
FAKULTÄT FÜR INFORMATIK

DER TECHNISCHEN UNIVERSITÄT MÜNCHEN

Bachelor’s Thesis in Informatics

Implementation and Evaluation of
Additional Particle Simulation Types with

AutoPas

Raphael Penz

FAKULTÄT FÜR INFORMATIK

DER TECHNISCHEN UNIVERSITÄT MÜNCHEN

Bachelor’s Thesis in Informatics

Implementation and Evaluation of Additional
Particle Simulation Types with AutoPas

Implementierung und Evaluierung von
zusätzlichen Partikel Simulationsarten mit

AutoPas

Author: Raphael Penz

Supervisor: Univ.-Prof. Dr. Hans-Joachim Bungartz

Advisor: Fabio Alexander Gratl, M.Sc.

Date: 15.10.2021

I confirm that this bachelor’s thesis is my own work and I have documented all sources and
material used.

Munich, 15.10.2021 Raphael Penz

Acknowledgements

I would like to express my gratitude to my supervisor, Fabio Gratl, who guided me
throughout this project with constant support and valuable feedback.

vii

viii

Abstract

The simulation of particles plays a massive role in today’s world. From the simulation
of water currents in hydrodynamics to the simulation of molecules in molecular dynamics,
particle-based simulation techniques find use in many areas. Each simulation needing to
fulfill its own specific purposes paired with the broad field of particle simulation applications
has led to the creation of a multitude of simulation approaches. This thesis implements and
evaluates an additional particle simulation type for AutoPas, an open-source C++ library
for delivering optimal node-level performance for particle simulations. The new particle
is implemented using the discrete element method and then compared to the pre-existing
implementation of a molecular dynamics particle.

ix

x

Zusammenfassung

Die Simulation von Partikeln spielt eine massive Rolle in der Welt von heute. Von der
Simulation von Strömungen im Bereich der Hydrodynamik zu der Simulation von Molekülen
im Bereich der molekular Dynamik, Partikel basierte Simulationstechniken finden einen
Nutzen in vielen Bereichen. Dass jede Simulation einen spezifischen Zweck erfüllen muss,
gekuppelt mit dem weiten Feld der Partikel Simulationen, hat zu der Entwicklung einer
Vielzahl von Simulationsmethoden geführt. Diese Bachelorarbeit implementiert und evaluiert
einen zusätzlichen Partikel-Simulationstypen für AutoPas, eine Open-Source C++ Bibliothek
für das Liefern von optimaler node-level Performance für Partikel Simulationen. Das neue
Partikel wurde implementiert mithilfe der Diskrete-Elemente-Methode und danach verglichen
mit der sich bereits vor befindlichen Implementation eines Partikels der molekular Dynamik.

xi

xii

Contents

Acknowledgements vii

Abstract ix

Zusammenfassung xi

I. Introduction and Background 1

1. Introduction 2

2. Theoretical Background 3
2.1. Discrete Element Method . 3

2.1.1. General . 3

2.1.2. Common DEM Particles . 4

2.1.3. Force interactions . 4

2.2. Molecular Dynamics . 6

2.2.1. The Lennard-Jones-12-6-Potential 6

2.3. Störmer-Verlet Algorithm . 7

2.4. AutoPas . 8

2.4.1. Particle Containers . 8

2.4.2. Data and Memory Layout . 10

2.4.3. Newton’s third law . 11

2.4.4. Traversals . 11

II. Implementation 14

3. DEM Sphere Particle 15
3.1. Particle Implementation . 15

3.2. Functor Implementation . 16

3.2.1. AoS force calculation . 17

3.2.2. SoA force calculation . 17

3.2.3. Further functions . 17

4. Simulation 19
4.1. Simulation preparation . 19

4.2. Simulation loop . 20

xiii

III. Results 21

5. Testing Setup 22

6. Particle Funnel Simulation 23
6.1. Performance Comparison . 23
6.2. Physical Comparison . 23

7. FallingDrop Simulation 27
7.1. Performance Comparison . 27
7.2. Physical Comparison . 27

8. Conclusion and Future Work 31

IV. Appendix 32

Bibliography 34

Part I.

Introduction and Background

1

1. Introduction

There are various fundamental approaches for particle simulation and even more algorithms
and their implementations for each of these approaches. These methods often differ signif-
icantly in their functionality and in what they are used to simulate. For example, using
molecular dynamics(MD), a system can be created to observe the motion and interaction of
particles at a molecular level or using the discrete element method(DEM), a system can be
designed to simulate the interactions between granular particles with differing shapes.

This thesis is developed in the context of the AutoPas library. AutoPas is a node-level
auto-tuned particle simulation library developed in the context of the TaLPas project. 1

The C++ library AutoPas is intended to be used as a black-box particle container to deliver
optimal node-level performance for particle simulations by using auto-tuning to dynamically
select the optimal combination algorithms and configuration options at runtime. Such
algorithms and configuration options include particle storage algorithms, neighborhood
search and interaction algorithms, parallelization strategies, and so forth.[GST+19]

The goal of this thesis is to expand the AutoPas libraries example proxy applications
with particles and their corresponding pairwise force calculations to widen the range of
pre-implemented particle simulation methods. In this project, we implement a particle and
force functor for the simulation of spherical DEM particles with an accompanying simulation.
In order to provide performance data, example simulations of these particles are created
and integrated into the example application ”md-flexible,” previously only used for the
simulation of molecular dynamics. To obtain more insight into this simulation technique
and how AutoPas handles it, a comparison between the new DEM implementation and the
previous MD implementation is made.

1https://github.com/AutoPas/AutoPas

2

https://github.com/AutoPas/AutoPas

2. Theoretical Background

In this chapter, relevant background knowledge about the discrete element method and
molecular dynamics is provided, and also an introduction of key components of the AutoPas
library.

2.1. Discrete Element Method

2.1.1. General

Figure 2.1.: Collision comparison between the physical situation (left, soft sphere being
deformed on contact), simulation via finite element method (middle, sphere’s
body splitting into smaller finite pieces for force modelling) and simulation
via discrete element method (right, shapes overlapping, overlap used for force
modelling).
Source: [MC14]

The discrete element method is a method that models the forces between colliding particles
based on a materials elasticity parameters and the overlap of rigid particle shapes. Figure 2.1
gives a short overview and comparison between the physical situation, the finite element
method, and the discrete element method. As shown, in a real physical situation(left) a
sphere would be slightly deformed during a collision, while in a simulation using the finite
element method(middle) the force modelling requires the sphere’s body to split into smaller
finite pieces and using the discrete element method the contacting bodies would overlap.
This overlap can be understood as the amount of space the two objects would physically
occupy during the deformation the actual physical bodies would experience.[MC14] Like
most particle simulation methods, it is based on Newton’s laws of motion. However, it
differs from, for example, molecular dynamics by being completely reliant on its geometry
for physical collisions, while in MD particles are described using force fields and potentials.

As such, DEM is a well-suited particle method for modeling granular material behavior
in chemical, mining, pharmaceutical, food, and more industries. Its applications can be

3

2. Theoretical Background

categorized into three classes, particle packing, particle flow, and particle fluid interaction.
Particle packing processes define how particles fill certain spaces. These processes entail the
deposition of particles, vibration after deposition of particles, and compaction. Particle flow
applications on the other hand describe the regular movement of particles under gravity
and other driving forces. The class of particle fluid interaction describes the movement of
particles within a fluid flow, during wavelike motion, and during fluidization.[CS79]

2.1.2. Common DEM Particles

Sphere Particle

The most basic particle used in three-dimensional DEM simulations is the sphere particle.
With their very basic geometry, defined solely by the position of their center and their
radius, sphere particles offer the easiest and most efficient contact detection method. They
also offer an accurate and fast calculation of the contact overlap between two particles,
supporting a fast and reliable calculation of the inter-particle forces during a collision. As
easy to use and implement as spherical particles may be, in reality, it is only rarely the case
that granular materials are perfectly spherical, so more complex particle structures are often
necessary.[MC14]

Multisphere Particles

Multisphere particles are, as the name suggests, clusters of multiple sphere particles with
rigid bonds connecting them. They enable the modeling of particle irregularities while
mostly preserving the efficiencies of singular spheres. The contact detection between two
instances of multi spheres can be broken down to the level of the component spheres, and
the same goes for the calculation of the contact overlap. There is also the option to enable
the creation and breaking of bonds between particles if desired. For these reasons, they are
one of the most common types of particles used in DEM simulations.[KERWS08][ZZYY07]

Polyhedral Particles

In terms of accuracy, polyhedral particles are the best choice for simulating the properties of
granular particles , as they can depict the edges that actual granular materials have in the
greatest detail. While close relation to reality is very desirable for simulations, it also comes
hand-in-hand with a higher computational time cost for contact detection and contact forces
and a higher difficulty for implementing the necessary algorithms and particle geometry.
Furthermore, more accurately than with multi-sphere particles, the option to have particles
break into smaller particles is available.[ZZYY07]

2.1.3. Force interactions

Contact mechanics is one of the essential ingredients for DEM simulations. In DEM, a
particle can be affected by a multitude of contact interactions. Collisions can occur between
two similar particles, between two particles of differing types, between particles and rigid
surfaces, or between multiple particles at once. Several fundamental theories exist which
model the forces in these collisions, and for this project, the Hertzian theory of non-adhesive
elastic contact is utilized.[Her82]

4

2.1. Discrete Element Method

Hertzian theory of non-adhesive elastic contact

The main focus of Hertz’s classical theory of contact is on non-adhesive contacts where no
tension force is allowed to occur within the area of contact. The following assumptions are
made in determining the solutions of Hertzian contact problems[Her82]:

1. The two interacting bodies are assumed to be of an elastic, isotropic and homogenous
material

2. The surface is assumed to be perfectly smooth such that no shear stresses occur in the
interacting surfaces

3. It is assumed that only a relatively small part of the total surfaces is in contact.

In a simulation, the forces that geometric objects exert on each other are determined by
the affected parties’ contact area and collision depth. The theory of contact between two
elastic bodies is used to determine the contact area and collision depth. There are multiple
types of solutions for differing geometric object pairs, but we will only be looking at the
Hertz normal contact between spheres in this thesis.

Figure 2.2.: Collision between two spheres and approach distance calculation

Once the contact between two particles has been determined, meaning approach distance
δ is smaller than zero, see Figure 2.2, several geometrical and elasticity parameters are
required to determine the inter-particle forces for the Hertz elastic solution. The required
formulas for two contacting spherical particles are determined as follows[CS79]:

F =
4

3
E∗√R

√
δ3 (2.1)

5

2. Theoretical Background

where

R =
R1R2

R1 +R2
(2.2)

and

1

E∗ =
1− ν21
E1

+
1− ν22
E2

(2.3)

E1 and E2 are the Young modulus, v1 and v2 are the Poisson’s ratio, and R1 and R2
are the radii of the two contacting particles, respectively. The Young modulus, also called
the modulus of elasticity in tension or compression, is a mechanical property that measures
the tensile or compressive stiffness of a solid material. The Poisson’s ratio is a gauge of the
Poisson effect, which describes how a material tends to expand in the direction perpendicular
to the direction of compression. These parameters need to be specified during particle
creation.[CS79]

2.2. Molecular Dynamics

Molecular dynamics simulations are utilized to examine the forces and interactions between
particles on a molecular level. While in DEM simulations, physical contact between par-
ticles is necessary to create particle-to-particle interactions, in molecular dynamics, these
interactions happen over range using intermolecular pair potentials.[GST+19]

2.2.1. The Lennard-Jones-12-6-Potential

In MD simulations, calculating the force that two particles exert on each other depends on
two elements, the chosen underlying potential, and their relative positions to each other.
The in AutoPas pre-existing implementation for MD-Simulations uses the Lennard-Jones-
12-6-Potential, which simulates short-range interactions of electronically neutral atoms and
molecules created by van der Waals forces and Pauli repulsion. As the most extensively
studied potential under the intermolecular potentials, it is generally considered to be a
classic exemplar for accurate and easy-to-implement molecular particle interactions. The
formula used to calculate the potential between two molecules is as follows[GST+19]:

U (rij) = 4ε

((
σ

rij

)12

−
(
σ

rij

)6
)

(2.4)

And to gain the actual forces interacting between both particles, one can use the following
formula:

F (r) = −∂U(r)

∂r
= 48ε

[
σ12

r13
− σ6

r7

]
(2.5)

Here rij is the distance between the two particles, ε signifies the dispersion energy, and σ
determines at which distance the potential energy between the two particles is equal to zero.

6

2.3. Störmer-Verlet Algorithm

As shown in Figure 2.3 the Lennard-Jones-Potential basically describes the fundamental
force interaction between molecules. At close distances smaller than σ two particles repel
each other, at a distance of exactly σ repulsion and attraction balance each other out to zero
and at further distances than σ they attract each other, yet the attraction rapidly converges
to zero towards infinite distance. Because of this a cut-off radius is often applied, which
determines at which distance the resulting potential can be ignored.

Figure 2.3.: Two Lennard-Jones-12-6 Potential curves and the subsequent force curves in
relation to the distance between two particles and the parameters of dispersion
energy ε and size parameter σ.

2.3. Störmer-Verlet Algorithm

For all types of particle simulations, once the forces interacting between particles have been
calculated, a method is necessary to apply these forces to them and so update their velocities
and positions for the end of a simulation step. To fulfill this purpose in this thesis, the
Störmer-Verlet algorithm is used for both DEM and MD simulations.[HLW03]

The formulation for the Störmer-Verlet algorithm is as follows:

xi
(
tn+1

)
= xi (tn) + ∆t · vi (tn) + (∆t)2

Fi (tn)

2mi

vi
(
tn+1

)
= vi (tn) + ∆t

Fi (tn) + Fi

(
tn+1

)
2mi

(2.6)

Here x(t) and v(t) signify the position and velocity of a particle respectively at time step
t, and m stands for the mass of a particle. To be able to use the Störmer-Verlet algorithm,
it is necessary to have the velocity and position of the previous time step saved for the
calculation of the current time step, as can be seen from the formulation of the algorithm.

7

2. Theoretical Background

2.4. AutoPas

2.4.1. Particle Containers

Figure 2.4.: Comparison between particle containers Direct Sum(a), LinkedCells(b), Verlet
Lists(c) and Verlet Cluster Lists(d)
Source: [GSBN21]

One of the most fundamental aspects of any particle simulation is the particle neighbor
identification algorithm so as to enable efficient computation of all pairwise forces. The basic
premise of such an algorithm is to find for every particle in the simulation all neighboring
particles in their effective range of significant interaction. The workflow of the chosen
algorithm also greatly influences the data structures and layout of how particles are stored.
AutoPas currently offers four different basic types of neighbor identification algorithms,
which will be presented in the following.

Direct Sum

The Direct Sum algorithm offers the most trivial solution to this problem, as it simply
works by calculating the distances between all pairs of particles in the whole simulation. If
the calculated distance is smaller than the specified cut-off radius, the algorithm considers
particles for the force calculation, as shown in Figure 2.4 (a), where the red circle signifies
the cut-off radius. Due to its straightforward approach of simply comparing all particles to
each other, this method has a complexity of O(N2), where N is the total number of particles
in the system. To compensate for its high complexity, it offers the advantage of not needing
any additional memory overhead for complex data structures.[GST+19]

Linked Cells

Moving up in terms of implementation complexity follows the Linked Cells, also called cell
list algorithm. With the goal in mind to improve the scalability of the simulation, this
intuitive algorithm works in a way so that it divides the spatial domain of the simulation into
a regular cartesian grid of cells. Once the grid has been set up, all particles are sorted into
their respective cells, as can be seen in Figure 2.4(b). To identify a particles(red particle)
neighbors, it gets matched with all particles in its own cell(red cell) and all particles in its
neighboring cells(blue cells). Afterward, the algorithm calculates the pairwise distances to
all matched neighbors, and if the distance is smaller than the cut-off distance, considers
the pair for force calculation. To ensure that the algorithm misses no actual particle

8

2.4. AutoPas

interaction, the mesh size of the Cartesian grid needs to be bigger or equal to the cut-off
radius. Otherwise the particles of more neighbor cells need to be taken into account. Using
this technique, the time complexity can be reduced to O(N) in the case of homogeneous
particle distributions, which is tremendously better than Direct Sum in case of a large enough
number of particles.[GST+19] Another advantage offered by the linked cells algorithm is that
particles that are processed in sequence are also in sequence in memory, making vectorization
and cache prefetching easier.

Verlet Lists

Once again, moving up in terms of implementation complexity follows neighborhood iden-
tification using Verlet Lists. Unlike the previous two algorithms, the Verlet list algorithm
does not rely on spatial information but rather uses a less intuitive approach by keeping a
record of a particle’s previous interaction partners. These records are called Verlet Lists,
and they consist of references to all neighboring particles within their cut-off distance. To
improve the reusability of Verlet Lists, particles that are just barely out of range of the
cut-off radius are also included in them. This extension creates the so-called Verlet Skin, as
shown in Figure 2.4(c) indicated by the yellow circle. To determine the relevant pairwise
force calculations is now relatively easy, as it is only necessary to calculate the distances to
all particles within the Verlet Skin, which considerably decreases the number of neighbor
distance evaluations. Since the generation of Verlet Lists is computationally expensive, it
is recommended not to have to fall back to a Direct Sum pattern for the generation of
these records. A better alternative is to use Verlet Lists in combination with the Linked
Cells algorithm to fall back on, especially for large numbers of particles. One of the main
disadvantages of Verlet Lists is that the algorithm has a huge memory overhead, consisting
of a list of references for each particle. The second main disadvantage of the method is
created by the data structure for particles leading to a lack of data locality. Because of this,
it is hard to gauge if two particles are close in memory, which in turn makes the loading
from memory result in bad cache behavior and complicated vectorization.[GST+19]

Verlet Cluster Lists

The last and also least intuitive approach for neighborhood identification implemented in
AutoPas is Verlet Cluster Lists. An extension upon Verlet Lists, this approach works with
the idea that the Verlet Lists of neighboring particles are most often quite similar. So in
this algorithm, particles with similar lists are combined into a Verlet Cluster List. Such a
cluster is visualized in Figure 2.4(d). In comparison to Verlet Lists, this method is capable
of significantly reducing the number of lists while also decreasing the overall size since it is
no longer necessary to track individual particles. Another main advantage created by Verlet
Cluster Lists is that it enables easier vectorization again, since it is possible to load a whole
cluster into vector registers. While this method offers advantages in some areas, it also
creates disadvantages in others. The first one is that the number of distance calculations
increases since when two clusters need to interact, the search radius for a single particle
increases to that of both clusters. Secondly, the algorithm creating Verlet Cluster Lists is
significantly harder to implement compared to the previous algorithms.[GST+19]

9

2. Theoretical Background

2.4.2. Data and Memory Layout

Figure 2.5.: Loading of particle data in AoS and SoA layout.[GST+19]

Another important aspect of any simulation is the data structures used to store the particle
data. For this purpose, AutoPas offers two kinds of data layouts called Array-of-Structures
(AoS) and Structure-of-Arrays (SoA).

AoS

The AoS layout can be described as an array-like container, often similar to a C++
std::vector, and is used as the default data layout in AutoPas. A practical method
for force calculations in particle simulations is using SIMD (Single Instruction, Multiple
Data) vectorizations, which offer the option to carry out an operation on a whole vector of
data as a single instruction. To be able to use SIMD vectorization, it is required that all
instances of a particle’s attribute are stored contiguously. However, in the AoS layout, a
particle’s data structure is stored contiguously, offering the advantage of easily loading a
single particle. The AoS layout proves disadvantageous for force calculations when loading
multiple particle together since the required particle properties need to be loaded individually
from each particle’s own memory location into the needed vector registers. This leads to the
program having to make jumps to reach the relevant part of a particle’s data, invoking a
multitude of slow memory accesses. For an easier understanding of this issue, an illustration
of the AoS layout is shown on the left side of Figure 2.5[GST+19].

SoA

A more sustainable solution to the issue of data loading is offered by first converting the data
structure from the AoS data layout to the SoA data layout. In SoA, a structure is created
that stores multiple arrays, each containing all instances of a single particle attribute. Using
this data layout, all necessary data for the force calculation can be efficiently loaded into
memory since it is already stored contiguously. An illustration of this situation is shown on
the right side of Figure 2.5. While the SoA layout is more efficient in terms of caching and
vectorization, it is also less intuitive than AoS. Another disadvantage is created by the fact
that AutoPas stores data in AoS format, so if one chooses to use calculations in the SoA
format, AutoPas has to first convert the entire data structure from AoS to SoA and after
force calculations again back to AoS. Keeping all advantages and disadvantages in mind,

10

2.4. AutoPas

the SoA format can be considered to be the more efficient data layout for Linked Cells and
simulations with huge amounts of particles.[GST+19]

2.4.3. Newton’s third law

Before we talk about the next chapter, traversals, it is necessary to mention how AutoPas
handles Newton’s third law of motion, which states that for every action, there is an equal
and opposite reaction. So in the case of interaction between a particle i and a particle j, the
resulting force F needs to be applied to both particles but in opposite directions, meaning:

Fij = −Fji

Now to apply this to the subject of particle simulations, this leads us to the optimization,
further on called Newton3 optimization, which allows us to calculate the force between two
particles only once and apply it to both particles in opposite directions.[GST+19]

2.4.4. Traversals

Another key component in particle simulations is the traversal of the domain and its
shared-memory parallelization. Implementing a traversal that allows evenly distributing
the simulations workload onto multiple threads can significantly increase its runtime. In
AutoPas, the chosen traversal option decides the order in which particles are iterated
over and the parallelization of the force calculation. The available traversal methods are
grouped based on the underlying container structure. This is because the choice of container
dictates the underlying data structure and a traversal dictates how to navigate the data
structure.[GST+19]

This thesis will focus only on the sequential traversal option for Direct Sum ”ds_sequential”
and the c01, c18, and c08 base steps for Linked Cells.

Traversal for Direct Sum

The traversal ”ds_sequential” can arguably be considered the most basic traversal option. It
processes all particle pairs sequentially in the order they were passed to the container.

11

2. Theoretical Background

(a) c01 base step (b) c18 base step (c) c08 base step
Source: [GSBN21]

Figure 2.6.: Base steps currently implemented in AutoPas. The currently traversed cell,
also called base cell, is signified by its red coloring. The cells with which the
particles of the base cells interactions need to be taken into consideration are
marked with blue coloring. The red outlined bounding box signifies which cells
must be protected from race conditions during the traversed cells base step.

Traversals For Linked Cells

Three base step methods have been implemented to enable shared parallel traversals over
Linked Cells in AutoPas. To discuss how these base steps influence a domain’s parallelization,
we will introduce domain coloring. Each cell gets a color assigned, and cells with matching
colors get processed in parallel. This ensures protection against race conditions since the
coloring eliminates the possibility of a thread accessing data, which is potentially being
modified by another thread.[GSBN21]

c01 base step - Depicted in Figure 2.6a, the c01 base step is the most intuitive and easy
to implement base step. It works by computing all interactions of a cell with all its
neighbors without modifying its neighbors. Because of this, it can not make use of the
Newton3 optimization.[GSBN21]

c18 base step - Depicted in Figure 2.6b, this option only computes interactions with
neighbors of a greater cell index. It makes use of Newton3 optimization but, in turn,
also increases the box of cells, highlighted by a red border, that other threads can not
modify in parallel to guard them against race conditions. Aside from the utilization of
Newton3, another advantage this method offers is that the number of cells relevant for
one base cells force calculation is decreased to five in 2D and 18(3x3x2) in 3D, making
the method more cache efficient. Illustrated in Figure 2.7a, the domain coloring of a
traversal using the c18 base step can be found. In 2D, six colors need to be used, and
in 3D, this number jumps up to 18.[GSBN21]

c08 base step – Building upon the idea of the c18 base step, the c08 base step decreases
the size of the box to guard against race conditions by replacing the computation of
the forward diagonal interaction with the forward interaction of the cell next to it.
This can be observed in Figure 2.6c where the interaction between cells 12 and 16 has
been replaced by the interaction between cells 17 and 13. The same can be applied to

12

2.4. AutoPas

a 3D box as well. By doing so, the number of locked cells gets further decreased, which
again offers better cache usage and faster parallelization. Illustrated in Figure 2.7b,
the domain coloring of a traversal using the c08 base step can be found. In 2D, four
colors need to be used, and in 3D, the number increases to eight.[GSBN21]

(a) c18 base step traversal in 2D (b) c08 base step traversal in 2D

Figure 2.7.: Domain colorings using different base steps

Several traversal patterns can be conceived by using these base steps in combination
with the underlying respective data structure. This thesis will not go into further detail
concerning the possible traversal patterns since they are already discussed in great detail in
[GSBN21] and the official AutoPas documentation1.

1https://autopas.github.io/

13

https://autopas.github.io/

Part II.

Implementation

14

3. DEM Sphere Particle

In this chapter, we discuss the necessary features that need to be implemented to add a new
custom particle and its respective pairwise force calculation to the AutoPas library and how
such a particle and force calculations were created in the scope of this thesis. The class in
which the pairwise force calculation is implemented will be called functor in the following.
Afterward, we will discuss how the necessary features needed to run a simulation with this
particle have been added or changed in the pre-existing example code ”md-flexible”.

3.1. Particle Implementation

Every particle used in an AutoPas simulation has the option to inherit from the particle base
class autopas::Particle. This base class is used to define the minimally required parameters
and functions by AutoPas. These parameters consist of the particle’s position as an array
of 3D coordinates, its id, its ownership state, and the velocity and force of the particle as
arrays of 3D vectors. The functions inherited by the base class include the accompanying
setters and getters of all mentioned parameters and additionally functions for adding and
subtracting the particle’s force, position, and velocity. With these parameters already
taken care of, the next consideration is what additional parameters need to be implemented
to expand the particle implementation. Necessary for our DEM-Sphere particle are the
particle’s radius, mass, Poisson ratio, Young modulus, and the force the particle experienced
in the previous iteration, which we will from now on call OldForce. The first four of these
parameters are needed for the force calculation, as already discussed in Subsection 2.1.3.
The parameter OldForce, however, is necessary for the implementation of the Störmer-Verlet
timestep algorithm, which will be later discussed in the functor implementation section.
With all parameters taken care of, our particle class, including all inherited parameters, can
be viewed in Listing 3.1.

Listing 3.1: Structure of a DEM Sphere.

1 class DEMParticle{
2 public :
3 std : array<double , 3> po s i t i o n ;
4 std : array<double , 3> v e l o c i t y ;
5 std : array<double , 3> f o r c e ;
6 std : array<double , 3> oldForce ;
7 int id ;
8 OwnershipState ownersh ips tate ;
9 double rad iu s ;

10 double mass ;
11 double po i s sonRat io ;
12 double youngModulus ;
13 }

Listing 3.1: Structure of a DEM Sphere.

15

3. DEM Sphere Particle

AutoPas uses a system involving dynamically sized SoA to store these parameters, so it is
required to implement an enumeration of individual ids for all parameters, together with a
definition of a matching SoAArraysType, as seen in Listing 3.2.

Listing 3.2: DEM particle parameter enumeration and SoAArraysType

1 enum AttributeNames : int { ptr , id , posX , posY , posZ , forceX , forceY , forceZ ,
rad , poisson , young , mass , typeId , ownershipState } ;

2
3 using SoAArraysType =
4 typename autopas : : u t i l s : : SoAType<DEMParticle<f loatType> ∗ , s i z e t /∗ id ∗/

, f loatType /∗x∗/ , . . . , OwnershipState /∗ ownershipState ∗/ > : :Type ;

Listing 3.2: DEM particle parameter enumeration and SoAArraysType

The definition of the SoAArraysType is necessary for AutoPas so that its simulation
system has precise knowledge of the types and contents of all the parameters used for
the desired particle type. As the last step for finishing our particle, we implemented two
functions to be used as the particles handler for the get and set interactions of all attributes.
These are necessary for enabling AutoPas to access an attribute without having to call it by
its getter or setter, but rather by using their respective enum attribute name.

Listing 3.3: DEM particle get and set functions

1 constexpr typename std : : tup le e l ement<a t t r i bu t e , SoAArraysType> : : type : :
va lue type get () {

2 i f constexpr (a t t r i b u t e == AttributeNames : : ptr) {
3 return this ;
4 . . . }
5 }
6
7 constexpr void s e t (typename std : : tup le e l ement<a t t r i bu t e , SoAArraysType> : : type

: : va lue type value) {
8 i f constexpr (a t t r i b u t e == AttributeNames : : id) {
9 setID (value) ;

10 . . . }
11 }

Listing 3.3: DEM particle get and set functions

3.2. Functor Implementation

For calculating the interactions between our sphere particles, we implement our functor using
the in Subsection 2.1.3 introduced Hertzian theory of non-adhesive elastic contact’s solution
for force calculation between spheres. Here again, a base class called autopas::Functor is
available to inherit from. It implements virtual functions to be re-defined in the user’s
functor implementation, a function for converting the AoS data of a given cell into the SoA
layout, and a function for converting it back into AoS format. The most important part of
a functor is the force calculation, which can be adapted to fit both AoS and SoA layouts.
AutoPas allows to implement only one of the two layouts, but for this thesis, both were
implemented.

16

3.2. Functor Implementation

3.2.1. AoS force calculation

According to the AoS data layout, the parameters needed for this function consist of two
particles directly and additionally a boolean that indicates if the Newton3 optimization is
to be applied. Because one only has to handle two particles simultaneously, the AoS force
calculation is more intuitive and was implemented first. As a first step, the algorithm checks
if one of the two particles is a particle not meant for force calculations called a dummy
particle. If none of them are, it calculates the penetration depth to determine if the two
spheres are colliding using the particle’s positions and radii. If a collision has been confirmed,
the force is calculated according to Equation 2.1.3. Afterward, the resulting force vector
gets applied to either one or both particles according to the Newton3 boolean.

3.2.2. SoA force calculation

Compared to the AoS data layout, the SoA data layout makes for a more challenging force
calculation implementation due to its more complex structure. As mentioned in Section 2.4.2,
an SoA consists of multiple arrays, each containing the singular parameters of multiple
particles in order. For the force calculation in SoA format, AutoPas requires three specific
functions for implementing different cases. Firstly, a function for the force calculations for
all particles within a single SoA; secondly, a function for the force calculation of particles
between two different SoAs ; and thirdly, a function for the force calculation for SoAs for
neighbor lists. Since the force calculations for a single SoA and between two SoAs is pretty
similar, we implemented a helper function to handle both of them. This function receives
two SoAs, for the first variant the same one twice, a boolean called single to differentiate
between both variants, and again a boolean Newton3. Its functionality goes as follows: As
a first step, pointers for each particle parameter, using the parameters defined attribute
names, get set to the beginnings of all SoA arrays within both SoA. Using these pointers as
starting points, we iterate over each particle in the first array. For each particle we iterate
over, an iteration over particles in the second array gets triggered. If the boolean single is
set to true, the second iteration starts with a shift to avoid a particle interacting with itself.
If set to false, the iteration goes over the entire array. The force calculation happens again
according to Equation 2.1.3. However, since we use the SoA data layout, we can use SIMD
vectorization via OpenMP for increased calculation efficiency. As previously mentioned, the
last necessary force calculation is for SoA for neighbor lists. This function’s implementation
is again mostly the same, however, to enable efficient vectorization, we divide the neighbor
list into fragments the size of a fixed parameter called vecsize. So in each iteration step, we
calculate the interactions of the current particle with the number of vecsize particles in the
neighbor list of said particle.

3.2.3. Further functions

With the main part of the functor taken care of, there are only a few remaining functions that
AutoPas needs for the functor to be fully implemented. The first two of these are the functions
initTraversal() and endTraversal(), which, as the name suggests, are called at the start
and end of each traversal. The next two are used to get all input and output variables of
the force calculation via getComputedAttr() for all output variables and getNeededAttr()

for all input variables. And the last two functions which we implemented are used to

17

3. DEM Sphere Particle

tell AutoPas whether the functor allows Newton3 optimization via allowsNewton3() and
whether the functor is relevant for tuning via isRelevantForTuning().

Listing 3.4: Implemented functions of DEM sphere functor

1 class DEMFunctor{
2 public :
3 void AoSFunctor (Pa r t i c l e &i , P a r t i c l e &j , bool newton3) f ina l { . . . }
4
5 void SoAFunctorSingle (SoAView<SoAArraysType> soa , bool newton3) f ina l

{ . . . }
6
7 void SoAFunctorPairImpl (SoAView<SoAArraysType> soa1 , SoAView<

SoAArraysType> soa2) { . . . }
8
9 void SoAFunctorCalc (SoAView<SoAArraysType> soa1 , SoAView<SoAArraysType

> soa2 , bool s i n g l e , bool newton3) { . . . }
10
11 void SoAFunctorVerlet (SoAView<SoAArraysType> soa , const s i z e t

indexFi r s t ,
12 const std : : vector<s i z e t , autopas : : A l ignedAl locator<

s i z e t >> &neighborL i s t ,
13 bool newton3) f ina l { . . . }
14
15 constexpr stat ic auto getNeededAttr () { . . . }
16
17 constexpr stat ic auto getComputedAttr () { . . . }
18
19 bool i sRelevantForTuning () f ina l { return re levantForTuning ; }
20
21 bool allowsNewton3 () f ina l { return useNewton3 == FunctorN3Modes : :

Newton3Only or useNewton3 == FunctorN3Modes : : Both ; }
22 }

Listing 3.4: Implemented functions of DEM sphere functor

18

4. Simulation

AutoPas is shipped together with a few example codes, one of them being md-flexible. Its
primary purposes are to showcase AutoPas to first-time users, to provide developers with a
fast and easy way to run actual simulation code for testing purposes and to show how one
can configure all of AutoPas’s parameters from outside. Primarily md-flexible is a simple
molecular dynamics simulation using the Lennard-Jones 12-6 potential [Equation 2.2.1] for
force calculations between molecular particles. This section describes how we adapted and
expanded the example code md-flexible to additionally enable the simulation of our newly
created DEM sphere particle.

4.1. Simulation preparation

Before the simulation loop can be started, it is first necessary to load the configuration and
afterward initialize the simulation. Since there are several differences between simulating
particles using the discrete element method and molecular dynamics, the simulation contains
some features not relevant for this thesis which will, as such, mostly be omitted. As the
first preparation step, the configuration of the simulation is loaded using either a YAML-file
parser or command line arguments. Both of these loading options remain mostly untouched,
with the exception of the addition of DEM-sphere relevant options, being the radius, Young
modulus and Poisson ratio, to parse. We then set all the configuration options for AutoPas
and initialize all the objects in the simulation. For generating these objects, md-flexible
offers a number of objects generators for different purposes. These have also been slightly
adapted with the necessary DEM parameters, to be able of creating DEM-sphere particles.
With all preparations complete, the simulation is ready to start.

Algorithm 1: Simulation Initialization

Input: simulation configuration, autoPas container
Output: configured autoPas container

1 Function init Simulation(config, autoPasContainer):
2 autopas.set Values()

3 for auto object : config → varObjects do
4 object.generate(autopas)

Figure 4.1.: Simulation initialization

19

4. Simulation

Algorithm 2: Simulation Loop

Input: autoPas container, functor

// Main Loop

1 Function do Simulation(autoPasContainer):
2 for autoPas.needsMoreIterations() do
3 calculatePositions(autopas)
4 updateContainer(autopas)
5 autopas.iteratePairwise(functor)
6 calculateVelocity(autopas)

// update Container function

7 Function updateContainer(autopas):
8 wrapPositionsAroundBoundaries(autopas)
9 addEnteringParticles(autopas)

10 updateHaloParticles(autopas)

Figure 4.2.: Simulation loop

4.2. Simulation loop

The simulation begins by opening the main loop for the entire simulation. In each iteration,
the first step consists of calculating the new positions of all particles using the first part of the
Störmer-Verlet timestep algorithm in Equation 2.3. Our next course of action is to handle
the movements of particles in the underlying data structure by updating the container inside
AutoPas. This step consists of determining which particles left their domain box, applying
boundary conditions on them, and afterward again add them to the container in the correct
domain box. It also includes identifying and handling halo particles, which are particles
situated outside the bounding box of the domain for handling boundary conditions. With
particle movement completed for the iteration step, the force calculation for all particles
is next in line. To iterate over all particles with the correct functor, we call the function
autoPas.iteratePairwise(functor). The last step of each iteration is the calculation of the
new velocities using the second part of the Störmer-Verlet timestep algorithm.

20

Part III.

Results

21

5. Testing Setup

All performance measurements were run on a system with an AMD Ryzen 3700X 8-Core
Processor(3593MHz), 16 GB DDR4 memory(1497 MHz). The CPU’s theoretical single-
precision performance in 64-bit accuracy is approximately 1.6896. GFLOPS1 For an accurate
comparison between the performance of the MD particle and the performance of the
DEM particle, the respective simulations comparing the two have been run with the same
configuration options wherever possible and with the most similar configuration options
otherwise. Shared configuration options include all AutoPas tuning-related configurations,
such as data layout, data structure, traversal patterns, the tuning strategy, and general
simulation options, such as particle distribution, the number of particles, and the time-step
size, and the number of iteration steps. The non-shared options consist of options related
to the used particle methods, such as a particles dispersion energy parameter ε and size
parameter σ for MD and a particles Poisson ratio and Young modulus for DEM. Simulation
results will be compared by two approaches. Each simulation will be compared by two
approaches, by the performance results of each simulation and by a simulation’s physical
results, alongside the visualization of the simulation at certain time-steps.

1https://www.techpowerup.com/cpu-specs/ryzen-7-3700x.c2130

22

https://www.techpowerup.com/cpu-specs/ryzen-7-3700x.c2130

6. Particle Funnel Simulation

For the first simulation, we constructed a simulation in which loose particles in the form
of a sphere fall into a funnel made out of four trapezoid particle grids and four square
particle grids. Afterward, the particles fall into a particle casing without a roof, made
out of five square particle grids, as seen in Figure 6.2c. A global force is applied to all
particles to simulate gravity. The configuration for this simulation allows all types of particle
containers, data and memory layouts, traversals, and the Newton3 optimization to be on
or off. Furthermore, periodic boundaries are turned on, meaning that if particles leave
the simulation boundaries, they get re-inserted at the other side of the simulation box.
Using periodic boundaries requires the creation of halo particles, which are also relevant for
calculations. Each calculation allowed up to eight threads to be used and the cut-off radius
was set to three, the Verlet-skin-radius to 0.3 and the verlet rebuild frequency to ten, for all
simulations.

6.1. Performance Comparison

To evaluate the performance of both simulation methods, we compare them based on the
time of a single iteration step for an exponentially increasing amount of particles, ranging
from 1.000 to 1.000.000. Both particles mostly had the same auto-tuned configurations
for each simulation: The used data layout was AoS from 1.000 to 3.000 particles and SoA
from 10.000 to 1.000.000 particles. The chosen particle container was VerletLists from 1.000
to 10.000 particles and Verlet Cluster Lists for the remaining amount of particles. The
performance comparison between the two Particles can be seen in Figure 6.1. Ranging
from 1.000 to 30.000 particles, the MD and the DEM particle share similar iteration times,
however, from 30.000 to 1.000.000 particles, the MD particle gains the advantage and at
1.000.000 particles has nearly three times faster calculation per iteration.

6.2. Physical Comparison

For the comparison of the physical result, it is relevant to know the physical parameters
describing the particles. The goal we set was for the particles to behave like hard rubber, so
the parameters were chosen accordingly in the DEM particles case. The Poisson ratio is set
to 0.45, and the Young modulus is set to five for all moving particles, which would roughly
translate to the actual parameters of hard rubber at 20 Degree Celsius. Since MD particle
parameters are usually used to describe physical properties on a molecular level, the choice
of parameters to mimic the desired material was not possible, and so the parameters from
AutoPas’s standard simulation were kept, meaning ε = 1 and σ = 1. The snapshots were
taken after 10000 iteration steps with a time-step size of 0.0005 seconds.

23

6. Particle Funnel Simulation

Figure 6.1.: Performance comparison of particle funnel simulation. The performance is
measured by the amount of time it takes to pass a single time-step, for various
amount of particles. At lower particle counts both MD and DEM have similiar
performances but MD outperforms DEM at higher particle counts by being
nearly three times as fast

24

6.2. Physical Comparison

As illustrated in Figure 6.2a, the particles mostly behave as they would in reality. After
landing in the funnel, they bounce off the walls and gather in the middle of the funnel
before dropping through its hole at the bottom. They then fall through the casing and
bounce off its bottom. While in reality, all particles would fall through the funnel, in this
DEM simulation, a few outliers clipped through the funnel. This situation is because by
simulating walls out of spherical particles, spaces between particle centers are created where
particles could slip through with enough velocity or force. To prevent this situation, one
could either increase the funnel particles radius or decrease the spacing between its particles.
However, both of these options would increase the simulations calculation effort. A more
fitting solution would be to use a simulation wall or a more complex particle model like
multi spheres or polyhedral particles for a more accurate simulation.

Figure 6.2b shows us the results of the particle funnel simulation using MD particles. It
can be seen that a few particles slowly trickle down the funnel, while the majority of them
are suspended in the space above the funnel structure. The reason for this situation is that
the particles are not colliding since they have no physical body, but are instead pushing
against each other stronger than gravity. If we let the simulation run for more iterations,
all particles would slowly move towards the bottom of the casing due to gravity. However,
particles would not only travel on the inside but also outside the simulation structure since
they are overflowing.

25

6. Particle Funnel Simulation

(a) Particle funnel - result DEM (b) Particle funnel - result MD

(c) Particle funnel at start of Simulation

Figure 6.2.: Visualization of particle funnel simulation results for DEM(a), MD(b) and of
starting position for both(c). The particles color is based on their velocity, from
not not moving(dark blue) to very fast moving(dark red). In the results for
DEM the particles of the sphere drop into the funnel, bounce of its walls, fall
down through the funnel’s bottom hole and collect in the casing at the bottom.
The MD results show how some particle fall down through the funnel’s hole,
but the majority gets pushed upward by MD’s inter-particle forces.

26

7. FallingDrop Simulation

For the second simulation, we chose md-flexibles standard simulation example. This simu-
lation is to show how a spherical droplet made out of multiple particles would drop into
a pool of liquid particles. Once again, a global force is applied to all particles to simulate
gravity. Same as in the particle funnel simulation, the configuration for this simulation
allows all types of particle containers, data and memory layouts, traversals, and the Newton3
optimization to be on or off. Periodic boundaries are once again enabled. To stop liquid
particles from dropping through the bottom of the simulation, a layer of fixed particles is
added underneath. Again, each calculation allowed up to eight threads to be used and the
cut-off radius was set to three, the Verlet-skin-radius to 0.3 and the verlet rebuild frequency
to ten, for all simulations.

7.1. Performance Comparison

Same as before, to gain the performance of both simulation methods, we compare them based
on the time of a single iteration step for an exponentially increasing amount of particles,
ranging from 1.000 to 1.000.000. The auto-tuned configurations are nearly identical to the
previous simulation, with the exception that the chosen particle container was Verlet Cluster
Lists for all amounts of particles. The comparison between the two Particles can be seen in
Figure 7.1. This time ranging from 1.000 to 10.000 particles, the DEM particle has a slight
advantage over the MD-Particle. However, from 30.000 to 100.000 particles, both are again
in similar time ranges, and from 300.000 to 1.000.000 particles, the MD particle again gains
the advantage with about half the time-cost per iteration.

7.2. Physical Comparison

The visual goal of this simulation was to show how a drop of liquid falls into a sea of liquid.
Since the discrete element method is generally not used for the simulation of fluids, we
kept the same particle property values as before, meaning Poisson ratio = 0.45 and Young
modulus = 5. All particle parameters were kept the same as they were initially in the
pre-existing simulation file, meaning again ε = 1 and σ = 1. The snapshots were taken after
10000 iteration steps with a time-step size of 0.0005 seconds.

At the start of the DEM simulation, the liquid main body of particles and the sphere
particles start dropping due to gravity. First, the liquid particles crash into the bottom
layer, where most of them are stopped and bounce back up slightly, before being pushed
back down by the force of the particles above, followed by the sphere’s particles. A layer of
particles that due to immense forces crashed through the bottom layer is re-inserted at the
top of the simulation, where the particles continue to accelerate. Figure 7.2a shows us the
state at the end of the DEM simulation, where it can be seen how even though the bottom

27

7. FallingDrop Simulation

Figure 7.1.: Performance comparison of falling drop simulation. The performance is measured
by the amount of time it takes to pass a single time-step, for various amount of
particles. At lower particle counts both MD and DEM have similiar performances
but MD outperforms DEM at higher particle counts by being more than double
as fast.

28

7.2. Physical Comparison

two layers of the simulation were fixed in place, many particles penetrated them and are
now still falling at rapid speeds.

In the MD simulation, the liquid particles crash into the bottom layer, again followed
by the sphere’s particles. However, other than in DEM, the particles bounce back even up
to the top layer of particles. In Figure 7.2b, the results of the MD simulation are shown,
where it can be observed that, unlike the DEM Simulation, no particles crossed through the
bottom layer. The results show how the particle sphere has immersed itself entirely in the
body of liquid particles and how the force of the impact still affects the body of particles.

29

7. FallingDrop Simulation

(a) FallingDrop - result DEM (b) FallingDrop - result MD

(c) FallingDrop at start of Simulation

Figure 7.2.: Visualization of falling drop simulation results for DEM(a), MD(b) and of
starting position for both(c). The particles color is based on their velocity, from
not not moving(dark blue) to very fast moving(dark red). In the results for
DEM the particles drop through the bottom layer and get re-inserted at the
top, while the results for MD show how the sphere drop has mixed with the
rest of the particles, but the results of the impact are still visible.

30

8. Conclusion and Future Work

As an auto-tuner and as a particle simulation software, AutoPas is a powerful and helpful
tool for creating simulations of all kinds. While one can easily use AutoPas to create a
simulation by using md-flexible as an example, implementing a new particle simulation
method definitely takes more time and effort. However, since everything is well documented,
both in the code and in various other documents, not limited to [GSBN21][GST+19], one can
nicely learn about the structure of AutoPas, how it works and what needs to be implemented
for creating a new particle type and simulation. Throughout the course of this thesis, we have
implemented a particle using the discrete element method, adapted it to the requirements
of AutoPas and adapted md-flexible to the requirements of the particle. We successfully
created simulations that showed the strengths and weaknesses of our particle and different
simulation methods. Furthermore, the performance of the particle was tested and evaluated
for its optimum simulation configurations using AutoPas’s auto-tuning ability and compared
the performance with the pre-existing molecular dynamics particle.

Possibilities and opportunities for future work involve the implementation of different or
complex particles and simulation methods. Examples of this are multi-sphere or polyhedral
DEM particles, or particles using approaches like Smoothed Particle Hydrodynamics or the
Finite Element Method. Additionally, one could implement a simulation using multiple
different particle types simultaneously, as many more extensive DEM Simulations already
have.

31

Part IV.

Appendix

32

List of Figures

2.1. Collision comparison Physics, FEM, DEM 3
2.2. DEM Sphere Collision . 5
2.3. Lennard-Jones-12-6 Potential and Force Curve 7
2.4. Particle Containers of Direct Sum, LinkedCells, Verlet Lists and Verlet Cluster

Lists . 8
2.5. Loading of particle data in AoS and SoA layout. 10
2.6. Base steps currently implemented in AutoPas. The currently traversed cell,

also called base cell, is signified by its red coloring. The cells with which the
particles of the base cells interactions need to be taken into consideration are
marked with blue coloring. The red outlined bounding box signifies which
cells must be protected from race conditions during the traversed cells base
step. 12

2.7. Domain colorings using different base steps 13

4.1. Simulation initialization . 19
4.2. Simulation loop . 20

6.1. Performance Comparison of funnel . 24
6.2. Visualization of particle funnel simulation results for DEM(a), MD(b) and of

starting position for both(c). The particles color is based on their velocity,
from not not moving(dark blue) to very fast moving(dark red). In the results
for DEM the particles of the sphere drop into the funnel, bounce of its walls,
fall down through the funnel’s bottom hole and collect in the casing at the
bottom. The MD results show how some particle fall down through the
funnel’s hole, but the majority gets pushed upward by MD’s inter-particle
forces. 26

7.1. Performance Comparison of falling drop . 28
7.2. Visualization of falling drop simulation results for DEM(a), MD(b) and of

starting position for both(c). The particles color is based on their velocity,
from not not moving(dark blue) to very fast moving(dark red). In the results
for DEM the particles drop through the bottom layer and get re-inserted at
the top, while the results for MD show how the sphere drop has mixed with
the rest of the particles, but the results of the impact are still visible. 30

33

Bibliography

[CS79] P. A. Cundall and O. D. L. Strack. A discrete numerical model for granular
assemblies. Géotechnique, 29(1):47–65, 1979.

[GSBN21] Fabio Alexander Gratl, Steffen Seckler, Hans-Joachim Bungartz, and Philipp
Neumann. N ways to simulate short-range particle systems: Automated
algorithm selection with the node-level library autopas. 2021.

[GST+19] Fabio Alexander Gratl, Steffen Seckler, Nikola Tchipev, Hans-Joachim Bun-
gartz, and Philipp Neumann. Autopas: Auto-tuning for particle simulations.
In 2019 IEEE International Parallel and Distributed Processing Symposium
Workshops (IPDPSW), pages 748–757. IEEE, 2019.

[Her82] Heinrich Hertz. Ueber die berührung fester elastischer körper. 1882(92), 1882.

[HLW03] Ernst Hairer, Christian Lubich, and Gerhard Wanner. Geometric numerical
integration illustrated by the störmer–verlet method. Acta numerica, 12:399–
450, 2003.

[KERWS08] H Kruggel-Emden, S Rickelt, S Wirtz, and V Scherer. A study on the validity of
the multi-sphere discrete element method. Powder Technology, 188(2):153–165,
2008.

[MC14] Hans-Georg Matuttis and Jian Chen. Understanding the discrete element
method: Simulation of non-spherical particles for granular and multi-body
systems. Understanding the Discrete Element Method: Simulation of Non-
Spherical Particles for Granular and Multi-body Systems, 05 2014.

[ZZYY07] HP Zhu, ZY Zhou, RY Yang, and AB Yu. Discrete particle simulation of
particulate systems: theoretical developments. Chemical Engineering Science,
62(13):3378–3396, 2007.

34

