf

(fm) in (3.19) with the mean (3.27) and the variance
(3.28), states that the corresponding standardized random variable

M̃1,M =
M1,M − E [M1,M ]√

Var [M1,M ]
=

M1,M −MY√
MY (1− Y )

(3.38)

converges in distribution to a standard normal random variable as the number of
samples fm and system simulationsM in the Monte Carlo simulation tends to infinity:

M̃1,M
d−−→ N (0, 1) for M → ∞. (3.39)

This means that the cumulative distribution function (cdf) of this standardized random
variable M̃1,M converges to the cdf

Φ(x) =
1√
2π

x∫
−∞

e−ξ
2/2dξ (3.40)

of the standard normal distribution for all x ∈ R:

P
(
M̃1,M ≤ x

)
M→∞−−−−→ Φ(x) . (3.41)

Thus, the standardized random variable M̃1,M can be considered to be approximately
Gaussian with mean E

[
M̃1,M

]
= 0 and variance Var

[
M̃1,M

]
= 1 if the number
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of samples fm and system simulations M in the Monte Carlo simulation is large,
which has to be the case for a high estimation accuracy anyway. From this, it can be
concluded that for a large number of samples fm and system simulations M in the
Monte Carlo simulation, the binomially distributed random variable

M1,M =
√
MY (1− Y )M̃1,M +MY (3.42)

corresponding to the standardized random variable M̃1,M in (3.38) is approximately
Gaussian with the mean

E [M1,M ] =
√
MY (1− Y ) E

[
M̃1,M

]
+MY =MY (3.43)

and the variance

Var [M1,M ] = Var
[√

MY (1− Y )M̃1,M

]
=MY (1− Y )Var

[
M̃1,M

]
=MY (1− Y )

(3.44)

as also stated in (3.27) and (3.28), respectively. This explains why the Gaussian
distribution N (MY,MY (1− Y )) can be used as an approximation for the binomial
distribution B (M,Y ) if M is large. As a consequence, the estimate ŶM , which is just
a scaled version of the number M1,M of the samples fm that fulfill all performance
specifications in the Monte Carlo simulation as can be seen in (3.17), is approximately
Gaussian as well with the mean and the variance given by (3.30) and (3.31), respectively.
Since the corresponding standardized random variable

ỸM =
ŶM − E

[
ŶM

]
√
Var

[
ŶM

] =
ŶM − Y√

Y (1− Y ) /M
(3.45)

is thus approximately Gaussian with zero mean and unit variance, the cdf of the estimate
ŶM can be expressed as

FŶM (y) = P
(
ŶM ≤ y

)
= P

(
ŶM − Y√

Y (1− Y ) /M
≤ y − Y√

Y (1− Y ) /M

)

= P

(
ỸM ≤ y − Y√

Y (1− Y ) /M

)
≈ Φ

(
y − Y√

Y (1− Y ) /M

)
.

(3.46)

With this expression and the fact that

ŶM −∆Y ≤ Y ≤ ŶM +∆Y ⇔ Y −∆Y ≤ ŶM ≤ Y +∆Y, (3.47)
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the probability that the confidence interval
[
ŶM −∆Y, ŶM +∆Y

]
of length 2∆Y

around the estimate ŶM contains the true probability Y of fulfilling the performance
specifications can be written as

P
(
ŶM −∆Y ≤ Y ≤ ŶM +∆Y

)
= P

(
Y −∆Y ≤ ŶM ≤ Y +∆Y

)
= P

(
ŶM ≤ Y +∆Y

)
− P

(
ŶM ≤ Y −∆Y

)
= FŶM (Y +∆Y )− FŶM (Y −∆Y )

≈ Φ

(
∆Y√

Y (1− Y ) /M

)
− Φ

(
− ∆Y√

Y (1− Y ) /M

)

= Φ

(
∆Y√

Y (1− Y ) /M

)
−

(
1− Φ

(
∆Y√

Y (1− Y ) /M

))

= 2Φ

(
∆Y√

Y (1− Y ) /M

)
− 1.

(3.48)

From this, it can be concluded that the following condition has to be fulfilled such that
the confidence interval

[
ŶM −∆Y, ŶM +∆Y

]
around the estimate ŶM contains the

true probability Y of fulfilling the performance specifications with the probability κ,
the desired confidence level, i.e., P

(
ŶM −∆Y ≤ Y ≤ ŶM +∆Y

)
= κ:

2Φ

(
∆Y√

Y (1− Y ) /M

)
− 1 ≈ κ. (3.49)

This condition can be rewritten as

∆Y√
Y (1− Y ) /M

≈ Φ−1

(
κ+ 1

2

)
(3.50)

and finally as a condition for the number of samples or observations fm and system
simulations M in the Monte Carlo simulation:

M ≈ Y (1− Y )

∆Y 2

(
Φ−1

(
κ+ 1

2

))2

=Mreq.. (3.51)

Mreq. is the approximate number of samples or observations fm and system simu-
lations in the Monte Carlo simulation required for estimating the probability Y of
fulfilling the performance specifications by the estimator ŶM = ŶM (f1,f2, . . . ,fM )
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from (3.21) with the desired confidence level κ for the corresponding confidence
interval

[
ŶM −∆Y, ŶM +∆Y

]
. Assuming that the true probability of fulfilling the

performance specifications is Y = 0.99, this number Mreq. is plotted over the half
confidence interval length ∆Y for the desired confidence levels κ = 0.9, 0.95, 0.99

and over the desired confidence level κ for the half confidence interval lengths ∆Y =

0.01, 0.001, 0.0001 in Figure 3.1. The approximate required number Mreq. of samples
or observations fm and system simulations in the Monte Carlo simulation increases
if the half confidence interval length ∆Y decreases or the desired confidence level
κ increases. Especially if the half confidence interval length ∆Y is already small,
a further reduction of it leads to a significant increase in the approximate required
number Mreq. of samples or observations fm and system simulations in the Monte
Carlo simulation.

So, it can be concluded that estimating the probability Y of fulfilling the perfor-
mance specifications by a Monte Carlo simulation has a beneficial advantage but also
an important drawback. On the one hand, it can be implemented easily and it is easy to
apply it to different systems due to its generality. On the other hand, however, a large
number M of system simulations has to be performed in order to obtain an accurate
estimate, i.e., an estimate ŶM with a high confidence level κ for a small confidence
interval

[
ŶM −∆Y, ŶM +∆Y

]
around it with a small half length ∆Y , which might

lead to a prohibitively large computational complexity in practice.

3.2.2 Worst-Case-Distance-Based Robust System Design

The problem of the large number M of system simulations to be performed in order to
obtain an accurate Monte-Carlo-based estimate ŶM for the probability Y of fulfilling
the performance specifications can be overcome by exploiting the fact that the proba-
bility Y of fulfilling the performance specifications, which has been defined in (3.7)
as the probability that all performance properties f lie in the acceptance intervals and
thus in the performance acceptance region Af defined in (3.1), is equivalent to the
probability that the statistical parameters s lie in a corresponding parameter acceptance
region As:

Y = P (f ∈ Af ) = P (s ∈ As) . (3.52)

This parameter acceptance region is defined as

As =
{
s ∈ RNs : f ∈ Af

}
=
{
s ∈ RNs : fL,i ≤ fi ≤ fU,i, i = 1, 2, . . . , Nf

}
,

(3.53)
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Figure 3.1: Approximate number Mreq. of samples or observations and system simula-
tions in the Monte Carlo simulation required for estimating the probability Y = 0.99

of fulfilling the performance specifications with the desired confidence level κ for the
corresponding confidence interval

[
ŶM −∆Y, ŶM +∆Y

]
.
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i.e., the set of all values of the statistical parameters s that are mapped to performance
properties f lying in the acceptance intervals and thus correspond to a system fulfilling
the performance specifications. Analogously to the performance acceptance region,
the parameter acceptance region can also be represented by the intersection of the
individual parameter acceptance region partitions

As,L,i =
{
s ∈ RNs : fi ≥ fL,i

}
=
{
s ∈ RNs : f ∈ Af ,L,i

}
(3.54)

and

As,U,i =
{
s ∈ RNs : fi ≤ fU,i

}
=
{
s ∈ RNs : f ∈ Af ,U,i

}
, (3.55)

the ith of which are the sets of all values of the statistical parameters s that are mapped
to values of the ith performance property fi that do not lie below the lower bound fL,i

and above the upper bound fU,i of the corresponding acceptance interval [fL,i, fU,i],
respectively:

As =

Nf⋂
i=1

As,L,i ∩ As,U,i. (3.56)

In the special cases fL,i → −∞ and fU,i → ∞, the corresponding individual parameter
acceptance region partitions simplify to As,L,i = RNs and As,U,i = RNs , respectively.
Exemplary individual parameter acceptance region partitions As,L,i with a finite lower
bound fL,i and As,U,i with a finite upper bound fU,i for a performance property fi
that is a function of only two statistical parameters s = [s1, s2]

T are the green areas
in Figure 3.2 and Figure 3.3, where fi > fL,i and fi < fU,i, respectively, including
the orange boundaries, where fi = fL,i and fi = fU,i, respectively. Although
the boundaries of the individual parameter acceptance region partitions are typically
considered to be smooth, this does not have to be the case. The intersection of two
individual parameter acceptance region partitions As,L,i and As,U,i, i.e.,

As,L,i ∩ As,U,i =
{
s ∈ RNs : fi ≥ fL,i

}
∩
{
s ∈ RNs : fi ≤ fU,i

}
=
{
s ∈ RNs : fL,i ≤ fi ≤ fU,i

}
,

(3.57)

where the ith performance property fi lies in its acceptance interval [fL,i, fU,i] such
that the ith performance specification fL,i ≤ fi ≤ fU,i defined by this acceptance
interval is fulfilled, is illustrated in Figure 3.4 for the two exemplary individual pa-
rameter acceptance region partitions As,L,i and As,U,i from Figure 3.2 and Figure 3.3,
respectively.

The probability that the statistical parameters s lie in the parameter acceptance
region As and thus the probability Y of fulfilling the performance specifications could
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s1

s2

sL,i

βL,i

fi > fL,i fi = fL,i

fi < fL,i

β (s) = β = const.

s0

Figure 3.2: Exemplary individual parameter acceptance region partition As,L,i with a
finite lower bound fL,i (green area including orange boundary) and the corresponding
approximate individual parameter acceptance region partition Âs,L,i defined by the
worst-case distance βL,i (horizontally striped area including violet linear boundary)
for two statistical parameters s = [s1, s2]

T.
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s1

s2

sU,i βU,i

fi < fU,i

fi = fU,i

fi > fU,i

β (s) = β = const.

s0

Figure 3.3: Exemplary individual parameter acceptance region partition As,U,i with a
finite upper bound fU,i (green area including orange boundary) and the corresponding
approximate individual parameter acceptance region partition Âs,U,i defined by the
worst-case distance βU,i (vertically striped area including magenta linear boundary)
for two statistical parameters s = [s1, s2]

T.
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s1

s2

βL,i

βU,i

fL,i < fi < fU,i fi = fL,i

fi = fU,i

fi < fL,i

fi > fU,i

s0

Figure 3.4: Intersection of two exemplary individual parameter acceptance region
partitions As,L,i with a finite lower bound fL,i and As,U,i with a finite upper bound fU,i

(green area including orange boundaries) as well as the corresponding approximate
individual parameter acceptance region partitions Âs,L,i and Âs,U,i defined by the
worst-case distances βL,i and βU,i (horizontally and vertically striped areas including
violet and magenta linear boundaries, respectively) for two statistical parameters
s = [s1, s2]

T.
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theoretically be obtained by integrating the multivariate Gaussian pdf fs (s) of the
statistical parameters s given by (3.6) in the parameter acceptance region As:

Y = P (s ∈ As) =

∫
As

fs (s) ds

=
1√

(2π)Ns det (C)

∫
{
s∈RNs :f∈Af

} exp

(
−1

2
(s− s0)

T C−1 (s− s0)

)
ds.

(3.58)

Unfortunately, there are two problems that render this integration intractable in practice.
First, the boundary of the parameter acceptance region As as illustrated by the orange
curves in Figure 3.4 for two statistical parameters s = [s1, s2]

T can only be determined
by many system simulations and, second, the integration of the multivariate Gaussian
pdf fs (s) of the statistical parameters s in the parameter acceptance region As with a
possibly highly nonlinear boundary can only be performed numerically, which comes
with a high computational complexity. In order to overcome both problems at the
same time, one can resort to approximating the boundary of the parameter acceptance
region As by just a few system simulations such that the integration in the resulting
simplified parameter acceptance region becomes easy. This can be achieved by so-
called worst-case distances.

The worst-case distances for a finite lower bound fL,i and for a finite upper bound
fU,i of the acceptance interval for the ith performance property fi are defined as

βL,i = min
s∈RNs

β (s) s.t. fi ≤ fL,i, (3.59)

and
βU,i = min

s∈RNs
β (s) s.t. fi ≥ fU,i, (3.60)

respectively, where β (s) measures the distance between the statistical parameters s
and their mean s0. The worst-case distance βb,i, b ∈ {L,U}, is the smallest distance
between the mean s0 of the statistical parameters s, at which their multivariate Gaussian
pdf fs (s) has its peak and which is assumed to lie in the corresponding individual
parameter acceptance region partition As,b,i, and the boundary of the corresponding
individual parameter acceptance region partition As,b,i, where the ith performance
specification fL,i ≤ fi ≤ fU,i is barely fulfilled, i.e., fi = fb,i. As distance measure
β (s) for the distance between the statistical parameters s and their mean s0, the
Mahalanobis distance is chosen, i.e.,

β2 (s) = (s− s0)
T C−1 (s− s0) , (3.61)
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in order to take the covariance matrix C of the statistical parameters s into account
and thereby link the distance measure β (s) to their pdf fs (s):

fs (s) =
1√

(2π)Ns det (C)
exp

(
−1

2
β2 (s)

)
. (3.62)

As a consequence, the set of all statistical parameter values s that have the same
distance β (s) = β = const. from their mean s0, i.e, all equidistant points s, is the set
of all statistical parameter values s for which their pdf fs (s) has the same value, i.e.,
a contour line of the pdf fs (s):

{
s ∈ RNs : β (s) = β

}
=

s ∈ RNs : fs (s) =
exp

(
−1

2β
2
)√

(2π)Ns det (C)


=
{
s ∈ RNs : (s− s0)

T C−1 (s− s0) = β2
}
.

(3.63)

In general, these sets for different constant distances β are hyperellipsoids whose
center is the mean s0 of the statistical parameters s and, in case of the two statistical
parameters s = [s1, s2]

T in Figure 3.2 and Figure 3.3, they are the gray ellipses
centered at their mean s0. Along each ellipse, their bivariate Gaussian pdf fs (s) as
well as their distance β (s) = β from their mean s0 is constant, which increases if
the ellipse becomes larger. Hence, in each of the two figures, the statistical parameter
values s = [s1, s2]

T on the largest of the shown ellipses, which intersects the orange
boundary of the individual parameter acceptance region partition As,b,i, b ∈ {L,U},
in two points, have the largest distance β (s) = β from their mean s0. If the ellipse
is decreased such that the resulting smaller ellipse still intersects the boundary of
the individual parameter acceptance region partition As,b,i in two points, these two
points represent statistical parameter values s = [s1, s2]

T that have a smaller distance
β (s) = β from their mean s0 than the ones on the larger ellipse. If this procedure
is continued, the two points where the decreasing ellipse and the boundary of the
individual parameter acceptance region partition As,b,i intersect converge to a single
point sb,i, b ∈ {L,U}, where the ellipse touches the boundary of the individual
parameter acceptance region partition As,b,i and which is represented by a cross. As
an even smaller ellipse like the smallest of the shown ellipses would not have any point
with the boundary of the individual parameter acceptance region partition As,b,i in
common, this single point sb,i represents the statistical parameter values s = [s1, s2]

T

on the boundary of the individual parameter acceptance region partitionAs,b,i that have
the smallest distance β (s) from their mean s0, which thus is the worst-case distance
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βb,i for the bound fb,i, b ∈ {L,U}, of the acceptance interval for the ith performance
property fi. In general, the smallest hyperellipsoid on which all statistical parameters
s have the same distance β from their mean s0 and that has a point with the boundary
of the individual parameter acceptance region partition As,b,i in common touches this
boundary at the point sb,i where the statistical parameters s on this boundary have the
smallest distance β (s) from their mean s0, namely, the worst-case distance βb,i:

βb,i = β (sb,i) . (3.64)

The boundary of the individual parameter acceptance region partition As,b,i,
b ∈ {L,U}, can be approximated by linearizing it with a tangential hyperplane that
touches it at the point sb,i where the statistical parameters s on this boundary have the
smallest distance from their mean s0, i.e., the worst-case distance βb,i, to obtain an
approximate individual parameter acceptance region partition Âs,b,i bounded by this
tangential hyperplane. For the two statistical parameters s = [s1, s2]

T in Figure 3.2
and Figure 3.3, the tangential hyperplane approximating the orange boundary of the
individual parameter acceptance region partition As,L,i, where fi = fL,i, is the violet
tangential line and the tangential hyperplane approximating the orange boundary of
the individual parameter acceptance region partition As,U,i, where fi = fU,i, is the
magenta tangential line, and the resulting approximate individual parameter acceptance
region partitions Âs,L,i and Âs,U,i are the horizontally and vertically striped areas
bounded by these violet and magenta tangential lines, respectively.

As derived in Appendix A, the probability that the statistical parameters s lie in the
approximate individual parameter acceptance region partition Âs,b,i can be computed
as follows to approximate the probability that the statistical parameters s lie in the
individual parameter acceptance region partition As,b,i, b ∈ {L,U}:

P (s ∈ As,b,i) ≈ P
(
s ∈ Âs,b,i

)
= Φ(βb,i) . (3.65)

So, the integration of the multivariate Gaussian pdf of the statistical parameters s

in the approximate individual parameter acceptance region partition Âs,b,i to obtain
the probability P

(
s ∈ Âs,b,i

)
that the statistical parameters s lie in the approximate

individual parameter acceptance region partition Âs,b,i and thus approximately the
probability P (s ∈ As,b,i) that they lie in the actual individual parameter acceptance
region partition As,b,i simplifies to one evaluation of the standard normal cdf Φ(x) at
the worst-case distance βb,i. The peak of the multivariate Gaussian pdf of the statis-
tical parameters s at their mean s0 has to lie in the individual parameter acceptance
region partition As,b,i, b ∈ {L,U}, and it has to be rather concentrated around its
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peak in order to be able to achieve a large probability P (s ∈ As,b,i) that the statistical
parameters s lie in the individual parameter acceptance region partition As,b,i and
thus the corresponding performance specification fi ≥ fL,i if b = L or fi ≤ fU,i

if b = U is fulfilled, which is a requirement for achieving a high probability Y of
fulfilling all performance specifications fL,i ≤ fi ≤ fU,i, i = 1, 2, . . . , Nf . In ad-
dition, the maximum of the multivariate Gaussian pdf of the statistical parameters
s along the boundary of the individual parameter acceptance region partition As,b,i

occurs exactly where the tangential hyperplane, the boundary of the corresponding
approximate individual parameter acceptance region partition Âs,b,i, touches it and
thus the approximation error between them is zero. Hence, the approximation has the
advantageous property that the multivariate Gaussian pdf of the statistical parameters
s is small where the approximation error between the boundaries of the individual
parameter acceptance region partition As,b,i and the corresponding approximate indi-
vidual parameter acceptance region partition Âs,b,i is large such that the approximation
of the probability P (s ∈ As,b,i) that the statistical parameters s lie in the individual
parameter acceptance region partition As,b,i by the probability P

(
s ∈ Âs,b,i

)
that

they lie in the corresponding approximate individual parameter acceptance region
partition Âs,b,i is accurate. Moreover, the boundaries of the actual and approximate
individual parameter acceptance region partitions As,b,i and Âs,b,i, respectively, might
touch or intersect at more than one point, where the approximation error is zero as
well.

The approximation of the probability P (s ∈ As,b,i) that the statistical parameters
s lie in the individual parameter acceptance region partition As,b,i, b ∈ {L,U}, by
the probability P

(
s ∈ Âs,b,i

)
that they lie in the approximate individual parameter

acceptance region partition Âs,b,i using the worst-case distance βb,i in (3.65) allows
to approximate the probability P (s ∈ As,L,i ∩ As,U,i) that they lie in the intersection
As,L,i∩As,U,i of the two individual parameter acceptance region partitions As,L,i and
As,U,i. Such an intersectionAs,L,i∩As,U,i, which is illustrated in Figure 3.4 for the two
exemplary individual parameter acceptance region partitions As,L,i and As,U,i from
Figure 3.2 and Figure 3.3, respectively, with two statistical parameters s = [s1, s2]

T, is
given by (3.57). It is the set of all statistical parameters s for which the ith performance
property fi lies in its acceptance interval [fL,i, fU,i] such that the ith performance
specification fL,i ≤ fi ≤ fU,i defined by this acceptance interval is fulfilled. Therefore,
the probability that the statistical parameters s lie in the intersection As,L,i ∩ As,U,i

is the probability that the ith performance property fi lies in its acceptance interval
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[fL,i, fU,i] and can be expressed as

P (s ∈ As,L,i ∩ As,U,i) = P (fL,i ≤ fi ≤ fU,i)

= P (fi ≤ fU,i)− P (fi < fL,i)

= P (fi ≤ fU,i)− (1− P (fi ≥ fL,i))

= P (s ∈ As,U,i)− (1− P (s ∈ As,L,i))

= P (s ∈ As,L,i) + P (s ∈ As,U,i)− 1.

(3.66)

Using (3.65), this probability can be approximated by

P (s ∈ As,L,i ∩ As,U,i) ≈ Φ(βL,i) + Φ (βU,i)− 1 (3.67)

if both the lower bound fL,i and the upper bound fU,i of the acceptance interval
for the ith performance property fi corresponding to the individual parameter ac-
ceptance region partitions As,L,i and As,U,i with the worst-case distances βL,i and
βU,i, respectively, are finite. If only one of the two bounds fL,i and fU,i of the ac-
ceptance interval for the ith performance property fi, namely, fb,i, b ∈ {L,U}, is
finite while the other bound fb̄,i is not finite, the individual parameter acceptance
region partition that corresponds to the bound fb̄,i of the acceptance interval for the ith

performance property fi that is not finite is As,b̄,i = RNs such that the intersection
As,L,i ∩ As,U,i = As,b,i ∩ As,b̄,i of the two individual parameter acceptance region
partitions As,L,i and As,U,i simplifies to the individual parameter acceptance region
partition As,b,i that corresponds to the finite bound fb,i of the acceptance interval for
the ith performance property fi, i.e., As,L,i ∩ As,U,i = As,b,i. In this case, the prob-
ability P (s ∈ As,L,i ∩ As,U,i) that the statistical parameters s lie in the intersection
As,L,i ∩ As,U,i of the two individual parameter acceptance region partitions As,L,i

and As,U,i consequently simplifies to the probability P (s ∈ As,b,i) that they lie in the
individual parameter acceptance region partition As,b,i that corresponds to the finite
bound fb,i of the acceptance interval for the ith performance property fi and can be
approximated by the corresponding worst-case distance βb,i as stated in (3.65), i.e.,
P (s ∈ As,L,i ∩ As,U,i) = P (s ∈ As,b,i) ≈ Φ(βb,i). To sum up,

P (s ∈ As,L,i ∩ As,U,i) ≈


Φ(βU,i) , fL,i → −∞
Φ(βL,i) , fU,i → ∞
Φ(βL,i) + Φ (βU,i)− 1, otherwise

. (3.68)

Since the parameter acceptance region As is the intersection of all intersec-
tions of two individual parameter acceptance region partitions As,L,i and As,U,i,
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i = 1, 2, . . . , Nf , according to (3.56), the probability that the statistical parameters s
do not lie in the parameter acceptance region As can be expressed as

P (s /∈ As) = P

s /∈
Nf⋂
i=1

As,L,i ∩ As,U,i

 = P

Nf∨
i=1

s /∈ As,L,i ∩ As,U,i


≈

Nf∑
i=1

P (s /∈ As,L,i ∩ As,U,i) =

Nf∑
i=1

1− P (s ∈ As,L,i ∩ As,U,i) .

(3.69)

With (3.68), the probability Y of fulfilling all performance specifications fL,i ≤ fi ≤
fU,i defined by the acceptance intervals [fL,i, fU,i] for the performance properties fi,
i = 1, 2, . . . , Nf , can be approximated by

Y = P (f ∈ Af ) = P (s ∈ As) = 1− P (s /∈ As)

≈ 1−
Nf∑
i=1

1− P (s ∈ As,L,i ∩ As,U,i)

≈ 1−
Nf∑
i=1

1−


Φ(βU,i) , fL,i → −∞
Φ(βL,i) , fU,i → ∞
Φ(βL,i) + Φ (βU,i)− 1, otherwise

.

(3.70)

So, the integration of the multivariate Gaussian pdf of the statistical parameters s

in the parameter acceptance region As from (3.58) to obtain the probability Y of
fulfilling the performance specifications is simplified to approximating this probabil-
ity Y by evaluating the standard normal cdf Φ(x) at the worst-case distances βb,i,
i = 1, 2, . . . , Nf , b = L,U. Each required worst-case distance βb,i can be determined
by solving the optimization problem (3.59) if b = L and (3.60) if b = U, i.e., an opti-
mization minimizing the distance between the statistical parameters s on the boundary
of the corresponding individual parameter acceptance region partition As,b,i and their
mean s0 without determining the whole boundary of the parameter acceptance region
As. These optimizations just require a few system simulations, which are automati-
cally chosen by an appropriate optimization method for solving these optimizations
in a smart way serving the achievement of the optimization goal, and thus replace a
computationally expensive Monte Carlo simulation, which just chooses an extensive
amount of system simulations according to the underlying probability distribution in
a brute-force way for estimating the probability of interest, i.e., the probability Y of
fulfilling the performance specifications, by a few relevant simulations that deliver the
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required information for approximating this probability. This is the reason why approx-
imating the probability Y of fulfilling the performance specifications by worst-case
distances can lead to a significant reduction of computational complexity in the robust
system design as compared to estimating it by a Monte Carlo simulation when a high
estimation accuracy is required.
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Robust Design of Automated
Vehicular Safety Systems 4

After giving a general overview of a robust system design as performed in integrated
circuit design by the previous chapter as a preparation, this chapter demonstrates the
analogies between such a robust system design and the robust design of automated
vehicular safety systems considering sensor measurement errors, and explains how
it can be transferred to the design of automated vehicular safety systems. Based on
this and the mathematical model for automated vehicular safety systems introduced in
Chapter 2, the robust design of automated vehicular safety systems considering sensor
measurement errors is formulated as optimization problems. This finally results in a
methodology for the robust function and sensor design that allows to systematically
design both functions and sensors of automated vehicular safety systems by solving
the formulated optimization problems such that the customer requirements are fulfilled
in a robust manner despite unavoidable sensor measurement errors.

4.1 Problem Formulation for Robust Design of Automated Vehicular Safety Systems

Application engineers having to select sensors with appropriate properties and to adjust
the functions in the development of automated vehicular safety systems are typically
confronted with the three basic design problems illustrated in Figure 4.1, namely, the
function design for given sensors, the sensor design for a given function as well as the
joint function and sensor design.

4.1.1 Function Design

In the function design, where the sensors to be used in the automated vehicular safety
system under design and, in particular, the properties of their measurement errors in
form of a probability distribution are given already, the design goal is to adapt the
function to the given sensors such that it meets the requirements of the customers
in a robust manner despite the unavoidable sensor measurement errors. Similarly to
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joint function
and sensor design

function design sensor design

function

sensors

Figure 4.1: Basic design problems in the development of automated vehicular safety
systems.

the robust system design where the quality measure is maximized with respect to the
deterministic design parameters d of the system under design in order to determine the
optimal values dopt for them as formulated in (3.8) with the probability Y of fulfilling
the performance specifications as the quality measure, a quality measure Q, which
measures to what extent the function meets the customer requirements in a robust
manner despite the unavoidable sensor measurement errors, can be maximized with
respect to the decision rule f from a setF of predefined decision rules for triggering the
respective action by the function and its adjustable parameters ϕ in order to determine
the best decision rule fopt and the optimal function parameter values ϕopt with respect
to this quality measure Q. Formally, this systematic approach for the function design
can be formulated as the following optimization problem:(

fopt,ϕopt
)
= argmax

f∈F ,ϕ∈RNϕ

Q. (4.1)

The quality measure Q = Q (f,ϕ) depends on both the decision rule f and the
function parameters ϕ, and is thus a function of them:

Q : F × RNϕ → R, (f,ϕ) 7→ Q (f,ϕ) . (4.2)

Solving the optimization problem (4.1) determines the best decision rule fopt by ranking
all predefined decision rules f in F with respect to the maximal quality level

Qmax (f) = max
ϕ∈RNϕ

Q (f,ϕ) (4.3)

that they can achieve when adjusting the function parameters ϕ in order to choose
the best decision rule fopt of them based on this ranking, which is the decision rule f
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ϕ

Q

Qmax (f3)

Qmax (f1)

f = f3

f = f2 = fopt

f = f1

ϕopt

Q∗
max = Qmax (f2)

Figure 4.2: Function design for the set F = {f1, f2, f3} of decision rules with one
adjustable function parameter ϕ = ϕ ∈ R.

whose maximal achievable quality level Qmax (f) is the highest maximal achievable
quality level

Q∗
max = max

f∈F
Qmax (f) = max

f∈F
max

ϕ∈RNϕ
Q (f,ϕ) = max

f∈F ,ϕ∈RNϕ
Q (f,ϕ) (4.4)

of all f in F . The function parameter values ϕ corresponding to this highest maximal
achievable quality level Q∗

max, i.e., for which Q
(
fopt,ϕ

)
= Q∗

max, are the optimal
function parameter values ϕopt. Using the so obtained best decision rule fopt

(
·;ϕopt

)
with the optimal function parameters ϕopt for triggering the respective action by the
function ensures that the highest quality levelQ∗

max that can be achieved with the given
sensors is reached and thus the requirements of the customers are met in a robust
manner despite the unavoidable sensor measurement errors to the greatest possible
extent.

The quality measure Q is illustrated in Figure 4.2 as a function of one function
parameter ϕ = ϕ ∈ R for three different decision rules f1, f2 and f3, each of
which can be used for triggering the respective action by the function and whose only
adjustable function parameter ϕ is ϕ. If the set F of predefined decision rules for
triggering the respective action by the function consists of f1, f2 and f3, the function
is designed for given sensors, i.e., given sensor parameters σ, by maximizing the
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quality measure Q with respect to the decision rule f from F = {f1, f2, f3} and
the single function parameter ϕ according to the optimization problem (4.1). This
maximization of the quality measure Q results in the best decision rule fopt = f2
and the corresponding optimal function parameter ϕopt = ϕopt, for which the highest
maximal achievable quality level Q∗

max of all f in F is reached, i.e., Q = Q∗
max. This

is highlighted in Figure 4.2. The highest maximal achievable quality level Q∗
max of

all f in F according to (4.4) is the maximal achievable quality level Qmax (f2) of the
second decision rule f2 according to (4.3) while the maximal achievable quality level
Qmax (f1) of the first decision rule f1 is smaller and the maximal achievable quality
level Qmax (f3) of the third decision rule f3 is even smaller. Based on the ranking of
the decision rules f in F with respect to the maximal achievable quality levelQmax (f),
i.e., Qmax (f3) < Qmax (f1) < Qmax (f2) = Q∗

max, the first decision rule f1 is better
than the third decision rule f3 and the second decision rule f2 = fopt is better than the
first decision rule f1 and thus the best one.

4.1.2 Sensor Design

In the sensor design, where the function to be used in the automated vehicular safety
system under design is given already, the design goal is to determine which require-
ments the sensors have to fulfill such that the given function meets the requirements
of the customers in a robust manner despite the unavoidable sensor measurement
errors, and appropriate sensors fulfilling these requirements. The desired extent to
which the function meets the requirements of the customers in a robust manner despite
the unavoidable sensor measurement errors can be expressed in form of a required
minimum quality level Qmin.

The quality measure Q = Q (σ) depends on the sensor parameters σ, and is thus
a function of them:

Q : S → R,σ 7→ Q (σ) . (4.5)

The set of all sensor parameter values σ in the possible domain S ⊆ RNσ for which
the quality measure Q = Q (σ) does not lie below this required minimum quality
level Qmin is the design space

D = {σ ∈ S : Q ≥ Qmin} (4.6)

from which the application engineer has to choose the sensor parameter values σ such
that the customer requirements are met in a robust manner despite the unavoidable
sensor measurement errors to the desired extent. Hence, the application engineer is
provided with an entire design spaceD that represents the requirements the sensors have
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σ

Q,C

Q

C

Qmin

Cmin

σmax

D

Figure 4.3: Sensor design for one sensor parameter σ = σ ∈ S = R+.

to fulfill, which is of particular importance for the overall design task in an industrial
environment. An example for such a design space D can be seen in Figure 4.3, where
the quality measure Q is illustrated as a function of one sensor parameter σ = σ,
which is considered to be the only sensor parameter σ whose value can be chosen in
the sensor design and to be positive, i.e., S = R+. This design space D is the interval
(0, σmax] of the sensor parameter σ, where the quality measure Q does not lie below
the required minimum quality level Qmin and whose upper limit is σmax.

Inside such a design space D, costs C = C (σ) which depend on the sensor
parameters σ, i.e., a cost function

C : RNσ → R,σ 7→ C (σ) , (4.7)

can be minimized with respect to the sensor parameters σ in order to optimize a
relevant objective, e.g., minimize the costs of the sensors, and determine the optimal
sensor parameter values σopt with respect to the costs C and the quality measure
Q. Formally formulating this systematic approach for the sensor design leads to the
following optimization problem, where the design space D is incorporated by the
constraint:

σopt = argmin
σ∈S

C s.t. σ ∈ D. (4.8)
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This optimization problem is equivalent to the optimization problem

σopt = argmin
σ∈S

C s.t. Q ≥ Qmin. (4.9)

The choice of sensors whose sensor parameters σ have the optimal sensor parameter
values σopt obtained by solving this optimization problem guarantees that the quality
measure Q does not lie below the required minimum quality level Qmin and thus the
customer requirements are met in a robust manner despite the unavoidable sensor
measurement errors to the desired extent at minimal costs

Cmin = min
σ∈S

C s.t. Q ≥ Qmin. (4.10)

Besides the quality measureQ as a function of the only sensor parameter σ = σ ∈ R+

whose value can be chosen in the sensor design, also possible costs C are illustrated
as a function of this sensor parameter σ in Figure 4.3. As these costs C monotonically
decrease when the sensor parameter σ increases, the cost function C is minimal if and
only if σ is maximal. This converts the minimization of the cost function C in the
stated optimization problem (4.9) of the sensor design into the maximization of the
sensor parameter σ. As a consequence, the sensors are designed for a given function,
i.e., a given decision rule f and given function parameters ϕ, by determining the
largest value of the sensor parameter σ inside the design space D, which is the upper
limit σmax of the design space D highlighted in Figure 4.3.

4.1.3 Joint Function and Sensor Design

The joint function and sensor design is a combination of the two aforementioned
design problems, where neither the sensors nor the function of the automated vehicular
safety system under design are given. The design goal is to determine both the sensors
and the function such that the function meets the requirements of the customers in a
robust manner despite the unavoidable sensor measurement errors. Formally, the joint
function and sensor design can also be formulated as an optimization problem:(

σopt, fopt,ϕopt
)
= argmin

σ∈S,f∈F ,ϕ∈RNϕ

C s.t. Q ≥ Qmin. (4.11)

This optimization problem is an extension of the optimization problem (4.9) for the
sensor design by additional optimization variables such that the costs C are not only
minimized with respect to the sensor parameters σ in the possible domain S ⊆ RNσ

but also with respect to the decision rule f from a set F of predefined decision rules
and its adjustable parameters ϕ while ensuring that the quality measure Q does not lie
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below the required minimum quality level Qmin and thus the customer requirements
are met in a robust manner despite the unavoidable sensor measurement errors to
the desired extent. While the cost function describing the costs C = C (σ) as a
function of the sensor parameters σ is still the same as that for the sensor design in
(4.7), the quality measure Q = Q (σ, f,ϕ) is now considered to be a function of all
optimization variables, i.e., the sensor parameters σ and the additional optimization
variables, namely, the decision rule f and the function parameters ϕ:

Q : S × F × RNϕ → R, (σ, f,ϕ) 7→ Q (σ, f,ϕ) . (4.12)

Due to the larger number of optimization variables providing more degrees of freedom
for solving the optimization problem, the minimal costs

C∗
min = min

σ∈S,f∈F ,ϕ∈RNϕ
C s.t. Q ≥ Qmin (4.13)

resulting from the solution of the optimization problem (4.11) for the joint function
and sensor design are as small as or even smaller than the minimal costs Cmin resulting
from the solution of the optimization problem (4.9) for the sensor design in (4.10).
This demonstrates the power of the joint function and sensor design as compared to the
sensor design, where reaching smaller minimal costs Cmin is restricted by the given
function, i.e., the given decision rule f and the given function parameters ϕ, which
would possibly allow to reach smaller minimal costs Cmin if they could be chosen
appropriately. Solving the optimization problem (4.11) for the joint function and sensor
design determines the best decision rule fopt by ranking all predefined decision rules
f with respect to the minimal costs

Cmin (f) = min
σ∈S,ϕ∈RNϕ

C (σ) s.t. Q (σ, f,ϕ) ≥ Qmin (4.14)

that they allow to reach for a given required minimum quality level Qmin by choosing
the sensor parameters σ and adjusting the function parameters ϕ in order to choose
the best decision rule fopt of them based on this ranking, which is the decision rule
f for which the minimal reachable costs Cmin (f) are the smallest minimal reachable
costs

C∗
min = min

f∈F
Cmin (f) = min

f∈F
min

σ∈S,ϕ∈RNϕ
C (σ) s.t. Q (σ, f,ϕ) ≥ Qmin

= min
σ∈S,f∈F ,ϕ∈RNϕ

C (σ) s.t. Q (σ, f,ϕ) ≥ Qmin
(4.15)

of all f in F . The sensor parameter values σ and function parameter values ϕ corre-
sponding to these smallest minimal reachable costsC∗

min, i.e., for whichC
(
σ, fopt,ϕ

)
=
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C∗
min, are the optimal sensor parameters values σopt and the optimal function parameter

values ϕopt, respectively. Using the so obtained best decision rule fopt
(
·;ϕopt

)
with

the optimal function parameters ϕopt for triggering the respective action by the function
in combination with sensors whose sensor parameters σ have the obtained optimal
sensor parameter values σopt guarantees that the quality measure Q does not lie below
the required minimum quality level Qmin and thus the customer requirements are met
in a robust manner despite the unavoidable sensor measurement errors to the desired
extent at minimal costs C∗

min.
The constraint of the optimization problem (4.11) again defines the design space,

which, in case of the joint function and sensor design, is the set

D =
{
(σ, f,ϕ) ∈ S × F × RNϕ : Q ≥ Qmin

}
, (4.16)

from which the application engineer has to choose the sensor parameter values σ,
the decision rule f and the function parameter values ϕ such that the constraint is
fulfilled, i.e., the quality measure Q is not smaller than the required minimum quality
level Qmin and thus the customer requirements are met in a robust manner despite
the unavoidable sensor measurement errors to the desired extent. Consequently, the
optimization problem (4.11) to be solved for the joint function and sensor design can
also be expressed in terms of this design space D the application engineer is provided
with: (

σopt, fopt,ϕopt
)
= argmin

σ∈S,f∈F ,ϕ∈RNϕ

C s.t. (σ, f,ϕ) ∈ D. (4.17)

So, the optimal sensor parameter values σopt, the best decision rule fopt and the optimal
function parameter values ϕopt are the sensor parameter values σ, the decision rule f
and the function parameter values ϕ inside the design space D for which the costs C
are minimum.

This is illustrated in Figure 4.4, Figure 4.5 and Figure 4.6, which show the contour
lines of the quality measure Q considered as a function of one sensor parameter
σ = σ ∈ S = R+ and one function parameter ϕ = ϕ ∈ R for three different decision
rules f1, f2 and f3, respectively. Along each contour line, the quality measure Q has
one of the constant values Q1, Q2, Q3 and Q4 sorted in ascending order such that
Q1 < Q2 < Q3 < Q4. As for the function design before, ϕ is assumed to be the
only adjustable function parameter ϕ of each predefined decision rule f in the set
F = {f1, f2, f3}, from which the decision rule for triggering the respective action by
the function is to be chosen, also for the joint function and sensor design while σ is
considered to be the only sensor parameter σ whose value is to be chosen from the
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Figure 4.4: Joint function and sensor design for one sensor parameter σ = σ ∈ S =

R+ and the set F = {f1, f2, f3} of decision rules f with one adjustable function
parameter ϕ = ϕ ∈ R, where f = f1, Q1 < Q2 < Q3 = Qmin < Q4 and
C1 < C2 < C3 = Cmin (f1) < C4 < C5.

D

σ
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Figure 4.5: Joint function and sensor design for one sensor parameter σ = σ ∈ S =

R+ and the set F = {f1, f2, f3} of decision rules f with one adjustable function
parameter ϕ = ϕ ∈ R, where f = f2 = fopt, Q1 < Q2 < Q3 = Qmin < Q4 and
C1 < C2 = Cmin (f2) = C∗

min < C3 < C4 < C5.

55



Chapter 4. Robust Design of Automated Vehicular Safety Systems

D

σ

ϕ

Q = Q1

Q = Q2

Q = Q3

Q = Q4

C = C1

C = C2

C = C3

C = C4

C = C5

Figure 4.6: Joint function and sensor design for one sensor parameter σ = σ ∈ S =

R+ and the set F = {f1, f2, f3} of decision rules f with one adjustable function
parameter ϕ = ϕ ∈ R, where f = f3, Q1 < Q2 < Q3 = Qmin < Q4 and
C1 < C2 < C3 < C4 = Cmin (f3) < C5.

possible domain S = R+ as in the sensor design before. Besides the contour lines of
the quality measure Q, the design space D corresponding to the required minimum
quality levelQmin = Q3 is shown. It is the magenta region where the sensor parameter
σ, the decision rule f and the function parameter ϕ correspond to a quality measure
Q that does not lie below the required minimum quality level Qmin = Q3, which
is bounded by the contour lines of the quality measure Q along which the quality
measure Q is exactly Q3 such that the required minimum quality level Qmin is just
reached. In addition, also the contour lines of the costs C which have already been
considered in the sensor design before and monotonically decrease with increasing
sensor parameter value σ are shown. Along each contour line, the costs C have one
of the constant values C1, C2, C3, C4 and C5 sorted in ascending order such that
C1 < C2 < C3 < C4 < C5. In Figure 4.4, Figure 4.5 and Figure 4.6, it can be
observed that the minimal reachable costs Cmin (f) corresponding to the maximal
sensor parameter σ inside the design space D, where Q ≥ Qmin = Q3, according to
(4.14) are Cmin (f1) = C3 for the first decision rule f1, Cmin (f2) = C2 for the second
decision rule f2 and Cmin (f3) = C4 for the third decision rule f3, respectively. Based
on the ranking of the decision rules f in F with respect to the minimal reachable costs
Cmin (f), i.e.,Cmin (f2) = C2 < Cmin (f1) = C3 < Cmin (f3) = C4, the first decision
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rule f1 is better than the third decision rule f3 and the second decision rule f2 is better
than the first decision rule f1. Hence, the second decision rule f2 is the best decision
rule fopt of all decision rules in F and the corresponding minimal reachable costs
Cmin (f2) = C2 are the smallest minimal reachable costs C∗

min according to (4.15),
i.e., fopt = f2 and C∗

min = Cmin (f2) = C2. The function parameter value ϕ and the
sensor parameter value σ corresponding to these smallest minimal reachable costs
C∗

min are the optimal function parameter value ϕopt and the optimal sensor parameter
value σmax, respectively. This solution of the stated optimization problem (4.11) for
the joint function and sensor design is highlighted by the green cross in Figure 4.5.
As the costs C monotonically decrease when the sensor parameter σ increases, which
converts the minimization of the cost function C in the stated optimization problem
(4.11) for the joint function and sensor design into the maximization of the sensor
parameter σ, the optimal sensor parameter value σmax leading to the smallest minimal
reachable costs C∗

min is the maximal value of the sensor parameter σ inside the design
space D.

4.2 Quality Measure for Robust Design of Automated Vehicular Safety Systems

In the robust system design, the probability Y of fulfilling the performance specifica-
tions defined in (3.7) can be used as quality measure, which measures to what extent
systems meet the performance specifications, in order to design the systems by the
maximization (3.8) of this quality measure. This can be translated to the robust design
of automated vehicular safety systems considering sensor measurement errors in order
to come up with an appropriate quality measure Q, which measures to what extent the
function meets the customer requirements in a robust manner despite the unavoidable
sensor measurement errors, and can be used in the formulated optimization problems
(4.1), (4.9) and (4.11) of the function design, the sensor design as well as the joint
function and sensor design, respectively.

When an automated vehicular safety system intervenes by triggering an action,
relevant quantities, e.g., the final distance from an obstacle after an emergency brake
intervention, have to lie in certain acceptance intervals such that the intervention
is acceptable and the customer is satisfied with the system. So, the customer sat-
isfaction can be measured in terms of these quantities, i.e., Nq customer satisfac-
tion properties qi, i = 1, 2, . . . , Nq, collected in the customer satisfaction vector
q =

[
q1, q2, . . . , qNq

]T ∈ RNq . The acceptance intervals in which these customer sat-
isfaction properties q have to lie such that the customer is satisfied and which might be
user-dependent can be chosen in a user-specific way and the acceptance interval for the
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ith customer satisfaction property qi is denoted as [qL,i, qU,i] with the lower and upper
bound qL,i and qU,i, respectively. If a lower bound qL,i does not exist, qL,i → −∞,
and if an upper bound qU,i does not exist, qU,i → ∞. Those acceptance intervals are
specifications for the customer satisfaction and represent the customer requirements
that have to be met.

The customer satisfaction properties q =
[
q1, q2, . . . , qNq

]T and the corresponding
acceptance intervals [qL,i, qU,i], i = 1, 2, . . . , Nq, play the role of the performance prop-
erties f =

[
f1, f2, . . . , fNf

]T and the corresponding acceptance intervals [fL,i, fU,i],
i = 1, 2, . . . , Nf . Analogously to the performance acceptance region Af given by
(3.1), a customer satisfaction acceptance region

Aq =
{
q ∈ RNq : qL,i ≤ qi ≤ qU,i, i = 1, 2, . . . , Nq

}
(4.18)

can be defined. It is the set of all values of the customer satisfaction properties q that
lie in the acceptance intervals and can thus be represented by the intersection of the
individual customer satisfaction acceptance region partitions

Aq,L,i =
{
q ∈ RNq : qi ≥ qL,i

}
and Aq,U,i =

{
q ∈ RNq : qi ≤ qU,i

}
(4.19)

as the performance acceptance region Af by the intersection of the individual perfor-
mance acceptance region partitions Af ,L,i and Af ,U,i given by (3.2) in (3.3):

Aq =

Nq⋂
i=1

Aq,L,i ∩ Aq,U,i. (4.20)

In the ith of these individual customer satisfaction acceptance region partitions Aq,L,i

and Aq,U,i into which the customer satisfaction acceptance region Aq is decomposed,
only the ith customer satisfaction property qi is restricted to not lie below the lower
bound qL,i and above the upper bound qU,i of the corresponding acceptance interval
[qL,i, qU,i], respectively. In the special cases qL,i → −∞ and qU,i → ∞, the corre-
sponding individual customer satisfaction acceptance region partitions simplify to
Aq,L,i = RNq and Aq,U,i = RNq , respectively.

Triggering an action by the function of an automated vehicular safety system
based on the sensor measurements and thus the customer satisfaction properties q

are dependent on the sensor parameters σ determining the used sensors, the sensor
measurement errors ε [n] at the nend + 1 time instants tn, n = 0, 1, . . . , nend, in the
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considered time interval collected in the vector

ε =


ε1
ε2
...

εE(nend+1)

 =


ε [0]

ε [1]
...

ε [nend]

 ∈ RE(nend+1), (4.21)

the decision rule f used by the function for triggering the action, the function parameters
ϕ determining the function and the scenario parameters ξ representing the considered
driving scenario, to which the automated vehicular safety system is exposed. Hence,
the customer satisfaction properties q are a function of the sensor parameters σ, the
sensor measurement errors ε in the considered time interval, the decision rule f , the
function parameters ϕ and the scenario parameters ξ:

q : S × RE(nend+1) ×F × RNϕ ×X → RNq , (σ, ε, f,ϕ, ξ) 7→ q (σ, ε, f,ϕ, ξ) .

(4.22)
Here, X denotes the set of the driving scenarios for which the automated vehicular
safety system is to be designed such that the customer requirements are fulfilled and
the customer is satisfied with the system in these scenarios, i.e., the set of the scenario
parameters ξ =

[
ξ1, ξ2, . . . , ξNξ

]T ∈ RNξ of the driving scenarios each of which the
automated vehicular safety system under design is supposed to handle in an acceptable
way by fulfilling the specifications for the customer satisfaction.

In the introduced system model for automated vehicular safety systems, the sensor
measurement errors ε [n] at the time instant tn are assumed to be Gaussian and follow
the normal distribution N (µn,Cn) with the pdf fε[n] (ε [n]) given by (2.10), where
µn ∈ RE and Cn ∈ RE×E are the mean and covariance matrix, respectively. As
the sensor measurement errors ε [n1] and ε [n2] at different time instants tn1 and
tn2 , n1, n2 ∈ {0, 1, . . . , nend} , n1 6= n2, are assumed to be statistically independent
in addition, the pdf of the vector ε stated in (4.21), which consists of the sensor
measurement errors ε [n] at all time instants tn, n = 0, 1, . . . , nend, in the considered
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time interval, reads

fε (ε) =

nend∏
n=0

fε[n] (ε [n])

=

nend∏
n=0

1√
(2π)E det (Cn)

exp

(
−1

2
(ε [n]− µn)

T C−1
n (ε [n]− µn)

)

=
1√

(2π)E(nend+1)∏nend
n=0 det (Cn)

· exp

(
−1

2

nend∑
n=0

(ε [n]− µn)
T C−1

n (ε [n]− µn)

)
.

(4.23)

With

µ =


µ0

µ1
...

µnend

 ∈ RE(nend+1) (4.24)

and

C =


C0 0 · · · 0

0 C1 · · · 0
...

... . . . ...
0 0 · · · Cnend

 ∈ RE(nend+1)×E(nend+1), (4.25)

it can be rewritten as

fε (ε) =
1√

(2π)E(nend+1) det (C)

exp

(
−1

2
(ε− µ)T C−1 (ε− µ)

)
(4.26)

because

det (C) =

nend∏
n=0

det (Cn) (4.27)
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and

(ε− µ)T C−1 (ε− µ) =
[
(ε [0]− µ0)

T (ε [1]− µ1)
T · · ·

(
ε [nend]− µnend

)T
]

·


C−1

0 0 · · · 0

0 C−1
1 · · · 0

...
... . . . ...

0 0 · · · C−1
nend




ε [0]− µ0

ε [1]− µ1
...

ε [nend]− µnend


=

nend∑
n=0

(ε [n]− µn)
T C−1

n (ε [n]− µn) .

(4.28)

So, the sensor measurement errors ε are Gaussian with mean E [ε] = µ and covari-
ance matrix E

[
(ε− µ) (ε− µ)T

]
= C, i.e., ε ∼ N (µ,C). As a consequence, the

customer satisfaction properties q = q (σ, ε, f,ϕ, ξ), which are a function of these
random sensor measurement errors ε, are random variables as well and might lie
inside or outside the acceptance intervals [qL,i, qU,i], i = 1, 2, . . . , Nq, such that the
specifications qL,i ≤ qi ≤ qU,i, i = 1, 2, . . . , Nq, for the customer satisfaction defined
by the acceptance intervals are fulfilled or violated. Hence, the Gaussian random
variables ε ∼ N (µ,C) modeling the unavoidable sensor measurement errors play
the role of the statistical parameters s ∼ N (s0,C) because the performance prop-
erties f = f (p) = f (d, s,θ) corresponding to the customer satisfaction properties
q = q (σ, ε, f,ϕ, ξ) are a function of these random statistical parameters s and the
specifications fL,i ≤ fi ≤ fU,i, i = 1, 2, . . . , Nf , for them in form of acceptance
intervals [fL,i, fU,i], i = 1, 2, . . . , Nf , are conceptually the same. As the probability
Y of fulfilling all given performance specifications defined in (3.7) is used as quality
measure for the robust system design, the probability of fulfilling all given specifica-
tions for the customer satisfaction can be used as quality measure Q for the robust
design of automated vehicular safety systems in order to take the unavoidable sensor
measurement errors into account:

Q = P

Nq∧
i=1

qL,i ≤ qi ≤ qU,i

 = P (q ∈ Aq) . (4.29)

While the probability Y of fulfilling the performance specifications measures to what
extent systems fulfill the performance specifications, this quality measure Q measures
to what extent the function fulfills the specifications for the customer satisfaction and
thus the customer requirements in a robust manner despite the unavoidable sensor
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measurement errors. As the optimal deterministic design parameter values dopt for a
system under design are determined by the solution of the optimization problem (3.8),
where the probability Y of fulfilling the performance specifications is maximized,
the optimal sensor parameter values σopt, the best decision rule fopt and the optimal
function parameter values ϕopt for an automated vehicular safety system under design
can be determined by solving the formulated optimization problems (4.1), (4.9) and
(4.11) of the function design, the sensor design as well as the joint function and sensor
design, respectively, where the probability P (q ∈ Aq) of fulfilling the specifications
for the customer satisfaction is used as quality measure Q. This emphasizes that the
sensor parameters σ, the decision rule f and the function parameters ϕ play the role
of the deterministic design parameters d.

The automated vehicular safety system under design is supposed to handle all
driving scenarios ξ from the scenario set X , which might be a whole range of such
scenario parameters ξ. Conceptually, these scenario parameters ξ from the scenario
set X can be treated like the operating parameters θ from the tolerance region Tθ in
the robust system design as ranging parameters for which no statistical knowledge
in form of a probability distribution is available but only a range of possible values.
Analogously to the tolerance region Tθ of the operating parameters θ in (3.9), the
scenario set can be expressed as

X =
{
ξ ∈ RNξ : ξL,j ≤ ξj ≤ ξU,j , j = 1, 2, . . . , Nξ

}
= [ξL,1, ξU,1]× [ξL,2, ξU,2]× . . .×

[
ξL,Nξ

, ξU,Nξ

] (4.30)

if the jth scenario parameter ξj ranges from the lower bound ξL,j to the upper bound
ξU,j and thus may lie in the tolerance interval [ξL,j , ξU,j ].

The dependence of the customer satisfaction properties q = q (σ, ε, f,ϕ, ξ) on the
sensor parameters σ, the sensor measurement errors ε, the decision rule f , the function
parameters ϕ and the scenario parameters ξ makes the probability P (q ∈ Aq) of
fulfilling the specifications for the customer satisfaction and thus the quality measure
Q = Q (σ, f,ϕ, ξ) set to this probability in (4.29) a function of the sensor parameters
σ, the decision rule f , the function parameters ϕ and the scenario parameters ξ:

Q : S × F × RNϕ ×X → [0, 1] , (σ, f,ϕ, ξ) 7→ Q (σ, f,ϕ, ξ) = P (q ∈ Aq) .

(4.31)
Consequently, the optimal sensor parameter values σopt, the best decision rule fopt

and the optimal function parameter values ϕopt of the automated vehicular safety
system under design obtained by solving the optimization problems (4.1), (4.9) and
(4.11) of the function design, the sensor design as well as the joint function and sensor
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design, respectively, are dependent on the scenario parameters ξ and thus on the
driving scenario characterized by them. So far, it has been assumed that the scenario
parameters ξ are fixed, i.e., have specific values that correspond to the only driving
scenario the automated vehicular safety system under design is supposed to handle,
such that the optimal sensor parameter values σopt, the best decision rule fopt and the
optimal function parameter values ϕopt have to be obtained only once for these values
of the scenario parameters ξ by solving the optimization problems (4.1), (4.9) and
(4.11) in the design phase. However, the automated vehicular safety system under
design shall not handle only one driving scenario with the fixed scenario parameters ξ
but all driving scenarios with the various scenario parameter values ξ from the scenario
set X . Due to the dependency of the optimal sensor parameter values σopt, the best
decision rule fopt and the optimal function parameter values ϕopt on the scenario
parameters ξ, these optimal values σopt and ϕopt as well as this best decision rule fopt,
which have been obtained by solving the optimization problems (4.1), (4.9) and (4.11)
for one instance of the scenario parameters ξ in the design phase, are not optimal
anymore when the values of the scenario parameters ξ of the driving scenario to
which the automated vehicular safety system is exposed deviate from this one instance.
Therefore, the sensor parameters σ, the decision rule f and the function parameters
ϕ would have to be adapted to the values of the scenario parameters ξ by solving the
optimization problems (4.1), (4.9) and (4.11) whenever they change. Although this
might be possible for the decision rule f and the function parameters ϕ, it is impossible
for the sensor parameters σ in case of already installed sensors whose parameters σ
like the variances of their measurement errors cannot be changed anymore. In order to
overcome this problem, the optimal sensor parameter values σopt, the best decision rule
fopt and the optimal function parameter values ϕopt have to be made independent of
the scenario parameters ξ. This independence can be achieved by taking all scenarios
ξ from the scenario set X already in the design phase into account, i.e., by determining
the optimal sensor parameter values σopt, the best decision rule fopt and the optimal
function parameter values ϕopt such that they are optimal not only for one instance
of the scenario parameters ξ but for the various values of them from the scenario
set X . In the robust system design, the worst-case probability YWC of fulfilling the
performance specifications defined by (3.11) as the minimum of the probability Y
of fulfilling the performance specifications in the whole tolerance region Tθ of the
operating parameters θ corresponding to the scenario parameters ξ is used instead of
the probability Y of fulfilling the performance specifications as quality measure in
order to eliminate the dependency of the optimal deterministic design parameter values
dopt corresponding to the optimal sensor parameter values σopt, the best decision rule
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fopt and the optimal function parameter values ϕopt on the operating parameters θ.
Analogously, the worst-case probability PWC (q ∈ Aq) of fulfilling the specifications
for the customer satisfaction defined by

PWC (q ∈ Aq) = min
ξ∈X

P (q ∈ Aq) (4.32)

as the minimum of the probability P (q ∈ Aq) that the specifications for the customer
satisfaction are fulfilled in all driving scenarios with the various scenario parameter
values ξ from the scenario set X can be used instead of the probability P (q ∈ Aq)

that the specifications for the customer satisfaction are fulfilled as quality measure Q
in order to eliminate the dependency of the optimal sensor parameter values σopt, the
best decision rule fopt and the optimal function parameter values ϕopt on the scenario
parameters ξ. By solving the optimization problems (4.1), (4.9) and (4.11) of the
function design, the sensor design as well as the joint function and sensor design,
respectively, with this quality measure

Q = PWC (q ∈ Aq) = min
ξ∈X

P (q ∈ Aq) = min
ξ∈X

P

Nq∧
i=1

qL,i ≤ qi ≤ qU,i

 , (4.33)

the optimal sensor parameter values σopt, the best decision rule fopt and the optimal
function parameter values ϕopt of the automated vehicular safety system under design
can be obtained again. The minimization of the probability P (q ∈ Aq) that the
specifications for the customer satisfaction are fulfilled, which is a function of the
sensor parameters σ, the decision rule f , the function parameters ϕ and the scenario
parameters ξ as stated in (4.31), with respect to the scenario parameters ξ makes the
resulting worst-case probability PWC (q ∈ Aq) of fulfilling the specifications for the
customer satisfaction and thus the quality measure Q = Q (σ, f,ϕ) independent of
the scenario parameters ξ as desired and a function of the sensor parameters σ, the
decision rule f and the function parameters ϕ only:

Q : S × F × RNϕ → [0, 1] , (σ, f,ϕ) 7→ Q (σ, f,ϕ) = PWC (q ∈ Aq) . (4.34)

If this quality measureQ defined by (4.33) has the valueQ0 ∈ [0, 1], the minimum
of the probability P (q ∈ Aq) that the specifications for the customer satisfaction are
fulfilled in all driving scenarios ξ from the scenario set X is

min
ξ∈X

P (q ∈ Aq) = PWC (q ∈ Aq) = Q = Q0. (4.35)

This guarantees that the probability P (q ∈ Aq) of fulfilling the specifications for the
customer satisfaction is at least Q0 in each driving scenario ξ from the scenario set X
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because minξ∈X P (q ∈ Aq) would not be Q0 contradicting (4.35) if P (q ∈ Aq) <

Q0 in at least one driving scenario ξ ∈ X :

Q = min
ξ∈X

P (q ∈ Aq) = Q0 ⇒ P (q ∈ Aq) ≥ Q0 ∀ξ ∈ X . (4.36)

In general, the probability P (q ∈ Aq)|ξ=ξ′ of fulfilling the specifications for the
customer satisfaction in a specific driving scenario ξ′ from the scenario set X cannot be
smaller than the worst-case probability PWC (q ∈ Aq) of fulfilling these specifications,
i.e.,

P (q ∈ Aq)|ξ=ξ′ ≥ min
ξ∈X

P (q ∈ Aq) = PWC (q ∈ Aq) ∀ξ′ ∈ X , (4.37)

and the scenarios ξ′ from the scenario set X for which the corresponding probability
P (q ∈ Aq)|ξ=ξ′ of fulfilling the specifications for the customer satisfaction is equal
to the worst-case probability PWC (q ∈ Aq) of fulfilling these specifications and thus
minimum are the worst cases forming the set

XWC =

{
ξ′ ∈ X : P (q ∈ Aq)|ξ=ξ′ = min

ξ∈X
P (q ∈ Aq)

}
(4.38)

of worst-case driving scenarios.
If the worst-case probability PWC (q ∈ Aq) of fulfilling the specifications for the

customer satisfaction is used as quality measure Q in the optimization problems (4.9)
and (4.11) of the sensor design as well as the joint function and sensor design, respec-
tively, the required minimum quality level Qmin in the constraint of these optimization
problems is the required minimum worst-case probability Pmin of fulfilling these
specifications:

Qmin = Pmin. (4.39)

The constraint of both optimization problems thus reads

PWC (q ∈ Aq) = min
ξ∈X

P (q ∈ Aq) ≥ Pmin. (4.40)

If the probability P (q ∈ Aq) of fulfilling the specifications for the customer satisfac-
tion is at least Pmin in each driving scenario ξ from the scenario set X , the minimum
of this probability in all driving scenarios ξ ∈ X is at least Pmin. On the other hand,
the probability P (q ∈ Aq) of fulfilling the specifications for the customer satisfaction
is at least Pmin in each driving scenario ξ from the scenario set X if the minimum
of this probability in all driving scenarios ξ ∈ X is at least Pmin as otherwise this
minimum would be smaller than Pmin contradicting the assumption that it is at least
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Pmin. Therefore, the constraint (4.40) of the optimization problems (4.9) and (4.11)
of the sensor design as well as the joint function and sensor design, respectively, is
equivalent to

P (q ∈ Aq) ≥ Pmin ∀ξ ∈ X . (4.41)

Consequently, the design space D defined in (4.6) from which the sensor parameter
values σ have to be chosen in the sensor design such that the constraint (4.40) of the
optimization problem (4.9) is fulfilled and thus the customer requirements are met in a
robust manner despite the unavoidable sensor measurement errors to the desired extent
can be expressed as

D = {σ ∈ S : PWC (q ∈ Aq) ≥ Pmin}

=

{
σ ∈ S : min

ξ∈X
P (q ∈ Aq) ≥ Pmin

}
= {σ ∈ S : P (q ∈ Aq) ≥ Pmin ∀ξ ∈ X}

=
⋂
ξ′∈X

{
σ ∈ S : P (q ∈ Aq)|ξ=ξ′ ≥ Pmin

}
=
⋂
ξ′∈X

D
(
ξ′
)
.

(4.42)

So, the design space D is the intersection of the individual design space partitions

D
(
ξ′
)
=
{
σ ∈ S : P (q ∈ Aq)|ξ=ξ′ ≥ Pmin

}
(4.43)

for all driving scenarios ξ′ from the scenario set X and decomposed into them. The
individual design space partition D

(
ξ′
)

for the driving scenario ξ′ ∈ X is the set
of all sensor parameter values σ in the possible domain S leading to a probability
P (q ∈ Aq) of fulfilling the specifications for the customer satisfaction that is at least
Pmin = Qmin in the driving scenario ξ′ while the design space D is the set of all sensor
parameter values σ ∈ S for which this probability P (q ∈ Aq) is at least Pmin = Qmin

in all driving scenarios ξ from the scenario set X and thus the quality measure Q is at
least Qmin as required.

Analogously to the design space D of the sensor design in (4.42), the design space
D defined in (4.16) from which the sensor parameter values σ, the decision rule f and
the function parameter values ϕ have to be chosen in the joint function and sensor
design such that the constraint (4.40) of the optimization problem (4.11) is fulfilled
and thus the customer requirements are met in a robust manner despite the unavoidable
sensor measurement errors to the desired extent can also be decomposed into individual
design space partitions

D
(
ξ′
)
=
{
(σ, f,ϕ) ∈ S × F × RNϕ : P (q ∈ Aq)|ξ=ξ′ ≥ Pmin

}
(4.44)
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for all driving scenarios ξ′ from the scenario set X and expressed as the intersection
of them:

D =
{
(σ, f,ϕ) ∈ S × F × RNϕ : PWC (q ∈ Aq) ≥ Pmin

}
=
{
(σ, f,ϕ) ∈ S × F × RNϕ : P (q ∈ Aq) ≥ Pmin ∀ξ ∈ X

}
=
⋂
ξ′∈X

{
(σ, f,ϕ) ∈ S × F × RNϕ : P (q ∈ Aq)|ξ=ξ′ ≥ Pmin

}
=
⋂
ξ′∈X

D
(
ξ′
)
.

(4.45)

Here, the individual design space partition D
(
ξ′
)

for the driving scenario ξ′ ∈ X is
the set of all sensor parameter values σ in the possible domain S , decision rules f from
the set F of predefined decision rules and function parameter values ϕ leading to a
probability P (q ∈ Aq) of fulfilling the specifications for the customer satisfaction that
is at least Pmin = Qmin in the driving scenario ξ′ while the design space D is the set of
all sensor parameter valuesσ ∈ S , decision rules f ∈ F and function parameter values
ϕ for which this probabilityP (q ∈ Aq) is at leastPmin = Qmin in all driving scenarios
ξ′ from the scenario set X and thus the quality measure Q is at least Qmin as required.
This is illustrated in Figure 4.7, Figure 4.8 and Figure 4.9 for one sensor parameter
σ = σ ∈ S = R+, the set F = {f1, f2, f3} of three decision rules f with one
adjustable function parameter ϕ = ϕ ∈ R and the scenario set X = {ξ1, ξ2, ξ3, ξ4}
consisting of four driving scenarios ξ. The blue, red, yellow and green curves are the
contour lines along which the probability P (q ∈ Aq) of fulfilling the specifications
for the customer satisfaction is equal to the required minimum worst-case probability
Pmin in the driving scenarios ξ1, ξ2, ξ3 and ξ4, respectively, and the boundaries of the
individual design space partitions D (ξ1), D (ξ2), D (ξ3) and D (ξ4) highlighted by
the blue, red, yellow and green areas in which the probability P (q ∈ Aq) of fulfilling
the specifications for the customer satisfaction does not lie below the required minimum
worst-case probability Pmin in the driving scenarios ξ1, ξ2, ξ3 and ξ4, respectively.
The intersection of the individual design space partitions D (ξ1), D (ξ2), D (ξ3) and
D (ξ4) yields the design space D highlighted by the magenta areas, in which the
quality measure Q, i.e., the minimum of the probability P (q ∈ Aq) of fulfilling the
specifications for the customer satisfaction in the four driving scenarios ξ1, ξ2, ξ3 and
ξ4, does not lie below the required minimum quality level Qmin = Pmin.

The constraint (4.40) of the optimization problems (4.9) and (4.11) in the robust
sensor as well as joint function and sensor design guarantees that the designed auto-
mated vehicular safety system fulfills the specifications for the customer satisfaction at
least with the required minimum worst-case probability Pmin = Qmin in all considered
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D (ξ1)

D (ξ2)

D (ξ3)

D = D (ξ4)

σ

ϕ

P (q ∈ Aq)|ξ=ξ1
= Pmin

P (q ∈ Aq)|ξ=ξ2
= Pmin

P (q ∈ Aq)|ξ=ξ3
= Pmin

P (q ∈ Aq)|ξ=ξ4
= Pmin

Q = Qmin = Pmin

Figure 4.7: Design spaceD in joint function and sensor design for one sensor parameter
σ = σ ∈ S = R+, the set F = {f1, f2, f3} of decision rules f with one adjustable
function parameter ϕ = ϕ ∈ R and the scenario set X = {ξ1, ξ2, ξ3, ξ4}, where
f = f1.

D (ξ1)

D (ξ2)

D (ξ3)

D (ξ4)

D

σ

ϕ

P (q ∈ Aq)|ξ=ξ1
= Pmin

P (q ∈ Aq)|ξ=ξ2
= Pmin

P (q ∈ Aq)|ξ=ξ3
= Pmin

P (q ∈ Aq)|ξ=ξ4
= Pmin

Q = Qmin = Pmin

Figure 4.8: Design spaceD in joint function and sensor design for one sensor parameter
σ = σ ∈ S = R+, the set F = {f1, f2, f3} of decision rules f with one adjustable
function parameter ϕ = ϕ ∈ R and the scenario set X = {ξ1, ξ2, ξ3, ξ4}, where
f = f2.
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D (ξ1)

D (ξ2)

D (ξ3)

D (ξ4)

σ

ϕ

P (q ∈ Aq)|ξ=ξ1
= Pmin

P (q ∈ Aq)|ξ=ξ2
= Pmin

P (q ∈ Aq)|ξ=ξ3
= Pmin

P (q ∈ Aq)|ξ=ξ4
= Pmin

Figure 4.9: Design spaceD in joint function and sensor design for one sensor parameter
σ = σ ∈ S = R+, the set F = {f1, f2, f3} of decision rules f with one adjustable
function parameter ϕ = ϕ ∈ R and the scenario set X = {ξ1, ξ2, ξ3, ξ4}, where
f = f3.

driving scenarios from the scenario set X , which determines the customer satisfaction
as well as the reliability and safety of the system. Increasing the required minimum
quality level Qmin, i.e., the required minimum worst-case probability Pmin, increases
the customer satisfaction as well as the reliability and safety of the system but might
also increase the minimal costs Cmin resulting from solving the optimization problems
(4.9) and (4.11) of the robust sensor as well as joint function and sensor design. There-
fore, a trade-off has to be found by choosing the required minimum quality level Qmin

appropriately. This is a decision that has to be made by the management, which can be
based on user studies or on the desired probability of fulfilling the specifications in
system assessment tests like those of the New Car Assessment Programme (NCAP).
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Simulation-Based Robust Design of
Automated Vehicular Safety Systems 5
In the previous chapter, the robust design of automated vehicular safety systems
considering sensor measurement errors has been formulated as optimization problems
using a probabilistic quality measure Q based on analogies to a robust system design
as performed in integrated circuit design. Solving these optimizations problems (4.1),
(4.9) and (4.11) of the robust function design, sensor design as well as joint function
and sensor design, respectively, requires several evaluations of the quality measure Q.
As there is usually no closed-form expression for the quality measure Q, it has to be
evaluated based on simulations of the automated vehicular safety system under design.
This chapter suggests different possibilities for such a simulation-based evaluation of
the quality measure Q based on analogies to a robust system design as performed in
integrated circuit design again. This eventually leads to a methodology for the robust
function and sensor design that allows to systematically design both functions and
sensors of automated vehicular safety systems by solving the formulated optimization
problems solely based on simulations of the automated vehicular safety system under
design such that the customer requirements are fulfilled in a robust manner despite
unavoidable sensor measurement errors.

Apart from simple automated vehicular safety systems in idealized scenarios, there
is usually no closed-form expression for the customer satisfaction properties q as a
function of the sensor parameters σ, the sensor measurement errors ε, the decision
rule f , the function parameters ϕ and the scenario parameters ξ defined in (4.22) due
to the high complexity of automated vehicular safety systems in practice. Hence, the
evaluation of q at given sensor parameters σ, sensor measurement errors ε, a given
decision rule f , given function parameters ϕ and scenario parameters ξ requires a
numerical simulation of the automated vehicular safety system. It maps the given
sensor parameters σ, sensor measurement errors ε, the given decision rule f , the
given function parameters ϕ and scenario parameters ξ, which are the input of the
simulation, to the respective values of the customer satisfaction properties q, which
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are the output of the simulation. As there is usually no closed-form expression for
the customer satisfaction properties q as a function of the sensor parameters σ, the
sensor measurement errors ε, the decision rule f , the function parameters ϕ and
the scenario parameters ξ, and it can only be evaluated by numerical simulations of
the automated vehicular safety system apart from simple automated vehicular safety
systems in idealized scenarios, this is also the case for the probability P (q ∈ Aq) that
the customer satisfaction properties q lie in the acceptance intervals and thus fulfill
the specifications for the customer satisfaction as a function of the sensor parameters
σ, the decision rule f , the function parameters ϕ and the scenario parameters ξ given
in (4.31) and the worst-case probability PWC (q ∈ Aq) of fulfilling the specifications
for the customer satisfaction, i.e., the quality measure Q, as a function of the sensor
parameters σ, the decision rule f and the function parameters ϕ given in (4.34). There
are different possibilities for obtaining values of the probability P (q ∈ Aq) that the
specifications for the customer satisfaction are fulfilled, from which a value of the
quality measure Q can be obtained by minimizing the probability P (q ∈ Aq) with
respect to the scenario parameters ξ according to the definition of the quality measure
Q as the worst-case probability PWC (q ∈ Aq) of fulfilling the specifications for the
customer satisfaction in (4.33).

5.1 Monte-Carlo-Based Robust Design of Automated Vehicular Safety Systems

As the Monte Carlo simulation can be used in the robust system design as an esti-
mator in order to approximately obtain a value of the probability P (f ∈ Af ) that
the performance specifications are fulfilled for given deterministic design parameters
d and operating parameters θ, the Monte Carlo simulation can also be used as an
estimator in order to obtain a value of the probability P (q ∈ Aq) that the specifi-
cations for the customer satisfaction are fulfilled for given sensor parameters σ, a
given decision rule f , given function parameters ϕ and scenario parameters ξ at least
approximately. In the Monte Carlo simulation, M realizations ε1, ε2, . . . , εM of all
involved random variables, i.e., the sensor measurement errors ε, are generated at
random according to their probability distribution, which is the Gaussian distribution
N (µ,C) with the pdf in (4.26). Each realization εm, m = 1, 2, . . . ,M , of the sensor
measurement errors ε together with given sensor parameters σ, a given decision rule
f , given function parameters ϕ and scenario parameters ξ is mapped to the respective
values qm = q (σ, εm, f,ϕ, ξ) of the customer satisfaction properties q according to
(4.22) by a simulation of the automated vehicular safety system. In these M random
experiments, it is counted how often the values of the samples qm of the customer
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satisfaction properties q lie in the acceptance intervals [qL,i, qU,i], i = 1, 2, . . . , Nq, to
obtain their number M1,M and the frequency

P̂M (q ∈ Aq) =
M1,M

M
(5.1)

of fulfilling all specifications qL,i ≤ qi ≤ qU,i, i = 1, 2, . . . , Nq, for the customer
satisfaction associated with these acceptance intervals, i.e., qm ∈ Aq, which is an esti-
mate for the probability P (q ∈ Aq) of fulfilling these specifications for the customer
satisfaction.

Defining the acceptance function for the customer satisfaction as the indicator
function

δAq : RNq → {0, 1} , q 7→ δAq (q) =

{
1, q ∈ Aq

0, q /∈ Aq

, (5.2)

which indicates whether q ∈ Aq, i.e., the customer satisfaction properties q fulfill
all specifications for the customer satisfaction, with the function value 1, allows to
express the number of the samples qm of the customer satisfaction properties q that
fulfill all specifications for the customer satisfaction and the frequency of fulfilling all
specifications for the customer satisfaction in the Monte Carlo simulation as

M1,M =
M∑
m=1

δAq (qm) (5.3)

and

P̂M (q ∈ Aq) =
1

M

M∑
m=1

δAq (qm) , (5.4)

respectively. Hence, the Monte Carlo simulation can be interpreted as an estimator,
which estimates the probability P (q ∈ Aq) of fulfilling the specifications for the
customer satisfaction from the random observations qm = q (σ, εm, f,ϕ, ξ), m =

1, 2, . . . ,M :

P̂M (q ∈ Aq) :
(
RNq

)M → [0, 1] , (q1, q2, . . . , qM ) 7→ P̂M (q ∈ Aq) . (5.5)

The samples q1, q2, . . . , qM of the customer satisfaction properties q correspond to
the samples f1,f2, . . . ,fM of the performance properties f while the probability
P (q ∈ Aq) of fulfilling the specifications for the customer satisfaction corresponds
to the probability P (f ∈ Af ) of fulfilling the performance specifications. As the
estimate ŶM for the probability Y of fulfilling the performance specifications is a
scaled version of a binomially distributed random variable in the interval [0, 1] with the
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pmf fŶM (y) in (3.29), the possible values y = 0, 1
M , . . . , 1, the mean E

[
ŶM

]
= Y

and the variance Var
[
ŶM

]
= Y (1−Y )

M , the estimate P̂M (q ∈ Aq) for the probability
P (q ∈ Aq) of fulfilling the specifications for the customer satisfaction is also a scaled
version of a binomially distributed random variable in the interval [0, 1] with the pmf

fP̂M (q∈Aq)
(p) =

(
M

Mp

)
(P (q ∈ Aq))

Mp (1− P (q ∈ Aq))
M(1−p) , (5.6)

the possible values p = 0, 1
M , . . . , 1, the mean

E
[
P̂M (q ∈ Aq)

]
= P (q ∈ Aq) (5.7)

and the variance

Var
[
P̂M (q ∈ Aq)

]
=
P (q ∈ Aq) (1− P (q ∈ Aq))

M
. (5.8)

As the estimator ŶM for the probability Y of fulfilling the performance specifications,
the estimator P̂M (q ∈ Aq) for the probability P (q ∈ Aq) of fulfilling the specifica-
tions for the customer satisfaction is unbiased with the MSE

E

[(
P̂M (q ∈ Aq)− P (q ∈ Aq)

)2]
= Var

[
P̂M (q ∈ Aq)

]
=
P (q ∈ Aq) (1− P (q ∈ Aq))

M
M→∞−−−−→ 0

(5.9)

converging to 0 as the number of samples or observations qm and simulations of the
automated vehicular safety system M in the Monte Carlo simulation tends to infinity
and consistent, which means that the estimate P̂M (q ∈ Aq) converges in probability
to the true probability P (q ∈ Aq) as the number of simulations M tends to infinity:

P̂M (q ∈ Aq)
p−−→ P (q ∈ Aq) for M → ∞. (5.10)

The statistical knowledge about the estimate P̂M (q ∈ Aq) for the probability
P (q ∈ Aq) of fulfilling the specifications for the customer satisfaction is completely
captured by its pmf fP̂M (q∈Aq)

(p) stated in (5.6). Theoretically, the required number of
samples or observations qm and simulations of the automated vehicular safety system
M in the Monte Carlo simulation for a desired estimation accuracy, e.g., specified in
form of a confidence interval

[
P̂M (q ∈ Aq)−∆P, P̂M (q ∈ Aq) + ∆P

]
of length

74



5.1 Monte-Carlo-Based Robust Design of Automated Vehicular Safety Systems

2∆P around the random estimate P̂M (q ∈ Aq) for the probability P (q ∈ Aq) of
fulfilling the specifications for the customer satisfaction which shall contain the true
probability P (q ∈ Aq) with a desired probability κ, the desired confidence level,
could be derived from it. Unfortunately, it cannot be derived in closed form due to
the special structure of the pmf fP̂M (q∈Aq)

(p) of the estimate P̂M (q ∈ Aq) for the
probability of fulfilling the specifications for the customer satisfaction, which is a
scaled binomially distributed random variable.

If the number of samples qm and simulations of the automated vehicular safety
system M in the Monte Carlo simulation is large, which has to be the case for a high
estimation accuracy anyway, however, the estimate P̂M (q ∈ Aq) for the probability
P (q ∈ Aq) of fulfilling the specifications for the customer satisfaction is approxi-
mately Gaussian with the mean and the variance given by (5.7) and (5.8), respectively,
as well as the cdf

FP̂M (q∈Aq)
(p) = P

(
P̂M (q ∈ Aq) ≤ p

)
≈ Φ

(
p− P (q ∈ Aq)√

P (q ∈ Aq) (1− P (q ∈ Aq)) /M

) (5.11)

due to the Central Limit Theorem. This is in accordance with the fact that the estimate
ŶM for the probability Y = P (f ∈ Af ) of fulfilling the performance specifications
corresponding to the probability P (q ∈ Aq) of fulfilling the specifications for the cus-
tomer satisfaction is approximately Gaussian with the mean E

[
ŶM

]
= Y and the vari-

anceVar
[
ŶM

]
= Y (1−Y )

M as well as the cdfFŶM (y) given by (3.46) due to the Central
Limit Theorem if the number of samples fm and system simulations M in the Monte
Carlo simulation is large. As the probability P

(
ŶM −∆Y ≤ Y ≤ ŶM +∆Y

)
that the confidence interval

[
ŶM −∆Y, ŶM +∆Y

]
of length 2∆Y around the

estimate ŶM contains the true probability Y = P (f ∈ Af ) of fulfilling the perfor-
mance specifications is written as in (3.48), the probability that the confidence interval[
P̂M (q ∈ Aq)−∆P, P̂M (q ∈ Aq) + ∆P

]
of length 2∆P around the estimate

P̂M (q ∈ Aq) contains the true probability P (q ∈ Aq) of fulfilling the specifications
for the customer satisfaction can be written as

P
(
P̂M (q ∈ Aq)−∆P ≤ P (q ∈ Aq) ≤ P̂M (q ∈ Aq) + ∆P

)
= P

(
P (q ∈ Aq)−∆P ≤ P̂M (q ∈ Aq) ≤ P (q ∈ Aq) + ∆P

)
≈ 2Φ

(
∆P√

P (q ∈ Aq) (1− P (q ∈ Aq)) /M

)
− 1.

(5.12)
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From (3.48), it has been concluded that the number of samples or observations fm
and system simulations M in the Monte Carlo simulation has to fulfill the con-
dition (3.51) such that the confidence interval

[
ŶM −∆Y, ŶM +∆Y

]
of length

2∆Y around the estimate ŶM contains the true probability Y of fulfilling the per-
formance specifications with the probability κ, the desired confidence level, i.e.,
P
(
ŶM −∆Y ≤ Y ≤ ŶM +∆Y

)
= κ. Analogously, it can be concluded from

(5.12) that the number of samples or observations qm and simulations of the automated
vehicular safety systemM in the Monte Carlo simulation has to fulfill the following con-
dition such that the confidence interval

[
P̂M (q ∈ Aq)−∆P, P̂M (q ∈ Aq) + ∆P

]
of length 2∆P around the estimate P̂M (q ∈ Aq) contains the true probabilityP (q ∈ Aq)

of fulfilling the specifications for the customer satisfaction with the probability κ, the
desired confidence level, i.e.,

P
(
P̂M (q ∈ Aq)−∆P ≤ P (q ∈ Aq) ≤ P̂M (q ∈ Aq) + ∆P

)
= κ : (5.13)

M ≈ P (q ∈ Aq) (1− P (q ∈ Aq))

∆P 2

(
Φ−1

(
κ+ 1

2

))2

=Mreq.. (5.14)

Mreq. is the approximate number of samples or observations qm and simulations of the
automated vehicular safety system in the Monte Carlo simulation required for estimating
the probability P (q ∈ Aq) of fulfilling the specifications for the customer satisfac-
tion by the estimator P̂M (q ∈ Aq) from (5.5) with the desired confidence level κ for
the corresponding confidence interval

[
P̂M (q ∈ Aq)−∆P, P̂M (q ∈ Aq) + ∆P

]
.

Assuming that the true probability of fulfilling the specifications for the customer
satisfaction is P (q ∈ Aq) = 0.99, plotting this number Mreq. over the half confi-
dence interval length ∆P for the desired confidence levels κ = 0.9, 0.95, 0.99 and
over the desired confidence level κ for the half confidence interval lengths ∆P =

0.01, 0.001, 0.0001 yields the same plots as plotting the approximate number Mreq.

of samples or observations fm and system simulations in the Monte Carlo simula-
tion required for estimating the probability Y of fulfilling the performance specifica-
tions with the desired confidence level κ for the corresponding confidence interval[
ŶM −∆Y, ŶM +∆Y

]
over the half confidence interval length ∆Y for the desired

confidence levels κ = 0.9, 0.95, 0.99 and over the desired confidence level κ for the
half confidence interval lengths ∆Y = 0.01, 0.001, 0.0001 assuming that the true
probability Y of fulfilling the performance specifications is Y = P (q ∈ Aq) = 0.99

in Figure 3.1 with ∆Y replaced by ∆P . The approximate required number Mreq. of
samples or observations qm and simulations of the automated vehicular safety system
in the Monte Carlo simulation increases if the half confidence interval length ∆P
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decreases or the desired confidence level κ increases. Especially if the half confidence
interval length ∆P is already small, a further reduction of it leads to a significant
increase in the approximate required number Mreq. of samples or observations qm and
simulations of the automated vehicular safety system in the Monte Carlo simulation.

So, it can be concluded that estimating the probability P (q ∈ Aq) of fulfilling
the specifications for the customer satisfaction by a Monte Carlo simulation has a
beneficial advantage but also an important drawback. On the one hand, it can be
implemented easily and it is easy to apply it to different automated vehicular safety
systems due to its generality. On the other hand, however, a large number M of
simulations of the automated vehicular safety system has to be performed in order to
obtain an accurate estimate P̂M (q ∈ Aq) for the probability P (q ∈ Aq) of fulfilling
the specifications for the customer satisfaction with a high confidence level κ for
a small confidence interval

[
P̂M (q ∈ Aq)−∆P, P̂M (q ∈ Aq) + ∆P

]
around it

with a small half length ∆P , which might lead to a prohibitively large computational
complexity in practice.

5.2 Worst-Case-Distance-Based Robust Design of Automated Vehicular Safety Sys-
tems

The problem of the large number M of simulations of the automated vehicular safety
system to be performed in order to obtain an accurate Monte-Carlo-based estimate
P̂M (q ∈ Aq) for the probability P (q ∈ Aq) of fulfilling the specifications for the
customer satisfaction can be overcome as follows. The customer satisfaction properties
q, the corresponding acceptance intervals [qL,i, qU,i], i = 1, 2, . . . , Nq, the sensor
measurement errors ε and the customer satisfaction acceptance region Aq defined by
(4.18) play the role of the performance properties f , the corresponding acceptance
intervals [fL,i, fU,i], i = 1, 2, . . . , Nf , the statistical parameters s and the performance
acceptance region Af defined by (3.1), respectively. Analogously to the parameter
acceptance region As defined by (3.53), an error acceptance region

Aε =
{
ε ∈ RE(nend+1) : q ∈ Aq

}
=
{
ε ∈ RE(nend+1) : qL,i ≤ qi ≤ qU,i, i = 1, 2, . . . , Nq

} (5.15)

can be defined. It is the set of all values of the sensor measurement errors ε that are
mapped to customer satisfaction properties q lying in the acceptance intervals and thus
correspond to an automated vehicular safety system fulfilling the specifications for the
customer satisfaction. The probability P (ε ∈ Aε) that the sensor measurement errors
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ε lie in the error acceptance region Aε is equivalent to the probability P (q ∈ Aq)

that the automated vehicular safety system fulfills all given specifications for the cus-
tomer satisfaction such that all customer satisfaction properties q lie in the acceptance
intervals and thus in the customer satisfaction acceptance region Aq:

P (q ∈ Aq) = P (ε ∈ Aε) . (5.16)

Analogously to the performance acceptance region Af , the parameter acceptance
region As and the customer satisfaction acceptance region Aq, the error acceptance
region Aε can also be represented by the intersection of individual error acceptance
region partitions

Aε,L,i =
{
ε ∈ RE(nend+1) : qi ≥ qL,i

}
=
{
ε ∈ RE(nend+1) : q ∈ Aq,L,i

}
(5.17)

and

Aε,U,i =
{
ε ∈ RE(nend+1) : qi ≤ qU,i

}
=
{
ε ∈ RE(nend+1) : q ∈ Aq,U,i

}
, (5.18)

the ith of which are the sets of all values of the sensor measurement errors ε that are
mapped to values of the ith customer satisfaction property qi that do not lie below
the lower bound qL,i and above the upper bound qU,i of the corresponding acceptance
interval [qL,i, qU,i], respectively:

Aε =

Nq⋂
i=1

Aε,L,i ∩ Aε,U,i. (5.19)

In the special cases qL,i → −∞ and qU,i → ∞, the corresponding individual error
acceptance region partitions simplify to Aε,L,i = RE(nend+1) and Aε,U,i = RE(nend+1),
respectively. The green areas, where fi > fL,i and fi < fU,i, including the orange
boundaries, where fi = fL,i and fi = fU,i, in Figure 3.2 and Figure 3.3 representing
exemplary individual parameter acceptance region partitions As,L,i with a finite lower
bound fL,i and As,U,i with a finite upper bound fU,i, respectively, for a performance
property fi that is a function of only two statistical parameters s = [s1, s2]

T also
represent exemplary individual error acceptance region partitions Aε,L,i with a finite
lower bound qL,i and Aε,U,i with a finite upper bound qU,i, respectively, for a customer
satisfaction property qi that is a function of only two sensor measurement errors
ε = [ε1, ε2]

T when replacing fi by qi, fL,i by qL,i, fU,i by qU,i, s1 by ε1, s2 by ε2 and
the mean s0 of the statistical parameters s by the mean µ of the sensor measurement
errors ε. While qi = qL,i and qi = qU,i along the orange boundary, qi > qL,i and
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qi < qU,i in the green areas of Figure 3.2 and Figure 3.3, respectively. After the
replacement of fi, fL,i, fU,i, s1, s2 and s0 by qi, qL,i, qU,i, ε1, ε2 and µ, respectively,
the illustration of the intersection As,L,i ∩ As,U,i of the two exemplary individual
parameter acceptance region partitionsAs,L,i andAs,U,i from Figure 3.2 and Figure 3.3
in Figure 3.4 can also be seen as an illustration of the intersection

Aε,L,i ∩ Aε,U,i =
{
ε ∈ RE(nend+1) : qi ≥ qL,i

}
∩
{
ε ∈ RE(nend+1) : qi ≤ qU,i

}
=
{
ε ∈ RE(nend+1) : qL,i ≤ qi ≤ qU,i

}
(5.20)

of two individual error acceptance region partitions Aε,L,i and Aε,U,i for the two
exemplary individual error acceptance region partitions Aε,L,i and Aε,U,i represented
by Figure 3.2 and Figure 3.3. In such an intersection of two individual error acceptance
region partitions Aε,L,i and Aε,U,i, the ith customer satisfaction property qi lies in its
acceptance interval [qL,i, qU,i] such that the ith specification qL,i ≤ qi ≤ qU,i for the
customer satisfaction defined by this acceptance interval is fulfilled.

The probability that the sensor measurement errors ε lie in the error acceptance
region Aε and thus the probability P (q ∈ Aq) of fulfilling the specifications for the
customer satisfaction could theoretically be obtained by integrating the multivariate
Gaussian pdf fε (ε) of the sensor measurement errors ε given by (4.26) in the error
acceptance region Aε:

P (q ∈ Aq) = P (ε ∈ Aε) =

∫
Aε

fε (ε) dε

=
1√

(2π)E(nend+1) det (C)

·
∫

{
ε∈RE

(
nend+1

)
:q∈Aq

} exp

(
−1

2
(ε− µ)T C−1 (ε− µ)

)
dε.

(5.21)

Unfortunately, there are two problems that render this integration intractable in practice.
First, the boundary of the error acceptance region Aε as illustrated by the orange curves
in Figure 3.4 for two sensor measurement errors ε = [ε1, ε2]

T corresponding to two
statistical parameters s = [s1, s2]

T can only be determined by many simulations of the
automated vehicular safety system and, second, the integration of the multivariate Gaus-
sian pdf fε (ε) of the sensor measurement errors ε in the error acceptance region Aε
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with a possibly highly nonlinear boundary can only be performed numerically, which
comes with a high computational complexity. In order to overcome both problems at
the same time, one can resort to approximating the boundary of the error acceptance
region Aε by just a few simulations of the automated vehicular safety system such that
the integration in the resulting simplified error acceptance region becomes easy. This
can be achieved by directly applying the worst-case distance approach to the robust
design of automated vehicular safety systems.

5.2.1 Direct Application of Worst-Case Distance Approach to Robust Design of Automated
Vehicular Safety Systems

Analogously to the worst-case distances for a finite lower bound fL,i and for a finite
upper bound fU,i of the acceptance interval for the ith performance property fi in
(3.59) and (3.60), the worst-case distances for a finite lower bound qL,i and for a finite
upper bound qU,i of the acceptance interval for the ith customer satisfaction property
qi can be defined as

βL,i = min
ε∈RE

(
nend+1

) β (ε) s.t. qi ≤ qL,i, (5.22)

and
βU,i = min

ε∈RE
(
nend+1

) β (ε) s.t. qi ≥ qU,i, (5.23)

respectively, where β (ε) measures the distance between the sensor measurement
errors ε and their mean µ. The worst-case distance βb,i, b ∈ {L,U}, is the smallest
distance between the mean µ of the sensor measurement errors ε, at which their
multivariate Gaussian pdf fε (ε) has its peak and which is assumed to lie in the
corresponding individual error acceptance region partition Aε,b,i, and the boundary
of the corresponding individual error acceptance region partition Aε,b,i, where the ith

specification qL,i ≤ qi ≤ qU,i for the customer satisfaction is barely fulfilled, i.e., qi =
qb,i. Following the worst-case distance approach, the Mahalanobis distance is chosen
as distance measure such that the distance β (ε) between the sensor measurement
errors ε and their mean µ is given by

β2 (ε) = (ε− µ)T C−1 (ε− µ) . (5.24)

As a consequence, the pdf fε (ε) of the sensor measurement errors ε reads

fε (ε) =
1√

(2π)E(nend+1) det (C)

exp

(
−1

2
β2 (ε)

)
(5.25)
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and the set of all sensor measurement errors ε that have the same distance β (ε) =
β = const. from their mean µ, i.e, all equidistant points ε, is the set of all sensor
measurement errors ε for which their pdf fε (ε) has the same value, i.e., a contour line
of the pdf fε (ε):{

ε ∈ RE(nend+1) : β (ε) = β
}

=

ε ∈ RE(nend+1) : fε (ε) =
exp

(
−1

2β
2
)√

(2π)E(nend+1) det (C)


=
{
ε ∈ RE(nend+1) : (ε− µ)T C−1 (ε− µ) = β2

}
.

(5.26)

In general, these sets for different constant distances β are hyperellipsoids whose center
is the mean µ of the sensor measurement errors ε as illustrated by the gray ellipses in
Figure 3.2 and Figure 3.3 for two sensor measurement errors ε = [ε1, ε2]

T correspond-
ing to the two statistical parameters s = [s1, s2]

T shown there with their mean s0, the
center of the ellipses, corresponding to the mean µ of the sensor measurement errors.
The smallest hyperellipsoid, i.e., the smallest ellipse in the two-dimensional case with
two sensor measurement errors ε = [ε1, ε2]

T, on which all sensor measurement errors
ε have the same distance β from their mean µ and that has a point with the boundary
of the individual error acceptance region partition Aε,b,i in common touches this
boundary at the point where the sensor measurement errors ε on this boundary have
the smallest distance β (ε) from their mean µ. This distance is the worst-case distance
βb,i.

As the boundary of the individual parameter acceptance region partition As,b,i,
b ∈ {L,U}, is approximated by linearizing it with a tangential hyperplane to obtain
an approximate individual parameter acceptance region partition Âs,b,i bounded by
this tangential hyperplane, the boundary of the individual error acceptance region
partitionAε,b,i, b ∈ {L,U}, can also be approximated by linearizing it with a tangential
hyperplane to obtain an approximate individual error acceptance region partition Âε,b,i

bounded by this tangential hyperplane. This approximating tangential hyperplane is
the tangential hyperplane that touches the boundary of the individual error acceptance
region partition Aε,b,i at the point where the sensor measurement errors ε on this
boundary have the smallest distance from their meanµ, namely, the worst-case distance
βb,i. For two sensor measurement errors ε = [ε1, ε2]

T, the tangential hyperplane
approximating the orange boundary of the individual error acceptance region partition
Aε,L,i, where qi = qL,i, in Figure 3.2 is illustrated by the violet tangential line and
the tangential hyperplane approximating the orange boundary of the individual error
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acceptance region partition Aε,U,i, where qi = qU,i, in Figure 3.3 by the magenta
tangential line. The resulting approximate individual error acceptance region partitions
Âε,L,i and Âε,U,i are the horizontally and vertically striped areas bounded by these
violet and magenta tangential lines, respectively.

According to the expression for the probability that the statistical parameters s
lie in the approximate individual parameter acceptance region partition Âs,b,i stated
in (3.65), the probability that the sensor measurement errors ε playing the role of
the statistical parameters s lie in the approximate individual error acceptance region
partition Âε,b,i corresponding to the approximate individual parameter acceptance
region partition Âs,b,i can be computed as follows to approximate the probability that
they lie in the individual error acceptance region partition Aε,b,i, b ∈ {L,U}:

P (ε ∈ Aε,b,i) ≈ P
(
ε ∈ Âε,b,i

)
= Φ(βb,i) . (5.27)

So, the integration of the multivariate Gaussian pdf of the sensor measurement errors
ε in the approximate individual error acceptance region partition Âε,b,i to obtain the
probability P

(
ε ∈ Âε,b,i

)
that the sensor measurement errors ε lie in the approximate

individual error acceptance region partition Âε,b,i and thus approximately the probabil-
ity P (ε ∈ Aε,b,i) that they lie in the actual individual error acceptance region partition
Aε,b,i simplifies to one evaluation of the standard normal cdf Φ(x) at the worst-case
distance βb,i. The peak of the multivariate Gaussian pdf of the sensor measurement
errors ε at their mean µ has to lie in the individual error acceptance region partition
Aε,b,i, b ∈ {L,U}, and it has to be rather concentrated around its peak in order to be
able to achieve a large probability P (ε ∈ Aε,b,i) that the sensor measurement errors ε
lie in the individual error acceptance region partition Aε,b,i and thus the corresponding
specification for the customer satisfaction, i.e., qi ≥ qL,i if b = L or qi ≤ qU,i if
b = U, is fulfilled, which is a requirement for achieving a high probability P (q ∈ Aq)

of fulfilling all specifications qL,i ≤ qi ≤ qU,i, i = 1, 2, . . . , Nq, for the customer
satisfaction. In addition, the maximum of the multivariate Gaussian pdf of the sensor
measurement errors ε along the boundary of the individual error acceptance region
partition Aε,b,i occurs exactly where the tangential hyperplane, the boundary of the
corresponding approximate individual error acceptance region partition Âε,b,i, touches
it and thus the approximation error between them is zero. From these facts, it can
be concluded that the multivariate Gaussian pdf of the sensor measurement errors
ε is small where the approximation error between the boundaries of the individual
error acceptance region partition Aε,b,i and the corresponding approximate individual
error acceptance region partition Âε,b,i is large such that the approximation of the
probability P (ε ∈ Aε,b,i) that the sensor measurement errors ε lie in the individual
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error acceptance region partition Aε,b,i by the probability P
(
ε ∈ Âε,b,i

)
that they lie

in the corresponding approximate individual error acceptance region partition Âε,b,i

is accurate. Moreover, the boundaries of the actual and approximate individual error
acceptance region partitions Aε,b,i and Âε,b,i, respectively, might touch or intersect at
more than one point, where the approximation error is zero as well.

According to the expression for the probability P (s ∈ As,L,i ∩ As,U,i) that the
statistical parameters s lie in the intersection As,L,i ∩ As,U,i of the two individual
parameter acceptance region partitionsAs,L,i andAs,U,i in (3.66) and its approximation
in (3.68), the probability P (ε ∈ Aε,L,i ∩ Aε,U,i) that the sensor measurement errors
ε lie in the intersection Aε,L,i ∩ Aε,U,i of the two individual error acceptance region
partitions Aε,L,i and Aε,U,i can be expressed as

P (ε ∈ Aε,L,i ∩ Aε,U,i) = P (qL,i ≤ qi ≤ qU,i)

= P (ε ∈ Aε,L,i) + P (ε ∈ Aε,U,i)− 1
(5.28)

and approximated by

P (ε ∈ Aε,L,i ∩ Aε,U,i) ≈


Φ(βU,i) , qL,i → −∞
Φ(βL,i) , qU,i → ∞
Φ(βL,i) + Φ (βU,i)− 1, otherwise

. (5.29)

This is due to the fact that the sensor measurement errors ε, the customer satisfaction
property qi, the lower and upper limit of its acceptance interval [qL,i, qU,i], and the
corresponding individual error acceptance region partitions Aε,L,i and Aε,U,i play
the role of the statistical parameters s, the performance property fi, the lower and
upper limit of its acceptance interval [fL,i, fU,i], and the corresponding individual
parameter acceptance region partitions As,L,i and As,U,i, respectively. The intersec-
tion Aε,L,i ∩ Aε,U,i of two individual error acceptance region partitions Aε,L,i and
Aε,U,i given by (5.20) is the set of all sensor measurement errors ε for which the ith

customer satisfaction property qi lies in its acceptance interval [qL,i, qU,i] such that
the ith specification qL,i ≤ qi ≤ qU,i for the customer satisfaction defined by this
acceptance interval is fulfilled. It is illustrated in Figure 3.4 for the two exemplary
individual error acceptance region partitions Aε,L,i and Aε,U,i shown in Figure 3.2
and Figure 3.3, respectively, with two sensor measurement errors ε = [ε1, ε2]

T when
replacing fi, fL,i, fU,i, s1, s2 and s0 by qi, qL,i, qU,i, ε1, ε2 and µ, respectively.

Since the error acceptance region Aε is the intersection of all intersections of
two individual error acceptance region partitions Aε,L,i and Aε,U,i, i = 1, 2, . . . , Nq,
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according to (5.19), the probability that the sensor measurement errors ε do not lie in
the error acceptance region Aε, can be expressed as

P (ε /∈ Aε) = P

ε /∈
Nq⋂
i=1

Aε,L,i ∩ Aε,U,i

 = P

Nq∨
i=1

ε /∈ Aε,L,i ∩ Aε,U,i


≈

Nq∑
i=1

P (ε /∈ Aε,L,i ∩ Aε,U,i) =

Nq∑
i=1

1− P (ε ∈ Aε,L,i ∩ Aε,U,i) .

(5.30)

With (5.29), the probability P (q ∈ Aq) of fulfilling all specifications qL,i ≤ qi ≤ qU,i

for the customer satisfaction defined by the acceptance intervals [qL,i, qU,i] for the
customer satisfaction properties qi, i = 1, 2, . . . , Nq, can be approximated by

P (q ∈ Aq) = P (ε ∈ Aε) = 1− P (ε /∈ Aε)

≈ 1−
Nq∑
i=1

1− P (ε ∈ Aε,L,i ∩ Aε,U,i)

≈ 1−
Nq∑
i=1

1−


Φ(βU,i) , qL,i → −∞
Φ(βL,i) , qU,i → ∞
Φ(βL,i) + Φ (βU,i)− 1, otherwise

.

(5.31)

This direct application of the worst-case distance approach to the robust design of
automated vehicular safety systems inherits the benefits from its application to the
robust system design in general. The integration of the multivariate Gaussian pdf of the
sensor measurement errors ε in the error acceptance regionAε from (5.21) to obtain the
probability P (q ∈ Aq) of fulfilling the specifications for the customer satisfaction is
simplified to approximating this probability by evaluating the standard normal cdfΦ(x)

at the worst-case distances βb,i, i = 1, 2, . . . , Nq, b = L,U. Each required worst-case
distance βb,i can be determined by solving the optimization problem (5.22) if b = L
and (5.23) if b = U, i.e., an optimization minimizing the distance between the sensor
measurement errors ε on the boundary of the corresponding individual error acceptance
region partition Aε,b,i and their mean µ without determining the whole boundary of
the error acceptance region Aε. Appropriate optimization methods for solving these
optimizations choose the simulations of the automated vehicular safety system required
for solving the optimizations automatically in a smart way serving the achievement
of the optimization goal and thus replace a computationally expensive Monte Carlo
simulation, which just chooses an extensive amount of simulations of the automated
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vehicular safety system according to the underlying probability distribution in a brute-
force way for estimating the probability P (q ∈ Aq) of fulfilling the specifications
for the customer satisfaction, by a few relevant simulations that deliver the required
information for approximating this probability. This is the reason why approximating
the probability P (q ∈ Aq) of fulfilling the specifications for the customer satisfaction
by worst-case distances can lead to a significant reduction of computational complexity
in the robust design of automated vehicular safety systems as compared to estimating
it by a Monte Carlo simulation when a high estimation accuracy is required.

Besides these benefits, however, the direct application of the worst-case distance
approach to the robust design of automated vehicular safety systems comes with the
following two problems. First, solving the optimization problems (5.22) and (5.23)
for determining the worst-case distances βL,i and βU,i, respectively, might be diffi-
cult if the number of sensor measurement errors E (nend + 1) becomes large because
then the optimization has to be performed with respect to a high-dimensional vector
ε ∈ RE(nend+1) of sensor measurement errors. Second, linearizing the boundary of the
individual error acceptance region partition Aε,b,i, b ∈ {L,U}, by just one tangential
hyperplane at one point where the distance of the sensor measurement errors ε from
their mean µ is the worst-case distance βb,i limits the achievable accuracy of the ap-
proximation since this boundary is typically highly non-linear and non-smooth because
of the decisions on an intervention made at the time instants tn, n = 0, 1, . . . , nend,
independently from each other based on a decision rule f (·;ϕ) with the function pa-
rameters ϕ especially if the number of the considered time instants nend + 1 becomes
large.

This is illustrated by Figure 5.1 for E = 1 sensor measurement error ε [n] =
ε [n] ∈ R with the mean µn = µn at a time instant tn in the plane where only the
values of the sensor measurement errors ε [n1] and ε [n2] at the specific time instants tn1

and tn2 , respectively, vary while the values of all other sensor measurement errors ε [n]
at the time instants tn 6= tn1 , tn2 are constant and equal to their mean, i.e., ε [n] = µn
for n 6= n1, n2. The green area possibly including the orange boundary represents
an exemplary individual error acceptance region partition Aε,b,i, b ∈ {L,U}, with
either a finite lower bound qL,i if b = L or a finite upper bound qU,i if b = U in this
plane under the assumption that the function must not decide for an intervention based
on the sensor measurements y [n1] at the time instant tn1 and based on the sensor
measurements y [n2] at the time instant tn2 using the decision rule f (·;ϕ) with the
function parameters ϕ such that the ith customer satisfaction property qi does not lie
below the lower bound qL,i of the acceptance interval [qL,i, qU,i], i.e., qi ≥ qL,i, if b = L
or above the upper bound qU,i of this acceptance interval, i.e., qi ≤ qU,i, if b = U. For
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given states x [n] of the considered dynamic system in a driving scenario at the time
instants tn, n = 0, 1, . . . , nend, the sensor measurements y [n1] = y (x [n1] , ε [n1])

at the time instant tn1 depend only on the sensor measurement errors ε [n1] at this time
instant tn1 and the sensor measurements y [n2] = y (x [n2] , ε [n2]) at the time instant
tn2 only on the sensor measurement errors ε [n2] at this time instant tn2 . Due to the
independence of the decisions made at different time instants tn1 and tn2 , the results of
these decisions are also independent from each other in the sense that the decision result
f (y [n1] ;ϕ) = f (y (x [n1] , ε [n1]) ;ϕ) at the time instant tn1 depends only on the
sensor measurement error ε [n1] = ε [n1] at this time instant tn1 and the decision result
f (y [n2] ;ϕ) = f (y (x [n2] , ε [n2]) ;ϕ) at the time instant tn2 depends only on the
sensor measurement error ε [n2] = ε [n2] at this time instant tn2 . Therefore, the set of
all sensor measurement errors ε at all considered time instants tn, n = 0, 1, . . . , nend,
for which the decision result based on the sensor measurements y [n1] at the time
instant tn1 is f (y [n1] ;ϕ) = f (y (x [n1] , ε [n1]) ;ϕ) = 0, i.e., the function does not
decide for an intervention based on the sensor measurements y [n1] at the time instant
tn1 , is the error region

Iε,n1 =
{
ε ∈ RE(nend+1) : f (y [n1] ;ϕ) = 0

}
=
{
ε ∈ Rnend+1 : f (y (x [n1] , ε [n1]) ;ϕ) = 0

} (5.32)

without intervention at the time instant tn1 , where the sensor measurement error ε [n1]
at the time instant tn1 alone determines whether ε ∈ Iε,n1 . In the plane of Figure 5.1
where ε [n] = µn for n 6= n1, n2, this error region Iε,n1 , where f (y [n1] ;ϕ) = 0, is
the area to the right of the dashed violet line possibly including this line. Due to the
same reason, the set of all sensor measurement errors ε at all considered time instants
tn, n = 0, 1, . . . , nend, for which the decision result based on the sensor measurements
y [n2] at the time instant tn2 is f (y [n2] ;ϕ) = f (y (x [n2] , ε [n2]) ;ϕ) = 0, i.e., the
function does not decide for an intervention based on the sensor measurements y [n2]

at the time instant tn2 , is the error region

Iε,n2 =
{
ε ∈ RE(nend+1) : f (y [n2] ;ϕ) = 0

}
=
{
ε ∈ Rnend+1 : f (y (x [n2] , ε [n2]) ;ϕ) = 0

} (5.33)

without intervention at the time instant tn2 , where the sensor measurement error ε [n2]
at the time instant tn2 alone determines whether ε ∈ Iε,n2 . In the plane of Figure 5.1
where ε [n] = µn for n 6= n1, n2, this error region Iε,n2 , where f (y [n2] ;ϕ) = 0,
is the area above the dashed magenta line possibly including this line. The area
where the areas to the right of the dashed violet line and above the dashed magenta

86



5.2 Worst-Case-Distance-Based Robust Design of Automated Vehicular Safety Systems

line possibly including these lines, which represent the error regions Iε,n1 and Iε,n2

without intervention at the time instants tn1 and tn2 , respectively, intersect, is the
green area possibly including the orange boundary, which represents the error region
without an intervention at both the time instant tn1 and the time instant tn2 , and thus
the exemplary individual error acceptance region partition Aε,b,i assuming that the
function must not decide for an intervention based on the sensor measurements y [n1]

and y [n2] at both time instants to fulfill qi ≥ qL,i if b = L or qi ≤ qU,i if b = U.
The smallest distance of the sensor measurement errors ε on the part of the boundary
of the individual error acceptance region partition Aε,b,i that is visualized by the
upper part of the orange boundary in the plane of Figure 5.1 from their mean µ with
respect to the Mahalanobis distance is βn1 while the smallest distance of the sensor
measurement errors ε on the other part of this boundary from their mean µ is βn2 . The
sets of all sensor measurement errors ε in the plane where ε [n] = µn for n 6= n1, n2
with the distances β (ε) = βn1 and β (ε) = βn2 from their mean µ are the light and
dark gray ellipses, respectively. As the dark gray ellipse is larger than the light gray
ellipse, βn2 > βn1 such that βn2 cannot be the worst-case distance βb,i. If there are
also no other sensor measurement errors ε outside the plane where ε [n] = µn for
n 6= n1, n2 with a distance from their mean µ that is smaller than βn1 , the worst-case
distance is βb,i = βn1 . In this case, the boundary of the individual error acceptance
region partition Aε,b,i that is visualized by the orange boundary is linearized by the
tangential hyperplane that is visualized by the dashed violet line and touches this
boundary where the distance of the sensor measurement errors ε from their mean
µ is the worst-case distance βb,i = βn1 . By this linearization, the individual error
acceptance region partition Aε,b,i highlighted by the green area is approximated by
the error region Îε,n1 that is bounded by the tangential hyperplane with the distance
βb,i = βn1 from µ and represented by the horizontally striped area to the right of
the dashed violet line including this line in the plane of Figure 5.1. This error region
Îε,n1 is an approximation for the error region Iε,n1 without intervention at the time
instant tn1 , where f (y [n1] ;ϕ) = 0 and which is represented by the area to the right
of the dashed violet line possibly including this line in the plane of Figure 5.1. Due
to its highly non-linear and non-smooth boundary highlighted by the orange curve,
which results from making the decisions on an intervention at the time instants tn,
n = 0, 1, . . . , nend, independently from each other, a better approximation of the
individual error acceptance region partition Aε,b,i can be achieved by linearizing it
not only by one tangential hyperplane but piecewise by several tangential hyperplanes.

This is the basic idea of the following adaptation of the worst-case distance approach
to the robust design of automated vehicular safety systems. Moreover, improving the
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approximation using this piecewise linearization by several tangential hyperplanes
naturally leads to a decomposition of the optimization problems (5.22) and (5.23) for
determining the worst-case distances βL,i and βU,i, respectively, into several optimiza-
tion problems that are easier to solve such that both mentioned problems of the direct
application of the worst-case distance approach to the robust design of automated
vehicular safety systems are tackled at the same time.

5.2.2 Adaptation of Worst-Case Distance Approach to Robust Design of Automated Vehicular
Safety Systems

To better approximate the individual error acceptance region partitionAε,b,i highlighted
by the green area in the plane of Figure 5.1 where ε [n] = µn for n 6= n1, n2 under the
assumption that the function must not decide for an intervention based on the sensor
measurements y [n1] and y [n2] at the time instants tn1 and tn2 to fulfill qi ≥ qL,i if
b = L or qi ≤ qU,i if b = U, its boundary represented by the orange curve is not only
linearized by the tangential hyperplane that is visualized by the dashed violet line and
touches this boundary where the distance of the sensor measurement errors ε from their
mean µ is βn1 , the worst-case distance βb,i, but also by the tangential hyperplane that
is visualized by the dashed magenta line and touches this boundary where the distance
of the sensor measurement errors ε from their mean µ is βn2 . By this piecewise
linearization, the error region Iε,n1 without intervention at the time instant tn1 , where
f (y [n1] ;ϕ) = 0 and which is represented by the area to the right of the dashed violet
line possibly including this line, and the error region Iε,n2 without intervention at the
time instant tn2 , where f (y [n2] ;ϕ) = 0 and which is represented by the area above
the dashed magenta line possibly including this line, are approximated by the error
region Îε,n1 that is bounded by the tangential hyperplane with the distance βn1 from
µ and represented by the horizontally striped area to the right of the dashed violet
line including this line and the error region Îε,n2 that is bounded by the tangential
hyperplane with the distance βn2 from µ and represented by the vertically striped area
above the dashed magenta line including this line, respectively. Since the function must
not decide for an intervention based on the sensor measurements y [n1] and y [n2] at
the time instants tn1 and tn2 to fulfill qi ≥ qL,i if b = L or qi ≤ qU,i if b = U, the
individual error acceptance region partition Aε,b,i, where this is the case, lies in the
intersection Iε,n1 ∩ Iε,n2 of the error regions Iε,n1 and Iε,n2 without intervention at
these two time instants:

Aε,b,i ⊂ Iε,n1 ∩ Iε,n2 . (5.34)
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This can be seen in the plane of Figure 5.1, where the intersection of the areas to
the right of the dashed violet line possibly including this line and above the dashed
magenta line possibly including this line, which represent the error regions Iε,n1 and
Iε,n2 without intervention at the two time instants tn1 and tn2 , respectively, yields
the green area possibly including the orange boundary representing the individual
error acceptance region partition Aε,b,i. Using the approximate error region Îε,n1

without intervention at the time instant tn1 highlighted by the horizontally striped
area to the right of the dashed violet line including this line and the approximate error
region Îε,n2 without intervention at the time instant tn2 highlighted by the vertically
striped area above the dashed magenta line including this line instead of the error
region Iε,n1 without intervention at the time instant tn1 and the error region Iε,n2

without intervention at the instant tn2 , respectively, leads to the approximation of
the individual error acceptance region partition Aε,b,i represented by the green area
possibly including the orange boundary by their intersection Îε,n1 ∩ Îε,n2 highlighted
by the area that is both horizontally and vertically striped including the dashed violet
and magenta boundary. This approximation of the individual error acceptance region
partition Aε,b,i using the tangential hyperplanes with the distances βn1 and βn2 from µ

is more accurate than the original approximation by the approximate error region Îε,n1

without intervention at the time instant tn1 , which is highlighted by the horizontally
striped area to the right of the dashed violet line including this line, alone using only
the tangential hyperplane with the distance βn1 , the worst-case distance βb,i of the
direct application of the worst-case distance approach to the robust design of automated
vehicular safety systems, from µ.

If not only the two time instants tn1 and tn2 but all time instants tn with n from a
set Ib,i ⊂ {0, 1, . . . , nend} are all time instants at which the function must not decide
for an intervention based on the corresponding sensor measurements y [n] to fulfill
qi ≥ qL,i if b = L or qi ≤ qU,i if b = U, the individual error acceptance region
partition Aε,b,i, where this is fulfilled, lies in the intersection of the error regions Iε,n

without intervention at all these time instants:

Aε,b,i ⊂
⋂
n∈Ib,i

Iε,n. (5.35)

This is an extension of (5.34) for the two time instants tn1 and tn2 to all time instants
tn, n ∈ Ib,i, where the error region without intervention at the time instant tn is defined
analogously to the error region Iε,n1 without intervention at the time instant tn1 in
(5.32) and the error region Iε,n2 without intervention at the time instant tn2 in (5.33)
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β (ε) = βn1
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Figure 5.1: Exemplary individual error acceptance region partition Aε,b,i, b ∈ {L,U},
(green area possibly including dashed orange boundary) with either a finite lower bound
qL,i if b = L or a finite upper bound qU,i if b = U for E = 1 sensor measurement error
ε [n] at a time instant tn under the assumption that the function must not decide for
an intervention based on the sensor measurements y [n1] at the time instant tn1 and
based on the sensor measurements y [n2] at the time instant tn2 using the decision
rule f (·;ϕ) such that qi ≥ qL,i if b = L or qi ≤ qU,i if b = U, and its relationship
to the error regions Iε,n without intervention, where f (y [n] ;ϕ) = 0, approximated
by the error regions Îε,n corresponding to the worst-case distances βn (horizontally
and vertically striped areas including dashed violet and magenta linear boundaries,
respectively) in the plane where ε [n] = µn for n 6= n1, n2.

90



5.2 Worst-Case-Distance-Based Robust Design of Automated Vehicular Safety Systems

as

Iε,n =
{
ε ∈ RE(nend+1) : f (y [n] ;ϕ) = 0

}
=
{
ε ∈ Rnend+1 : f (y (x [n] , ε [n]) ;ϕ) = 0

}
.

(5.36)

As the error region Iε,n1 without intervention at the time instant tn1 , where
f (y [n1] ;ϕ) = 0, and the error region Iε,n2 without intervention at the time in-
stant tn2 , where f (y [n2] ;ϕ) = 0, are approximated by the approximate error region
Îε,n1 without intervention at the time instant tn1 bounded by the tangential hyperplane
with the distance βn1 from the mean µ of the sensor measurement errors ε and the
approximate error region Îε,n2 without intervention at the time instant tn2 bounded
by the tangential hyperplane with the distance βn2 from µ, respectively, the error
region Iε,n without intervention at the time instant tn, where f (y [n] ;ϕ) = 0, can
be approximated by an approximate error region Îε,n without intervention at the time
instant tn bounded by the tangential hyperplane with the distance βn from µ for each
n ∈ Ib,i. The distance βn of the tangential hyperplane that is the boundary ∂Îε,n of
the approximate error region Îε,n without intervention at the time instant tn from µ is
given by the smallest distance of the sensor measurement errors ε on this hyperplane
from µ, i.e.,

βn = min
ε∈RE

(
nend+1

) β (ε) s.t. ε ∈ ∂Îε,n. (5.37)

As can be seen in Figure 5.1 for the time instants tn1 and tn2 , the tangential hyperplane
∂Îε,n illustrated by the dashed violet and magenta lines for the time instants tn1 and tn2 ,
respectively, can be interpreted as the result of linearizing the boundary ∂Iε,n of the
error region Iε,n without intervention at the time instant tn, where f (y [n] ;ϕ) = 0,
such that it touches this boundary at the point where the sensor measurement errors ε
have the smallest distance of all sensor measurement errors ε on both the boundary
∂Iε,n and the tangential hyperplane ∂Îε,n from µ, namely, the distance βn of the
tangential hyperplane ∂Îε,n from µ. Therefore, this distance can alternatively be
written as

βn = min
ε∈RE

(
nend+1

) β (ε) s.t. ε ∈ ∂Iε,n. (5.38)

This optimization problem can be reformulated as

βn = min
ε∈RE

(
nend+1

) β (ε) s.t. ε ∈ ∂Iε,n (5.39)

because the boundary ∂Iε,n of the error region Iε,n without intervention at the time
instant tn defined in (5.36) is also the boundary ∂Iε,n of its complement, the error
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region

Iε,n =
{
ε ∈ RE(nend+1) : f (y [n] ;ϕ) = 1

}
=
{
ε ∈ Rnend+1 : f (y (x [n] , ε [n]) ;ϕ) = 1

} (5.40)

with intervention at the time instant tn. Using the closure

cl (Iε,n) = Iε,n ∪ ∂Iε,n (5.41)

of the error region Iε,n with intervention at the time instant tn, which is the union
of Iε,n and its boundary ∂Iε,n as well as the smallest closed set containing Iε,n, this
optimization problem can be equivalently rewritten as

βn = min
ε∈RE

(
nend+1

) β (ε) s.t. ε ∈ cl (Iε,n) . (5.42)

This is due to the fact that the sensor measurement errors ε with the smallest distance
β (ε) of all sensor measurement errors ε inside the closure cl (Iε,n) of the error region
Iε,n with intervention at the time instant tn from their mean µ, which solve the last
optimization problem, have to lie on the boundary ∂Iε,n ⊂ cl (Iε,n) of Iε,n and thus
are also the sensor measurement errors ε with the smallest distance β (ε) of all sensor
measurement errors ε on the boundary ∂Iε,n, which solve the former optimization
problem.

With the complements

As,L,i =
{
s ∈ RNs : fi < fL,i

}
(5.43)

and
As,U,i =

{
s ∈ RNs : fi > fU,i

}
(5.44)

of the individual parameter acceptance region partitions As,L,i and As,U,i defined in
(3.54) and (3.55), respectively, and their closure

cl
(
As,L,i

)
=
{
s ∈ RNs : fi ≤ fL,i

}
(5.45)

and
cl
(
As,U,i

)
=
{
s ∈ RNs : fi ≥ fU,i

}
, (5.46)

the optimization problems (3.59) and (3.60) for determining the corresponding worst-
case distances βL,i and βU,i, respectively, can be compactly expressed as

βb,i = min
s∈RNs

β (s) s.t. s ∈ cl
(
As,b,i

)
, (5.47)
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b ∈ {L,U}. Comparing this optimization problem with the optimization problem
(5.42) unveils that the error region Iε,n without intervention at the time instant tn
and the corresponding smallest distance βn of all sensor measurement errors ε in the
closure of its complement from their mean µ play the same role as the individual
parameter acceptance region partition As,b,i and the corresponding smallest distance
of all statistical parameters s in the closure of its complement from their mean s0, the
worst-case distance βb,i, respectively. Therefore, βn is called worst-case distance at
the time instant tn.

For the block diagonal covariance matrix C of the sensor measurement errors ε
stated in (4.25), the square of the distance measure β (ε) defined by (5.24) is given by
(4.28):

β2 (ε) =

nend∑
n=0

(ε [n]− µn)
T C−1

n (ε [n]− µn) =

nend∑
n=0

β2n (ε [n]) . (5.48)

Here,
β2n (ε [n]) = (ε [n]− µn)

T C−1
n (ε [n]− µn) (5.49)

is the squared Mahalanobis distance of the sensor measurement errors ε [n] at the time
instant tn from their mean µn. ForE = 1 sensor measurement error ε [n] = ε [n] ∈ R
with the mean µn = µn and the covariance matrix Cn = σ2n, i.e., the standard
deviation σn, the last two equations become

β2 (ε) =

nend∑
n=0

β2n (ε [n]) (5.50)

and
β2n (ε [n]) = σ−2

n (ε [n]− µn)
2 . (5.51)

With this expression for the square of the distance measure β (ε) and the definition of
the error region Iε,n with intervention at the time instant tn in (5.40), the optimization
problem (5.42) reads

βn = min
ε∈Rnend+1

√√√√ nend∑
n′=0

β2n′ (ε [n′])

s.t. ε ∈ cl
({

ε ∈ Rnend+1 : f (y (x [n] , ε [n]) ;ϕ) = 1
})
.

(5.52)

Whether f (y (x [n] , ε [n]) ;ϕ) = 1 and thus the constraint of this optimization prob-
lem is fulfilled just depends on the sensor measurement error ε [n] at the time instant
tn such that all other sensor measurement errors ε [n′], n′ 6= n, in the vector ε can
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be chosen arbitrarily without violating the constraint. They are chosen to be µn′ ,
i.e., ε [n′] = µn′ for n′ ∈ {0, 1, . . . , nend} / {n}, such that β2n′ (ε [n′]) = 0 and thus
β2n′ (ε [n′]) is minimal in order to minimize the objective for any given sensor mea-
surement error ε [n] at the time instant tn. Hence, the optimization problem simplifies
to the following optimization problem with just one scalar optimization variable ε [n]:

βn = min
ε[n]∈R

βn (ε [n])

s.t. ε [n] ∈ cl ({ε [n] ∈ R : f (y (x [n] , ε [n]) ;ϕ) = 1}) .
(5.53)

As the probability P
(
ε ∈ Âε,b,i

)
that the sensor measurement errors ε lie in

the approximate individual error acceptance region partition Âε,b,i obtained from
the individual error acceptance region partition Aε,b,i, b ∈ {L,U}, by linearizing
its boundary using a hyperplane that touches it where the distance of the sensor
measurement errors ε from their mean µ is the worst-case distance βb,i is given by
Φ(βb,i) according to (5.27), the probabilityP

(
ε ∈ Îε,n

)
that the sensor measurement

errors ε lie in the approximate error region Îε,n without intervention at the time instant
tn obtained from the error region Iε,n without intervention at the time instant tn by
linearizing its boundary using a hyperplane that touches it where the distance of the
sensor measurement errors ε from their mean µ is the worst-case distance βn at the
time instant tn is given by

P
(
ε ∈ Îε,n

)
= Φ(βn) . (5.54)

This equation holds for the case that the mean µ of the sensor measurement errors ε
lies in the error region Iε,n without intervention at the time instant tn as illustrated in
Figure 5.1 for the two time instants tn1 and tn2 . This has to be fulfilled for all time
instants tn with n ∈ Ib,i at which the function must not decide for an intervention
based on the corresponding sensor measurements y [n] to fulfill qi ≥ qL,i if b = L or
qi ≤ qU,i if b = U such that the mean µ of the sensor measurement errors ε lies in the
individual error acceptance region partition Aε,b,i, which is a subset of the intersection
of the error regions Iε,n without intervention at all these time instants according to
(5.35), and a high probability P (ε ∈ Aε,b,i) that the sensor measurement errors ε lie
in the individual error acceptance region partition Aε,b,i and thus the corresponding
specification for the customer satisfaction, i.e., qi ≥ qL,i if b = L or qi ≤ qU,i if b = U,
is fulfilled can be achieved.

If the mean µ of the sensor measurement errors ε does not lie in the error region
Iε,n without intervention at the time instant tn, i.e., µ /∈ Iε,n, it has to lie in its
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complement, the error region Iε,n with intervention at the time instant tn, i.e., µ ∈ Iε,n.
So, the error region Iε,n with intervention at the time instant tn plays the same role then
as the error region Iε,n without intervention at the time instant tn before. Therefore,
the error region Iε,n with intervention at the time instant tn defined in (5.40), where
f (y (x [n] , ε [n]) ;ϕ) = 1, replaces the error region Iε,n without intervention at the
time instant tn defined in (5.36), where f (y (x [n] , ε [n]) ;ϕ) = 0, and vice versa.
Accordingly, f (y (x [n] , ε [n]) ;ϕ) = 0 replaces f (y (x [n] , ε [n]) ;ϕ) = 1 in (5.53)
such that the worst-case distance at the time instant tn reads

βn = min
ε[n]∈R

βn (ε [n])

s.t. ε [n] ∈ cl ({ε [n] ∈ R : f (y (x [n] , ε [n]) ;ϕ) = 0}) .
(5.55)

As the probability P
(
ε ∈ Îε,n

)
that the sensor measurement errors ε lie in the

approximate error region Îε,n without intervention at the time instant tn obtained
from the error region Iε,n without intervention at the time instant tn by linearizing
its boundary using a hyperplane that touches it where the distance of the sensor
measurement errors ε from their mean µ is the worst-case distance βn at the time
instant tn in (5.53) is given by (5.54) if µ ∈ Iε,n, the probability P

(
ε ∈ Îε,n

)
that the

sensor measurement errors ε lie in the approximate error region Îε,n with intervention
at the time instant tn obtained from the error region Iε,n with intervention at the time
instant tn by linearizing its boundary using a hyperplane that touches it where distance
of the sensor measurement errors ε from their mean µ is the worst-case distance βn at
the time instant tn in (5.55) is given by

P
(
ε ∈ Îε,n

)
= Φ(βn) (5.56)

if µ ∈ Iε,n. To sum up,

Φ(βn) =

P
(
ε ∈ Îε,n

)
, µ ∈ Iε,n

P
(
ε ∈ Îε,n

)
, µ ∈ Iε,n

(5.57)

with

βn = min
ε[n]∈R

βn (ε [n])

s.t. ε [n] ∈ cl

({
ε [n] ∈ R : f (y (x [n] , ε [n]) ;ϕ) =

{
0, µ ∈ Iε,n
1, µ ∈ Iε,n

})
.

(5.58)
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Since

µ ∈ Iε,n =
{
ε ∈ Rnend+1 : f (y (x [n] , ε [n]) ;ϕ) = 1

}
⇔ f (y (x [n] , µn) ;ϕ) = 1

(5.59)

and

µ ∈ Iε,n =
{
ε ∈ Rnend+1 : f (y (x [n] , ε [n]) ;ϕ) = 0

}
⇔ f (y (x [n] , µn) ;ϕ) = 0,

(5.60)

the results f (y (x [n] , µn) ;ϕ) = 1 and f (y (x [n] , µn) ;ϕ) = 0 of applying the
decision rule f (·;ϕ) to the sensor measurements y (x [n] , µn) corresponding to the
state x [n] at the time instant tn under the assumption that the sensor measurement
error ε [n] at this time instant is equal to its mean µn, the nth entry of the mean µ of
the sensor measurement errors ε, indicate that µ ∈ Iε,n and µ ∈ Iε,n, respectively.

The probability P (ε ∈ Iε,n) that the sensor measurement errors ε lie in the error
region Iε,n with intervention at the time instant tn and the probability P

(
ε ∈ Iε,n

)
that they lie in the error region Iε,n without intervention at the time instant tn can be
approximated by the probability P

(
ε ∈ Îε,n

)
that they lie in the approximate error

region Îε,n with intervention at the time instant tn and the probability P
(
ε ∈ Îε,n

)
that they lie in the approximate error region Îε,n without intervention at the time
instant tn, respectively:

P (ε ∈ Iε,n) ≈ P
(
ε ∈ Îε,n

)
, (5.61)

P
(
ε ∈ Iε,n

)
≈ P

(
ε ∈ Îε,n

)
. (5.62)

Substituting these approximations for the probabilities P
(
ε ∈ Iε,n

)
and P (ε ∈ Iε,n)

into P (ε ∈ Iε,n) = 1−P
(
ε ∈ Iε,n

)
and P

(
ε ∈ Iε,n

)
= 1−P (ε ∈ Iε,n), respec-

tively, which these probabilities have to fulfill as the two involved error regions Iε,n and
Iε,n are complements of each other, yields the following alternative approximations
for the probabilities P (ε ∈ Iε,n) and P

(
ε ∈ Iε,n

)
:

P (ε ∈ Iε,n) ≈ 1− P
(
ε ∈ Îε,n

)
, (5.63)

P
(
ε ∈ Iε,n

)
≈ 1− P

(
ε ∈ Îε,n

)
. (5.64)

If the mean µ of the sensor measurement errors ε lies in the error region Iε,n with
intervention at the time instant tn, i.e., µ ∈ Iε,n, the approximations in (5.61) and
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(5.64) read as follows because, in this case, P
(
ε ∈ Îε,n

)
= Φ(βn) according to

(5.57):

P (ε ∈ Iε,n) ≈ Φ(βn) , (5.65)
P
(
ε ∈ Iε,n

)
≈ 1− Φ(βn) = Φ (−βn) . (5.66)

If the mean µ of the sensor measurement errors ε lies in the error region Iε,n without
intervention at the time instant tn, i.e., µ ∈ Iε,n, the approximations in (5.63) and
(5.62) read as follows because, in this case, P

(
ε ∈ Îε,n

)
= Φ(βn) according to

(5.57):

P (ε ∈ Iε,n) ≈ 1− Φ(βn) = Φ (−βn) , (5.67)
P
(
ε ∈ Iε,n

)
≈ Φ(βn) . (5.68)

To sum up, the probability P (ε ∈ Iε,n) that the sensor measurement errors ε lie in
the error region Iε,n with intervention at the time instant tn can be approximated by

P (ε ∈ Iε,n) ≈

{
Φ(βn) , µ ∈ Iε,n
Φ(−βn) , µ ∈ Iε,n

, (5.69)

which is the combination of (5.65) and (5.67), and the probability P
(
ε ∈ Iε,n

)
that

they lie in the error region Iε,n without intervention at the time instant tn by

P
(
ε ∈ Iε,n

)
≈

{
Φ(−βn) , µ ∈ Iε,n
Φ(βn) , µ ∈ Iε,n

, (5.70)

which is the combination of (5.66) and (5.68), with the worst-case distance βn given
by (5.58).

Besides the time instants tn with indices n from the set Ib,i, at which the function
must not decide for an intervention based on the corresponding sensor measurements
y [n] to fulfill qi ≥ qL,i if b = L or qi ≤ qU,i if b = U, there are also time instants tn at
which the function must decide for an intervention based on the corresponding sensor
measurements y [n] at least once to fulfill qi ≥ qL,i if b = L or qi ≤ qU,i if b = U.
The indices n of these time instants tn are collected in the set Ib,i ⊂ {0, 1, . . . , nend}.
For the case that this set consists of the indices n3 and n4 of the two time instants tn3

and tn4 , i.e., Ib,i = {n3, n4}, the corresponding error regions Iε,n3 and Iε,n4 without
intervention at the time instant tn3 and tn4 , respectively, are visualized by Figure 5.2
and Figure 5.3 in the plane where only the values of the sensor measurement errors
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ε [n3]

ε [n4]

f
(y

[n
3
];
ϕ
)
=

0

f (y [n4] ;ϕ) = 0

βn3

βn4

β (ε) = βn3

β (ε) = βn4

µ

Figure 5.2: Exemplary individual error acceptance region partition Aε,b,i, b ∈ {L,U},
(green area possibly including dashed orange boundary) with either a finite lower bound
qL,i if b = L or a finite upper bound qU,i if b = U for E = 1 sensor measurement
error ε [n] at a time instant tn under the assumption that the function must decide
for an intervention based on the sensor measurements y [n3] and y [n4] at the time
instants tn3 and tn4 at least once using the decision rule f (·;ϕ) such that qi ≥ qL,i

if b = L or qi ≤ qU,i if b = U, and its relationship to the error regions Iε,n without
intervention, where f (y [n] ;ϕ) = 0 and µ is not included, approximated by the error
regions Îε,n corresponding to the worst-case distances βn (horizontally and vertically
striped areas including dashed violet and magenta linear boundaries, respectively) in
the plane where ε [n] = µn for n 6= n3, n4.
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ε [n3]

ε [n4]

f
(y

[n
3
];
ϕ
)
=

0

f (y [n4] ;ϕ) = 0

βn3

βn4

β (ε) = βn3

β (ε) = βn4

µ

Figure 5.3: Exemplary individual error acceptance region partition Aε,b,i, b ∈ {L,U},
(green area possibly including dashed orange boundary) with either a finite lower bound
qL,i if b = L or a finite upper bound qU,i if b = U for E = 1 sensor measurement error
ε [n] at a time instant tn under the assumption that the function must decide for an
intervention based on the sensor measurements y [n3] and y [n4] at the time instants
tn3 and tn4 at least once using the decision rule f (·;ϕ) such that qi ≥ qL,i if b = L or
qi ≤ qU,i if b = U, and its relationship to the error regions Iε,n without intervention,
where f (y [n] ;ϕ) = 0 and µ is partially included, approximated by the error regions
Îε,n corresponding to the worst-case distances βn (horizontally and vertically striped
areas including dashed violet and magenta linear boundaries, respectively) in the plane
where ε [n] = µn for n 6= n3, n4.
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ε [n3] and ε [n4] at the specific time instants tn3 and tn4 , respectively, vary while the
values of all other sensor measurement errors ε [n] at the time instants tn 6= tn3 , tn4

are constant and equal to their mean, i.e., ε [n] = µn for n 6= n3, n4. The error region
Iε,n3 without intervention at the time instant tn3 , where f (y [n3] ;ϕ) = 0, and the
error region Iε,n4 without intervention at the time instant tn4 , where f (y [n4] ;ϕ) = 0,
are the area to the right of the dashed violet line possibly including this line and the
area above the dashed magenta line possibly including this line, respectively. Since
the function must decide for an intervention based on the sensor measurements y [n3]

and y [n4] at the time instants tn3 and tn4 at least once using the decision rule f (·;ϕ),
i.e., f (y [n3] ;ϕ) = 0 and f (y [n4] ;ϕ) = 0 must not be the two decision results,
to fulfill qi ≥ qL,i if b = L or qi ≤ qU,i if b = U, the individual error acceptance
region partition Aε,b,i, where this is the case, lies in the complement of the intersection
Iε,n3 ∩ Iε,n4 of the error regions Iε,n3 and Iε,n4 without intervention at these two
time instants:

Aε,b,i ⊂ Iε,n3 ∩ Iε,n4 . (5.71)

This can be seen in Figure 5.2 and Figure 5.3, where the complement of the intersection
of the areas to the right of the dashed violet line possibly including this line and above
the dashed magenta line possibly including this line, which represent the error regions
Iε,n3 and Iε,n4 without intervention at the two time instants tn3 and tn4 , respectively,
yields the green area possibly including the orange boundary representing the individual
error acceptance region partition Aε,b,i. In both Figure 5.2 and Figure 5.3, the mean
µ of the sensor measurement errors ε lies in the individual error acceptance region
partition Aε,b,i in order to allow to achieve a high probability P (ε ∈ Aε,b,i) that the
sensor measurement errors ε lie in the individual error acceptance region partition
Aε,b,i and thus the corresponding specification for the customer satisfaction, i.e.,
qi ≥ qL,i if b = L or qi ≤ qU,i if b = U, is fulfilled. In Figure 5.2, the mean µ

of the sensor measurement errors ε lies in both the complement of the error region
Iε,n3 without intervention at the time instant tn3 , namely, the error region Iε,n3

with intervention at the time instant tn3 , and the complement of the error region
Iε,n4 without intervention at the time instant tn4 , namely, the error region Iε,n4 with
intervention at the time instant tn4 , whereas, in Figure 5.3, it lies in the error region
Iε,n3 with intervention at the time instant tn3 and in the error region Iε,n4 without
intervention at the time instant tn4 . The error region Îε,n3 that is bounded by the
tangential hyperplane whose distance from the mean µ of the sensor measurement
errors ε is the worst-case distance βn3 at the time instant tn3 and is represented by the
horizontally striped area including the dashed violet line approximates the error region
Iε,n3 without intervention at the time instant tn3 and the error region Îε,n4 that is
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bounded by the tangential hyperplane whose distance from µ is the worst-case distance
βn4 at the time instant tn4 and is represented by the vertically striped area including the
dashed magenta line approximates the error region Iε,n4 without intervention at the
time instant tn4 . Using the approximate error region Îε,n3 without intervention at the
time instant tn3 and the approximate error region Îε,n4 without intervention at the time
instant tn4 instead of the error region Iε,n3 without intervention at the time instant
tn3 and the error region Iε,n4 without intervention at the instant tn4 , respectively,
leads to the approximation of the individual error acceptance region partition Aε,b,i

represented by the green area possibly including the orange boundary, which lies in the
complement of the intersection Iε,n3 ∩ Iε,n4 according to (5.71), by the complement
of their intersection Îε,n3 ∩ Îε,n4 highlighted by the area that is both horizontally and
vertically striped including the dashed violet and magenta boundary.

If there are not only two time instants tn3 and tn4 but an arbitrary number of time
instants tn with indices n from the set Ib,i ⊂ {0, 1, . . . , nend}, at which the function
must decide for an intervention based on the corresponding sensor measurements y [n]

at least once to fulfill qi ≥ qL,i if b = L or qi ≤ qU,i if b = U, the individual error
acceptance region partition Aε,b,i, where this is fulfilled, lies in the complement of the
intersection of the error regions Iε,n without intervention at all these time instants:

Aε,b,i ⊂
⋂
n∈Ib,i

Iε,n. (5.72)

This is an extension of (5.71) for the set Ib,i = {n3, n4} consisting of the indices n3
and n4 corresponding to the two time instants tn3 and tn4 to the set Ib,i consisting of
the indices n corresponding to an arbitrary number of time instants tn. Combining
(5.35) and (5.72) yields

Aε,b,i ⊂
⋂
n∈Ib,i

Iε,n ∩
⋂
n∈Ib,i

Iε,n. (5.73)

Each sensor measurement error ε that lies in the set on the right-hand side of (5.73),
where the function does not decide for an intervention based on the sensor mea-
surements y [n] at the time instants tn with indices n from Ib,i and it decides for an
intervention based on the sensor measurements y [n] at the time instants tn with indices
n from Ib,i at least once such that the corresponding specification for the customer
satisfaction, i.e., qi ≥ qL,i if b = L or qi ≤ qU,i if b = U, is fulfilled, also lies in
the individual error acceptance region partition Aε,b,i, where this specification for
the customer satisfaction is fulfilled. Hence, the individual error acceptance region
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partition Aε,b,i is not only a subset of but equal to the set on the right-hand side of
(5.73):

Aε,b,i =
⋂
n∈Ib,i

Iε,n ∩
⋂
n∈Ib,i

Iε,n. (5.74)

Consequently, the probability P (ε ∈ Aε,b,i) that the sensor measurement errors ε
lie in the individual error acceptance region partition Aε,b,i and thus the corresponding
specification for the customer satisfaction, i.e., qi ≥ qL,i if b = L or qi ≤ qU,i if b = U,
is fulfilled, can be written as

P (ε ∈ Aε,b,i) = P

ε ∈
⋂
n∈Ib,i

Iε,n ∩
⋂
n∈Ib,i

Iε,n

 . (5.75)

In Appendix B, it is shown that the events
{
ε ∈

⋂
n∈I1 Iε,n

}
and

{
ε ∈

⋂
n∈I2 Iε,n

}
that the sensor measurement errors ε lie in all error regions Iε,n without intervention
at the time instants tn with indices n from a set I1 and that they do not lie in all error
regions Iε,n without intervention at the time instants tn with indices n from a set
I2, respectively, where I1, I2 ⊂ {0, 1, . . . , nend} and I1 ∩ I2 = ∅, are statistically
independent. This applies here, where I1 = Ib,i and I2 = Ib,i. According to (B.6), the
probability that the sensor measurement errors ε lie in all error regions Iε,n without
intervention at the time instants tn with indices n ∈ I1 = Ib,i and do not lie in all error
regions Iε,n without intervention at the time instants tn with indices n ∈ I2 = Ib,i
in (5.75) factorizes into the probability P

(
ε ∈

⋂
n∈Ib,i Iε,n

)
that they lie in all error

regions Iε,n without intervention at the time instants tn with indices n ∈ Ib,i and the
probability P

(
ε ∈

⋂
n∈Ib,i Iε,n

)
that they do not lie in all error regions Iε,n without

intervention at the time instants tn with indices n ∈ Ib,i:

P (ε ∈ Aε,b,i) = P

ε ∈
⋂
n∈Ib,i

Iε,n

P

ε ∈
⋂
n∈Ib,i

Iε,n


= P

ε ∈
⋂
n∈Ib,i

Iε,n

1− P

ε ∈
⋂
n∈Ib,i

Iε,n

 .

(5.76)

In Appendix B, it is also shown that the events
{
ε ∈ Iε,n

}
that they lie in the indi-

vidual error regions Iε,n without intervention at the time instants tn with indices n
from a set I like Ib,i and Ib,i are statistically independent. Therefore, the probability
P
(
ε ∈

⋂
n∈Ib,i Iε,n

)
that the sensor measurement errors ε lie in all error regions Iε,n
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without intervention at the time instants tn with indices n ∈ I = Ib,i factorizes into the
probabilities P

(
ε ∈ Iε,n

)
that they lie in the individual error regions Iε,n without

intervention at these time instants tn and the probability P
(
ε ∈

⋂
n∈Ib,i Iε,n

)
that

the sensor measurement errors ε lie in all error regions Iε,n without intervention at the
time instants tn with indices n ∈ I = Ib,i factorizes into the probabilities P

(
ε ∈ Iε,n

)
that they lie in the individual error regions Iε,n without intervention at these time
instants tn according to (B.2):

P

ε ∈
⋂
n∈Ib,i

Iε,n

 =
∏
n∈Ib,i

P
(
ε ∈ Iε,n

)
, (5.77)

P

ε ∈
⋂
n∈Ib,i

Iε,n

 =
∏
n∈Ib,i

P
(
ε ∈ Iε,n

)
. (5.78)

Substituting this into (5.76), yields the expression

P (ε ∈ Aε,b,i) =
∏
n∈Ib,i

P
(
ε ∈ Iε,n

)1−
∏
n∈Ib,i

P
(
ε ∈ Iε,n

) (5.79)

for the probability that the sensor measurement errors ε lie in the individual error
acceptance region partition Aε,b,i and thus the corresponding specification for the
customer satisfaction, i.e., qi ≥ qL,i if b = L or qi ≤ qU,i if b = U, is fulfilled. This
probability can be approximated by

P (ε ∈ Aε,b,i) ≈
∏
n∈Ib,i

{
Φ(−βn) , µ ∈ Iε,n
Φ(βn) , µ ∈ Iε,n

·

1−
∏
n∈Ib,i

{
Φ(−βn) , µ ∈ Iε,n
Φ(βn) , µ ∈ Iε,n

 (5.80)

resulting from the approximation (5.70) for the probabilityP
(
ε ∈ Iε,n

)
that the sensor

measurement errors ε lie in the error region Iε,n without intervention at the time instant
tn, where the worst-case distances βn at the time instants tn are given by (5.58) and
the check of whether µ ∈ Iε,n or µ ∈ Iε,n can be performed according to (5.59) and
(5.60).

If not only the individual error acceptance region partition Aε,b,i, where the cor-
responding specification for the customer satisfaction, i.e., qi ≥ qL,i if b = L or
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qi ≤ qU,i if b = U, is fulfilled, is considered but the intersection of all individual
error acceptance region partitions Aε,b,i, b = L,U, i = 1, 2, . . . , Nq from (5.19),
namely, the error acceptance region Aε, where all specifications qL,i ≤ qi ≤ qU,i

for the customer satisfaction defined by the acceptance intervals [qL,i, qU,i] for the
customer satisfaction properties qi, i = 1, 2, . . . , Nq, are fulfilled, the error acceptance
region Aε plays the same role as the individual error acceptance region partition Aε,b,i

before. Therefore, the probability P (ε ∈ Aε) that the sensor measurement errors ε
lie in the error acceptance region Aε, which is equal to the probability P (q ∈ Aq)

that all customer satisfaction properties q lie in the customer satisfaction acceptance
region Aq and thus all specifications qL,i ≤ qi ≤ qU,i for the customer satisfaction
defined for the customer satisfaction properties qi, i = 1, 2, . . . , Nq, are fulfilled, can
be expressed as

P (q ∈ Aq) = P (ε ∈ Aε) =
∏
n∈I

P
(
ε ∈ Iε,n

)(
1−

∏
n∈I

P
(
ε ∈ Iε,n

))
(5.81)

and approximated by

P (q ∈ Aq) = P (ε ∈ Aε) ≈
∏
n∈I

{
Φ(−βn) , µ ∈ Iε,n
Φ(βn) , µ ∈ Iε,n

·

(
1−

∏
n∈I

{
Φ(−βn) , µ ∈ Iε,n
Φ(βn) , µ ∈ Iε,n

) (5.82)

analogously to the expression and approximation for the probability P (ε ∈ Aε,b,i)

that the sensor measurement errors ε lie in the individual error acceptance region
partition Aε,b,i in (5.79) and (5.80), respectively. Here, the worst-case distances βn at
the time instants tn are given by (5.58) and the check of whether µ ∈ Iε,n or µ ∈ Iε,n

can be performed according to (5.59) and (5.60). Furthermore, I ⊂ {0, 1, . . . , nend}
and I ⊂ {0, 1, . . . , nend} are the set of the indices n of the time instants tn at which
the function must not decide for an intervention based on the corresponding sensor
measurements y [n] to fulfill qL,i ≤ qi ≤ qU,i, i = 1, 2, . . . , Nq, and the set of the
indices n of the time instants tn at which the function must decide for an intervention
based on the corresponding sensor measurements y [n] at least once to fulfill qL,i ≤
qi ≤ qU,i, i = 1, 2, . . . , Nq, respectively, as Ib,i and Ib,i in (5.79) and (5.80) are the set
of the indices n of the time instants tn at which the function must not decide for an
intervention based on the corresponding sensor measurements y [n] to fulfill qi ≥ qL,i

if b = L or qi ≤ qU,i if b = U, and the set of the indices n of the time instants tn at
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which the function must decide for an intervention based on the corresponding sensor
measurements y [n] at least once to fulfill qi ≥ qL,i if b = L or qi ≤ qU,i if b = U,
respectively.

Although this result has been derived under the assumption of E = 1 sensor
measurement error ε [n] = ε [n] ∈ R at a time instant tn for ease of exposition, it
also holds in the case of E > 1 sensor measurement errors ε [n] ∈ RE at a time
instant tn. The only difference is that ε [n] ∈ R with the mean µn becomes ε [n] ∈ RE

with the mean µn, which implies that the vector ε ∈ Rnend+1 consisting of all sensor
measurement errors becomes ε ∈ RE(nend+1), in (5.36), (5.40), (5.58), (5.59) and
(5.60). Then, the definitions of the error regions with and without intervention at the
time instant tn read

Iε,n =
{
ε ∈ RE(nend+1) : f (y [n] ;ϕ) = 1

}
=
{
ε ∈ RE(nend+1) : f (y (x [n] , ε [n]) ;ϕ) = 1

} (5.83)

and

Iε,n =
{
ε ∈ RE(nend+1) : f (y [n] ;ϕ) = 0

}
=
{
ε ∈ RE(nend+1) : f (y (x [n] , ε [n]) ;ϕ) = 0

}
,

(5.84)

respectively, the worst-case distances βn at the time instants tn are given by

βn = min
ε[n]∈RE

βn (ε [n])

s.t. ε [n] ∈ cl

({
ε [n] ∈ RE : f (y (x [n] , ε [n]) ;ϕ) =

{
0, µ ∈ Iε,n
1, µ ∈ Iε,n

})
(5.85)

with the square of the Mahalanobis distance of the sensor measurement errors ε [n]
at the time instant tn from their mean µn stated in (5.49) and the check of whether
µ ∈ Iε,n or µ ∈ Iε,n can be performed according to

µ ∈ Iε,n =
{
ε ∈ RE(nend+1) : f (y (x [n] , ε [n]) ;ϕ) = 1

}
⇔ f (y (x [n] ,µn) ;ϕ) = 1

(5.86)

and

µ ∈ Iε,n =
{
ε ∈ RE(nend+1) : f (y (x [n] , ε [n]) ;ϕ) = 0

}
⇔ f (y (x [n] ,µn) ;ϕ) = 0.

(5.87)
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The set I ⊂ {0, 1, . . . , nend} of the indices n of the time instants tn at which
the function must not decide for an intervention based on the corresponding sen-
sor measurements y [n] to fulfill qL,i ≤ qi ≤ qU,i, i = 1, 2, . . . , Nq, and the set
I ⊂ {0, 1, . . . , nend} of the indices n of the time instants tn at which the function
must decide for an intervention based on the corresponding sensor measurements
y [n] at least once to fulfill qL,i ≤ qi ≤ qU,i, i = 1, 2, . . . , Nq, can be determined
by simulations of the automated vehicular safety system as follows. For each time
instant tn, n = 0, 1, . . . , nend, the automated vehicular safety system is simulated
after deciding for an intervention at one of those time instants tn in order to map this
time instant together with the given scenario parameters ξ, which are the input of the
simulation, to the respective values of the customer satisfaction properties q, which are
the output of the simulation, and determine whether all specifications qL,i ≤ qi ≤ qU,i,
i = 1, 2, . . . , Nq, for the customer satisfaction are fulfilled or not. Assuming that not
all specifications qL,i ≤ qi ≤ qU,i are fulfilled if the function does not decide for an
intervention based on the sensor measurements y [n] at any of the considered time
instants tn and that the time instants tn for which the specifications qL,i ≤ qi ≤ qU,i are
fulfilled if the function decides for an intervention based on the sensor measurements
y [n] at one of these time instants form a block with indices n ranging from nmin to
nmax, where 0 ≤ nmin ≤ nmax ≤ nend, the function must not decide for an intervention
based on the sensor measurements y [n] at the time instants tn, n = 0, 1, . . . , nmin − 1,
before this block and must decide for an intervention based on the sensor measurements
y [n] at the time instants tn, n = nmin, nmin+1, . . . , nmax, in this block at least once to
fulfill the specifications qL,i ≤ qi ≤ qU,i. Consequently, the set I of the indices n of the
time instants tn at which the function must not decide for an intervention based on the
corresponding sensor measurements y [n] to fulfill qL,i ≤ qi ≤ qU,i, i = 1, 2, . . . , Nq,
and the set I of the indices n of the time instants tn at which the function must decide
for an intervention based on the corresponding sensor measurements y [n] at least once
to fulfill qL,i ≤ qi ≤ qU,i, i = 1, 2, . . . , Nq, read

I = {0, 1, . . . , nmin − 1} (5.88)

and
I = {nmin, nmin + 1, . . . , nmax} . (5.89)

The direct application of the worst-case distance approach to the robust design
of automated vehicular safety systems determines the worst-case distances βb,i, i =
1, 2, . . . , Nq, b = L,U, by solving the optimization problems (5.22) and (5.23) if
b = L and b = U, respectively, in order to approximate the probability P (q ∈ Aq)
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of fulfilling the specifications qL,i ≤ qi ≤ qU,i, i = 1, 2, . . . , Nq, for the customer
satisfaction by evaluating the standard normal cdf Φ(x) at the determined worst-
case distances βb,i according to (5.31). The adaptation of the worst-case distance
approach to the robust design of automated vehicular safety systems that determines
the worst-case distances βn at the time instants tn, n = 0, 1, . . . , nend, by solving
the optimization problems (5.85) in order to approximate the probability P (q ∈ Aq)

of fulfilling the specifications qL,i ≤ qi ≤ qU,i, i = 1, 2, . . . , Nq, for the customer
satisfaction by evaluating the standard normal cdf Φ(x) at the determined worst-case
distances βn according to (5.82) decomposes the original optimization problems (5.22)
and (5.23) into the optimization problems (5.85), which are easier to solve. This is
due to the fact that the original optimization problems (5.22) and (5.23) have to be
solved with respect to the vector ε ∈ RE(nend+1) of the sensor measurement errors at all
considered time instants tn, n = 0, 1, . . . , nend, and the dimensionE (nend + 1), which
requires several simulations of the automated vehicular safety system for evaluating the
customer satisfaction property qi in the constraints, whereas each of the optimization
problems (5.85) has to be solved with respect to the vector ε [n] ∈ RE of the sensor
measurement errors at a single time instant tn and the smaller dimension E, which
does not require several simulations of the automated vehicular safety system but
only several evaluations of the decision rule f (y (x [n] , ε [n]) ;ϕ) for the given states
x [n] the considered dynamic system would have without any intervention at the time
instants tn in the constraints.
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Robust Design of an Automatic
Emergency Braking System 6

In the two previous chapters, the proposed methodology for the robust function and
sensor design that allows to systematically design both functions and sensors of au-
tomated vehicular safety systems such that the customer requirements are fulfilled in
a robust manner despite unavoidable sensor measurement errors has been described
in general. This chapter demonstrates how it can be applied to the robust design of
an AEB system as a typical example for an automated vehicular safety system. In
order to illustrate the basic principle of the design methodology, the model of the AEB
system is kept as simple as possible, which also allows to derive results in closed form
at several points for an accurate evaluation of the design methodology.

In part, the application of the proposed design methodology to the robust design
of an AEB system has already been published in [44–46]. While the proposed de-
sign methodology is applied for the first time in [44] to the robust design of an AEB
system for one driving scenario and one predefined decision rule used for triggering
an emergency brake intervention and [45] extends this to several driving scenarios
and predefined decision rules by deriving closed-form expressions for the defined
probabilistic quality measure Q, the AEB system is designed solely based on simula-
tions of it without the need for deriving closed-form expressions for the probabilistic
quality measure Q in [46]. The results in [44–46] will be revisited and supplemented
in the following to provide a complete picture of the system model, the formulation
of the design problems at hand as optimization problems using the proposed design
methodology and their solution based on closed-form expressions for the probabilistic
quality measure Q or solely based on simulations of the AEB system under design.

6.1 System Model for the Automatic Emergency Braking System

The system model of the considered AEB system is a special case of the general
system model for an automated vehicular safety system introduced in Chapter 2. As
described there in general, it can be split into a mathematical representation of the
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xw
xego,f (t) xobj,r (t)

vego (t) vobj (t)

ego vehicle object

acceptance
interval

Figure 6.1: Driving scenario considered for the robust design of an AEB system at
time t.

driving scenario in which the AEB system is applied and a stochastic model of the
AEB system itself including sensor measurement errors.

6.1.1 Mathematical Representation of the Driving Scenario for the Robust Design of the
Automatic Emergency Braking System

As in [44–46], the driving scenario illustrated in Figure 6.1, where the ego vehicle
approaches an object, e.g., another vehicle, is considered for the robust design of the
AEB system. At time t ≥ t0 within the considered time interval starting at t0, the front
of the ego vehicle moving with the longitudinal velocity vego (t) along the xw-axis of
the world coordinate system is located at the position xego,f (t) with respect to this axis
and the rear of the object moving with the longitudinal velocity vobj (t) along the xw-
axis of the world coordinate system is located at the position xobj,r (t) with respect to
this axis. The velocity of the object is assumed to be constant over the time t. Assuming
that the object is in front of the ego vehicle and slower than it at the time t0 when the
driving scenario starts, i.e., xego,f (t0) < xobj,r (t0) and vego (t0) > vobj (t0) ≥ 0, a
collision would necessarily occur if the ego vehicle moved with constant velocity too.
In order to avoid such a collision, an emergency brake intervention is triggered at time
tb ≥ t0, which reduces the longitudinal velocity of the ego vehicle with a constant
deceleration a > 0. To sum up, the lateral accelerations of the ego vehicle and the
object at time t are alat,ego (t) = alat,ego = 0 and alat,obj (t) = alat,obj = 0, respectively,
while the longitudinal accelerations of the ego vehicle and the object at time t are

alon,ego (t) =

{
0, t < tb

−a, t ≥ tb
(6.1)

and alon,obj (t) = alon,obj = 0, respectively.
This one-dimensional motion model with piecewise constant accelerations is

captured by the general motion model where the motion of each vehicle during a
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driving maneuver is described by the system of differential equations (2.1)–(2.4). This
system of differential equations describing the motion of the ego vehicle reads

ẋego (t) = vego (t) cos
(
ψego (t)

)
, (6.2)

ẏego (t) = vego (t) sin
(
ψego (t)

)
, (6.3)

v̇ego (t) = alon,ego, (6.4)

ψ̇ego (t) = min

(
alat,ego

vego (t)
,
vego (t)

rmin,ego

)
(6.5)

with the turn radius rmin,ego of the ego vehicle, where the state of the ego vehicle at time
t is represented by the state vector

[
xego (t) , yego (t) , vego (t) , ψego (t)

]T consisting
of four state variables, which are the coordinates xego (t) and yego (t) of its center of
gravity with respect to the xw- and yw-axis of the world coordinate system determining
its position, its longitudinal velocity vego (t) and its yaw angle ψego (t). Analogously,
the system of differential equations describing the motion of the object reads

ẋobj (t) = vobj (t) cos
(
ψobj (t)

)
, (6.6)

ẏobj (t) = vobj (t) sin
(
ψobj (t)

)
, (6.7)

v̇obj (t) = alon,obj, (6.8)

ψ̇obj (t) = min

(
alat,obj

vobj (t)
,
vobj (t)

rmin,obj

)
(6.9)

with the turn radius rmin,obj of the object, where the state of the object at time t is
represented by the state vector

[
xobj (t) , yobj (t) , vobj (t) , ψobj (t)

]T consisting of four
state variables, which are the coordinates xobj (t) and yobj (t) of its center of gravity
with respect to the xw- and yw-axis of the world coordinate system determining its
position, its longitudinal velocity vobj (t) and its yaw angle ψobj (t).

The motion of the object with constant velocity in the considered time interval
starting at t0 is described by the differential equations (6.6)–(6.9) with alon,obj =

alat,obj = 0. They can be solved numerically to obtain the trajectory of the object but,
in this special case, a closed-form solution exists. In Appendix C, the closed-form
solution (C.19)–(C.22) of the differential equations (2.1)–(2.4) describing the vehicle
motion with constant velocity, i.e., alon = alat = 0, in the time interval starting at
tstart under the assumption v (tstart) ≥ 0 is derived. Applying this result to the dif-
ferential equations (6.6)–(6.9) with tstart = t0, alon = alon,obj = 0, alat = alat,obj = 0,
rmin = rmin,obj, x (t) = xobj (t), y (t) = yobj (t), v (t) = vobj (t) and ψ (t) = ψobj (t)
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yields their closed-form solution

xobj (t) = vobj (t0) (t− t0) cos
(
ψobj (t0)

)
+ xobj (t0) , (6.10)

yobj (t) = vobj (t0) (t− t0) sin
(
ψobj (t0)

)
+ yobj (t0) , (6.11)

vobj (t) = vobj (t0) , (6.12)
ψobj (t) = ψobj (t0) (6.13)

under the assumption vobj (t0) ≥ 0. As the yaw angle of the object in the considered
driving scenario, which is illustrated in Figure 6.1, is zero, i.e., ψobj (t0) = 0, the
closed-form solution simplifies to

xobj (t) = vobj (t0) (t− t0) + xobj (t0) , (6.14)
yobj (t) = yobj (t0) , (6.15)
vobj (t) = vobj (t0) , (6.16)
ψobj (t) = 0. (6.17)

Analogously, the differential equations (6.2)–(6.5) with alon,ego = alat,ego = 0, which
describe the motion of the ego vehicle with constant velocity in the time interval
starting at t0 before triggering the emergency brake intervention at tb and have exactly
the same form as (6.6)–(6.9), have the closed-form solution

xego (t) = vego (t0) (t− t0) + xego (t0) , (6.18)
yego (t) = yego (t0) , (6.19)
vego (t) = vego (t0) , (6.20)
ψego (t) = 0 (6.21)

such that a numerical solution is possible but not necessary to obtain the trajectory of
the ego vehicle in this special case. The motion of the ego vehicle with the constant lon-
gitudinal acceleration alon,ego = −a in the time interval starting at tb when triggering
the emergency brake intervention is described by the differential equations (6.2)–(6.5)
with alon,ego = −a and alat,ego = 0. They can be solved numerically to obtain the
trajectory of the ego vehicle but a closed-form solution exists also in this special case.
In Appendix C, the closed-form solution (C.15)–(C.18) of the differential equations
(2.1)–(2.4) describing the vehicle motion with the constant longitudinal acceleration
alon and the lateral acceleration alat = 0 in the time interval starting at tstart and ending
at tend under the assumption v (t) ≥ 0 for t ∈ [tstart, tend] is derived. Applying this
result to the differential equations (6.2)–(6.5) with tstart = tb, alon = alon,ego = −a,
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alat = alat,ego = 0, rmin = rmin,ego, x (t) = xego (t), y (t) = yego (t), v (t) = vego (t)

and ψ (t) = ψego (t) yields their closed-form solution

xego (t) =

(
−1

2
a (t− tb)

2 + vego (tb) (t− tb)

)
cos
(
ψego (tb)

)
+ xego (tb) ,

(6.22)

yego (t) =

(
−1

2
a (t− tb)

2 + vego (tb) (t− tb)

)
sin
(
ψego (tb)

)
+ yego (tb) ,

(6.23)

vego (t) = −a (t− tb) + vego (tb) , (6.24)
ψego (t) = ψego (tb) (6.25)

assuming vego (t) ≥ 0 for t ≥ tb. With xego (tb) = vego (t0) (tb − t0) + xego (t0),
yego (tb) = yego (t0), vego (tb) = vego (t0) and ψego (tb) = 0 resulting from substitut-
ing t = tb into the solution (6.18)–(6.21) of the differential equations (6.2)–(6.5) for
the previous time interval [t0, tb], it reads

xego (t) = −1

2
a (t− tb)

2 + vego (t0) (t− tb) + vego (t0) (tb − t0) + xego (t0)

= −1

2
a (t− tb)

2 + vego (t0) (t− t0) + xego (t0) ,

(6.26)

yego (t) = yego (t0) , (6.27)
vego (t) = −a (t− tb) + vego (t0) , (6.28)
ψego (t) = 0. (6.29)

The solutions (6.18)–(6.21) and (6.26)–(6.29) of the differential equations (6.2)–(6.5)
for the time intervals, where t ≤ tb and t ≥ tb, respectively, can be combined to

xego (t) =

{
vego (t0) (t− t0) + xego (t0) , t < tb

−1
2a (t− tb)

2 + vego (t0) (t− t0) + xego (t0) , t ≥ tb
, (6.30)

yego (t) = yego (t0) , (6.31)

vego (t) =

{
vego (t0) , t < tb

−a (t− tb) + vego (t0) , t ≥ tb
, (6.32)

ψego (t) = 0. (6.33)

The state of the considered dynamic system at time t is completely determined by
the state variables of the involved vehicles at this time instant, namely, the coordinates

113



Chapter 6. Robust Design of an Automatic Emergency Braking System

xego (t) and yego (t) of the center of gravity of the ego vehicle, its longitudinal velocity
vego (t) and its yaw angle ψego (t) as well as the coordinates xobj (t) and yobj (t) of
the center of gravity of the object, its longitudinal velocity vobj (t) and its yaw angle
ψobj (t). Since only the relative motion of the ego vehicle and the object is relevant
for the decision on whether to trigger an emergency brake intervention in this simple
driving scenario, the number of state variables can be reduced by combining them.
The distance

x (t) = xobj,r (t)− xego,f (t) (6.34)

between the ego vehicle and the object, and their relative velocity

v (t) = vobj (t)− vego (t) (6.35)

at time t sufficiently describe the state of the considered dynamic system at this time
instant. They form the state vector

x (t) =

[
x (t)

v (t)

]
(6.36)

at time t and are a combination of the state variables xego (t), yego (t), vego (t), ψego (t),
xobj (t), yobj (t), vobj (t) and ψobj (t) of the involved vehicles, which is obvious for the
relative velocity v (t) and will become obvious for the distance x (t) in the following.

Using the coordinate transformation (2.6) from coordinates (xv, yv) in the vehi-
cle coordinate system of a vehicle with the state [x (t) , y (t) , v (t) , ψ (t)]T at time
t to coordinates (xw (t) , yw (t)) in the world coordinate system, the coordinates(
xv,ego, yv,ego

)
=
(
1
2 lego, 0

)
of the middle point on the front part of the contour of

the ego vehicle with the length lego in the vehicle coordinate system of the ego vehi-
cle with the state

[
xego (t) , yego (t) , vego (t) , ψego (t)

]T at time t and the coordinates(
xv,obj, yv,obj

)
=
(
−1

2 lobj, 0
)

of the middle point on the rear part of the contour of
the object with the length lobj in the vehicle coordinate system of the object with the
state

[
xobj (t) , yobj (t) , vobj (t) , ψobj (t)

]T at time t transform to the following coordi-
nates

(
xego,f (t) , yego,f (t)

)
and

(
xobj,r (t) , yobj,r (t)

)
in the world coordinate system,

respectively:[
xego,f (t)

yego,f (t)

]
=

[
cos
(
ψego (t)

)
− sin

(
ψego (t)

)
sin
(
ψego (t)

)
cos
(
ψego (t)

) ] [1
2 lego

0

]
+

[
xego (t)

yego (t)

]
, (6.37)[

xobj,r (t)

yobj,r (t)

]
=

[
cos
(
ψobj (t)

)
− sin

(
ψobj (t)

)
sin
(
ψobj (t)

)
cos
(
ψobj (t)

) ] [−1
2 lobj

0

]
+

[
xobj (t)

yobj (t)

]
. (6.38)
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So, the position of the front of the ego vehicle with respect to the xw-axis of the world
coordinate system reads

xego,f (t) =
1

2
lego cos

(
ψego (t)

)
+ xego (t) (6.39)

and the position of the rear of the object with respect to this axis

xobj,r (t) = −1

2
lobj cos

(
ψobj (t)

)
+ xobj (t) . (6.40)

Substituting these expressions into (6.34), yields the expression

x (t) = xobj (t)− xego (t)−
1

2

(
lego cos

(
ψego (t)

)
+ lobj cos

(
ψobj (t)

))
(6.41)

for the distance between the ego vehicle and the object at time t. It can be seen that the
distance x (t) between the ego vehicle and the object is a combination of their state
variables xego (t), yego (t), vego (t), ψego (t), xobj (t), yobj (t), vobj (t) and ψobj (t) as
their relative velocity v (t) in (6.35). Therefore, they can be computed easily from these
state variables after obtaining them from the numerical solution of the differential
equations (6.2)–(6.5) and (6.6)–(6.9). In this special case, where the closed-form
solutions (6.30)–(6.33) and (6.14)–(6.17) of these differential equations exist, the
distance x (t) between the ego vehicle and the object, and their relative velocity v (t)
can also be expressed in closed form by plugging these closed-form solutions into
(6.41) and (6.35):

x (t) =



(
vobj (t0)− vego (t0)

)
(t− t0)

+ xobj (t0)− xego (t0)− 1
2

(
lego + lobj

)
, t < tb

1
2a (t− tb)

2 +
(
vobj (t0)− vego (t0)

)
(t− t0)

+ xobj (t0)− xego (t0)− 1
2

(
lego + lobj

)
, t ≥ tb

=

{
v0 (t− t0) + x0, t < tb
1
2a (t− tb)

2 + v0 (t− t0) + x0, t ≥ tb

(6.42)

v (t) =

{
vobj (t0)− vego (t0) , t < tb

a (t− tb) + vobj (t0)− vego (t0) , t ≥ tb
=

{
v0, t < tb

a (t− tb) + v0, t ≥ tb
.

(6.43)

Here,
x0 = x (t0) = xobj (t0)− xego (t0)−

1

2

(
lego + lobj

)
(6.44)
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is the initial distance between the ego vehicle and the object at the time instant t0 when
the considered driving scenario starts according to (6.41) with ψego (t0) = ψobj (t0) =

0 and

v0 = v (t0) = vobj (t0)− vego (t0) (6.45)

is their initial relative velocity at this time instant according to (6.35).
The initial distance x0 = xobj,r (t0)− xego,f (t0) > 0 between the ego vehicle and

the object, and their initial relative velocity v0 = vobj (t0)− vego (t0) < 0 forming the
initial state vector

x0 =

[
x0
v0

]
=

[
x (t0)

v (t0)

]
= x (t0) (6.46)

at the beginning of the considered driving scenario together with the time instant t0 at
which their driving maneuvers not initiated by the automated vehicular safety system,
i.e., the AEB system, start, their longitudinal and lateral accelerations alon,ego (t0) = 0,
alat,ego (t0) = 0, alon,obj (t0) = 0 and alat,obj (t0) = 0 during these driving maneu-
vers, their turn radii rmin,ego and rmin,obj as well as the coordinates

(
xv,ego, yv,ego

)
=(

1
2 lego, 0

)
of the middle point on the front part of the contour of the ego vehicle with

the length lego in its vehicle coordinate system and
(
xv,obj, yv,obj

)
=
(
−1

2 lobj, 0
)

of
the middle point on the rear part of the contour of the object with the length lobj

in its vehicle coordinate system, which are the coordinates of the points sufficiently
describing their contours in the vehicle coordinate systems, completely characterize
the whole considered driving scenario. They are the Nξ = 13 scenario parameters
collected in the vector

ξ =



x0
v0
t0

alon,ego (t0)

alat,ego (t0)

alon,obj (t0)

alat,obj (t0)

rmin,ego

rmin,obj

xv,ego

yv,ego

xv,obj

yv,obj



=



x0
v0
t0
0

0

0

0

rmin,ego

rmin,obj
1
2 lego

0

−1
2 lobj

0



. (6.47)
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So, the considered driving scenario can be varied by varying the initial distance x0
between the ego vehicle and the object, their relative velocity v0, the time instant t0 at
which their driving maneuvers not initiated by the AEB system start, their turn radii
rmin,ego and rmin,obj, and their lengths lego and lobj to obtain various driving scenarios,
which can be seen as instances of the same basic driving scenario.

6.1.2 Stochastic Model of the Automatic Emergency Braking System

The general mathematical model of automated vehicular safety systems depicted
in Figure 2.4, which consists of a stochastic model of the senors including their
measurement errors and a mathematical model of the automated vehicular safety
function, also applies to the considered AEB system.

6.1.2.1 Stochastic Model of the Sensors of the Automatic Emergency Braking System

The sensors take measurements with the sampling rate fs at the time instants tn = n
fs

with the discrete time index n = 0, 1, . . . and deliver the measurements y [n] of the M
quantities observed by the sensors at the time instant tn based on the state x [n] of the
dynamic system at this time instant under the influence of the E sensor measurement
errors ε [n] at this time instant as expressed in (2.8). In case of the considered AEB
system, the state vector at the time instant tn is given by

x [n] = x (tn) =

[
x (tn)

v (tn)

]
=

[
x [n]

v [n]

]
(6.48)

according to (6.36) and thus consists of the distance x [n] = x (tn) between the ego
vehicle and the object, and their relative velocity v [n] = v (tn) at this time instant.

As in [44–46], the sensor measurement errors in the measured distance between
the ego vehicle and the object at the time instants tn are modeled by additive i.i.d.
zero-mean Gaussian random variables εx [n] ∼ N

(
0, σ2x

)
of standard deviation σx

such that the measured distance at the time instant tn reads

x̂ [n] = x [n] + εx [n] . (6.49)

Analogously, the sensor measurement errors in the measured relative velocity of the
ego vehicle and the object at the time instants tn are modeled by additive i.i.d. zero-
mean Gaussian random variables εv [n] ∼ N

(
0, σ2v

)
of standard deviation σv such

that the measured relative velocity at the time instant tn reads

v̂ [n] = v [n] + εv [n] . (6.50)
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Therefore, the measurement vector

y [n] =

[
x̂ [n]

v̂ [n]

]
(6.51)

at the time instant tn, which consists of theM = 2 measurements x̂ [n] and v̂ [n] at this
time instant, is the sum of the state vector x [n] at the time instant tn, which consists
of the N = 2 state variables x [n] and v [n] as stated in (6.48), and the error vector

ε [n] =

[
εx [n]

εv [n]

]
(6.52)

at the time instant tn, which consists of the E = 2 sensor measurement errors εx [n]
and εv [n] at this time instant. For such a special case of directly measuring theN =M

state variables x [n] with E =M additive measurement errors ε [n] at the time instant
tn, this has already been expressed in (2.9). The error vector ε [n] at the time instant
tn is Gaussian, i.e., ε [n] ∼ N (µn,Cn), and has the pdf fε[n] (ε [n]) in (2.10) with
the mean

µn = 0 (6.53)

and the covariance matrix

Cn =

[
σ2x 0

0 σ2v

]
(6.54)

under the assumption that the sensor measurement error εx [n] in the measured distance
between the ego vehicle and the object, and the sensor measurement error εv [n] in the
measured relative velocity of the ego vehicle and the object at the time instant tn are
statistically independent.

In this stochastic model of the sensors, the standard deviations σx and σv of their
measurement errors and their sampling rate fs are the Nσ = 3 sensor parameters that
determine the sensors and are collected in the vector

σ =

σxσv
fs

 . (6.55)

6.1.2.2 Mathematical Model of the Function of the Automatic Emergency Braking System

The function of the considered AEB system derives safety-relevant information from
the measurements y [n] at the time instant tn in order to interpret the current driving
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situation, and decides on whether to intervene by triggering an emergency brake inter-
vention for mitigating a dangerous driving situation using a decision rule. In general,
such a decision rule for an automated vehicular safety system can be represented by a
decision function f (·;ϕ) of the form shown in (2.18), which is parameterized by the
parameter vector ϕ consisting of Nϕ adjustable parameters ϕi, i = 1, 2, . . . , Nϕ.

In the following, three exemplary decision rules, which are represented by the
decision functions fTTC (·;ϕ), fadv. TTC (·;ϕ) and fBTN (·;ϕ) of this form and can be
used in the considered AEB system for deciding on whether to trigger an emergency
brake intervention, are described in detail. They have Nϕ = 1 adjustable parameter
ϕ = ϕ ∈ R and are based on typical criticality measures like the TTC and brake-
threat-number (BTN) but can easily be extended or replaced by others, which might
also have more parameters. As long as the used decision rule is not fulfilled, i.e.,
fc (y [n] ;ϕ) = 0, c ∈ {TTC, adv. TTC,BTN}, the function does not trigger the
emergency brake intervention, and, as soon as the decision rule is fulfilled for the
measurements y [n] at a time instant tn, i.e., fc (y [n] ;ϕ) = 1, the function triggers
the emergency brake intervention. The smallest n for which fc (y [n] ;ϕ) = 1 is the
discrete time index

nb = min
n∈N0

n s.t. fc (y [n] ;ϕ) = 1 (6.56)

that corresponds to the time instant

tb = tnb =
nb
fs

(6.57)

at which the measurements y [nb] leading to triggering the emergency brake interven-
tion are made and also to the time instant at which the triggered emergency brake
intervention starts under the simplifying assumption that it instantly starts without any
delay after making these measurements.

TTC-Based Decision Rule: The first one of the three exemplary decision rules is
represented by the decision function

fTTC (y [n] ;ϕ) =

{
1, x̂ [n] ≤ −ϕv̂ [n]
0, otherwise

. (6.58)

So, the function decides for an intervention based on the sensor measurements y [n] at
the time instant tn if they fulfill the condition

x̂ [n] ≤ −ϕv̂ [n] . (6.59)
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If v̂ [n] < 0, this condition for triggering an emergency brake intervention based
on the sensor measurements y [n] at the time instant tn is equivalent to the condition
tTTC [n] ≤ ϕ for the TTC

tTTC [n] = − x̂ [n]
v̂ [n]

(6.60)

at the time instant tn, i.e., the time that remains until the ego vehicle and the object
collide under the assumption that they have the distance x̂ [n] at the time instant tn and
move with constant relative velocity v̂ [n] from the time instant tn on [27]. Therefore,
this decision rule is called TTC-based decision rule.

Advanced TTC-Based Decision Rule: Using the second one of the three exemplary
decision rules represented by the decision function

fadv. TTC (y [n] ;ϕ) =

{
1, x̂ [n]− v̂2[n]

2a ≤ −ϕv̂ [n]
0, otherwise

, (6.61)

the function decides for an intervention based on the sensor measurements y [n] at the
time instant tn if they fulfill the condition

x̂ [n]− v̂2 [n]

2a
≤ −ϕv̂ [n] . (6.62)

This condition for triggering an emergency brake intervention based on the sensor
measurements y [n] at the time instant tn is equivalent to the condition tTTC [n] −
t∗TTC [n] ≤ ϕ for the difference between the TTC tTTC [n] and the critical TTC

t∗TTC [n] = −x
∗ [n]

v̂ [n]
= − v̂ [n]

2a
(6.63)

at the time instant tn corresponding to the critical distance

x∗ [n] =
v̂2 [n]

2a
(6.64)

at the time instant tn if v̂ [n] < 0. This critical distance x∗ [n] is the distance between
the ego vehicle and the object with relative velocity v̂ [n] that is required for just
avoiding the collision by the emergency brake intervention with a constant deceleration
a such that their distance is 0 when their relative velocity vanishes [45]. Since this
decision rule takes the critical distance x∗ [n] and the corresponding critical TTC
t∗TTC [n] into account in contrast to the TTC-based decision rule represented by (6.58),
it is called advanced TTC-based decision rule.
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BTN-Based Decision Rule: The third and last one of the three exemplary decision
rules is represented by the decision function

fBTN (y [n] ;ϕ) =

{
1, x̂ [n] ≤ v̂2[n]

2ϕ

0, otherwise
. (6.65)

So, the function decides for an intervention based on the sensor measurements y [n] at
the time instant tn if they fulfill the condition

x̂ [n] ≤ v̂2 [n]

2ϕ
. (6.66)

If x̂ [n] > 0, this condition for triggering an emergency brake intervention based
on the sensor measurements y [n] at the time instant tn is equivalent to the condition
aBTN [n] ≥ ϕ for the BTN

aBTN [n] =
v̂2 [n]

2x̂ [n]
(6.67)

at the time instant tn, which is the constant deceleration required for just avoiding the
collision under the assumption that the ego vehicle and the object have the distance x̂ [n]
and the relative velocity v̂ [n] when the emergency brake intervention is triggered [28].
Therefore, this decision rule is called BTN-based decision rule.

6.2 Robust Function and Sensor Design for the Automatic Emergency Braking System

The proposed methodology for the robust function and sensor design described in
the two previous chapters allows to systematically design both functions and sensors
of automated vehicular safety systems in general and the considered AEB system in
particular such that the customer requirements are fulfilled in a robust manner despite
unavoidable sensor measurement errors. The function and the sensors can be designed
by solving the optimization problems (4.1), (4.9) and (4.11) formulated in Chapter 4
for the robust function design, sensor design as well as joint function and sensor design,
respectively, based on closed-form expressions for the probabilistic quality measure Q
or solely based on simulations of the automated vehicular safety system under design
as described in Chapter 5. For the design of the considered AEB system, the following
quality measure Q, which measures to what extent the function meets the customer
requirements in a robust manner despite the unavoidable sensor measurement errors,
can be used.

The customer is satisfied with the AEB system applied in the driving scenario
illustrated in Figure 6.1 if the final distance xend between the ego vehicle and the
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object after an emergency brake intervention when their relative velocity vanishes is
neither too small nor too large. In other words, this final distance xend has to lie in
an acceptance interval [xmin, xmax] from the minimal tolerable final distance xmin to
the maximal tolerable final distance xmax, which is visualized in Figure 6.1 by the
violet area and can be chosen in a user-specific way. Hence, the final distance xend is
an example for one of the customer satisfaction properties qi, i = 1, 2, . . . , Nq, which
have to lie in certain acceptance intervals [qL,i, qU,i] such that the intervention by an
automated vehicular safety system is acceptable and the customer is satisfied with the
system, and the acceptance interval [xmin, xmax] for the final distance xend with the
lower bound xmin and the upper bound xmax corresponds to the acceptance interval
[qL,i, qU,i] for this customer satisfaction property qi with the lower bound qL,i and the
upper bound qU,i.

In general, the customer satisfaction properties qi collected in the customer sat-
isfaction vector q =

[
q1, q2, . . . , qNq

]T
= q (σ, ε, f,ϕ, ξ) are subject to the random

sensor measurement errors ε [n] at the nend + 1 time instants tn, n = 0, 1, . . . , nend,
in the considered time interval collected in the vector ε given by (4.21) according to
(4.22). This is also the case for the final distance xend as an example for such a customer
satisfaction property qi. Consequently, it is a random variable as well and might lie
inside or outside the acceptance interval [xmin, xmax] such that the specification

xmin ≤ xend ≤ xmax (6.68)

for the customer satisfaction defined by this acceptance interval is fulfilled or violated
as the customer satisfaction properties qi are random variables and might lie inside or
outside the acceptance intervals [qL,i, qU,i], i = 1, 2, . . . , Nq, in general such that the
specifications qL,i ≤ qi ≤ qU,i, i = 1, 2, . . . , Nq, for the customer satisfaction defined
by these acceptance intervals are fulfilled or violated.

The quality measure Q, which measures to what extent the function meets the
customer requirements in a robust manner despite the unavoidable sensor measurement
errors, is defined as the worst-case probability PWC (q ∈ Aq) of fulfilling the specifi-
cations for the customer satisfaction, i.e., the minimum of the probability P (q ∈ Aq)

that all specifications qL,i ≤ qi ≤ qU,i, i = 1, 2, . . . , Nq, for the customer satisfaction
are fulfilled in all considered driving scenarios ξ from the scenario set X , in (4.33).
Assuming that the final distance xend is the only considered customer satisfaction prop-
erty, i.e., Nq = 1 and q = q1 = xend, the quality measure Q is the minimum of the
probability P (xmin ≤ xend ≤ xmax) that the final distance xend fulfills the specification
xmin ≤ xend ≤ xmax for the customer satisfaction in all considered driving scenarios ξ
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from the scenario set X :

Q = min
ξ∈X

P (xmin ≤ xend ≤ xmax) . (6.69)

With this quality measure Q, the constraint of the optimization problems (4.9) and
(4.11) for the sensor design as well as the joint function and sensor design, respectively,
reads

min
ξ∈X

P (xmin ≤ xend ≤ xmax) ≥ Pmin, (6.70)

where the required minimum worst-case probability Pmin of fulfilling the specification
xmin ≤ xend ≤ xmax for the customer satisfaction is the required minimum quality
level Qmin according to (4.39).

Closed-form expressions for the probability P (xmin ≤ xend ≤ xmax) of fulfilling
the specification for the customer satisfaction can be derived in the following special
cases, where the TTC-based decision rule is used or the relative velocity of the ego
vehicle and the object is measured without errors.

6.2.1 Probability of Fulfilling the Specification for the Customer Satisfaction in Case of the
TTC-Based Decision Rule

The final distance xend between the ego vehicle and the object after the emergency
brake intervention when their relative velocity v (t) vanishes is the distance x (tend) at
the time instant tend > tb at which v (tend) = 0. From (6.43), it follows that this time
instant at which v (tend) = 0 is

tend = tb −
v0
a

(6.71)

and, from (6.42), that the distance between the ego vehicle and the object at this time
instant, their final distance, is

xend = x (tend) = x
(
tb −

v0
a

)
=

1

2
a
(
−v0
a

)2
+ v0

(
tb − t0 −

v0
a

)
+ x0

= x0 + v0 (tb − t0)−
v20
2a
.

(6.72)

Since t0 = 0 according to (2.7) and the time instant tb at which the emergency brake
intervention is triggered is given by (6.57), the final distance can be rewritten as

xend = x0 +
nbv0
fs

− v20
2a
. (6.73)
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Hence, this final distance xend fulfills the specification xmin ≤ xend ≤ xmax for the
customer satisfaction iff

xmin − x0 +
v20
2a

≤ nbv0
fs

≤ xmax − x0 +
v20
2a

(6.74)

or, equivalently,

fs

v0

(
xmax − x0 +

v20
2a

)
≤ nb ≤ fs

v0

(
xmin − x0 +

v20
2a

)
. (6.75)

As the discrete time index nb of the time instant tb = nb/fs at which the emergency
brake intervention is triggered is a non-negative integer, the specification xmin ≤
xend ≤ xmax for the customer satisfaction is equivalent to the specification

nmin ≤ nb ≤ nmax (6.76)

for this discrete time index nb with the lower bound

nmin = max

(
0,

⌈
fs

v0

(
xmax − x0 +

v20
2a

)⌉)
(6.77)

and the upper bound

nmax =

⌊
fs

v0

(
xmin − x0 +

v20
2a

)⌋
. (6.78)

Therefore, the probabilityP (xmin ≤ xend ≤ xmax) of fulfilling the specificationxmin ≤
xend ≤ xmax for the customer satisfaction is identical to the probability
P (nmin ≤ nb ≤ nmax) of fulfilling the specification nmin ≤ nb ≤ nmax for the dis-
crete time index nb of the time instant tb at which the emergency brake intervention is
triggered:

P (xmin ≤ xend ≤ xmax) = P (nmin ≤ nb ≤ nmax) . (6.79)

As the discrete time indices nb that fulfill the specification nmin ≤ nb ≤ nmax are the
discrete time indices nmin, nmin + 1, . . . , nmax, the probability P (nmin ≤ nb ≤ nmax)

of fulfilling the specification nmin ≤ nb ≤ nmax is equivalent to the probability
P (nb ∈ {nmin, nmin + 1, . . . , nmax}) that the discrete time index nb of the time instant
tb at which the emergency brake intervention is triggered is one of those discrete time
indices and thus the sum of all probabilities P (nb = n) that it is one of those discrete
time indices n′b = nmin, nmin + 1, . . . , nmax:

P (nmin ≤ nb ≤ nmax) = P (nb ∈ {nmin, nmin + 1, . . . , nmax})

=

nmax∑
n′

b=nmin

P
(
nb = n′b

)
.

(6.80)
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Due to the last two equations, the probability of fulfilling the specification xmin ≤
xend ≤ xmax for the customer satisfaction reads

P (xmin ≤ xend ≤ xmax) =

nmax∑
n′

b=nmin

P
(
nb = n′b

)
. (6.81)

In order to find an expression for the probability P (nb = n′b) that the discrete
time index nb of the time instant tb at which the emergency brake intervention is
triggered is the discrete time index n′b of the time instant tn′

b
, the condition (6.59) that

has to be fulfilled for triggering an emergency brake intervention at a time instant tn
when using the TTC-based decision rule fTTC (·;ϕ) in (6.58) is considered. With the
expressions for the measured distance and relative velocity of the ego vehicle and the
object in (6.49) and (6.50), respectively, this necessary and sufficient condition for
fTTC (y [n] ;ϕ) = 1 reads

x [n] + εx [n] ≤ −ϕ (v [n] + εv [n]) . (6.82)

Consequently, the error region with intervention at the time instant tn defined in (5.83)
is given by

Iε,n =
{
ε ∈ R2(nend+1) : fTTC (y [n] ;ϕ) = 1

}
=
{
ε ∈ R2(nend+1) : x [n] + εx [n] ≤ −ϕ (v [n] + εv [n])

} (6.83)

and its complement, the error region without intervention at the time instant tn defined
in (5.84), by

Iε,n =
{
ε ∈ R2(nend+1) : fTTC (y [n] ;ϕ) = 0

}
=
{
ε ∈ R2(nend+1) : x [n] + εx [n] > −ϕ (v [n] + εv [n])

}
.

(6.84)

The discrete time index nb of the time instant tb at which the emergency brake inter-
vention is triggered is the discrete time index n′b of the time instant tn′

b
iff the condition

(6.82) for triggering an emergency brake intervention at a time instant tn is fulfilled
at the time instant tn′

b
, i.e., the sensor measurement errors ε lie in the error region

Iε,n′
b

with intervention at this time instant tn′
b
, and not fulfilled at all time instants tn,

n = 0, 1, . . . , n′b − 1, before the time instant tn′
b
, i.e., the sensor measurement errors ε

lie in all error regions Iε,n without intervention at one of these time instants tn. Hence,
the probability P (nb = n′b) that the discrete time index nb of the time instant tb at
which the emergency brake intervention is triggered is the discrete time index n′b of
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the time instant tn′
b

is identical to the probability P
(
ε ∈

⋂n′
b−1
n=0 Iε,n ∩ Iε,n′

b

)
that the

sensor measurement errors ε lie in the error regions Iε,n without intervention at the
time instants tn, n = 0, 1, . . . , n′b − 1, and the error region Iε,n′

b
with intervention at

the time instant tn′
b
:

P
(
nb = n′b

)
= P

ε ∈
n′

b−1⋂
n=0

Iε,n ∩ Iε,n′
b

 . (6.85)

With the two disjoint sets I1 = {0, 1, . . . , n′b − 1} and I2 = {n′b}, it follows from
(B.6) that

P

ε ∈
n′

b−1⋂
n=0

Iε,n ∩ Iε,n′
b

 = P

ε ∈
⋂

n∈
{
0,1,...,n′

b−1
} Iε,n ∩

⋂
n∈

{
n′

b
} Iε,n


= P

ε ∈
⋂

n∈
{
0,1,...,n′

b−1
} Iε,n

P

ε ∈
⋂

n∈
{
n′

b
} Iε,n


= P

ε ∈
n′

b−1⋂
n=0

Iε,n

P
(
ε ∈ Iε,n′

b

)
(6.86)

and, with the set I = {0, 1, . . . , n′b − 1}, from (B.2) that

P

ε ∈
n′

b−1⋂
n=0

Iε,n

 = P

ε ∈
⋂

n∈
{
0,1,...,n′

b−1
} Iε,n


=

∏
n∈

{
0,1,...,n′

b−1
}P
(
ε ∈ Iε,n

)
=

n′
b−1∏
n=0

P
(
ε ∈ Iε,n

)
.

(6.87)

Substituting the last two equations into (6.85) leads to the factorization

P
(
nb = n′b

)
= P

(
ε ∈ Iε,n′

b

) n′
b−1∏
n=0

P
(
ε ∈ Iε,n

)
= P

(
ε ∈ Iε,n′

b

) n′
b−1∏
n=0

(1− P (ε ∈ Iε,n))

(6.88)

of the probability P (nb = n′b) that the discrete time index nb of the time instant tb at
which the emergency brake intervention is triggered is the discrete time index n′b of
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the time instant tn′
b
. According to (6.83), the probability P (ε ∈ Iε,n) that the sensor

measurement errors ε lie in the error region Iε,n with intervention at the time instant
tn is equivalent to the probability that the sensor measurement errors ε fulfill the
condition (6.82) for triggering an emergency brake intervention at the time instant tn:

P (ε ∈ Iε,n) = P (x [n] + εx [n] ≤ −ϕ (v [n] + εv [n])) . (6.89)

For time instants tn = n
fs

≤ nb
fs

= tb up to the time instant tb at which the
emergency brake intervention is triggered, i.e., n ≤ nb, it follows from (6.42) and
(6.43) that the state vector at the time instant tn from (6.48) is given by

x [n] =

[
x [n]

v [n]

]
=

[
x (tn)

v (tn)

]
=

[
v0 (tn − t0) + x0

v0

]
=

[
x0 +

nv0
fs

v0

]
(6.90)

such that the condition (6.82) that has to be fulfilled for triggering an emergency brake
intervention at the time instant tn when using the TTC-based decision rule fTTC (·;ϕ)
becomes

x0 +
nv0
fs

+ εx [n] ≤ −ϕ (v0 + εv [n]) . (6.91)

It can be rewritten to

εx [n] + ϕεv [n] ≤ −x0 −
(
n

fs
+ ϕ

)
v0. (6.92)

As a consequence, the probability that this condition is fulfilled is identical to the
probability that the sensor measurement errors ε fulfill the condition (6.82) for trigger-
ing an emergency brake intervention at the time instant tn and thus to the probability
P (ε ∈ Iε,n) that they lie in the error region Iε,n with intervention at the time instant
tn according to (6.89):

P (ε ∈ Iε,n) = P

(
εx [n] + ϕεv [n] ≤ −x0 −

(
n

fs
+ ϕ

)
v0

)
. (6.93)

Since the sensor measurement errors εx [n] and εv [n] are Gaussian with zero mean
and the variances σ2x and σ2v , respectively, and statistically independent, their linear
combination εx [n] + ϕεv [n] is Gaussian as well with the mean

E [εx [n] + ϕεv [n]] = E [εx [n]]︸ ︷︷ ︸
=0

+ϕE [εv [n]]︸ ︷︷ ︸
=0

= 0 (6.94)

and the variance

Var [εx [n] + ϕεv [n]] = Var [εx [n]]︸ ︷︷ ︸
=σ2

x

+ϕ2Var [εv [n]]︸ ︷︷ ︸
=σ2

v

= σ2x + ϕ2σ2v , (6.95)
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i.e., εx [n] + ϕεv [n] ∼ N
(
0, σ2x + ϕ2σ2v

)
. Therefore, the associated standardized

random variable
εx [n] + ϕεv [n]− E [εx [n] + ϕεv [n]]√

Var [εx [n] + ϕεv [n]]
=
εx [n] + ϕεv [n]√

σ2x + ϕ2σ2v
(6.96)

is Gaussian with zero mean and unit variance, i.e., it follows the standard normal
distribution N (0, 1), and the probability P (ε ∈ Iε,n) that the sensor measurement
errors ε lie in the error region Iε,n with intervention at the time instant tn and fulfill
the condition (6.92) for triggering an emergency brake intervention at the time instant
tn in (6.93) can be expressed as

P (ε ∈ Iε,n) = P

(
εx [n] + ϕεv [n]√

σ2x + ϕ2σ2v
≤ −x0 + (n/fs + ϕ) v0√

σ2x + ϕ2σ2v

)

= Φ

(
−x0 + (n/fs + ϕ) v0√

σ2x + ϕ2σ2v

)
.

(6.97)

Hence, the probability P (nb = n′b) that the discrete time index nb of the time
instant tb at which the emergency brake intervention is triggered is the discrete time
index n′b of the time instant tn′

b
from (6.88) reads

P
(
nb = n′b

)
= Φ

(
−
x0 + (n′b/fs + ϕ) v0√

σ2x + ϕ2σ2v

) n′
b−1∏
n=0

(
1− Φ

(
−x0 + (n/fs + ϕ) v0√

σ2x + ϕ2σ2v

))
.

(6.98)

Substituting this equation into (6.81) finally yields the expression

P (xmin ≤ xend ≤ xmax)

=

nmax∑
n′

b=nmin

Φ

(
−
x0 + (n′b/fs + ϕ) v0√

σ2x + ϕ2σ2v

) n′
b−1∏
n=0

(
1− Φ

(
−x0 + (n/fs + ϕ) v0√

σ2x + ϕ2σ2v

))
(6.99)

for the probability of fulfilling the specification xmin ≤ xend ≤ xmax for the customer
satisfaction, where nmin and nmax are given by (6.77) and (6.78).

6.2.2 Probability of Fulfilling the Specification for the Customer Satisfaction in Case of
Error-Free Relative Velocity Measurements

If the relative velocity v [n] of the ego vehicle and the object at the time instant tn is
measured without error, the sensor measurement error εv [n] in the measured relative
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velocity v̂ [n] at this time instant tn is zero, i.e., the standard deviation σv of this
zero-mean Gaussian random variable εv [n] is zero. In this case, where σv = 0, the
expression for the probability P (ε ∈ Iε,n) that the sensor measurement errors ε lie in
the error region Iε,n with intervention at the time instant tn and fulfill the condition
for triggering an emergency brake intervention at the time instant tn when using the
TTC-based decision rule fTTC (·;ϕ) in (6.97) simplifies to

P (ε ∈ Iε,n) = Φ

(
−x0 + (n/fs + ϕ) v0

σx

)
. (6.100)

Furthermore, due to εv [n] = 0, the expressions for the measured distance x̂ [n]
and relative velocity v̂ [n] of the ego vehicle and the object in (6.49) and (6.50) simplify
to

x̂ [n] = x [n] + εx [n] , (6.101)
v̂ [n] = v [n] . (6.102)

With these expressions, the necessary and sufficient condition (6.62) for
fadv. TTC (y [n] ;ϕ) = 1, i.e., triggering an emergency brake intervention at a time
instant tn when using the advanced TTC-based decision rule fadv. TTC (·;ϕ) in (6.61),
reads

x [n] + εx [n]−
v2 [n]

2a
≤ −ϕv [n] (6.103)

and the necessary and sufficient condition (6.66) for fBTN (y [n] ;ϕ) = 1, i.e., trigger-
ing an emergency brake intervention at a time instant tn when using the BTN-based
decision rule fBTN (·;ϕ) in (6.65)

x [n] + εx [n] ≤
v2 [n]

2ϕ
. (6.104)

Consequently, the error region Iε,n with intervention at the time instant tn defined in
(5.83) is given by

Iε,n =
{
ε ∈ R2(nend+1) : fadv. TTC (y [n] ;ϕ) = 1

}
=

{
ε ∈ R2(nend+1) : x [n] + εx [n]−

v2 [n]

2a
≤ −ϕv [n] ∧ εv [n] = 0

}
(6.105)

for the advanced TTC-based decision rule, i.e., f = fadv. TTC, and

Iε,n =
{
ε ∈ R2(nend+1) : fBTN (y [n] ;ϕ) = 1

}
=

{
ε ∈ R2(nend+1) : x [n] + εx [n] ≤

v2 [n]

2ϕ
∧ εv [n] = 0

} (6.106)
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for the BTN-based decision rule, i.e., f = fBTN. Hence, the probability P (ε ∈ Iε,n)
that the sensor measurement errors ε lie in the error region Iε,n with intervention at
the time instant tn is equivalent to the probability that the sensor measurement errors
ε fulfill the condition (6.103) for triggering an emergency brake intervention at the
time instant tn, i.e.,

P (ε ∈ Iε,n) = P

(
x [n] + εx [n]−

v2 [n]

2a
≤ −ϕv [n]

)
, (6.107)

if the advanced TTC-based decision rule fadv. TTC (·;ϕ) is used and to the probability
that the sensor measurement errors ε fulfill the condition (6.104) for triggering an
emergency brake intervention at the time instant tn, i.e.,

P (ε ∈ Iε,n) = P

(
x [n] + εx [n] ≤

v2 [n]

2ϕ

)
, (6.108)

if the BTN-based decision rule fBTN (·;ϕ) is used. With the state vector at the time
instant tn = n

fs
≤ nb

fs
= tb in (6.90), the condition (6.103) that has to be fulfilled

for triggering an emergency brake intervention at the time instant tn when using the
advanced TTC-based decision rule fadv. TTC (·;ϕ) becomes

x0 +
nv0
fs

+ εx [n]−
v20
2a

≤ −ϕv0 (6.109)

and the condition (6.104) that has to be fulfilled for triggering an emergency brake
intervention at the time instant tn when using the BTN-based decision rule fBTN (·;ϕ)

x0 +
nv0
fs

+ εx [n] ≤
v20
2ϕ
. (6.110)

The former can be rewritten to

εx [n] ≤ −x0 −
(
n

fs
+ ϕ− v0

2a

)
v0 (6.111)

and the latter to

εx [n] ≤ −x0 −
(
n

fs
− v0

2ϕ

)
v0. (6.112)

As a consequence, the probability that the former condition is fulfilled is identical
to the probability that the sensor measurement errors ε fulfill the condition (6.103)
for triggering an emergency brake intervention at the time instant tn and thus to the
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probability P (ε ∈ Iε,n) that they lie in the error region Iε,n with intervention at the
time instant tn according to (6.107), i.e.,

P (ε ∈ Iε,n) = P

(
εx [n] ≤ −x0 −

(
n

fs
+ ϕ− v0

2a

)
v0

)
, (6.113)

if the advanced TTC-based decision rule fadv. TTC (·;ϕ) is used while the probabil-
ity that the latter condition is fulfilled is identical to the probability that the sensor
measurement errors ε fulfill the condition (6.104) for triggering an emergency brake
intervention at the time instant tn and thus to the probability P (ε ∈ Iε,n) that they lie
in the error region Iε,n with intervention at the time instant tn according to (6.108),
i.e.,

P (ε ∈ Iε,n) = P

(
εx [n] ≤ −x0 −

(
n

fs
− v0

2ϕ

)
v0

)
, (6.114)

if the BTN-based decision rule fBTN (·;ϕ) is used. Since the sensor measurement error
εx [n] is Gaussian with zero mean, i.e., E [εx [n]] = 0, and the variance Var [εx [n]] =
σ2x, and the associated standardized random variable

εx [n]− E [εx [n]]√
Var [εx [n]]

=
εx [n]

σx
(6.115)

is Gaussian with zero mean and unit variance, i.e., it follows the standard normal
distribution N (0, 1), the probability P (ε ∈ Iε,n) that the sensor measurement errors
ε lie in the error region Iε,n with intervention at the time instant tn when using the
advanced TTC-based decision rule fadv. TTC (·;ϕ) and fulfill the condition (6.111) for
triggering an emergency brake intervention at the time instant tn in (6.113) can be
expressed as

P (ε ∈ Iε,n) = P

(
εx [n]

σx
≤ −x0 + (n/fs + ϕ− v0/ (2a)) v0

σx

)
= Φ

(
−x0 + (n/fs + ϕ− v0/ (2a)) v0

σx

)
.

(6.116)

Due to the same reason, the probability P (ε ∈ Iε,n) that the sensor measurement
errors ε lie in the error region Iε,n with intervention at the time instant tn when using
the BTN-based decision rule fBTN (·;ϕ) and fulfill the condition (6.112) for triggering
an emergency brake intervention at the time instant tn in (6.114) can be expressed as

P (ε ∈ Iε,n) = P

(
εx [n]

σx
≤ −x0 + (n/fs − v0/ (2ϕ)) v0

σx

)
= Φ

(
−x0 + (n/fs − v0/ (2ϕ)) v0

σx

)
.

(6.117)
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The expressions for the probability P (ε ∈ Iε,n) that the sensor measurement errors
ε lie in the error region Iε,n with intervention at the time instant tn from (6.100),
(6.116) and (6.117) in case of the TTC-based decision rule fTTC (·;ϕ), the advanced
TTC-based decision rule fadv. TTC (·;ϕ) and the BTN-based decision rule fBTN (·;ϕ),
respectively, can be combined to

P (ε ∈ Iε,n) =


Φ
(
−x0+(n/fs+ϕ)v0

σx

)
, f = fTTC

Φ
(
−x0+(n/fs+ϕ−v0/(2a))v0

σx

)
, f = fadv. TTC

Φ
(
−x0+(n/fs−v0/(2ϕ))v0

σx

)
, f = fBTN

. (6.118)

The probability of fulfilling the specification xmin ≤ xend ≤ xmax for the customer
satisfaction is determined by

P (xmin ≤ xend ≤ xmax) =

nmax∑
n′

b=nmin

P
(
ε ∈ Iε,n′

b

) n′
b−1∏
n=0

(1− P (ε ∈ Iε,n)) ,

(6.119)
which follows from substituting (6.88) into (6.81), with the probability P (ε ∈ Iε,n)
that the sensor measurement errors ε lie in the error region Iε,n with intervention at
the time instant tn from the last equation, nmin from (6.77) and nmax from (6.78).

6.3 Numerical Examples for the Robust Design of the Automatic Emergency Braking
System

The numerical examples presented in this section illustrate the theoretical results
elaborated in the previous sections and the robust design of the considered AEB system.
Throughout the following numerical examples, the sampling rate is fs = 1kHz.

6.3.1 One Driving Scenario, TTC-Based Decision Rule and Error-Free Relative Velocity
Measurements

In the first numerical examples, only the driving scenario that is shown in Figure 6.1
and characterized by the scenario parameters ξ0 of the form given by (6.47) with the
initial distance x0 = 10m and the initial relative velocity v0 = −10 m

s is considered.
Furthermore, only the TTC-based decision rule fTTC (·;ϕ) with the function parameter
ϕ is used for triggering an emergency brake intervention and the relative velocity of the
ego vehicle and the object is assumed to be measured without errors, i.e., the standard
deviation of the sensor measurement errors εv [n] in the measured relative velocity at
the time instants tn is σv = 0.
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In Figure 6.2, the probability P (ε ∈ Iε,n) that the sensor measurement errors
ε lie in the error region Iε,n with intervention at the time instant tn and fulfill the
condition for triggering an emergency brake intervention at the time instant tn given by
(6.97) is plotted over the time instants tn for a fixed function parameter ϕ = 0.51 s and
various values of the standard deviation σx of the sensor measurement errors εx [n]
in the measured distance at the time instants tn as well as a fixed standard deviation
σx = 0.1m of the sensor measurement errors in the measured distance and various
values of the function parameter ϕ. It can be observed that it is close to 0 at earlier
time instants tn, increases over time and approaches 1 at later time instants tn for all
values of the standard deviation σx of the sensor measurement errors in the measured
distance and the function parameter ϕ. However, it increases in a shorter time if the
standard deviation σx of the sensor measurement errors in the measured distance is
smaller and later if the function parameter ϕ is smaller.

As can be seen in Figure 6.3, where the probability P (nb = n′b) that the discrete
time index nb of the time instant tb = nb/fs at which the emergency brake intervention
is triggered is the discrete time index n′b of the time instant tn′

b
= n′b/fs given by

(6.98) is plotted over the time instants tn′
b

for a fixed function parameter ϕ = 0.51 s

and various values of the standard deviation σx of the sensor measurement errors
in the measured distance as well as a fixed standard deviation σx = 0.1m of the
sensor measurement errors in the measured distance and various values of the function
parameter ϕ, there is a time interval in which this probability is significantly larger
than 0 for all values of σx and ϕ. Decreasing the standard deviation σx of the sensor
measurement errors in the measured distance shifts this interval forth in time and
reduces its width whereas decreasing the function parameter ϕ shifts it only forth in
time.

For the rest of this section, the deceleration after triggering the emergency brake
intervention is a = 10 m

s2
, and the minimal and maximal tolerable final distances

between the ego vehicle and the object after the emergency brake intervention are
xmin = 0 and xmax = 0.5m. In this case, the lower and upper bound of the specification
nmin ≤ nb ≤ nmax for the discrete time indexnb of the time instant tb = nb/fs at which
the emergency brake intervention is triggered, which is equivalent to the specification
xmin ≤ xend ≤ xmax for the customer satisfaction, are nmin = 450 according to (6.77)
and nmax = 500 according to (6.78), respectively. So, the specification 0 = xmin ≤
xend ≤ xmax = 0.5m for the customer satisfaction is fulfilled iff the time instant
tb = nb/fs at which the emergency brake intervention is triggered with the discrete time
index nb lies in the time interval that starts at the time instant tnmin = nmin/fs = 0.45 s

corresponding to the discrete time index nmin = 450 and ends at the time instant
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Figure 6.2: Probability that the sensor measurement errors ε lie in the error region
Iε,n with intervention at the time instant tn and fulfill the condition for triggering
an emergency brake intervention at the time instant tn for σv = 0, x0 = 10m,
v0 = −10 m

s , fs = 1kHz and the TTC-based decision rule fTTC (·;ϕ) as well as the
lower bound tnmin = 0.45 s and the upper bound tnmax = 0.5 s of the time interval in
which the emergency brake intervention with the constant deceleration a = 10 m

s2
has

to be triggered to fulfill the specification 0 = xmin ≤ xend ≤ xmax = 0.5m for the
customer satisfaction.
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Figure 6.3: Probability that the discrete time index nb of the time instant tb = nb/fs
at which the emergency brake intervention is triggered is the discrete time index n′b
of the time instant tn′

b
= n′b/fs for σv = 0, x0 = 10m, v0 = −10 m

s , fs = 1kHz

and the TTC-based decision rule fTTC (·;ϕ) as well as the lower bound tnmin = 0.45 s

and the upper bound tnmax = 0.5 s of the time interval in which the emergency brake
intervention with the constant deceleration a = 10 m

s2
has to be triggered to fulfill the

specification 0 = xmin ≤ xend ≤ xmax = 0.5m for the customer satisfaction.
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tnmax = nmax/fs = 0.5 s corresponding to the discrete time index nmax = 500. These
two time instants are highlighted in the plots of Figure 6.2 and Figure 6.3.

In Figure 6.4, the probability P (xmin ≤ xend ≤ xmax) of fulfilling the specification
xmin ≤ xend ≤ xmax for the customer satisfaction given by (6.99) is plotted over the
function parameter ϕ for various values of the standard deviation σx of the sensor
measurement errors in the measured distance and over the standard deviation σx of the
sensor measurement errors in the measured distance for various values of the function
parameter ϕ. For all considered values of the standard deviation σx of the sensor
measurement errors in the measured distance, this probability first increases and then
decreases with an increasing function parameter ϕ. With a smaller standard devia-
tion σx of the sensor measurement errors in the measured distance, however, a larger
probability P (xmin ≤ xend ≤ xmax) of fulfilling the specification for the customer
satisfaction can be reached. For all considered values of the function parameter ϕ,
the probability P (xmin ≤ xend ≤ xmax) of fulfilling the specification for the customer
satisfaction approaches 1 when the standard deviation σx of the sensor measurement
errors in the measured distance decreases. If the function parameter ϕ is chosen
appropriately, however, the same probability P (xmin ≤ xend ≤ xmax) of fulfilling the
specification for the customer satisfaction can be reached with a larger standard devia-
tion σx of the sensor measurement errors in the measured distance. In order to better
visualize how the probability P (xmin ≤ xend ≤ xmax) of fulfilling the specification for
the customer satisfaction depends on both the function parameter ϕ and the standard
deviation σx of the sensor measurement errors in the measured distance, its contour
lines are plotted in Figure 6.5.

If the sensors to be used in the considered AEB system, i.e., their parameters σ
in (6.55), namely, the standard deviations σx and σv = 0 of their measurement errors
in the measured distance and relative velocity, respectively, and their sampling rate
fs = 1kHz, are given already, the function can be optimally adapted to the given
sensors such that it meets the requirements of the customers in a robust manner despite
the unavoidable sensor measurement errors to the greatest possible extent by solving
the optimization problem (4.1) of the function design. As only the driving scenario
ξ0 with the initial distance x0 = 10m and the initial relative velocity v0 = −10 m

s is
considered, i.e., the scenario set is X = {ξ0}, the quality measure Q defined in (6.69),
which measures to what extent the function meets the customer requirements in a
robust manner despite the unavoidable sensor measurement errors, is the probability of
fulfilling the specification xmin ≤ xend ≤ xmax for the customer satisfaction evaluated
at the driving scenario ξ = ξ0, i.e., the initial distance x0 = 10m and the initial
relative velocity v0 = −10 m

s , for which the expression in (6.119) together with (6.77),
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Figure 6.4: Probability that the considered AEB system fulfills the specification
xmin ≤ xend ≤ xmax for the customer satisfaction vs. the function parameter ϕ
(a) and the standard deviation σx of the sensor measurement errors in the measured
distance (b) for σv = 0, x0 = 10m, v0 = −10 m

s , fs = 1kHz, a = 10 m
s2

, xmin = 0,
xmax = 0.5m and the TTC-based decision rule fTTC (·;ϕ) with the optimal function
parameter value ϕopt determined by the function design for σx = 0.3m and the
maximal tolerable standard deviation σx,max of the sensor measurement errors in the
measured distance determined by the sensor design for ϕ = 0.51 s and Pmin = 0.99,
respectively.
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Figure 6.5: Contour lines of the probability that the considered AEB system fulfills
the specification xmin ≤ xend ≤ xmax for the customer satisfaction for σv = 0,
x0 = 10m, v0 = −10 m

s , fs = 1kHz, a = 10 m
s2

, xmin = 0, xmax = 0.5m and
the TTC-based decision rule fTTC (·;ϕ) with the optimal function parameter value
ϕopt and the maximal tolerable standard deviation σx,max of the sensor measurement
errors in the measured distance determined by the joint function and sensor design for
Pmin = 0.99.
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σx [m] 0.1 0.2 0.3 0.4 0.5

ϕopt [s] 0.50679 0.49234 0.47500 0.45593 0.43571

P (xmin ≤ xend ≤ xmax) 0.99998 0.98550 0.92029 0.83154 0.74535

Table 6.1: Optimal function parameter value ϕopt for the considered AEB system
determined by the function design for σv = 0, x0 = 10m, v0 = −10 m

s , fs = 1kHz,
a = 10 m

s2
, xmin = 0, xmax = 0.5m, the TTC-based decision rule fTTC (·;ϕ) and

various values of the standard deviation σx of the sensor measurement errors in the
measured distance as well as the resulting probability P (xmin ≤ xend ≤ xmax) of
fulfilling the specification for the customer satisfaction.

(6.78) and (6.118) can be used:

Q = P (xmin ≤ xend ≤ xmax)|ξ=ξ0

= P (xmin ≤ xend ≤ xmax)|x0=10m,v0=−10 m
s
.

(6.120)

Since this is the quality measure Q and only the TTC-based decision rule fTTC (·;ϕ)
with only one function parameter ϕ is considered, i.e., the set of the predefined decision
rules for triggering the emergency brake intervention is F = {fTTC} and ϕ = ϕ, the
optimization problem (4.1) of the function design simplifies to

ϕopt = argmax
ϕ∈R

P (xmin ≤ xend ≤ xmax)|x0=10m,v0=−10 m
s
,f=fTTC

. (6.121)

The solution of this optimization problem is the optimal function parameter value ϕopt,
which maximizes the probability P (xmin ≤ xend ≤ xmax)|x0=10m,v0=−10 m

s
,f=fTTC

of
fulfilling the specification for the customer satisfaction evaluated at the initial dis-
tance x0 = 10m and the initial relative velocity v0 = −10 m

s for the TTC-based
decision rule, i.e., f = fTTC. The optimal function parameter value ϕopt obtained
by numerically solving this optimization problem for various values of the standard
deviation σx of the sensor measurement errors in the measured distance as well as the
resulting probability P (xmin ≤ xend ≤ xmax) of fulfilling the specification for the cus-
tomer satisfaction are stated in Table 6.1. In addition, the optimal function parameter
value ϕopt for the standard deviation σx = 0.3m of the sensor measurement errors
in the measured distance and the corresponding maximum value of the probability
P (xmin ≤ xend ≤ xmax) of fulfilling the specification for the customer satisfaction are
illustrated in Figure 6.4.

If the function of the considered AEB system, i.e., its decision rule f = fTTC with
the function parameter ϕ = ϕ, is given already, the requirements the sensors have to
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fulfill such that it meets the requirements of the customers in a robust manner despite
the unavoidable sensor measurement errors to the desired extent at minimal costs can
be determined by solving the optimization problem (4.9) of the sensor design. Since
the quality measureQ, which measures to what extent the function meets the customer
requirements in a robust manner despite the unavoidable sensor measurement errors,
is the probability of fulfilling the specification xmin ≤ xend ≤ xmax for the customer
satisfaction in the driving scenario ξ = ξ0 with the initial distance x0 = 10m and
the initial relative velocity v0 = −10 m

s as stated in (6.120), the required minimum
probability Pmin of fulfilling this specification for the customer satisfaction in the
driving scenario ξ = ξ0 is the required minimum quality level Qmin according to
(4.39). As the sampling rate has already been chosen to be fs = 1kHz, the standard
deviation of the sensor measurement errors in the measured relative velocity is assumed
to be σv = 0 and the standard deviation σx of the sensor measurement errors in the
measured distance has to be positive, the possible domain for the values of the sensor
parameters σ defined in (6.55) is

S =
{
σ = [σx, σv, fs]

T ∈ R3 : σx ∈ R+ ∧ σv = 0 ∧ fs = 1kHz
}

=
{
σ = [σx, 0, 1 kHz]T ∈ R3 : σx ∈ R+

}
.

(6.122)

With this possible domain S of the sensor parameter values σ, the aforementioned
quality measure Q in (6.120) and respective required minimum quality level Qmin =

Pmin as well as the costs C = −σx or, alternatively, C = σ−1
x , which are chosen

as simple illustrative examples, the optimization problem (4.9) of the sensor design
simplifies to

σx,max = argmin
σx∈R+

C

s.t. P (xmin ≤ xend ≤ xmax)|x0=10m,v0=−10 m
s
,σv=0,fs=1kHz ≥ Pmin

= argmax
σx∈R+

σx

s.t. P (xmin ≤ xend ≤ xmax)|x0=10m,v0=−10 m
s
,σv=0,fs=1kHz ≥ Pmin.

(6.123)

As the chosen costs C decrease with increasing standard deviation σx of the sensor
measurement errors in the measured distance, the minimization of the cost function C
is converted into the maximization of the standard deviation σx of the sensor measure-
ment errors in the measured distance. Thus, the solution of this optimization problem is
the maximal tolerable standard deviation σx,max of the sensor measurement errors in the
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ϕ [s] 0.51 0.52 0.53 0.54 0.55

σx,max [m] 0.14341 0.11102 0.07774 0.04296 0.00430

Table 6.2: Maximal tolerable standard deviation σx,max of the sensor measurement
errors in the measured distance for the considered AEB system determined by the
sensor design for σv = 0, x0 = 10m, v0 = −10 m

s , fs = 1kHz, a = 10 m
s2

, xmin = 0,
xmax = 0.5m, the TTC-based decision rule fTTC (·;ϕ), Pmin = 0.99 and various
values of the function parameter ϕ.

measured distance, which represents the accuracy requirements the sensors have to ful-
fill such that the probability P (xmin ≤ xend ≤ xmax)|x0=10m,v0=−10 m

s
,σv=0,fs=1kHz

of fulfilling the specification for the customer satisfaction evaluated at the initial dis-
tance x0 = 10m, the initial relative velocity v0 = −10 m

s , the standard deviation
σv = 0 of the sensor measurement errors in the measured relative velocity and the
sampling rate fs = 1kHz is at least Pmin as desired. The maximal tolerable standard
deviation σx,max of the sensor measurement errors in the measured distance obtained
by numerically solving this optimization problem for the required minimum probability
Pmin = 0.99 of fulfilling the specification for the customer satisfaction and for various
values of the function parameter ϕ is stated in Table 6.2. In addition, the maximal
tolerable standard deviation σx,max of the sensor measurement errors in the measured
distance for the function parameter ϕ = 0.51 s is illustrated in Figure 6.4. It is the
largest value of the standard deviation σx of the sensor measurement errors in the
measured distance inside the highlighted design space D. According to (4.6), the
design space D is the set of all sensor parameter values σ in the possible domain S
for which the quality measure Q, i.e., the probability of fulfilling the specification
xmin ≤ xend ≤ xmax for the customer satisfaction in the driving scenario ξ = ξ0 with
the initial distance x0 = 10m and the initial relative velocity v0 = −10 m

s as stated in
(6.120), does not lie below the required minimum quality level Qmin, i.e., the required
minimum probability Pmin of fulfilling this specification for the customer satisfaction
in the driving scenario ξ = ξ0:

D =
{
σ ∈ S : P (xmin ≤ xend ≤ xmax)|x0=10m,v0=−10 m

s
≥ Pmin

}
. (6.124)

With the special possible domain S of the sensor parameter values σ in (6.122), the
design space reads

D =
{
σ = [σx, 0, 1 kHz]T ∈ R3 : σx ∈ R+,

P (xmin ≤ xend ≤ xmax)|x0=10m,v0=−10 m
s
,σv=0,fs=1kHz ≥ Pmin

} (6.125)
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in this case.
If neither the sensors nor the function of the considered AEB system are given in

advance, both the sensors and the function can be determined in an optimal way by
solving the optimization problem (4.11) of the joint function and sensor design such
that the function meets the requirements of the customers in a robust manner despite
the unavoidable sensor measurement errors to the desired extent at minimal costs. With
the quality measure Q in (6.120), i.e., the probability of fulfilling the specification
xmin ≤ xend ≤ xmax for the customer satisfaction in the driving scenario ξ = ξ0
with the initial distance x0 = 10m and the initial relative velocity v0 = −10 m

s , the
respective required minimum quality level Qmin = Pmin, i.e., the required minimum
probability Pmin of fulfilling this specification for the customer satisfaction in the
driving scenario ξ = ξ0, the same costs C = −σx or, alternatively, C = σ−1

x as in the
sensor design before, the possible domain S of the sensor parameter values σ in (6.122)
and the set F = {fTTC} of the predefined decision rules for triggering the emergency
brake intervention consisting of only the TTC-based decision rule fTTC (·;ϕ) with the
single function parameter ϕ = ϕ as in the function design before, this optimization
problem simplifies to(

σx,max, ϕopt
)
=

argmin
σx∈R+,ϕ∈R

C

s.t. P (xmin ≤ xend ≤ xmax)|x0=10m,v0=−10 m
s
,σv=0,fs=1kHz,f=fTTC

≥ Pmin

= argmax
σx∈R+,ϕ∈R

σx

s.t. P (xmin ≤ xend ≤ xmax)|x0=10m,v0=−10 m
s
,σv=0,fs=1kHz,f=fTTC

≥ Pmin.

(6.126)

As in the sensor design before, the minimization of the cost function C, whose costs
C decrease with increasing standard deviation σx of the sensor measurement errors
in the measured distance, is converted into the maximization of this standard devi-
ation σx. Thus, the solution of this optimization problem is the maximal tolerable
standard deviation σx,max of the sensor measurement errors in the measured distance
and the corresponding optimal function parameter value ϕopt, which guarantee that
the probability P (xmin ≤ xend ≤ xmax)|x0=10m,v0=−10 m

s
,σv=0,fs=1kHz,f=fTTC

of ful-
filling the specification for the customer satisfaction evaluated at the initial distance
x0 = 10m, the initial relative velocity v0 = −10 m

s , the standard deviation σv = 0

of the sensor measurement errors in the measured relative velocity and the sampling
rate fs = 1kHz for the TTC-based decision rule, i.e., f = fTTC, is at least Pmin as
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desired. The maximal tolerable standard deviation of the sensor measurement errors
in the measured distance and the corresponding optimal function parameter value
obtained by numerically solving this optimization problem for the required minimum
probability Pmin = 0.99 of fulfilling the specification for the customer satisfaction is
σx,max = 0.18754m and ϕopt = 0.49433 s, respectively. It can be observed that the
so obtained maximal tolerable standard deviation σx,max is larger than that obtained by
the sensor design for various values of the function parameter ϕ in Table 6.2. This is
due to the larger number of optimization variables providing more degrees of freedom
for solving the optimization problem as compared to the optimization problem (6.123)
of the sensor design and emphasizes the power of the joint function and sensor design.
The maximal tolerable standard deviation σx,max of the sensor measurement errors
in the measured distance and the corresponding optimal function parameter value
ϕopt resulting from the joint function and sensor design are illustrated in Figure 6.5.
The pair

(
σx,max, ϕopt

)
formed by them is the pair (σx, ϕ) with the largest standard

deviation σx of the sensor measurement errors in the measured distance inside the
design space D highlighted by the magenta area and the corresponding function pa-
rameter ϕ, and is marked by the green cross. According to (4.16), the design space
D is the set of all sensor parameter values σ in the possible domain S , decision rules
f from the set F of the predefined decision rules for triggering the emergency brake
intervention and function parameter values ϕ for which the quality measure Q, i.e.,
the probability of fulfilling the specification xmin ≤ xend ≤ xmax for the customer
satisfaction in the driving scenario ξ = ξ0 with the initial distance x0 = 10m and
the initial relative velocity v0 = −10 m

s as stated in (6.120), does not lie below the
required minimum quality level Qmin, i.e., the required minimum probability Pmin of
fulfilling this specification for the customer satisfaction in the driving scenario ξ = ξ0:

D =
{
(σ, f,ϕ) ∈ S × F × RNϕ :

P (xmin ≤ xend ≤ xmax)|x0=10m,v0=−10 m
s
≥ Pmin

}
.

(6.127)

With the special possible domain S of the sensor parameter values σ in (6.122) and
the set F = {fTTC} of the predefined decision rules consisting of only the TTC-based
decision rule fTTC (·;ϕ) with the single function parameter ϕ = ϕ, i.e., Nϕ = 1, the
design space reads

D =
{
(σ, f,ϕ) =

(
[σx, 0, 1 kHz]T , fTTC, ϕ

)
∈ R3 × {fTTC} × R : σx ∈ R+,

P (xmin ≤ xend ≤ xmax)|x0=10m,v0=−10 m
s
,σv=0,fs=1kHz,f=fTTC

≥ Pmin

}
(6.128)
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in this case.

6.3.2 Several Driving Scenarios, Set of Decision Rules and Error-Free Relative Velocity
Measurements

In order to illustrate how the AEB system can be designed for several driving scenarios,
the two driving scenarios that are instances of the driving scenario shown in Figure 6.1
and characterized by the scenario parameters ξ1 and ξ2 of the form given by (6.47)
with the same initial distance x0 = 50m but the different initial relative velocities
v0 = −10 m

s and v0 = −20 m
s , respectively, are considered. Hence, the scenario set

X for this design task consists of these two scenarios:

X = {ξ1, ξ2} . (6.129)

Moreover, all three introduced decision rules for triggering an emergency brake in-
tervention, i.e., the TTC-based decision rule fTTC (·;ϕ), the advanced TTC-based
decision rule fadv. TTC (·;ϕ) and the BTN-based decision rule fBTN (·;ϕ), with the
function parameter ϕ forming the set F of the predefined decision rules for triggering
an emergency brake intervention are considered for this design task:

F = {fTTC, fadv. TTC, fBTN} . (6.130)

As in the previous numerical examples, the relative velocity of the ego vehicle and the
object is still assumed to be measured without errors, i.e., the standard deviation of the
sensor measurement errors εv [n] in the measured relative velocity at the time instants
tn is σv = 0, the deceleration after triggering the emergency brake intervention
is a = 10 m

s2
, and the minimal and maximal tolerable final distances between the

ego vehicle and the object after the emergency brake intervention are xmin = 0 and
xmax = 0.5m, respectively.

According to (6.69), the quality measure Q is the minimum of the probability
P (xmin ≤ xend ≤ xmax) that the final distance xend fulfills the specification xmin ≤
xend ≤ xmax for the customer satisfaction in the two considered driving scenarios ξ1
and ξ2 from the scenario set X in (6.129). With this quality measure Q and the single
function parameter ϕ = ϕ parameterizing the TTC-based decision rule fTTC (·;ϕ),
the advanced TTC-based decision rule fadv. TTC (·;ϕ) and the BTN-based decision
rule fBTN (·;ϕ), the optimization problem (4.1) of the function design becomes(

fopt, ϕopt
)
= argmax

f∈F ,ϕ∈R
min
ξ∈X

P (xmin ≤ xend ≤ xmax) . (6.131)
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Figure 6.6: Probability that the considered AEB system fulfills the specification
xmin ≤ xend ≤ xmax for the customer satisfaction for v0 = −10 m

s and v0 = −20 m
s as

well as the minimum thereof, i.e., the quality measure Q, vs. the function parameter ϕ
for σx = 0.1m, σv = 0, x0 = 50m, fs = 1kHz, a = 10 m

s2
, xmin = 0, xmax = 0.5m

and the TTC-based decision rule fTTC (·;ϕ).

In Figures 6.6, 6.7 and 6.8, the probability P (xmin ≤ xend ≤ xmax) of fulfilling the
specification for the customer satisfaction in each of the two considered scenarios ξ1
and ξ2 with the initial relative velocities v0 = −10 m

s and v0 = −20 m
s , respectively,

as well as the minimum thereof, i.e., the quality measureQ from (6.69), are plotted over
the function parameter ϕ for each of the three considered decision rules and the stan-
dard deviation σx = 0.1m of the sensor measurement errors in the measured distance.
As can be observed, the quality measure Q is almost 0 for the TTC-based decision

rule fTTC (·;ϕ) regardless of the function parameter value ϕ. Hence, the maximal
quality level Qmax (fTTC) from (4.3) that the TTC-based decision rule fTTC (·;ϕ) can
achieve when adjusting its function parameter ϕ = ϕ is almost 0. This means that there
is no function parameter value ϕ for which the TTC-based decision rule fTTC (·;ϕ)
can fulfill the specification xmin ≤ xend ≤ xmax for the customer satisfaction with
high probability in both considered driving scenarios ξ1 and ξ2. For the two other
considered decision rules, however, such a function parameter value ϕ exists. The max-
imal achievable quality level of the advanced TTC-based decision rule fadv. TTC (·;ϕ)
and the BTN-based decision rule fBTN (·;ϕ) is Qmax (fadv. TTC) = 0.99994 and
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Figure 6.7: Probability that the considered AEB system fulfills the specification
xmin ≤ xend ≤ xmax for the customer satisfaction for v0 = −10 m

s and v0 = −20 m
s as

well as the minimum thereof, i.e., the quality measure Q, vs. the function parameter ϕ
for σx = 0.1m, σv = 0, x0 = 50m, fs = 1kHz, a = 10 m

s2
, xmin = 0, xmax = 0.5m

and the advanced TTC-based decision rule fadv. TTC (·;ϕ) with the optimal function
parameter value ϕopt determined by the function design.
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Figure 6.8: Probability that the considered AEB system fulfills the specification
xmin ≤ xend ≤ xmax for the customer satisfaction for v0 = −10 m

s and v0 = −20 m
s as

well as the minimum thereof, i.e., the quality measure Q, vs. the function parameter ϕ
for σx = 0.1m, σv = 0, x0 = 50m, fs = 1kHz, a = 10 m

s2
, xmin = 0, xmax = 0.5m

and the BTN-based decision rule fBTN (·;ϕ).
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Qmax (fBTN) = 0.99980, respectively. Based on the ranking of three decision rules f
in the set F of the predefined decision rules with respect to the maximal achievable
quality levelQmax (f), i.e.,Qmax (fTTC) < Qmax (fBTN) < Qmax (fadv. TTC), the BTN-
based decision rule fBTN is significantly better than the TTC-based decision rule fTTC

and the advanced TTC-based decision rule fadv. TTC is even slightly better than the
BTN-based decision rule fBTN. Thus, the advanced TTC-based decision rule fadv. TTC

is the best decision rule fopt = fadv. TTC and the maximal quality levelQmax (fadv. TTC)

achieved by it is the highest maximal achievable quality level Q∗
max of all considered

decision rules from (4.4), i.e., Q∗
max = Qmax (fadv. TTC) = 0.99994. The point where

the quality measure Q is equal to this highest maximal achievable quality level Q∗
max

is marked with a green cross and the corresponding function parameter value ϕ is
the optimal function parameter value ϕopt, which together with the best decision rule
fopt = fadv. TTC forms the solution of the optimization problem (6.131) of the function
design.

Using the advanced TTC-based decision rule fadv. TTC
(
·;ϕopt

)
with the optimal

function parameter valueϕopt guarantees that the specificationxmin ≤ xend ≤ xmax for
the customer satisfaction is fulfilled with the probability
P (xmin ≤ xend ≤ xmax)|f=fadv. TTC,ϕ=ϕopt

of at least Q∗
max in each of the two con-

sidered driving scenarios ξ1 and ξ2. In the driving scenario ξ2 with the initial relative
velocity v0 = −20 m

s , the probability P (xmin ≤ xend ≤ xmax)|f=fadv. TTC,ϕ=ϕopt
of

fulfilling this specification is exactly Q∗
max while, in the driving scenario ξ1 with the

initial relative velocity v0 = −10 m
s , it is even higher. This makes the driving scenario

ξ2 the worst-case driving scenario, which forms the set of the worst-case driving
scenarios defined in (4.38):

XWC =
{
ξ′ ∈ X = {ξ1, ξ2} : P (xmin ≤ xend ≤ xmax)|f=fadv. TTC,ϕ=ϕopt,ξ=ξ′

= min
ξ∈X

P (xmin ≤ xend ≤ xmax)|f=fadv. TTC,ϕ=ϕopt
= Q∗

max

}
= {ξ2} .

(6.132)

Although the advanced TTC-based decision rule fadv. TTC (·;ϕ) achieves the largest
minimum of the probability P (xmin ≤ xend ≤ xmax) that the specification for the
customer satisfaction is fulfilled in the two considered driving scenarios ξ1 and ξ2,
it can be observed that the largest probability P (xmin ≤ xend ≤ xmax) of fulfilling
this specification achieved by the considered decision rules in the individual driving
scenarios when adjusting their function parameter ϕ is equal for all three of them.
So, they would perform equally well if the function was designed for only one of the
two considered driving scenarios ξ1 and ξ2 either with the initial relative velocity
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v0 = −10 m
s or v0 = −20 m

s while they do not if the function is designed jointly for all
of them, where only a single function parameter value ϕ is allowed for all considered
driving scenarios.

With the quality measure Q in (6.69), the constraint of the optimization problem
(4.11) for the joint function and sensor design becomes the constraint in (6.70), where
the required minimum worst-case probability Pmin of fulfilling the specification xmin ≤
xend ≤ xmax for the customer satisfaction is the required minimum quality level Qmin

according to (4.39). So, with the same costs C = −σx or, alternatively, C = σ−1
x as

in the joint function and sensor design for the single driving scenario ξ0 and the TTC-
based decision rule fTTC (·;ϕ) before, the possible domain S of the sensor parameter
values σ in (6.122) and the single function parameter ϕ = ϕ parameterizing the TTC-
based decision rule fTTC (·;ϕ), the advanced TTC-based decision rule fadv. TTC (·;ϕ)
and the BTN-based decision rule fBTN (·;ϕ) in the set F of the predefined decision
rules as in the function design before, the optimization problem (4.11) of the joint
function and sensor design reads(

σx,max, fopt, ϕopt
)
=

argmin
σx∈R+,f∈F ,ϕ∈R

C

s.t. min
ξ∈X

P (xmin ≤ xend ≤ xmax)|σv=0,fs=1kHz ≥ Pmin

= argmax
σx∈R+,f∈F ,ϕ∈R

σx

s.t. min
ξ∈X

P (xmin ≤ xend ≤ xmax)|σv=0,fs=1kHz ≥ Pmin.

(6.133)

Again, the minimization of the cost functionC, whose costsC decrease with increasing
standard deviation σx of the sensor measurement errors in the measured distance, is
converted into the maximization of this standard deviation σx.

For each of the three considered decision rules in F , Figures 6.9, 6.10 and 6.11
show the contour lines of the probability P (xmin ≤ xend ≤ xmax) of fulfilling the
specification for the customer satisfaction in each of the two considered driving sce-
narios ξ1 and ξ2 with the initial relative velocities v0 = −10 m

s and v0 = −20 m
s ,

respectively, as well as of the minimum thereof, i.e., the quality measureQ from (6.69),
along which they have the constant value 0.99. In case of the required minimum
worst-case probability Pmin = 0.99 of fulfilling the specification for the customer sat-
isfaction, these contour lines of the probability P (xmin ≤ xend ≤ xmax) of fulfilling
the specification for the customer satisfaction in each of the two considered driving
scenarios ξ1 and ξ2 are the boundaries of the blue areas, where this probability is at
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Figure 6.9: Contour lines of the probability that the considered AEB system fulfills
the specification xmin ≤ xend ≤ xmax for the customer satisfaction for v0 = −10 m

s

and v0 = −20 m
s at height 0.99, which are the boundaries of the respective individual

design space partitions D (ξ1) and D (ξ2) in the joint function and sensor design in
case of Pmin = 0.99, for σv = 0, x0 = 50m, fs = 1kHz, a = 10 m

s2
, xmin = 0,

xmax = 0.5m and the TTC-based decision rule fTTC (·;ϕ).
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Figure 6.10: Contour lines of the probability that the considered AEB system fulfills
the specification xmin ≤ xend ≤ xmax for the customer satisfaction for v0 = −10 m

s

and v0 = −20 m
s as well as of the minimum thereof, i.e., the quality measure Q,

at height 0.99, which are the boundaries of the respective individual design space
partitions D (ξ1) and D (ξ2) and design space D in the joint function and sensor design
in case of Pmin = 0.99, for σv = 0, x0 = 50m, fs = 1kHz, a = 10 m

s2
, xmin = 0,

xmax = 0.5m and the advanced TTC-based decision rule fadv. TTC (·;ϕ).
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Figure 6.11: Contour lines of the probability that the considered AEB system fulfills
the specification xmin ≤ xend ≤ xmax for the customer satisfaction for v0 = −10 m

s

and v0 = −20 m
s as well as of the minimum thereof, i.e., the quality measure Q,

at height 0.99, which are the boundaries of the respective individual design space
partitions D (ξ1) and D (ξ2) and design space D in the joint function and sensor design
in case of Pmin = 0.99, for σv = 0, x0 = 50m, fs = 1kHz, a = 10 m

s2
, xmin = 0,

xmax = 0.5m and the BTN-based decision rule fBTN (·;ϕ) with the optimal function
parameter value ϕopt and the maximal tolerable standard deviation σx,max of the sensor
measurement errors in the measured distance determined by the joint function and
sensor design in case of Pmin = 0.99.
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least Pmin = 0.99 in the driving scenario ξ1 and which represent the individual design
space partition D (ξ1) for the driving scenario ξ1, and the yellow areas, where this
probability is at least Pmin = 0.99 in the driving scenario ξ2 and which represent the
individual design space partition D (ξ2) for the driving scenario ξ2, respectively. Ac-
cording to (4.44), the individual design space partition D (ξi) for the driving scenario
ξi, i ∈ {1, 2}, with the initial distance x0 = 50m and the initial relative velocity

v0,i =

{
−10 m

s , i = 1

−20 m
s , i = 2

(6.134)

is the set of all sensor parameter values σ in the possible domain S, decision rules
f from the set F of the predefined decision rules for triggering the emergency brake
intervention and function parameter values ϕ for which the probability of fulfilling the
specification xmin ≤ xend ≤ xmax for the customer satisfaction in the driving scenario
ξ = ξi with the initial distance x0 = 50m and the initial relative velocity v0 = v0,i
does not lie below the required minimum worst-case probability Pmin of fulfilling this
specification for the customer satisfaction:

D (ξi) =
{
(σ, f,ϕ) ∈ S × F × RNϕ :

P (xmin ≤ xend ≤ xmax)|x0=50m,v0=v0,i
≥ Pmin

}
.

(6.135)

With the special possible domain S of the sensor parameter values σ in (6.122) and
the set F of the predefined decision rules in (6.130) consisting of the TTC-based
decision rule fTTC (·;ϕ), the advanced TTC-based decision rule fadv. TTC (·;ϕ) and
the BTN-based decision rule fBTN (·;ϕ) with the single function parameter ϕ = ϕ,
i.e., Nϕ = 1, the individual design space partition D (ξi) for the driving scenario ξi
reads

D (ξi) =
{
(σ, f,ϕ) =

(
[σx, 0, 1 kHz]T , f, ϕ

)
∈ R3 × {fTTC, fadv. TTC, fBTN} × R : σx ∈ R+,

P (xmin ≤ xend ≤ xmax)|x0=50m,v0=v0,i,σv=0,fs=1kHz ≥ Pmin

} (6.136)

in this case.
As stated in (4.45), the intersection of the individual design space partitions D

(
ξ′
)
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for all driving scenarios ξ′ from the scenario set X , i.e., ξ1 and ξ2, is the design space

D = D (ξ1) ∩ D (ξ2)

=
{
(σ, f,ϕ) =

(
[σx, 0, 1 kHz]T , f, ϕ

)
∈ R3 × {fTTC, fadv. TTC, fBTN} × R : σx ∈ R+,

min
ξ∈X

P (xmin ≤ xend ≤ xmax)|σv=0,fs=1kHz ≥ Pmin

}
.

(6.137)

It is the set of all sensor parameter values σ in the possible domain S from (6.122),
decision rules f from the set F of the predefined decision rules for triggering the
emergency brake intervention in (6.130) and function parameter values ϕ = ϕ for
which the probability of fulfilling the specification xmin ≤ xend ≤ xmax for the customer
satisfaction in both considered driving scenarios ξ1 and ξ2 with the initial relative
velocities v0 = −10 m

s and v0 = −20 m
s , respectively, and thus also their minimum,

the quality measure Q in (6.69), do not lie below the required minimum worst-case
probabilityPmin of fulfilling this specification for the customer satisfaction, the required
minimum quality level Qmin, as defined by (4.16) in general and is highlighted by the
magenta areas in Figures 6.9, 6.10 and 6.11. It can be observed that there is no magenta
area for the TTC-based decision rule fTTC (·;ϕ). This means that, when using the TTC-
based decision rule fTTC (·;ϕ), i.e., f = fTTC, no pair (σx, ϕ) consisting of a value of
the standard deviation σx of the sensor measurement errors in the measured distance
and a function parameter value ϕ inside the design space D exists that can fulfill
the constraint of the optimization problem (6.133) to be solved in the joint function
and sensor design such that also no maximal value σx,max (fTTC) of the standard
deviation σx of the sensor measurement errors in the measured distance inside the
design space D and no minimal reachable costs Cmin (fTTC) = −σx,max (fTTC) in
case of the costs C = −σx or Cmin (fTTC) = (σx,max (fTTC))

−1 in case of the costs
C = σ−1

x corresponding to this value σx,max (fTTC) of σx exist. For the advanced
TTC-based decision rule fadv. TTC (·;ϕ) and the BTN-based decision rule fBTN (·;ϕ),
however, such pairs (σx, ϕ) inside the design space D exist. The maximal value of
the standard deviation σx of the sensor measurement errors in the measured distance
inside it is σx,max (fadv. TTC) = 0.17101m and σx,max (fBTN) = 0.17183m for the
advanced TTC-based decision rule fadv. TTC (·;ϕ) and the BTN-based decision rule
fBTN (·;ϕ), respectively. The corresponding minimal reachable costs of the advanced
TTC-based decision rule fadv. TTC (·;ϕ) and the BTN-based decision rule fBTN (·;ϕ)
are Cmin (fadv. TTC) = −σx,max (fadv. TTC) = −0.17101m in case of the costs C =

−σx or Cmin (fadv. TTC) = (σx,max (fadv. TTC))
−1 = 0.17101−1 m−1 in case of the
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costs C = σ−1
x and Cmin (fBTN) = −σx,max (fBTN) = −0.17183m in case of the

costs C = −σx or Cmin (fBTN) = (σx,max (fBTN))
−1 = 0.17183−1 m−1 in case of

the costs C = σ−1
x , respectively. Based on the ranking of three decision rules f in

the set F of the predefined decision rules with respect to the minimal reachable costs
Cmin (f), i.e., the non-existing Cmin (fTTC) and Cmin (fBTN) < Cmin (fadv. TTC), the
BTN-based decision rule fBTN is slightly better than the advanced TTC-based decision
rule fadv. TTC. Hence, the BTN-based decision rule fBTN is the best decision rule
fopt and the minimal costs Cmin (fBTN) that are reached by it and correspond to the
maximal value σx,max (fBTN) of the standard deviation σx of the sensor measurement
errors in the measured distance inside the design space D for this decision rule are the
smallest minimal reachable costs C∗

min of all considered decision rules from (4.15), i.e.,
C∗

min = Cmin (fBTN), which correspond to the maximal tolerable standard deviation
σx,max of the sensor measurement errors in the measured distance, i.e., σx,max =

σx,max (fBTN) = 0.17183m. The point inside the design space D where the standard
deviation σx of the sensor measurement errors in the measured distance is equal to this
maximal value σx,max and the corresponding costs C are equal to the smallest minimal
reachable costs C∗

min is marked with a green cross and the corresponding function
parameter value ϕ is the optimal function parameter value ϕopt, which together with
the best decision rule fopt = fBTN and the maximal tolerable standard deviation σx,max

of the sensor measurement errors in the measured distance forms the solution of the
optimization problem (6.133) of the joint function and sensor design.

The difference in the maximal value σx,max (f) of the standard deviation σx of
the sensor measurement errors in the measured distance inside the design space D
and thus in the minimal reachable costs Cmin (f) for the different considered decision
rules f , i.e., the TTC-, advanced TTC- and BTN-based decision rules defined by
the decision functions fTTC (·;ϕ) in (6.58), fadv. TTC (·;ϕ) in (6.61) and fBTN (·;ϕ) in
(6.65), respectively, comes from the fact that these decision functions are different
functions of the measured relative velocity v̂ [n] = v [n] = v0, which lead to dif-
ferent overlaps between the individual design space partitions D (ξ1) and D (ξ2) for
the two considered driving scenarios with the initial relative velocities v0 = −10 m

s

and v0 = −20 m
s , whose intersection yields the design space D. For example, the

decision functions fadv. TTC (·;ϕ) and fBTN (·;ϕ) of the advanced TTC- and the BTN-
based decision rules are a function of the square of the measured relative velocity
v̂ [n] = v [n] = v0 whereas the decision function fTTC (·;ϕ) of the TTC-based decision
rule is not. However, it can be observed that the maximal value of the standard deviation
σx of the sensor measurement errors in the measured distance inside the design space
partition D (ξi) for a driving scenario ξi, i ∈ {1, 2}, is equal for all three considered
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decision rules f . Hence, all three considered decision rules f would be equally good
if the AEB system was designed for only one of the two considered driving scenarios
ξ1 and ξ2 either with the initial relative velocity v0 = −10 m

s or v0 = −20 m
s . There

is only a difference in how good they are if the AEB system is designed jointly for
all considered driving scenarios, where only a single function parameter value ϕ is
allowed for all considered driving scenarios.

6.3.3 Erroneous Distance and Relative Velocity Measurements

After assuming the relative velocity of the ego vehicle and the object to be measured
without errors so far, both their distance and relative velocity are assumed to be
measured with sensor measurement errors in the following. This assumption that
the standard deviation σv of the sensor measurement errors in the measured relative
velocity is not 0 anymore but positive as the standard deviation σx of the sensor
measurement errors in the measured distance, extends the possible domain for the
values of the sensor parameters σ from (6.122) to

S =
{
σ = [σx, σv, fs]

T ∈ R3 : σx, σv ∈ R+ ∧ fs = 1kHz
}

=
{
σ = [σx, σv, 1 kHz]T ∈ R3 : σx, σv ∈ R+

}
.

(6.138)

As in the previous numerical examples, the deceleration after triggering the emergency
brake intervention is a = 10 m

s2
, and the minimal and maximal tolerable final distances

between the ego vehicle and the object after the emergency brake intervention are
xmin = 0 and xmax = 0.5m, respectively. For the sake of simplicity, only the driving
scenario that is shown in Figure 6.1 and characterized by the scenario parameters ξ0
of the form given by (6.47) with the initial distance x0 = 10m and the initial relative
velocity v0 = −10 m

s is considered as in the first numerical examples. Hence, the
scenario set X again consist of only this single driving scenario: X = {ξ0}.

Table 6.3 states the values of the probability P (xmin ≤ xend ≤ xmax) of fulfilling
the specification for the customer satisfaction obtained by evaluating its expression in
(6.99) using (6.77) and (6.78) for the TTC-based decision rule fTTC (·;ϕ) and different
values of the standard deviation σx of the sensor measurement errors in the measured
distance, the standard deviation σv of the sensor measurement errors in the measured
relative velocity and the function parameter ϕ.

The probability P (xmin ≤ xend ≤ xmax) of fulfilling the specification xmin ≤
xend ≤ xmax for the customer satisfaction can also be estimated by a Monte Carlo
simulation. In general, the Monte-Carlo-simulation-based estimate for the probability
P (q ∈ Aq) of fulfilling all specifications qL,i ≤ qi ≤ qU,i, i = 1, 2, . . . , Nq, for the
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σv = 0.1 m
s

σv = 0.2 m
s

σv = 0.3 m
s

σv = 0.4 m
s

σx = 0.1m 0.01281 0.07463 0.26990 0.56125
σx = 0.2m 0.50817 0.61534 0.75049 0.85946
σx = 0.3m 0.90221 0.90384 0.89264 0.85494
σx = 0.4m 0.70521 0.67381 0.62060 0.54628

(a) ϕ = 0.47 s

σv = 0.1 m
s

σv = 0.2 m
s

σv = 0.3 m
s

σv = 0.4 m
s

σx = 0.1m 0.72458 0.89313 0.97263 0.97576
σx = 0.2m 0.98197 0.97375 0.94002 0.85727
σx = 0.3m 0.76597 0.71443 0.62608 0.50532
σx = 0.4m 0.30145 0.26714 0.21686 0.15989

(b) ϕ = 0.49 s

σv = 0.1 m
s

σv = 0.2 m
s

σv = 0.3 m
s

σv = 0.4 m
s

σx = 0.1m 0.99958 0.99041 0.91794 0.71032
σx = 0.2m 0.82285 0.72598 0.55872 0.35728
σx = 0.3m 0.26446 0.21144 0.14363 0.08191
σx = 0.4m 0.03060 0.02382 0.01568 0.00873

(c) ϕ = 0.51 s

σv = 0.1 m
s

σv = 0.2 m
s

σv = 0.3 m
s

σv = 0.4 m
s

σx = 0.1m 0.85367 0.58408 0.25591 0.07369
σx = 0.2m 0.15925 0.09322 0.03852 0.01164
σx = 0.3m 0.00732 0.00450 0.00205 0.00071
σx = 0.4m 0.00017 0.00011 0.00006 0.00002

(d) ϕ = 0.53 s

Table 6.3: Probability P (xmin ≤ xend ≤ xmax) that the considered AEB system fulfills
the specification xmin ≤ xend ≤ xmax for the customer satisfaction for x0 = 10m,
v0 = −10 m

s , fs = 1kHz, a = 10 m
s2

, xmin = 0, xmax = 0.5m and the TTC-based
decision rule fTTC (·;ϕ).
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customer satisfaction in case of given sensor parameters σ, a given decision rule f ,
given function parameters ϕ and scenario parameters ξ is the frequency P̂M (q ∈ Aq)

of fulfilling all these specifications in the Monte Carlo simulation from (5.1). In the
Monte Carlo simulation, M realizations ε1, ε2, . . . , εM of all sensor measurement
errors

ε =
[
εx [0] εv [0] εx [1] εv [1] · · · εx [nend] εv [nend]

]T
∈ R2(nend+1)

(6.139)
at all time instants tn, n = 0, 1, . . . , nend, in the considered time interval according to
(4.21) and (6.52) are generated at random according to their probability distribution,
i.e., the i.i.d. sensor measurement errors εx [n] in the measured distance and the i.i.d.
sensor measurement errors εv [n] in the measured relative velocity at these time instants
tn, which are also statistically independent from each other at the same time instant
tn, are drawn from the zero-mean Gaussian distribution N

(
0, σ2x

)
with the standard

deviation σx and the zero-mean Gaussian distribution N
(
0, σ2v

)
with the standard

deviation σv, respectively. Here, the discrete time index nend of the last time instant
tnend of the considered time interval is chosen to be that of the last time instant before
the collision of the ego vehicle and the object that would occur without emergency
brake intervention. In this case, where the last time instant tnend of the considered time
interval, which starts at the time instant t0 = 0, lies before the time instant tb at which
the emergency brake intervention is triggered, i.e., tnend < tb, the distance between the
ego vehicle and the object at this time instant tnend = nend/fs is

x (tnend) = v0tnend + x0 = v0
nend
fs

+ x0 (6.140)

according to (6.42). For x (tnend) = 0, the collision would start immediately after this
time instant tnend and its discrete time index nend would be −fsx0/v0. As the discrete
time index nend of the last time instant before the collision is a non-negative integer, it
is

nend =

⌊
−fs

x0
v0

⌋
. (6.141)

Each realization εm, m = 1, 2, . . . ,M , of the sensor measurement errors ε to-
gether with the given sensor parameters σ, the given decision rule f , the given function
parameters ϕ, i.e., the single function parameter ϕ = ϕ parameterizing the TTC-based
decision rule fTTC (·;ϕ), the advanced TTC-based decision rule fadv. TTC (·;ϕ) and the
BTN-based decision rule fBTN (·;ϕ), and the scenario parameters ξ = ξ0 is mapped to
the respective values qm = q (σ, εm, f,ϕ, ξ) of the customer satisfaction properties
q, i.e., the respective value of the final distance xend between the ego vehicle and
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the object, the only customer satisfaction property q = q1 = xend considered here,
according to (4.22) by a simulation of the AEB system. After computing the measured
distance x̂ [n] in (6.49) and the measured relative velocity v̂ [n] in (6.50) forming
the measurement vector y [n] in (6.51) from the generated sensor measurement er-
rors εx [n] and εv [n], respectively, and evaluating the used decision rule fc (y [n] ;ϕ),
c ∈ {TTC, adv. TTC,BTN}, at the time instants tn, n = 0, 1, . . . , nb, to determine the
discrete time index nb of the time instant tb at which the emergency brake intervention
is triggered as the smallest discrete time index n for which the result of the evaluation
of the decision function is fc (y [n] ;ϕ) = 1 according to (6.56), the final distance
xend can be computed from it with (6.73). If there is not such a discrete time index
nb in the considered time interval, i.e., nb /∈ {0, 1, . . . , nend}, no emergency brake
intervention is triggered in this time interval such that the final distance xend after the
emergency brake intervention does not exist and the specification xmin ≤ xend ≤ xmax

for the customer satisfaction is not fulfilled.
In theM random experiments, it is counted how often the value of the final distance

xend lies in the acceptance interval [xmin, xmax] and thus fulfills the specification xmin ≤
xend ≤ xmax for the customer satisfaction to obtain the number M1,M of how often
this is the case and the frequency

P̂M (xmin ≤ xend ≤ xmax) =
M1,M

M
(6.142)

of fulfilling the specification xmin ≤ xend ≤ xmax for the customer satisfaction, which
is an estimate for the probability P (xmin ≤ xend ≤ xmax) of fulfilling this specifica-
tion for the customer satisfaction. Table 6.4 states the values of the absolute error∣∣∣P̂105 (xmin ≤ xend ≤ xmax)− P (xmin ≤ xend ≤ xmax)

∣∣∣ between this Monte-Carlo-

based estimate P̂105 (xmin ≤ xend ≤ xmax) from M = 105 simulations of the AEB
system and the actual probability P (xmin ≤ xend ≤ xmax) of fulfilling the specification
for the customer satisfaction, whose values are given in Table 6.3, for the TTC-based
decision rule fTTC (·;ϕ) and different values of the standard deviation σx of the sensor
measurement errors in the measured distance, the standard deviation σv of the sensor
measurement errors in the measured relative velocity and the function parameter ϕ.

Moreover, the probability P (xmin ≤ xend ≤ xmax) of fulfilling the specification
xmin ≤ xend ≤ xmax for the customer satisfaction can also be approximated by using
the adaptation of the worst-case distance approach to the robust design of automated
vehicular safety systems. In general, the worst-case-distance-based approximation
of the probability P (q ∈ Aq) of fulfilling all specifications qL,i ≤ qi ≤ qU,i, i =
1, 2, . . . , Nq, for the customer satisfaction is given by (5.82). Thus, in case of the AEB
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σv = 0.1 m
s

σv = 0.2 m
s

σv = 0.3 m
s

σv = 0.4 m
s

σx = 0.1m 0.00045 0.00084 0.00093 0.00141
σx = 0.2m 0.00377 0.00213 0.00108 0.00054
σx = 0.3m 0.00090 0.00057 0.00043 0.00155
σx = 0.4m 0.00203 0.00213 0.00150 0.00244

(a) ϕ = 0.47 s

σv = 0.1 m
s

σv = 0.2 m
s

σv = 0.3 m
s

σv = 0.4 m
s

σx = 0.1m 0.00108 0.00173 0.00025 0.00023
σx = 0.2m 0.00017 0.00001 0.00118 0.00158
σx = 0.3m 0.00180 0.00139 0.00311 0.00050
σx = 0.4m 0.00054 0.00051 0.00005 0.00025

(b) ϕ = 0.49 s

σv = 0.1 m
s

σv = 0.2 m
s

σv = 0.3 m
s

σv = 0.4 m
s

σx = 0.1m 0.00012 0.00011 0.00061 0.00131
σx = 0.2m 0.00099 0.00215 0.00068 0.00101
σx = 0.3m 0.00036 0.00015 0.00046 0.00076
σx = 0.4m 0.00001 0.00060 0.00033 0.00000

(c) ϕ = 0.51 s

σv = 0.1 m
s

σv = 0.2 m
s

σv = 0.3 m
s

σv = 0.4 m
s

σx = 0.1m 0.00116 0.00092 0.00046 0.00064
σx = 0.2m 0.00182 0.00035 0.00049 0.00008
σx = 0.3m 0.00004 0.00022 0.00006 0.00006
σx = 0.4m 0.00002 0.00003 0.00004 0.00000

(d) ϕ = 0.53 s

Table 6.4: Absolute error
∣∣∣P̂105 (xmin ≤ xend ≤ xmax)− P (xmin ≤ xend ≤ xmax)

∣∣∣
between the Monte-Carlo-based estimate P̂105 (xmin ≤ xend ≤ xmax) from M =

105 simulations of the considered AEB system and the actual probability
P (xmin ≤ xend ≤ xmax) of fulfilling the specification xmin ≤ xend ≤ xmax for the
customer satisfaction for x0 = 10m, v0 = −10 m

s , fs = 1kHz, a = 10 m
s2

, xmin = 0,
xmax = 0.5m and the TTC-based decision rule fTTC (·;ϕ).
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system at hand, the probability P (xmin ≤ xend ≤ xmax) of fulfilling the specification
xmin ≤ xend ≤ xmax for the customer satisfaction can be approximated by

P̂ (xmin ≤ xend ≤ xmax) =
∏
n∈I

{
Φ(−βn) , µ ∈ Iε,n
Φ(βn) , µ ∈ Iε,n

·

(
1−

∏
n∈I

{
Φ(−βn) , µ ∈ Iε,n
Φ(βn) , µ ∈ Iε,n

)
.

(6.143)

The set I of the indices n of the time instants tn, n = 0, 1, . . . , nend, in the considered
time interval at which the function must not decide for an emergency brake intervention
to fulfill the specification xmin ≤ xend ≤ xmax for the customer satisfaction is given
by (5.88) and the set I of the indices n of the time instants tn in the considered time
interval at which the function must decide for an emergency brake intervention at
least once to fulfill this specification by (5.89), where the indices nmin and nmax are
given by (6.77) and (6.78), respectively, but can also be determined by simulations of
the AEB system as explained at the end of Chapter 5 for automated vehicular safety
systems in general. The check of whether µ ∈ Iε,n or µ ∈ Iε,n can be performed as
described in (5.86) and (5.87). If the result of evaluating the decision rule fc (·;ϕ),
c ∈ {TTC, adv. TTC,BTN}, with a single function parameter ϕ = ϕ at the mean
µn = 0 of the sensor measurement errors ε [n] at the time instant tn, i.e., the error-
free measurements y (x [n] ,µn) = y (x [n] ,0) = x [n] at the time instant tn, is
fc (y (x [n] ,µn) ;ϕ) = fc (x [n] ;ϕ) = 1, then µ ∈ Iε,n and, otherwise, if it is
fc (y (x [n] ,µn) ;ϕ) = fc (x [n] ;ϕ) = 0, then µ ∈ Iε,n. The optimization problem
in (5.85), whose solution yields the worst-case distance βn at the time instant tn, reads

βn = min
ε[n]∈R2

βn (ε [n])

s.t. ε [n] ∈ cl

({
ε [n] ∈ R2 : fc (y (x [n] , ε [n]) ;ϕ) =

{
0, µ ∈ Iε,n
1, µ ∈ Iε,n

})
(6.144)

in case of the considered AEB system using the decision rule fc (·;ϕ) parameterized
by a single function parameter ϕ = ϕ with the square of the Mahalanobis distance
βn (ε [n]) of the E = 2 sensor measurement errors ε [n] at the time instant tn, whose
mean and covariance matrix are given in (6.53) and (6.54), respectively, from their
mean µn = 0 stated in (5.49). With the definition of the three considered decision
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rules fc (·;ϕ) in (6.58), (6.61) and (6.65), this optimization problem becomes

βn = min
ε[n]∈R2

βn (ε [n])

s.t. ε [n] ∈ cl

({
ε [n] ∈ R2 :

{
x̂ [n] > −ϕv̂ [n] , µ ∈ Iε,n
x̂ [n] ≤ −ϕv̂ [n] , µ ∈ Iε,n

})

= min
ε[n]∈R2

βn (ε [n]) s.t.

{
x̂ [n] ≥ −ϕv̂ [n] , µ ∈ Iε,n
x̂ [n] ≤ −ϕv̂ [n] , µ ∈ Iε,n

(6.145)

for the TTC-based decision rule fTTC (·;ϕ),

βn = min
ε[n]∈R2

βn (ε [n])

s.t. ε [n] ∈ cl

({
ε [n] ∈ R2 :

{
x̂ [n]− v̂2[n]

2a > −ϕv̂ [n] , µ ∈ Iε,n
x̂ [n]− v̂2[n]

2a ≤ −ϕv̂ [n] , µ ∈ Iε,n

})

= min
ε[n]∈R2

βn (ε [n]) s.t.

{
x̂ [n]− v̂2[n]

2a ≥ −ϕv̂ [n] , µ ∈ Iε,n
x̂ [n]− v̂2[n]

2a ≤ −ϕv̂ [n] , µ ∈ Iε,n

(6.146)

for the advanced TTC-based decision rule fadv. TTC (·;ϕ) and

βn = min
ε[n]∈R2

βn (ε [n])

s.t. ε [n] ∈ cl

({
ε [n] ∈ R2 :

{
x̂ [n] > v̂2[n]

2ϕ , µ ∈ Iε,n
x̂ [n] ≤ v̂2[n]

2ϕ , µ ∈ Iε,n

})

= min
ε[n]∈R2

βn (ε [n]) s.t.

{
x̂ [n] ≥ v̂2[n]

2ϕ , µ ∈ Iε,n
x̂ [n] ≤ v̂2[n]

2ϕ , µ ∈ Iε,n

(6.147)

for the BTN-based decision rule fBTN (·;ϕ).
Table 6.5 states the values of the absolute error∣∣∣P̂ (xmin ≤ xend ≤ xmax)− P (xmin ≤ xend ≤ xmax)

∣∣∣ between the worst-case-distance-

based approximation P̂ (xmin ≤ xend ≤ xmax) and the actual probability
P (xmin ≤ xend ≤ xmax) of fulfilling the specification for the customer satisfaction,
whose values are given in Table 6.3, for the TTC-based decision rule fTTC (·;ϕ) and
different values of the standard deviation σx of the sensor measurement errors in the
measured distance, the standard deviation σv of the sensor measurement errors in the
measured relative velocity and the function parameter ϕ, which are all 0.00000. This
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σv = 0.1 m
s

σv = 0.2 m
s

σv = 0.3 m
s

σv = 0.4 m
s

σx = 0.1m 0.00000 0.00000 0.00000 0.00000
σx = 0.2m 0.00000 0.00000 0.00000 0.00000
σx = 0.3m 0.00000 0.00000 0.00000 0.00000
σx = 0.4m 0.00000 0.00000 0.00000 0.00000

(a) ϕ = 0.47 s

σv = 0.1 m
s

σv = 0.2 m
s

σv = 0.3 m
s

σv = 0.4 m
s

σx = 0.1m 0.00000 0.00000 0.00000 0.00000
σx = 0.2m 0.00000 0.00000 0.00000 0.00000
σx = 0.3m 0.00000 0.00000 0.00000 0.00000
σx = 0.4m 0.00000 0.00000 0.00000 0.00000

(b) ϕ = 0.49 s

σv = 0.1 m
s

σv = 0.2 m
s

σv = 0.3 m
s

σv = 0.4 m
s

σx = 0.1m 0.00000 0.00000 0.00000 0.00000
σx = 0.2m 0.00000 0.00000 0.00000 0.00000
σx = 0.3m 0.00000 0.00000 0.00000 0.00000
σx = 0.4m 0.00000 0.00000 0.00000 0.00000

(c) ϕ = 0.51 s

σv = 0.1 m
s

σv = 0.2 m
s

σv = 0.3 m
s

σv = 0.4 m
s

σx = 0.1m 0.00000 0.00000 0.00000 0.00000
σx = 0.2m 0.00000 0.00000 0.00000 0.00000
σx = 0.3m 0.00000 0.00000 0.00000 0.00000
σx = 0.4m 0.00000 0.00000 0.00000 0.00000

(d) ϕ = 0.53 s

Table 6.5: Absolute error
∣∣∣P̂ (xmin ≤ xend ≤ xmax)− P (xmin ≤ xend ≤ xmax)

∣∣∣ be-

tween the worst-case-distance-based approximation P̂ (xmin ≤ xend ≤ xmax) and the
actual probability P (xmin ≤ xend ≤ xmax) of fulfilling the specification xmin ≤
xend ≤ xmax for the customer satisfaction by the considered AEB system for
x0 = 10m, v0 = −10 m

s , fs = 1kHz, a = 10 m
s2

, xmin = 0, xmax = 0.5m and
the TTC-based decision rule fTTC (·;ϕ).
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is due to the fact that the inherent approximation of the error regions Iε,n and Iε,n

with and without intervention at the time instants tn by linearizing their boundaries
does not introduce any errors in the approximation of the probabilities that the sensor
measurement errors ε lie in those error regions by the probabilities that they lie in the
approximate error regions resulting from the linearization of their boundaries because
they are already linear for the TTC-based decision rule fTTC (·;ϕ). The boundary

∂Iε,n = ∂Iε,n =
{
ε ∈ R2(nend+1) : x [n] + εx [n] = −ϕ (v [n] + εv [n])

}
(6.148)

of the error regions Iε,n and Iε,n with and without intervention at the time instant tn
for the TTC-based decision rule fTTC (·;ϕ) in (6.83) and (6.84) is linear since it is
described by the equation x [n] + εx [n] = −ϕ (v [n] + εv [n]), which is linear in the
sensor measurement errors εx [n] and εv [n] at the time instant tn. This equation is
implied by the condition (6.59) that has to be fulfilled for triggering an emergency brake
intervention at a time instant tn when using the TTC-based decision rule fTTC (·;ϕ) in
(6.58) and its linearity in the sensor measurement errors εx [n] and εv [n] at the time
instant tn by the linearity of this condition in the sensor measurements x̂ [n] and v̂ [n]
at the time instant tn, which are linear functions of the sensor measurement errors
εx [n] and εv [n] according to (6.49) and (6.50), respectively.

As the condition (6.66) that has to be fulfilled for triggering an emergency brake
intervention at a time instant tn when using the BTN-based decision rule fBTN (·;ϕ)
in (6.65) is not linear in the sensor measurements x̂ [n] and v̂ [n] at the time instant
tn, the boundary of the error regions Iε,n and Iε,n with and without intervention
at the time instant tn for this decision rule is also not linear such that the inher-
ent approximation of the error regions Iε,n and Iε,n with and without interven-
tion at the time instants tn by linearizing their boundaries introduces approxima-
tion errors. They can be observed in Table 6.6, which states the values of the ab-
solute error

∣∣∣P̂ (xmin ≤ xend ≤ xmax)− P (xmin ≤ xend ≤ xmax)
∣∣∣ between the worst-

case-distance-based approximation P̂ (xmin ≤ xend ≤ xmax) and the actual probability
P (xmin ≤ xend ≤ xmax) of fulfilling the specification for the customer satisfaction, i.e.,
the accurate Monte-Carlo-based estimate P̂108 (xmin ≤ xend ≤ xmax) from M = 108

simulations of the AEB system used as ground truth, for different values of the stan-
dard deviation σx of the sensor measurement errors in the measured distance, the
standard deviation σv of the sensor measurement errors in the measured relative
velocity and the function parameter ϕ. The accurate Monte-Carlo-based estimate
P̂108 (xmin ≤ xend ≤ xmax) from M = 108 simulations of the AEB system, a very
large number of simulations, is used as ground truth instead of the actual probability
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σv = 0.1 m
s

σv = 0.2 m
s

σv = 0.3 m
s

σv = 0.4 m
s

σx = 0.1m 0.00014 0.00123 0.00046 0.00004
σx = 0.2m 0.00138 0.00226 0.00060 0.00005
σx = 0.3m 0.00071 0.00081 0.00021 0.00002
σx = 0.4m 0.00008 0.00009 0.00003 0.00000

(a) ϕ = 9.7 m
s2

σv = 0.1 m
s

σv = 0.2 m
s

σv = 0.3 m
s

σv = 0.4 m
s

σx = 0.1m 0.00001 0.00069 0.00093 0.00023
σx = 0.2m 0.00067 0.00285 0.00201 0.00039
σx = 0.3m 0.00116 0.00232 0.00116 0.00021
σx = 0.4m 0.00037 0.00058 0.00027 0.00005

(b) ϕ = 9.9 m
s2

σv = 0.1 m
s

σv = 0.2 m
s

σv = 0.3 m
s

σv = 0.4 m
s

σx = 0.1m 0.00017 0.00022 0.00095 0.00058
σx = 0.2m 0.00023 0.00186 0.00302 0.00132
σx = 0.3m 0.00112 0.00332 0.00302 0.00103
σx = 0.4m 0.00073 0.00169 0.00120 0.00036

(c) ϕ = 10.1 m
s2

σv = 0.1 m
s

σv = 0.2 m
s

σv = 0.3 m
s

σv = 0.4 m
s

σx = 0.1m 0.00128 0.00020 0.00062 0.00078
σx = 0.2m 0.00020 0.00079 0.00278 0.00242
σx = 0.3m 0.00067 0.00293 0.00437 0.00263
σx = 0.4m 0.00089 0.00273 0.00285 0.00135

(d) ϕ = 10.3 m
s2

Table 6.6: Absolute error
∣∣∣P̂ (xmin ≤ xend ≤ xmax)− P (xmin ≤ xend ≤ xmax)

∣∣∣ be-

tween the worst-case-distance-based approximation P̂ (xmin ≤ xend ≤ xmax) and the
actual probability P (xmin ≤ xend ≤ xmax) of fulfilling the specification xmin ≤
xend ≤ xmax for the customer satisfaction by the considered AEB system, i.e., the
accurate Monte-Carlo-based estimate P̂108 (xmin ≤ xend ≤ xmax) from M = 108 sim-
ulations of the AEB system used as ground truth, for x0 = 10m, v0 = −10 m

s ,
fs = 1kHz, a = 10 m

s2
, xmin = 0, xmax = 0.5m and the BTN-based decision rule

fBTN (·;ϕ).
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P (xmin ≤ xend ≤ xmax) of fulfilling the specification for the customer satisfaction
because no closed-form expression exists for this probability in case of the BTN-based
decision rule fBTN (·;ϕ). Its values that correspond to the stated values of the absolute
error

∣∣∣P̂ (xmin ≤ xend ≤ xmax)− P (xmin ≤ xend ≤ xmax)
∣∣∣ can be found in Table 6.7.

For comparison, the corresponding values of the absolute error∣∣∣P̂105 (xmin ≤ xend ≤ xmax)− P (xmin ≤ xend ≤ xmax)
∣∣∣ between the Monte-Carlo-

based estimate P̂105 (xmin ≤ xend ≤ xmax) from M = 105 simulations of the AEB
system and the actual probability P (xmin ≤ xend ≤ xmax) of fulfilling the specifi-
cation for the customer satisfaction, i.e., the accurate Monte-Carlo-based estimate
P̂108 (xmin ≤ xend ≤ xmax) from M = 108 simulations of the AEB system used as
ground truth, are stated in Table 6.8. If the standard deviation of the sensor measure-
ment errors in the measured distance is σx = 0.1m, the standard deviation of the
sensor measurement errors in the measured relative velocity is σv = 0.1 m

s and the
function parameter value is ϕ = 9.9 m

s2
, for example, the probability of fulfilling the

specification for the customer satisfaction is

P (xmin ≤ xend ≤ xmax) = 0.99711 (6.149)

while the Monte-Carlo-based estimate from M = 105 simulations of the AEB system
is

P̂105 (xmin ≤ xend ≤ xmax) = 0.99721 (6.150)

and the worst-case-distance-based approximation is

P̂ (xmin ≤ xend ≤ xmax) = 0.99712 (6.151)

such that the absolute error of the Monte-Carlo-based estimate is∣∣∣P̂105 (xmin ≤ xend ≤ xmax)− P (xmin ≤ xend ≤ xmax)
∣∣∣ = 0.00010 (6.152)

and that of the worst-case-distance-based approximation is only∣∣∣P̂ (xmin ≤ xend ≤ xmax)− P (xmin ≤ xend ≤ xmax)
∣∣∣ = 0.00001 (6.153)

as stated in Table 6.6 and Table 6.8. For this accurate worst-case-distance-based
approximation, only 1,001 simulations of the AEB system and 22,095 evaluations
of the BTN-based decision rule fBTN (·;ϕ) are required. According to (5.14), the
approximate number Mreq. of simulations of the automated vehicular safety system
required in the Monte Carlo simulation for estimating the probability P (q ∈ Aq) =
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σv = 0.1 m
s

σv = 0.2 m
s

σv = 0.3 m
s

σv = 0.4 m
s

σx = 0.1m 0.96427 0.50374 0.07416 0.00386
σx = 0.2m 0.55284 0.19271 0.02461 0.00132
σx = 0.3m 0.10534 0.03101 0.00389 0.00023
σx = 0.4m 0.00787 0.00234 0.00032 0.00002

(a) ϕ = 9.7 m
s2

σv = 0.1 m
s

σv = 0.2 m
s

σv = 0.3 m
s

σv = 0.4 m
s

σx = 0.1m 0.99711 0.81337 0.28426 0.03578
σx = 0.2m 0.83591 0.49513 0.13377 0.01541
σx = 0.3m 0.33303 0.15028 0.03375 0.00370
σx = 0.4m 0.05284 0.02141 0.00454 0.00051

(b) ϕ = 9.9 m
s2

σv = 0.1 m
s

σv = 0.2 m
s

σv = 0.3 m
s

σv = 0.4 m
s

σx = 0.1m 0.98445 0.94785 0.56662 0.14575
σx = 0.2m 0.95307 0.75821 0.35253 0.07775
σx = 0.3m 0.59901 0.36941 0.13349 0.02548
σx = 0.4m 0.17399 0.09108 0.02830 0.00500

(c) ϕ = 10.1 m
s2

σv = 0.1 m
s

σv = 0.2 m
s

σv = 0.3 m
s

σv = 0.4 m
s

σx = 0.1m 0.70110 0.96608 0.78701 0.34210
σx = 0.2m 0.96803 0.90221 0.59736 0.21893
σx = 0.3m 0.79557 0.60421 0.31241 0.09452
σx = 0.4m 0.36067 0.23074 0.09833 0.02577

(d) ϕ = 10.3 m
s2

Table 6.7: Probability P (xmin ≤ xend ≤ xmax) that the considered AEB system fulfills
the specification xmin ≤ xend ≤ xmax for the customer satisfaction, i.e., the accurate
Monte-Carlo-based estimate P̂108 (xmin ≤ xend ≤ xmax) from M = 108 simulations
of the AEB system used as ground truth, for x0 = 10m, v0 = −10 m

s , fs = 1kHz,
a = 10 m

s2
, xmin = 0, xmax = 0.5m and the BTN-based decision rule fBTN (·;ϕ).
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σv = 0.1 m
s

σv = 0.2 m
s

σv = 0.3 m
s

σv = 0.4 m
s

σx = 0.1m 0.00044 0.00137 0.00090 0.00018
σx = 0.2m 0.00160 0.00120 0.00028 0.00007
σx = 0.3m 0.00089 0.00019 0.00012 0.00005
σx = 0.4m 0.00012 0.00011 0.00004 0.00004

(a) ϕ = 9.7 m
s2

σv = 0.1 m
s

σv = 0.2 m
s

σv = 0.3 m
s

σv = 0.4 m
s

σx = 0.1m 0.00010 0.00125 0.00008 0.00087
σx = 0.2m 0.00157 0.00049 0.00061 0.00006
σx = 0.3m 0.00073 0.00086 0.00012 0.00023
σx = 0.4m 0.00057 0.00019 0.00018 0.00001

(b) ϕ = 9.9 m
s2

σv = 0.1 m
s

σv = 0.2 m
s

σv = 0.3 m
s

σv = 0.4 m
s

σx = 0.1m 0.00032 0.00009 0.00013 0.00100
σx = 0.2m 0.00109 0.00093 0.00106 0.00076
σx = 0.3m 0.00348 0.00078 0.00074 0.00011
σx = 0.4m 0.00062 0.00023 0.00041 0.00009

(c) ϕ = 10.1 m
s2

σv = 0.1 m
s

σv = 0.2 m
s

σv = 0.3 m
s

σv = 0.4 m
s

σx = 0.1m 0.00274 0.00062 0.00034 0.00033
σx = 0.2m 0.00009 0.00110 0.00174 0.00086
σx = 0.3m 0.00179 0.00153 0.00107 0.00030
σx = 0.4m 0.00038 0.00014 0.00063 0.00031

(d) ϕ = 10.3 m
s2

Table 6.8: Absolute error
∣∣∣P̂105 (xmin ≤ xend ≤ xmax)− P (xmin ≤ xend ≤ xmax)

∣∣∣
between the Monte-Carlo-based estimate P̂105 (xmin ≤ xend ≤ xmax) from M =

105 simulations of the considered AEB system and the actual probability
P (xmin ≤ xend ≤ xmax) of fulfilling the specification xmin ≤ xend ≤ xmax

for the customer satisfaction, i.e., the accurate Monte-Carlo-based estimate
P̂108 (xmin ≤ xend ≤ xmax) from M = 108 simulations of the AEB system used as
ground truth, for x0 = 10m, v0 = −10 m

s , fs = 1kHz, a = 10 m
s2

, xmin = 0,
xmax = 0.5m and the BTN-based decision rule fBTN (·;ϕ).
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P (xmin ≤ xend ≤ xmax) of fulfilling the specifications for the customer satisfaction,
i.e., the specification xmin ≤ xend ≤ xmax, with the desired confidence levels κ = 0.9,
κ = 0.95 and κ = 0.99 for the corresponding confidence interval[

P̂M (q ∈ Aq)−∆P, P̂M (q ∈ Aq) + ∆P
]

=
[
P̂M (xmin ≤ xend ≤ xmax)−∆P, P̂M (xmin ≤ xend ≤ xmax) + ∆P

] (6.154)

around the Monte-Carlo-based estimate P̂M (q ∈ Aq) = P̂M (xmin ≤ xend ≤ xmax),
which has the same length 2∆P = 0.00004 as the interval[

P̂ (xmin ≤ xend ≤ xmax)−∆P, P̂ (xmin ≤ xend ≤ xmax) + ∆P
]

= [0.99712− 0.00002, 0.99712 + 0.00002] = [0.99710, 0.99714]
(6.155)

around the worst-case-distance-based approximation P̂ (xmin ≤ xend ≤ xmax) con-
taining the true probability P (xmin ≤ xend ≤ xmax) is 19,497,380, 27,683,305 and
47,814,092, respectively. These simulations come with even higher numbers of eval-
uations of the BTN-based decision rule fBTN (·;ϕ). This example demonstrates that
the adaptation of the worst-case distance approach to the robust design of automated
vehicular safety systems has the potential to significantly reduce the required number
of simulations of the automated vehicular safety system under design by replacing
an expensive Monte Carlo simulation requiring a huge number of simulations of the
automated vehicular safety system for a comparable accuracy, and with this the com-
putational complexity, the load for simulation servers as well as the time and expenses
needed for the development of automated vehicular safety systems. This becomes
even more obvious when considering the following examples for the joint function and
sensor design.

With the quality measure Q in (6.120), i.e., the probability of fulfilling the specifi-
cation xmin ≤ xend ≤ xmax for the customer satisfaction in the driving scenario ξ = ξ0
with the initial distance x0 = 10m and the initial relative velocity v0 = −10 m

s , the
respective required minimum quality level Qmin = Pmin, i.e., the required minimum
probability Pmin of fulfilling this specification for the customer satisfaction in the
driving scenario ξ = ξ0, the costs

C = −σx − σv, (6.156)

which are chosen as simple illustrative example, the possible domain S of the sensor
parameter values σ in (6.138) and the set F = {fc} of the predefined decision rules
for triggering the emergency brake intervention consisting of only one decision rule
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fc (·;ϕ), c ∈ {TTC, adv. TTC,BTN}, with the single function parameter ϕ = ϕ, the
optimization problem (4.11) of the joint function and sensor design reads(

σx,opt, σv,opt, ϕopt
)
=

argmin
σx∈R+,σv∈R+,ϕ∈R

C

s.t. P (xmin ≤ xend ≤ xmax)|x0=10m,v0=−10 m
s
,fs=1kHz,f=fc

≥ Pmin.

(6.157)

Numerically solving this optimization problem for the required minimum prob-
ability Pmin = 0.99 of fulfilling the specification for the customer satisfaction and
the TTC-based decision rule fTTC (·;ϕ), i.e., c = TTC, by using the closed-form
expression (6.99) for the probability P (xmin ≤ xend ≤ xmax) of fulfilling the speci-
fication for the customer satisfaction yields the optimal values σx,opt = 0.08308m,
σv,opt = 0.34015 m

s and ϕopt = 0.49422 s for the standard deviation σx of the sen-
sor measurement errors in the measured distance, the standard deviation σv of the
sensor measurement errors in the measured relative velocity and the function parame-
ter ϕ, respectively. The costs corresponding to these optimal parameter values, the
minimal costs, are C = C∗

min = −0.42323 while the corresponding probability of
fulfilling the specification for the customer satisfaction is P (xmin ≤ xend ≤ xmax) =

0.99000 = Pmin as desired and enforced by the constraint of the optimization problem
with Pmin = 0.99.

The same result is obtained if the optimization problem (6.157) is solved with
the worst-case-distance-based approximation P̂ (xmin ≤ xend ≤ xmax) instead of the
actual probability P (xmin ≤ xend ≤ xmax) of fulfilling the specification for the cus-
tomer satisfaction due to the absence of any approximation errors in case of the
TTC-based decision rule fTTC (·;ϕ). Solving it with the Monte-Carlo-based estimate
P̂105 (xmin ≤ xend ≤ xmax) from M = 105 simulations of the AEB system instead
of the actual probability P (xmin ≤ xend ≤ xmax) of fulfilling the specification for
the customer satisfaction comes close to this result but cannot reach it exactly. The
so obtained optimal parameter values are σx,opt = 0.08041m, σv,opt = 0.34146 m

s
and ϕopt = 0.49444 s. For these parameter values, the probability of fulfilling the
specification for the customer satisfaction is P (xmin ≤ xend ≤ xmax) = 0.99017 >

0.99 = Pmin, which overfulfills the constraint of the optimization problem (6.157) due
to estimation errors of the Monte-Carlo simulation and is the reason why the resulting
costs C = −0.42188 are larger than those for the optimal parameter values obtained
with the actual probability P (xmin ≤ xend ≤ xmax) of fulfilling the specification for
the customer satisfaction.

Moreover, solving the optimization problem (6.157) with the Monte-Carlo-based
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estimate P̂105 (xmin ≤ xend ≤ xmax) requires 63,100,000 simulations of the AEB sys-
tem with even more evaluations of the TTC-based decision rule fTTC (·;ϕ) while
solving it with the worst-case-distance-based approximation P̂ (xmin ≤ xend ≤ xmax)

requires only 1,001 simulations of the AEB system with 4,104,114 evaluations of the
TTC-based decision rule fTTC (·;ϕ) although providing a more accurate result.

A similar picture emerges if the BTN-based decision rule fBTN (·;ϕ) is used instead
of the TTC-based decision rule fTTC (·;ϕ), i.e., c = BTN. Solving the optimization
problem (6.157) for the required minimum probability Pmin = 0.99 of fulfilling the
specification for the customer satisfaction and the BTN-based decision rule fBTN (·;ϕ)
with the worst-case-distance-based approximation P̂ (xmin ≤ xend ≤ xmax) instead
of the actual probability P (xmin ≤ xend ≤ xmax) of fulfilling the specification for
the customer satisfaction, for which no closed-form expression exists in case of the
BTN-based decision rule fBTN (·;ϕ), yields the optimal values σx,opt = 0.13547m,
σv,opt = 0.12880 m

s and ϕopt = 10.11366 m
s2 for the standard deviation σx of the

sensor measurement errors in the measured distance, the standard deviation σv of
the sensor measurement errors in the measured relative velocity and the function
parameter ϕ, respectively. The costs corresponding to these optimal parameter values
are C = −0.26426 while the corresponding probability of fulfilling the specification
for the customer satisfaction is P (xmin ≤ xend ≤ xmax) = 0.99000 = Pmin, which is
the accurate Monte-Carlo-based estimate P̂108 (xmin ≤ xend ≤ xmax) from M = 108

simulations of the AEB system used as ground truth and fulfills the constraint of the
optimization problem with Pmin = 0.99. By solving it with the Monte-Carlo-based
estimate P̂105 (xmin ≤ xend ≤ xmax) fromM = 105 simulations of the AEB system in-
stead of the actual probability P (xmin ≤ xend ≤ xmax) of fulfilling the specification for
the customer satisfaction, the optimal parameter values σx,opt = 0.14770m, σv,opt =

0.11473 m
s and ϕopt = 10.12135 m

s2 are obtained, which deviate slightly from those
obtained with the worst-case-distance-based approximation P̂ (xmin ≤ xend ≤ xmax).
For these parameter values, the probability of fulfilling the specification for the cus-
tomer satisfaction is P (xmin ≤ xend ≤ xmax) = 0.99004 > 0.99 = Pmin leading to
costs C = −0.26243, which are larger than those for the optimal parameter values
obtained with the worst-case-distance-based approximation P̂ (xmin ≤ xend ≤ xmax).

Similarly to the joint function and sensor design for the TTC-based decision rule
fTTC (·;ϕ) before, the 41,700,000 simulations of the AEB system with even more evalu-
ations of the BTN-based decision rule fBTN (·;ϕ) that solving the optimization problem
(6.157) with the Monte-Carlo-based estimate P̂105 (xmin ≤ xend ≤ xmax) requires are
significantly more than the 1,001 simulations of the AEB system with 2,578,523 eval-
uations of the BTN-based decision rule fBTN (·;ϕ) that solving it with the worst-case-
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distance-based approximation P̂ (xmin ≤ xend ≤ xmax) requires although the latter
provides a more accurate result than the former.

These numerical examples demonstrate that the adaptation of the worst-case dis-
tance approach to the robust design of automated vehicular safety systems can signifi-
cantly reduce the required number of simulations of the automated vehicular safety
system under design by replacing an expensive Monte Carlo simulation requiring a
huge number of simulations of the automated vehicular safety system for a comparable
accuracy, and with this the computational complexity, the load for simulation servers
as well as the time and expenses needed for the development of automated vehicular
safety systems.
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After applying the proposed methodology for the robust function and sensor design
that allows to systematically design both functions and sensors of automated vehicular
safety systems such that the customer requirements are fulfilled in a robust manner
despite unavoidable sensor measurement errors to the robust design of an AEB system
in the previous chapter, this chapter demonstrates how it can also be applied to the
robust design of an AES system as a typical more complex example for automated
vehicular safety systems. In part, the application of the proposed design methodology
to the robust design of an AES system has already been published in [47]. The
published results will be revisited and supplemented in the following to provide a
complete picture of the system model, the formulation of the design problems at hand
as optimization problems using the proposed design methodology and their solution
solely based on simulations of the AES system under design without the need for
deriving closed-form expressions for the probabilistic quality measure Q. Deriving
such closed-form expressions would be even more difficult for the AES system due
to the two-dimensional movement of the ego vehicle during the steering maneuver
as compared to the AEB system with the movement of the ego vehicle restricted to
one dimension during the braking maneuver under simplifying assumptions and is not
pursued since this would also not be viable for the complex automated vehicular safety
systems in practice and therefore the developers of such systems have to resort to a
simulation-based design anyway.

7.1 System Model for the Automatic Emergency Steering System

As the system model of the AEB system considered in the previous chapter, the system
model of the considered AES system is also a special case of the general system model
for an automated vehicular safety system introduced in Chapter 2, and can be split
into a mathematical representation of the driving scenario in which the AES system is
applied and a stochastic model of the AES system itself including sensor measurement
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errors.

7.1.1 Mathematical Representation of the Driving Scenario for the Robust Design of the
Automatic Emergency Steering System

The driving scenario that is considered for the robust design of the AES system is
the driving scenario for the robust design of the AEB system in the previous chapter
illustrated in Figure 6.1, where the ego vehicle approaches an object, e.g., another
vehicle. Here, the velocity of the object is assumed to be constant over the time
t. Assuming that the object is in front of the ego vehicle and slower than it at the
time t0 when the driving scenario starts, i.e., xego,f (t0) < xobj,r (t0) and vego (t0) >

vobj (t0) ≥ 0, a collision would necessarily occur if the ego vehicle moved with constant
velocity too. In order to avoid such a collision, an emergency steer intervention
is triggered at time ts ≥ t0, which steers the ego vehicle with a constant lateral
acceleration a > 0 to the left. To sum up, the longitudinal accelerations of the
ego vehicle and the object at time t are alon,ego (t) = alon,ego = 0 and alon,obj (t) =

alon,obj = 0, respectively, while the lateral accelerations of the ego vehicle and the
object at time t are

alat,ego (t) =

{
0, t < ts

a, t ≥ ts
(7.1)

and alat,obj (t) = alat,obj = 0, respectively.
This two-dimensional motion model with piecewise constant accelerations is

captured by the general motion model where the motion of each vehicle during a
driving maneuver is described by the system of differential equations (2.1)–(2.4). This
system of differential equations describing the motion of the ego vehicle is given by
(6.2)–(6.5) with the turn radius rmin,ego of the ego vehicle, where the state of the ego
vehicle at time t is represented by the state vector

[
xego (t) , yego (t) , vego (t) , ψego (t)

]T
consisting of four state variables, which are the coordinates xego (t) and yego (t) of its
center of gravity with respect to the xw- and yw-axis of the world coordinate system
determining its position, its longitudinal velocity vego (t) and its yaw angle ψego (t).
Analogously, the system of differential equations describing the motion of the object
is given by (6.6)–(6.9) with the turn radius rmin,obj of the object, where the state of the
object at time t is represented by the state vector

[
xobj (t) , yobj (t) , vobj (t) , ψobj (t)

]T
consisting of four state variables, which are the coordinates xobj (t) and yobj (t) of its
center of gravity with respect to the xw- and yw-axis of the world coordinate system
determining its position, its longitudinal velocity vobj (t) and its yaw angle ψobj (t).
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The motion of the object with constant velocity in the considered time interval start-
ing at t0 is described by the differential equations (6.6)–(6.9) with alon,obj = alat,obj = 0

while the motion of the ego vehicle with constant velocity in this time interval be-
fore triggering the emergency steer intervention at ts is described by the differential
equations (6.2)–(6.5) with alon,ego = alat,ego = 0 and its motion with constant lateral ac-
celeration alat,ego = a in the time interval starting at ts when triggering the emergency
steer intervention by the same differential equations with alon,ego = 0 and alat,ego = a.
These differential equations can be solved numerically to obtain the trajectory of both
the ego vehicle and the object, i.e., their states

[
xego (t) , yego (t) , vego (t) , ψego (t)

]T
and

[
xobj (t) , yobj (t) , vobj (t) , ψobj (t)

]T at discrete time instants

t = t0 +mδt, (7.2)

m = 0, 1, . . ., with the temporal distance δt between neighboring time instants. The
state variables of these two involved vehicles, namely, the coordinates xego (t) and
yego (t) of the center of gravity of the ego vehicle, its longitudinal velocity vego (t) and
its yaw angle ψego (t) as well as the coordinates xobj (t) and yobj (t) of the center of
gravity of the object, its longitudinal velocity vobj (t) and its yaw angle ψobj (t), at time
t completely determine the state of the considered dynamic system at this time instant
and form the state vector

x (t) =



xego (t)

yego (t)

vego (t)

ψego (t)

xobj (t)

yobj (t)

vobj (t)

ψobj (t)


(7.3)

at time t.

The contours of the ego vehicle and the object are assumed to be rectangles of
the lengths lego and lobj, and widths wego and wobj, respectively. Using the coordinate
transformation (2.6) from coordinates (xv, yv) in the vehicle coordinate system of a ve-
hicle with the state [x (t) , y (t) , v (t) , ψ (t)]T at time t to coordinates (xw (t) , yw (t))
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in the world coordinate system, the coordinates

(
xv,ego,i, yv,ego,i

)
=



(
1
2 lego,

1
2wego

)
, i = 1(

−1
2 lego,

1
2wego

)
, i = 2(

−1
2 lego,−1

2wego
)
, i = 3(

1
2 lego,−1

2wego
)
, i = 4

(7.4)

of the four corners i = 1, 2, 3, 4 of the rectangle representing the contour of the ego vehi-
cle in the vehicle coordinate system of the ego vehicle with the state[
xego (t) , yego (t) , vego (t) , ψego (t)

]T at time t and the coordinates

(
xv,obj,i, yv,obj,i

)
=



(
1
2 lobj,

1
2wobj

)
, i = 1(

−1
2 lobj,

1
2wobj

)
, i = 2(

−1
2 lobj,−1

2wobj
)
, i = 3(

1
2 lobj,−1

2wobj
)
, i = 4

(7.5)

of the four corners i = 1, 2, 3, 4 of the rectangle representing the contour of the object in
the vehicle coordinate system of the object with the state[
xobj (t) , yobj (t) , vobj (t) , ψobj (t)

]T at time t transform to the following coordinates(
xego,i (t) , yego,i (t)

)
and

(
xobj,i (t) , yobj,i (t)

)
in the world coordinate system, respec-

tively:[
xego,i (t)

yego,i (t)

]
=

[
cos
(
ψego (t)

)
− sin

(
ψego (t)

)
sin
(
ψego (t)

)
cos
(
ψego (t)

) ] [xv,ego,i

yv,ego,i

]
+

[
xego (t)

yego (t)

]
, (7.6)[

xobj,i (t)

yobj,i (t)

]
=

[
cos
(
ψobj (t)

)
− sin

(
ψobj (t)

)
sin
(
ψobj (t)

)
cos
(
ψobj (t)

) ] [xv,obj,i

yv,obj,i

]
+

[
xobj (t)

yobj (t)

]
, (7.7)

i = 1, 2, 3, 4. This allows to compute the coordinates
(
xego,i (t) , yego,i (t)

)
and(

xobj,i (t) , yobj,i (t)
)

of the corners of the rectangles representing the contours of the
ego vehicle and the object, respectively, in the world coordinate system determining
the space occupied by the ego vehicle and the object as well as the distance between
them along their trajectory from their states

[
xego (t) , yego (t) , vego (t) , ψego (t)

]T
and

[
xobj (t) , yobj (t) , vobj (t) , ψobj (t)

]T at all discrete time instants t = t0 + mδt,
m = 0, 1, . . ., at which these states are obtained by numerically solving the differential
equations (6.2)–(6.5) and (6.6)–(6.9).

The initial coordinates xego,0 = xego (t0) and yego,0 = yego (t0) of the center of
gravity of the ego vehicle, its initial longitudinal velocity vego,0 = vego (t0) and its ini-
tial yaw angleψego,0 = ψego (t0) = 0 as well as the initial coordinates xobj,0 = xobj (t0)
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and yobj,0 = yobj (t0) of the center of gravity of the object, its initial longitudinal ve-
locity vobj,0 = vobj (t0) and its initial yaw angle ψobj,0 = ψobj (t0) = 0 forming the
initial state vector

x0 =



xego,0

yego,0

vego,0

0

xobj,0

yobj,0

vobj,0

0


=



xego,0

yego,0

vego,0

ψego,0

xobj,0

yobj,0

vobj,0

ψobj,0


=



xego (t0)

yego (t0)

vego (t0)

ψego (t0)

xobj (t0)

yobj (t0)

vobj (t0)

ψobj (t0)


= x (t0) (7.8)

at the beginning of the considered driving scenario together with the time instant t0 at
which their driving maneuvers not initiated by the automated vehicular safety system,
i.e., the AES system, start, their longitudinal and lateral accelerations alon,ego (t0) = 0,
alat,ego (t0) = 0, alon,obj (t0) = 0 and alat,obj (t0) = 0 during these driving maneuvers,
their turn radii rmin,ego and rmin,obj as well as the coordinates

(
xv,ego,i, yv,ego,i

)
and(

xv,obj,i, yv,obj,i
)
, i = 1, 2, 3, 4, of the corners of the rectangles representing the con-

tours of the ego vehicle and the object in the vehicle coordinate systems from (7.4)
and (7.5), respectively, completely characterize the whole considered driving scenario.
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They are the Nξ = 31 scenario parameters collected in the vector

ξ =



xego,0

yego,0

vego,0

ψego,0

xobj,0

yobj,0

vobj,0

ψobj,0

t0
alon,ego (t0)

alat,ego (t0)

alon,obj (t0)

alat,obj (t0)

rmin,ego

rmin,obj

xv,ego,1

yv,ego,1

xv,ego,2

yv,ego,2

xv,ego,3

yv,ego,3

xv,ego,4

yv,ego,4

xv,obj,1

yv,obj,1

xv,obj,2

yv,obj,2

xv,obj,3

yv,obj,3

xv,obj,4

yv,obj,4



=



xego,0

yego,0

vego,0

0

xobj,0

yobj,0

vobj,0

0

t0
0

0

0

0

rmin,ego

rmin,obj
1
2 lego
1
2wego

−1
2 lego

1
2wego

−1
2 lego

−1
2wego
1
2 lego

−1
2wego
1
2 lobj
1
2wobj

−1
2 lobj

1
2wobj

−1
2 lobj

−1
2wobj
1
2 lobj

−1
2wobj



. (7.9)

So, the considered driving scenario can be varied by varying the initial coordinates
xego,0 and yego,0 of the center of gravity of the ego vehicle, its initial longitudinal
velocity vego,0, its turn radius rmin,ego, and its length lego and width wego, the initial
coordinates xobj,0 and yobj,0 of the center of gravity of the object, its initial longitudinal
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velocity vobj,0, its turn radius rmin,obj, and its length lobj and width wobj as well as the
time instant t0 at which their driving maneuvers not initiated by the AES system start
to obtain various driving scenarios, which can be seen as instances of the same basic
driving scenario.

7.1.2 Stochastic Model of the Automatic Emergency Steering System

The general mathematical model of automated vehicular safety systems depicted
in Figure 2.4, which consists of a stochastic model of the senors including their
measurement errors and a mathematical model of the automated vehicular safety
function, does not only apply to the AEB system considered in the previous chapter
but also to the AES system considered in this chapter.

7.1.2.1 Stochastic Model of the Sensors of the Automatic Emergency Steering System

As in the AEB system, the sensors take measurements with the sampling rate fs at
the time instants tn = n

fs
with the discrete time index n = 0, 1, . . . and deliver the

measurements y [n] in (6.51) consisting of the measured distance x̂ [n] and relative
velocity v̂ [n] at the time instant tn. The actual distance x [n] between the ego vehicle
and the object and their actual relative velocity v [n], the M = 2 quantities observed
by the sensors at the time instant tn, are functions of the state x [n] of the dynamic
system at this time instant, which, in case of the considered AES system, is given by

x [n] = x (tn) =



xego (tn)

yego (tn)

vego (tn)

ψego (tn)

xobj (tn)

yobj (tn)

vobj (tn)

ψobj (tn)


=



xego [n]

yego [n]

vego [n]

ψego [n]

xobj [n]

yobj [n]

vobj [n]

ψobj [n]


(7.10)

according to (7.3) with N = 8 state variables, namely, the coordinates xego [n] and
yego [n] of the center of gravity of the ego vehicle, its longitudinal velocity vego [n] and
its yaw angle ψego [n] as well as the coordinates xobj [n] and yobj [n] of the center of
gravity of the object, its longitudinal velocity vobj [n] and its yaw angle ψobj [n], at the
time instant tn. The measured distance x̂ [n] at the time instant tn expressed in (6.49)
is the sum of the actual distance x [n] between the ego vehicle and the object, and the
sensor measurement error εx [n] in the measured distance at this time instant while the
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measured relative velocity v̂ [n] at the time instant tn expressed in (6.50) is the sum
of their actual relative velocity v [n] and the sensor measurement error εv [n] in the
measured relative velocity at this time instant such that these measurements y [n] are
also a function of the state x [n] at the time instant tn and, in addition, of the errors
ε [n] at the time instant tn in (6.52), which consist of the E = 2 sensor measurement
errors εx [n] and εv [n] at this time instant, as expressed in (2.8).

Again, the sensor measurement errors in the measured distance between the ego
vehicle and the object, and their relative velocity at the time instants tn are mod-
eled by additive i.i.d. zero-mean Gaussian random variables εx [n] ∼ N

(
0, σ2x

)
of

standard deviation σx and εv [n] ∼ N
(
0, σ2v

)
of standard deviation σv, respectively.

Consequently, the error vector ε [n] at the time instant tn in (6.52) is Gaussian, i.e.,
ε [n] ∼ N (µn,Cn), and has the pdf fε[n] (ε [n]) in (2.10) with the mean µn = 0

from (6.53) and the covariance matrix Cn from (6.54) under the assumption that
the sensor measurement errors εx [n] and εv [n] at the time instant tn are statistically
independent.

So, the standard deviations σx and σv of the sensor measurement errors and the
sampling rate fs are the Nσ = 3 sensor parameters that determine the sensors in this
stochastic model of them and are collected in the vector σ stated in (6.55) as in the
stochastic model of the sensors in the AEB system before.

7.1.2.2 Mathematical Model of the Function of the Automatic Emergency Steering System

The function of the considered AES system derives safety-relevant information from the
measurements y [n] at the time instant tn in order to interpret the current driving situa-
tion, and decides on whether to intervene by triggering an emergency steer intervention
for mitigating a dangerous driving situation using a decision rule. In the following,
the same three exemplary decision rules as in case of the AEB system, namely, the
TTC-based, the advanced TTC-based and the BTN-based decision rule, which are
represented by the decision functions fTTC (·;ϕ), fadv. TTC (·;ϕ) and fBTN (·;ϕ) in
(6.58), (6.61) and (6.65), respectively, and can also be used for deciding on whether to
trigger an emergency steer intervention instead of an emergency brake intervention,
are considered. They have the form shown in (2.18) withNϕ = 1 adjustable parameter
ϕ = ϕ ∈ R and can easily be extended or replaced by others, which might also have
more parameters.

As long as the used decision rule is not fulfilled, i.e., fc (y [n] ;ϕ) = 0, c ∈
{TTC, adv. TTC,BTN}, the function does not trigger the emergency steer intervention,
and, as soon as the decision rule is fulfilled for the measurements y [n] at a time instant
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tn, i.e., fc (y [n] ;ϕ) = 1, the function triggers the emergency steer intervention. The
smallest n for which fc (y [n] ;ϕ) = 1 is the discrete time index

ns = min
n∈N0

n s.t. fc (y [n] ;ϕ) = 1 (7.11)

that corresponds to the time instant

ts = tns =
ns

fs
(7.12)

at which the measurements y [ns] leading to triggering the emergency steer intervention
are made and also to the time instant at which the emergency steer intervention is
triggered under the simplifying assumption that it is instantly triggered without any
delay after making these measurements.

7.2 Robust Function and Sensor Design for the Automatic Emergency Steering System

The proposed methodology for the robust function and sensor design allows to system-
atically design both functions and sensors of automated vehicular safety systems in
general and thus not only those of the AEB system considered in the previous chapter
but also those of the considered AES system in particular such that the customer
requirements are fulfilled in a robust manner despite unavoidable sensor measurement
errors. The function and the sensors can be designed by solving the optimization
problems (4.1), (4.9) and (4.11) formulated in Chapter 4 for the robust function de-
sign, sensor design as well as joint function and sensor design, respectively, based
on closed-form expressions for the probabilistic quality measure Q or solely based
on simulations of the automated vehicular safety system under design as described in
Chapter 5. For the design of the considered AES system, the following quality measure
Q, which measures to what extent the function meets the customer requirements in a
robust manner despite the unavoidable sensor measurement errors, can be used.

The customer is satisfied with the AES system applied in the driving scenario
illustrated in Figure 6.1 if the smallest distance d between the ego vehicle and the object
during an emergency steer intervention is neither too small nor too large. In other
words, this smallest distance d has to lie in an acceptance interval [dmin, dmax] from the
minimal tolerable smallest distance dmin to the maximal tolerable smallest distance
dmax, which can be chosen in a user-specific way. Hence, besides the final distance xend

after an emergency brake intervention, the smallest distance d during an emergency
steer intervention is a further example for one of the customer satisfaction properties
qi, i = 1, 2, . . . , Nq, which have to lie in certain acceptance intervals [qL,i, qU,i] such
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that the intervention by an automated vehicular safety system is acceptable and the
customer is satisfied with the system, and the acceptance interval [dmin, dmax] for the
smallest distance d with the lower bound dmin and the upper bound dmax corresponds
to the acceptance interval [qL,i, qU,i] for this customer satisfaction property qi with the
lower bound qL,i and the upper bound qU,i.

In general, the customer satisfaction properties qi collected in the customer sat-
isfaction vector q =

[
q1, q2, . . . , qNq

]T
= q (σ, ε, f,ϕ, ξ) are subject to the random

sensor measurement errors ε [n] at the nend + 1 time instants tn, n = 0, 1, . . . , nend,
in the considered time interval collected in the vector ε given by (4.21) according to
(4.22). This is also the case for the smallest distance d as an example for such a cus-
tomer satisfaction property qi. Consequently, it is a random variable as well and might
lie inside or outside the acceptance interval [dmin, dmax] such that the specification

dmin ≤ d ≤ dmax (7.13)

for the customer satisfaction defined by this acceptance interval is fulfilled or violated
as the customer satisfaction properties qi are random variables and might lie inside or
outside the acceptance intervals [qL,i, qU,i], i = 1, 2, . . . , Nq, in general such that the
specifications qL,i ≤ qi ≤ qU,i, i = 1, 2, . . . , Nq, for the customer satisfaction defined
by these acceptance intervals are fulfilled or violated.

The quality measure Q, which measures to what extent the function meets the
customer requirements in a robust manner despite the unavoidable sensor measurement
errors, is defined as the worst-case probability PWC (q ∈ Aq) of fulfilling the specifi-
cations for the customer satisfaction, i.e., the minimum of the probability P (q ∈ Aq)

that all specifications qL,i ≤ qi ≤ qU,i, i = 1, 2, . . . , Nq, for the customer satisfaction
are fulfilled in all considered driving scenarios ξ from the scenario set X in (4.33).
Assuming that the smallest distance d is the only considered customer satisfaction
property, i.e., Nq = 1 and q = q1 = d, the quality measure Q is the minimum of the
probability P (dmin ≤ d ≤ dmax) that the smallest distance d fulfills the specification
dmin ≤ d ≤ dmax for the customer satisfaction in all considered driving scenarios ξ
from the scenario set X :

Q = min
ξ∈X

P (dmin ≤ d ≤ dmax) . (7.14)

With this quality measure Q, the constraint of the optimization problems (4.9) and
(4.11) for the sensor design as well as the joint function and sensor design, respectively,
reads

min
ξ∈X

P (dmin ≤ d ≤ dmax) ≥ Pmin, (7.15)
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where the required minimum worst-case probability Pmin of fulfilling the specification
dmin ≤ d ≤ dmax for the customer satisfaction is the required minimum quality level
Qmin according to (4.39).

Deriving closed-form expressions for the probability of fulfilling the specification
for the customer satisfaction and thus for the quality measure Q would be even more
difficult for the AES system due to the two-dimensional movement of the ego vehicle
during the steering maneuver as compared to the AEB system with the movement
of the ego vehicle restricted to one dimension during the braking maneuver under
simplifying assumptions and is not pursued since this would also not be viable for the
complex automated vehicular safety systems in practice and therefore the developers
of such systems have to resort to a simulation-based design anyway. Due to this fact,
the solution of the optimization problems (4.1), (4.9) and (4.11) for the robust function
design, sensor design as well as joint function and sensor design, respectively, solely
based on simulations of the AES system under design without the need for deriving
closed-form expressions for the probabilistic quality measure Q is chosen to design its
function and sensors.

7.3 Numerical Examples for the Robust Design of the Automatic Emergency Steering
System

The numerical examples presented in this section demonstrate how the function and the
sensors of the considered AES system can be designed with the proposed methodology
for the robust function and sensor design. Throughout these numerical examples, the
sampling rate is fs = 1kHz, the lateral acceleration after triggering the emergency
steer intervention is a = 5 m

s2
, and the minimal and maximal tolerable smallest distances

between the ego vehicle and the object during the emergency steer intervention are
dmin = 0 and dmax = 0.5m, respectively.

For the sake of simplicity, only the driving scenario that is shown in Figure 6.1
and characterized by the scenario parameters ξ0 of the form given by (7.9) with the
initial coordinates xego,0 = 0 and yego,0 = 0 of the center of gravity of the ego vehicle,
its initial longitudinal velocity vego,0 = 10 m

s , its turn radius rmin,ego = 10m, and
its length lego = 4m and width wego = 2m, the initial coordinates xobj,0 = 20m
and yobj,0 = 0 of the center of gravity of the object, its initial longitudinal velocity
vobj,0 = 0, and its length lobj = 4m and width wobj = 2m is considered. Hence,
the scenario set X consists of only this single driving scenario: X = {ξ0}. As
a consequence, the quality measure Q defined in (7.14), which measures to what
extent the function meets the customer requirements in a robust manner despite the
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unavoidable sensor measurement errors, is the probability of fulfilling the specification
dmin ≤ d ≤ dmax for the customer satisfaction evaluated at this driving scenario
ξ = ξ0:

Q = P (dmin ≤ d ≤ dmax)|ξ=ξ0
. (7.16)

As in the robust design of the AEB system with sensor measurement errors in both
the measured distance and measured relative velocity before, the possible domain for
the values of the sensor parameters σ is given by (6.138) and the same costs C in
(6.156) are chosen as simple illustrative example. With this possible domain S of
the sensor parameter values σ and these costs C as well as the quality measure Q
in (7.16), i.e., the probability of fulfilling the specification dmin ≤ d ≤ dmax for the
customer satisfaction in the driving scenario ξ = ξ0, the respective required minimum
quality level Qmin = Pmin, i.e., the required minimum probability Pmin of fulfilling
this specification for the customer satisfaction in the driving scenario ξ = ξ0, and
the set F = {fc} of the predefined decision rules for triggering the emergency steer
intervention consisting of only one decision rule fc (·;ϕ), c ∈ {TTC, adv. TTC,BTN},
with the single function parameter ϕ = ϕ, the optimization problem (4.11) of the joint
function and sensor design reads(

σx,opt, σv,opt, ϕopt
)
=

argmin
σx∈R+,σv∈R+,ϕ∈R

C s.t. P (dmin ≤ d ≤ dmax)|ξ=ξ0,fs=1kHz,f=fc
≥ Pmin.

(7.17)

The probability P (dmin ≤ d ≤ dmax) of fulfilling the specification dmin ≤ d ≤
dmax for the customer satisfaction can be estimated by a Monte Carlo simulation. In
general, the Monte-Carlo-simulation-based estimate for the probability P (q ∈ Aq) of
fulfilling all specifications qL,i ≤ qi ≤ qU,i, i = 1, 2, . . . , Nq, for the customer satis-
faction in case of given sensor parameters σ, a given decision rule f , given function
parameters ϕ and scenario parameters ξ is the frequency P̂M (q ∈ Aq) of fulfilling
all these specifications in the Monte Carlo simulation from (5.1). In the Monte Carlo
simulation, M realizations ε1, ε2, . . . , εM of all sensor measurement errors stated in
(6.139), i.e., the sensor measurement errors εx [n] and εv [n] in the measured distance
and relative velocity, respectively, at all time instants tn, n = 0, 1, . . . , nend, in the
considered time interval are generated at random according to their probability dis-
tribution, i.e., the i.i.d. sensor measurement errors εx [n] in the measured distance
and the i.i.d. sensor measurement errors εv [n] in the measured relative velocity at
these time instants tn, which are also statistically independent from each other at the
same time instant tn, are drawn from the zero-mean Gaussian distribution N

(
0, σ2x

)
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with the standard deviation σx and the zero-mean Gaussian distribution N
(
0, σ2v

)
with the standard deviation σv, respectively. Here, the discrete time index nend of the
last time instant tnend of the considered time interval is chosen to be that of the last
time instant before the collision of the ego vehicle and the object that would occur
without emergency steer intervention and is given by (6.141) as in the previous robust
design of the AEB system. Each realization εm, m = 1, 2, . . . ,M , of the sensor
measurement errors ε together with the given sensor parameters σ, the given decision
rule f , the given function parameters ϕ, i.e., the single function parameter ϕ = ϕ

parameterizing the TTC-based decision rule fTTC (·;ϕ), the advanced TTC-based
decision rule fadv. TTC (·;ϕ) and the BTN-based decision rule fBTN (·;ϕ), and the sce-
nario parameters ξ = ξ0 is mapped to the respective values qm = q (σ, εm, f,ϕ, ξ)

of the customer satisfaction properties q, i.e., the respective value of the smallest
distance d between the ego vehicle and the object, the only customer satisfaction
property q = q1 = d considered here, according to (4.22) by a simulation of the
AES system. After computing the measured distance x̂ [n] in (6.49) and the measured
relative velocity v̂ [n] in (6.50) forming the measurement vector y [n] in (6.51) from
the generated sensor measurement errors εx [n] and εv [n], respectively, and evaluating
the used decision rule fc (y [n] ;ϕ), c ∈ {TTC, adv. TTC,BTN}, at the time instants
tn, n = 0, 1, . . . , ns, to determine the discrete time index ns of the time instant ts at
which the emergency steer intervention is triggered as the smallest discrete time index
n for which the result of the evaluation of the decision function is fc (y [n] ;ϕ) = 1

according to (7.11), the smallest distance d is determined numerically by taking the
minimum of all distances between the ego vehicle and the object during the steering
maneuver at the discrete time instants of the simulation in (7.2) with the temporal
distance δt = 10−4s between neighboring time instants. If there is not such a discrete
time index ns in the considered time interval, i.e., ns /∈ {0, 1, . . . , nend}, no emergency
steer intervention is triggered in this time interval such that the ego vehicle and the
object collide. Whenever they collide, the smallest distance d between them is set
to −∞ and the specification dmin ≤ d ≤ dmax for the customer satisfaction is not
fulfilled.

In the M random experiments, it is counted how often the value of the smallest
distance d lies in the acceptance interval [dmin, dmax] and thus fulfills the specification
dmin ≤ d ≤ dmax for the customer satisfaction to obtain the number M1,M of how
often this is the case and the frequency

P̂M (dmin ≤ d ≤ dmax) =
M1,M

M
(7.18)

of fulfilling the specification dmin ≤ d ≤ dmax for the customer satisfaction, which is
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an estimate for the probability P (dmin ≤ d ≤ dmax) of fulfilling this specification for
the customer satisfaction.

Alternatively, the probability P (dmin ≤ d ≤ dmax) of fulfilling the specification
dmin ≤ d ≤ dmax for the customer satisfaction can also be approximated by using
the adaptation of the worst-case distance approach to the robust design of automated
vehicular safety systems. In general, the worst-case-distance-based approximation
of the probability P (q ∈ Aq) of fulfilling all specifications qL,i ≤ qi ≤ qU,i, i =
1, 2, . . . , Nq, for the customer satisfaction is given by (5.82). Thus, in case of the
AES system at hand, the probability P (dmin ≤ d ≤ dmax) of fulfilling the specification
dmin ≤ d ≤ dmax for the customer satisfaction can be approximated by

P̂ (dmin ≤ d ≤ dmax) =
∏
n∈I

{
Φ(−βn) , µ ∈ Iε,n
Φ(βn) , µ ∈ Iε,n

·

(
1−

∏
n∈I

{
Φ(−βn) , µ ∈ Iε,n
Φ(βn) , µ ∈ Iε,n

)
.

(7.19)

The set I of the indices n of the time instants tn, n = 0, 1, . . . , nend, in the
considered time interval at which the function must not decide for an emergency steer
intervention to fulfill the specification dmin ≤ d ≤ dmax for the customer satisfaction
is given by (5.88) and the set I of the indices n of the time instants tn in the considered
time interval at which the function must decide for an emergency steer intervention at
least once to fulfill this specification by (5.89), where the indices nmin and nmax are
determined by simulations of the AES system as explained at the end of Chapter 5
for automated vehicular safety systems in general. For each time instant tn, n =

0, 1, . . . , nend, the AES system is simulated after deciding for an emergency steer
intervention and triggering it at one of those time instants tn in order to map this time
instant together with the given scenario parameters ξ = ξ0 to the respective values
of the customer satisfaction properties q, i.e., the respective value of the smallest
distance d between the ego vehicle and the object, the only customer satisfaction
property q = q1 = d considered here, where the smallest distance d is determined
numerically by taking the minimum of all distances between the ego vehicle and the
object during the steering maneuver at the discrete time instants of the simulation
in (7.2) with the temporal distance δt = 10−4s between neighboring time instants
as in the Monte Carlo simulation. The so obtained smallest distances d fulfill the
specification dmin ≤ d ≤ dmax for the customer satisfaction if the time instant tn
at which the emergency steer intervention is triggered has a discrete time index n
between 775 and 884, i.e., n ∈ {775, 776, . . . , 884}. Since these time instants tn for
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which the specification dmin ≤ d ≤ dmax for the customer satisfaction is fulfilled if the
function decides for an emergency steer intervention based on the sensor measurements
y [n] at one of these time instants form a block with indices n ranging from nmin to
nmax, where 0 ≤ nmin = 775 ≤ nmax = 884 ≤ nend = 1,600, and this specification
for the customer satisfaction is not fulfilled if the function does not decide for an
emergency steer intervention based on the sensor measurements y [n] at any of the
considered time instants tn, which inevitably leads to a collision, the function must not
decide for an intervention based on the sensor measurements y [n] at the time instants
tn, n = 0, 1, . . . , nmin − 1, before this block and must decide for an intervention
based on the sensor measurements y [n] at the time instants tn, n = nmin, nmin +

1, . . . , nmax, in this block at least once to fulfill the specification dmin ≤ d ≤ dmax

for the customer satisfaction. Consequently, the set I of the indices n of the time
instants tn at which the function must not decide for an emergency steer intervention
based on the corresponding sensor measurements y [n] to fulfill the specification
dmin ≤ d ≤ dmax for the customer satisfaction, and the set I of the indices n of the
time instants tn at which the function must decide for an emergency steer intervention
based on the corresponding sensor measurements y [n] at least once to fulfill the
specification dmin ≤ d ≤ dmax for the customer satisfaction read I = {0, 1, . . . , 774}
and I = {775, 776, . . . , 884}, respectively. So, they have the form in (5.88) and (5.89)
with nmin = 775 and nmax = 884.

As in the robust design of the AEB system, the check of whether µ ∈ Iε,n or µ ∈
Iε,n can be performed as described in (5.86) and (5.87). If the result of evaluating the
decision rule fc (·;ϕ), c ∈ {TTC, adv. TTC,BTN}, with a single function parameter
ϕ = ϕ at the mean µn = 0 of the sensor measurement errors ε [n] at the time instant
tn, i.e., the error-free measurements y (x [n] ,µn) = y (x [n] ,0) at the time instant
tn, is fc (y (x [n] ,µn) ;ϕ) = fc (y (x [n] ,0) ;ϕ) = 1, then µ ∈ Iε,n and, otherwise,
if it is fc (y (x [n] ,µn) ;ϕ) = fc (y (x [n] ,0) ;ϕ) = 0, then µ ∈ Iε,n.

The optimization problem in (5.85), whose solution yields the worst-case distance
βn at the time instant tn, is given by (6.144) in case of both the previously considered
AEB system and the considered AES system using the decision rule fc (·;ϕ) param-
eterized by a single function parameter ϕ = ϕ with the square of the Mahalanobis
distance βn (ε [n]) of the E = 2 sensor measurement errors ε [n] at the time instant tn,
whose mean and covariance matrix are given in (6.53) and (6.54), respectively, from
their mean µn = 0 stated in (5.49). With the definition of three considered decision
rules fc (·;ϕ) in (6.58), (6.61) and (6.65), this optimization problem transforms to
(6.145), (6.146) and (6.147) for the TTC-based decision rule fTTC (·;ϕ), the advanced
TTC-based decision rule fadv. TTC (·;ϕ) and the BTN-based decision rule fBTN (·;ϕ),
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respectively.

Solving the optimization problem (7.17) for the required minimum probability
Pmin = 0.99 of fulfilling the specification for the customer satisfaction and the BTN-
based decision rule fBTN (·;ϕ), i.e., c = BTN, with the worst-case-distance-based ap-
proximation P̂ (dmin ≤ d ≤ dmax) instead of the actual probability
P (dmin ≤ d ≤ dmax) of fulfilling the specification for the customer satisfaction yields
the optimal values σx,opt = 0.37099m, σv,opt = 0.18155 m

s and ϕopt = 7.34528 m
s2

for the standard deviation σx of the sensor measurement errors in the measured
distance, the standard deviation σv of the sensor measurement errors in the mea-
sured relative velocity and the function parameter ϕ, respectively. The costs cor-
responding to these optimal parameter values are C = −0.55254 while the corre-
sponding probability of fulfilling the specification for the customer satisfaction is
P (dmin ≤ d ≤ dmax) = 0.98991 < Pmin = 0.99, which is the accurate Monte-Carlo-
based estimate P̂108 (dmin ≤ d ≤ dmax) fromM = 108 simulations of the AES system
used as ground truth and approximately fulfills the constraint of the optimization prob-
lem with Pmin = 0.99 but slightly violates it due to approximation errors of the worst-
case-distance-based approximation. By solving it with the Monte-Carlo-based estimate
P̂105 (dmin ≤ d ≤ dmax) from M = 105 simulations of the AES system instead of the
actual probability P (dmin ≤ d ≤ dmax) of fulfilling the specification for the customer
satisfaction, the optimal parameter values σx,opt = 0.38636m, σv,opt = 0.16424 m

s
and ϕopt = 7.32785 m

s2 are obtained, which deviate slightly from those obtained
with the worst-case-distance-based approximation P̂ (dmin ≤ d ≤ dmax). For these
parameter values, the costs are C = −0.55059, which are larger than those for the
optimal parameter values obtained with the worst-case-distance-based approximation
P̂ (dmin ≤ d ≤ dmax), and the probability of fulfilling the specification for the customer
satisfaction is P (dmin ≤ d ≤ dmax) = 0.98999 < Pmin = 0.99, which approximately
fulfills the constraint of the optimization problem with Pmin = 0.99 but slightly vio-
lates it due to estimation errors of the Monte Carlo simulation. The problem of slightly
violating the constraint of the optimization problem with the required minimum prob-
ability Pmin = 0.99 of fulfilling the specification for the customer satisfaction by
both the Monte-Carlo- and worst-case-distance-based solution of the optimization
problem because of estimation and approximation errors, respectively, can be handled
by slightly increasing the required minimum probability Pmin in the constraint of the
optimization problem such that it is slightly larger than the actual required minimum
probability P ′

min = 0.99 of fulfilling the specification for the customer satisfaction
and the probability P (dmin ≤ d ≤ dmax) of fulfilling this specification resulting from
solving the optimization problem is not smaller than the actual required minimum
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probability P ′
min = 0.99 as desired despite estimation and approximation errors.

Similarly to the joint function and sensor design for the AEB system in the previous
chapter, the 51,700,000 simulations of the AES system with even more evaluations of
the BTN-based decision rule fBTN (·;ϕ) that solving the optimization problem (7.17)
with the Monte-Carlo-based estimate P̂105 (dmin ≤ d ≤ dmax) requires are significantly
more than the 1,601 simulations of the AES system with 4,497,559 evaluations of the
BTN-based decision rule fBTN (·;ϕ) that solving it with the worst-case-distance-based
approximation P̂ (dmin ≤ d ≤ dmax) requires although the latter provides a result of
similar accuracy as the former. This demonstrates once again that the adaptation of
the worst-case distance approach to the robust design of automated vehicular safety
systems can significantly reduce the required number of simulations of the automated
vehicular safety system under design by replacing an expensive Monte Carlo simulation
requiring a huge number of simulations of the automated vehicular safety system for
a comparable accuracy, and with this the computational complexity, the load for
simulation servers as well as the time and expenses needed for the development of
automated vehicular safety systems.
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Conclusion 8
In this thesis, a new methodology for the robust design of automated vehicular safety
systems considering unavoidable sensor measurement errors has been developed. It
is the first general design methodology with which both sensors and functions for a
variety of automated vehicular safety systems can be systematically designed while
taking both the unavoidable sensor measurement errors and the customer satisfaction
into account. This is of high importance because the functions of automated vehicular
safety systems use the measurements of sensors sensing the environment of the vehicle
in order to interpret the driving situation and trigger appropriate actions in dangerous
driving situations, e.g., an emergency brake intervention, such that they are typically
very vulnerable to sensor imperfections and unavoidable sensor measurement errors
have a negative impact on both the safety and the satisfaction of the customer.

8.1 Summary

After introducing the system model, which can be split into a mathematical repre-
sentation of the considered driving scenario in which the automated vehicular safety
system is applied and a stochastic model of the automated vehicular safety system itself
including sensor measurement errors, a general overview of a robust system design as
performed in integrated circuit design is given in order to understand how ideas from
integrated circuit design, a completely different application area, can be transferred to
the design of automated vehicular safety systems, which marks a paradigm shift. Sev-
eral analogies to the design of integrated circuits considering manufacturing tolerances
help to formulate the robust design of automated vehicular safety systems considering
sensor measurement errors as optimization problems based on the introduced system
model, which allow for a systematic solution of the design problems. In particular,
three basic design problems have been considered, which application engineers having
to select sensors with appropriate properties and to adjust the functions in the develop-
ment of automated vehicular safety systems are typically confronted with, namely, the
function design for given sensors, the sensor design for a given function as well as the
joint function and sensor design. For each of these three basic design problems, an
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optimization problem has been formulated by elaborating on the analogies to a robust
system design as performed in integrated circuit design, which demonstrates that the
performance properties, the statistical parameters and the operating parameters in such
a robust system design correspond to the customer satisfaction properties, the random
variables modeling the sensor measurement errors and the scenario parameters in the
robust design of automated vehicular safety systems considering sensor measurement
errors, respectively. Solving the formulated optimization problems yields the optimal
sensor parameter values, the best decision rule for triggering the respective action by
the function and the optimal function parameter values of the automated vehicular
safety system under design with respect to a quality measure. As the worst-case proba-
bility of fulfilling the performance specifications, i.e., the minimum of the probability
that all performance specifications defined by acceptance intervals for the performance
properties are fulfilled in the whole tolerance region of the operating parameters, is
used as quality measure for the robust system design, the worst-case probability of
fulfilling the specifications for the customer satisfaction, i.e., the minimum of the
probability that all specifications for the customer satisfaction defined by acceptance
intervals for the customer satisfaction properties are fulfilled in all driving scenarios
with the various scenario parameter values from the set of considered driving scenar-
ios, is used as quality measure for the robust design of automated vehicular safety
systems in order to take the unavoidable sensor measurement errors and the customer
satisfaction into account.

The solution of the optimization problem formulated for the function design max-
imizes this quality measure, which measures to what extent the function meets the
customer requirements in a robust manner despite the unavoidable sensor measurement
errors, such that the requirements of the customers are met in a robust manner despite
the unavoidable sensor measurement errors to the greatest possible extent. Moreover,
the constraints of the optimization problems formulated for the sensor as well as joint
function and sensor design define design spaces, from which application engineers
have to choose the sensor parameter values, the decision rule and the function param-
eter values such that the quality measure is not smaller than the required minimum
quality level and thus the customer requirements are met in a robust manner despite the
unavoidable sensor measurement errors to the desired extent. Hence, application engi-
neers are provided with design spaces that represent the requirements the sensors have
to fulfill, which is of particular importance for the overall design task in an industrial
environment. The solution of the optimization problems formulated for the sensor as
well as joint function and sensor design minimizes the costs inside the design spaces
such that the quality measure does not lie below the required minimum quality level
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and thus the customer requirements are met in a robust manner despite the unavoidable
sensor measurement errors to the desired extent at minimal costs.

With the formulation of the optimization problems and the definition of the quality
measure, a new methodology for the robust design of automated vehicular safety
systems considering unavoidable sensor measurement errors has been developed.
Solving the formulated optimization problems requires several evaluations of the
quality measure. As there is usually no closed-form expression for the quality measure
due to the high complexity of automated vehicular safety systems in practice, it has to be
evaluated based on simulations of the automated vehicular safety system under design.
To this end, different possibilities for such a simulation-based evaluation of the quality
measure again based on analogies to a robust system design as performed in integrated
circuit design have been suggested. This eventually leads to a new methodology for
the robust design of automated vehicular safety systems that allows to systematically
design both functions and sensors of automated vehicular safety systems by solving
the formulated optimization problems solely based on simulations of the automated
vehicular safety system under design such that the customer requirements are fulfilled
in a robust manner despite unavoidable sensor measurement errors.

The Monte Carlo simulation is one possibility for the simulation-based evaluation
of the quality measure, which has been defined to be the minimum of the probability
of fulfilling the specifications for the customer satisfaction in all considered driving
scenarios. As the probability of fulfilling the performance specifications in the robust
system design, the probability of fulfilling the specifications for the customer satis-
faction is estimated by a Monte Carlo simulation. The estimate for the probability of
fulfilling the specifications for the customer satisfaction obtained by such a Monte Carlo
simulation is the frequency of fulfilling the specifications for the customer satisfaction
in the repeated simulations of the automated vehicular safety system with realizations
of the sensor measurement errors drawn at random from their probability distribution.
Estimating the probability of fulfilling the specifications for the customer satisfaction
in this way has a beneficial advantage but also an important drawback. On the one
hand, it can be implemented easily and it is easy to apply it to different automated
vehicular safety systems due to its generality. On the other hand, however, a large
number of simulations of the automated vehicular safety system has to be performed in
order to obtain an accurate estimate for the probability of fulfilling the specifications
for the customer satisfaction, which might lead to a prohibitively large computational
complexity in practice.

In order to overcome this problem, the probability of fulfilling the specifications
for the customer satisfaction can alternatively be approximated by using worst-case
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distances, which have already been used in the integrated circuit design considering
manufacturing tolerances for approximating the probability of fulfilling the perfor-
mance specifications. The direct application of this worst-case distance approach to
the robust design of automated vehicular safety systems inherits the benefits from
its application to the integrated circuit design. The integration of the multivariate
Gaussian pdf of the sensor measurement errors in the error acceptance region defined
as the set of all values of the sensor measurement errors for which the automated
vehicular safety system fulfills the specifications for the customer satisfaction to obtain
the probability of fulfilling the specifications for the customer satisfaction is simplified
to approximating this probability by evaluating the standard normal cdf at worst-case
distances. Each required worst-case distance can be determined by an optimization
minimizing the distance between the sensor measurement errors on the boundary of
one of the individual error acceptance region partitions into which the error acceptance
region can be decomposed and their mean. Appropriate optimization methods for
solving these optimizations choose the simulations of the automated vehicular safety
system required for solving the optimizations automatically in a smart way serving the
achievement of the optimization goal and thus replace a computationally expensive
Monte Carlo simulation, which just chooses an extensive amount of simulations of the
automated vehicular safety system according to the underlying probability distribution
in a brute-force way for estimating the probability of fulfilling the specifications for
the customer satisfaction, by a few relevant simulations that deliver the required infor-
mation for approximating this probability. This is the reason why approximating the
probability of fulfilling the specifications for the customer satisfaction by worst-case
distances can lead to a significant reduction of computational complexity in the robust
design of automated vehicular safety systems as compared to estimating it by a Monte
Carlo simulation when a high estimation accuracy is required.

In order to achieve a better approximation of the probability of fulfilling the specifi-
cations for the customer satisfaction and simplify the optimizations for determining the
required worst-case distances at the same time, the worst-case distance approach has
been adapted to the robust design of automated vehicular safety systems by analyzing
and exploiting the special structure of the error acceptance region. More precisely,
this adaptation of the worst-case distance approach to the robust design of automated
vehicular safety systems decomposes the original optimization problems for determin-
ing the required worst-case distances into optimization problems that are easier to
solve, and more accurately approximates the probability of fulfilling the specifications
for the customer satisfaction by evaluating the standard normal cdf at the worst-case
distances determined by solving these optimization problems. This mainly requires
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only several evaluations of the decision rule for triggering the respective action besides
a few simulations of the automated vehicular safety system.

With the two considered possibilities for the simulation-based evaluation of the
quality measure, namely, the Monte Carlo simulation and the worst-case distance ap-
proach, the design task can be performed solely based on simulations of the automated
vehicular safety system under design. This makes the developed methodology for the
robust function and sensor design considering sensor measurement errors applicable
to various automated vehicular safety systems.

After developing the methodology for the robust design of automated vehicular
safety systems considering unavoidable sensor measurement errors, it has finally been
applied to two typical examples for automated vehicular safety systems, namely, an
AEB and an AES system. These application examples provide a complete picture of
the system model, the formulation of the design problems at hand as optimization
problems using the proposed design methodology and their solution based on closed-
form expressions for the quality measure or solely based on simulations of the AEB
or AES system under design without the need for deriving closed-form expressions
for the quality measure. Deriving such closed-form expressions would also not be
viable for the complex automated vehicular safety systems in practice and therefore the
developers of such systems have to resort to a simulation-based design. In particular,
the model of the AEB system has been kept as simple as possible in order to illustrate
the basic principle of the design methodology and allow for the derivation of results
in closed form at several points for an accurate evaluation of the design methodology.
The considered numerical examples demonstrate that the adaptation of the worst-case
distance approach to the robust design of automated vehicular safety systems can signif-
icantly reduce the required number of simulations of the automated vehicular safety
system under design by replacing an expensive Monte Carlo simulation requiring a
huge number of simulations of the automated vehicular safety system for a comparable
accuracy, and with this the computational complexity, the load for simulation servers
as well as the time and expenses needed for the development of automated vehicular
safety systems.

8.2 Future Work

Although the developed methodology for the robust design of automated vehicular
safety systems considering unavoidable sensor measurement errors has successfully
been applied to an AEB and AES system as a proof of concept, the uncomplicated
usage of the design methodology by application engineers in the development of
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automated vehicular safety systems requires an extension of the developed simulation-
based design methodology to an easy-to-use software tool. It must automatically
select one of the two considered possibilities for the simulation-based evaluation of
the quality measure, namely, the Monte Carlo simulation and the worst-case distance
approach, depending on the desired accuracy, available computational resources and
the fulfillment of the assumptions to be fulfilled for the applicability of the worst-case
distance approach such that application engineers do not need any a priori knowledge
about the details of the simulation techniques inside the software tool in order to design
automated vehicular safety systems with it.

For a wide applicability of the worst-case distance approach inside the software
tool allowing for a significant reduction of the computational complexity at a high
accuracy, the worst-case distance approach has to be adapted to the robust design of
automated vehicular safety systems without making the simplifying assumptions in this
thesis. So far, it has been assumed that the sensor measurement errors at different time
instants are statistically independent and the function decides on whether to trigger
the respective action based on sensor measurements at a single time instant. As the
sensor measurement errors at different time instants might be statistically dependent
and the function might decide on whether to trigger the respective action based on
sensor measurements at several time instants in practice, it is of high importance to
adapt the worst-case distance approach to the robust design of automated vehicular
safety systems also for these cases.

Furthermore, the worst-case distance approach exploits the properties of the nor-
mal distribution of the sensor measurement errors, which are assumed to be Gaussian.
In certain scenarios, this assumption of Gaussian sensor measurement errors might
be justified. Even if this Gaussian assumption is not justified, one can still proceed
with the Gaussian random variables, which can be considered as a kind of virtual
sensor measurement errors, as they can be transformed to random variables with a
different probability distribution modeling the actual sensor measurement errors and
this transformation can be considered to be part of the sensors. However, finding this
transformation for a given target probability distribution of the actual sensor measure-
ment errors is not trivial. First of all, it has to be examined for which target probability
distributions such a transformation can be found before finding the transformation of
the virtual sensor measurement errors to the actual sensor measurement errors itself
can be automated. This transformation has to be automated in the software tool and,
more precisely, integrated into the simulations of the automated vehicular safety system
under design that have to be performed according to the methodology for the robust
design of automated vehicular safety systems such that application engineers do not
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have to care about the necessary transformation in case of actual sensor measurement
errors that are not Gaussian when designing automated vehicular safety systems.

Finding the transformation of the virtual sensor measurement errors to the actual
sensor measurement errors for a given target probability distribution requires the knowl-
edge of this probability distribution. This emphasizes that the developed methodology
for the robust design of automated vehicular safety systems considering unavoidable
sensor measurement errors heavily relies on accurate sensor models describing the
probability distribution of the sensor measurement errors. In this thesis, it has been
assumed that those sensor models are available, i.e., the probability distribution of the
sensor measurement errors is known. In practice, however, accurate realistic sensor
models are often not available. Using techniques from machine learning in order
to obtain such sensor models, i.e., learn them, from real sensor data is a promising
approach for future work.
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Probability that the Statistical
Parameters s Lie in Âs,b,i A

The probability that the statistical parameters s lie in the approximate individual
parameter acceptance region partition Âs,b,i bounded by the tangential hyperplane
touching the boundary of the individual parameter acceptance region partition As,b,i at
the point sb,i where the distance between the statistical parameters s on this boundary
and their mean s0 is minimum, namely, the worst-case distance βb,i, is derived in the
following.

As any other hyperplane, the tangential hyperplane touching the boundary of
the individual parameter acceptance region partition As,b,i at the point sb,i can be
described as the set {

s ∈ RNs : nT
b,iC

−1s = δb,i
}

(A.1)

of statistical parameters s with a normal vector nb,i ∈ RNs normalized such that it
has unit norm ‖nb,i‖C = 1 and a parameter δb,i ∈ R, which are scaled such that

nT
b,iC

−1s0 ≤ δb,i. (A.2)

Here, the inner product
〈s1, s2〉C = sT

2C
−1s1 (A.3)

between s1 ∈ RNs and s2 ∈ RNs , and the norm

‖s‖C =
√
〈s, s〉C =

√
sTC−1s (A.4)

induced by this inner product is used, which also allows to express the Mahalanobis
distance β (s) used as distance measure in terms of this norm:

β (s) =

√
(s− s0)

T C−1 (s− s0) = ‖s− s0‖C . (A.5)

As the tangential hyperplane touches the boundary of the individual parameter accep-
tance region partition As,b,i at the point sb,i where the hyperellipsoid on which all
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statistical parameters s have the worst-case distance βb,i from their mean s0 touches
the boundary of As,b,i, this hyperellipsoid also touches the tangential hyperplane, the
boundary of the corresponding approximate individual parameter acceptance region
partition Âs,b,i at the point sb,i. This can also be observed for the two statistical pa-
rameters s = [s1, s2]

T in Figure 3.2 and Figure 3.3, where the tangential hyperplanes
are tangential lines and the hyperellipsoids are ellipses. As the distance β (s) of the
statistical parameters s on the boundary of the individual parameter acceptance re-
gion partition As,b,i is minimum at the point sb,i, the distance β (s) of the statistical
parameters s on the boundary of the corresponding approximate individual parame-
ter acceptance region partition Âs,b,i is also minimum at this point. Therefore, the
worst-case distance βb,i, b ∈ {L,U}, obtained by minimizing the distance β (s) of
the statistical parameters s on the boundary of the individual parameter acceptance
region partition As,b,i according to (3.59) and (3.60) is the same as the worst-case
distance obtained by minimizing the distance β (s) of the statistical parameters s on the
boundary of the corresponding approximate individual parameter acceptance region
partition Âs,b,i described by the set of statistical parameters s stated in (A.1):

βb,i = min
s∈RNs

β (s) s.t. fi = fb,i

= min
s∈RNs

β (s) s.t. nT
b,iC

−1s = δb,i.
(A.6)

Furthermore, the point sb,i where the hyperellipsoid on which all statistical parameters
s have the worst-case distance βb,i from their mean s0 touches the boundaries of both
the individual parameter acceptance region partition As,b,i and the corresponding
approximate individual parameter acceptance region partition Âs,b,i is the minimizer
in these minimization problems:

sb,i = argmin
s∈RNs

β (s) s.t. fi = fb,i

= argmin
s∈RNs

β (s) s.t. nT
b,iC

−1s = δb,i.
(A.7)

As

∀s1, s2 ∈ RNs : β (s1) < β (s2) ⇔ β2 (s1) < β2 (s2) , (A.8)

the objective β (s) of these minimization problems can be replaced by β2 (s) such that
the minimizer in these minimization problems is also the minimizer in the following
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minimization problems:

sb,i = argmin
s∈RNs

β2 (s) s.t. fi = fb,i

= argmin
s∈RNs

(s− s0)
T C−1 (s− s0) s.t. nT

b,iC
−1s = δb,i

= argmin
s∈RNs

sTC−1s− sT
0C

−1s− sTC−1s0 s.t. nT
b,iC

−1s = δb,i.

(A.9)

Due to the symmetry of the covariance matrix C and its inverse C−1, it simplifies to

sb,i = argmin
s∈RNs

sTC−1s−
(
sT
0C

−1s
)T − sTC−1s0 s.t.

(
nT
b,iC

−1s
)T

= δb,i

= argmin
s∈RNs

sTC−1s− sT (C−1
)T

s0 − sTC−1s0 s.t. sT (C−1
)T

nb,i = δb,i

= argmin
s∈RNs

sTC−1s− 2sTC−1s0 s.t. sTC−1nb,i − δb,i = 0.

(A.10)

The Lagrangian function for this constrained optimization problem reads

L (s, λ) = sTC−1s− 2sTC−1s0 + λ
(
sTC−1nb,i − δb,i

)
. (A.11)

Setting its derivative with respect to the statistical parameters s

∂

∂s
L (s, λ) =

(
C−1 +

(
C−1

)T
)
s− 2C−1s0 + λC−1nb,i

= 2C−1 (s− s0) + λC−1nb,i

(A.12)

to 0 yields
2C−1 (s− s0) = −λC−1nb,i (A.13)

and
s = −λ

2
nb,i + s0. (A.14)

Substituting this into the constraint of the optimization problem (A.9) results in

−λ
2
nT
b,iC

−1nb,i + nT
b,iC

−1s0 = −λ
2
‖nb,i‖2C + nT

b,iC
−1s0

= −λ
2
+ nT

b,iC
−1s0 = δb,i

(A.15)

and
λ = −2

(
δb,i − nT

b,iC
−1s0

)
. (A.16)
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This is plugged into (A.14) to obtain the solution of the optimization problem (A.10):

sb,i =
(
δb,i − nT

b,iC
−1s0

)
nb,i + s0. (A.17)

Since this solution sb,i is the minimizer in the original minimization problem (A.6),
its distance β (sb,i) from the mean of the statistical parameters s0 is the worst-case
distance βb,i:

β2 (sb,i) = (sb,i − s0)
T C−1 (sb,i − s0)

=
(
δb,i − nT

b,iC
−1s0

)2
nT
b,iC

−1nb,i

=
(
δb,i − nT

b,iC
−1s0

)2 ‖nb,i‖2C
=
(
δb,i − nT

b,iC
−1s0

)2
= β2b,i.

(A.18)

As the normal vector nb,i and δb,i describing the boundary of the approximate individ-
ual parameter acceptance region partition Âs,b,i as the set of statistical parameters s
in (A.1) have been scaled such that (A.2) is fulfilled, i.e., δb,i − nT

b,iC
−1s0 ≥ 0, this

implies that
βb,i = δb,i − nT

b,iC
−1s0. (A.19)

Substituting this into (A.17) yields the final expression for the point sb,i where the
hyperellipsoid on which all statistical parameters s have the worst-case distance βb,i
from their mean s0 touches the boundaries of both the individual parameter accep-
tance region partition As,b,i and the corresponding approximate individual parameter
acceptance region partition Âs,b,i:

sb,i = βb,inb,i + s0. (A.20)

From (A.19), it follows that

δb,i = βb,i + nT
b,iC

−1s0 (A.21)

such that the set of statistical parameters s in (A.1) describing the boundary of the
approximate individual parameter acceptance region partition Âs,b,i reads{

s ∈ RNs : nT
b,iC

−1s = δb,i
}
=
{
s ∈ RNs : nT

b,iC
−1s = βb,i + nT

b,iC
−1s0

}
=
{
s ∈ RNs : nT

b,iC
−1 (s− s0) = βb,i

}
=
{
s ∈ RNs : 〈s− s0,nb,i〉C = βb,i

}
.

(A.22)

This hyperplane, on which nT
b,iC

−1s = δb,i, divides the space RNs into the two open
half-spaces in one of which nT

b,iC
−1s < δb,i while in the other one nT

b,iC
−1s > δb,i.

202



The open half-space wherenT
b,iC

−1s > δb,i never contains the mean s0 ∈ Âs,b,i of the
statistical parameters s fulfilling (A.2). Therefore, it cannot be the half-space included
in the approximate individual parameter acceptance region partition Âs,b,i, in which the
mean s0 of the statistical parameters s lies because it is assumed to lie in the individual
parameter acceptance region partition As,b,i. Consequently, the open half-space where
nT
b,iC

−1s < δb,i together with the bounding hyperplane where nT
b,iC

−1s = δb,i

form the approximate individual parameter acceptance region partition Âs,b,i, where
nT
b,iC

−1s ≤ δb,i:

Âs,b,i =
{
s ∈ RNs : nT

b,iC
−1s ≤ δb,i

}
. (A.23)

With (A.21), the approximate individual parameter acceptance region partition can be
expressed in terms of the worst-cased distance βb,i:

Âs,b,i =
{
s ∈ RNs : nT

b,iC
−1s ≤ βb,i + nT

b,iC
−1s0

}
=
{
s ∈ RNs : nT

b,iC
−1 (s− s0) ≤ βb,i

}
=
{
s ∈ RNs : 〈s− s0,nb,i〉C ≤ βb,i

}
.

(A.24)

As the statistical parameters s are Gaussian with mean

E [s] = s0 (A.25)

and covariance

E
[
(s− E [s]) (s− E [s])T

]
= E

[
(s− s0) (s− s0)

T
]
= C, (A.26)

the random variable 〈s− s0,nb,i〉C = nT
b,iC

−1 (s− s0) is Gaussian as well with
mean

E
[
〈s− s0,nb,i〉C

]
= E

[
nT
b,iC

−1 (s− s0)
]
= nT

b,iC
−1 (E [s]− s0) = 0 (A.27)

and variance

E
[(
〈s− s0,nb,i〉C − E

[
〈s− s0,nb,i〉C

])2]
= E

[(
〈s− s0,nb,i〉C

)2]
= E

[(
nT
b,iC

−1 (s− s0)
)2]

= E
[(
nT
b,iC

−1 (s− s0)
) (

nT
b,iC

−1 (s− s0)
)T
]

= E
[
nT
b,iC

−1 (s− s0) (s− s0)
T (C−1

)T
nb,i

]
= nT

b,iC
−1 E

[
(s− s0) (s− s0)

T
]
C−1nb,i

= nT
b,iC

−1CC−1nb,i = nT
b,iC

−1nb,i = ‖nb,i‖2C = 1,

(A.28)

203



Appendix A. Probability that the Statistical Parameters s Lie in Âs,b,i

i.e., standard Gaussian:

〈s− s0,nb,i〉C = nT
b,iC

−1 (s− s0) ∼ N (0, 1) . (A.29)

The probability that the statistical parameters s lie in the approximate individual
parameter acceptance region partition Âs,b,i can thus be computed as follows:

P
(
s ∈ Âs,b,i

)
= P

(
〈s− s0,nb,i〉C ≤ βb,i

)
= Φ(βb,i) . (A.30)
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Properties Implied by Statistical
Independence of Sensor

Measurement Errors B
The statistical independence of the sensor measurement errors ε [n1] and ε [n2] at
different time instants tn1 and tn2 , n1, n2 ∈ N0, n1 6= n2, implies the following
properties.

The probability that the vector ε consisting of the sensor measurement errors ε [n]
at the time instants tn, n = 0, 1, . . . , nend, as stated in (4.21) lies in the intersection⋂
n∈I Iε,n of the error regions Iε,n without intervention at the time instants tn with

indices n from a set I ⊂ {0, 1, . . . , nend} as defined in (5.84) reads

P

(
ε ∈

⋂
n∈I

Iε,n

)
=

∫
⋂

n∈I Iε,n

fε (ε) dε

=

∫
⋂

n∈
{
n1,n2,...,nend,I

}{ε∈RE
(
nend+1

)
:f(y(x[n],ε[n]);ϕ)=0

} fε (ε) dε

=

∫
{ε[n1]∈RE :f(y(x[n1],ε[n1]);ϕ)=0}

· · ·
∫

{
ε
[
nend,I

]
∈RE :f

(
y
(
x
[
nend,I

]
,ε
[
nend,I

])
;ϕ

)
=0

}∫
RE

· · ·
∫
RE

fε (ε) dε [nend,I] · · · dε [n1] dε [nend,I] · · · dε [n1] .

(B.1)

Here, n1, n2, . . . , nend,I denote the indices in the set I = {n1, n2, . . . , nend,I} and
n1, n2, . . . , nend,I the other indices in the set {0, 1, . . . , nend}, i.e., {0, 1, . . . , nend} /I =
{n1, n2, . . . , nend,I}. Since the pdf fε (ε) of all sensor measurement errors ε factorizes
into the pdfs fε[n] (ε [n]) of the sensor measurement errors ε [n] at the time instants
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tn, n = 0, 1, . . . , nend, as stated in (4.23) due to their statistical independence,

P

(
ε ∈

⋂
n∈I

Iε,n

)

=

∫
{ε[n1]∈RE :f(y(x[n1],ε[n1]);ϕ)=0}

· · ·
∫

{
ε
[
nend,I

]
∈RE :f

(
y
(
x
[
nend,I

]
,ε
[
nend,I

])
;ϕ

)
=0

}∫
RE

· · ·
∫
RE

nend∏
n=0

fε[n] (ε [n]) dε [nend,I] · · · dε [n1] dε [nend,I] · · · dε [n1]

=

∫
{ε[n1]∈RE :f(y(x[n1],ε[n1]);ϕ)=0}

fε[n1] (ε [n1]) · · ·

∫
{
ε
[
nend,I

]
∈RE :f

(
y
(
x
[
nend,I

]
,ε
[
nend,I

])
;ϕ

)
=0

} fε
[
nend,I

] (ε [nend,I])

∫
RE

fε[n1] (ε [n1]) · · ·
∫
RE

fε
[
nend,I

] (ε [nend,I])

dε [nend,I] · · · dε [n1] dε [nend,I] · · · dε [n1]

=

∫
{ε[n1]∈RE :f(y(x[n1],ε[n1]);ϕ)=0}

fε[n1] (ε [n1]) dε [n1]

︸ ︷︷ ︸
=P (f(y(x[n1],ε[n1]);ϕ)=0)

· · ·

∫
{
ε
[
nend,I

]
∈RE :f

(
y
(
x
[
nend,I

]
,ε
[
nend,I

])
;ϕ

)
=0

} fε
[
nend,I

] (ε [nend,I]) dε [nend,I]

︸ ︷︷ ︸
=P

(
f
(
y
(
x
[
nend,I

]
,ε
[
nend,I

])
;ϕ

)
=0

)∫
RE

fε[n1] (ε [n1]) dε [n1]

︸ ︷︷ ︸
=1

· · ·
∫
RE

fε
[
nend,I

] (ε [nend,I]) dε [nend,I]

︸ ︷︷ ︸
=1

=
∏
n∈I

P (f (y (x [n] , ε [n]) ;ϕ) = 0) =
∏
n∈I

P
(
ε ∈ Iε,n

)
.

(B.2)

So, the probability P
(
ε ∈

⋂
n∈I Iε,n

)
that the sensor measurement errors ε lie in

all error regions Iε,n without intervention at the time instants tn with indices n ∈ I
factorizes into the probabilities P

(
ε ∈ Iε,n

)
that they lie in the individual error

regions Iε,n without intervention at these time instants tn. This shows that the events{
ε ∈ Iε,n

}
that they lie in the individual error regions Iε,n without intervention at
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the time instants tn, n ∈ I, are statistically independent.
If the set I is considered to be the union of two disjoint sets I1 and I2, i.e., I = I1∪I2

with I1, I2 ⊂ {0, 1, . . . , nend} and I1 ∩ I2 = ∅, it follows from (B.2) that

P

ε ∈
⋂
n∈I1

Iε,n ∩
⋂
n∈I2

Iε,n

 = P

ε ∈
⋂

n∈I1∪I2

Iε,n


=

∏
n∈I1∪I2

P
(
ε ∈ Iε,n

)
=
∏
n∈I1

P
(
ε ∈ Iε,n

)
︸ ︷︷ ︸
=P

(
ε∈

⋂
n∈I1

Iε,n

)
∏
n∈I2

P
(
ε ∈ Iε,n

)
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Since
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the last result leads to
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Appendix B. Properties Implied by Statistical Independence of Sensor Measurement Errors

This factorization

P

ε ∈
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Iε,n ∩
⋂
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 (B.6)

of the probability P
(
ε ∈

⋂
n∈I1 Iε,n ∩

⋂
n∈I2 Iε,n

)
that the sensor measurement

errors ε lie in all error regions Iε,n without intervention at the time instants tn with
indices n ∈ I1 and do not lie in all error regions Iε,n without intervention at the time
instants tn with indices n ∈ I2 into the probability P

(
ε ∈

⋂
n∈I1 Iε,n

)
that they lie in

all error regions Iε,n without intervention at the time instants tn with indices n ∈ I1
and the probability P

(
ε ∈

⋂
n∈I2 Iε,n

)
that they do not lie in all error regions Iε,n

without intervention at the time instants tn with indices n ∈ I2 demonstrates that the
events

{
ε ∈

⋂
n∈I1 Iε,n

}
and

{
ε ∈

⋂
n∈I2 Iε,n

}
that the sensor measurement errors

ε lie in all error regions Iε,n without intervention at the time instants tn with indices
n ∈ I1 and that they do not lie in all error regions Iε,n without intervention at the time
instants tn with indices n ∈ I2, respectively, are statistically independent.
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Closed-Form Solutions of Differential
Equations Describing Vehicle Motion C
Closed-form solutions of the differential equations (2.1)–(2.4) describing the vehicle
motion during a driving maneuver starting at tstart and ending at tend exist for the
special cases of constant longitudinal and lateral acceleration. They are derived in the
following.

C.1 Vehicle Motion with Constant Longitudinal Acceleration

If the vehicle moves with the constant longitudinal acceleration alon while its lateral
acceleration is alat = 0 and its longitudinal velocity v (t) is assumed to be nonnegative
at all times t in the considered time interval [tstart, tend], (2.4) simplifies to

ψ̇ (t) = 0. (C.1)

This means that the yaw angleψ (t) is constant in the considered time interval [tstart, tend],
i.e.,

ψ (t) = ψ (tstart) . (C.2)

Due to (2.3), the expression for the longitudinal velocity v (t) must have the form

v (t) = alont+ Cv (C.3)

with a constant Cv. For t = tstart, it reads v (tstart) = alontstart + Cv, which implies
that Cv = v (tstart)− alontstart and

v (t) = alont+ v (tstart)− alontstart = alon (t− tstart) + v (tstart) . (C.4)

With (C.2) and (C.4), (2.1) and (2.2) become

ẋ (t) = (alon (t− tstart) + v (tstart)) cos (ψ (tstart)) , (C.5)
ẏ (t) = (alon (t− tstart) + v (tstart)) sin (ψ (tstart)) . (C.6)
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Appendix C. Closed-Form Solutions of Differential Equations Describing Vehicle Motion

Therefore, the expressions for the coordinates x (t) and y (t) of the center of gravity
of the vehicle with respect to the xw- and yw-axis of the world coordinate system
determining its position must have the form

x (t) =

(
1

2
alon (t− tstart)

2 + v (tstart) t

)
cos (ψ (tstart)) + Cx, (C.7)

y (t) =

(
1

2
alon (t− tstart)

2 + v (tstart) t

)
sin (ψ (tstart)) + Cy (C.8)

with constants Cx and Cy. For t = tstart, it holds that

x (tstart) = v (tstart) tstart cos (ψ (tstart)) + Cx, (C.9)
y (tstart) = v (tstart) tstart sin (ψ (tstart)) + Cy, (C.10)

which implies that

Cx = x (tstart)− v (tstart) tstart cos (ψ (tstart)) , (C.11)
Cy = y (tstart)− v (tstart) tstart sin (ψ (tstart)) (C.12)

and

x (t) =

(
1

2
alon (t− tstart)

2 + v (tstart) t

)
cos (ψ (tstart)) + x (tstart)

− v (tstart) tstart cos (ψ (tstart))

=

(
1

2
alon (t− tstart)

2 + v (tstart) (t− tstart)

)
cos (ψ (tstart)) + x (tstart) ,

(C.13)

y (t) =

(
1

2
alon (t− tstart)

2 + v (tstart) t

)
sin (ψ (tstart)) + y (tstart)

− v (tstart) tstart sin (ψ (tstart))

=

(
1

2
alon (t− tstart)

2 + v (tstart) (t− tstart)

)
sin (ψ (tstart)) + y (tstart) .

(C.14)

To sum up, the solution of the differential equations (2.1)–(2.4) describing the
vehicle motion during a driving maneuver starting at tstart and ending at tend with the
constant longitudinal acceleration alon and the lateral acceleration alat = 0 under the
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C.2 Vehicle Motion with Constant Lateral Acceleration

assumption v (t) ≥ 0 for t ∈ [tstart, tend] is given by (C.13), (C.14), (C.4) and (C.2):

x (t) =

(
1

2
alon (t− tstart)

2 + v (tstart) (t− tstart)

)
cos (ψ (tstart)) + x (tstart) ,

(C.15)

y (t) =

(
1

2
alon (t− tstart)

2 + v (tstart) (t− tstart)

)
sin (ψ (tstart)) + y (tstart) ,

(C.16)

v (t) = alon (t− tstart) + v (tstart) , (C.17)
ψ (t) = ψ (tstart) . (C.18)

If the constant longitudinal acceleration is zero, i.e., alon = 0, in addition, the
vehicle moves with constant velocity and the solution of the differential equations
(2.1)–(2.4) simplifies to

x (t) = v (tstart) (t− tstart) cos (ψ (tstart)) + x (tstart) , (C.19)
y (t) = v (tstart) (t− tstart) sin (ψ (tstart)) + y (tstart) , (C.20)
v (t) = v (tstart) , (C.21)
ψ (t) = ψ (tstart) (C.22)

and the assumption v (t) ≥ 0 for t ∈ [tstart, tend] to v (tstart) ≥ 0.

C.2 Vehicle Motion with Constant Lateral Acceleration

If the vehicle moves with the constant lateral acceleration alat while its longitudinal
acceleration is alon = 0, (2.3) reads

v̇ (t) = 0. (C.23)

This means that the longitudinal velocity v (t) is constant in the considered time interval
[tstart, tend], i.e.,

v (t) = v (tstart) . (C.24)

Assuming that the lateral acceleration alat is small enough such that alat
v(t) <

v(t)
rmin

for
this constant longitudinal velocity, (2.4) simplifies to

ψ̇ (t) =
alat

v (tstart)
. (C.25)

Due to this, the expression for the yaw angle ψ (t) must have the form

ψ (t) =
alat

v (tstart)
t+ Cψ (C.26)
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Appendix C. Closed-Form Solutions of Differential Equations Describing Vehicle Motion

with a constant Cψ. For t = tstart, it reads ψ (tstart) =
alat

v(tstart)
tstart +Cψ, which implies

that Cψ = ψ (tstart)− alat
v(tstart)

tstart and

ψ (t) =
alat

v (tstart)
t+ ψ (tstart)−

alat
v (tstart)

tstart =
alat

v (tstart)
(t− tstart) + ψ (tstart) .

(C.27)
With (C.24) and (C.27), (2.1) and (2.2) become

ẋ (t) = v (tstart) cos

(
alat

v (tstart)
(t− tstart) + ψ (tstart)

)
, (C.28)

ẏ (t) = v (tstart) sin

(
alat

v (tstart)
(t− tstart) + ψ (tstart)

)
. (C.29)

Therefore, the expressions for the coordinates x (t) and y (t) of the center of gravity
of the vehicle with respect to the xw- and yw-axis of the world coordinate system
determining its position must have the form

x (t) =
v2 (tstart)

alat
sin

(
alat

v (tstart)
(t− tstart) + ψ (tstart)

)
+ Cx, (C.30)

y (t) = −v
2 (tstart)

alat
cos

(
alat

v (tstart)
(t− tstart) + ψ (tstart)

)
+ Cy (C.31)

with constants Cx and Cy. For t = tstart, it holds that

x (tstart) =
v2 (tstart)

alat
sin (ψ (tstart)) + Cx, (C.32)

y (tstart) = −v
2 (tstart)

alat
cos (ψ (tstart)) + Cy, (C.33)

which implies that

Cx = x (tstart)−
v2 (tstart)

alat
sin (ψ (tstart)) , (C.34)

Cy = y (tstart) +
v2 (tstart)

alat
cos (ψ (tstart)) (C.35)
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C.2 Vehicle Motion with Constant Lateral Acceleration

and

x (t) =
v2 (tstart)

alat
sin

(
alat

v (tstart)
(t− tstart) + ψ (tstart)

)
+ x (tstart)

− v2 (tstart)

alat
sin (ψ (tstart))

=
v2 (tstart)

alat

(
sin

(
alat

v (tstart)
(t− tstart) + ψ (tstart)

)
− sin (ψ (tstart))

)
+ x (tstart) ,

(C.36)

y (t) =− v2 (tstart)

alat
cos

(
alat

v (tstart)
(t− tstart) + ψ (tstart)

)
+ y (tstart)

+
v2 (tstart)

alat
cos (ψ (tstart))

=
v2 (tstart)

alat

(
cos (ψ (tstart))− cos

(
alat

v (tstart)
(t− tstart) + ψ (tstart)

))
+ y (tstart) .

(C.37)

To sum up, the solution of the differential equations (2.1)–(2.4) describing the
vehicle motion during a driving maneuver starting at tstart and ending at tend with the
constant lateral acceleration alat and the longitudinal acceleration alon = 0 under the
assumption alat

v(tstart)
< v(tstart)

rmin
is given by (C.36), (C.37), (C.24) and (C.27):

x (t) =
v2 (tstart)

alat

(
sin

(
alat

v (tstart)
(t− tstart) + ψ (tstart)

)
− sin (ψ (tstart))

)
+ x (tstart) ,

(C.38)

y (t) =
v2 (tstart)

alat

(
cos (ψ (tstart))− cos

(
alat

v (tstart)
(t− tstart) + ψ (tstart)

))
+ y (tstart) ,

(C.39)

v (t) = v (tstart) , (C.40)

ψ (t) =
alat

v (tstart)
(t− tstart) + ψ (tstart) . (C.41)
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