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Abstract

Ever since the term was first coined, adversarial examples have enjoyed much attention
from machine learning and computer vision researchers. The fact that tiny perturba-
tions can lead otherwise robust-seeming models to misclassify an input could pose a
major problem for safety and security. However, adversarial examples have so far been
considered mostly in laboratory settings that do not apply to real-world systems as they
are in use today.

This thesis investigates and evaluates the robustness of image classifiers in an adap-
tive black-box adversarial setting, where an attacker has no knowledge about the inner
workings of a classifier but is allowed to query it multiple times. In theory, it would
be possible to conduct such attacks against virtually any image processing system, but
existing methods are brittle and suffer from low efficiency. This is a major roadblock
that has so far prevented a systematic side-by-side robustness evaluation of classifiers
and defense methods.

The thesis addresses this problem by proposing a new black-box adversarial attack
that is both reliable and more efficient than prior work. The method exploits several
sources of knowledge about the domain of natural images to speed up the search for
adversarial examples. This greatly reduces the required number of queries to the black
box, leading the attack to outperform previously proposed methods.

With this efficient attack, a comprehensive evaluation of image classifiers is conducted.
The empirical robustness of state-of-the-art neural network architectures is compared
and contrasted with traditional computer vision pipelines. Recently proposed defenses
against adversarial attack are investigated and empirically evaluated, with the result
that many approaches do in fact not increase robustness against a strong adaptive attack
such as the one developed in this thesis. Finally, the attack is successfully applied to
popular cloud-based image processing services, demonstrating the threat to commercial
applications in the real world.

The results show that, while some approaches are slightly more robust than others,
none of the investigated image classifiers are completely robust in the evaluation setting.
This may pose a problem for the safety and security of computer vision systems in
the future, since attacks such as the one developed in this thesis can be performed
relatively easily. Nevertheless, the experiments show that a select few defense methods
do offer tangible robustness benefits. Based on these results, several recommendations
for realistic adversarial defense are given.
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Zusammenfassung

In den vergangenen Jahren haben Adversarial Examples viel Aufmerksamkeit von For-
schern im Bereich des maschinellen Lernens und des maschinellen Sehens erfahren. Die
Tatsache, dass winzige Manipulationen dazu führen können, dass ansonsten robust er-
scheinende Modelle eine Eingabe falsch klassifizieren, könnte ein großes Sicherheitspro-
blem darstellen. Allerdings wurden Adversarial Examples bisher meist in Laborumge-
bungen betrachtet, welche nicht direkt auf real existierende Systeme übertragbar sind.

Diese Dissertation untersucht die Robustheit von Bildklassifikatoren in einem adapti-
ven Black-Box-Szenario, in dem ein Angreifer keinerlei Wissen über das Innenleben eines
Klassifikators hat, jedoch mehrere Anfragen an diesen stellen kann. Theoretisch wäre es
möglich, solche Angriffe gegen beinahe jedes Bildverarbeitungssystem durchzuführen,
jedoch sind bisherige Verfahren unzuverlässig und leiden unter einer geringen Effizienz.
Dies ist ein großes Hindernis, welches bisher einen direkten Vergleich der Robustheit
vieler Klassifikatoren und Abwehrmethoden verhindert hat.

Im Rahmen dieser Arbeit wird zunächst ein neuartiger Black-Box-Angriff vorgestellt,
welcher sowohl zuverlässig als auch effizient ist. Die Methode nutzt mehrere Arten von
Vorwissen über die Domäne der natürlichen Bilder, um die Suche nach Adversarial Ex-
amples zu beschleunigen. Dies reduziert die erforderliche Anzahl von Abfragen erheblich,
wodurch der Angriff deutlich schneller erfolgen kann als bei etablierten Verfahren.

Dieser effiziente Angriff wird für eine umfassende Robustheitsmessung von Bildklas-
sifikatoren genutzt. Die Robustheit moderner neuronaler Netze wird verglichen und in
Relation zu traditionellen Methoden der Bildverarbeitung betrachtet. Danach wird eine
Reihe von Abwehrmaßnahmen aus der Literatur evaluiert. Auch hier zeigt sich, dass viele
vorgeschlagene Ansätze tatsächlich kaum Schutz bieten. Abschließend wird ein Angriff
auf die Bildverarbeitungssysteme mehrerer beliebter Cloud-Dienstleister demonstriert,
was die potenzielle Bedrohung für kommerzielle Anwendungen in der echten Welt auf-
zeigt.

Die Ergebnisse zeigen, dass einige Methoden zwar etwas robuster sind als andere, al-
lerdings existiert derzeit kein Bildklassifikator, der im untersuchten Szenario vollständig
robust ist. Dies könnte ein erhebliches Problem für die Sicherheit bildverarbeitender Sys-
temen darstellen, da solche Angriffe verhältnismäßig leicht durchgeführt werden können.
Nichtsdestotrotz zeigen die Experimente auch, dass einige ausgewählte Verteidigungs-
methoden die Robustheit eines Klassifikators deutlich erhöhen können. Basierend auf
diesen Ergebnissen werden Empfehlungen für den praktischen Einsatz gegeben.
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1 Introduction

Machine learning and especially deep learning techniques have been wildly successful
across a broad range of computer vision tasks. Yet, they are known to produce significant
errors when faced with inputs that are unexpected or maliciously crafted by an attacker.
This Chapter introduces adversarial examples, the notion of robustness to such inputs,
and discusses why it is required to make machine learning systems safe and secure. The
need for a comprehensive black-box evaluation of classifiers is motivated, which is a gap
in the current literature. Finally, the main contributions are summed up, together with
an outline of the thesis.

1.1 Adversarial examples

Ever since the term was coined by Szegedy et al. in 2014 [2], the startling phenomenon
of adversarial examples has been the subject of heated discussion in machine learning
research. The fact that tiny perturbations can lead otherwise robust-seeming models
to make drastic mistakes could pose a major problem for safety and security. But how
real is this threat? Machine learning is enjoying widespread adoption. How robust are
systems that are in use today? Is it truly a danger that needs special attention from
engineers, or is it merely a curious phenomenon that is limited to the laboratory?

In general, an adversarial example is an input to a system, specifically designed by
an attacker to maximize an error function [2]. This confronts the system with a worst-
case situation, causing it to make catastrophic and often surprising mistakes. While
adversarial examples are a general phenomenon of machine learning, it can be helpful
to focus on a specific domain for purposes of illustration.

Adversarial examples in computer vision. This thesis focuses on computer vi-
sion, where adversarial examples are images whose pixels have been slightly perturbed,
causing the system to misbehave. At the same time, the perturbation is small enough
that a human observer either does not notice it or otherwise interprets it as meaningless
noise. Consider Figure 1.1 (top left): Here, an image of a school bus is modified so that
an image classifier reports ”ostrich” with high confidence. All images in the Figure are
manipulated so that a machine learning classifier sees nothing but ostriches. This may
seem surprising to humans – not only is the image difference hardly noticeable, but the
image classifier (a Convolutional Neural Network) is otherwise known for high accuracy!
Clearly, something is wrong.

It should be noted that adversarial examples exist in other domains as well, such as
speech-to-text audio processing [3], text understanding [4] or even reinforcement learning
[5]. They are a general problem of machine learning, and most of the findings presented
in this thesis are applicable to those domains as well. However, computer vision is the
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Figure 1.1: Typical adversarial examples. (Left): Original images, which are predicted correctly
by a Convolutional Neural Network. (Center): Difference between original and
adversarial examples, magnified ×10. Since image differences can be negative,
they are displayed against a gray background. (Right): Adversarial examples.
The perturbation is almost invisible to the human eye, yet all images are strongly
misclassified as ostrich. The classifier being fooled is AlexNet [1]. Taken from
Szegedy et al. [2].

most representative domain for adversarial examples, as it is arguably one of the largest
fields where machine learning has been deployed so far [6]. There exists a broad range
of commercial applications, not only in cloud services and social networks but also in
robotics. Therefore, it serves as an ideal domain in which to study adversarial examples.

1.2 Robustness in computer vision

Robustness is typically defined as ”the degree to which a system or component can func-
tion correctly in the presence of invalid inputs or stressful environmental conditions” [7].
Being somewhat ambiguous, the term carries different meanings depending on the area
of research. For example, robustness exists not only in computer vision and machine
learning [8], but also in motion planning and control theory [9]. To avoid any misun-
derstandings, it is therefore necessary to first describe robustness in the context of this
work.

1.2.1 Image perturbations

In the field of computer vision, robustness is typically investigated in the presence of
perturbation – the modification of a known test image in order to obtain a new one that
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is more difficult to process [10, 11]. The system is then considered robust if it performs
correctly on the new, difficult, input.

Ideally, this is achieved by invariance: The system should yield the same output
for both the original and the perturbed input. Consider, for example, Figure 1.1: An
image classifier is certainly expected to be invariant to such tiny perturbations. In more
difficult cases, it can also be acceptable to perform detection: If a system cannot perform
the intended functionality on a perturbed input, it should at least be able to detect the
perturbation. In this case, an error can be reported and the system might switch to a
different mode of operation – or perhaps initiate a safe shutdown.

Typically, researchers distinguish between natural and adversarial perturbations:

• Natural: This can be any change applied to an image, as long as it occurs natu-
rally. This could be simple image transforms, such as translation and rotation, but
also shifts in color and brightness (see Figure 1.2), or even more semantic shifts
such as rain or snow (see Figure 1.3).

Crucially, this form of perturbation is known to humans and is therefore expected
to some degree. A human engineer might expect rainy weather, but a machine
learning system might not – due to limited training data. Therefore, it will not
be automatically robust to this perturbation, even though a human might expect
it. For this reason, machine learning engineers choose models that are naturally
invariant to some perturbations (Convolutional neural networks (CNN), for exam-
ple, are partially invariant to translation [13]), and choose to synthetically augment
the training data with others.

Natural perturbations are chiefly a concern of safety. They are expected to appear
often, but seldom with malicious intent.

• Adversarial: Adversarial perturbations, in contrast, are specifically engineered
by an attacker to cause malfunction. They are worst-case inputs which are not
expected to appear in a natural environment, and it is therefore difficult to guard
against them. However, if they do appear, they have the potential to cause signif-
icant damage. Compare Figure 1.1, where an extremely small perturbation causes
the system to output a prediction that is completely wrong.

Robustness against adversarial perturbation means that an attacker cannot suc-
cessfully craft such inputs. Chapter 2 discusses the nature of adversarial examples,
shows how to measure them, and compares recent literature on proposed attacks
and defenses.

Adversarial perturbations are the focus of this work. They are a concern of security,
as they are typically crafted by a malicious attacker. However, as they have the
potential to cause large amounts of damage, they are by extension also a concern
of safety.
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Figure 1.2: Natural perturbations on images of plants. A machine learning system is expected
to be robust against changes such as rotation or translation, as well as shifts in
brightness and contrast or noise and blurring effects. These image transforms can be
expected to occur in a natural environment and are often used in data augmentation
schemes [12]. Being robust to these changes, a classifier should report the same
result for all images in each row. Taken from Pawara et al. [12].

Figure 1.3: Natural perturbations on images of a driving scenario. All images have similar
contents (same road) but differ significantly in environmental conditions (weather,
day/night). Even though the images look extremely different on a per-pixel level,
their semantics are very similar. An automated driving system would be expected
to perform the same function, i.e. be robust to these changes. In some cases,
there could be a difference – perhaps more careful behavior in darkness – but
the system should be largely invariant to cloudy or sunny weather. As a result,
such environmental changes are expected and fall under the category of natural
perturbations. Taken from Cheng et al. [11].

4



1.3 The need for robustness

1.2.2 The challenge of generalization

It should be noted that both types of robustness deal with the issue of generalization.
Modern computer vision systems are fed with large amounts of training images and
extract statistical patterns from them. These statistics then generalize, which means
that they can be used to perform accurate predictions on new, unseen data. This is the
core premise of machine learning [8].

However, in practice, this generalization has been limited. Currently, automated driv-
ing systems are not inherently robust to natural perturbations like rain, snow, and
darkness [11]. CNNs are relatively robust to translation, but not to other affine trans-
forms such as rotation [14]. But more importantly still, all neural network architectures
known today are vulnerable to adversarial perturbation [15, 16, 17, 18].

Robustness issues arise whenever a predictor generalizes in an unintended fashion –
adversarial examples are testament to this. To remedy the problem, it would there-
fore suffice to simply ”solve” generalization. Certainly, a machine learning system that
perfectly mimics human vision and understanding would achieve sufficient robustness
against both natural and adversarial perturbation.

As it stands today, solving the problem of generalization seems to be out of reach
for many years to come [19]. In the meantime, it is reasonable to concentrate on the
machine learning systems of today and to try and improve their robustness step by step.

1.3 The need for robustness

This work is motivated from two directions. Not only is robustness an important prop-
erty of safe and secure cyber-physical systems, but it also holds a special place in machine
learning theory, where advances in robustness allow new insights into the nature of gen-
eralization.

1.3.1 Safety and security of real-world systems

For some time, adversarial examples were considered a mostly theoretical problem. They
were seen as difficult to create and early techniques (such as [2, 20]) were only suitable in
white-box scenarios: Full knowledge of the system under attack was required, as well as
full control over all inputs to the system. For reasons such as this, it was often considered
impossible to perform practical attacks on real-world robotic systems [21].

Case study: Attacks on automated driving systems. As a motivating example,
consider the domain of autonomous driving. Already today, many driver assistance
systems employ computer vision systems to a certain extent [22], and companies such as
Waymo and Tesla are known to rely heavily on machine learning solutions [23]. While
it is known that such technology is vulnerable to adversarial examples, these companies
have at times stated that they do not consider it a serious problem, as an attacker would
be unlikely to gain enough information to mount a successful attack against systems
employing high levels of redundancy [24].

5



1 Introduction

This approach is commonly called ”security through obscurity” [25]. In short, it
describes the usage of a system that has known vulnerabilities, but it is assumed that
an attacker would never gain enough information to actually find them. This strategy is
often used, but it is considered brittle: Attackers can be very creative, and under certain
circumstances manage to do the seemingly impossible.

Consider the case of Tesla: In 2019, a group of security researchers from Tencent
Keen Security Lab demonstrated an attack on the Tesla Autopilot driver assistance
system, which performs lane detection mainly through computer vision [26]. By placing
specifically crafted markers on the road, they were able to fool the lane detection system,
prompting the car to change lanes into potentially oncoming traffic.

It should be noted that the researchers had to go to great lengths to identify vulner-
abilities in the computer vision system. They used a number of zero-day exploits to
gain access to the vehicle’s operating system and then reverse-engineered its perception
pipeline until they found the lane detection component. Only then were they able to
perform an adversarial attack with methods from contemporary literature [27].

However, with the vulnerabilities of the computer vision system now identified, it is
within reason to assume that similar adversarial markers could have fooled other vehicles
with the same software as well. In this way, a seemingly unlikely attack may quickly
scale to a worldwide problem.

Towards robust real-world computer vision. In the public debate on robustness,
opinions range from ”adversarial examples are no problem” to ”machine learning can
never be safe”. Quite likely, the answer is somewhere in between. This work aims to
uncover some of the details: By performing experiments with novel strong attacks in
a realistic threat setting, it evaluates the robustness of image classifiers and defense
strategies. From these insights, it becomes possible to develop recommendations and
best practices for designing robust real-world systems.

1.3.2 Implications for machine learning theory

In addition to practical considerations, the existence of adversarial examples also poses a
dilemma for machine learning theory. Consider the example of Support Vector Machines
(SVMs): Before the current wave of deep learning, they were considered not only the
state of the art in machine learning but also superior to deep neural networks because
of their solid foundations in statistical learning theory [28, 29].

In order to achieve good generalization, SVMs work with the concept of max-margin
separation: Considering a classifier that predicts one of two classes for each data point,
there exists a decision boundary that separates the two classes of data points. Figure
1.4 illustrates this: In order to achieve good generalization, this boundary is picked in a
way that maximizes its distance to the nearest data points. This automatically improves
robustness, as an adversarial perturbation must be very large to push a data point across
the decision boundary.1

1Section 2.3.3 of Chapter 2 further discusses the relationship between decision boundaries and robust-
ness.
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Figure 1.4: Intuition behind max-margin classification. Two classes (blue circles and red
squares) are linearly separated with a hyperplane. (Left): There exist many ways to
perform classification with perfect accuracy, but not all of them have a large margin.
(Right): An SVM picks the hyperplane that maximizes the distance (margin) be-
tween data points of different classes. Motivated by statistical learning theory, this
principle of max-margin classification is thought to guarantee good generalization
and robustness [28]. Such theoretical guarantees currently do not exist for deep
neural network classifiers, which adds to the popular belief that classic methods
could be more robust. Figures taken from Garcia et al. [30].

As a result, one would expect such classifiers to display significant robustness to ad-
versarial attack. But is this true in practice? For any claim of robustness, adversarial
examples are counter-examples. For any classifier, they are empirical evidence that the
margin is small. Surely, theoretically-grounded methods such as the SVM would then
be robust by design?

An experiment conducted in Chapter 5 will show that this assumption does not hold,
at least for high-dimensional problems of computer vision. Here, SVMs and other tried-
and-true machine learning methods may be just as vulnerable to adversarial attack as
deep neural networks.

1.4 Towards realistic black-box evaluation

So far, the majority of research into adversarial examples has been conducted in unreal-
istic settings. While there exists a large body of literature on robustness, at this time it
is lacking a comprehensive side-by-side evaluation of state-of-the-art methods in a fair
but realistic threat setting.

Most works evaluate adversarial examples in white-box settings, where an attacker
has full knowledge of the system under attack. That line of research focuses on the
theoretical existence of a vulnerability, giving little regard to its practicability. In the
real world, however, attackers typically do not have access to the exact specifications
(and parameters) of a system and therefore operate under a black-box scenario. Chapter
2 discusses these threat settings in detail, as well as the state of the art in literature.
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Black-box attacks are not only realistic but also flexible. Since white-box methods are
typically handcrafted with knowledge of the target system, black-box methods cannot
afford this luxury. As a result, they need to work on any system, regardless of its inner
workings. This means that black-box attacks can not only be applied easily to many
systems, but also allow for a direct side-by-side comparison of heterogeneous systems
and defenses.

With all these advantages, it seems surprising that black-box attacks are still relatively
obscure. The reason is simple: Current methods either have a low success rate or,
alternatively, succeed but require a high amount of computational power (and many
queries to the black box). This makes evaluations tedious, if not completely infeasible.

This work aims to fill the gap by proposing a novel adaptive black-box attack, which
is significantly more efficient than the previous state of the art. With this new method,
a fair comparison of state-of-the-art approaches and systems becomes possible.

1.5 Thesis outline and contributions

The thesis consists of 6 chapters:

• Chapter 1 has outlined the problem of adversarial examples and motivated the
need for systematic black-box evaluations of adversarial robustness in computer
vision.

• Chapter 2 introduces the necessary terms and definitions for an investigation of
adversarial robustness. Relevant threat models are discussed, together with the
current state of the art in attacks and defenses. This equips the reader with the
necessary background to understand recent developments and the limitations of
existing approaches.

• Chapter 3 introduces a novel approach for generating black-box adversarial exam-
ples, the Biased Boundary Attack. This method can utilize prior knowledge about
the domain of natural images to perform efficient attacks. A number of such biases
are proposed, together with an efficient strategy for initialization.

• In Chapter 4, an experimental evaluation of the new attack method is performed.
This includes ablations on the various biases and their parameters, as well as a
comparison with recent works on black-box adversarial attack. It is found that
the Biased Boundary Attack significantly outperforms the previous state of the
art both in terms of efficiency and reliability.

• Chapter 5 uses the new attack to benchmark the adversarial robustness of a broad
range of image classifiers. First, state-of-the-art deep learning architectures are
evaluated. Next, classic computer vision pipelines are investigated, and it is found
that they share the same vulnerabilities. A range of proposed defenses against
adversarial attacks is compared side-by-side, with the result that most do not
increase robustness as significantly as claimed. Finally, the attack is also performed

8



1.6 List of publications

on popular commercial image processing services from Microsoft, Amazon, Google
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2 Adversarial robustness: State of the art

This chapter outlines the state of the art in robustness research. First, ways to define and
measure robustness are discussed, together with an appropriate threat setting. Then,
prior work on adversarial attacks is presented. This includes seminal works as well as
recent developments in adversarial attacks, some of which form the basis for the efficient
black-box attack developed in Chapter 3. Finally, a number of defense mechanisms
and mitigation strategies are presented, along with a discussion of their strengths and
weaknesses.

2.1 Image classification as a benchmark task

Attacks on computer vision systems can take many forms and are highly dependent
on the task which the system is performing. To conduct a systematic analysis, it is
necessary to pick a task that can be isolated and performed in a controlled environment,
and which is at the same time relevant for real-world applications.

The natural choice here is image classification, in which a system receives a single input
image and returns as output a class label. This problem is conceptually simple and has
been a staple of computer vision and machine learning research for decades [8]. As a
consequence, most recent analyses of machine learning robustness have been performed
on this task, yielding a large body of prior work [2, 20, 31, 32, 33, 34, 15]. Finally,
the image classification task is also directly relevant for real-world applications, as it
forms the basis of more advanced computer vision techniques such as object detection
and semantic segmentation [35], which are active areas of research for modern computer
vision applications [36].

2.2 Threat setting

When evaluating the security of a system, one must consider the scenario in which
attacks are performed. An adversary typically does not have unrestricted access to real-
world systems – if they did, an elaborate adversarial attack would hardly be necessary!
Depending on the restrictions, the efficient creation of adversarial examples can be very
difficult. It is therefore important to choose a setting that is as realistic as possible,
while at the same time not completely prohibitive for an informative evaluation.

2.2.1 White-box versus black-box

In general, most attack scenarios are categorized as either white-box or black-box:
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• In a white-box scenario, the attacker has full knowledge of the system that is
under attack. For machine learning methods such as neural networks, this includes
the architecture and parameters (weights) of the model, as well as knowledge of
input (resolution) and output (class labels) formats.

White-box attacks (and defenses) typically aim to investigate robustness from a
fundamental perspective: A successful white-box defense would entail ”perfect”
security, as the setting assumes that – even with full knowledge of the system – an
attacker can never succeed [37].

Naturally, proving this is very difficult for defenders. One must verify that there
exists no perturbation of a certain magnitude which can change the output of the
classifier. Such formal proofs of robustness are very hard and currently suffer from
scalability issues [38].

For attackers, it is much easier: If only a single adversarial example can be pro-
duced, then robustness is disproven. Indeed, current developments in adversarial
examples are a cat-and-mouse game between attackers and defenders, and newly
proposed defenses are often broken within months of being published [39, 16, 40].

• Adversarial attacks in a black-box scenario are considerably more difficult: Here,
it is assumed that the inner workings of a model are entirely unknown and that
an attacker can merely query its output after providing an input. In reality, some
small amount of information is typically known even in this case, such as the task
which the model performs, some possible outputs, or even correlations in the data
on which the model was trained1.

The black-box setting does seem easier for defenders: As the attacker has very lim-
ited knowledge, it suffices to simply hide vulnerabilities in a clever way. Naturally,
this amounts to ”security by obscurity”, which is of doubtful use as it hardly gives
any real guarantees. As described in Section 2.4.3, most recently proposed defense
mechanisms rely on obscurity in one way or another. The question is – are they
really safe, or could they be broken by stronger attacks?

Note on terminology: Strictly speaking, a black box would imply that no knowledge is
available at all. Some authors have argued that it would be more formally correct to call
the setting ”gray-box” instead [41]. Perhaps unsurprisingly, this ambiguous terminology
has not caught on in the field. For all practical purposes, the term ”white-box” is used
when a classifier’s architecture and parameters are known, and ”black-box” when they
are not.

2.2.2 Advantages of black-box evaluation

Although both settings are interesting in their own regard, this work focuses on the
black-box scenario. This has the following reasons:

1This observation forms the basis of the efficient black-box attack developed in Chapter 3: Even small
amounts of knowledge can drastically improve the success chance of an attack.
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• White-box defenses are difficult to compare: Since an attacker has com-
plete knowledge of the system, any defense is therefore also known to them. This
typically prompts the creation of specialized attacks, which are custom-tailored
to penetrate one particular defense but fail against others [16]. As a result, the
current landscape of white-box methods is very fragmented and it is difficult to
evaluate attacks and defenses in a unified benchmark.

• Black-box attacks are versatile: An effective black-box attack can be applied to
virtually any system. Since white-box information is not available, these attacks
cannot afford specialization, and instead focus on being applicable to as many
systems as possible. This allows for a side-by-side evaluation of many different
systems – including traditional computer vision pipelines, for which white-box
attacks would otherwise be difficult to design.

• Real-world systems are black boxes: Finally, black-box attacks can evaluate
real-world systems that are in use today. At the time of writing and to the best
of this author’s knowledge, no white-box defense exists that is provably robust
and that can be scaled to real-world applications (such as high-resolution image
classification). Therefore, it is unlikely that large-scale commercial applications
could be completely robust. It seems promising to test black-box attacks on them
and see how robust they really are.

In short, black-box attacks are the tool of choice for a unified evaluation of a broad
range of systems. However, there is one significant drawback: Current black-box at-
tacks are known to be either slow or unreliable, rendering attacks on real-world systems
expensive and, in many cases, impossible. This weakness is addressed by the efficient
black-box attack developed in Chapter 3, paving the way for the evaluations conducted
in Chapter 5.

2.2.3 Restricted access

In a black-box setting, attackers can access the inputs and outputs of a system. To make
things even harder, this access is often restricted further:

• Limited queries: Searching for adversarial examples is an optimization problem,
which typically requires many queries to the classifier under attack. State-of-the-
art black-box attacks (see Section 2.4) require a large number of such queries to
find even a single adversarial example. Naturally, the defender can simply limit
the number of queries available to the attacker.

This can be very effective: State-of-the-art attacks that require millions of queries
against commercial classifiers [42] are quickly rendered infeasible when access is
restricted, for example, to one query per second. Query efficiency therefore is a
major requirement for black-box attacks.
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• Decision-based / label-only classification: Consider a typical machine learn-
ing classifier, which outputs a real-valued vector of class probabilities (e.g. nor-
malized by a softmax function). A small change in the input is then reflected by a
small change in the output, allowing attackers to perform gradient estimation with
finite-difference methods. Gradient information allows for efficient optimization,
and some of the most prominent attacks exploit this to quickly find adversarial
examples [27, 44, 42].

The remedy is simple: Instead of delivering confidence scores to an attacker, a
defender might return only the class label of the final decision. Since the output is
now discrete, it greatly diminishes the efficiency of gradient estimation [42], up to
the point where such attacks become infeasible. This setting is commonly named
”decision-based” [15], ”label-only” [42], or ”hard-label” [45].

The decision-based setting is very difficult to attack, but it also confers a signif-
icant advantage: Considering machine learning systems in this setting allows for
the evaluation of any classifier or system that outputs a single, discrete decision.
Attacks that operate in this scenario are therefore applicable not only to deep
learning, but also to traditional machine learning classifiers, feature extractors,
and even decision trees.

2.2.4 Discussion

This work focuses on the query-limited decision-based black-box scenario. It holds great
promise for a direct and fair comparison of a large range of heterogeneous classifiers.
However, attacks in this scenario must not only demonstrate high success rates but also
succeed with a relatively low amount of queries.

2.3 Measuring robustness

With the threat setting now defined, a principled way to measure robustness can be
established. This section introduces the terminology and general setup of classification
and adversarial robustness. Some intuition about decision boundaries is given and,
finally, the state of the art in measuring adversarial perturbation is discussed.

2.3.1 Terms and definitions

The following is a brief review of common terminology for machine learning classifiers:

• Classifiers and models. In machine learning, a classifier function f(x) maps
from a data vector x ∈ Rk to a class label y ∈ {C1, C2, ...Cn}. Here, k is the number
of dimensions (or features) of the data point, and n is the number of classes. This
is a common definition of classification in machine learning [8]. For each data point
x, the classifier outputs a prediction ŷ:

ŷ = f(x) (2.1)
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2.3 Measuring robustness

Since a classifier is a model that is used for prediction, the term model is often
used informally when referring to f .

• Data points, inputs and images. x ∈ Rk is the input to the classifier and is
a vector of dimensionality k, where each dimension describes a specific feature. It
is often called a data point or an example that is obtained from measurements in
the real world (e.g. using a camera).

In computer vision, x ∈ Rh×w×c is an image that is represented not as a flat vector,
but as a matrix or tensor. h, w and c are height, width and the number of color
channels. A simple way to use images with machine learning notation is to flatten
the image into a vector of k = h · w · c dimensions.

Naturally, this is somewhat oversimplified, as contemporary computer vision clas-
sifiers (both CNNs and classic feature extractors) do in fact make use of locality
information instead of removing it by flattening. However, the description of inputs
as vectors x ∈ Rk allows us to continue with concise machine learning notation.
This simplifies many of the aspects of adversarial examples, such as describing
decision boundaries or measuring the magnitude of adversarial perturbations. For
this reason, x is simply described as an input of dimensionality k.

• Input space. The space spanned by all possible inputs. For inputs x ∈ Rk, the
input space is Rk.

• Decision boundary. In the input space, the decision boundary is a surface
that divides it into multiple regions, each of which then contains data points of a
different class. See Section 2.3.3 for an illustration.

• Data set. In this work, a data set contains pairs (x, ygt) of data points and
the corresponding ground truth label. Here, data sets for supervised learning are
considered exclusively, i.e. that always contain ground truth annotations.

• Ground truth. The correct class label of an image which is provided in the data
set. The prediction of a classifier is correct only if it matches the ground truth class
label: ŷ = ygt. Ground truth annotations are not directly required for adversarial
attacks, but they are useful for evaluation purposes.

2.3.2 Evaluation metrics

Classifiers are most commonly evaluated by prediction accuracy on predefined data sets
[8]. For each example x, the data set contains a ground truth label ygt. The classifier f
predicts the label ŷ = f(x), and success is registered if f(x) = ygt. The overall accuracy
then is the percentage of correct predictions out of all examples.

Robustness, in contrast, can be considered the accuracy of a classifier on a set of
perturbed data. When benchmarking the robustness of a classifier, an attacker typically
chooses a data set, creates adversarial copies of its examples, and then observes the
change in accuracy [2, 20, 33]. For simple data such as MNIST [46], the entire test set
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Original Difference Adversarial
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Figure 2.1: Comparison of untargeted and targeted misclassification. (Top): An untargeted
attack, which is considered successful whenever the predicted class label changes.
This attack is easier and the result is often of little concern – the predicted class is
still an automobile. (Bottom): A targeted attack, with ytarget manually chosen to
be ”traffic light”. This attack is more difficult, and a larger perturbation is required.
Targeted attacks give the attacker fine-grained control and have the potential to
cause significant damage. The classifier being fooled is InceptionV3 [47], trained
on the ImageNet dataset [48].

can be evaluated [39]. For larger and more complex data sets such as ImageNet [77]
this can be computationally infeasible – it is therefore common to evaluate only a small
subset of the validation data [42]. But what exactly are the criteria that make an image
”adversarial”?

2.3.2.1 Misclassification

The first and obvious criterion is misclassification – this means that the classifier must
produce incorrect output. In the following, the original example is named xorig and the
adversarially perturbed copy is named xadv. Research on adversarial examples has so
far focused on two forms of misclassification:
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• Untargeted: Formally, misclassification is achieved when f(xadv) 6= ygt. In other
words, any prediction which is not the ground truth label satisfies the criterion.

Untargeted attacks have a major drawback: Depending on the distribution of class
labels, there might be significant overlaps. Consider, for example, the popular
ImageNet [48] data set: It contains 1000 different classes, among which are many
similar types of road vehicles. Here, an untargeted attack typically changes the
prediction to another class that is only marginally different. Compare Figure 2.1
(top): Causing a classifier to mistake a minibus for a pickup truck satisfies the
misclassification criterion, but in reality it is a minor mistake at best.

This effect can be seen in recent works on efficient black-box attacks [49, 50], where
evaluations are conducted in untargeted settings on data sets with ambiguous class
labels – this is not a strong demonstration of vulnerability.

• Targeted: To remedy this problem, the attacker can instead choose a specific
target label ytarget, and adversarial misclassification is achieved only if f(xadv) =
ytarget (and ytarget 6= ygt).

Ideally, this target label is far removed from the true label and implies a dangerous
mistake. See Figure 2.1 (bottom): Confusing a minibus with traffic lights is a
serious concern for safety. Naturally, this makes targeted attacks more difficult
to perform, but also more critical: If successful, then the attacker has very fine-
grained control over the outcome.

Targeted adversarial examples are both more dangerous and difficult to create.
Since robustness is typically considered in worst-case scenarios, targeted attacks
should be the method of choice – with ytarget aptly chosen to demonstrate the
adversarial effect. This work therefore concentrates on targeted attacks exclusively.

2.3.2.2 Similarity to real examples

The second criterion is similarity: The adversarial image should be as close to the original
as possible. This results in perturbations that not only cause a machine learning system
to malfunction, but that are often imperceptible to humans [2]. How can this similarity
be measured in a principled way?

• Euclidean distance (`2-norm of the perturbation):

An adversarial example is created by perturbing a clean example: xadv = xorig+η.
Then, ‖η‖2 is the `2-norm of the perturbation, or the Euclidean distance between
xorig and xadv.

Effectively embedding all data points into the Euclidean space, this simple way
of measuring similarity has long been a staple in machine learning and statistics
[8]. Being a sum of squares, the `2 distance is also directly equivalent to the mean
squared error (MSE) of individual features:

MSE =
‖η‖22
k

(2.2)
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Original Difference Adversarial

`2

Prediction: 9 ‖η‖2 = 2.0 Prediction: 4

`∞

Prediction: 9 ‖η‖∞ = 0.15 Prediction: 4

Figure 2.2: Adversarial examples that minimize different distance measures. (Top): A small
number of pixels is perturbed strongly. (Bottom): Many pixels are perturbed, but
none by more than exactly 0.15. While `∞ seems convenient as a measurement,
`2-perturbations have a more organic look and can express patterns that are harder
to spot by humans.

Here, k is the dimensionality of the data points. If the input is an image, then
k = h · w · c, where h is height, w width, and c the number of color channels.
MSE is a popular way to measure image corruption in computer vision and image
processing [51], which makes the `2-distance a natural fit for measuring adversarial
perturbations.

• Chebyshev distance (`∞-norm of the perturbation):

The `∞-norm returns the maximum element of a vector, like so:

‖η‖∞ = max{|η1|, ..., |ηk|} (2.3)

This measure is used to limit the maximum perturbation that an attacker can
perform on any feature. When comparing images, ‖η‖∞ = 0.1 would indicate that
no pixel in the image has been modified by more than ±0.1 (or 26 out of 255 in
an 8-bit RGB image).

The `∞-norm has been popular in the early days of adversarial example research
[20, 52]. However, it has an important drawback: Attacks that minimize it typically
result in equal perturbation of most pixels. Compare Figure 2.2 (bottom), where a
weak perturbation equally covers the entire image. The `2-based attack in Figure
2.2 (top) is more flexible: It can choose to focus on fewer pixels and perturb them
more strongly, while still appearing very similar to the original image.
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Original Difference Adversarial

Lighthouse ‖η‖2 = 7.23 Husky
‖η‖∞ = 0.06
SSIM = 0.98

Figure 2.3: Similary measures are not always aligned with human perception. This ”adversar-
ial” perturbation is clearly visible to humans – an image of a husky dog has been
blended into the original image – but all measures report high similarity. This is
not surprising in the case of `p-distance, but more so in the case of SSIM: The two
images have an almost perfect SSIM score (1.00 is the maximum). Unfortunately,
this means that established measures for perception-based similarity often do not
apply to adversarial examples, and therefore do not automatically offer advantages
over the simpler `p-based measures.

• Number of perturbed pixels (`0-pseudonorm of the perturbation):

While formally not a norm, the `0-measure simply counts the number of nonzero
elements in a vector. In simplified terms, it is the number of pixels that an attacker
needs to change in order to fool the classifier:

‖η‖0 = |{i : |ηi| > 0}| (2.4)

Here, the actual strength of the perturbation is not taken into account. This
makes the `0-distance the direct opposite of the `∞-distance, where the number of
perturbed pixels is irrelevant.

This measure is rather exotic and not in widespread use. It has been used for
spectacular demonstrations such as a one-pixel-attack [53], but this form of attack
is rather difficult [39] and the criterion (perturb as few pixels as possible) can also
be satisfied by the more flexible `2-distance.

• Perception-based measures:

The overarching goal of an adversarial attack is to perform manipulations that can
not be detected by a human. It is well known that `p-norms, while mathematically
convenient, do not align too closely with human perception [54]. This drawback is
evident in Figure 2.3, where a perturbation with small `2- and `∞-norms is clearly
visible.
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It is tempting to turn towards the field of image processing, where perception-
based similarity measures have a rich history. Scores such as Structural Similarity
(SSIM) [54] and Visual Information Fidelity (VIF) [55] are commonly used to
measure corruption artifacts caused by image and video compression. While these
seem very promising, they are of doubtful use for measuring adversarial examples:
See again Figure 2.3, where SSIM does not perform any better than `p-distances
at capturing the perturbation.

Another approach towards perception-based measures is the Frechét Inception Dis-
tance (FID) [56]. It is used for generative models such as Generative Adversar-
ial Networks (GANs) [57], judging similarity between synthetic and real images.
While this seems promising, it should be noted that FID is calculated from fea-
tures extracted by a neural network which then, naturally, must be vulnerable to
adversarial examples as well. An attacker would likely not only fool the classi-
fier but also the distance measure with it. This would make such a measure very
unreliable.

Which measure should one choose? `p-norms are mathematically convenient, but their
weakness is limited alignment to human perception. Nevertheless, clearly any perceptual
difference is minimized when `p-norms approach zero, so they are indeed useful when
measuring very small perturbations – which is precisely the setup of adversarial examples.
For this reason, they remain relevant despite their flaws and are to this day the main
way of measuring adversarial robustness [34, 33, 15, 18, 27, 44]. Here, the `2-distance
is the most flexible, as it incorporates both the number of perturbed pixels and the
perturbation strength. Therefore, the rest of this work focuses on `2-distance exclusively.

2.3.3 Geometric intuition on adversarial examples

To gain intuition about why adversarial examples exist, it can be helpful to consider
a toy example with two input features only (x ∈ R2). This allows us to create a two-
dimensional plot of the entire input space, visualizing the decision boundary that divides
it into regions of different classes.

Figure 2.4 shows the input space of binary classifiers that process two features x1 and
x2 (e.g. tiny images with only two pixels). Their robustness is evaluated in a testing
scenario: If a classifier is robust to all perturbations of magnitude ‖η‖2 ≤ εtest, then
there exists a circle of radius εtest around each data point and all points within this
circle are of the same class. Correspondingly, in higher dimensions, this is the robustness
hypersphere around a data point2. Adversarial examples therefore exist wherever the
decision boundary intersects the robustness hypersphere.

Adversarial regions are not small. It was long thought that adversarial examples
were ”low-probability pockets on the data manifold” [2], which lends credibility to the
interpretation in Figure 2.4 (left). Since these pockets are so small, it would be easy

2Since we use the `2-distance for robustness, this is simply a Euclidean (hyper-)sphere. In the case of
`∞, it would be a (hyper-)cube. Other measures, not being true metrics, do not allow for this simple
intuition.
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εtest
xorig

xadv

εtest
xorig

xadv

Figure 2.4: Decision boundaries of binary classifiers. The red regions contain adversarial ex-
amples, which arise wherever the decision boundary is inside the robustness hyper-
sphere. This means that a classifier is not robust to perturbations of magnitude
εtest. (Left): A common misconception, according to which adversarial examples
would reside in tiny, isolated pockets. These would be difficult to find by an at-
tacker and easy to remove by a defender. (Right): According to recent research
[34], adversarial regions are often large and contiguous. This makes them rather
easy to find for an attacker, and difficult to remove without hurting classification
accuracy.

xorig

xadv

εadv

εtrue

εtest

Figure 2.5: Three levels of ε-robustness. The true robustness εtrue is the distance from xorig
to the decision boundary. However, calculating εtrue is extremely expensive and
often intractable for complex classifiers [38]. Instead, robustness can be determined
empirically by testing: A robustness target εtest is fixed, and if an adversarial
example xadv with εadv ≤ εtest can be found, then the classifier is proven to be
not robust. As an approximation, εadv is an empirical upper bound for the true
robustness εtrue of the classifier.
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to get rid of them by filtering, or perhaps by adding small amounts of random noise.
However, over time it became more and more clear that the problem was much bigger
than initially thought. Finally, Tramèr et al. [58] found that adversarial regions often
form the shape of a cone – a large contiguous region that can be traversed from start to
finish. This is illustrated in Figure 2.4 (right).

This counter-intuitive fact may be caused by high dimensionality. In high-dimensional
spaces, such an adversarial cone might be of small volume when compared to the entire
input space, but still extremely large when considered locally. Once a point inside the
adversarial cone has been found, most points in the vicinity are also adversarial. As
a result, an attacker can traverse the cone from start to finish, quickly arriving at a
powerful adversarial example. This is the main intuition behind boundary attacks (see
Section 2.4.2).

Empirical evaluation of robustness. Exact calculation of a classifier’s robustness is
often intractable [38]. Instead, it can be approximated empirically by creating adversarial
examples: If εadv = ‖η‖2 is the magnitude of a successful adversarial perturbation, then
εadv is an upper bound for the true robustness of the classifier. Figure 2.5 illustrates
this.

This geometric interpretation is a handy tool for understanding the motivation behind
most state-of-the-art attack and defense methods. The rest of this chapter discusses them
in detail.

2.4 Adversarial attacks and defenses

This section discusses the state of the art in adversarial attacks and defenses. First,
a historical perspective on white-box attacks is given, which serves as an introduction.
Then, several recent approaches to black-box attack are presented. Finally, common
defenses against adversarial attacks are described, together with a discussion of their
usefulness.

2.4.1 White-box attacks

To understand modern black-box attacks, it can be helpful to start with the white-box
setting. Most of the early works on white-box robustness are conceptually simple and
straightforward, which makes them a good introduction to the techniques employed in
adversarial attacks. Black-box attacks often directly build upon these methods.

2.4.1.1 Direct optimization attack

Although adversarial classification had been explored in the context of email spam de-
tection as early as 2004 [59], it only started gaining traction in 2014 when Szegedy
et al. [2] presented a working adversarial attack for deep neural networks. At the
time, this demonstration caught many deep learning enthusiasts by surprise, as it di-
rectly challenged the then-common assumption that deep learning was bound to achieve
human-like performance on computer vision tasks. Deep neural networks were already
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surpassing humans in large-scale image classification [60], and it was thought that they
learned to see the same features in images as humans do. Szegedy et al. provided strong
counterexamples to this – adversarial examples.

Conceptually, their formulation of adversarial attack is straightforward. They choose
targeted misclassification with minimal `2-distance and directly optimize for the adver-
sarial criterion:

xadv = xorig + η (2.5)

η = arg min
η

c‖η‖2 + Lf (xorig + η, ytarget)

Here, η is the adversarial perturbation and Lf is the cross-entropy classification loss of
the original neural network. Since this is a multi-objective optimization problem (both
classification loss and perturbation size are minimized), the constant c is used to balance
the two objectives. Additionally, care must be taken that xadv results in a valid image:
xorig + η ∈ [0, 1]k.

In the white-box scenario, the classifier f is known and therefore the gradient ∇Lf
can be computed with respect to the perturbation η:

∇Lf =
∂Lf (xorig + η, ytarget)

∂η
(2.6)

This naturally lends itself to efficient higher-order optimizers. Szegedy et al. use a box-
constrained L-BFGS optimizer [61] to find xadv. L-BFGS is a quasi-Newton method but,
as the problem is non-convex, the solution can only be approximated [2].

It should be noted that this optimization procedure is very similar to standard neural
network training, and later works have abandoned the use of L-BFGS for the more
common stochastic gradient descent (SGD) and its derivatives [39]. Nevertheless, the
work of Szegedy et al. can be considered the prototypical formulation of adversarial
attacks in the white-box scenario. The images shown in the introduction – Chapter 1,
Figure 1.1 – were created with this method.

2.4.1.2 Fast Gradient Method (FGM)

While direct optimization of the entire adversarial objective (both misclassification and
similarity) is conceptually straightforward, it takes a long time to converge [2]. Exper-
imenting with the attack formulation, Goodfellow et al. [20] discovered that, in many
cases, it can be sufficient to optimize for the misclassification criterion alone, ignoring
the similarity criterion. Naturally, this greatly simplifies the formulation. Capitalizing
on this insight, they proposed a simple one-step attack called the Fast Gradient Sign
Method (FGSM):

xadv = xorig + η (2.7)

η = −ε · sgn(∇Lf (xorig, ytarget))

This equation requires only a single gradient evaluation, which makes the attack ex-
tremely fast. The perturbation η is then equivalent to a single update step of gradient
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Figure 2.6: The well-known ”adversarial panda” was created with an untargeted one-step FGM
attack. (Left): Original image. (Center): Difference image, strongly magnified.
(Right): Adversarial example. It is evident that all pixels are perturbed with equal
strength, as is customary for `∞ attacks. The classifier being fooled is GoogLeNet
[62]. Taken from Goodfellow et al. [20].

descent on the classification loss ∇Lf , with a step size of ε > 0. Consequently, ε directly
controls the magnitude of the perturbation – in this case, ‖η‖∞ = ε.

The FGSM attack uses the sign function to normalize the adversarial gradient for
`∞-based perturbations. It is trivial to extend the formulation to other norms, forming
the more general familiy of Fast Gradient Method (FGM) attacks. For example, a FGM
attack that creates `2-minimal perturbations normalizes the gradient as follows:

η = −ε
∇Lf (xorig, ytarget)

‖∇Lf (xorig, ytarget)‖2
(2.8)

It may seem surprising that a single, large, step of gradient descent would lead to
good results. And indeed, this method typically requires the perturbation magnitude ε
to be relatively large – which makes it slightly less effective when compared with more
expensive optimization attacks [39]. However, in untargeted settings, the perturbation
can still be small enough to fool a human observer. This can be seen in Figure 2.6, which
shows the now-famous panda image that popularized adversarial examples in 2015 [20].

The FGM attack delivers acceptable results at very low computational cost. For this
reason, it has become the tool of choice for quick evaluations of robustness and still
enjoys great popularity to this day [33, 34].

2.4.1.3 Projected Gradient Descent (PGD)

While the FGM attack is very fast, it is not always successful. Kurakin et al. [31] found
that it does perform well in untargeted scenarios, where the only goal is to reduce the
accuracy of classification, but not so much in a targeted setting, where the attacker
wants to force classification of a specific label and requires a certain minimum amount
of precision. The reason for this is the large step size - since the FGM method performs
one-step gradient descent, it can be expected to be very imprecise.
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As an obvious extension of the FGM attack, Kurakin et al. proposed to simply apply
it multiple times, using a smaller step size α:

xadv,0 = xorig (2.9)

xadv,n = Clipxorig ,ε

(
xadv,n−1 − α

∇Lf (xadv,n−1, ytarget)

‖∇Lf (xadv,n−1, ytarget)‖2

)
This attack now performs n steps of FGM gradient descent. Being somewhat of a

middle ground, this attack has a significantly higher success rate than one-step FGM
attacks, while still being faster than the original optimization attack [31].

To make sure that the adversarial example stays similar to the original image, the func-
tion Clipxorig ,ε(x) clamps x to the ε-neighborhood of xorig. This projection guarantees
that xadv is always inside a hypersphere3 with radius ε. This matches the formulation
of robustness hyperspheres in Section 2.3.3: If the attack finds an adversarial example,
then the classifier is not robust within this ε.

Naming. In their 2016 work, Kurakin et al. [31] introduced this attack as the ”Basic
Iterative Method” (BIM), however subsequent work by Madry et al. [33] established
that the Clip(·) function effectively performs a projection onto a hypersphere around
xorig. Therefore, the BIM is simply an implementation of Projected Gradient Descent
(PGD), a very common general-purpose technique for optimization with constraints [63].
As a result, today this family of attacks is simply called PGD, and the term has become
the dominant name in the field [15, 42, 18, 58].

2.4.1.4 Stronger optimization attacks

By 2016, the first techniques had been proposed to defend against adversarial attack,
and authors were quick to claim that their methods would make classifiers immune
[64, 65]. However, most of these new defenses only showed robustness against fast
attacks such as FGM or few-step PGD. Far from a true demonstration of robustness,
this completely ignored the possibility that those attacks were specifically geared towards
fast computation, and that a slower (but stronger) optimization attack might still find
adversarial examples.

Realizing this, Carlini and Wagner [39] set out to create an extremely strong (if slow)
attack with the goal of breaking established defenses. They modified the original op-
timization objective of Szegedy et al. (see Section 2.4.1.1) and introduced several im-
provements to allow for efficient optimization via Stochastic Gradient Descent (SGD).

The original formulation is considered to perform poorly in gradient descent, as ex-
treme points and flat regions on the loss surface make optimization very hard [39]. To
combat this, Carlini and Wagner substituted tanh(η) for η, which allows for smooth op-
timization of the objective. Along with other improvements, this allows advanced SGD
methods such as the popular Adam optimizer [66] to converge efficiently on adversarial
examples with extremely small η.

3This also generalizes to other metrics than `2. For example, an `∞-hypersphere is an axis-aligned
hypercube. Clamping can then be implemented on a per-pixel/per-axis basis.
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In their 2017 paper, Carlini and Wagner showed that their attack can find adversarial
perturbations of smaller magnitude than previous methods before them. They also
found that proposed defenses such as distillation [65] failed when confronted with their
new, strong, attack. This observation would foreshadow the development of adversarial
attacks and defenses in the years to come: It became a game of cat and mouse in which
defense authors would evaluate their methods against fast/weak attacks, only for others
to show that the defenses actually failed against stronger attacks [16, 67].

Over the years, many strong white-box attacks have been proposed. They often use
advanced optimization techniques such as Elastic Nets [68] or the Decoupled Direction
and Norm approach [69]. All of them have in common that they produce strong adver-
sarial examples while often requiring a high computational budget. In the rest of this
work, these methods are simply referred to as the family of strong white-box attacks (as
opposed to fast white-box attacks such as FGM and PGD).

2.4.2 Black-box attacks

Now that the major families of white-box attacks have been described, it is time to
consider the main focus of this work: Black-box attacks. Here, gradient information is
not directly available. As a result, attacks are often slower and/or weaker than their
white-box counterparts. This section describes the three major approaches to black-box
attack, along with their individual strengths and weaknesses.

2.4.2.1 Transfer attacks

Transferability is one of the many surprising properties of adversarial examples. Pertur-
bations created against one classifier f1 can often fool another classifier f2, even though
they are tailor-made with the knowledge of only f1. Figure 2.7 illustrates this: Trans-
ferability exists whenever there is an overlap between the adversarial regions of both
classifiers.

The phenomenon was already discovered by Szegedy et al. in their initial work [2].
Later, it was shown that transferability is surprisingly high even between very different
classifier architectures. For example, adversarial examples created on VGG-16 [70] have
been shown [71] to transfer easily to other major architectures such as ResNet-50 [72]
and MobileNet [73].

This phenomenon can be exploited for attacks such as described by Papernot et al.
[32]: An attacker creates and trains a surrogate model, to which they have white-box
access. Ideally, it is trained with the same data as the black box, however this is not a
strict requirement [74]. Then, they perform a white-box attack on the surrogate model
and feed the resulting adversarial example to the black box. Due to the transferability
effect, there is a moderate possibility of success on the first try [32, 74]. This is the
one-step formulation originally proposed by Papernot et al., who perform a simple FGM
attack on their surrogate model. However, modern attacks have found more success with
multi-step PGD methods, which are now the prevalent form of transfer-based attacks
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Figure 2.7: Transferability between multiple classifiers. This figure shows the decision bound-
aries of two classifiers f1 and f2. Each separates the input space into two classes
(green or blue). It can be seen here that the adversarial regions (red) of both clas-
sifiers overlap. Therefore, many adversarial examples created for f1 will also fool
f2.

[75, 33, 69]:

xadv,0 = xorig (2.10)

xadv,n = Clipxorig ,ε

(
xadv,n−1 − α

∇Lfsurr(xadv,n−1, ytarget)

‖∇Lfsurr(xadv,n−1, ytarget)‖2

)
Finally,

ŷ = fBB(xadv,n) (2.11)

Here, fBB is the black-box model under attack, and fsurr is the surrogate model. The
formulation differs from the original PGD attack only in that gradients are calculated on
the surrogate, but predictions are tested on the black box. Once ŷ fulfills the adversarial
criterion, the attack is successful.

At the time of writing, transfer attacks were considered the most powerful approach.
They consistently achieved winning scores in open competitions on adversarial examples,
such as the NeurIPS 2017 and 2018 Adversarial Vision Challenges [17, 18]. However, it
must be noted that their dependence on surrogate models is also a great liability:

• Limited adaptivity. Typically, these attacks are of a hit-and-miss nature. If the
adversarial gradient of the surrogate does not closely align with the (unknown)
gradient of the black box, then a transfer attack takes a shot in the dark. If
an adversarial example is not found quickly, then subsequent updates on a badly
approximated gradient will only worsen the situation. Therefore, transfer attacks
are considered strong but extremely brittle [15].
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• Expense of training a surrogate. Because of this brittleness, great care must
be taken when crafting the surrogate. An attacker must train the model on sim-
ilar data, try to extract labels from the black box [32], try data augmentation
techniques like adversarial training (see Section 2.4.3.6), compare different archi-
tectures, or even train an entire ensemble of them. These are the steps that are
typically attempted in order to improve the chance of transfer [34, 32, 18].

• Computational cost and memory requirements. The attacker must store at
least one model with similar size and complexity as the black box. Often, an entire
ensemble of surrogates is used [18], requiring many gigabytes of RAM (typically
on GPUs) and considerable computing power for calculating gradients.

2.4.2.2 Gradient estimation

Because of these drawbacks, it seems promising to try and conduct black-box attacks in
a model-free manner – that is, without using a surrogate model.

So far, all attacks described in this chapter have relied on gradient information to
calculate adversarial examples, which means they perform first-order optimization. In
the white-box setting, gradients are directly available, and in the black-box setting, a
transfer attack can approximate them through surrogates. However, when no gradients
are available at all, the problem essentially becomes one of zeroth-order optimization.

Zeroth-order optimization has a long history and consists of many search techniques.
Methods such as simulated annealing, evolutionary strategies, or even random search
are considered staples of optimization, and could – in theory – be used to search for
adversarial examples. However, most of these techniques are not considered tractable as
the dimensionality of the search space is extremely high. For example, a typical image
from the ImageNet dataset [48] has a dimensionality of k = 299× 299× 3 = 268.203.

It turns out that some carefully-selected zeroth-order methods can indeed be used to
find adversarial examples even for high-resolution image classifiers. One such technique is
stochastic gradient estimation with SPSA [43, 76]. Other methods of gradient estimation
have also found success in black-box attacks [42, 27, 44, 50], but the general principle
can be explained with the example of SPSA.

SPSA is a stochastic version of the finite difference method: An input x is randomly
perturbed and the corresponding change in the classifier’s output ŷ = f(x) is recorded.

When multiple such measurements are taken, the derivative ∂f(x)
∂x can be estimated and

used as a substitute for the true gradient. Crucially, it is not necessary to perturb each
dimension individually – the stochastic nature of SPSA allows us to take a random
sample that is significantly smaller, thereby retaining reasonable efficiency even in high
dimensions. This results in a rough approximation of the true gradient, which is often
sufficient for gradient descent. Finally, this gradient can then be plugged into white-box
methods such as PGD.

Gradient estimation attacks are adaptive, i.e. no matter which defense is inside the
black box, they always approximate its true gradient – given that enough queries to the
model are performed. And indeed, early black-box attacks using gradient estimation were
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inefficient: One of the first such attacks by Chen et al. [27] needed several million queries
to create good adversarial examples for an ImageNet classifier. But soon, optimizations
were proposed that brought this number down to below 15.000 [44, 42].

Dependence on confidence scores. Gradient estimation also has a significant
weakness: Most techniques require the output ŷ to be real-valued [15]. In neural network
classifiers, this is typically a softmax vector of class probabilities, where each value
indicates the classifier’s confidence for a specific class. If a defender chooses to hide the
confidence vector and instead returns only the class label of the final top-1 prediction,
then gradient estimation becomes very difficult: A small change in x often produces no
change in ŷ at all, as the label stays the same. Consequently, the loss landscape becomes
flat as ∂f(x)

∂x = 0. Some workarounds have been proposed, but they often increase the
number of required queries to millions [42], negating earlier improvements in efficiency.

In short, gradient estimation attacks are very powerful when confidence scores are
available – but very inefficient in a decision-based setting.

2.4.2.3 Boundary attacks

The boundary attack formulation was first introduced in 2018 by Brendel et al. [15].
It shows that it is possible to create adversarial examples in a black-box decision-based
setting without training surrogate models or estimating gradients. Since much of the
work in Chapter 3 is based on this method, it is worth understanding it in detail.

Figure 2.8: A geometric illustration of a boundary attack. The gray region is the set of inputs
x which are classified as the correct label, i.e. f(x) = ygt. The white region is
the set of potential adversarial examples, i.e. f(x) = ytarget 6= ygt. The boundary
between the regions is the decision boundary, along which the algorithm performs
a greedy hill-climbing search. Taken from Brendel et al. [15].

In essence, the attack is a greedy hill-climbing search algorithm that performs rejection
sampling from random perturbations. Figure 2.8 (left) describes the general concept.
The boundary attack starts with an input xstart, which may be far away from the
original image xorig but satisfies the adversarial criterion f(xstart) = ytarget 6= ygt. This
can simply be a real image of the target class.
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The algorithm initializes xadv := xstart. From here, it interpolates through the input
space and tries to move towards the original image xorig, refining xadv in the process.
This stands in contrast to other attacks presented so far, which always start at xorig
and move away from it. At some point during this interpolation process, the decision
boundary is reached. As shown in Figure 2.8 (center), the attack must now choose a
sideways direction (#1) before it can proceed further towards xorig (#2).

Orthogonal step (#1). To do this, the boundary attack samples a random vec-
tor r ∼ N (0, 1)k from a multidimensional normal distribution and projects it onto a
hypersphere around the original image (dashed line in Figure 2.8). More precisely, if
δ = xorig−xadv is the vector pointing from the current image to the original image, then
r can be projected orthogonally to it:

r ∼ N (0, 1)k (2.12)

ηortho =
r

‖r‖2
− δ r · δ
‖r‖2 · ‖δ‖2

ηortho is now a random unit vector on the hyperplane which is orthogonal to the
direction of δ. By construction, this hyperplane is tangential to the hypersphere with
radius ‖δ‖2 around xorig. From here, a slight correction can be performed so that
ηortho directly lies on the hypersphere. Formally, this is required to guarantee that the
orthogonal step does not increase the distance to the original image. In practice, this
is not needed as the tangential hyperplane approximates the hypersphere well enough4.
Therefore, this and subsequent Chapters will omit spherical correction for brevity.

Performing the orthogonal step results in an intermediate position xortho:

xortho = xcurr + εortho · ‖δ‖2 · ηortho (2.13)

The step size εortho ∈ [0, 1] is a hyperparameter and is scaled by the current distance
to the original image, ‖δ‖2.

Source Step (#2). Afterwards, the attack takes a step towards the original image
(#2 in Figure 2.8):

ηsource =
(xorig − xortho)
‖(xorig − xortho)‖2

(2.14)

xcandidate = xortho + εsource · ‖δ‖2 · ηsource (2.15)

Again, the step size εsource ∈ [0, 1] is a hyperparameter which is scaled by ‖δ‖2.
Rejection test. Reducing the distance to the original image, xcandidate is now a can-

didate for being a better adversarial example than the previous xadv. If f(xcandidate) =
ytarget, then the decision boundary has not been crossed and xcandidate is an adver-
sarial example. The current position is updated: xadv := xcandidate. However, if
f(xcandidate) 6= ytarget, then the decision boundary has been crossed and xcandidate is

4Spherical correction reduces the distance to xorig by a factor of
√

1 + ε2ortho. Brendel et al. recommend
a step size of εortho = 0.01, which results in a final correction factor of ≈ 1.00005. As the algorithm
does not have strong requirements for numerical stability, this correction is negligible in practice.
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not adversarial. It must therefore be discarded, and the entire process is repeated with
another random orthogonal step.

Experiments have shown that, given enough random samples and queries to the model,
the boundary attack can produce strong adversarial examples with very small pertur-
bation magnitude ‖η‖2 = ‖xadv − xorig‖2 [15]. Typically, the attack is run until either
this magnitude is small enough, or a certain budget of queries to the model has been
exhausted.

In black-box evaluation settings, the latter is mostly the case: Often, hundreds of
random directions must be tested before the algorithm can advance a single step. While
otherwise promising, this deficiency renders the method infeasible for quick evaluations
of black-box systems. In Chapter 3, this drawback is addressed and a new, efficient,
family of boundary attacks is proposed.

2.4.3 Defense mechanisms

To understand the effectiveness of adversarial attacks, it is important to consider defense
mechanisms as well. Here, the term ”defense” is used loosely: A defender might want to
thwart a specific malicious attack, but more generally they would aim to simply make a
system more robust to anomalies. This section describes the most prominent approaches
to defense that have been proposed in recent years.

2.4.3.1 Gradient obfuscation

At first, research into defense mechanisms concentrated on directly countering white-
box attacks. Since these mostly rely on gradient-based optimization in one form or
another, early defenses aimed to diminish its effectiveness. Typically, this was achieved
by modifying the neural network to have vanishing gradients, or by introducing non-
differentiable operations into the classification process [16].

One of the first such defense methods was Defensive Distillation [65], which was used
to successfully defend against fast attacks such as FGM. This directly prompted the rise
of stronger attacks, which in turn were able to break that defense (see Section 2.4.1.4).
In 2018, this cat-and-mouse game culminated in a seminal publication by Athalye et
al. [16], who showed that a large portion of then state-of-the-art defenses worked solely
because of gradient obfuscation, and that most of them did not work at all against
stronger attacks.

Today, obfuscated gradient defenses are completely sidestepped by black-box attacks,
which can be performed without gradients. As a result, this family of defenses has
become largely obsolete.

2.4.3.2 Ensembling and redundancy

Ensembling is a staple technique for increasing both the accuracy and generalization
capability of machine learning models [8]. The motivation here is to produce a set of
heterogenous classifiers and to combine their strengths while at the same time diminish-
ing their joint vulnerabilities.
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Figure 2.9: Ensembling can increase robustness. Here, the region of vulnerability is reduced to
the intersection of adversarial regions of f1 and f2. However, due to the transfer-
ability phenomenon, these regions often have significant overlap. This ultimately
limits ensembling, and the combined adversarial region is only marginally smaller.

The same idea motivates ensemble adversarial defenses. Recall that, in a set of clas-
sifiers F , for each classifier f ∈ F there exists a region Xadv,f ⊆ X in the input space
that contains adversarial examples xadv,f ∈ Xadv,f . This is the adversarial region in the
input space of classifier f .

Ensembling is then fueled by the hope that the adversarial regions of multiple classifiers
do not overlap too strongly. As a result, the region of vulnerability of an ensemble would
then be the intersection of those of the individuals:

Xadv,F =

n⋂
i=1

Xadv,fi (2.16)

This works in principle, and it has been shown that ensembling does indeed increase
robustness by a tangible amount [34].

However, ensembling does have its limits. Classifiers must not only be as diverse as
possible but also have very high accuracy individually. This reveals a dilemma: On
tasks such as image classification, deep learning methods are currently ahead of every
other technology in terms of accuracy [77]. This realistically limits the choice to a
small number of architectures which are mostly variations of Inception [47] and ResNets
[72]. While these architectures seem very different, it turns out that they learn similar
representations when trained on the same data – this is exactly the effect that is exploited
by transfer attacks (see Section 2.4.2). As a result, their adversarial regions sometimes
overlap so strongly that Xadv,f1 ≈ Xadv,f2 for a pair of classifiers f1 and f2. Figure 2.9
illustrates this phenomenon. In fact, the effect is often so pronounced that He et al.
[78] found ensemble classifiers to be detrimental to accuracy and robustness when not
carefully designed.
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ŷ

Black box

Classifier 3

Classifier 2 vote

Figure 2.10: Data flow in an ensemble of classifiers. Here, multiple classifiers process the same
input x and each produces a slightly different prediction. The individual predic-
tions are then reduced, e.g. by majority vote, to a single output ŷ. This makes the
ensemble a single, large, black box which can be attacked like any other classifier.

When attacking ensembles, it might be tempting to attack each classifier in the en-
semble individually. Instead, it is much easier to simply treat the entire ensemble as a
large black box – which can then be attacked by any black-box method. Figure 2.10
illustrates this.

Although their effectiveness is limited by the transferability phenomenon, ensembles
can boost robustness by a nontrivial amount. Since they are easy to implement, they
have become a staple in competitions on adversarial defenses [18] and are likely to
be a cornerstone of real-world defense strategies in the future - at least whenever the
computational budget allows it.

2.4.3.3 Randomization

Randomized (stochastic) defenses are a special form of ensembling. Using randomized
predictions to combat adversarial examples is a popular idea, and many approaches
such as Stochastic Activation Pruning [79], Monte-Carlo Dropout [80] or randomized
pre-processing [81] have been proposed. It should be noted that the act of randomizing
parts of a model – and then drawing multiple samples from it – is directly equivalent to
ensembling. More precisely, it has been shown that a stochastic classifier approximates
an infinite ensemble of classifiers as the number of random samples drawn approaches
infinity [80].

Therefore, employing stochasticity results in the same benefits (slightly improved ro-
bustness) and the same drawbacks (high computational cost, often reduced accuracy) as
explicit ensembling [16].

2.4.3.4 Anomaly detection

Another approach is to treat adversarial examples as anomalies – which they are per
definition – and try to detect them with established techniques. Once detected, the
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Classifier

Input

x
Anomaly
Detector

Prediction
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Figure 2.11: Anomaly detectors are a special form of ensembling: The system outputs either
the classification or an error if an anomaly was detected. An attacker may simply
concatenate these outputs and then treat the entire system as a single black box
with an additional class (which is to be avoided).

adversarial input can then be discarded. Since adversarial perturbations often seem
striking and colorful, surely they could be detected with the right method?

Several methods for detecting adversarial examples have been proposed. There are
approaches to outlier detection via Principal Component Analysis (PCA) [40], or using
the Mahalanobis distance as a measure of confidence [82]. Finally, it is also possible
to use ensembling and uncertainty estimation techniques such as Monte-Carlo Dropout
[80], with high uncertainty resulting in detection.

The issue with these approaches is that they do not solve the problem on a funda-
mental level. The authors of these methods claim that they reliably detect adversarial
examples generated by white-box methods such as FGM or even strong optimization at-
tacks. However, this argument is flawed: In the white-box scenario, the attacker knows
everything, and this includes the detection technique. It is therefore trivial to design
an attack on the detector as well. Carlini and Wagner [40] showed this in their seminal
2018 work, where they observed that all detection methods known at the time could be
circumvented by an adaptive attacker, showing that previous claims of robustness were
based largely on obscurity – again.

Perhaps ironically, attacking detectors in the black-box scenario is even easier. Since
anomaly detectors are run in parallel with classifiers, they are simply a special form
of ensembling (see Figure 2.11). The attacker can regard the entire system as a single
black box with input x and output ŷ ∈ {C1, ..., Cn, Canomaly}. With this formulation,
the system can be attacked just like any other classifier5.

Defenses based on anomaly detection are therefore yet another flavor of classifier
ensembles.

5This is true only if the detection result is available to the attacker. While this may seem a strong
assumption, it is congruent with the threat setting in Section 2.2.
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Figure 2.12: Data flow of pre-processing defenses. As before, the entire system can be treated
as a single black box, which can then be attacked like any other classifier.

2.4.3.5 Pre-processing

Many forms of image pre-processing have been proposed to combat adversarial examples.
The concept is simple: Adversarial patterns are very striking, therefore it should be
possible to remove them with simple image filters.

It has been found that adversarial perturbations generated by attacks such as FGM
and PGD are very brittle, and when an image is transformed only slightly, the pattern
immediately loses its effect [83]. And indeed, many recently proposed defenses employ
pre-processing such as image denoising [84], JPEG compression [83], simple median
filters [17] or random transforms of the input image [81].

Pre-processors can increase robustness by a limited amount, as they project the space
of all possible inputs X onto the space of pre-processed inputs Xpreproc, and this function
is typically not bijective. Therefore, the attacker has fewer options for perturbing the
image as the adversarial region in X is effectively shrunk. However, a pre-processor
must also preserve all features that are necessary for classification, or else accuracy
will greatly suffer. In this way, pre-processors underlie the same robustness-accuracy
trade-off as other defense techniques.

A pre-processor aims to separate adversarial from non-adversarial features and then
forward the latter to the classifier. This is very similar to the formulation of an anomaly
detector, only that the detector acts in parallel to the classifier, while pre-processing
forms a serial pipeline (see Figure 2.12). This means that black-box attacks can attack
pre-processing defenses in the same way as anomaly detectors or ensembles – by simply
considering the defense to be part of the black box [16].

2.4.3.6 Adversarial training

Currently, the most effective [18] defense is also the most fundamental: Adversarial
training. This method first creates adversarial examples and then adds them to the
training dataset [2]. As a result, the model learns to classify these examples correctly.
Adversarial training can then be considered a form of data augmentation: The training
data is artificially inflated by creating perturbed copies of the original examples.
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In classic data augmentation for computer vision, such perturbations typically con-
sist of random rotation, changes in brightness and contrast, and the addition of small
amounts of noise. As a result, the classifier gains invariance to these kinds of pertur-
bations and generalizes better to unseen data. Data augmentation is considered highly
effective and has been used by most award-winning image classifiers in recent years [77].
Adversarial training extends data augmentation to adversarial perturbation. The hope
is for the classifier to generalize between clean and adversarial examples and therefore
become invariant to adversarial perturbation as a whole.

Unfortunately, current methods fall short of this goal. Initial attempts at adversarial
training using direct optimization attacks [2] were prohibitively expensive. This im-
proved with fast methods such as FGM and PGD, which allow for non-stop creation of
new adversarial examples at training time. These are then fed back into the training
process, improving the model’s robustness before running the next attack6.

However, the perturbations created by these fast attacks are also considered relatively
weak [39, 34]. While adversarial training greatly increases robustness against the specific
attack methods utilized during training [33], it also tends to overfit on them. Madry
et al. [33] even observed that adversarial training performed on examples obtained by
minimizing `∞-distance can be ineffective against attacks that use the `2-distance. It
is therefore apparent that adversarial training overfits on training data, and does not
achieve invariance to all adversarial perturbations.

Over the years, adversarial training has been continually improved to remedy this
weakness. Tramèr et al. [34] suggest creating adversarial examples on an ensemble of
models that is different from the model that is trained, therefore only using perturbation
patterns that fool all models. These examples are then considered much stronger, and
Tramèr et al. report a much larger increase in robustness as well as better generalization
across attack methods.

Today, adversarial training performed with strong attacks on an ensemble of classifiers
is considered the state of the art in defenses [69, 33, 34]. This is further supported by its
strong performance in competitions such as the NeurIPS’18 Adversarial Vision Challenge
[18], where all winning entries used adversarial training as part of their defenses.

2.5 Summary

There exist a plethora of adversarial attacks and defenses, and enumerating them all
would be impossible. Having said that, most (if not all) recently devised methods follow
the more general approaches which have been outlined in this Chapter.

Armed with knowledge about the landscape of attacks and defenses – and how to
evaluate them – the next chapter presents the main contribution of this thesis: The
Biased Boundary Attack.

6This formulation of adversarial training as a game between a classifier and a generator directly in-
spired the now-famous Generative Adversarial Networks [57], which learn to generate realistic-looking
images through a game-theoretic formulation of the same objective.
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This chapter presents a new approach to finding black-box adversarial examples. Ex-
isting black-box attacks often use costly random search to ”guess” vulnerabilities in
image classifiers. This process is inefficient and can be accelerated by introducing prior
knowledge about the domain of natural images.

One way to achieve this is to add specific biases to the attack’s sampling procedure.
In this chapter, three such biases are proposed: Low-frequency perturbations, regional
masking, and surrogate gradients. Additionally, the question of initialization is dis-
cussed. Here, too, it is found that prior knowledge can be used to craft synthetic images
that, when used as starting points for adversarial attack, greatly speed up the search
procedure.

These strategies can be easily integrated into boundary attacks, an attack family
that is reliable but suffers from low efficiency. The resulting attack, here called Biased
Boundary Attack, tackles the efficiency problem and emerges as a new black-box attack
that is both fast and reliable.

(a) (b) (c)

(d) (e) (f)

Figure 3.1: Targeted black-box adversarial examples for a high-resolution ImageNet classifier.
(a) shows the original image (bell). (b) is an adversarial example generated by
the original boundary attack (‖η‖2 = 18.52) and (c) shows the efficient attack
developed in this work (‖η‖2 = 4.78). Both were obtained with the same number
of model queries and are classified as ”ocarina”. (d) is an image of the target class,
which is used as starting point, and (e) and (f) show the isolated perturbations.
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3.1 Problem statement and approach

As discussed in Chapter 1, black-box adversarial attacks hold great promise for the
empirical evaluation of robustness in machine learning systems. However, as outlined
in Section 2.4.2 of Chapter 2, current methods have various drawbacks that limit their
usefulness. To recall, these are the main performance criteria for black-box adversarial
attacks:

• Reliability. Model-free approaches, such as boundary attacks and gradient es-
timators, are considered very reliable. Given enough queries to the model, they
manage to fool classifiers almost universally [15]. Transfer attacks, in contrast, are
fast and efficient, but less reliable. If they are not carefully tuned, they often fail
to produce an adversarial example altogether [34], no matter how many queries
are performed.

• Query efficiency. Attacks are generally measured on the number of queries to
the black-box model. Transfer attacks are considered very efficient: If transfer of
an adversarial perturbation succeeds, then it typically does so within very few tries.
This makes transfer attacks strong in terms of efficiency (as opposed to reliability).
Model-free attacks such as boundary attacks, however, are considered inefficient,
as they need a very large number of queries to the classifier under attack.

• Ease of use. Strong transfer attacks require large ensembles of carefully-trained
surrogates [17], which results in a significant amount of preparation and tuning
before an attack can be conducted. Boundary attacks and gradient estimation
attacks, however, are usually model-free and can be applied out-of-the-box.

• Applicability. Attacks based on gradient estimation rely on real-valued output
(such as confidence scores) and can not be applied to the more general label-only
setting, where the black box outputs only a single discrete result1. Transfer and
boundary attacks, however, can operate in any scenario as long as the final decision
of the black box is obtained.

For reliable and efficient evaluation of black-box robustness, it is necessary to design
an attack that satisfies all criteria. However, no such attack currently exists. Given the
requirement of applicability to label-only settings, gradient estimation attacks cannot
be considered at this time. This leaves two families of attacks: transfer attacks, which
are efficient but not reliable, and boundary attacks, which are reliable but not efficient.

This work concentrates on the latter and addresses their main weakness: efficiency.
In this chapter, the Biased Boundary Attack is proposed, a new form of boundary
attack that addresses the efficiency problem by incorporating prior knowledge about the

1Even though some gradient estimation schemes are indeed applicable to the general label-only setting,
their efficiency greatly suffers under it. This eliminates any advantage they may otherwise have
over boundary attacks. See discussion in Section 2.4.2 of Chapter 2 and evaluation in Section 4.7 of
Chapter 4.
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Figure 3.2: In natural images, pixels strongly correlate with their neighbors. (Left): This image
of a minibus has large regions of similarly-colored pixels. (Right): An image in
which every pixel is sampled i.i.d from a normal distribution, as is customarily done
for boundary attacks. Repeatedly adding such perturbations to an image results in
high-frequency noise – the probability of obtaining more naturally-looking patterns
is very low, and therefore a great number of attack steps are required.

computer vision domain. With this method, it becomes possible to conduct black-box
adversarial attacks in a reliable and efficient way.

3.2 Biased sampling with prior knowledge

Let f(x) be a black-box classifier which takes as input an image x ∈ Rk, with k being
the number of input dimensions. In black-and-white images, k is the number of pixels
and in color images, k is the number of pixels times channels. For example, a typical
input from the ImageNet dataset is of dimensionality k = 299× 299× 3 = 268203.

As described in Section 2.4.2 of Chapter 2, the original boundary attack formulation
draws random perturbation candidates from a multidimensional standard normal distri-
bution: r ∼ N (0, 1)k. This means that it performs unbiased sampling, perturbing each
input feature independently of the others. While this is very flexible, it is also extremely
inefficient.

This becomes clear in a simple thought experiment. Consider the distribution of natu-
ral images: Adjacent pixels are typically not independent of each other, but have similar
color (see Figure 3.2). This alone is a strong indicator that drawing perturbations from
independent and identically distributed (i.i.d.) random variables will lead to adversarial
perturbations that are clearly from a different distribution than natural images. This, of
course, makes it easy for a defender to separate the perturbation from the image signal,
and the adversarial ”noise” is easily detected and filtered. By employing pre-processing
defenses (see Chapter 2), state-of-the-art classifiers have become increasingly resilient
against such patterns [17].

When a perturbation does not fool the classifier, the boundary attack must discard
it and draw new samples until it finds success (rejection sampling). Only then can it
take the next step, reducing the distance between xadv and xorig. When attacking a
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robust classifier, this can take a very long time, requiring many queries to the black box.
Therefore, unbiased sampling is likely to hinder the efficiency of boundary attacks.

Addressing this problem, it seems only logical to identify and remove unrealistic pat-
terns from the distribution, and instead constrain the search space to perturbations that
promise a higher chance of success. This adds a strong bias to the sampling procedure.
In this way, the attack then utilizes domain knowledge to increase its efficiency. This
can be any hint, intuition, heuristic, or expert information that exists about the problem
domain, or about the classifier under attack.

This section describes three such biases for the domain of image classification, discusses
their motivation, and shows how to integrate them into the Biased Boundary Attack.

3.2.1 Low-frequency perturbations

When one examines typical adversarial examples, it quickly becomes apparent that most
existing attacks create perturbations with high image frequency. But high-frequency
patterns have a significant problem: they are easily identified and separated from the
original image signal, or otherwise dampened by pre-processing defenses. Indeed, most
winning defenses in the NeurIPS 2017 Adversarial Attacks and Defences Competition
had components that performed denoising [84], median filtering [17], or random trans-
forms [81]. In other words: many robust classifiers tend to filter high-frequency noise.

At the same time, it has recently been shown that strong white-box attacks can
synthesize adversarial examples that are not easily filtered in this way [85]. Consider
Figure 3.3, which shows adversarial examples that can be scaled, rotated, and even
printed and photographed without losing their effect. It should be noted that such
attacks are exotic and difficult – they require expensive optimization and white-box
access. While they cannot be used for black-box attack, it is apparent that the final
patterns contain little to no high-frequency noise.

This observation provides some evidence that strong perturbations seem to correlate
with low image frequencies. Is this a causal relationship or a side effect? And can we
somehow exploit this effect?

Hypothesis. Image frequency could play a large role in the effectiveness (and there-
fore efficiency) of adversarial attacks. Simply limiting perturbations to the low-frequency
spectrum could increase the success chance of an attack, while incurring no extra cost.

Creating low-frequency noise. A straightforward way to generate parametrized,
low-frequency patterns, is to use Perlin Noise [86]. Originally intended as a procedural
texture generator for computer graphics, this function creates low-frequency noise pat-
terns with a reasonably ”natural” look. One such pattern can be seen in Figure 3.4(e).
But how can it be incorporated into an attack?

Integration into the Biased Boundary Attack. Let k be the dimensionality
of the input space. The original boundary attack formulation applies an orthogonal
perturbation ηortho along the surface of a hypersphere around xorig, in the hope of
moving deeper into an adversarial region. From there, a second step ηsource is taken
towards xorig. In the default configuration, candidates for ηortho are generated from
random samples r ∼ N (0, 1)k, which are projected orthogonally to the source direction
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(a) (b)

Figure 3.3: Inspiration for low-frequency perturbations. Prior work [85] has demonstrated ad-
versarial examples that can pass through many filters and transforms without losing
their adversarial effect. Although they require white-box optimization at a pro-
hibitive cost, they can still serve as intuition for improving black-box search. In
both images, the perturbations are visible but do not resemble classic adversarial
patterns – there is little to no high-frequency noise. Could this be a key feature
of strong adversarial perturbations, and is it possible to emulate this effect? (a):
Image of a cat, which is misclassified as ”computer monitor”. The image can be
rotated and scaled while still retaining the adversarial effect. (b): A 3D-printed
turtle with an adversarial pattern on its back. No matter from which angle the
turtle is photographed, it is classified as ”rifle”. Taken from Athalye et al. [85].

(a) (b) (c)

(d) (e)

Figure 3.4: Close-up toy example of low-frequency adversarial perturbation. (a): Original im-
age. (b) and (c): Adversarial examples, obtained by adding randomized noise pat-
terns until misclassification is achieved. (d) and (e): Isolated perturbation patterns.
(d) is sampled from a normal distribution, and (e) is sampled from a distribution of
Perlin noise patterns. Both (b) and (c) fool the classifier, but (c) can be obtained
with fewer tries.
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(a) (b)

Figure 3.5: Sampling directions for the orthogonal step of the Biased Boundary Attack. (a)
Original (unbiased) scheme: Uniformly distributed along the surface of the hyper-
sphere. (b) With low-frequency bias: By limiting the samples to low-frequency
patterns, sampling resolution increases in those directions.

and normalized to the desired step size. This leads to the directions being uniformly
distributed along the hypersphere, as shown in Figure 3.5(a).

To introduce a low-frequency prior into the Biased Boundary Attack, the orthogonal
direction is instead sampled from a distribution of Perlin noise patterns. Perlin noise
is typically parameterized with a permutation vector v of size 256, the elements of
which can be randomly shuffled on every call. Effectively, this allows us to sample
pseudorandom noise images from the function Perlinh,w(v), where h and w are the image
dimensions2. With the biased sample, the orthogonal perturbation is then calculated in
the usual way:

r ∼ Perlinh,w(v) (3.1)

ηortho,biased =
r

‖r‖2
− δ r · δ
‖r‖2 · ‖δ‖2

As a result, the samples are now strongly concentrated in low-frequency directions (see
Figure 3.5(b)).

Choosing a suitable frequency. Naturally, noise frequency is a hyperparameter
that needs to be chosen for optimal efficiency. Figure 3.7 shows a range of examples,
with frequencies from 1 to 128. It seems intuitive that very low frequencies (≤1) might
not offer enough degrees of freedom for finding adversarial examples, while very high
frequencies (≥128) would hold little benefit over standard white noise patterns. This is
confirmed by experiments in Chapter 4, which show that 32 delivers the highest efficiency
boost for adversarial attacks on ImageNet.

Evaluation. The experiments in Chapter 4 show that this low-frequency bias reduces
the median number of queries required to fool an ImageNet classifier by roughly 70%
(compared with an unbiased boundary attack). This empirically confirms the hypoth-
esis and shows that the distribution of low-frequency noise patterns contains a higher
concentration of adversarial directions than the normal distribution.

2To keep the notation simple, Perlinh,w(·) treats only the case of grayscale images. For color images
of dimension k = h ·w · c, c a separate Perlin sample can be drawn for each channel, which results in
a color image. See Figure 3.6 for an example.
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R G B Color

Figure 3.6: To obtain colored noise images, Perlin noise can be created separately for each
channel and then combined into a color image. Each color channel is created from
a different pseudo-random permutation vector.

Frequency = 1 Frequency = 2 Frequency = 4 Frequency = 8

Frequency = 16 Frequency = 32 Frequency = 64 Frequency = 128

Figure 3.7: Perlin noise with different frequencies. All images are noise vectors of magnitude
‖η‖2 = 1 against a gray background, amplified 75-fold to make them visible. At
very low frequencies, the pattern shows large blobs of nearly uniform color, while at
very high frequencies the pattern looks similar to noise from a normal distribution
(although not exactly the same). The maximum frequency is limited by image
resolution (here: 299x299). For illustrative purposes, all images have been created
from the same permutation vector (fixed random seed), which makes them display
the same pattern in different scales. When used in the Biased Boundary Attack,
noise generation is of course fully randomized.
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(a) (b) (c) (d)

Figure 3.8: Masking based on per-pixel image difference. (a) shows the original image, (b) an
image of the target class. (c) is the difference mask, and (d) is a perturbation to
which the mask has been applied. The perturbation concentrates on the central
region, as the background is already quite similar between the images.

3.2.2 Regional masking

Currently, perturbations are evenly applied across the entire image. No matter if low
or high frequency, the orthogonal step of a boundary attack perturbs all pixels nearly
equally (when averaged over a large number of samples). This seems to be a waste –
could the attack benefit from limiting the perturbation to specific image regions?

Boundary attacks perform an interpolation from xtarget towards xorig. In some regions,
the images might already be quite similar, while in others they might differ significantly.
Intuitively, one would want an attack to take larger steps in those regions where the
difference is high. At the same time, it seems wasteful to modify pixels that are already
similar, as any such distortion would have to be undone in a later step.

Hypothesis. Limiting perturbations to those image regions that show the highest
difference could increase attack efficiency because it reduces the dimensionality of the
search space. This could be a promising strategy to maintain efficiency at high resolu-
tions.

Creating masked perturbations. It is straightforward to create an image mask |δ|
by taking the element-wise absolute difference between adversarial and original image
(see Figure 3.8):

|δ| = |xorig − xadv| (3.2)

|δ|i = |δi|; |δ| ∈ Rk (3.3)

At each step of the attack, this mask is recalculated based on the current position of
xadv and applied element-wise to the previously sampled orthogonal perturbation ηortho:

ηortho,biased =
|δ| � ηortho
‖|δ| � ηortho‖2

(3.4)

It is worth paying attention to the normalization step: Since |δ| removes or dampens
some dimensions of ηortho, it automatically reduces the overall magnitude. Normaliza-
tion then has an upscaling effect which amplifies the perturbation in those dimensions
that were not masked. As a result, the same step size now allows for much stronger
perturbations – confined to smaller regions of the image.
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Per-pixel difference masking reduces the dimensionality of the search space, while at
the same time allowing for larger perturbations of individual pixels in a single step. As
a result, attack efficiency could be greatly increased.

Evaluation. The experiments in Chapter 4 show that regional masking based on
image difference does indeed reduce the number of required queries by roughly 55%
(compared with an unbiased boundary attack). This empirically confirms the hypothesis
and shows that concentrating on specific regions of an image is a promising way of
accelerating high-resolution black-box attacks.

3.2.3 Surrogate gradients

What other source of knowledge contains strong hints about directions that are likely
to point to an adversarial region? Naturally – gradients obtained on a surrogate model.
Transfer attacks are known to be extremely powerful (albeit brittle), so it could be useful
to exploit surrogate models whenever they are available.

Arguably, the main weakness of transfer attacks is that they fail when the decision
boundary of the surrogate model does not closely match that of the black box classi-
fier. However, even when this is the case, the boundary may still be somewhere in the
vicinity (see discussion in Section 2.4.2 of Chapter 2). Some advanced transfer attacks
try to improve their success chance by adding small random perturbations to the adver-
sarial gradient [16]. With any luck, they can find the adversarial region if it is nearby.
Essentially, they supplement a gradient-based attack with limited random sampling.

This work proposes to do exactly the opposite: to extend a sampling-based attack,
such as the Biased Boundary Attack, with limited gradient information. Adversarial
gradients can act as priors for the sampling procedure, increasing its efficiency whenever
a surrogate is available. This should have the significant advantage that – in the case of
low transferability – this approach would merely experience a slowdown where typical
transfer attacks completely fail.

Hypothesis (1). Attack efficiency can be increased by biasing randomly sampled
perturbations in the direction of an adversarial gradient calculated on a surrogate model.

Hypothesis (2). The attack can profit even from surrogate models that are consid-
ered too weak for direct transfer. While ”strong” surrogates – such as ensembles – should
increase efficiency even further, they are not necessary to perform reliable attacks. In
this way, the Biased Boundary Attack can benefit from a large collection of pre-trained
models that are publicly available – without the need for costly fine-tuning.

Implementing the gradient bias. Gradient directions from surrogate models can
be incorporated into the Biased Boundary Attack in the following way:

• An adversarial gradient is calculated at the position of xadv, using the PGD method
on a surrogate model (see Section 2.4 of Chapter 2). Since xadv is already adver-
sarial, it can be helpful to move a small distance towards the original image first,
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(a) (b)

Figure 3.9: Sampling directions for the orthogonal step of the Biased Boundary Attack. (a)
Original (unbiased) scheme: Samples are uniformly distributed along the surface
of the hypersphere. (b) With surrogate gradient bias: An adversarial gradient,
obtained from a surrogate model, is projected onto the hypersphere. Samples are
then biased so they concentrate towards this direction.

making sure to calculate the gradient from a point that is inside a non-adversarial
region3.

• The adversarial gradient usually points away from xorig, so a projection is per-
formed to obtain the ”sideways” component of the gradient direction. This vector,
which is shown in Figure 3.9(b), can then be incorporated into the attack.

• As the projection is now is on the same hyperplane as the randomly-sampled can-
didates for the orthogonal step, it becomes possible to bias the sampled directions
towards the projected gradient by any method of our choosing. Provided all vectors
are normalized, this can be done with simple addition:

ηortho,biased = (1− w) · ηortho + w · Proj(∇Lfsurr(xadv, ytarget)) (3.5)

• The weight w controls the strength of the bias and is a hyperparameter that can be
tuned according to the strength of the surrogate model. High values for w can be
used when transferability is high, and vice versa. Were one to choose the maximum
value, w = 1, then the orthogonal step would be equivalent to an iteration of the
PGD transfer attack.

As a result, the sampling resolution is increased in the vicinity of the projected gra-
dient. The rest of the search space is still covered, albeit with lower resolution. In this
way, surrogate models are purely optional to the Biased Boundary Attack – instead of
forming the central part, as is the case in classic transfer attacks.

It should be noted that at least some amount transferability should exist. Otherwise,
the gradient will point in a bogus direction and using a high value for w would reduce

3Boundary attacks use an image of the target class as a starting point and then try to move towards
the original image. Correspondingly, at each step, the current position is always classified as the
adversarial target. PGD methods, in contrast, start with the original image and move away from
it. It is therefore sensible to temporarily cross the boundary for performing a PGD-style gradient
calculation.
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efficiency instead of improving it. However, this seems rather unlikely. At the time of
writing, no strategies were known that successfully eliminate transferability altogether
[71]. Therefore, it can be expected that most state-of-the-art classifier models should
deliver a benefit to the attack.

Evaluation. The experiments in Chapter 4 show that attack efficiency increases when
incorporating gradients from surrogate models. Even when using a simple, publicly-
available pre-trained classifier as surrogate model with very low w, the median number
of queries is reduced by roughly 35%. This empirically confirms hypothesis (1). Crucially,
the attack succeeds while a direct PGD transfer attack with the same surrogate fails in
the majority of cases, which is evidence towards hypothesis (2). Additional experiments
in Chapter 4 show that the Biased Boundary Attack can also benefit from stronger
surrogates (such as ensembles), bringing the reduction up to 75% and more.

3.3 Efficient initialization

Apart from biasing the random search procedure, there is another opportunity for the
Biased Boundary Attack to incorporate prior knowledge. Targeted boundary attacks
are initialized with known images of the target class [15], but these are often far away
from the image under attack. Could there be an easy way to reduce this distance?

It is evident that considerable effort has gone into the design of sophisticated search
procedures for black-box adversarial attacks. Yet surprisingly, their initialization is not
often discussed in detail. Surely, the choice of starting points could have an enormous
impact on search efficiency?

Recent works offer only few pointers, most of which deal with PGD-style transfer
attacks. There, small modifications such as random restarts [33] have been found to
improve success rate. However, these are not directly applicable to boundary attacks,
which require a starting point that already fulfills the adversarial criterion. Here, to the
best of this author’s knowledge, only one method of initialization is known: from a data
set of real images, pick a known image of the target class4. This is a rather important
gap in current literature. Boundary attacks are known to suffer from low efficiency, and
advanced initialization strategies have the potential to greatly improve it.

This Section discusses beneficial properties of starting points and how they can im-
prove the efficiency of adversarial attacks. Drawing on these insights, a proof-of-concept
initialization scheme is developed that synthesizes improved starting points from images
of the target class. When combined with the Biased Boundary Attack, this reduces the
number of required queries even further.

4For untargeted attacks, Brendel et al. [15] offer another strategy: They add gaussian noise to the
original image in small increments until the label changes (the decision boundary is reached). While
promising, this is not applicable to the targeted setting – it is very unlikely that the label will ever
change to the desired class.
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3.3.1 Criteria for suitable starting points

In image classification, an adversarial example is considered successful if it has a low
distance to the original image and is at the same time classified as an adversarial label.
Consequently, it seems reasonable to assume that these properties should be beneficial
for attack efficiency:

• Starting points should be close. Intuitively, it makes sense to pick starting
points that are already close to that goal. The optimization procedure would then
merely refine them, requiring fewer iterations to arrive at an adversarial example
or produce a better one in the same number of steps.

• Starting points should reduce dimensionality. Optimization often suffers
from very large search spaces. An ImageNet example at a resolution of 299×299×3
has 268203 dimensions. It is therefore desirable to reduce this search space and
concentrate only on specific dimensions.

The regional masking bias proposed in Section 3.2.2 already capitalizes on this
insight. Therefore, a reduction in dimensionality should amplify the effect of the
masking bias – ideally by not using a starting image entirely but only small regions
of it. The mask bias would then limit the attack to a very small sub-region of the
image, reducing the dimensionality of the search space even further.

Both are strong assumptions – certainly, they are not guaranteed to hold in general,
as state-of-the-art classifiers have non-convex loss landscapes. Nevertheless, they can
serve as intuition for a proof of concept, which can then be tested by experiment. As the
rest of this Section shows, it is possible to synthesize images that aim to maximize these
desirable traits, creating an initialization strategy that is more effective than simply
picking the closest image.

3.3.2 Initialization with salient patches

So far, starting points for boundary attacks have typically been found by searching a
data set (e.g. the ImageNet validation set) for images of the target class and then picking
the one that is closest to the image under attack:

xstart = arg min
x
‖x− xorig‖2 (3.6)

x ∈ {x : fBB(x) = ytarget}

This initialization is trivial whenever ground-truth annotations ygt = ytarget are avail-
able. As long as the classifier is reasonably accurate, there is a high chance that such an
image will be classified as fBB(xstart) = ytarget, thereby fulfilling the adversarial crite-
rion. However, full images of the target class typically score very badly on both closeness
and dimensionality, so they are far from optimal. Therefore, it would be desirable to
concentrate only on the most important regions of the image and to ignore others such
as the background, which are unlikely to contribute to the classifier decision.
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(a) (b) (c) (d)

Figure 3.10: Segmentation of starting points. (a) An image of the target class, label ”lion”.
(b) Saliency mask, calculated by an Inception-ResNet-v2 classifier [62]. (c)
Smoothened and amplified mask to improve reliability. (d) The adversarial patch
is formed by segmenting the image with the mask.

3.3.2.1 Segmentation by saliency

Naturally, an image of the target class contains features that classifiers react to strongly.
In other words, these features are salient for that class and image [87, 88]. Such features
often tend to concentrate in small regions of an image (e.g. nose and eyes of an animal).
The rest of the image matters little for the predicted class label and could therefore be
discarded. Consider Figure 3.10, which shows an image of a lion on which a saliency map
is computed. This map can be used as a mask that isolates the salient pixels of the target
image. By blending only these pixels on top of the image under attack, misclassification
can be achieved.

Computing saliency maps. Saliency maps are model-specific, and the salient pixels
for a black-box classifier are unknown. It is therefore necessary to use a surrogate model
for computing saliency maps. For this proof of concept, the simple gradient method
proposed by Simonyan et al. [88] is used, together with SmoothGrad [89] for smoothing.
The choice of method is not very important, as long as the saliency map covers pixels
that are reasonably indicative of the target class – this can easily be confirmed by human
inspection. To err on the side of safety, the saliency map is smoothened and amplified,
as shown in Figure 3.10(c).

The computation of salient pixels offers potential for fine-tuning, however, this is out
of scope for this work. The evaluation in Chapter 4 shows that even this simple method
already increases attack efficiency by a considerable amount.

Note on surrogates. It is important to clarify that using surrogates to compute
saliency is different from using them for adversarial transfer attacks. In adversarial
transfer attacks, the attacker seeks to transfer tiny imperceptible perturbations between
classifiers. Naturally, the success chance is relatively low. However, in the case of saliency
maps, the goal is to transfer large contiguous image regions, which arguably contain the
most striking features of the image. Any model that correctly classifies lions must react
to the core features of a lion. Therefore, it is reasonable to assume that saliency maps,
having been generously smoothened, transfer readily between classifiers.
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(a) (b) (c) (d)

Figure 3.11: Placing salient patches. (a) Original image, label ”water bottle”. (b) Starting
point containing a salient patch of the target class, classified as the target label
”lion”. (c) Final adversarial example after running a Biased Boundary Attack,
also classified as ”lion”. (d) Difference image.

3.3.2.2 Placing salient patches

After the starting point has been segmented, the salient pixels form an ”adversarial
patch” that can change the classification of the entire image. The placement of such
a patch offers another opportunity for reducing distance and dimensionality: It can be
scaled to a smaller size and placed in a location where it replaces only a small number
of pixels. Consider Figure 3.11: The adversarial patch is rather small, but still it causes
the entire image to be classified as the target label.

To deliver a proof of concept, a simple brute-force method can be used: Salient patches
are extracted from multiple images of the target class, randomly scaled and translated,
and then blended over the original image. 50 such candidates are created and ranked
by distance to the original image. The candidates are then tested against the surrogate
model, and only those that are adversarially classified are then tried on the black box.
In this way, it is possible to keep the number of queries to a minimum. The first image
to be adversarially classified on the black box is then chosen as the final starting point.

All queries against the black box classifier must be added to the total query count
of the attack. In the case that no success is found, an attacker may wish to fine-tune
the procedure, increase patch size or fall back to full-sized images. However, as the
evaluation in Chapter 4 shows, the method proposed here typically finds success within
the first 10 candidates. These queries are well spent, as they can reduce perturbation
size much more significantly than those spent on the subsequent attack, which often
requires thousands of queries to cover the same distance. Figure 3.12 shows an example
of this.

Adversarial patches in other contexts. The effect of adversarial patches is known
and has been described by Brown et al. [90]. They construct small patches that are
extremely salient and override all other features in the image, thereby changing classifi-
cation. While this work exploits a similar effect, the adversarial patches of Brown et al.
are strikingly visible to human observers. It would be possible to use them as starting
points, but their strong visibility is contrary to the goal of this work – namely to make
the perturbation imperceptible to humans.
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i = 1 i = 500 i = 1000 i = 2500 i = 5000 i = 10000

‖η‖2 = 152.68 ‖η‖2 = 55.30 ‖η‖2 = 52.86 ‖η‖2 = 41.38 ‖η‖2 = 29.27 ‖η‖2 = 22.37

‖η‖2 = 29.51 ‖η‖2 = 14.84 ‖η‖2 = 11.62 ‖η‖2 = 7.93 ‖η‖2 = 6.19 ‖η‖2 = 5.50

Figure 3.12: Number of queries against perturbation magnitude for a Biased Boundary Attack.
(Top): Initialized with a full image of the target class. (Bottom): Initialized with
a salient patch. All images are classified as the adversarial label, ”lion”.

3.4 Summary

This Chapter has introduced the Biased Boundary Attack, a black-box adversarial at-
tack that can incorporate various sources of prior knowledge about the target domain.
Towards this end, three methods for biasing the random search procedure have been
proposed, as well as an improved initialization scheme that synthesizes salient patches
as starting points.

But how well do these methods work? How much efficiency can be gained, and how
does the attack perform when compared to recent work in the field? In the next chapter,
the methods proposed here are experimentally evaluated against a state-of-the-art image
classifier, and systematic ablations are performed on their parameters.

51





4 Evaluation

Chapter 3 has described the methodology and intuition behind the Biased Boundary
Attack – a black-box adversarial attack that aims to be both reliable and efficient. But
how effective are the individual biases in detail? Can they be combined or do they
interfere with each other? How strong is the effect of initialization? And how do the
proposed methods compare to the state of the art?

This chapter performs an extensive experimental evaluation of the proposed tech-
niques and tests them against a state-of-the-art image classifier. A total of 44 different
attack configurations are evaluated, each generating hundreds of targeted black-box ad-
versarial examples. Finally, the results are compared to recently proposed methods from
literature, showing that the new attack outperforms prior work by a significant margin.

4.1 Setup

This section describes the experimental setup, the data and classifier on which the eval-
uation is performed, and finally the evaluation methodology and criteria for successful
adversarial attack.

4.1.1 Data set

All experiments are performed with images from the ImageNet classification data set
[48]. It is one of the most widely used computer vision data sets and, together with
MNIST [46], CIFAR10 [91] and SVHN[92], has become a staple of machine learning
research [1, 15]. Table 4.1 shows a comparison of these data sets.

A common critique of adversarial example research is that attacks and defenses are
often evaluated in scenarios that are unrealistic or trivial. It is therefore prudent to work
with data that strikes a good balance between difficulty and realism:

• ImageNet is difficult. For a long time, research on adversarial examples focused
on MNIST and CIFAR10, which are small data sets with low dimensionality. This
makes any experiment significantly easier and faster to compute than on ImageNet.
Some attacks can be performed quickly on MNIST, however on ImageNet, a single
run may require millions of queries and several hours of time [15, 42]. Therefore,
ImageNet can quickly reveal scalability issues in otherwise favorable approaches.

• ImageNet is (reasonably) realistic. The simplicity of MNIST, SVHN and
CIFAR seems attractive, however it must be stressed that their low resolution and
small number of classes do not represent real-world computer vision tasks too well.
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MNIST SVHN CIFAR10 ImageNet

Content Scanned digits House numbers Various photos Various photos

Resolution 28×28×1 32×32×3 32×32×3 299×299×3

Input dimensions = 784 = 3,072 = 3,072 = 268,203

# Classes 10 10 10 1,000

# Images (train) 50,000 73,257 60,000 ≈1,200,000

# Images (val) 10,000 26,032 10,000 50,000

Table 4.1: Comparison of popular computer vision data sets for machine learning. It is imme-
diately apparent that ImageNet is the closest to data one might encounter in the
real world. Similar data might be captured by the camera of a robot, or a user might
submit similar photos to image processing services in the cloud. However, ImageNet
also has high data dimensionality, which makes adversarial attack computationally
expensive.

Both real-world robots and cloud image processing services rely on high-resolution
images to recognize a wide range of objects.

Creating adversarial examples for ImageNet classifiers is both relevant and challenging.
At the same time, the data is openly available (at least for academia) and has been in
widespread use for several years already. This makes it an ideal dataset for benchmarking
state-of-the-art adversarial attacks.

4.1.2 Evaluation procedure

First, an evaluation data set is created by randomly selecting 200 images from the
ImageNet validation set. For each image xorig, a random adversarial target class ytarget
is fixed. In this way, all experiments are performed on the same images and target
classes. Appendix A contains a complete listing of all images and class labels.

Attacks must then produce an adversarial example xadv for each pair (xorig, ytarget) in
the evaluation set. Attacks are allowed a maximum budget of 15000 queries per image,
which amounts to roughly 5 minutes on the evaluation machine (see Section 4.1.7).
Finally, the success rate and query efficiency over all images is calculated:

• Success rate. The number of successful adversarial attacks, divided by the total
number of evaluation images. This measure can be determined for various query
counts (e.g. 1000, 5000, 15000) and its development can be plotted, as the success
rate is bound to increase together with the number of queries.
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• Query efficiency. The median number of queries until success can serve as a
single measure of efficiency. The median is preferable to the mean since any un-
successful attack would greatly distort the mean (with the query count potentially
approaching infinity). The median, however, can safely be calculated whenever the
success rate is above 50%. Since any unsuccessful attack will have a higher query
count than those that are already successful, it will not contribute to the median,
no matter how much the number of queries. In this way, the median allows a direct
comparison of attacks that have different success rates.

4.1.3 Success criterion

Boundary attacks always start with an image xadv = xstart of the target class. Since
f(xstart) = ytarget by definition, this trivially satisfies the adversarial objective. There-
fore, success must be characterized by low distance to the original image instead.

For this, a success threshold εsuccess is defined on the `2-norm of the adversarial per-
turbation, and the adversarial attack is considered successful when misclassification is
achieved with a perturbation smaller than this threshold:

‖η‖2 = ‖xadv − xorig‖2 < εsuccess (4.1)

How to choose εsuccess? Since `2 scales with the number of dimensions, it depends
on image resolution. As discussed in Chapter 2, `2 is preferable to `∞, but prior work
that uses `∞ can provide some intuition. Many established works [42, 34, 75] use values
between 0.05 and 0.1 as `∞-threshold, and therefore a comparable `2-threshold should be
picked. For all evaluations, εsuccess is set to 25.89, which is the `2-norm that corresponds
to a worst-case perturbation with an `∞-norm of 0.05:

‖η‖2 =

√√√√ k∑
i=1

η2
i =

√
299 · 299 · 3 · (0.05)2 ≈ 25.89 (4.2)

Figure 4.1 shows a number of perturbations with varying ‖η‖2. For all practical
purposes, perturbations of norm ‖η‖2 < 25.89 are difficult to spot and can be considered
successful adversarial examples.

4.1.4 Choice of classifier under attack

In order to directly compare adversarial attacks, it is necessary to pick a classifier on
which the attacks are performed. But which is the most suitable?

It is well known that adversarial vulnerabilities affect all state-of-the-art deep learning
architectures [71] – therefore the choice of classifier architecture is not crucial. For this
reason, it is admissible to pick a single architecture and use it as a common baseline on
which the attacks are evaluated.

In this chapter, all attacks are conducted against an Inception-v3 CNN classifier [47],
which has been popular in recent works on adversarial attack [15, 42]. To guarantee
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Minibus → Traffic light ‖η‖2 = 100.39 Minibus → Traffic light ‖η‖2 = 49.76

Minibus → Traffic light ‖η‖2 = 25.89 Minibus ‖η‖2 = 0

Figure 4.1: Adversarial perturbations of varying magnitude. All images (except the last) are
wrongly classified as ”traffic light”. While perturbations of magnitude 25.89 (the
success threshold) can still be spotted by a careful observer, it is easy to disregard
them as seemingly random noise. As such, they are sufficient for considering an
attack successful.

reproducibility, no manual training is performed and pre-trained weights are used. These
weights are available for download in most major deep learning frameworks; for the
experiments in this chapter, they are taken from the official TensorFlow repository1.
This model has a top-1 classification accuracy of 78.0%.

It should be noted that the evaluation data set (Section 4.1.2) is formed from the
ImageNet validation set, not the training set. Since the classifier was trained only on
the ImageNet training set, it has never seen the evaluation images before.

4.1.5 Choice of surrogate model

Some of the attacks compared in this evaluation use surrogate models to derive adversar-
ial gradients. These include PGD-transfer attacks, but also the Biased Boundary Attack
when using a surrogate bias. It is therefore necessary to specify a surrogate model for
some of the experiments. To emulate attacks on unknown models, the surrogate must
be sufficiently different to the model under attack. However, a number of reasonable
assumptions can be made:

• Unknown architecture. The model under attack is a black box, so one must as-
sume that its architecture and parameters are unknown and that they might differ
significantly from any surrogate model that is available to the attacker. To simu-
late an attack in the real world, the surrogate must have a different architecture
and be trained independently of the black box.

1See https://github.com/tensorflow/models/tree/master/research/slim.
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• Known model family. On the other hand, it is safe to assume that most state-
of-the-art image classifiers are CNNs of some sort. The surrogate can therefore be
limited to the family of CNNs.

• Known classification task. It is also reasonable to assume that the broader
task of classification is known, mapping from images to a certain set of classes.
Therefore, the available classes are also known – either completely, or at least a
subset that is relevant to the attacker.

• Known data. Finally, it is acceptable to use a surrogate that is trained with
similar data as the black box. This seems a very strong assumption, but it can be
justified from prior work that demonstrates adversarial transfer between classifiers
that were trained on significantly different data [93]. As long as similar classes are
contained, the exact choice of data set is not crucial.

For most real-world tasks, an attacker would surely be able to acquire data that
is at least similar to that used by the victim. Also, ImageNet is a very popular
general-purpose data set, so it is likely that many real-world systems use data that
is similar to – or even directly incorporates parts of – ImageNet. Therefore, the
choice of training data for the surrogate is not critical for transferability and it is
permissible to use ImageNet-trained surrogates.

It should be noted that the evaluation data set (Section 4.1.2) is formed from
the ImageNet validation set, not the training set. Care must be taken that the
surrogates were trained only on the training set and that they have not seen the
evaluation images before.

• Simplicity. It has been found that transferability increases with ensembling of
surrogates [74]. In fact, this is often necessary to achieve the strong performance
reported by PGD-transfer attacks [17]. While the surrogate bias certainly warrants
a comparison of different surrogates (see experiment in Section 4.5), extensive
fine-tuning of ensembles goes beyond the scope of this work. For the majority
of experiments, any general-purpose classifier can be chosen that is reasonably
accurate on ImageNet.

Following these assumptions, an Inception-ResNet-v2 classifier [94] is picked. Again,
no manual training is performed, and the pre-trained weights made available by the
original authors are used. The model used in this evaluation has a top-1 accuracy of
80.4% and is available in the official TensorFlow repository2.

4.1.6 Enforcing the black-box setting

During the evaluation, both the classifier and the adversarial attack are running on the
same machine. This means that, theoretically, the attacker could have white-box access
to the classifier internals. To prevent any information leak, the following measures are
taken:

2See https://github.com/tensorflow/models/tree/master/research/slim.
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• No access to classifier internals. The classifier is isolated in a separate soft-
ware component which offers only the classification function in a public interface,
thereby emulating a black-box setting. The attack sends queries to the black box
and receives classification results. It cannot query the classifier for gradients, pa-
rameters or any other internals.

• Discrete input. The black box component accepts as input only valid image data
in the RGBU8 format. Here, each input dimension (pixel × color channel) is an
integer value in the interval of [0, 255]. It is necessary to enforce this constraint
since RGBU8 is the predominant image format in most imaging applications and
web services today. Any attack that might be used to attack real-world systems
must be able to deal with this limitation.

• Discrete output. As discussed in Chapter 2, an attacker may gain large amounts
of information if the classifier returns real-valued confidence scores. At the same
time, this is not a reasonable assumption in the real world, so any attack should
be able to succeed without them. Although Inception-v3 does produce confidence
scores, the black box component hides them from the attacker and returns only the
argmax of the confidence vector, which is the class label ŷ of the most confident
prediction. This enforces a label-only classification setting.

• One image per query. In deep learning, it is common to process images in large
batches. However, this does not necessarily fit a real-world attack setting. It may
or may not be possible to bombard a web service with 128 images per second – in
the end, any attack must be able to deal with strictly sequential requests.

In this way, the black-box software component guarantees a realistic query-limited
label-only black-box setting in which attacks can be evaluated.

4.1.7 Software and hardware setup

The evaluation procedure is implemented using Python 3.6 [95] and NumPy 1.18.5 [96].
The neural network classifiers are run using TensorFlow 1.10 [97] with GPU support. All
experiments are performed on a consumer-grade desktop machine with an AMD Ryzen
1300X quad-core CPU, 16GB RAM and an NVIDIA GeForce 1070 GPU.

On this machine, processing 15000 sequential classification queries takes roughly 5
minutes, which is a reasonable upper limit for an attack on a single image. Nevertheless,
running all of the different attack configurations (44) on the entire evaluation set (200)
results in a runtime of more than 30 days.
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4.2 Ablation study of biases

The first experiment is an ablation study that gives an overview of all biases. This shows
how effective they are individually, and also whether their gains can be combined. The
experiment can also be seen as a sanity check: Without performing any fine-tuning, it
verifies that the ideas proposed in Chapter 3 do indeed increase efficiency by a significant
amount.

4.2.1 Setup

The experiment consists of 8 runs, each a Biased Boundary Attack with a different
combination of biases. Each attack creates targeted adversarial examples for all 200
images in the evaluation set.

4.2.2 Hyperparameters

This study is performed with the following settings (see the following sections for abla-
tions on individual hyperparameters):

• Perlin noise frequency: 32

• Mask strength: 1.0

• Mask channels: 3 (color)

• Surrogate model: Inception-Resnet-v2

• Surrogate weight w: 0.001

• Initialization: Closest image of the target class

4.2.3 Results

Table 4.2 and Figure 4.2 show the result: It is apparent that each bias significantly
increases attack efficiency. The largest boost is obtained by the Perlin bias, followed by
the mask bias, and finally the surrogate gradient bias.

It is worth noting that all biases can be combined and that they do not interfere with
each other. When all three biases are active, the attack reaches 94% success after 15000
queries, with a median of only 3906 queries required until a satisfactory adversarial
example is produced. This is a reduction of more than 80%!

Note on extrapolated medians. Some attacks have below 50% success rate after
15000 queries. It is therefore not possible to determine the median number of queries
until success. To still get a rough overview, these values are linearly extrapolated from
the slope between 10000 and 15000. While imprecise, linear extrapolation likely under-
estimates the true median (see flattening curves in Figure 4.2) and can therefore be used
as a conservative estimate.

Figure 4.3 plots the distance to the original image against the number of queries for
each attack configuration. It is clear that each bias delivers an improvement not only in
the median number of queries but also in the mean norm of the perturbation.
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Figure 4.4 shows adversarial examples created by different configurations. It is clear
that image quality is drastically increased by the biases, and with all biases combined
the adversarial perturbation is barely perceptible.

Active biases Success rate vs number of queries Median queries
LF Mask Surr. 500 1000 2500 5000 10000 15000 until success

no no no 0.02 0.03 0.11 0.17 0.28 0.35 ≈25357
no no yes 0.04 0.08 0.14 0.23 0.39 0.49 ≈15789
no yes no 0.03 0.05 0.14 0.28 0.39 0.54 13914
no yes yes 0.04 0.08 0.15 0.32 0.53 0.62 9375
yes no no 0.03 0.08 0.19 0.39 0.59 0.70 7649
yes no yes 0.05 0.11 0.27 0.46 0.70 0.83 5544
yes yes no 0.03 0.08 0.28 0.53 0.76 0.86 4751
yes yes yes 0.05 0.13 0.34 0.65 0.85 0.94 3906

Table 4.2: Ablation study of biases. The low-frequency (LF) bias has the strongest effect,
followed by the mask bias and finally the surrogate bias. Each bias improves efficiency
on its own, and the combination of all biases delivers the strongest performance.
Median values over 15000 are extrapolated, as the median is only available for success
rates ≥0.5.

Figure 4.2: Ablation study of biases. The success rate of all configurations is plotted against
the number of queries. This data is the same as in Table 4.2. The runs do not
start at zero, but slightly above - the reason is that, in some cases, an image of the
target class could be found that is already very close to the image under attack.
For these few images, the attack is considered successful after the first query.
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LF Mask Surr. LF Mask Surr.

LF Mask Surr. LF Mask Surr.

LF Mask Surr. LF Mask Surr.

LF Mask Surr. LF Mask Surr.

Figure 4.3: Ablation study of biases. For each configuration, the perturbation magnitude ‖η‖2
is plotted against the number of queries. The solid line shows the mean perturbation
across all 200 images, while the shaded area shows the standard deviation. The
dashed line is the success threshold. All three biases consistently enhance efficiency.
Notably, mean queries until success are higher than the median reported in Table
4.2. This hints at a small number of outliers that require a very large number of
queries, while in most cases an adversarial example is found quickly.
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LF Mask Surr. ‖η‖2 = 46.95 LF Mask Surr. ‖η‖2 = 11.89

LF Mask Surr. ‖η‖2 = 22.59 LF Mask Surr. ‖η‖2 = 9.81

LF Mask Surr. ‖η‖2 = 46.66 LF Mask Surr. ‖η‖2 = 4.89

LF Mask Surr. ‖η‖2 = 12.41 LF Mask Surr. ‖η‖2 = 3.74

Original image Starting point

Figure 4.4: Ablation study of biases. These are the final adversarial examples obtained after
15000 iterations for the same original image and target class. The original class is
”cello” – all images are misclassified as the target ”black stork”.
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4.3 Low-frequency bias

The ablation study shows that the low-frequency bias yields a very high improvement
in efficiency. This is strong evidence towards the hypothesis presented in Section 3.2.1
of Chapter 3. In this section, two experiments are performed to determine the optimal
frequency and to explore further opportunities for fine-tuning.

4.3.1 Comparison of frequencies

First, a simple grid search is performed to find the most efficient image frequency. 8
Biased Boundary Attacks are performed, with each run doubling the noise frequency
from the previous (1 to 128). This amounts to a grid search on the frequency exponent:
20 to 27.

4.3.2 Randomized combination of frequencies

While the first experiment determines a single frequency that is best on average, it is not
certain that this is optimal in all cases. It could very well be that different frequencies
are more efficient at various stages of the attack, or that different images might benefit
from different frequencies.

To investigate this, another study is performed that chooses frequency randomly,
effectively picking a different frequency for each subsequent step. Since each adversarial
example is the cumulative result of up to 15000 such perturbations, this approximates
a combination of all frequencies across the spectrum.

Two Biased Boundary Attacks are performed. First, the frequency exponent is sam-
pled from a uniform distribution: freq ∼ 2U(0,7). This attack combines all frequencies
equally. However, anticipating the results of the first experiment, it is likely that some
frequencies have a higher probability of success than others – therefore a weighted dis-
tribution could be more efficient. To test this, a second run is conducted with the
frequency exponent sampled from a truncated normal distribution, centered around the
strongest-performing frequency from the first experiment (32 = 25): freq ∼ 2N (5,2). For
brevity, the two attacks are named ”Rand-U” and ”Rand-N”. Figure 4.5 shows both
distributions.

4.3.3 Hyperparameters

For this comparison, the low-frequency bias is studied in isolation. Activating the mask
and surrogate bias would likely dilute the effects observed by comparing frequencies, and
comparing all bias configurations with all frequencies would incur prohibitive costs. As
before, all attacks are initialized with the closest image of the target class.

4.3.4 Results

Table 4.3 and Figure 4.6 show the results of all runs, and Figure 4.7 shows adversarial
examples generated with different frequencies.
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Figure 4.5: Probability distributions for randomized choice of frequency. At each step of the
attack, the frequency for the next perturbation is drawn randomly. (Left): Uni-
form, 2U(0,7). (Right): Truncated normal, 2N (5,2), centered around the strongest-
performing frequency (32 = 25).

Comparison of frequencies. Mid-range frequencies, between 32-64, deliver the
highest boost in efficiency. In particular, setting the noise frequency to 32 single-
handedly doubles the final success rate when compared to an unbiased attack. This
is also the frequency chosen for the bias ablation study in Section 4.2.

Randomized combination of frequencies. While the uniform distribution (Rand-
U) performs quite well, it is slightly less effective than manually choosing the best fre-
quency (32). However, the normal distribution (Rand-N) centered around 32 manages
to yield even better results than the singular choice of 32. This hints at two things:
Firstly, there may not be a single frequency that is always optimal – this is hardly a
surprise. Secondly, it is possible to fine-tune perturbation patterns, and doing so can
yield another substantial boost in efficiency.

It is important to note that the distribution (Rand-N) was retroactively modeled
after the success rates obtained by the first experiment, which would be considered bad
practice in statistics. In other words, the noise patterns are specifically engineered to
work well in the same setting as they were first evaluated. It is highly likely that the
attack is now overfitting to the model under attack, or perhaps the evaluation dataset.
Therefore, no claim to generality can be made, and the Rand-N attack can serve only
as a toy example of fine-tuning.

It could be interesting to further evaluate the generality of specific frequency distri-
butions on hold-out testing datasets, but this is outside the scope of this work. Even
without fine-tuning, low-to-mid-frequency noise drastically improves attack efficiency.
An attacker may wish to perform fine-tuning, but the gains already obtained by uniform
choice (Rand-U) are so large that it might not be necessary in many cases.

Striking appearance of patterns. Consider Figure 4.7: Although frequencies be-
tween 16 and 64 nominally achieve the lowest perturbation magnitude, their patterns
may appear striking and repetitive to a human observer – perhaps more than higher
frequencies. It can be seen that combining multiple frequencies (Rand-U/N) alleviates
this issue and produces more naturally-looking patterns.
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Perlin Active biases Success rate vs number of queries Median
freq. LF Mask Surr. 500 1000 2500 5000 10000 15000 queries

- no no no 0.02 0.03 0.11 0.17 0.28 0.35 ≈25357
128 yes no no 0.02 0.05 0.13 0.23 0.38 0.49 ≈15455
64 yes no no 0.02 0.06 0.18 0.35 0.57 0.67 7668
32 yes no no 0.03 0.08 0.19 0.39 0.59 0.70 7649
16 yes no no 0.03 0.08 0.16 0.26 0.37 0.44 ≈18566
8 yes no no 0.03 0.06 0.11 0.17 0.23 0.25 ≈76250
4 yes no no 0.03 0.05 0.07 0.09 0.09 0.10 >100000
2 yes no no 0.03 0.04 0.04 0.04 0.04 0.05 >100000
1 yes no no 0.03 0.03 0.03 0.03 0.03 0.04 >100000

rand-U yes no no 0.03 0.09 0.22 0.38 0.52 0.62 9013
rand-N yes no no 0.03 0.08 0.25 0.47 0.64 0.74 5427

Table 4.3: Comparison of Perlin Noise frequency for the low-frequency bias. Upper segment:
Unbiased attack as baseline. Central segment: Different Perlin frequencies. Mid-
range frequencies (between 32-64) deliver a great boost in efficiency, while extremely
low frequencies hurt performance instead. Lower segment: Randomized combination
of frequencies. Rand-U: Frequency exponent sampled uniformly. Rand-N: Frequency
exponent sampled from a truncated normal distribution.

Figure 4.6: Comparison of noise frequency (same data as in Table 4.3). It is evident that
frequencies below 8 get stuck quickly and cannot proceed, no matter the amount of
queries. The strongest frequencies, 32 and 64, exhibit similar performance at both
low and high query counts. At low query counts, Rand-U and Rand-N strongly
outperform all other attacks, but lose much of this advantage as the number of
queries increases.
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Frequency = 4 ‖η‖2 = 34.93 Frequency = 32 ‖η‖2 = 8.82

Frequency = 8 ‖η‖2 = 30.98 Frequency = 64 ‖η‖2 = 9.67

Frequency = 16 ‖η‖2 = 19.53 Frequency = 128 ‖η‖2 = 19.89

Rand-U (2U(0,7)) ‖η‖2 = 16.14 Rand-N (2N (5,2)) ‖η‖2 = 7.20

Original image Starting point

Figure 4.7: Adversarial examples obtained by a low-frequency Biased Boundary Attack with
different frequencies. 32 is the most effective frequency, however it is outperformed
by Rand-N, which is a random combination of frequencies centered around 32.
Frequencies 1 and 2 are omitted for brevity. The original label is ”ladybug”, but
all images are classified as ”revolver”.
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4.4 Regional masking bias

The ablation study in Section 4.2 has shown that the regional masking bias yields a
considerable improvement in efficiency. With this, the hypothesis presented in Section
3.2.2 of Chapter 3 is confirmed. In this section, two additional experiments are performed
to determine the optimal mask strength and to explore the relationship between masking
and low-frequency biases.

4.4.1 Mask strength

The first experiment compares different mask strengths. Section 3.2.2 of Chapter 3 in-
troduces the masking bias as a binary option, i.e. the perturbation is either masked
according to the current image difference or it is not. However, instead of simply acti-
vating the mask and observing an improvement, it would be more instructive to compare
multiple masks at different strengths.

The simplest way to achieve this is to interpolate between a perturbation with the
bias enabled and one without. If η is an unbiased perturbation and ηbiased is already
masked, then:

ηinterp =
η + s(ηbiased − η)

‖η + s(ηbiased − η)‖2
(4.3)

With this, the regional masking bias can be scaled between 0 and 1 via the hyperpa-
rameter s. For the rest of this section, s is called mask strength.

4.4.2 Color channels

From the ablation study in Section 4.2, it is clear that the masking bias synergizes
well with the low-frequency bias. However, on closer observation, it becomes apparent
that the masking bias tends to amplify a small number of brightly-colored blobs, which
then become very noticeable. This happens in spite of a very small perturbation norm.
Consider the examples where both biases are enabled in Section 4.2, Figure 4.4: Although
the masking bias reduces perturbation magnitude, it makes a select few blobs more
noticeable.

This might be caused by the difference mask |δ| being calculated not per pixel, but
per dimension: At a single pixel, the mask can have different values in each of the three
color channels. If, for example, the difference is near-zero for the red and green channels
of a pixel, but large for the blue channel, then the resulting perturbation will almost
always be blue. Since the attack performs many such steps, it can develop a feedback
loop where existing color differences are reinforced.
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To address this imbalance, an experiment is conducted in which the difference mask
|δgray| is calculated in grayscale:

|δx,y,gray| = max(|δx,y,R|, |δx,y,G|, |δx,y,B|) (4.4)

As a result, the colored blobs should become less prominent – possibly at the cost of
query efficiency. This experiment compares the performance of per-channel (color) masks
with single-channel (grayscale) masks. All runs in this experiment are conducted with
full mask strength, s=1.0.

4.4.3 Hyperparameters

For this comparison, the masking bias is studied first in isolation, and then in combina-
tion with the low-frequency bias (Perlin frequency 32). The surrogate bias is disabled,
as it would likely dilute the observed differences. As before, all attacks are initialized
with the closest image of the target class.

4.4.4 Results

Tables 4.4 and 4.5 contain the results, while Figure 4.8 shows a plot of all runs combined.

Mask strength. The attack with full mask strength performs the best, both on its
own and when combined with the low-frequency bias. It therefore seems to make little
sense to perform tuning on this hyperparameter – as opposed to Perlin frequency, where
there exists a sweet spot (32) in the middle of the spectrum.

Color channels. The results in Table 4.5 suggest that using a grayscale mask per-
forms significantly worse than a color mask. However, qualitative inspection paints
a different picture. Consider Figure 4.9, which shows a picture of a mushroom with
grayscale and color masks. It is plain to see that, while the grayscale mask performs
worse in terms of perturbation norm, it also contains more muted colors that are less
noticeable.

How to assess this result? On the one hand, the problem of the bright blobs is ad-
dressed, but on the other hand, this perceptual difference cannot easily be measured.
Grayscale masks therefore can be a tool to increase the visual fidelity of adversarial
examples, but should not be activated by default since they can be detrimental to per-
formance as measured in this work.
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Mask Active biases Success rate vs number of queries Median
strength s LF Mask Surr. 500 1000 2500 5000 10000 15000 queries

0.00 no no no 0.02 0.03 0.11 0.17 0.28 0.35 ≈25357
0.25 no yes no 0.02 0.05 0.12 0.21 0.29 0.35 ≈29090
0.50 no yes no 0.02 0.04 0.13 0.20 0.32 0.39 ≈22857
0.75 no yes no 0.03 0.05 0.12 0.20 0.32 0.41 ≈20588
1.00 no yes no 0.03 0.05 0.14 0.28 0.39 0.54 13914

0.00 yes no no 0.03 0.08 0.19 0.39 0.59 0.70 7649
0.25 yes yes no 0.03 0.08 0.19 0.40 0.59 0.72 6940
0.50 yes yes no 0.02 0.08 0.20 0.42 0.61 0.72 7008
0.75 yes yes no 0.03 0.08 0.24 0.45 0.66 0.80 5983
1.00 yes yes no 0.03 0.08 0.28 0.53 0.76 0.86 4751

Table 4.4: Comparison of different mask strengths. The attack with full mask strength is the
most efficient, both on its own and when combined with the low-frequency bias.

Figure 4.8: Comparison of different mask strengths (plot of Table 4.4). The attack with full
mask strength is most efficient, both on its own and when combined with the low-
frequency bias. The relative improvement in success rate is less pronounced when
the low-frequency bias is active, but still significant.
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Mask Active biases Success rate vs number of queries Median
channels LF Mask Surr. 500 1000 2500 5000 10000 15000 queries

3 (color) no yes no 0.03 0.05 0.14 0.28 0.39 0.54 13914
1 (gray) no yes no 0.02 0.05 0.12 0.22 0.33 0.41 ≈20294
3 (color) yes yes no 0.03 0.08 0.28 0.53 0.76 0.86 4751
1 (gray) yes yes no 0.04 0.09 0.24 0.45 0.68 0.81 5607

Table 4.5: Comparison of color and grayscale masks. The grayscale mask is less efficient than
the color mask, but can still be beneficial as shown in Figure 4.9. All runs in this
table are performed with s=1.0.

3 channels ‖η‖2 = 4.73 1 channel (gray) ‖η‖2 = 4.93

Original image Starting point

Figure 4.9: Comparison of color and grayscale masks. Although the perturbation with the
grayscale mask has a slightly higher `2-norm, it is far less noticeable than the one
with the color mask. The original class is ”bolete”, but both adversarial examples
are classified as ”spindle”.
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4.5 Surrogate gradient bias

The ablation study in Section 4.2 has shown that the regional masking bias yields a con-
siderable improvement in efficiency. Again, this experimentally confirms the hypothesis
presented in Section 3.2.3 of Chapter 3. Here, two additional experiments are performed
to investigate the effect of the surrogate bias strength, and to compare a number of
different surrogate models.

4.5.1 Surrogate bias strength

The first experiment performs a study of the surrogate bias strength, or weight, w. As
postulated in Chapter 3, w should be set to a rather low value, otherwise the attack might
degenerate into a full transfer attack – which typically only succeeds if the surrogate
model has been carefully tuned. The ablation study was performed with w = 0.001, but
can this value be tuned to exploit the surrogate model to the fullest?

4.5.2 Surrogate models

This experiment investigates a range of different surrogate models. Until now, all ex-
periments were performed with Inception-Resnet-v2, pre-trained in standard fashion on
ImageNet. The following models are compared:

• Inception-ResNet-v2 [94]: This is the surrogate model used in the ablation study in
Section 4.2. No manual training is performed, and pre-trained weights are taken
from the official TensorFlow repository3. This model has a top-1 classification
accuracy of 80.4%.

• ResNet-101 [72]: This is another well-known model architecture. Again, no manual
training is performed and the pre-trained weights provided by TF-Slim are used.
This model has a top-1 classification accuracy of 77.0%.

• Ensemble: Here, both Inception-ResNet-v2 and ResNet-101 are combined into an
ensemble. This is achieved simply by adding the logit outputs of both models – the
classification result is then the argmax of the sum. Prior work [17] has shown that
this form of ensembling drastically improves transferability between models, and
therefore this should benefit attack efficiency. This model has a top-1 classification
accuracy of 80.1%.

• Inception-ResNet-v2 (AT): This model has the same architecture as the origi-
nal, but adversarial training has been performed in order to make it more re-
silient against adversarial examples. Prior work has indicated that – although
adversarially-trained models are more resistant to attacks – gradients calculated
on them tend to transfer less well than those calculated on undefended models [34].
Therefore it can be expected that using such a model as surrogate would decrease

3See https://github.com/tensorflow/models/tree/master/research/slim.
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attack efficiency, confirming the previously observed effect. For this experiment,
the pre-trained weights provided by Kurakin et al. [17] are used. This model has
a top-1 classification accuracy of 78.4%.

Calculating gradients on surrogate models is computationally expensive, especially for
ensembles. Therefore, the model comparison is performed with only one bias strength,
w = 0.001.

4.5.3 Hyperparameters

In both experiments, the surrogate bias is investigated first in isolation and then with
both low-frequency and mask biases combined. Perlin frequency is 32, and mask strength
is 1.0.

4.5.4 Results

Tables 4.6 and 4.7 contain the results, while Figures 4.10 and 4.11 show plots of all runs
combined. Figure 4.12 is a qualitative inspection of examples: The surrogate bias often
causes characteristic patterns that visibly contain salient features of the target class.

Surrogate bias strength. It is apparent from Table 4.6 that there exists a ”sweet
spot” at w = 0.01, where the efficiency gain is largest. However, this may be specific to
the particular combination of classifier, dataset, and surrogate model. Since an expensive
hyperparameter search is required to obtain the optimal value, in unknown situations it
is better to pick w conservatively. A very low value such as w = 0.001 is unlikely to be
too high, while still providing a reasonable benefit in efficiency. This is also the reason
why w = 0.001 was chosen for the ablation study, and this is also the value that is used
for attacks on unknown models in Chapter 5.

Surrogate models. Table 4.7 shows that an ensemble of surrogates drastically out-
performs individual models. This is in line with expectations and prior work [17]. The
ensemble is a perfect example of a ”strong” surrogate, providing adversarial gradients
that transfer well, while at the same time being computationally expensive. The meth-
ods presented in this thesis place an emphasis on simplicity, speed, and ease of access.
Although their performance is impressive, large ensembles are neither simple nor fast –
state-of-the-art transfer attacks routinely use ensembles of five and more models [18]!
For this reason, ensembling is not pursued any further in the scope of this thesis.

It is also apparent that surrogates do not seem to benefit from adversarial training.
This, again, confirms prior work on transfer attacks [34].

Overall, the experiments in this Section have shown that the surrogate bias can reduce
the number of queries by a significant amount, even when not fine-tuned (very low w)
and without using strong surrogates (ensembles). The results indicate that surrogate
models behave similarly when used as bias for the Biased Boundary Attack to when they
are used in a PGD-style transfer attack. Thus, any advance in that line of work might
be easily adopted.
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Surrogate Active biases Success rate vs number of queries Median
strength w LF Mask Surr. 500 1000 2500 5000 10000 15000 queries

0.000 no no no 0.02 0.03 0.11 0.17 0.28 0.35 ≈25357
0.001 no no yes 0.04 0.08 0.14 0.23 0.39 0.49 ≈15789
0.003 no no yes 0.04 0.10 0.22 0.34 0.47 0.54 12475
0.01 no no yes 0.07 0.13 0.25 0.34 0.57 0.62 7424
0.03 no no yes 0.06 0.10 0.19 0.28 0.49 0.56 10119
0.1 no no yes 0.05 0.07 0.15 0.15 0.22 0.28 ≈33333
0.000 yes yes no 0.03 0.08 0.28 0.53 0.76 0.86 4751
0.001 yes yes yes 0.05 0.13 0.34 0.65 0.85 0.94 3906
0.003 yes yes yes 0.06 0.13 0.38 0.58 0.81 0.91 3540
0.01 yes yes yes 0.05 0.16 0.50 0.74 0.89 0.95 2463
0.03 yes yes yes 0.07 0.16 0.46 0.73 0.91 0.95 2733
0.1 yes yes yes 0.04 0.11 0.35 0.56 0.77 0.86 4240

Table 4.6: Comparison of different surrogate strengths w. There exists a sweet spot at w = 0.01,
were the surrogate bias has the highest effect. While 0.1 appears a good value for
our particular setup of classifier, dataset and surrogate model, it cannot be expected
to generalize to other setups. For this reason, it is advisable to pick w conservatively
(e.g. 0.001), and to only increase it if fine-tuning is desired.

Figure 4.10: Comparison of surrogate strengths w (same data as in Table 4.4).
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Surrogate Active biases Success rate vs number of queries Median
model LF Mask Surr. 500 1000 2500 5000 10000 15000 queries

- no no no 0.02 0.03 0.11 0.17 0.28 0.35 ≈25357
IRNv2 no no yes 0.04 0.08 0.14 0.23 0.39 0.49 ≈15789
RN-101 no no yes 0.05 0.10 0.17 0.28 0.43 0.51 14207
Ensemble no no yes 0.09 0.17 0.29 0.44 0.60 0.69 6243
IRNv2-AT no no yes 0.03 0.05 0.10 0.17 0.25 0.33 ≈25000
- yes yes no 0.03 0.08 0.28 0.53 0.76 0.86 4751
IRNv2 yes yes yes 0.05 0.13 0.34 0.65 0.85 0.94 3906
RN-101 yes yes yes 0.08 0.19 0.48 0.71 0.93 0.95 2645
Ensemble yes yes yes 0.10 0.29 0.67 0.87 0.96 0.99 1863
IRNv2-AT yes yes yes 0.03 0.08 0.29 0.48 0.74 0.88 5214

Table 4.7: Comparison of surrogate models. ResNet-101 performs similarly to Inception-
ResNet-v2, and forming an ensemble of both drastically increases efficiency. As
expected, adversarial training seems to have a detrimental effect on transferability.

Figure 4.11: Comparison of surrogate models. The ensemble drastically outperforms individ-
ual models, while the adversarially trained model hurts performance instead of
increasing it.
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4.5 Surrogate gradient bias

w = 0 ‖η‖2 = 30.75 w = 0 ‖η‖2 = 12.55

w = 0.001 ‖η‖2 = 22.60 w = 0.001 ‖η‖2 = 8.04

w = 0.01 ‖η‖2 = 17.88 w = 0.01 ‖η‖2 = 4.37

w = 0.1 ‖η‖2 = 25.39 w = 0.1 ‖η‖2 = 5.76

Original image Starting point

Figure 4.12: Comparison of different surrogate strengths w. Left: surrogate bias only. Right:
all biases combined. The original class is ”toucan”, but all images are classified as
”teddy bear”. In some cases, the surrogate bias visibly reinforces salient features
of the target class (such as the eye and ear of the teddy bear, highlighted in red).

75



4 Evaluation

4.6 Initialization with synthetic starting points

So far, all experiments have been conducted with the same initialization method: Search-
ing the ImageNet validation set for images of the target class, and selecting the image
xstart that is closest to the image under attack xorig. Surely it is possible to find better
starting points than this?

4.6.1 Creating salient patches of the target class

As described in Section 3.3 of Chapter 3, it is possible to find images of the target class,
segment them with saliency masks, and then copy the salient patches into the original
image xorig. This alone is often enough to change the label to the desired class, and the
resulting image can be used as a starting point xstart.

While there could be many methods of synthesizing starting points, this one is ex-
tremely simple and serves as a direct proof of concept – namely that better starting
points significantly increase attack efficiency, and that it is in fact very easy to construct
them.

This section consists of a single experiment: The ”salient patch” initialization method
proposed in Section 3.3 of Chapter 3 is tested and compared against the classic ”closest
image” method in a number of attack configurations (biased and unbiased). This should
suffice to deliver evidence whether initialization is a key driver of attack efficiency.

4.6.2 Hyperparameters

All attack hyperparameters are at the same values as the earlier ablation study in Section
4.2:

• Perlin noise frequency: 32

• Mask strength: 1.0

• Mask channels: 3 (color)

• Surrogate model: Inception-Resnet-v2

• Surrogate weight w: 0.001

4.6.3 Results

Table 4.8 and Figure 4.14 show the result: In every configuration, ”salient patch” initial-
ization reduces the number of queries by more than 60%. When all biases are enabled,
little more than 1000 queries are required to succeed on more than half of the evaluation
images. Notably, the ”salient patch” method drastically increases success rates early in
the attack. This is expected, as synthesized starting points are specifically designed to
have very small perturbation norms.

Figure 4.15 shows a side-by-side comparison of a single attack. It is easy to see the
superiority of synthesized starting points: In this particular example, the salient features
of the terrier (its head) have been extracted, down-sized and placed into a corner of the

76
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image. Evidently, this small patch is so salient that it overrides the classification result!
In all cases, it was possible to synthesize these images while performing less than 10
queries on the black box model4.

Success on the first try? Figure 4.13 shows more starting points created by the
method, highlighting a startling phenomenon: In some cases, the starting point is already
below the success threshold (‖η‖2 < 25.89). Worse even, in some cases (see the image of
a snake, top right) the perturbation is so well hidden that it can be used as an adversarial
example straight away, without even conducting an attack! The classifier under attack
(Inception-v3) is considered relatively accurate [47]. While vulnerability to adversarial
patterns is not surprising, it is troublesome that simply copying small patches confuses
the classifier so strongly.

Tow truck → Terrier Terrier → Cougar Albatross → Pyrenean dog Wombat → Garter snake

‖η‖2 = 13.75 ‖η‖2 = 29.47 ‖η‖2 = 42.53 ‖η‖2 = 17.01

Spiral stair → Moving van Coral fungus → Tricycle Megalithe → Radiator grille Hot dog → Lemur

‖η‖2 = 77.30 ‖η‖2 = 69.56 ‖η‖2 = 82.64 ‖η‖2 = 49.13

Figure 4.13: Starting points generated by salient patches. All images are classified as the
adversarial label (red). Upper row: examples where the adversarial features have
been placed well, in some cases so well that they are hardly noticeable (top right,
highlighted). Lower row: examples where the method did not place the patches
well. As a consequence, the perturbations are rather large - but still smaller than
when using full images of the target class (where ‖η‖2 routinely is greater than
100).

4See Section 3.3 of Chapter 3: The algorithm creates a large number of candidate images, applying
random translation and scaling to the adversarial patch. These are tested against a surrogate model,
and only those that are adversarially classified are sorted by perturbation magnitude and tested
against the black box. In this way, it is possible to keep the number of queries to a minimum.
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Init Active biases Success rate vs number of queries Median
method LF Mask Surr. 500 1000 2500 5000 10000 15000 queries

closest no no no 0.02 0.03 0.11 0.17 0.28 0.35 ≈25357
patch no no no 0.28 0.32 0.40 0.48 0.52 0.54 6574

closest no no yes 0.04 0.08 0.14 0.23 0.39 0.49 ≈15789
patch no no yes 0.32 0.35 0.45 0.49 0.60 0.64 5134

closest no yes no 0.03 0.05 0.14 0.28 0.39 0.54 13914
patch no yes no 0.28 0.38 0.48 0.56 0.67 0.74 3367

closest yes no no 0.03 0.08 0.19 0.39 0.59 0.70 7649

patch yes no no 0.33 0.40 0.51 0.65 0.74 0.80 2197

closest yes yes yes 0.05 0.13 0.34 0.65 0.85 0.94 3906
patch yes yes yes 0.37 0.49 0.69 0.83 0.93 0.95 1093

Table 4.8: Comparison of initialization methods. Runs with ”closest” are initialized with the
closest image of the target class, while ”patch” runs are initialized with salient
patches. Changing the initialization method delivers a large boost in efficiency –
the number of queries is reduced by more than 60%, no matter which biases are
active.

Figure 4.14: Comparison of initialization methods. Synthesized starting points synergize well
with all biases and enhance attacks in every configuration.

78



4.6 Initialization with synthetic starting points

Closest image of the target class Synthesized (salient patch)
i = 1 ‖η‖2 = 206.69 i = 1 ‖η‖2 = 13.75

i = 1000 ‖η‖2 = 62.41 i = 1000 ‖η‖2 = 9.06

i = 5000 ‖η‖2 = 23.43 i = 5000 ‖η‖2 = 8.01

i = 15000 ‖η‖2 = 10.41 i = 15000 ‖η‖2 = 3.25

Original image Target class image

Figure 4.15: Comparison of initialization methods (all biases enabled). When using a full image
of the target class, a large number of iterations is required, and the resulting
perturbation is still noticeable. With the synthesized starting point, it is possible
to limit the attack to a small region in the image, and after few iterations the
perturbation is barely noticeable. The original label is ”tow truck”, but all images
are classified as ”cairn terrier”.

79



4 Evaluation

4.7 Comparison with other state-of-the-art attacks

So far, the evaluations in this Chapter have shown that the Biased Boundary Attack sig-
nificantly outperforms the original boundary attack formulation as proposed by Brendel
et al. [15]. However, as described in Section 2.4.2 of Chapter 2, boundary attacks repre-
sent just one of three major families of black-box adversarial attacks – the others being
transfer attacks and gradient estimation attacks. To put the performance of the new
method into perspective, it is necessary to compare it against state-of-the-art attacks
from other families.

In this Section, the Biased Boundary Attack is benchmarked against recently proposed
transfer, gradient estimation, and boundary attacks that were considered state-of-the-
art at the time of writing. For all methods, publicly available implementations are used,
together with the hyperparameters recommended for ImageNet by the original authors.
The respective implementations are modified only to use the common evaluation set,
therefore all attacks are run on the same 200 images and use the same target labels (and
starting points, where applicable).

To allow a fair comparison, the Biased Boundary Attack is run with the same hyper-
parameters as in the ablation study in Section 4.2. No further tuning is performed, and
the attack is initialized with the default choice – the closest image of the target class.

Table 4.9 shows an overview of the results, and Figure 4.16 plots the success rate. The
following subsections discuss the individual attacks and results in detail:

4.7.1 Gradient estimation attacks

Most gradient estimation attacks rely on confidence scores [27, 44, 42, 15], which renders
them unusable in the label-only setting. However, it is still possible to estimate gradients
via a number of clever optimizations. Two methods are compared:

• Ilyas et al. [42]: Natural Evolutionary Strategies (NES). At the time of
writing, this was a rather popular gradient estimation attack: In their publication,
Ilyas et al. were among the first to demonstrate a viable targeted attack against
the Google Cloud API. Normally, their method would require confidence scores,
but Ilyas et al. also propose a label-only version of the same method. It works, but
at greatly reduced efficiency: As Table 4.9 shows, the attack does not produce any
adversarial example within 15000 queries (in fact, no run succeeds before 276000
queries)5. This is in line with their published work, which states a median of 2.7
million queries required until success [42].

• Cheng et al. [45]: Directional Estimation Attack. Similarly, Cheng et al.
re-frame the setting as a real-valued optimization problem which is then solved with
gradient estimation. In their publication, they report higher efficiency than the

5The table lists 0.02 instead of 0.00 as minimal success rate. This is due to the choice of initialization
(closest image of the target class): For these particular examples, the ImageNet validation set con-
tained an image of the target class that was already very close to the image under attack. In these
cases, the attack is automatically considered successful.
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Success rate vs number of queries
Attack Family 500 1000 2500 5000 10000 15000

Ilyas et al. [42] (Label-only NES) GE 0.02 0.02 0.02 0.02 0.02 0.02
Cheng et al. [45] (Directional Estimation) GE 0.02 0.02 0.02 0.03 0.05 0.09
Madry et al. [33] (PGD) T 0.18 0.23 0.27 0.29 0.34 0.37
Dong et al. [75] (Momentum-PGD) T 0.20 0.22 0.27 0.32 0.35 0.37
Brendel et al. [15] (Boundary Attack) B 0.02 0.03 0.11 0.17 0.28 0.35
This work (LF + Mask biases) B 0.03 0.08 0.28 0.53 0.76 0.86
This work (LF + Mask + Surr. biases) B+T 0.05 0.13 0.34 0.65 0.85 0.94

Table 4.9: Comparison with recently proposed label-only black-box attacks. Attack families are
denoted by GE (gradient estimation), T (transfer), and B (boundary). The original
source code provided by the respective authors is used and all attacks are run on the
evaluation data set. The Biased Boundary Attack with all biases enabled has the
highest success rate after 15000 queries. While transfer attacks often succeed very
early, they fail to produce adversarial examples for more than half of the evaluation
images. Notably, even the model-free version (without a surrogate) outperforms prior
work in mid-query scenarios. It is evident that gradient estimation is very inefficient
in a label-only setting. In the case of Ilyas et al. [42], the number of required queries
is so large that the attack requires far more than 15000 queries (over one million,
according to their publication) to make a difference.

Figure 4.16: Comparison with recently proposed label-only black-box attacks. While trans-
fer attacks have an early advantage, they are quickly outperformed by the more
reliable Biased Boundary Attack.
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original boundary attack formulation for untargeted attacks on ImageNet (a setting
that is of limited value, see discussion in Section 2.3.2.1 of Chapter 2). Notably,
their publication does not evaluate targeted attacks on ImageNet, although it
does so on other datasets. When conducting a targeted attack on ImageNet, the
results are different (see Table 4.9): Contrary to expectations, the attack performs
significantly worse than even an unbiased boundary attack. It should be stressed
that the original source code provided by the authors in [45] was used, together
with the hyperparameters also made available by them.

4.7.2 Boundary attacks

To the best of this author’s knowledge, at the time of writing there existed only the
original (unbiased) Boundary Attack:

• Brendel et al. [15]: Boundary Attack. Naturally, the performance of this
method is the same as reported in the ablation study Section 4.2, with all biases
deactivated. It outperforms both gradient estimation attacks, but is less efficient
than transfer attacks – it only starts to approach their success rate after 15000
queries.

4.7.3 Transfer attacks (simple surrogate)

Perhaps the most interesting attacks to compare to are transfer attacks. These are
currently the most popular methods, having dominated open competitions in recent
years [17, 18]. To allow a fair comparison, all attacks in Table 4.9 use the same surrogate
model as the Biased Boundary Attack, Inception-ResNet-v2.

• Madry et al. [33]: PGD. This is a typical PGD attack as described in Section 2.4
of Chapter 2, the only difference to the white-box variant being that the adversarial
gradient is calculated on a surrogate. After every step, the adversarial candidate
is then tested against the black-box classifier.

Typically, this attack performs only a small number of steps and then either suc-
ceeds or fails [33, 34]. However, Madry et al. also introduce the concept of ”random
restarts”, where an attack can be conducted multiple times, starting from a ran-
domly perturbed version of the original image. This is a useful extension, as an
otherwise unsuccessful attack may still succeed when starting from a slightly dif-
ferent initialization. For this experiment, the source code and hyperparameters
provided by the authors are used, but the number of restarts is greatly increased
– the attack is allowed to try again and again until the query budget is exhausted.

Looking at Table 4.9, it is clear that the performance of PGD transfer is hit-and-
miss: When a transfer succeeds it does so very early, but in many cases it never
succeeds, even after many restarts. This is somewhat expected, as no fine-tuning
or ensembling has been used for the surrogate model in this experiment.
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• Dong et al. [75]: Momentum-PGD. This is an extension of PGD trans-
fer which adds a simple momentum term to the adversarial gradient, reportedly
improving attack success chance. It was the winning attack in the NeurIPS’17
Adversarial Vision Challenge [17] and therefore is a good example of a strong
attack.

Considering Table 4.9, however, it is apparent that momentum delivers only a
small improvement over the original formulation – at least for targeted attack on
ImageNet. Dong et al. also note this in the appendix of their paper [75]. Again,
perhaps a stronger surrogate model is needed to fully show the strength of these
attacks?

4.7.4 Transfer attacks (strong surrogate)

Most prior results for strong transfer attacks have been obtained on large, carefully-
crafted ensembles of surrogate models [34, 75, 17]. It is not entirely fair to benchmark
transfer attacks with a simple pre-trained model such as Inception-ResNet-v2. Therefore,
the previous experiment is repeated with a stronger surrogate, namely an ensemble of
Inception-ResNet-v2 and ResNet-101. This is the same model that was evaluated for
the Biased Boundary Attack in Section 4.5.

And indeed, this drastically increases the performance of both PGD and Momentum-
PGD – as Table 4.10 shows, from 37% to 62% success rate after 15000 queries. Nev-
ertheless, the Biased Boundary Attack also profits from the strong surrogate model,
increasing the success rate from 94% to 99%. Figure 4.17 shows the result more clearly:
No matter if a simple or a strong surrogate is used, the Biased Boundary Attack starts
outperforming PGD transfer attacks after 2000 queries.

Crucially, even the model-free version (low-frequency and mask bias, but no surrogate)
outperforms strong transfer attacks after roughly 6000 queries. This is important to note,
as creating ensembles of more than two models is very slow and requires large amounts
of memory. While this might increase the success rate even more, it is outside the scope
of this work as it would put a prohibitive cost on the experiments.

Nevertheless, the evaluation in this Chapter clearly shows that the Biased Boundary
Attack decidedly outperforms prior work in one of the most difficult and realistic attack
settings, even when no surrogate models are available. At the same time, if they are
indeed available, they can be exploited by the attack to great effect.
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Success rate vs number of queries
Attack Surr. model 500 1000 2500 5000 10000 15000

This work (LF + Mask) (none) 0.03 0.08 0.28 0.53 0.76 0.86

Madry et al. [33] (PGD) IRNv2 0.18 0.23 0.27 0.29 0.34 0.37
Dong et al. [75] (Momentum-PGD) IRNv2 0.20 0.22 0.27 0.32 0.35 0.37
This work (LF + Mask + Surr.) IRNv2 0.05 0.13 0.34 0.65 0.85 0.94

Madry et al. [33] (PGD) Ensemble 0.48 0.52 0.55 0.58 0.61 0.62
Dong et al. [75] (Momentum-PGD) Ensemble 0.42 0.47 0.51 0.55 0.57 0.58
This work (LF + Mask + Surr.) Ensemble 0.10 0.29 0.67 0.87 0.96 0.99

Table 4.10: Comparison with transfer attacks when using a stronger surrogate model. State-
of-the-art transfer attacks crucially rely on hand-tuned ensembles of classifiers to
maximize transferability. To make a fair comparison, this Table shows the same
attacks when using an ensemble of Inception-ResNet-V2 and ResNet-101 as a sur-
rogate. The transfer attacks drastically benefit from a stronger surrogate, but the
Biased Boundary Attack does so as well.

Figure 4.17: Comparison with transfer attacks when using a stronger surrogate model. Both
when using a weak (IRNv2) and strong (Ensemble) surrogate, the Biased Bound-
ary Attack starts outperforming the transfer attacks after 2000 queries. Interest-
ingly, even the model-free version (without surrogate bias) manages to outperform
strong transfer attacks after 6000 queries.
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4.8 NeurIPS 2018 Adversarial Vision Challenge

As part of this work, an implementation of the Biased Boundary Attack was submitted
to the NeurIPS 2018 Adversarial Vision Challenge, an open competition of adversarial
attacks and defenses.

The submission won second place in the targeted attack track, which shows that the
method performs well against state-of-the-art defense methods and robust classifiers.
Appendix B describes the submission and the competition format in detail.

4.9 Summary

It is evident that the methods proposed in Chapter 3 greatly improve the efficiency
of boundary attacks. The resulting attack, the Biased Boundary Attack, decidedly
outperforms the state of the art in targeted black-box adversarial attacks. Crucially, it
not only outperforms the original Boundary Attack but also methods from other families
such as PGD transfer attacks, which have dominated the field in recent years [17, 18].
This shows that Biased Boundary Attacks are both powerful and easy to use, and this
significantly lowers the bar for conducting attacks on unknown systems.

This Chapter has focused only on adversarial attacks, applying them to a single image
classifier, Inception-v3. But what about other classifiers? And what about adversarial
defenses? Armed with a black-box attack that is both efficient and reliable, it is now
possible to evaluate the robustness of a broad range of image classifiers, machine learning
models, defense mechanisms, and real-world commercial services.
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classifiers

With an efficient attack now available, it becomes possible to attack a broad range of
image classifiers and to perform a side-by-side comparison of their (empirical) robustness.

First, state-of-the-art deep learning architectures are investigated. This is contrasted
with traditional techniques such as Support Vector Machines and Decision Trees, com-
bined with various feature extractors. The results show that these methods have similar
vulnerabilities as deep learning classifiers. While some combinations of feature extrac-
tors and encoding schemes seem to be slightly more robust than CNNs, the attack is
still successful in the vast majority of cases.

Next, several recently proposed defenses against adversarial attacks are benchmarked.
The results show that many of them do in fact not work when confronted with an
adaptive black-box attack. A select few approaches, such as Adversarial Training, show
great promise as they significantly hamper attack progress. However, it is still possible
to create adversarial examples in more than 45% of cases.

The results indicate that, in the ImageNet evaluation setting, no classifier currently ex-
ists that is consistently robust against adversarial attacks. Finally, the attack developed
in this work is also used to successfully generate adversarial examples for a number of
commercial cloud-based image classifiers. This demonstrates that even these services can
be easily attacked with only a minimal investment of time and computational resources.

5.1 Setup

Much of the experimental setup in this Chapter is identical to that of Chapter 4, which
compared the effectiveness of different adversarial attacks on a fixed image classifier. In
this Chapter, the same evaluation is performed, but from the other side: A fixed attack
is selected and performed on a broad range of image classifiers. The resulting attack
success rate can then be interpreted as an empirical measurement of robustness.

5.1.1 Data set

The evaluation data set is the same as in Chapter 4: 200 images, randomly selected
from the ImageNet validation set, with a random adversarial target class. In this way,
all experiments are performed on the same images and target classes as in Chapter 4.

The only exception to this is the experiment in Section 5.3, which investigates tradi-
tional computer vision pipelines. Since it is difficult to scale these methods to process all
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of ImageNet (1.2M training examples with 1000 classes), a 10-class subset of ImageNet
is selected for this particular experiment. See Section 5.3 for details.

5.1.2 Image pre-processing

The original ImageNet database contains images of various sizes. However, CNN image
classifiers typically process images in a single fixed resolution. As in Chapter 4, all images
in the evaluation set are resized to a resolution of 299×299, which is the input format
for a typical Inception-v3 classifier. Consequently, the adversarial attacks in Chapter 4
also produce perturbations in the same resolution.

However, this Chapter compares several classifiers that operate on different image
sizes, ranging from 224x224 (VGG-16) up to 600x600 (EfficientNet-B7). To allow for a
side-by-side comparison, all attacks are performed in the same resolution, 299×299, and
images are then up- or downsampled before feeding them into the classifier. In this way,
the true input resolution of the classifier stays inside the black box and is obscured from
the attacker.

5.1.3 Evaluation procedure

As in Chapter 4, attacks must produce an adversarial example xadv for each pair
(xorig, ytarget) in the evaluation set. Attacks are allowed a maximum budget of 15000
queries per image, and success is registered as soon as an image of the target class is
produced which is close to the original image. Same as in Chapter 4, this closeness is
measured by the magnitude of the image difference:

‖η‖2 = ‖xadv − xorig‖2 < εsuccess (5.1)

The success threshold εsuccess is, again, set to 25.89. After the attack has tried to produce
200 adversarial examples for a classifier, the attack success rate and query efficiency are
calculated. Then, the following statements about robustness can be made:

• Successful attacks disprove robustness. Whenever an adversarial example is
found, the classifier is proven to be un-robust in the radius of εsuccess. In this way,
εsuccess acts as an upper bound for the true robustness of the classifier1. A high
success rate therefore disproves robustness.

• Unsuccessful attacks do not prove robustness. The opposite is not neces-
sarily true: Where one attack fails, another might succeed. While the attack is
designed to be both adaptive and efficient, it is unlikely to be optimal against all
defenses. Therefore, a low success rate is not a proof of robustness.

• Unsuccessful attacks demonstrate empirical robustness. While not a proof
of robustness, a low success rate measurement is still valuable for practical pur-
poses: If a classifier does well in the benchmark, it is shown to be more robust
against state-of-the-art black-box attacks than other classifiers.

1See Section 2.3.3 of Chapter 2 for an illustration, where the empirical bound is called εadv.
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In the real world, it is reasonable to assume that most attackers do not have ac-
cess to white-box information, unlimited queries, or extreme computational power.
Therefore, they are unlikely to craft special-purpose attacks against a single clas-
sifier or defense. Instead, they would prefer adaptive black-box attacks for their
ease of access. Any demonstration of empirical robustness to this family of attacks
is therefore valuable for real-life computer vision applications.

5.1.4 Choice of attacks

The empirical robustness of all classifiers is evaluated with the Biased Boundary Attack
introduced in Chapter 3. From the results obtained in Chapter 4, the two most promising
attack configurations are picked:

• Model-free attack: First, it is promising to evaluate robustness in the most
generic scenario, using a model-free attack without surrogates. Since surrogate
models contain information that may or may not be applicable to the classifier
under attack, relying on them always poses the risk of catastrophic failure when
confronted with a new type of classifier. For this reason, it is worth using a simple
model-free attack as a robustness ”sanity check”. These are the hyperparameters:

– Low-frequency bias: Perlin noise frequency = 32

– Mask bias: Strength = 1.0; Channels = 3 (color)

– No surrogate bias

– Initialization: Closest image of the target class

• Strongest attack: While the model-free attack should perform reasonably well, it
is also fairly conservative and does not make use of some very potent optimizations
developed in Chapter 3. To really test the limits of robustness, another attack is
performed that uses the strongest hyperparameter settings found by the evaluation
in Chapter 4:

– Low-frequency bias: Perlin noise frequency = 2N (5,2), bounded in [1, 128]

– Mask bias: Strength = 1.0; Channels = 3 (color)

– Surrogate model: ResNet-1012 3

– Surrogate weight w: 0.01

– Initialization: Synthetic (salient patches)

2Although the ensemble was found to be strongest, it also greatly reduces the speed of the attack.
Therefore, only a single surrogate is used.

3To stay consistent with the black-box setting, the surrogate must always be different from the model
under attack. Therefore, for evaluating the ResNet-101 model itself, an Inception-ResNet-v2 surro-
gate is used instead. In all other cases, ResNet-101 is used as surrogate.
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5.1.5 Software and hardware setup

All experiments are performed on a consumer-grade desktop machine with an AMD
Ryzen 1300X quad-core CPU, 16GB RAM, and an NVIDIA GeForce 1070 GPU.

For the adversarial attacks, the implementation described in Section 4.1.7 of Chapter
4 is reused (TensorFlow 1.10 and Python 3.6). However, some of the classifiers compared
in this Chapter are designed to use different machine learning frameworks (e.g. PyTorch
or JAX), which are incompatible with the evaluation environment.

An isolated environment for classifiers. For this reason, the experiments in this
Chapter utilize a client-server architecture: Both classifier (server) and adversarial attack
(client) run in separate processes and communicate via a lightweight HTTP interface.
The attacker sends a prediction request containing an image x to the classifier, which
responds with the prediction ŷ = f(x). This also mimics a typical black-box setup in the
real world, where an attacker would query a web service in order to create adversarial
examples for it.

Running all classifiers in separate processes enables the use of publicly-available ref-
erence implementations. This guarantees their correct usage and prevents any errors
possibly introduced by re-implementation.

Runtime considerations. Some of the classifiers and adversarial defenses evaluated
in this Chapter are very slow (e.g. ensembles and randomized defenses). Performing
15000 queries per image may vastly exceed the 5 minutes described in Chapter 4. For
this reason, the time limit for a single image is increased to 1 hour, which means that each
classifier must process 15000 inputs in this time (≈4 images/s). This is not unrealistic
– state-of-the-art classifiers routinely manage more than 100 images/s on the evaluation
hardware. Classifiers that do not work at all within these constraints are considered
unrealistic and excluded from the benchmark.
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5.2 Deep learning architectures

In this section, a number of popular deep learning image classifiers are evaluated. These
range from tested-and-true architectures like VGG-16 over ResNets and DenseNets to
recent models like EfficientNets and Vision Transformers, which held the record for
accuracy on ImageNet at the time of writing.

5.2.1 Selection of classifiers

The classifiers can be split into two categories. So far, CNN classifiers have mostly
been trained in a purely supervised manner. However, recent work [98, 99] has found
that higher accuracy can be achieved by using self-supervised pre-training on much larger
amounts of unlabeled data before fine-tuning the model on the final data set (ImageNet).

5.2.1.1 Trained normally

The following classifiers have been trained normally (supervised only):

• VGG-16 [88]: By today’s standards, this is a rather shallow CNN with 16 layers.
However, it came to fame after winning the ImageNet 2014 competition and is
still in use as a simple baseline for CNN classifiers. The publicly available im-
plementation and pre-trained model provided in Keras (TensorFlow 2, [97]) are
used.

• Inception-v3 [47]: Utilizing ”Inception” blocks, this CNN architecture connects
convolutional layers in a sparse manner. This reduces the number of connections
between layers and, hence, the number of parameters – allowing the addition of
many more layers at the same computational budget. This version, consisting of
48 layers, held the record on ImageNet for some time. It is also the same classifier
that was evaluated in Chapter 4. The publicly available implementation and pre-
trained model provided in TensorFlow 1 [97] are used.

• ResNet-101 [72]: The introduction of residual connections proved a breakthrough
in CNNs. Effectively, their use mitigates the vanishing gradient problem, therefore
allowing the addition of even more convolutional layers. This model uses 101
layers, but versions exist that contain more than 1000 layers. The publicly available
implementation and pre-trained model provided in TensorFlow 1 [97] are used.

• Inception-ResNet-v2 [94]: In a natural progression, this CNN classifier aims to
combine the advantages of both Inception blocks and residual connections. It has
164 layers. The publicly available implementation and pre-trained model provided
in TensorFlow 1 [97] are used.

• DenseNet-201 [100]: This CNN architecture follows the concept of residual con-
nections to its obvious conclusion: Simply connect each block to every other block.
Perhaps counter-intuitively, this can reduce the number of parameters, since the
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increased information flow allows layers to be smaller (fewer redundant convolu-
tional filters). As a result, this architecture is considered more efficient than others,
achieving high accuracy at low computational cost. This version has 201 layers.
The publicly available implementation and pre-trained model provided in Keras
(TensorFlow 2, [97]) are used.

5.2.1.2 With self-supervised pre-training

Additionally, the following classifiers were constructed with self-supervised pre-training:

• Noisy Student (EfficientNet) [98]: This CNN classifier was pre-trained in self-
supervised fashion on 300 million unlabeled images from the (unpublished) JFT-
300M data set. After this very expensive procedure, it was fine-tuned on the final
1.2 million labeled examples of ImageNet. This form of pre-training has been found
to greatly boost accuracy.

The ”noisy student” procedure augments unlabeled images with noise before dis-
tilling them multiple times in a pre-training loop. As such, it has been found to
increase the quality of learned features, leading to higher accuracy. Notably, this
procedure is not unlike the Adversarial Training defense (see Section 2.4.3.6 of
Chapter 2) and indeed, the authors claim higher robustness against adversarial
attacks. This makes the model even more interesting to evaluate.

In the benchmark, the smallest (EfficientNet-B0) and a very large (EfficientNet-
B7) model are compared. The reportedly best-performing model (EfficientNet-L2)
is even larger and cannot be evaluated since it runs very slowly on the evaluation
hardware. However, this should not be a problem as EfficientNet-B7 is reported
to possess excellent accuracy [98], which is also confirmed by this evaluation. The
publicly available TensorFlow implementation and pre-trained models provided by
the authors in [98] are used.

• Vision Transformer [99]: This classifier is remarkable in that it not only scores
state-of-the-art accuracy on ImageNet, but also that it is not a CNN. Instead, it
successfully applies Transformers to image processing – an architecture that has
recently taken the domain of Natural Language Processing by storm. It should
be interesting to see if a model that consists purely of Transformers has the same
adversarial vulnerabilities as CNN classifiers.

Same as Noisy Student EfficientNet, this classifier was pre-trained in self-supervised
fashion on the JFT-300M data set before being fine-tuned on ImageNet.

In the benchmark, both a small (ViT-B/16) and large (VIT-L/16) model are com-
pared. Again, the reportedly best-performing model (VIT-H/14) cannot be eval-
uated, since it runs extremely slowly due to its size. The publicly available JAX
implementation and pre-trained models provided by the authors in [99] are used.

All classifiers are evaluated with both the ”model-free” and the ”strong” version of the
Biased Boundary Attack, as described in Section 5.1.4. Since the strong attack derives
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gradients and synthesizes starting points from a ResNet-101 surrogate model, it cannot
fairly be performed on ResNet-101 itself. For this reason, ResNet-101 is evaluated using
an Inception-ResNet-v2 surrogate instead.

5.2.2 Results

Tables 5.1 and 5.2 show the evaluation results and Figures 5.1 and 5.2 plot success rate
against query count. It is apparent that all of the evaluated classifiers are vulnerable to
adversarial attack – including the Vision Transformer (ViT), which is not a CNN.

Models pre-trained on large amounts of data seem to enjoy a slight advantage – most of
all Noisy Student, which claims adversarial robustness. However, this advantage quickly
melts away when confronted with a stronger attack, which consistently scores over 90%
success rate against all classifiers. While Noisy Student can boast the lowest attack
success rate, 94%, this is very close to the competition and therefore a very small win.
Compare Figure 5.2, where the success line is barely below the others. It goes to show
that Noisy Student pre-training can improve robustness against weak attacks, but not
against a strong attack in this setting.

Perhaps interestingly, ViT is less impacted by the strong attack than other classifiers,
especially at low query counts. The strong attack uses gradients from a CNN surrogate
(ResNet-101) and creates starting points from salient patches that were extracted from
the same surrogate. The low attack success rate at the beginning shows that the initial-
ization method is not as effective against ViT as it is against CNNs, indicating a lower
transferability between CNNs and ViT. Still, a limited degree of transferability exists –
otherwise, the strong attack could not have cut the median number of required queries
in half.

All in all, it can be said that state-of-the-art deep learning image classifiers are not
robust against adaptive black-box attacks. More data seems to help, but the difference
is so small as to be negligible when faced with a strong attack.
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Clean Attack success rate vs query count Median
Classifier acc. 500 1000 2500 5000 10000 15000 queries

VGG-16 [88] 0.69 0.04 0.09 0.39 0.63 0.80 0.88 3451
Inception-v3 [47] 0.77 0.03 0.08 0.28 0.53 0.76 0.86 4751
ResNet-101 [72] 0.76 0.03 0.04 0.32 0.55 0.73 0.81 4297
Inception-ResNet-v2 [94] 0.79 0.04 0.10 0.29 0.52 0.74 0.82 4675
DenseNet-201 [100] 0.77 0.05 0.08 0.33 0.55 0.76 0.86 4415

Noisy Student (EfficientNet-B0) [98] 0.78 0.04 0.07 0.17 0.39 0.65 0.73 6631
Noisy Student (EfficientNet-B7) [98] 0.86 0.04 0.06 0.24 0.39 0.65 0.72 6374
Vision Transformer (ViT-B/16) [99] 0.83 0.04 0.11 0.31 0.63 0.85 0.92 3724
Vision Transformer (ViT-L/16) [99] 0.84 0.04 0.09 0.27 0.56 0.79 0.86 4549

Table 5.1: Empirical robustness of deep learning image classifiers, measured with the Biased
Boundary Attack (model-free version). Top section: trained on ImageNet in stan-
dard supervised manner. Bottom section: trained in self-supervised fashion on mul-
tiple, much larger image datasets. Even though there are large discrepancies in
accuracy on clean images, the difference in robustness is rather small. The no-
table exception to this is EfficientNet with Noisy-Student self-supervised training,
for which success rate is lower than for others, with the attack requiring a median
of 40% more queries to achieve it.

Clean Attack success rate vs query count Median
Classifier acc. 500 1000 2500 5000 10000 15000 queries

VGG-16 [88] 0.69 0.32 0.50 0.79 0.90 0.96 0.97 1016
Inception-v3 [47] 0.77 0.38 0.53 0.77 0.90 0.95 0.97 954
ResNet-101 [72] 0.76 0.37 0.53 0.76 0.89 0.93 0.94 941
Inception-ResNet-v2 [94] 0.79 0.37 0.53 0.80 0.89 0.95 0.97 866
DenseNet-201 [100] 0.77 0.33 0.48 0.75 0.90 0.97 0.98 1105

Noisy Student (EfficientNet-B0) [98] 0.78 0.24 0.39 0.65 0.82 0.91 0.94 1454
Noisy Student (EfficientNet-B7) [98] 0.86 0.23 0.43 0.66 0.80 0.90 0.94 1335
Vision Transformer (ViT-B/16) [99] 0.83 0.27 0.44 0.73 0.91 0.97 0.99 1163
Vision Transformer (ViT-L/16) [99] 0.84 0.21 0.33 0.62 0.82 0.92 0.96 1565

Table 5.2: Empirical robustness of deep learning image classifiers, measured with the Biased
Boundary Attack (strong version). All classifiers are much less robust under the
stronger attack. Although the Noisy-Student-pretrained models still boast lower
success rates, curiously, the large Vision Transformer (ViT-L/16) has the highest
median required queries. This difference may be due limited transferability of the
surrogate - after all, the Vision Transformer is the only deep learning classifier with-
out a CNN architecture.
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Figure 5.1: Attack success rate against various deep learning image classifiers, measured with
the Biased Boundary Attack (model-free version, plot of Table 5.1).

Figure 5.2: Attack success rate against various deep learning image classifiers, measured with
the Biased Boundary Attack (strong version, plot of Table 5.2).
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5.3 Classic computer vision methods

It is well known that deep neural networks are vulnerable to adversarial examples and the
previous experiment has confirmed that even state-of-the-art classifiers (ViT, 2021, [99])
are little more robust than those designed years ago (VGG-16, 2014, [88]). Adversarial
examples have led some to speculate that there might be something wrong with Deep
Learning – that deep neural networks are flawed in some mysterious and fundamental
way, and that they may even be inherently unsafe for use in the real world [101, 102].

But what could be the alternative? Before the rise of deep learning, more traditional
computer vision techniques like the SIFT feature descriptor [103] and classifiers like the
Support Vector Machine (SVM) [28] were in widespread use across various industries
[104, 105]. These were considered reasonably safe, and the phenomenon of adversarial
examples was discussed very little. Although adversarial classification was already known
at the time [59], it was considered a mere curiosity and far from a serious threat.

And why would it be one? Traditional image classification pipelines typically consist
of hand-engineered feature extractors and encoding schemes. Once an image is encoded,
it is fed to simple and well-researched classifiers such as Logistic Regression, Decision
Trees, or SVMs.

It would seem that – in such well-defined pipelines – everything is under control.
After all, descriptors such as SIFT are specifically designed to extract robust features.
And classifiers such as the SVM offer convex optimization, global minima, and large
margins – robustness by design, together with proofs and theoretical guarantees. This
is a stark contrast to Deep Learning, which offers none of these things [106]. Surely,
tested-and-true methods would be much more robust to adversarial perturbations?

This section evaluates the robustness of traditional image classification pipelines. They
are subjected to the Biased Boundary Attack, and the results are compared against a
state-of-the-art CNN classifier.

Acknowledgement of prior work : The implementations of some traditional CV meth-
ods in this section are adapted from unpublished work by Ege Özsoy4.

5.3.1 Simplifying the task: a 10-class subset of ImageNet

Unfortunately, it is not easy to evaluate classic CV methods directly on ImageNet. To
the best of this author’s knowledge, there are no pre-trained classifiers available for public
download, and the only attempts to scale traditional pipelines to ImageNet were done in
the context of the ImageNet Large Scale Visual Recognition Challenge (ILSVRC) [77].

Even so, starting in 2012 the ILSVRC became dominated by CNN classifiers, rendering
traditional CV obsolete in the context of that competition. The only reliable accounts on
classic CV for ImageNet are therefore from the winners of the 2011 and 2010 competition,
which report the extreme difficulty of scaling up their methods to 1000 classes and

4Ege Özsoy: Adversarial examples that fool classic computer vision methods. Bachelor thesis (unpub-
lished). Technical University of Munich, 2019. The author of this dissertation advised Mr. Özsoy
during the creation of his thesis.
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millions of examples [77]. Intricate fine-tuning and large computational resources were
necessary, which is out of scope for the evaluation in this thesis.

Therefore, the robustness of classic CV methods must be evaluated on a simpler
problem. Towards this end, a 10-class subset of ImageNet is created. To make sure
that targeted adversarial attacks on these classes are not trivial, they each represent
meaningfully different semantic concepts:

• Number of classes: 10

• Class labels: tench, English springer, cassette player, chain saw, church, French
horn, garbage truck, gas pump, golf ball, parachute5.

• Image resolution: 299×299, RGB color

• Total number of training images: 12894

• Total number of validation images: 500

On this simple data set, classic CV pipelines can be trained and evaluated rather
quickly. For the robustness benchmark, an evaluation set with 200 images is created
from the validation data, together with random adversarial target labels. In this way,
the benchmark setting is the same as for Deep Learning classifiers (Section 5.2), but at
a reduced scale.

5.3.2 Building ImageNet classifiers with traditional CV methods

Traditional image classification pipelines typically consist of at least two stages: feature
extraction and classification. Depending on the complexity of the extracted features, an
additional encoding stage is often added in the middle, which reduces feature density.
The resulting feature vectors are then processed with comparatively simple classifiers.

5.3.2.1 Feature extractors

The evaluation compares two popular feature extractors:

• Scale Invariant Feature Transform (SIFT) [103]: One of the most popular
feature descriptors, SIFT has been a staple in image processing pipelines for many
years. SIFT features are designed to be invariant to scaling, rotation and trans-
lation, and robust to illumination changes. SIFT identifies a variable number of
keypoints in an image and assigns a feature histogram to each, resulting in feature
vectors of 128 dimensions for each keypoint.

The implementation available in OpenCV 4.4 [108] is used with default parameters.
Since an arbitrary number of keypoints can be detected per image (often more than
100), SIFT features require further encoding to reduce their dimensionality.

5These are the same classes as used in previous work on the similar ”ImageNette” dataset [107].
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• Histogram of Oriented Gradients (HOG) [109]: Conceptually simple, but
often considered equally powerful, HOG splits an image into blocks and then stores
histograms of the image gradients for each, together with the gradient orientations.
An additional normalization step increases robustness to illumination changes.

The implementation available in Scikit-image 0.17.2 [110] is used, with 10 pixels
per block and 2 cells per block. This vector can be directly fed to a classifier
without the need for further encoding.

5.3.2.2 Encodings

For the encoding stage, two clustering schemes are considered:

• Bag of Visual Words (BoVW) [111]: Similar to the popular Bag of Words
(BoW) encoding used in natural language processing, the BoVW interprets feature
descriptors as ”visual words” and organizes them in a dictionary. Typically, this
dictionary is created by performing k-means clustering on all features extracted
from the training data set. Any image can then be expressed as a combination
of these clusters, or a histogram of visual words. The resulting representation is
sparse, making it well-suited for simple classifiers.

The implementation available in OpenCV 4.4 [108] is used with default parameters
(k-means clustering). The vocabulary size is set to 2500.

• Fisher Vector (FV) [112]: Fisher Vector encoding performs clustering with a
Gaussian Mixture Model (GMM) instead of k-means, which effectively makes it
a probabilistic version of the simpler BoVW encoding. This has the advantage
that, for each encoded example, not only the visual words are stored, but also the
example’s deviation from the cluster centers. This advanced encoding can greatly
improve accuracy and has played a pivotal role in winning submissions to ILSVRC
in 2010 and 2011 [77]. In other words, it was the state of the art on ImageNet
before the advent of Deep Learning.

The implementation available in the fishervector library [113] is used with default
parameters, the number of GMM components is set to 256. Following the example
of the ILSVRC2011 winners, Principal Component Analysis (PCA) is used to
reduce the dimensionality of SIFT features from 128 to 64 before creating the
encoding.

5.3.2.3 Classification methods

Finally, three classifiers are compared:

• Logistic Regression (LR) [114]: Possibly the simplest way to separate data
into distinct classes, LR is a linear classifier that uses the logistic function to
produce class probabilities. The class with the highest probability is picked as the
prediction.
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Figure 5.3: Max-margin classification in Support Vector Machines (SVM). Two classes (circles
and squares) are linearly separated with a hyperplane. (Left): There exist many
ways to perform classification with perfect accuracy, but not all of them have a large
margin. (Right): A linear SVM picks the hyperplane that maximizes the distance
(margin) between data points of different classes. This margin directly corresponds
to εadv, the adversarial robustness. Figures taken from Garcia et al. [30].

Interestingly enough, this simple classifier is also employed in the last layer of most
CNN architectures6.

The implementation available in Scikit-learn 0.23.2 [115] is used, along with default
parameters (multinomial regression for multi-class prediction).

• Support Vector Machine (SVM) [28]: In its linear form, the Support Vector
Machine is very similar to LR. However, being motivated from a geometrical per-
spective, it does not produce probabilities but a hyperplane that separates data
points of different classes by the maximum possible margin (See Figure 5.3). Being
a linear classifier, LR also produces such a hyperplane, but without the margin.

The SVM can also produce highly nonlinear decision boundaries by applying the
kernel trick. However, kernel SVMs are known to scale badly with the number of
data points, which makes them unsuited for large-scale classification tasks. Conse-
quently, traditional CV pipelines for ImageNet have focused on linear SVMs (see
results of the ILSVRC challenge 2010 and 2011 [77]).

The LinearSVC module available in Scikit-learn 0.23.2 [115] is used. The regular-
ization weight C is set to 3, which was found to produce the highest accuracy. The
SVM is used in one-vs-all mode to enable multiclass predictions.

• Decision Trees with AdaBoost (AB) [116]: Last but not least, a decision
tree classifier is evaluated. A single decision tree is typically not enough for ac-
curate image classification, but multiple trees can be combined into an ensemble

6CNNs employ multiple convolutional layers, followed by a single fully-connected layer that outputs
the classification result. Being a linear softmax classifier, this last layer performs the same function
as multinomial logistic regression. In essence, CNNs follow the same recipe as successful classic CV
pipelines: Combine powerful feature extractors (convolutional layers) with a simple classifier (LR).
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by boosting. The popular AdaBoost algorithm increases accuracy and promotes
diversity by training additional trees specifically on examples where previous trees
did badly. In this way, it adaptively increases the size of the ensemble to match
challenging data.

The implementation available in Scikit-learn 0.23.2 [115] is used, along with de-
fault parameters (maximum number of trees = 50). This implementation natively
supports multi-class prediction.

5.3.2.4 Comparison to CNNs

Since the classic CV pipelines are now evaluated on a much simpler task (smaller data
set), they cannot be directly compared to the results on Deep Learning classifiers in
Section 5.2. For this reason, an additional Inception-v3 CNN classifier is trained on
the same 10-class ImageNet subset and added to the evaluation. This allows a relative
comparison between classic and CNN methods.

The model uses the Inception-v3 architecture, replacing only the final layer with a
10-way classifier (instead of the original 1000). The network is randomly initialized and
trained for 50 epochs on the 10-class ImageNet subset. The Adam optimizer is used with
a minibatch size of 32, a learning rate of 0.001, and exponential decay (0.95 per epoch).

No data augmentation or hyperparameter search is used. This makes the setup very
simple and comparable to the classic CV pipelines, which have not been extensively
fine-tuned either.

5.3.3 Results

This Section first compares the accuracy of the various classification pipelines on clean
data and then evaluates their robustness with the Biased Boundary Attack. Finally, the
results are put into perspective with regard to modern CNN image classifiers.

5.3.3.1 Accuracy

Figure 5.4 plots the classification accuracy (top-1) of the various combinations. Most
pipelines struggle to reach 50%. The strongest is SIFT+PCA+FV+SVM (55%), which
is also the configuration most similar to the winning submission in the ILSVRC 2011
competition [77]. Even though the numbers could surely be improved by fine-tuning,
this shows that the choice of traditional CV techniques is fairly representative.

The boosted decision tree ensemble classifier (AdaBoost) has the lowest accuracy,
never achieving more than 36%. For comparison, a random choice would yield 10%7.

The CNN reaches 91%, which is significantly higher than the classic methods. This
is to be expected but still impressive, considering no data augmentation or other fine-
tuning was used for training.

7Random choice corresponds to 10% accuracy on the 10-class subset of ImageNet, but 0.1% on the
1000-class full data set.
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Figure 5.4: Classification accuracy of traditional computer vision pipelines, compared with a
CNN classifier. Even the strongest combination, SIFT+PCA+FV+SVM, does not
surpass 55%, while the CNN classifier reaches 91%. All are evaluated on a 10-class
subset of ImageNet, a task that is significantly easier than classification on the full
ImageNet data set.

English Cassette Chain French Garbage Gas Golf
(all) Tench springer player saw Church horn truck pump ball Parachute

SIFT+BoVW+LR 0.44 0.32 0.66 0.42 0.10 0.16 0.68 0.42 0.56 0.50 0.62
SIFT+BoVW+SVM 0.49 0.48 0.66 0.46 0.30 0.28 0.66 0.40 0.52 0.58 0.56
SIFT+BoVW+AB 0.30 0.38 0.44 0.20 0.02 0.06 0.42 0.28 0.38 0.38 0.40
SIFT+PCA+FV+LR 0.43 0.26 0.68 0.38 0.00 0.08 0.74 0.44 0.58 0.56 0.62
SIFT+PCA+FV+SVM 0.55 0.40 0.84 0.63 0.32 0.22 0.66 0.62 0.58 0.68 0.58
SIFT+PCA+FV+AB 0.34 0.26 0.40 0.38 0.08 0.12 0.38 0.36 0.44 0.44 0.50
HOG+LR 0.50 0.60 0.50 0.66 0.32 0.50 0.34 0.62 0.48 0.34 0.62
HOG+SVM 0.43 0.36 0.34 0.68 0.18 0.42 0.30 0.58 0.48 0.36 0.64
HOG+AB 0.36 0.60 0.30 0.58 0.06 0.32 0.16 0.56 0.36 0.06 0.60

Inception-v3 0.91 0.92 1.00 0.94 0.80 0.90 0.92 0.94 0.86 0.82 0.96

Table 5.3: Accuracy for each class of the evaluation data set. Accuracies below 20% are marked
in red. It is apparent that most of the traditional CV classifiers have near-zero
accuracy for ”chain saw” and ”church”. An attack with these classes as adversarial
target would be pointless. To allow a meaningful comparison, adversarial attacks in
the benchmark target the 8 remaining classes exclusively.
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Excluding underperforming classes. The overall accuracy of some classifiers is
low, which could endanger the validity of the robustness evaluation. After all, if a model
gives mostly wrong answers, what point is there in being robust? Since there are only
10 classes in the data set, it is possible to investigate the models more in detail and plot
their accuracy per class.

See Table 5.3: It is apparent that several of the traditional CV pipelines have near-
zero accuracy for classes ”chain saw” and ”church”. Indeed, if a model fails to correctly
classify even a single real example, then it would be trivial to make this model robust
to targeted adversarial examples (with that specific class as ytarget) as well. Further
evaluation would then be pointless.

To remedy the issue and level the playing field, the problematic classes ”chain saw”
and ”church” are excluded from the target labels of the evaluation data set. As a result,
adversarial attacks are limited to the 8 remaining labels.

5.3.3.2 Adversarial robustness

Tables 5.4 and 5.5 show the evaluation results, while Figures 5.5 and 5.5 plot success
rate against query count.

Classic CV pipelines are vulnerable to adversarial attack. For all combi-
nations, adversarial examples could be found, with success rates ranging between 76-
100%. Even the simple model-free attack was successful for 76% of the evaluation im-
ages against the most robust combination (SIFT+PCA+FV+LR). This demonstrates
that traditional CV image classifiers are not significantly more robust than Deep Learn-
ing methods. It is true that most of the classic CV configurations demonstrate slightly
higher robustness than the CNN. However, this small increase is not enough to defend
against the attack and comes at the cost of much lower accuracy.

Adversarial features can transfer from CNNs to classic CV. The strong attack
greatly reduces the number of queries needed for success when compared to the model-
free attack. Although the difference is not as drastic as for the Deep Learning classifiers
evaluated in Section 5.2, the strong attack still succeeds in cutting the number of queries
in half even for most classic CV models. It does so by using gradients (for the surrogate
bias) and saliency masks (for initialization) extracted from a CNN surrogate model,
providing evidence that some degree of transferability between CNNs and traditional
image classifiers exists.

Robust combinations. Combinations of SIFT and LR seem to be more robust than
the rest. While even the model-free attack routinely reaches >90% success on other
classifiers, SIFT+BoVW+LR admits only a 76% success rate. Even with the stronger
attack, the success rate increases only to 80%. This seems peculiar, especially since LR
is not robust at all when combined with HOG. At the same time, HOG+AB reaches
similar levels of robustness, while AB performs badly with SIFT.

Classic CV methods do not offer automatic robustness by design and they must be
combined in very specific ways to obtain it. In any case, even the most robust classifier
in this benchmark could still be attacked with 80% success rate, which makes these
robustness gains incremental at best.
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Clean Attack success rate vs query count Median
Classifier acc. 500 1000 2500 5000 10000 15000 queries

SIFT+BoVW+LR 0.44 0.06 0.21 0.50 0.62 0.77 0.79 2507
SIFT+BoVW+SVM 0.49 0.06 0.19 0.52 0.75 0.89 0.95 2442
SIFT+BoVW+AB 0.30 0.08 0.33 0.71 0.82 0.86 0.90 1525
SIFT+PCA+FV+LR 0.43 0.08 0.19 0.46 0.61 0.70 0.76 3002
SIFT+PCA+FV+SVM 0.55 0.10 0.19 0.51 0.72 0.88 0.94 2188
SIFT+PCA+FV+AB 0.34 0.08 0.26 0.79 0.94 0.97 0.99 1407
HOG+LR 0.50 0.15 0.37 0.83 0.96 0.99 0.99 1309
HOG+SVM 0.43 0.21 0.43 0.85 0.99 1.00 1.00 1157
HOG+AB 0.36 0.14 0.24 0.48 0.64 0.81 0.87 2655

Inception-v3 (CNN) 0.91 0.09 0.49 0.87 0.97 0.99 1.00 1037

Table 5.4: Empirical robustness of traditional image classification pipelines, measured with
the Biased Boundary Attack (model-free version). Combinations of SIFT and LR
are the most robust, while the CNN is the least robust. Interestingly, the most
(SIFT+PCA+FV+LR) and least (HOG+SVM) robust pipelines have the same ac-
curacy.

Clean Attack success rate vs query count Median
Classifier acc. 500 1000 2500 5000 10000 15000 queries

SIFT+BoVW+LR 0.44 0.28 0.46 0.61 0.72 0.80 0.82 1356
SIFT+BoVW+SVM 0.49 0.30 0.46 0.69 0.86 0.94 0.97 1189
SIFT+BoVW+AB 0.30 0.47 0.71 0.91 0.96 0.96 0.97 531
SIFT+PCA+FV+LR 0.43 0.26 0.40 0.58 0.67 0.77 0.80 1578
SIFT+PCA+FV+SVM 0.55 0.29 0.46 0.65 0.81 0.93 0.93 1302
SIFT+PCA+FV+AB 0.34 0.48 0.64 0.92 0.97 0.98 0.98 579
HOG+LR 0.50 0.36 0.53 0.76 0.91 0.96 0.97 876
HOG+SVM 0.43 0.37 0.59 0.83 0.96 0.98 0.99 719
HOG+AB 0.36 0.31 0.44 0.58 0.72 0.83 0.88 1490

Inception-v3 (CNN) 0.91 0.41 0.74 0.97 1.00 1.00 1.00 610

Table 5.5: Empirical robustness of traditional image classification pipelines, measured with the
Biased Boundary Attack (strong version). Even though the attack relies on a CNN
surrogate model, it is still effective against non-CNN classifiers, cutting the number
of required queries roughly in half. Again, a combination of SIFT and LR is the
most robust, with the least robust being combinations of SIFT and AdaBoost. Still,
even against the most robust classifier, the attack succeeds for 80% of the evalu-
ation images and requires only a median of 1578 queries. This shows that classic
CV pipelines are very vulnerable to adversarial examples, offering only a marginal
improvement in robustness over the much more accurate CNN.
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Figure 5.5: Attack success rate against various traditional computer vision pipelines, measured
with the Biased Boundary Attack (model-free version, plot of Table 5.4).

Figure 5.6: Attack success rate against various traditional computer vision pipelines, measured
with the Biased Boundary Attack (strong version, plot of Table 5.5).
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# classes Clean Attack success rate vs query count Median
Classifier train eval acc. 500 1000 2500 5000 10000 15000 queries

SIFT+PCA+FV+LR 10 10 0.43 0.08 0.19 0.46 0.61 0.70 0.76 3002

Inception-v3 (1) 10 10 0.91 0.09 0.49 0.87 0.97 0.99 1.00 1037
Inception-v3 (2) 1000 10 0.99 0.07 0.22 0.66 0.90 0.97 1.00 1841
Inception-v3 (3) 1000 10+990 0.80 0.01 0.02 0.17 0.43 0.71 0.85 5987

Table 5.6: CNNs can leverage additional data to increase accuracy and robustness. (1): An
Inception-v3 classifier, trained with data from 10 classes, with 10 outputs – the same
as in Table 5.4. (2): Trained with the full ImageNet data set (1000 classes); the 1000
outputs are rounded to the 10 evaluation classes. (3): Trained with the full ImageNet
data set (1000 classes); the 1000 outputs are not rounded. Since the evaluation data
set contains only 10 classes, any prediction of the remaining 990 is automatically
invalid. With this information, it is trivial to convert a large pre-trained model into
an anomaly detector that increases robustness. This is easy to perform for CNNs,
which scale readily to large amounts of data. The same cannot be said for traditional
CV methods, where models of that size are known to underperform while being very
difficult to create [77]. At the time of writing, no 1000-class traditional CV model
could be freely obtained for ImageNet.

# classes Clean Attack success rate vs query count Median
Classifier train eval acc. 500 1000 2500 5000 10000 15000 queries

SIFT+PCA+FV+LR 10 10 0.43 0.26 0.40 0.58 0.67 0.77 0.80 1578

Inception-v3 (1) 10 10 0.91 0.41 0.74 0.97 1.00 1.00 1.00 610
Inception-v3 (2) 1000 10 0.99 0.31 0.56 0.87 0.97 1.00 1.00 834
Inception-v3 (3) 1000 10+990 0.80 0.26 0.38 0.73 0.88 0.96 0.99 1421

Table 5.7: The same experiment, evaluated against the stronger attack. It is apparent that the
attack is more efficient against the CNNs than against the combination of SIFT and
LR. However, the additional data still allows the CNN in (3) to achieve comparable
levels of robustness while retaining much higher accuracy.

5.3.3.3 A second look at CNNs: Increasing robustness with more data

How to interpret these results? Classic CV methods seem slightly more robust than
Deep Learning methods, so could they be a promising alternative?

First and foremost, the traditional CV classifiers have significantly worse accuracy
than the CNN. A drop from 91% (CNN) to 43% (the most robust classic model) cannot
be justified by small gains in robustness (most attacks are still successful).

But there is another advantage to Deep Learning methods: They can easily be im-
proved by adding more data. The same cannot be said for traditional CV pipelines,
which have so far struggled to scale to ImageNet dimensions [77] and beyond. At the
time of writing, no full ImageNet model was publicly available to the best of the author’s
knowledge.

Repurposing a 1000-class model. For CNNs, it is trivial to extend the training
set from 10 to 1000 classes and use the full ImageNet data set. Such classifiers are easily
trained on consumer-grade hardware, and a wealth of them is publicly available. In an

105



5 Benchmarking the robustness of image classifiers

additional experiment, an Inception-v3 CNN is trained on all 1000 classes but evaluated
only on the 10-class subset. As Tables 5.6 and 5.7 show, this results in large gains of
both accuracy and robustness:

• Increasing accuracy: It is trivial to take a 1000-class model and remove the 990
class outputs that are not in the evaluation data. As a result, the predicted class
is then the arg max of the remaining 10. This has a rounding effect that increases
accuracy on those 10 classes (from 91% to 99%). Notably, the robustness of this
model is also slightly higher than that of the naively-trained CNN.

• Increasing robustness: As a variation, it is also possible to not remove the 990
outputs and instead treat them as ”anomalous” classes – turning the 1000-class
model into an anomaly detector on 10 classes without additional cost. Naturally,
with only 10 of 1000 classes being valid, the space of adversarial inputs becomes
substantially smaller. This increases the difficulty of attack, more than doubling
the median number of required queries.

The results obtained in this Section indicate that traditional CV classifiers are slightly
more robust than CNNs under empirical evaluation. However, similar robustness can be
achieved in CNNs by adding more data – which is easy for Deep Learning methods, but
not for classic approaches. Additionally, CNNs still vastly outperform classic methods
in terms of accuracy. It may be worth pursuing traditional CV techniques on low-
dimensional tasks for which very little data is available, but in the domain of large-scale
image classification, Deep Learning firmly remains the state of the art.
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5.4 Defenses against adversarial attack

So far, all of the evaluated classifiers have been shown vulnerable. However, none of
these models were specifically designed to resist adversarial attacks – as such, it may be
slightly unfair to conduct powerful attacks against undefended classifiers. There exists
a large body of literature on how to make classifiers more robust, and this study would
not be complete without a thorough comparison of such defenses.

5.4.1 Selecting suitable methods

As described in Section 2.4.3 of Chapter 2, adversarial defenses can be divided into six
categories: Gradient obfuscation, ensembling, randomization, anomaly detection, pre-
processing and adversarial training. As gradient obfuscation is irrelevant in the black-box
label-only setting, only the remaining five are considered. For each category, at least
one recently proposed defense is picked and evaluated in the same setting as the Deep
Learning classifiers of Section 5.2 (full ImageNet, 1000 classes).

Availability of reference implementations. With the exception of ensembling,
the code provided by the original authors of each defense is used. Since many methods
are sensitive to hyperparameter choices, this is necessary to make sure all approaches
are correctly implemented.

Unfortunately, this also limits the choice of defenses: Many proposed methods – even
recent works – focus on much simpler data sets such as CIFAR10 and do not provide
reference implementations for ImageNet. Many of these approaches do not scale well
[117, 118, 82] and therefore cannot be performed for ImageNet, whose dimensionality is
several orders of magnitude higher (268,203 vs 3,072). Therefore, this study can only
evaluate defenses for which source code and hyperparameters on ImageNet have been
made available.

Runtime considerations. Some defenses, especially those based on randomization
and anomaly detection, have very high computational cost. Random Transforms [81],
in their original implementation, require each input to be processed 16 times before
classification. Some detectors based on statistical tests [119] even sample the same
image over 1000 times. Naturally, such approaches are infeasible to evaluate and, surely,
will have to be considerably sped up to be suitable for real-world applications.

5.4.2 Description of defenses

Defenses from the following five categories are compared:

5.4.2.1 Ensembling

Ensembling of models has been known as a promising strategy for increasing robustness
[17]. In a first and simple experiment, an ensemble of previously evaluated classifiers is
formed:
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• Majority vote of classifiers. It is straightforward to choose a few pre-trained
classifiers that are known to perform well and combine them into an ensemble.
Here, the ensemble is limited to three classifiers: Inception-v3, ResNet-101, and
Inception-ResNet-v2. The models each process the same input image and then
conduct a majority vote on the predicted class. The winner is chosen randomly in
case of a tie.

Note: Against this model, the strong attack is modified to use DenseNet-201 as
surrogate instead of ResNet-101 (which would violate the black box assumption).

5.4.2.2 Randomization

Another popular scheme is to randomly perturb inputs before feeding them to the clas-
sifier. As is customary for stochastic defenses, multiple perturbed images are generated
and the classification result is then averaged. This effectively emulates a randomized en-
semble of classifiers. For the experiment, one of the most simple yet powerful approaches
is considered:

• Random Transforms [81]: With this method, Xie et al. achieved second place in
defenses in the NeurIPS 2017 Adversarial Vision Challenge. They make 16 copies
of an input image, apply random upscaling and translation to the copies and then
feed them to the classifier before averaging the result.

Notably, in their winning submission to the competition, they used this random-
ization in combination with an ensemble of strong adversarially-trained models.
While evidently effective, this is problematic since it is not clear whether the ro-
bustness increase stems from randomization, ensembling, or adversarial training.
To observe the effects separately, this experiment applies random transforms only
to an otherwise undefended Inception-v3 model. In this way, it can be seen whether
random transforms alone have a significant effect on robustness.

The reference implementation provided by Xie et al. is used. Since this method
is extremely slow, the number of copies is reduced to 8 and these are passed to
a simple Inception-v3 classifier. The classification result is obtained by averaging
the logits.

5.4.2.3 Anomaly detection

While a good number of approaches of detection-based approaches have been proposed
recently, most of them are only available for much simpler data sets such as CIFAR10
[82, 120] and therefore cannot be included in the benchmark.

Others rely on excessive amounts of computational power, collecting statistics on the
input space in the vicinity of an input to determine if it could be adversarial. For
example, the popular detector called ”The Odds Are Odd” [119] evaluates each image
more than 1000 times. This would be far too slow. At the same time, reducing the
number of samples to an acceptable level (e.g. 8) would likely render this type of detector
ineffective.
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This severely limits the choice of anomaly detectors on ImageNet. However, there is
one method that claims robustness on ImageNet, provides a reference implementation
and is reasonably fast to evaluate:

• ”Turning a Weakness Into a Strength” (TWIS) [121]: In their paper, Hu et
al. describe a combination of multiple criteria to detect adversarial examples: (1)
They perturb the input with random noise. According to them, this is likely to
flip the label of adversarial examples, allowing for their easy detection. (2) They
also perform a multi-step PGD attack on every input to detect whether the input
is close to the decision boundary of other classes.

The second criterion is expensive to evaluate – however, the authors claim that
the first criterion is enough to reliably detect black-box attacks8. Therefore, this
anomaly detector can be evaluated cheaply using only criterion (1).

The implementation provided by the original authors is used and applied to an
Inception-v3 classifier.

Anomaly detectors are typically used for selective classification, i.e. they refuse service
when an adversarial example is detected. It is easy to model a positive detection result as
an additional output or class label ydetected: Whenever the attack is detected, the detector
returns this additional label instead of the classifier’s prediction. For the targeted attack,
ydetected is then simply another label to avoid while trying to achieve the adversarial label
ytarget.

5.4.2.4 Pre-processing

Broadly speaking, pre-processing defenses work by applying a filter function to the input
image. This filter is designed to remove the adversarial perturbation or, at least, diminish
its effect. The pre-processed image is then fed to the classifier. In the evaluation, three
notable pre-processing approaches are compared:

• JPEG filter [122, 83]: JPEG is a lossy image compression technique. An image
that is compressed using JPEG and then decompressed again cannot be completely
reconstructed and is often missing small, barely perceptible details. Recent work
has found that this can also apply to adversarial perturbations [122] – therefore,
pre-processing an image with JPEG is thought to be a simple but powerful defense.

Following the implementation by Guo et al. [83], images are compressed with a
JPEG quality setting of 75 and decompressed again before feeding them to an
Inception-v3 classifier.

• Median filter [17]: In the NeurIPS 2017 Adversarial Vision Challenge, the team
that achieved 4th place in the defense track claimed that their success was based
on median filtering.

8Specifically, they claim this for what they name gray-box attacks – these are subsumed by black-box
attacks in our setting.
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Specifically, Berdibekov et al. applied a median filter to images before feeding them
to an ensemble of adversarially-trained classifiers. It is known that adversarial
training and ensembling are strong defenses on their own [34], so it is unclear if
the filter contributed much to the final result.

Based on the authors’ description in the competition report [17], images are pre-
processed with a 3x3 median filter. Afterward, they are fed to a standard Inception-
v3 classifier so the effect of the filter can be observed in isolation.

• U-net denoiser [84]: With this method, Liao et al. achieved first place in the
defense track of the NeurIPS 2017 competition. Their approach is to pre-process
images with a convolutional U-net denoiser. Similar to a denoising autoencoder,
this network compresses the image and then reconstructs it without the adversarial
perturbation.

To be able to do so, the denoiser must be trained on adversarial examples. Liao et
al. report training their winning model on a large number of perturbations created
with PGD-style attacks.

In their reference implementation, Liao et al. provide a pre-trained denoiser for
the Inception-v3 classifier. This model can be evaluated without any modification.

5.4.2.5 Adversarial Training

Adversarial Training aims to achieve robustness by adding adversarial examples to the
training data. In this way, the model can be trained to become robust to worst-case
perturbations. However, this process is far from simple as adversarial perturbations can
take many forms and shapes.

The standard formula of Adversarial Training is to create a large number of adversarial
examples using the very fast FGM method on the model that is being trained [33].
However, in practice, this leads to overfitting on a weak attack in a specific threat
setting. While Adversarial Training has a powerful theoretical motivation, the devil is
– as always – in the details.

The evaluation compares four implementations of Adversarial Training:

• Ensemble Adversarial Training [34]: This is one of the earliest works that
claims improved black-box robustness on ImageNet. Specifically, Tramèr et al.
deviate from the standard formula and create adversarial examples not for the
model being trained, but for an ensemble of different classifiers. Since this is
exactly the method employed by black-box transfer attacks, it would help train
a model to be robust against them. This leads the authors to claim improved
robustness in a black-box threat setting.

The authors provide an adversarially-trained version of Inception-ResNet-v2, which
is used in the evaluation.

• Feature Denoising Adversarial Training [123]: Guided by the observation
that adversarial perturbations are amplified by each layer of a neural network
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until they become large enough to change the model’s output, Xie et al. propose
to apply denoising operations not to the input image, but to the features found at
various locations in the network.

They claim that this strategy greatly enhances adversarially-trained classifiers.
Consequently, they provide only adversarially-trained models in their reference
implementation, making it difficult to separate the idea of Feature Denoising from
Adversarial Training.

The authors provide an adversarially-trained ResNet-152 classifier with added de-
noising blocks. This combination is used in the evaluation.

• Large-scale Adversarial Training [123]: Xie et al. also provide a baseline with-
out Feature Denoising, an adversarially-trained but otherwise unmodified ResNet-
152.

This classifier is interesting on its own since Xie et al. perform Adversarial Training
on a very large scale: They generate perturbations with a 30-step PGD attack,
which is very expensive as it increases the amount of computation needed for
training by roughly a factor of 30. They report training for 52 hours on 128
NVIDIA V100 GPUs, which amounts to almost an entire year on a single GPU.

It should be interesting to see how well this classifier performs on its own (without
Feature Denoising) and if it is more robust than Ensemble Adversarial Training,
which utilizes a faster but weaker attack.

The adversarially-trained ResNet-152 classifier provided by Xie et al. is used.

• Local Linearity Regularization (LLR) [124]: Strictly speaking, this approach
does not directly perform Adversarial Training but employs a regularization scheme
that aims to achieve the same effect.

Specifically, Qin et al. find that Adversarial Training with strong attacks reduces
the curvature of the adversarial loss function, causing its surface to become lo-
cally linear around training examples. Capitalizing on this insight, they propose a
regularizer that enforces local linearity during training.

Similar to Adversarial Training, this additional loss term requires multiple inner
optimization steps. However, the LLR term can be calculated much quicker than a
strong adversarial example. According to the authors, LLR regularization achieves
competitive robustness while offering a 5x speedup over large-scale Adversarial
Training.

The authors provide a pre-trained ResNet-152 classifier, which is used in the eval-
uation.

5.4.3 Evaluation setting

All methods are evaluated in the same manner as undefended classifiers (Section 5.2).
The Biased Boundary Attack is applied to all defenses, trying to generate adversarial
examples for the 200 images in the evaluation set.
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Since some of the attacks are very slow to evaluate (e.g. randomization and ensem-
bling), only a single experiment is performed using the strong attack configuration (see
Section 5.1.4).

As before, the surrogate model is a standard ResNet-101, which is replaced by Inception-
ResNet-v2 for the Feature Denoising, large-scale AT and LLR defenses. This is done to
prevent the usage of a surrogate that might be too similar to the classifier inside the
black box.

5.4.4 Results

Table 5.8 shows the evaluation results and Figure 5.7 plots success rate against query
count.

• Majority voting ensemble: This method offers a small but noticeable robust-
ness increase (success rate reduces to 87% from 94-97% ), at the cost of tripled
computational cost during inference. Notably, this is method has the highest ac-
curacy on non-adversarial images.

• Random transforms: This defense seems to work well against the Biased Bound-
ary Attack, reducing the success rate from 97% to 53%. However, it comes at the
cost of eight-fold computational cost at inference time.

• TWIS detector: The detector appears to have no effect. Clearly, the assumption
of being able to detect black-box adversarial examples only by proximity to the
decision boundary does not hold against an adaptive attack. Even worse, the
detector reduces accuracy on clean images by false positives.

• JPEG filter: This image filter offers a moderate improvement in robustness,
reducing attack success rate to 71%. This is somewhat surprising, given that
JPEG is largely a low-pass filter. Perhaps an even lower frequency in the low-
frequency bias might be more effective against this defense. In any case, JPEG
filtering seems reasonably effective at negligible cost.

• Median filter: This image filter seems to be ineffective. Quite possibly, it may
be circumvented by the low-frequency bias. In any case, the success of the orig-
inal implementation in the NeurIPS 2017 competition may be due to the use of
Adversarial Training, but not due to median filtering as claimed.

• U-net denoiser: This pre-processor slightly improves robustness (87% vs 97%
success rate) but does not have the effect that might be expected from the winner
of the NeurIPS 2017 competition. Since the denoiser was trained on PGD-style
attacks, it has likely overfitted to that particular style of perturbation. Quite pos-
sibly, it might be circumvented by the low-frequency bias. This demonstrates yet
again that it is very difficult to ”learn” the appearance of adversarial perturbations
and that any defense that tries to do so suffers from overfitting.

112



5.4 Defenses against adversarial attack

Base Clean Attack success rate vs query count Median
Defense Type classifier acc. 500 1000 2500 5000 10000 15000 queries

(none) - Iv3 0.77 0.38 0.53 0.77 0.90 0.95 0.97 954
(none) - RN101 0.76 0.37 0.53 0.76 0.89 0.93 0.94 941
(none) - IRNv2 0.79 0.37 0.53 0.80 0.89 0.95 0.97 866

Majority voting ensemble ENS (the 3 above) 0.79 0.34 0.45 0.58 0.69 0.82 0.87 1597
Random transforms [81] RND Iv3 0.78 0.29 0.33 0.39 0.44 0.49 0.53 11291
TWIS detector [121] DET Iv3 0.75 0.35 0.51 0.74 0.89 0.94 0.97 951
JPEG filter [122, 83] PRE Iv3 0.74 0.35 0.41 0.51 0.61 0.69 0.71 1986
Median filter [17] PRE Iv3 0.74 0.33 0.46 0.68 0.85 0.93 0.96 1263
U-net denoiser [84] PRE Iv3 0.76 0.30 0.41 0.61 0.72 0.81 0.88 1493
Ensemble AT [34] AT IRNv2 0.78 0.37 0.48 0.68 0.84 0.90 0.93 1139
Large scale AT [123] AT RN152 0.55 0.12 0.14 0.26 0.34 0.41 0.45 ≈22857
Feature Denoising AT [123] AT RN152 0.59 0.12 0.17 0.27 0.34 0.43 0.46 ≈22500
LLR regularization [124] AT RN152 0.66 0.15 0.19 0.32 0.43 0.47 0.52 13028

Table 5.8: Empirical robustness of various proposed defense methods, measured with the Bi-
ased Boundary Attack (strong version). While a good number of defenses seem to
be completely ineffective in the attack setting, both Random Transforms and Ad-
versarial Training seem to significantly increase robustness. Although adversarial
attack is still successful for 45% of the evaluation images, these techniques seem to
hold the most potential.

Figure 5.7: Attack success rate against various defense methods, measured with the Biased
Boundary Attack (strong version, plot of Table 5.8). While adversarially-trained
classifiers are the most robust overall, they also seem to be much less vulnerable to
the initialization method (starting points synthesized from salient patches). This is
demonstrated by the much lower success rate early on – the other defenses merely
succeed at slowing down the attack by various degrees.
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• Ensemble AT: Perhaps surprisingly, this implementation of Adversarial Training
seems to have little effect (93% vs 97%). Although it was considered the state of
the art for some time, this model was trained only on very fast and weak FGM
attacks transferred from unrelated models. Apparently, it has strongly overfitted
on this kind of attack and is defenseless against other, adaptive, methods.

• Large-scale AT: This is the strongest defense in the evaluation, reducing the
success rate to 45%. Clearly, large-scale AT demonstrates that training on strong
multi-step attacks (PGD) is much more effective and also generalizes well to other,
possibly unknown, attack methods. However, the accuracy on clean examples
suffers greatly, being reduced to 55%.

• Feature Denoising AT: Interestingly, this model performs almost identically to
large-scale AT. Apparently, Feature Denoising does not work against an adaptive
attacker, while AT itself does. Again, it seems that the learned denoising operations
suffer from overfitting to the noise they were trained on. However, the accuracy
on clean examples does seem to benefit slightly (59%).

• LLR regularization: While slightly less robust than large-scale AT (52% success
rate), this method has higher accuracy on clean images (66%). Considering that
LLR is much cheaper at training time than large-scale AT, this approach seems
very promising for future development.

5.4.5 Suitability of defenses for real-world application

The evaluation has shown that some defenses can significantly improve the robust-
ness of a classifier. However, they each have their drawbacks which may prevent their
widespread adoption in real-world applications.

Consider Table 5.9: The strongest defense, large-scale Adversarial Training, requires
an immense computational budget during training. It causes a significant drop in accu-
racy, which likely needs to be addressed before this method can enter into widespread
use. At the same time, ”weaker” methods of Adversarial Training (Ensemble AT) do
not increase robustness enough to be of interest.

Random transforms and ensembles can offer significant robustness without requiring
additional training. However, they increase the computational cost during inference –
requiring a single image to be processed at least 8 times in the case of Random trans-
forms. This makes these defenses unwieldy for real-world use – such a high computational
budget could instead be used to run larger and more accurate models.

Interestingly enough, the simple JPEG filter seems to offer an attractive cost-benefit
ratio. It offers a small but noticeable gain in robustness while incurring no cost at
training time and very little at inference time. While this robustness is indeed limited,
it could be added to almost any computer vision system in a simple and straightforward
manner.

Another method that might be suited for the real world is LLR: It offers comparable
robustness to large-scale AT at a much lower training cost. The drop in accuracy is

114



5.4 Defenses against adversarial attack

Defense Training cost Inference cost Accuracy Robustness

Majority vote ensemble ++ (free) – – ++ +
Random Transforms ++ – – – (expensive) + ++
TWIS detector ++ – – – – –
JPEG filter ++ + – +
Median filter ++ + – – – –
U-net denoiser – – + +
Ensemble AT – ++ (free) + –
Large scale AT – – – (expensive) ++ – – – +++
Feature Denoising AT – – – ++ – – – +++
LLR regularization – ++ – – ++

Table 5.9: Comparison of the positive ( + ) and negative ( – ) aspects of defense methods. While
Adversarial Training approaches offer strong robustness, they are very expensive to
train. However, once trained, they do not incur additional cost at inference time.
This stands in contrast to Random Trainsforms and Ensembles, which do not require
additional training, but are expensive at inference time.

also less pronounced. This makes it a very promising direction for future research into
adversarial robustness.

All things considered, such research will definitely be required. In this evaluation, no
defense managed to reduce attack success rate below 45% – the Biased Boundary Attack
was still successful in almost half of the cases. This is certainly worrying and shows how
far even the best defenses are from truly preventing adversarial examples.

115



5 Benchmarking the robustness of image classifiers

5.5 Real-world commercial services

So far, no classifiers and no defenses have been found to be entirely robust against ad-
versarial examples. It is only natural to assume that real-world applications of computer
vision also share the same vulnerabilities.

While any system that uses computer vision could be attacked in theory, realistic
evaluations can prove difficult and expensive. For example, in the attack on Tesla
Autopilot, it was necessary to reverse engineer several system components before gaining
reliable access to the prediction output [26]. While the attack was ultimately successful,
such an investigation is beyond the scope of this work. Instead, this Section focuses
on another type of real-world application that is both widely used and well-suited for
adaptive adversarial attacks: commercial image classification in the cloud.

Services such as Amazon Rekognition or Google Cloud Vision are very popular and
often used by third parties that outsource their own computer vision needs. In some
cases, even law enforcement authorities have been known to directly use these services
[125]. At the same time, the providers offer direct access to their APIs for only a
moderate fee (roughly 1 US dollar per 1000 queries). This makes them perfectly suited
for adaptive black-box attacks such as the one developed in this work.

5.5.1 Setup

While the attack developed in this work is reasonably query-efficient, it is not possible
to evaluate the entire set of 200 images. After all, 200 images for 15000 queries would
result in 3 million queries, costing several thousand US dollars. While this is much less
than the cost incurred in prior work [42], it is still a considerable amount and therefore
considered out of scope for this work.

Also, the exact class labels used by commercial providers are not known to the attacker.
Depending on the classifier, it might be impossible to force the prediction of a specific
label in the evaluation data set. In other words, a targeted attack might not have the
desired effect against all classifiers. For this reason, only a single adversarial example is
constructed that demonstrates the dangers of adversarial attack:

Making pedestrians disappear. An image containing pedestrians is manipulated
so that the classifier does not see them anymore. While not a classic targeted attack, this
setup is equally challenging, since it is not enough to remove the class label ”pedestrians”
from the list of predictions – all related concepts must be removed as well9. A random
ImageNet image from the class ”bald eagle” is chosen as starting point as it satisfies this
condition.

Some of the APIs evaluated in this Section are rather slow, taking up to a second for
a single prediction. For this reason, the number of queries is limited to 3000, making
sure that no experiment takes more than an hour.

9The image is considered adversarial if none of these concepts are in the list of predictions: Pedestrians,
people, person, human, woman, man, girl, boy, adult, child, walking, couple, crowd, group, head,
face, legs, running, walking, clothing, footwear, apparel.
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5.5.2 Microsoft Azure

The first classifier to be evaluated is the image tagging API provided by Microsoft Azure
Cognitive Services10. It accepts an image and returns a number of tags with confidence
scores – in other words, a list of top-k predictions.

Figure 5.8 shows the result, evaluated on the Microsoft website. (Top): The API
reports a multitude of concepts that are related to humans. For the adversarial criterion
to be fulfilled, none of these tags must appear in the prediction list. (Bottom): After
3000 iterations of the Biased Boundary Attack, the pedestrians have become effectively
invisible to the computer vision service. At the same time, the perturbation is barely
noticeable - a successful adversarial attack.

Figure 5.8: Making pedestrians disappear for Microsoft Azure. (Top): Original image. The
list of predictions contains ”person”, ”footwear”, ”clothing”, ”woman”, ”people”,
”legs”, ”girl”. (Bottom): Adversarial example, obtained after 3000 queries with
the Biased Boundary Attack. All labels that hint at pedestrians are gone from the
prediction list.

Note on reproducibility : This experiment was performed in February 2021. It is likely
that all cloud service providers regularly update their classifiers, which may cause this
particular adversarial example to lose its effect in the future. In that case, the attack
can be run again to produce a new image.

10Available at https://azure.microsoft.com/en-us/services/cognitive-services/computer-vision/
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5.5.3 Amazon Rekognition

Next, the same attack is attempted on Amazon AWS, using the Rekognition API11.
Figure 5.9 shows the result, evaluated on the AWS console website: Although the per-
turbation is not completely invisible after 3000 queries, it is nevertheless effective at
fooling the classifier into ignoring the humans. Interestingly, the API seems to regard
the colorful perturbation as features of a painting, completely disregarding any humans
that might be present regardless.

Figure 5.9: Making pedestrians disappear for Amazon Rekognition. (Top): Original image.
The list of predictions contains ”pedestrian”, ”person” and ”human”. (Bottom):
Adversarial example, obtained after 3000 queries with the Biased Boundary Attack.
All labels that hint at pedestrians are gone from the prediction list. Although the
perturbation is visible to the human eye, it still causes the service to completely
disregard the humans present in the picture.

Note on reproducibility : This experiment was performed in February 2021. It is likely
that all cloud service providers regularly update their classifiers, which may cause this
particular adversarial example to lose its effect in the future. In that case, the attack
can be run again to produce a new image.

11Available at https://aws.amazon.com/rekognition/
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5.5 Real-world commercial services

5.5.4 Clarifai

The attack is also performed on the Clarifai Image Recognition API12. Figure 5.10 shows
a screenshot from the Clarifai website: The API fails to recognize the humans in the
adversarially manipulated image.

In contrast to other services, Clarifai reports features related to birds (bird, zoo,
animal), which are likely remnants from the starting image (bald eagle). In this way,
the perturbation has a curious side effect: It removes humans and adds birds.

Figure 5.10: Making pedestrians disappear for Clarifai. (Left): Original image. The list of
predictions contains ”people”, ”adult”, ”woman”, ”man”. (Right): Adversarial
example, obtained after 3000 queries with the Biased Boundary Attack. All labels
hinting at humans are gone (this includes additional labels further down in the
list).

Note on reproducibility : This experiment was performed in February 2021. It is likely
that all cloud service providers regularly update their classifiers, which may cause this
particular adversarial example to lose its effect in the future. In that case, the attack
can be run again to produce a new image.

12Available at https://www.clarifai.com/models/general-image-recognition
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5.5.5 Google Cloud Vision

Finally, the attack is also successful against the Google Cloud Vision API13:

Figure 5.11: Making pedestrians disappear on Google Cloud Vision. (Left): Original image.
The list of predictions contains ”pedestrian”. (Right): Adversarial example, ob-
tained after 1000 queries with the Biased Boundary Attack. Perhaps interestingly,
the label ”pedestrian” was replaced by ”fun”. Images taken from [126].

Possible conflict of interest : The author of this thesis took up a position with Alphabet
in 2020 and was therefore affiliated with Google at the time of writing. To prevent any
conflict of interest, Figure 5.11 cites an older version of this experiment, which was
published separately in 2019 [126]. The author had no knowledge of Google’s systems
at that time.

Note on reproducibility : This experiment was conducted in January 2019. It used an
older version of the Biased Boundary Attack and performed only 1000 queries. Also,
Google Cloud Vision has likely undergone significant changes since that time. Therefore,
this result cannot be directly compared to the other services.

5.6 Summary

The experiments in this Chapter have shown that virtually all image classifiers are
vulnerable to adversarial examples in the evaluation setting. This includes not only
state-of-the-art deep learning methods, but also traditional computer vision pipelines.

While there exist some defense methods that show promise, most fail completely
against an adaptive attacker. But even the best defenses come with their own crippling
weaknesses: The strongest methods reduce accuracy and drastically increase either train-
ing or inference cost.

Consequently, real-world commercial providers may be reluctant to adopt any sort of
defense mechanism at all. The last experiment appears to support this: It is not diffi-
cult to create adversarial examples that cause potentially dangerous failures in popular
commercial services.

13Available at https://cloud.google.com/vision
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6 Conclusion

This chapter summarizes the main results of the thesis. Based on them, a number of
recommendations for improving the robustness of real-world image processing systems
are given. Finally, limitations of this work are discussed and promising directions for
future work are identified.

6.1 Adversarial robustness is not easily achieved

The evaluations in this thesis have shown that all investigated classifiers are vulnerable
to adversarial examples. The measured robustness of deep learning classifiers is not
significantly impacted by architecture. Some traditional computer vision pipelines are
found to be slightly more robust than others, but not enough to defend against a strong
attack. Many defense approaches exist, but most offer only a marginal increase in
robustness – if at all.

These findings are in line with prior works [16, 127] that have obtained similar results
in carefully controlled white-box settings. It is worth noting that these studies were
more of a theoretical nature since an attacker is unlikely to have white-box access in the
real world. Going one step further, the results presented in this thesis confirm that the
same vulnerabilities can easily be exploited in a more realistic black-box scenario. Even
more, the efficient adaptive attack developed in Chapter 3 requires almost no knowledge
about the defender and can be performed with only a minimal investment of time and
computational resources.

6.2 Recommendations for real-world systems

These results indicate that adversarial attacks may be a realistic threat for any image
processing system that admits a moderate amount of queries. This includes popular
cloud-based services, such as those provided by Microsoft, Amazon, Clarifai and Google
– the experiments in Section 5.5 of Chapter 5 have shown that these systems can currently
be fooled in just 3000 queries. Therefore, it is reasonable to assume that, at the time of
writing, they did not utilize very strong defenses if at all.

Judging from the results obtained in Chapter 5, it is possible to make the following
recommendations:

• No reason to avoid deep learning. Adversarial examples are sometimes de-
scribed as a problem introduced by and inherent to deep learning [101, 102]. How-
ever, the results in Section 5.3 of Chapter 5 provide evidence to the contrary:
Traditional computer vision classifiers have similar vulnerabilities and are just as
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easily exploited, while at the same time offering much lower accuracy. Therefore
it is more promising to focus on deep learning and try to improve its robustness
further.

• Ensembling is useful, but expensive at inference time. Randomization and
ensembling offer tangible robustness benefits at little accuracy loss but are very
expensive at inference time. As such, any hardware that performs inference must
be scaled accordingly (often 8-fold and beyond). This is an investment that may
often be prohibitive but still warranted in some cases.

• Adversarial training is useful, but expensive at training time. Large-
scale adversarial training has yielded the highest increase in robustness. It incurs
no additional cost at inference time but does so during training. However, this
approach may still scale well for large services – a model needs to be trained
only once and can then be distributed and applied on many devices and for many
customers.

Adversarial training also struggles with accuracy. Addressing this, new develop-
ments such as the LLR regularizer seem very promising.

• Low-hanging fruit should be used where possible. The experiments in
Section 5.4 of Chapter 5 have shown that some simple defenses like JPEG filtering
can offer a small robustness increase at near-zero cost. Such defenses are easy
to implement and could benefit almost any image processing system, even if that
benefit is not very large.

6.3 Limitations and future work

This thesis has investigated black-box adversarial attacks against individual classifiers
and defense mechanisms in a query-limited setting. Looking forward, this scenario could
be extended in a number of ways:

• Stronger alignment with human perception. All attacks considered in this
study minimize the `2-distance between xadv and xorig. As outlined in Section
2.3 of Chapter 2, this only aligns with human perception when the distance is
very low. However, this limits the choice of perturbations. For example, attackers
may consider adversarial patches that are clearly visible but still fool humans
[90] or perform spatial transformations that are known to reduce classification
performance [128]. It is likely that attacks could be made even more effective by
relaxing the `p constraint.

• Combination of defenses. It is reasonable to expect that a combination of
strong defenses would be even more robust. This has been seen in open competi-
tions, where the strongest submissions combined randomization and filtering with
ensembles of adversarially-trained models [17].
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• Intrusion detection. The threat setting of this work has assumed that a defender
will admit thousands of queries in short succession. However, attacks such as the
one developed in Chapter 3 could easily be registered by a stateful detection system,
as an attacker typically submits an unusual amount of images that are only slight
variations of each other. See Chen et al. [129] for an early exploration of this topic.

Such intrusion detection systems could be a promising defense for real-world ap-
plications. In turn, attacks may try to circumvent them by creating fewer but
stronger perturbations. This is a more general issue of computer security that
is not specific to adversarial examples – it should be interesting to explore this
connection further.

6.4 Summary of contributions

This thesis has studied the robustness of image classifiers against adaptive black-box
adversarial attacks. In summary, the following contributions were made:

• A novel method for generating black-box adversarial examples was proposed that
is both reliable and efficient. This Biased Boundary Attack can be performed on
virtually any classifier and gains efficiency by incorporating prior knowledge about
the problem domain. Three such sources of knowledge were discussed: image
frequency, regional masking, and surrogate models.

• The attack method was experimentally evaluated and an ablation study of hyper-
parameters was performed. When compared with previous work, it was found that
the Biased Boundary Attack significantly outperformed existing black-box attacks.

• The attack method was submitted to the NeurIPS 2018 Adversarial Vision Chal-
lenge, an open competition of adversarial attacks and defenses, where it won second
place in the targeted attack track. This further underscores its performance.

• The attack method was used to perform a comprehensive evaluation of the ro-
bustness of deep learning architectures, showing that all known architectures are
similarly vulnerable to adversarial examples.

• It was shown that traditional computer vision pipelines are also vulnerable in the
evaluation setting. A select few configurations were found to be marginally more
robust than deep learning architectures, however not enough to repel adversarial
attacks in the majority of cases.

• A number of recently proposed defense mechanisms were evaluated. It was found
that most of them do not offer significant robustness against adaptive attacks.
Only two approaches, adversarial training and randomized ensembling, were found
to be effective. Still, the attack was able to fool even the strongest defense in 45%
of cases.
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6 Conclusion

• Finally, it was demonstrated that real-world commercial image processing services
from Microsoft, Amazon, Clarifai and Google can also be attacked quickly and
effectively.

This work has shown that adaptive black-box attacks are powerful tools for evaluating
the adversarial robustness of image classifiers. They also pose a potential threat for
real-world systems as they can be performed quickly, without much knowledge of the
system under attack, and do not require a significant amount of computational resources.
Therefore, it is important that future image processing systems are tested against them.
Adaptive black-box attacks may soon become commonplace in the wild – they should
form an integral part of any serious analysis of adversarial robustness in the future.
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[34] Florian Tramèr, Alexey Kurakin, Nicolas Papernot, Ian Goodfellow, Dan Boneh,
and Patrick McDaniel. Ensemble adversarial training: Attacks and defenses. In
International Conference on Learning Representations, ICLR, 2018.

[35] Ross B. Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. Rich feature
hierarchies for accurate object detection and semantic segmentation. In IEEE
Conference on Computer Vision and Pattern Recognition, CVPR, pages 580–587.
IEEE, 2014.
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A Listing of evaluation images

As described in Section 4.1.2 of Chapter 4, all attacks are evaluated on a data set that is
formed by pseudo-randomly selecting 200 images from the ImageNet validation set. This
Appendix lists all image IDs, together with their ground truth and adversarial target
labels.

# ImageNet validation set ID Correct class label (ygt) Adversarial class label (ytarget)
1 11841 chime (494) ocarina (684)
2 19602 papillon (157) folding chair (559)
3 45519 goose (99) lipstick (629)
4 25747 tow truck (864) cairn (192)
5 42642 toilet tissue (999) sundial (835)
6 31902 ladybug (301) revolver (763)
7 30346 steel arch bridge (821) pay-phone (707)
8 12363 Scotch terrier (199) black-footed ferret (359)
9 32490 crib (520) ostrich (9)

10 26128 balance beam (416) pinwheel (723)
11 14227 cardigan (474) red fox (277)
12 26376 tank (847) radio (754)
13 44173 violin (889) soap dispenser (804)
14 12968 spatula (813) honeycomb (599)
15 32104 car mirror (475) harvestman (70)
16 17844 cockroach (314) canoe (472)
17 43460 notebook (681) hook (600)
18 8369 vestment (887) lionfish (396)
19 15055 long-horned beetle (303) cockroach (314)
20 6338 bittern (133) passenger car (705)
21 15301 confectionery (509) cello (486)
22 46250 coucal (91) face powder (551)
23 45580 water ouzel (20) African grey (87)
24 24647 cannon (471) Norwegian elkhound (174)
25 46712 loupe (633) hook (600)
26 4150 black and gold garden spider (72) teapot (849)
27 42460 cannon (471) nail (677)
28 29079 bullet train (466) dogsled (537)
29 19412 coral fungus (991) syringe (845)
30 34839 mud turtle (35) black and gold garden spider (72)
31 34478 buckle (464) scabbard (777)
32 16956 bathing cap (433) web site (916)
33 29342 manhole cover (640) sea slug (115)
34 26351 Model T (661) promontory (976)
35 271 bannister (421) radio telescope (755)
36 24189 otter (360) pencil box (709)
37 1399 gong (577) tank (847)
38 5140 overskirt (689) bassinet (431)
39 12649 reflex camera (759) birdhouse (448)
40 19883 toucan (96) teddy (850)
41 36238 pole (733) goose (99)
42 34129 brown bear (294) rapeseed (984)
43 39915 piggy bank (719) Scottish deerhound (177)
44 39723 ptarmigan (81) radio telescope (755)
45 7346 planetarium (727) sleeping bag (797)
46 8346 magpie (18) mixing bowl (659)
47 38676 lawn mower (621) grey whale (147)
48 21388 keeshond (261) wooden spoon (910)
49 2838 dough (961) barber chair (423)
50 48141 bee eater (92) leopard (288)
51 1984 fiddler crab (120) dough (961)
52 22320 sea slug (115) toy poodle (265)
53 1083 jay (17) pajama (697)
54 30641 Blenheim spaniel (156) maillot (639)
55 27739 scuba diver (983) Dutch oven (544)
56 4622 keeshond (261) dumbbell (543)
57 30351 tree frog (31) pick (714)
58 40136 Model T (661) Tibetan mastiff (244)
59 28428 papillon (157) Chihuahua (151)
60 45494 Greater Swiss Mountain dog (238) moving van (675)
61 7187 titi (380) container ship (510)
62 10204 binoculars (447) brassiere (459)
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A Listing of evaluation images

63 26750 abacus (398) vacuum (882)
64 44715 bloodhound (163) Kerry blue terrier (183)
65 42944 yurt (915) spotted salamander (28)
66 21015 English springer (217) snowmobile (802)
67 33753 bow (456) black stork (128)
68 913 tile roof (858) black stork (128)
69 45359 perfume (711) pretzel (932)
70 33325 mortar (666) ringneck snake (53)
71 16670 pop bottle (737) whiskey jug (901)
72 7496 Lhasa (204) espresso maker (550)
73 49735 butcher shop (467) chain (488)
74 2123 fig (952) rain barrel (756)
75 39717 bagel (931) dingo (273)
76 12167 mashed potato (935) fox squirrel (335)
77 32266 African chameleon (47) giant panda (388)
78 28900 Mexican hairless (268) lab coat (617)
79 16788 pill bottle (720) agama (42)
80 16537 goldfinch (11) bell cote (442)
81 37875 sulphur butterfly (325) dumbbell (543)
82 10632 wombat (106) viaduct (888)
83 12186 albatross (146) Great Pyrenees (257)
84 32712 mouse (673) admiral (321)
85 2329 Great Dane (246) toilet tissue (999)
86 4937 briard (226) broccoli (937)
87 46058 wombat (106) garter snake (57)
88 46458 water bottle (898) lion (291)
89 9406 coral fungus (991) tricycle (870)
90 23165 butcher shop (467) rock crab (119)
91 42025 little blue heron (131) school bus (779)
92 28518 mongoose (298) basketball (430)
93 43515 miniature poodle (266) ruffed grouse (82)
94 15009 gibbon (368) coucal (91)
95 24457 rhinoceros beetle (306) washbasin (896)
96 7229 box turtle (37) abacus (398)
97 33733 alligator lizard (44) jigsaw puzzle (611)
98 10998 brambling (10) freight car (565)
99 13443 pinwheel (723) wing (908)

100 43682 shovel (792) loupe (633)
101 30014 jean (608) cauliflower (938)
102 41806 printer (742) peacock (84)
103 31462 balloon (417) West Highland white terrier (203)
104 27468 piggy bank (719) cabbage butterfly (324)
105 37803 basset (161) sandal (774)
106 45114 water tower (900) potpie (964)
107 25041 sax (776) African chameleon (47)
108 29179 sandal (774) maillot (639)
109 47356 ski mask (796) little blue heron (131)
110 4006 carton (478) cliff (972)
111 38324 lemon (951) tray (868)
112 47427 poncho (735) American Staffordshire terrier (180)
113 46960 water tower (900) table lamp (846)
114 48059 sundial (835) oystercatcher (143)
115 39118 notebook (681) mobile home (660)
116 41256 stupa (832) kelpie (227)
117 28556 acorn (988) banana (954)
118 20056 maillot (639) shopping cart (791)
119 21100 car mirror (475) piggy bank (719)
120 30695 redbone (168) wok (909)
121 30995 harp (594) macaque (373)
122 3336 siamang (369) thatch (853)
123 5665 hair slide (584) football helmet (560)
124 28316 tarantula (76) dung beetle (305)
125 12359 megalith (649) grille (581)
126 44501 guillotine (583) borzoi (169)
127 28716 coil (506) moving van (675)
128 27316 radio telescope (755) birdhouse (448)
129 41791 hamster (333) jacamar (95)
130 38553 otterhound (175) giant schnauzer (197)
131 32942 limpkin (135) iron (606)
132 6101 cleaver (499) Newfoundland (256)
133 36811 chickadee (19) upright (881)
134 22326 cheetah (293) oxcart (690)
135 46474 street sign (919) tiger (292)
136 29590 Italian greyhound (171) French loaf (930)
137 43079 bolete (997) spindle (816)
138 5944 chambered nautilus (117) toilet seat (861)
139 7107 water buffalo (346) lesser panda (387)
140 20114 tick (78) jersey (610)
141 29473 safety pin (772) fireboat (554)
142 30098 mushroom (947) coral reef (973)
143 49646 scoreboard (781) gibbon (368)
144 22468 loggerhead (33) toilet tissue (999)
145 44302 barrel (427) comic book (917)
146 13919 passenger car (705) silky terrier (201)
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147 31275 feather boa (552) Madagascar cat (383)
148 14991 gasmask (570) corkscrew (512)
149 36373 street sign (919) Windsor tie (906)
150 4130 velvet (885) guenon (370)
151 5093 garbage truck (569) fire engine (555)
152 16406 crib (520) banana (954)
153 49529 hotdog (934) Madagascar cat (383)
154 37287 oystercatcher (143) vulture (23)
155 4775 Ibizan hound (173) panpipe (699)
156 47529 chain (488) flamingo (130)
157 12542 paddlewheel (694) marmoset (377)
158 44970 Cardigan (264) red-breasted merganser (98)
159 37492 space heater (811) golf ball (574)
160 19139 pole (733) bagel (931)
161 4727 cardoon (946) police van (734)
162 15843 switch (844) spiny lobster (123)
163 30943 slot (800) pizza (963)
164 12367 knot (616) harp (594)
165 5920 mushroom (947) butternut squash (942)
166 31572 grasshopper (311) potter’s wheel (739)
167 37764 hermit crab (125) killer whale (148)
168 25744 snowplow (803) Chesapeake Bay retriever (209)
169 44605 daisy (985) fountain (562)
170 34708 parking meter (704) apron (411)
171 37787 bannister (421) screen (782)
172 10551 red fox (277) whiptail (41)
173 34194 thresher (856) water snake (58)
174 5435 strainer (828) passenger car (705)
175 37603 cash machine (480) terrapin (36)
176 35259 Dandie Dinmont (194) scale (778)
177 3985 hourglass (604) partridge (86)
178 18564 harmonica (593) frilled lizard (43)
179 20447 microwave (651) tripod (872)
180 8157 violin (889) goldfinch (11)
181 32696 barbell (422) running shoe (770)
182 22887 Arctic fox (279) weevil (307)
183 41603 shower cap (793) black grouse (80)
184 34464 dalmatian (251) tailed frog (32)
185 20208 hard disc (592) Border terrier (182)
186 22466 cello (486) black stork (128)
187 6716 common iguana (39) sock (806)
188 6776 sundial (835) African hunting dog (275)
189 13858 maillot (638) Norwegian elkhound (174)
190 42172 sea urchin (328) fireboat (554)
191 48563 snowmobile (802) patas (371)
192 44596 viaduct (888) Irish terrier (184)
193 42281 gondola (576) bicycle-built-for-two (444)
194 3598 steam locomotive (820) chain (488)
195 44275 hen (8) hand blower (589)
196 26312 Norfolk terrier (185) cougar (286)
197 41520 leopard (288) grey fox (280)
198 29952 remote control (761) mailbox (637)
199 12468 espresso (967) running shoe (770)
200 3234 can opener (473) cowboy hat (515)

Table A.1: The evaluation data set used in Chapters 4 and 5.

139



B NeurIPS 2018 Adversarial Vision
Challenge

When evaluating adversarial attacks and defenses, it is hard to obtain meaningful results.
Very often, attacks are tested against weak defenses and vice versa, and results are
cherry-picked. To sidestep this issue, an implementation of the efficient attack developed
in this work was submitted to the NeurIPS 2018 Adversarial Vision Challenge (AVC)
[18], where it was pitted against state-of-the-art robust models and defenses and won
second place in the targeted attack track.

Details of the implementation have been described in the competition report [18], as
well as in a separate publication on the Biased Boundary Attack [126] that was done as
part of this work. This Appendix contains a summary of these results.

Evaluation setting. The AVC was an open competition between image classifiers
and adversarial attacks in an iterative black-box decision-based setting. Participants
could choose between three tracks:

• Robust model: The submitted code is a robust image classifier. The goal is to
maximize the `2 norm of any successful adversarial perturbation.

• Untargeted attack: The submitted code must find a perturbation that changes
classifier output, while minimizing the `2 distance to the original image.

• Targeted attack: Same as above, but the classification must be changed to a specific
label.

For several months, attacks were continuously evaluated against the most robust mod-
els and vice versa. Each evaluation consisted of 200 images with a resolution of 64x64 –
a task not unlike, but less complex than the evaluation in Chapters 4 and 5 – and the
attacker was allowed to query the model 1000 times for each image. The final attack
score was then determined by the median `2 norm of the perturbation over all 200 images
and top-5 models (lower is better).

Competitors. Seeing as more than 60 teams competed in the challenge, it is rea-
sonable to assume that the top-5 robust models largely depicted the state of the art
in adversarial robustness. Most winning models used variations of adversarial training
in combination with ensembling, while other types of defenses such as denoisers were
notably absent. On the attack side, most winners employed PGD transfer attacks with
surrogate ensembles.

Dataset. Classifiers were trained on the Tiny ImageNet dataset, which is a down-
scaled version of the ImageNet classification dataset, limited to 200 classes with 500
images each. Model input consisted of color images with 64x64 pixels, with the output
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B.1 Random guessing with low frequency

Distribution Median `2

Normal 11.15
Perlin noise 4.28

Table B.1: Random guessing attack with
low frequency (untargeted),
evaluated against the top-5 ro-
bust models in the AVC.

Boundary Attack Bias Median `2

None 20.2
LF 15.1
LF + Surrogate gradients 9.5

Table B.2: Biases for the Boundary
Attack (targeted), evaluated
against the top-5 robust
models in the AVC.

being one of 200 class labels. The evaluation was conducted on a secret hold-out set of
images, which was not contained in the original dataset and was unknown to participants
of the challenge.

B.1 Random guessing with low frequency

Before implementing the biased Boundary Attack, a simple experiment was conducted
to demonstrate the effectiveness of Perlin noise patterns against typical defenses. Specif-
ically, a random-guessing attack was entered into the competition, sampling candidates
uniformly from the surface of a `2-hypersphere with radius ε around the original image:

r ∼ N (0, 1)k; xadv = xorig + ε · r

‖r‖2
(B.1)

With a total budget of 1000 queries to the model for each image, binary search was
used to find the lowest radius ε at which an adversarial example can be found. Since
this naive approach might struggle in a targeted setting, the experiment was limited
to the untargeted attack track, where the probability of randomly sampling any of 199
adversarial labels is reasonably high.

Next, the distribution was replaced with normalized Perlin noise (see Chapter 3 for
notation):

r ∼ Perlin64,64(v); xadv = xorig + ε · r

‖r‖2
(B.2)

The Perlin frequency was set to 5 for all attacks on Tiny ImageNet. As Table B.1
shows, Perlin patterns were more efficient and the attack found adversarial perturbations
with much lower distance (63% reduction). Although intended as a dummy submission
to the competition, this attack was already strong enough for a top-10 placement in the
untargeted track.

B.2 Biased Boundary Attack

Next, the Biased Boundary Attack was evaluated in its intended setting, the targeted
attack track in the AVC. To provide a point of reference, first the original Boundary
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B NeurIPS 2018 Adversarial Vision Challenge
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Starting image d`2 = 9.4 d`2 = 7.5 d`2 = 4.4

Figure B.1: Adversarial examples generated with different biases in the targeted attack sub-
mission to the AVC. All images were obtained after 1000 queries. The isolated
perturbation is shown below each adversarial example.

Attack was implemented without biases. The attack worked, but was too inefficient
to beat the competition. Compare Figure B.1, where the starting point is still clearly
visible after 1000 iterations (in the unbiased case).

Low-frequency bias. As before, the distribution from which the attack samples
the orthogonal step was replaced with Perlin patterns. Table B.2 shows that this alone
decreased the median `2 distance by 25%.

Surrogate gradient bias. Next, projected gradients from a surrogate model were
added. The bias strength w was set to 0.5. This further reduced the median `2 distance
by another 37%, or a total of 53% when compared with the original Boundary Attack.
Consider Figure B.1: 1000 iterations were enough to make the butterfly almost invisible
to the human eye.

Interestingly, the attack worked well even though w was much higher than in the
ImageNet evaluation in Chapter 4. During the competition there was not enough time
to perform extensive ablations on hyperparameters – it is possible that a lower w would
have yielded an even better result. Alternatively, transferability might have been better
for Tiny ImageNet, which is a significantly easier task than ImageNet.

The submission to the AVC used an ensemble of ResNet-18 and ResNet-50 models,
both of which were pre-trained baselines in the competition. While this may count as a
strong surrogate, it was significantly weaker than the ones used by other winning AVC
attack submissions, most of which much larger ensembles of carefully-trained models
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[18]. Nevertheless, the Biased Boundary Attack outperformed most of them, yielding
further evidence that it can exploit surrogate models more effectively than direct transfer
attacks.

Mask Bias. The submission to the AVC did not use the mask bias, which was still
in early development at that time. Judging from the results in Chapter 4, it could have
further boosted the attack for an even better result.
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