
DEPARTMENT OF INFORMATICS
TECHNISCHE UNIVERSITÄT MÜNCHEN

Bachelor’s Thesis in Informatics

Development of the Bayesian Recurrent
Neural Network Architectures for

Hydrological Time Series Forecasting

Jonas Fill

DEPARTMENT OF INFORMATICS
TECHNISCHE UNIVERSITÄT MÜNCHEN

Bachelor’s Thesis in Informatics

Development of the Bayesian Recurrent
Neural Network Architectures for

Hydrological Time Series Forecasting

Entwicklung Bayesscher Rekurrenter
Neuronaler Netz-Architekturen für
zeitfolgenbasierte Prognosen in der

Hydrologie

Author: Jonas Fill
Supervisor: Hans-Joachim Bungartz, Univ.-Prof. Dr.
Advisor: Ivana Jovanovic Buha, M.Sc. (hons)
Submission Date: 15 July 2021

I confirm that this bachelor’s thesis is my own work and I have documented all sources
and material used.

Munich, 15 July 2021 Jonas Fill

Acknowledgments

First of all, I would like to thank my advisor Ivana Jovanovic Buha, M.Sc. (hons),
who not only suggested this promising topic to me, but also patiently advised and
motivated me throughout my programming and writing. Overall, it has not only been
a bachelor’s thesis for me, but a great opportunity to gain experience in the field of
deep learning for hydrology. Special thanks also go to my family and friends who
supported and encouraged me throughout the process.

Abstract

In the field of rainfall-runoff modeling, one is interested in high quality predictions of
future discharge given past meteorological data (forcings). Most operational models in
this field are process-based. Rainfall-runoff modeling has also been modeled as a time
series forecasting task to be solved with neural networks. Several approaches based on
Long Short-Term Memory (LSTM) networks have already shown that these networks
achieve a performance similar to well-established process-based-models. However,
most data-driven approaches in the field focus on producing single predictions and do
not provide uncertainty bands. In operational hydrological models, uncertainty bands
give information about the certainty or uncertainty of the model. This is important for
decision making. Therefore, we supplement the existing approaches by quantifying
the uncertainty. In addition to plain values, we provide ranges where the discharge
values are expected to be found. Our estimates capture both aleatoric and epistemic
uncertainty and are based on bayesian neural networks; more precisely, the used algorithm
is named Bayes by Backprop (through time). Experiments were carried out with the freely
available CAMELS-US-dataset, which includes meteorological data and discharge
values for 671 catchments across the US. An additional dataset that captures only one
catchment, the Regen catchment in Germany, was used. Using the CAMELS-US-dataset
we tackled a rainfall-runoff-task, i.e. predicted the runoff, whereas the Regen dataset
led to a task where we predicted the streamflow. Results showed that bayesian neural
networks are capable of achieving accuracy comparable to state-of-the-art-methods
for data-driven approaches in hydrology. Moreover, they can produce uncertainty
estimates that capture the capability of the model in a more expressive way than plain
predictions. Therefore, bayesian neural networks can be seen as an eligible data-driven
alternative for rainfall-runoff-modeling.

iv

Contents

Acknowledgments iii

Abstract iv

1 Introduction 1

2 Deep Learning Fundamentals 4
2.1 Introduction to Neural Networks . 4
2.2 Forward propagation, Backpropagation and Optimization 7
2.3 Training and evaluation of a neural network 10

3 Recurrent Neural Networks and LSTM Networks 12
3.1 Introduction to Recurrent Neural Networks 12
3.2 LSTM (Long Short-Term Memory) Networks 14

3.2.1 Forget gate layer . 15
3.2.2 Input gate layer(s) . 15
3.2.3 Output gate layer . 16

3.3 Structure of predictions obtained by Recurrent Neural Networks 16

4 LSTM networks for hydrology 18
4.1 Introduction to streamflow and discharge prediction 18
4.2 Connection to time series forecasting . 19
4.3 Model used in this thesis . 19

4.3.1 Many-to-one . 20
4.3.2 Single shot . 21
4.3.3 Many-to-many . 22
4.3.4 Models that use discharge as input measure 22

5 Bayesian Deep Learning 24
5.1 Probabilistic modeling . 24
5.2 Frequentist and Bayesian statistics . 27
5.3 Bayesian probabilistic models . 28
5.4 A technique to realize bayesian neural networks – Bayes By Backprop . 30

v

Contents

5.5 Bayes By Backprop Through Time . 33
5.5.1 Definition and relation to the given thesis 33
5.5.2 Posterior sharpening . 34

5.6 Evaluating a Bayesian Neural Network 34

6 Methodology 36
6.1 Datasets . 36

6.1.1 The CAMELS-US dataset . 36
6.1.2 The Regen catchment . 37

6.2 Summary of applied methods . 37
6.3 Data split for CAMELS-US . 38
6.4 Fundamental implementation . 39
6.5 Extensions for predicting multiple time steps 41

6.5.1 Extension for the single-shot-model 41
6.5.2 Extension for the many-to-many-model 42

6.6 Extensions for discharge as input measurement 43
6.7 Hyperparameter tuning . 44

6.7.1 Investigation of different prior setting and weight initializations 45
6.7.2 Investigation of different batch sizes, learning rates, and LSTM-sizes 45
6.7.3 Addition of a yearly periodic signal 46
6.7.4 Investigation of optimal length of prediction phase 46

6.8 Evaluation of the final architecture . 46
6.8.1 Evaluation on the CAMELS-US-dataset 46
6.8.2 Evaluation on the Regen catchment 47
6.8.3 Performance metrics . 47

7 Results 53
7.1 Hyperparameter tuning . 53

7.1.1 Investigation of different prior setting and weight initialization . 53
7.1.2 Investigation of different batch sizes, learning rates, LSTM-network-

sizes and optimizer . 54
7.1.3 Addition of a yearly periodic signal 54
7.1.4 Investigation of different numbers of samples 55
7.1.5 Comparison between single-shot- and many-to-many-based models 55

7.2 Final evaluation for CAMELS-US . 56
7.2.1 Many-to-one-model . 56
7.2.2 Many-to-many-model with discharge 58
7.2.3 Many-to-many-model . 59

7.3 Experiments on the Regen catchment . 60

vi

Contents

8 Conclusion and Outlook 66

9 Appendix A - LSTM networks for hydrology 68

10 Appendix B - Hydrographs 71

11 Appendix C - Histograms with probability distributions 75

List of Figures 78

List of Tables 80

Bibliography 81

vii

1 Introduction

Hydrology is one of the fields where in the course of increasing computational possibil-
ities, data-driven methods like neural networks have attracted attention in recent years
(Gauch et al. 2020). A family of hydrologic models that are also increasingly realized
with data-driven methods are the so-called rainfall-runoff models. In their essence, these
models take meteorological forcings (like precipitation) as inputs and provide predic-
tions for runoff as outputs. Runoff (also referred to as discharge) is a hydrologic concept
that refers to the amount of water that flows inside or between basins. This flow can
happen on the surface, near the surface or through the groundwater. Typically, runoff
is expressed in millimeters during a fixed time period. For an intuitive explanation,
one could imagine the outflowing water being equally distributed over the region of
interest and taking the hypothetical depth of this evenly distributed water (Gauch et al.
2020). In addition, the term discharge can also refer to a related, but different concept:
streamflow. Streamflow is the amount of water that flows through the cross-section at a
point along a river (Gauch et al. 2020). As water involved in runoff always contributes
to a stream, runoff and streamflow can be seen as different ways to describe the same
phenomenon; therefore, rainfall-runoff models can also be used to predict streamflow.

Traditionally, rainfall-runoff-models have been mainly process-based. Thus, they
focus on representing a simplified version of the underlying natural processes that
transform rainfall to runoff. Examples for such processes are evaporation from the
surface or soil infiltration (Ludwig et al. 2006, Gauch et al. 2020). These methods
require extensive knowledge of underlying physical laws and are commonly based
on elaborated mathematical models. Data-driven approaches like neural network
are considered a promising alternative to these models as they do not require a
preliminary definition of physical laws. Instead, they aim to "learn" the laws by
themselves. Several works have already been done in this field (Frederik Kratzert
et al. 2018, Frederik Kratzert et al. 2019, Gauch et al. 2021, Kratzert et al. 2021, Fiedler
2020). The data-driven models used in the mentioned experiments are largely based
on so-called LSTM networks, a kind of neural network that can work with time series
data. Experiments showed that these neural networks are able to achieve predictive
performance comparable to state-of-the-art process-based models and even outperform
them. However, a drawback of all mentioned approaches is that they only provide
a single discharge prediction for each step in a given time series. This limits the

1

1 Introduction

expressiveness of the predictions as rainfall-runoff-modeling is a complex task with
multiple sources of uncertainty (Fiedler 2020). It is impossible in practice to achieve
perfectly accurate predictions from a model. Therefore, a sounder way to provide
discharge estimates would be to give a range where the true value is expected to be
found; this range can be given by a lower bound and an upper bound.

Uncertainty estimation in rainfall-runoff models is a field that has already been
investigated by Klotz et al. (2020). However, the work mainly focused on proposing a
general framework for uncertainty estimation in the field of rainfall-runoff modeling.
Examples for approaches that incorporate uncertainty into predictions are also given in
this paper, they are mostly based on Mixture Density Networks. In their essence, these
models output probability distributions instead of single outputs. In the case of a single
Gaussian distribution, such a model can be thought as not learning discharge values di-
rectly, but learning the mean and deviation of a corresponding Gaussian. These models
have a significant disadvantage: while they provide reasonable uncertainty estimates
for data similar to the training set, estimates for data outside that range often seem
arbitrary and neither feature sufficient predictive accuracy nor a sensible uncertainty
band. In more scientific terms, these models only capture aleatoric uncertainty; however,
epistemic uncertainty is only captured in a limited way (Dürr et al. 2020).

One way to also address the latter kind of uncertainty are bayesian neural networks.
Various approaches for realizing such networks have been presented, including Bayes
By Backprop and Monte Carlo Dropout (Blundell et al. 2015, Gal et al. 2016, Dürr et al.
2020). So far, only Monte Carlo Dropout was applied to the task of discharge prediction,
whereas during evaluation only uncertainty estimation, and not accuracy, was examined
(Klotz et al. 2020). It is therefore the aim of this thesis to apply an alternative approach,
Bayes by Backprop, to the task of discharge prediction. Additionally, it aims to both
evaluate the uncertainty estimates produced by the network as well as to compare
the accuracy to results obtained from LSTM networks without the Bayes-By-Backprop-
algorithm. In summary, Bayes by Backprop could be described as follows: instead of
learning network weights, it learns probability distributions over each weight. In the
case of Gaussians, each weight would consist of two learnable parameters, a mean and a
deviation parameter. The entirety of these probability distributions can then be thought
to express the uncertainty of the network. When making predictions, a sample from
each distribution is taken; therefore, other than in a deterministic neural network, the
same input can result in different network outputs. One way practitioners could take
advantage of this observation is to produce a certain number of predictions for a given
input and then deduce statements about the network uncertainty from the obtained set
of predictions. If they are far apart, the network prediction is rather uncertain, if they
are close, the prediction is rather certain. In chapter 5 we will demonstrate that such a
network indeed shows sensible behavior. In other words, it approximates an estimate

2

1 Introduction

that expresses both aleatoric and epistemic uncertainty.
The remaining thesis is structured as follows: in chapter 2, 3, 4 and 5, fundamentals

regarding deep learning, recurrent neural networks and bayesian deep learning are
explained. Then chapter 6 explains the methodolgy in detail and chapter 7 focuses on
the results of the conducted experiments.

3

2 Deep Learning Fundamentals

2.1 Introduction to Neural Networks

Deep learning refers to machine learning methods that make use of multiple layers
for the learning process (thus the term "deep" is used). The family of deep learning
methods most used in current research and industry is "artificial neural networks"
(ANNs). When the context of computer science is clear to the audience, they are
often only referred to as neural networks (NN). In general, neural networks refer
to computational systems that can be compared, in a coarse analogy, to the human
brain. In such an analogy, they consist of a set of neurons that can be connected with
each other. Many neural networks consist of several layers such that the input of a
neural network can be seen as a signal passing through a set of layers. Those layers
apply transformations to the input and eventually construct an output signal. Network
connections typically have weights that determine the strength of the signal. In neural
networks, individual neurons normally compute the sum of their inputs and apply a
non-linear function to this sum (this function is referred to as activation function). It
was showed that the inclusion of non-linear functions give the network the ability to
approximate arbitrarily complex and high dimensional functions. Therefore, neural
networks can be seen as Universal Classifiers. Figure 2.1 depicts a simple neural network.

In general, we consider x(j)
i to be the i-th neuron in the j-th layer. Consider the neuron

x(3)1 in figure 2.1. It has predecessors with values x(2)1 , x(2)2 , x(2)3 and corresponding
weights w1, w2, w3. Let F be the activation function. Then, the intermediate value of
that neuron is computed as follows:

x(3)1 = F(w1 · x(2)1 + w2 · x(2)2 + w3 · x(2)3) = F(0.88 · 0.3 + 0.27 · 1 + 0.62 · 0.5) (2.1)

The aforementioned operations conducted in a neural network can also be denoted
with matrix- and vector-operations. This representation is admittedly often less intuitive;
however, it is of great importance as it describes how these operations in a neural
network are carried out internally by a computer. From a computational perspective,
matrix- and vector-operations are oftentimes beneficial as they can be implemented
efficiently in terms of time- and space-consumption. Figure 2.2 depicts the above
example in matrix-vector-notation.

4

2 Deep Learning Fundamentals

Figure 2.1: Visualization of a simple neural network. It can be observed that the input
signal passes through two intermediate layers of neurons (depicted by the
filled circles) before the output is formed by the final layer. Each neuron
computes the sum of its inputs and applies an activation function (depicted
in turquoise)

Equation 2.1 can also be denoted in matrix-vector-notation. We define a matrix W
where Wi,j represents the weight for the connection from x(2)j to x(3)i . We define x(i)

as the vector consisting of all intermediate values for layer i. We therefore get the
following equation:

x(3) = F(W · x(2)) (2.2)

This is the standard way of defining the matrix-vector-product; however, note that in
figure 2.2 we instead compute

x(3)
T
= F(x(2)

T ·WT) (2.3)

which is equivalent from a mathematical point of view and facilitates visualization.
It is important to note that each neuron can optionally have an associated bias-term

which represents a constant that is added to each sum. Equation 2.1 can be re-written

5

2 Deep Learning Fundamentals

Figure 2.2: Above example denoted with matrix- and vector-operations. Each inter-
mediate value of a layer is depicted as a vector that is computed from a
vector-matrix-multiplication of the vector of the previous layer, and a matrix
consisting of the weights that belong to the input edges of the current layer.
Finally, activation functions have to be applied to each vector.

as follows to also include a bias term:

x(3)1 = F(w1 · x(2)1 + w2 · x(2)2 + w3 · x(2)3 + b(3)1), (2.4)

or equivalently in matrix-vector notation

x(3) = F(W · x(2) + b(3)) (2.5)

where b(i) is a vector representing all bias terms of layer i. Weights and bias terms
together form the parameters of a neural network that change during the learning
process.

Neural networks vary heavily in terms of numbers of layers, kinds of connections
and operations. A simple neural network architecture used in practice is the fully
connected neural network. In such a network, each neuron is connected to each neuron
of the succeeding layer. As one can easily see, the network depicted in figure 2.1 is not
fully connected because not all neurons in the first intermediate layer are connected

6

2 Deep Learning Fundamentals

to each neuron in the second layer. In the matrix-vector-notation of the same network,
one can determine that it is not fully connected too. This is because there are empty
(zero-) entries in the weight matrix that represents the transition from the first to the
second intermediate layer.

2.2 Forward propagation, Backpropagation and Optimization

The computations depicted in Figure 2.1 are referred to as forward propagation. In this
example, the weights were set arbitrarily, therefore, the result of the function computed
by the neural network does not have any practical meaning. However, in practice, we
typically wish a neural network to be an approximator to a function that has practical
use-cases. Consider the following example from computer vision: one can imagine
a neural network that is trained to detect whether a colored image of a certain size
depicts a cat, or no cat. In this case, a hypothetical function is approximated. This
function maps each such image perfectly to its corresponding label (cat or no cat). In
order to possibly achieve such an approximation, the forward propagation step consists
of an additional aspect, the computation of a so called loss function. It can be seen as a
measure for the current error the network makes in its predictions. Typically, a loss
function value close to zero represents high network performance, whereas a higher
loss is considered to be worse. To obtain such a loss measure, neural network typically
compare its output to some value verified to be correct. Those values are commonly
referred to as ground truth. In the example of a cat image recognition network, the
ground truth could consist of animal images labeled by a zoologist. Conceptually,
only after making a prediction, the neural network is "allowed" to examine the ground
truth value. This makes it possible for the network to compare predicted and real
value. As neural networks are typically trained with multiple inputs (oftentimes in
the order of thousands), the loss function is accumulated over all prediction/ground-
truth-label-pairs. In the case of a cat image recognition network, one could compute
the overall probability that the networks predicts "cat", given that a cat is present on
the respective image, and the probability of predicting "no cat", if no cat is present.
The objective of the network would than be to maximize those probabilities. Typically,
neural network minimize a certain quantity during learning instead of maximizing.
When the logarithm of a probability is taken and the result is inverted, one obtains a
domain in which 0 is the optimal value (all labels were predicted correctly) and a higher
number correlates with a higher error. This gives the so-called negative log-likelihood
loss, a common loss functions for neural networks that address classification tasks.

However, in order to achieve learning in the network parameters, two additional
steps named backpropagation and optimization are required. During backpropagation,

7

2 Deep Learning Fundamentals

the gradient of the loss function with respect to the weights is computed. The gradient
in this context has the interpretation of a slope that the network descents in order to
find a local minimum of the loss function. Essentially, backpropagation is an algorithm
that can be used to compute gradients of complex functions by a recursive application
of the chain rule of calculus. Suppose we have x ∈ R, f ∈ R→ R and g ∈ R→ R and
y = g(x), z = f (y) = f (g(x)). Then the chain rule of calculus states:

∂z
∂x

=
∂z
∂y
· ∂y

∂x
(2.6)

Backpropagation can be visualized with a so-called computational graph. Such a graph
can be used to visualize an arbitrary function. An example for the backpropagation
algorithm visualized in a computational graph is given in Figure 2.3

Figure 2.3: Visualization of the backpropagation algorithm. One can observe that,
starting from the last node d, the gradients with respect to the other nodes
are computed recursively. First, the gradient with respect to c is computed.
The value is stored and re-used for the gradients of a and b.

Also a neural network can be disassembled into such a computational graphs which
makes it straightforward to take derivatives from a mathematical point of view. To build
a connection from neural networks to Figure 2.3, in a neural network the final node d
would represent the loss function, the other nodes would represent network parameters.

8

2 Deep Learning Fundamentals

The derivatives with respect to the parameters are the quantities we are interested in.
In theory, all internal computation of a neural network could be carried out with scalar
values; however, for efficiency reasons, vector operations are directly included in the
backpropagation algorithm. For the case that x and y are vectors, the above chain rule
can also be formulated. Suppose x ∈ R, y ∈ R, g ∈ R → R, f ∈ R → R. Then we
obtain

∂z
∂xi

= ∑
j

∂z
∂yj
·

∂yj

∂xi
(2.7)

Again, for efficient computation, it is possible to obtain an equivalent formulation in
matrix-vector-notation:

∇xz =

(
∂y
∂x

)T

· ∇y (2.8)

where ∂y
∂x is the Jacobian matrix of g (the matrix consisting of all partial derivatives)

(I. Goodfellow et al. 2016).
A step related to backpropagation is optimization which is usually carried out after

backpropagation. Training a neural network is an optimization problem which can be
solved by taking steps of small sizes into the opposite direction of the gradient with
the goal to eventually reach a local minimum. The basic algorithm used to achieve
such steps is named gradient descent. A peculiarity of neural network is that their loss
function is always non-convex; therefore, a local minimum is not guaranteed to also
be a global one. Nevertheless, this is not considered a major problem plaguing neural
networks for two main reasons: (1) many experts suspect that most local minima have
a low loss function value (Saxe et al. 2014, Dauphin et al. 2014, I. J. Goodfellow et al.
2015, Choromanska et al. 2015) and (2) in high dimensional functions, local minima
become exponentially less common than saddle points (I. Goodfellow et al. 2016). For
the latter, it was empirically shown that the network is able to "escape" such points in
most cases during training (I. J. Goodfellow et al. 2015).

It remains to describe the gradient descent algorithm in more detail. Let a represent
all network parameters (weights and biases), L is the loss function. To obtain the
network parameters after an optimization step, one can write

an+1 = an − γ∇L(an) (2.9)

where γ ∈ R+ represents a small step into the opposite direction of the gradient
and ∇ is the gradient obtained in the backpropagation step. Such a step is oftentimes
referred to as an optimization step.

9

2 Deep Learning Fundamentals

So far, we have not considered a concrete algorithm that is carried out by neural
networks during learning. Such an algorithm defines how forward and backward
propagation steps do alternate. In its mathematically accurate form, the gradient
descent algorithm requires the whole set of input data to be propagated though the
network before making a single backpropagation step. However, in practice training
data is often arranged in so-called batches, which are sub-sets of the training data; in
this case, the network performs one optimization step after a single batch is propagated
through the network once. This reduced the size of the matrices involved in the
computation while still providing a sensible approximation to the gradient. The
modified version is commonly referred to as mini-batch gradient descent. Practitioners
use a variety of techniques to improve the presented mini-batch gradient descent
algorithm. One such technique is momentum. It was designed to compensate for noisy
gradients or high curvature and incorporates a moving average of past gradients when
performing an optimization step (I. Goodfellow et al. 2016). An adaption of mini-batch
gradient descent widely suggested in recent works is Adam (Ruder 2016, Kingma
et al. 2015). It maintains an individual learning rate per network parameter. This is
also done in a related algorithm named Adaptive Gradient Algorithm (AdaGrad). Adam
is also influenced by an algorithm named Root Mean Square Propagation (RMSProp).
It also features per-parameter learning rates that are adapted based on the average
first moment (the mean) of recent gradients. Adam instead makes use of the average
of the second moment of the gradients. Overall, Adam provides a more advanced
way to combine past information than standard mini-batch gradient descent. For
implementation details regarding Adam we refer to Kingma (2015).

2.3 Training and evaluation of a neural network

This section covers the procedure of training and evaluating a neural network in a
concrete manner. In practical tasks, a limited set of data from which the network
is aimed to approximate the desired function is provided. This could for example
be a set of animal images for the cat classification network. The data is typically
split into a training set and a test set. The training set is used during optimization;
however, one also wishes the network to perform well on data that it has not "seen"
before (I. Goodfellow et al. 2016). In other words, we aim to prevent the network
from learning noisy, irrelevant details in the training set that is not relevant to the
distribution we are interested in. This goal is commonly formulated as preventing the
network from overfitting. In order to achieve this, we use a dedicated test set to evaluate
the performance of the trained network.

In the course of setting up a neural network architecture, there are several archi-

10

2 Deep Learning Fundamentals

tectural choices for the practitioner. Beyond the kind of neural network used (ex.
recurrent neural network, convolutional neural network) one can also modify internal
network settings like number of layers, numbers of neurons per layer and choice of
the optimization algorithm. Those settings are not modifiable during the actual opti-
mization, therefore they are referred to as hyperparameters. Finding a well performing
set of hyperparameters if often named hyperparameter tuning. In practice, setting up a
neural network often involves examining numerous different sets of hyperparameters.
Using only one training set and one test set as described above can lead to a situation
in which the chosen hyperparameters only perform well on the examined test set,
but would performs poorly on a different set, for example on new data from another
source. This phenomenon can be described as yet another form of overfitting. For
this reason, a seperate validation set is oftentimes split off from the test set. It is used
during hyperparameter tuning in order to "hold back" the test set until a final model
architecture is obtained (Brownlee 2017, I. Goodfellow et al. 2016). In the next section, a
family of neural networks suitable for processing time series, recurrent neural networks,
is introduced.

11

3 Recurrent Neural Networks and LSTM
Networks

3.1 Introduction to Recurrent Neural Networks

In section 2 we considered a computer vision task with the goal to classify images.
In such a setting, the input for the network is a single image. From a computational
perspective, this image consists of multiple values that represent the individual pixels,
possibly in different colors. However, from a conceptual point of view, the image
can be seen as a single entity. It is not important which pixel the network considers
first, and which pixel is processed at a later point in time. In a time series forecasting
task however, we consider sequences of measurements taken over time. Therefore, a
network structure that is able to not only consider inputs as single "blocks", but to also
learn dynamic behaviour over time is beneficial. A neural network architecture that
fulfills this criterion is named recurrent neural network (RNN). A fundamental property
of recurrent neural networks is that the parameters are shared across all time steps
of the input sequence. This property is useful in a task like speech recognition. A
standard neural network as introduced in the previous chapter would not be able to
"transfer" its knowledge of a specific word, if that word would occur at a different place
in the input sequence (I. Goodfellow et al. 2016).

Let x be an input sequence for a recurrent neural network, and x(t) the part of
that input sequence at time step t with t ∈ {1, ..., τ}. Than the basic functionality of
recurrent neural networks can be formalized with the following recurrent equation:

h(t) = f (h(t−1), x(t); θ) (3.1)

where t represents the time step, h(t) represents the values of the hidden units of a
network at a specific time step, θ are the network parameters and f is some function.
Therefore, RNNs produce a sequence of hidden units vectors h(t) for t ∈ {1, ..., τ}. h(t) is
often also referred to as the hidden state of the network. So in other words, for each input
vector x(t) the hidden state is modified. Usually, RNNs also include different ways for
transforming the sequence of hidden states into actual output, thus network predictions
(I. Goodfellow et al. 2016). RNNs can be depicted in the same way as standard neural
network. However, such a representation requires an individual network per time step

12

3 Recurrent Neural Networks and LSTM Networks

(as in Figure 3.1). This is also referred to as an unfolded representation of the network.
The individual networks resulting from this representation are usually referred to as
cells. It is important to note that such a representation does not depict shared weights.
In other words, even though an own neural network per time step is depicted, in reality,
the weights are still constrained to be the same among all of those network.

Figure 3.1: Example for a recurrent neural network architecture. The difference to a
standard neural network lies in the "unfolding" for multiple time steps.
Those time steps all use the same network weights, but unlike in a standard
NN, they also depend on the previously obtained hidden layers h(t−1) in
addition to the inputs x(t).

The backpropagation-algorithm described in section 2 can also be applied to recurrent
neural networks. In this context, it is often referred to as Backpropagation through
time (BPTT) (Guo 2013). If the unfolded representation of a RNN is considered, the
functionality of BPTT does not differ from the backpropagation-algorithm in standard
neural networks. Thus, gradients are calculated with respect to each weight; however,
in an RNN, the weights are shared across time steps. Therefore, τ gradient updates
per weight are calculated, one for each time step. As a consequence, each weight
is not modified by a single gradient descent step, but by a sum of multiple descent
steps during backpropagation. This leads to the following problem: If large input
sequences are used, gradients tend to either become uncommonly large or vanish.

13

3 Recurrent Neural Networks and LSTM Networks

These phenomena may lead to oscillating weights, prohibit learning to bridge long
gaps in the input sequence (thus "remember" information from a point further in the
past) or completely hinder learning (Hochreiter et al. 1997).

3.2 LSTM (Long Short-Term Memory) Networks

Long Short-Term Memory networks are a special kind of RNNs and were designed
to cope with long-term dependencies in input sequences. One may recall that the
introductory example for an RNN depicted in figure 3.2 only consists of a single layer
per cell. LSTM networks in contrast consist of multiple layers that are connected in a
special way depicted in figure 3.2. Next to the hidden state, each network also outputs
a so-called cell state (Hochreiter et al. 1997, Olah 2015). Therefore, a cell computes two
recurrent equations per time step:

h(t) = f (h(t−1), c(t−1), x(t); θ)

c(t) = f (h(t−1), c(t−1), x(t); θ)
(3.2)

Figure 3.2: Cell of an LSTM network. Weight matrices are depicted in orange, functions
in grey and pointwise operations in dark blue

The following sections describes the different layers within a cell in detail. Each layer

14

3 Recurrent Neural Networks and LSTM Networks

can be compared to a standard neural network layer as introduced in chapter 2 as it
features a weight matrix and an activation function.

3.2.1 Forget gate layer

The forget layer gate (depicted by W f in Figure 3.2) conceptually "filters" the previous
cell state c(t−1). The output of the layer, denoted by f (t), consists of numbers in the
interval [0, 1]. Together with the point-wise multiplication p f (t) they can be interpreted
as "importance weights" that are used to filter out or keep certain parts of the cell state.
The forget gate layer features an activation function named sigmoid (denoted with σ).
The function computed by the layers is therefore:

f (t) = σ(W f · [h(t−1), x(t)] + b f) (3.3)

It is important to note that, next to the hidden state, the layer also depends on the
input of the specific time step. This design makes intuitive sense as oftentimes in time
series new values indicate that older values might not be useful anymore. For instance,
consider a network that receives text in natural language and outputs the sentiment
expressed by the text. In such a language-related task, it is important for the network to
keep track of sentence structures and grammar to learn the correct meaning. However,
if the network for example encounters the beginning of a new sentence, information
about the subject’s number from the previous sentence may not be relevant anymore
and can be "filtered out".

3.2.2 Input gate layer(s)

The input gate layer(s), consisting of the two layers depicted by Wi and WC, conceptually
add new information to the cell state. WC features a tanh-activation function and
therefore maps to the interval [−1, 1]. Intuitively, it can be interpreted as the network’s
"proposals" for the values that are added to the cell state vector. The output of this
layer is denoted by C̃(t). Wi in contrast features a sigmoid-activation function and is
used to "filter out" certain values of C̃(t) with the point-wise multiplication denoted by
pi(t) . The functions computed by the layers is:

i(t) = σ(Wi · [h(t−1), x(t)] + bi)

C̃(t) = σ(WC · [h(t−1), x(t)] + bC)
(3.4)

In the previous example of language interpretation, the input gate layer could add
the number of a new subject it encounters.

15

3 Recurrent Neural Networks and LSTM Networks

3.2.3 Output gate layer

The output gate layer, depicted by Wo, is yet another network layer with a sigmoid-
activation function and is used to transform the cell state c(t) into a hidden state h(t).
This layer has no intuitive meaning; however, it is important to point out that by design,
c(t) should be involved in as few operations as possible, therefore this additional step is
not applied to the cell state (Olah 2015). The function computed by the layer is:

o(t) = σ(Wo · [h(t−1), x(t)] + bo) (3.5)

h(t) and c(t) are then computed as follows:

c(t) = (c(t−1) × f (t)) + (i(t) × C̃(t))

h(t) = tanh((c(t−1) × f (t)) + (i(t) × C̃(t)))× o(t)
(3.6)

3.3 Structure of predictions obtained by Recurrent Neural
Networks

To this point, we did not mention how the hidden states and cell states are converted
to concrete network predictions. There are multiple possibilities to obtain predictions
from RNNs. Hidden states can be used directly as output vectors; however, the desired
dimension of the output vector is a different concept than the dimension of the hidden
state vector, and the two sizes do not have to correspond. To tackle this heterogeneity, a
common practice when forming output vectors is introducing a fully connected neural
network layer that takes a hidden state vector an an input and outputs the final vector.
Figure 3.1 depicts such a case, whereat the output consists of a single scalar value.
However, the output is not restricted to scalar values, but can be of arbitrary size. In the
case depicted on the figure, only the hidden state at the last cell h(3) serves as input for
the fully connected layer. This architecture is from now on referred to as many-to-one
(many-to-one-architecture), as the input sequence consists of multiple values, but the
output is based on a single network cell. A practical example for a use-case of such
a network is again a text sentiment analysis task. In this case, the input for the RNN
is a sequence of words and the output is a scalar value representing the predicted
sentiment, for example 1 for positive and 0 for negative. However, RNNs are not
restricted to output single vectors. Instead, one could also imagine transforming not
only h(3), but every hidden state h(t) to an output vector. Such an architecture is from
now on referred to as many-to-many (many-to-many-architecture). It could for example
be used for a translation task, where we do not aim for a single prediction, but for a
sequence of translated words as an output.

16

3 Recurrent Neural Networks and LSTM Networks

Figure 3.3: Comparison between many-to-one- and many-to-many-output in an RNN.
Note that we abstract from the concrete inputs, hidden states, cell structure
and outputs in this representation

Another possibility to treat hidden state vectors is to use them as inputs for another
recurrent neural network. Figure 3.4 depicts such a setting with two recurrent neural
networks "stacked" onto each other. In this case, the first network is not involved in
forming the output, but rather supplies input vectors for a second network. The second
network transforms the hidden states to output vectors.

Figure 3.4: Example for a recurrent neural network architecture with two layers. It can
be observed that the hidden states of the first layer are not used to form
the output as in previous architectures, but serve as input vectors for the
second layer.

17

4 LSTM networks for hydrology

4.1 Introduction to streamflow and discharge prediction

In order to fully understand the task tackled in this thesis, it is necessary to define
some terms and phenomena related to hydrology and discharge prediction. As already
mentioned in the introductory chapter, discharge prediction aims to predict the amount
of discharge/runoff of a given region. For this task, past discharge measurements as
well as forcings (meteorological variables like air temperature or amount of precipita-
tion) can be considered as input variables. Another kind of input variables commonly
used in discharge prediction is geophysical information about the region in which the
measurements are taken. The output of the prediction model should be a sequence of
discharge values (or a single value). The temporal granularity of the needed sequence
often depends on the application area. During flood events for example, a higher
temporal granularity may be needed (Gauch et al. 2020). As one may recall, discharge
prediction is highly related to another task: streamflow prediction. Oftentimes, the
same models are used for both tasks. Streamflow is typically measured at geograph-
ically prominent points like the mouth of a river or the outflow of a lake. The point
where the measurement is taken is referred to as the outlet. From the outlet, an area can
be delineated from which all water drains towards the outlet. This area is referred to
as catchment, basin, watershed or upstream area (whereat catchment is the main term used
throughout this thesis). One may realize that the size of a catchment highly depends on
the choice of the outlet (Gauch et al. 2020). A catchment is referred to as gauged basin
if its outlet has a gauging station to measure streamflow values, and as an ungauged
basin if such a station is missing. An important term in the context of streamflow is
hydrograph. It typically refers to a graph that shows the streamflow versus time; in
addition, it can also refer to a graph that shows runoff versus time (Gauch et al. 2020).

When it comes to different types of models for discharge predictions, we can dis-
tinguish between the terms forecasting model and simulation model. Forecasting means
predicting discharge values in the future. Simulation on the other hand refers to
predicting past discharge. At first glance, it may not be entirely clear why the latter is
useful; however, forecasting has a number of drawbacks. The most obvious objection is
that forcings do not exist for future time steps and are therefore bound to be predictions
themselves, for example values taken from a hydrologic forecasting model. Of course,

18

4 LSTM networks for hydrology

grouth truth values of discharge also do not exist for future time steps. Simulation on
the other hand solves these disadvantages and has several application areas. In cases
where measurements from the pasts are not available or spare, simulation can be useful
to obtain datasets of high resolution (Gauch et al. 2020). Also the conducted experi-
ments in this work can be described as simulation. In this context, simulation models
are used to evaluate neural networks effectively and to compare the performance to
existing results in the field.

Models can also be classified based on the spatial distribution of the input data. The
family of models used with the CAMELS-US-dataset is referred to as lumped models. In
those models, forcings and geophysical data are aggregated to a catchment-level. Such
aggregated forcings could for example be the amount of total precipitation within a
catchment or the minimum and maximum temperature (Gauch et al. 2020).

4.2 Connection to time series forecasting

In the course of the following sections, it will become clear that discharge prediction is
a form of time series forecasting for which recurrent neural networks are suitable. In a
time series forecasting task, the input of an RNN consists of ordered measurements
taken over time up to a certain point. The output consists of predictions for prospective
points in time. In the context of discharge prediction the input consists of forcings
taken over time and the output consists of discharge predictions for the future (Gauch
et al. 2020). In the task addressed in this thesis, multiple forcings are considered at each
single point in time. Such a setting is named multivariate forecasting model (Brownlee
2018). In general, multivariate forecasting models are able to predict multiple variables
per time step; however, in discharge prediction, only a single variable (the discharge) is
obtained from the network output (Fiedler 2020).

4.3 Model used in this thesis

In the meteorological domain, datasets that features measurements over a certain
timespan are common. It remains to determine how such a dataset can be transformed
to suitable training and testing data for a neural network. The approach used in
this thesis is oftentimes referred to as sliding window. Such an approach divides the
available data into sequences of fixed length (referred to as windows). The length
of those sequences is commonly referred as window size (Fiedler 2020). Hereafter,
the window size is referred to as sw. Each window forms an input sequence that is
provided to the RNN. Conceptually, one could start by viewing the task as a many-
to-many-based one where the network forms an output from each vector of the input

19

4 LSTM networks for hydrology

sequence. However, networks for discharge predictions are typically not aimed to make
predictions from the start as poor performance is to be expected at an early point of
the input sequence. Instead, one can think of a warmup window (with length swu, thus a
part at the beginning of the windows where the network does not make predictions
yet). The part of the window that is involved in prediction-making is referred to as
prediction window (with length sp). Figure 4.1 depicts the approach in a graphical way.

A remaining question is how an algorithm that produces windows from a dataset
proceeds in practice. Assume the complete dataset consists of n time steps. Let
t ∈ {0, ..., n} be a specific time step of the dataset. In the experiments conducted
in this thesis, the windows must be organized in a way so that for each time step
t ∈ {sw, ..., n} exactly one discharge prediction is obtained (for the first sw time steps, no
predictions are possible as the warmup window would be too short). Producing exactly
one discharge prediction per time step can be ensure by setting an appropriate sliding
window step (k), which refers to the offset of each newly created window with respect
to the previous one. We set the offset to equal the length of the prediction window
(thus k = sp). This is best explained with an example: assume that the windows are
iteratively constructred by starting at the beginning of the dataset, further assume
wp = 2 (the network predicts 2 days into the future). Then, for each new window, an
offset of 2 has to be chosen with respect to the previous window. If we would instead
choose an offset of 1, there would be a time step for which 2 discharge predictions are
obtained, if we choose an offset of 3, there would be a time step with no associated
discharge prediction.

In the conducted experiments for the CAMELS-US-dataset, each time step has 5
associated forcings, namely precipitation, shortwave downward radiation, maximum
and minimum temperature and humidity. As a consequence, each entry x(i) of an input
sequence x is a vector of size 5 (at a later point, additional input measurements are
considered too). For the output, three variations are examined in the course of the
thesis: many-to-one, single shot and many-to-many. It is important to point out that
those models describe a different concept than the architectures described in section 3.
Those only refer to architectures of the network, whereas here the interpretation of the
data that flows too the network also plays a role.

4.3.1 Many-to-one

This approach follows the methodology described in section 3. In the context of
a discharge prediction task in combination with the sliding-window-approach, the
network makes a single discharge prediction for the last day in the window (x(sw)).
In such a case, the prediction window has length 1, the warmup window has length
sw − 1. The adaption of this approach for the given task is depicted in figure 9.1 of

20

4 LSTM networks for hydrology

Figure 4.1: Sliding window approach for discharge prediction. The available dataset
includes 10 time steps, each time step has 3 forcings and a discharge value
available (which are random values in this exemplary case). The window
size is set to 5 in this example, therefore, an input sequence for the RNN
consists of 5 time steps. The RNN is designed to only make predictions for
the last 2 days of the window, therefore, ground truth is considered for the
last 2 days of the window.

Appendix A.

4.3.2 Single shot

The so-called "single shot"-approach also follows a many-to-one-architecture. The
difference lays in the structure of the output the network predicts and in the way this
output is interpreted. Although the output is only produced by the last cell, it does not
consist of a single scalar value, but of a vector of multiple values. This vector features
discharge predictions for multiple future days. The only necessary modifications to
the many-to-one-approach are that (1) the output size (and corresponding ground
truth vector for comparison) have to be adjusted and (2) the sliding window step o
has to match sp. The adaption of this approach for the given task is depicted in figure
9.2 of Appendix A. Conceptually, this approach does not "see" additional forcings

21

4 LSTM networks for hydrology

while processing the prediction window. Therefore, it is expected that the performance
deteriorates with bigger prediction windows.

4.3.3 Many-to-many

The many-to-many-model produces the same results as the single-shot-model from
a black-box view. The difference lies in the circumstance that the many-to-many-
model follows a typical many-to-many-architecture for RNNs as described in section
3. Therefore, in case of sp > 1, the predictions origin from different cells. Figure
9.3 of Appendix A depicts an adaption of this approach for the given task. With
this approach, the model continues "seeing" forcings while processing the prediction
window. One would expect that this design leads to better performance with longer
prediction windows compared to the single-shot-model.

4.3.4 Models that use discharge as input measure

Next to forcings, hydrological models are also allowed to consider past discharge
data as input (Gauch et al. 2020). This option is also examined in the course of this
thesis. However, it requires some modifications to the previous architectures as it
is prohibitive to consider discharge values from the prediction window. There exist
several approaches to tackle this problem, one of them is inserting "nonphysical" values
for the affected discharge values. Obviously, those values do not provide any value
for learning and the network is aimed to detect and "ignore" them (Fiedler 2020).
However, this results in an additional learning task for the network. Therefore, in
this work an encoder-decoder-approach was followed. Such an approach features two
different RNNs: an encoder that processes the input values of the warmup window,
but does not produce any output, and a decoder that processes the input values from
the prediction window and also forms corresponding predictions. As the hidden state
and cell state can be transferred from the encoder to the decoder, the architecture can
conceptually be seen as a single network. Nevertheless, the advantage of the said
architecture is that encoder and decoder are allowed to expect input vectors of different
length. In our case, the encoder expects the forcings and the additional discharge
values, whereas the decoder only expects the forcings. An encoder-decoder-architecture
is graphically depicted in figure 4.2. The resulting architecture is suitable for each of the
previously discussed models. In the case of many-to-one and single shot, the decoder
only receives input from a single time step and only produces a single prediction. In
the case of many-to-many, the decoder is further unfolded during forward propagation
and produces multiple predictions.

22

4 LSTM networks for hydrology

Figure 4.2: Encoder-decoder-model. It can be seen that only the encoder receives
discharge values as input, whereas only the decoder produces output pre-
dictions

23

5 Bayesian Deep Learning

This chapter covers the concept of bayesian statistics and bayesian deep learning
needed to comprehend this thesis and finally introduces Bayes by Backprop through
time, the underlying algorithm for the modified LSTM network used in the conducted
experiments. In the subsequent sections, fundamentals of modeling and statistics are
explained.

5.1 Probabilistic modeling

In mathematics and computer science, a model is a simplified image of the reality
to be observed. Typically, one aims for a formal description of a phenomenon to be
observed. For example, population growth in a certain region could be modeled with
a differential equation, whereat simplified assumptions have to be made. Population
grow is a complex phenomenon and it will be impossible in practice to incorporate
all parameters into a mathematical model. Next to differential equations, there are
numerous other tools that can be used to model a phenomenon. In a scheduling
problem, a directed graph could be used to model dependencies among jobs (Bungartz
et al. 2014). Neural networks also belong to those tools as they represent functions
describing certain phenomena.

A sub-area of mathematical modeling of particular relevance for this thesis is proba-
bilistic modeling. In probabilistic modeling, probability distributions are incorporated
into the model of a phenomenon (Glen n.d.). Such probabilistic approaches can also be
incorporated when designing neural networks. Such architectures are also referred to as
probabilistic deep learning (Dürr et al. 2020). A practical example of a probabilistic neural
network could be the image classification network introduces in section 2 that decides
whether a cat is depicted on an input image or not. In a non-probabilistic approach,
the network would output a single binary value (for example 1 for cat and 0 for no
cat). However, this approach would not yield any information about the network’s
confidence about the prediction. Therefore, a to some extend more expressive approach
is to output values in the interval [0, 1] for each of the two categories. Those values are
constraint to sum up to 1, they therefore represent the probabilities that the input image
belongs to a category. Another example is found in the hydrologic domain. Imagine a
discharge prediction task that is modelled with a neural network that outputs a single

24

5 Bayesian Deep Learning

prediction for the discharge value (as it was assumed to be the case in all previous
chapters). In a probabilistic modeling approach, the neural network would be designed
in a way to not output single values, but some probability distribution that specifies in
which range the network assumes the value to be. Mixture Density Models mentioned
in the introduction fall into these category of networks (Klotz et al. 2020). Probabilistic
models are heavily used in classification tasks, for example in image classification.
However, although being able to express uncertainty, named probabilistic models still
have a disadvantage: they can only capture the so-called aleatoric uncertainty. In a
neural network context, aleatoric uncertainty refers to the uncertainty inherent to the
training data (Dürr et al. 2020). In other words, it expresses the ability of the network to
assign high uncertainty to regions in the input space where there are fluctuations in the
training data. In the image classification context, this means that there may be certain
training images that are hard to identify as a cat, for example because they depict a
similar-looking animal. If this transition is sufficiently covered by the training data, a
network that is able to learn aleatoric uncertainty will assign equal probability to cat
and no cat if it encounters such an image in the test set. In a regression example, such a
probabilistic model would be able to detect a function and variances such that most of
the training data lies in the predicted interval. This is the case in figure 5.1.

Figure 5.1: Regression example for probabilistic model. Assume that the model learns
means and deviations to account for the variance in the training set (training
samples are depicted by the blue points). The predicted means are depicted
by the red curve, the predicted deviation is represented by the blue range. It
can be observed that in regions with lots of training data the model achieves
a good approximation of the function underlying the training data.

However, one can also deduce form figure 5.1 that the described probabilistic models

25

5 Bayesian Deep Learning

have a disadvantage. They do not express sensible uncertainty estimates about regions
in the input space that were not present in the training data. This means that the
model "acts" very confident when it receives inputs far from the training distribution,
although the network cannot reasonably substantiate such a confident decision as it
was not trained for such inputs. In figure 5.1, one can observe that outside the range
where training data is present the deviation is very low, although it is not an expected
behavior of a model to act confidently in that region. In the context of cat classification,
one could imagine a training set consisting only of cats and dogs. A network trained on
those images might correctly classify all cats correctly as cat and all dogs correctly as
no cat, and might also sensibly assign equal probabilities to the categories if the image
depicts some kind of fusion between a cat and a dog. However, given an input image
depicting a horse, the network may act in an unexpected way; a scenario one would
have to reckon with is that the network assigns high probability to the category cat.

This behavior obviously does not lead to an intuitive understanding of uncertainty.
A sounder way of expressing uncertainty can be achieved with models that do not
only capture aleatoric uncertainty, but also the so-called epistemic uncertainty. Epistemic
uncertainty refers to the uncertainty in the parameters of the model (Dürr et al. 2020).
Regarding figure 5.1, one could imagine changing the parameters of the model such that
the predicted function is the one in figure 5.2. As both predictions describe the training
data with the same accuracy, an "intelligent" model would have to be uncertain between
the two variants. However, this epistemic uncertainty is not captured in probabilistic
models described so far. A way to tackle this problems are so called bayesian probabilistic
models.

Figure 5.2: Alternative fit to the training set. One can observe that the function in red
fits the training set equally good as the one in figure 5.1 although it has an
entirely different shape.

26

5 Bayesian Deep Learning

5.2 Frequentist and Bayesian statistics

The following section aims to introduce the field of Bayesian statistics, especially Bayes’
theorem. In statistics, there are two possibilities to interpret probabilities. The first
way is as a relative frequency, where n is the number of conducted experiments. This
is referred to as a frequentist approach. Here, P(x) is approximated as the number of
experiments nx where the desired outcome x occurred. This definition is valid as the
following limit converges to the actual probability:

P(x) = lim
n→∞

nx

n
(5.1)

An example for a probability determined by a frequentist approach could be tossing
a coin (which does not necessarily have to be fair). Let x be the event where the coin
shows head. Suppose n = 100, nx = 32 (thus the toin is tossed 100 times and showed
head 32 times). Therefore, the probability P(x) is approximated with 32

100 .
A drawback of the frequentist approach is that is is not possible to make statements

about probabilities of events that do not allow an arbitrary number of repetitions.
For instance, it is not possible to assign a probability to the statement "The first
moon landing was no fake", as the event obviously cannot be repeated several times
(Kirchgessner 2009). Another way to express probabilities is by the so called bayesian
approach. It assigns probability according to a degree of belief. The underlying theorem
of the bayesian approach is Bayes theorem’:

P(x|D) =
P(D|x) · P(x)

P(D)
(5.2)

P(x) is named prior distribution. It denotes the prior belief about the probability of
event x before any data is seen. P(D|x) is called likelihood. It assumes x and denotes
the probability that the data (or event) D is observed. P(D) is the probability of D
and is often called evidence. P(x|D) is then referred to as the posterior distribution and
stands for the estimate of the probability of x after data is seen. It therefore can be
seen as an "updated" version of the initial degree of belief. The concept is explained
with the example of a test to detect a human disease. Imagine one is interested in the
probability of having a certain disease, given that a test for that disease was positive.
Let x be the event in which said person has the disease, D corresponds to the observed
data, thus the positive test. Considering Bayes’ theorem, P(x) is the prior distribution
and stands for the general probability for catching the disease. The likelihood P(D|x)
is the sensitivity of the test, thus the probability that the given test detects the disease.
The posterior distribution P(x|D) is the quantity one is interested in, the probability

27

5 Bayesian Deep Learning

that one has the disease, whereat additional data (the test was positive) was considered.
Inserting the formula for the marginal probability instead of the evidence P(D) yields:

P(x|D) =
P(D|x) · P(x)

P(D|x) · P(x) + P(D|¬x) · P(¬x)
(5.3)

Thus, the value on the left can be computed using Bayes’ theorem, given that a prior
and sensitivity/specificity of the test are known (Kirchgessner 2009).

5.3 Bayesian probabilistic models

Next to aleatoric uncertainty, a bayesian probabilistic model is also able to capture
epistemic uncertainty. In the following section, a technique to apply those model
to neural networks is presented. Such neural networks are commpnly referred to
as bayesian neural networks (BNN) (Dürr et al. 2020, Jospin et al. 2020). Hereafter, the
functionality of bayesian models is introduced with the example of image classification.
In a standard probabilistic model for image classification, the parameters of the network
are found via a maximum likelihood approach. Therefore, we maximize

wmaxLike = arg max
wi

P(D|wi) = arg max
wi

(P(y1|x1, wi) · ... · P(yn|xn, wi)) (5.4)

for n training images. In the example of cat classification, it holds that ∀x x ∈ Ω
where Ω is the vector space containing all possible images, ∀y y ∈ {cat, noCat} and
∀i wi ∈ W whereW is the vector space of all possible network parameters. Equation 5.4
is the underlying formula for a neural network trained with the negative log-likelihood
loss function. We obtain a network prediction ỹ by evaluating

ỹ = P(y|x, wmaxLike) (5.5)

One can easily see the reason why such a network does not capture epistemic
uncertainty. Training only focuses on finding one set of appropriate weights that fits the
training data well. However, the approach ignores the circumstance that there may be
other sets of parameters that describe the training data almost as well. A fundamental
concept of bayesian probabilistic models is that they consider multiple predictions that
are based on different sets of weights. A prediction would than be made by evaluating

ỹ =
∫

w
P(y|x, w) · P(w|D) dw (5.6)

Conceptually, one can imagine iterating over all possible sets of weights. P(y|x, w)

would correspond to the output distribution that the network predicts for the training

28

5 Bayesian Deep Learning

example x given parameters w. In the cat classification this is the predicted probability
of cat (or of no cat) given input image x and network parameters w.

The term P(w|D) is drawn from a posterior distribution (Dürr et al. 2020). One could
think of this term as a "weight" for each iteration as it denotes how likely a certain set
of parameters is given the training data. P(w|D) can be re-written with Bayes’ theorem:

P(w|D) =
P(D|w) · P(w)

P(D)
(5.7)

Intuitively, a model as described in 5.6 considers every possible set of weights in
its predictions. Suppose that ỹ corresponds to the probability the network assigns
to an image of a horse after it has only seen cats and dogs during training. As the
network has not learnt anything about horse images, it may be uncertain about which
parameters to choose. Assume that there are multiple sets of parameters that all
describe the training data in an accurate way, but give very different results for horse
images. The maximum-likelihood-approach in equation 5.5 would only choose one
of those parameter sets and ignore the others. In 5.6 however, all parameter sets
are considered. Therefore, the model would successfully learn that it is uncertain
about horse images. We say that such a model is also able to learn the uncertainty
inherent to the model parameters (the epistemic uncertainty). In the case of a simple
linear regression problem (with two parameters), this set-up has an analytical solution
(Dürr et al. 2020). However, in the case of a neural network with potentially millions
of parameters, the integral

∫
w P(y|x, w) · P(w|D) dw is highly intractable. Even if a

discrete set of values is considered for each parameter, the integral (which changes to a
sum in this case) requires iterating over a set of values that grows exponentially with
the number of parameters. The posterior P(w|D) is intractable too. It can be re-written
as:

P(w|D) =
P(D|w) · P(w)∫

w P(D|w) · P(w) dw
(5.8)

The denominator is intractable for the reason already described (Dürr et al. 2020).
Therefore, it can be concluded that solving bayesian neural networks is not feasible with
the means of classical bayesian statistics. In the following section, a technique named
Bayes by Backprop is introduced. It allows constructing a bayesian neural network that
is able to capture aleatoric and epistemic uncertainty.

29

5 Bayesian Deep Learning

5.4 A technique to realize bayesian neural networks – Bayes By
Backprop

To obtain a bayesian probablistic model in a neural network context, different sets
of network weights have to be considered when making a single prediction. As it
would be highly intractable to take all possible sets of weights into account, Bayes by
Backprop applies a number of approximation techniques to obtain a bayesian model
(Blundell et al. 2015). In the following, a neural network for a regression task realized
with a probabilistic modeling approach is considered. Therefore, the network output is
P(y|x, w) which is a assumed to be Gaussian. With a maximum likelihood estimation,
the weights can be determined with:

wmaxLike = arg max
w

log P(D|w) = arg max
w

n

∑
i=1

P(yi|xi, w) (5.9)

with n training samples. However, with a Bayesian approach, the weights are instead
determined with equation 5.6. Conceptually, this can be considered a large ensemble
of networks, whose predictions are weighted according to the degree of belief in
the respective parameter configuration (Blundell et al. 2015). Exactly computing the
posterior is computationally prohibitive because of the denominator of Bayes’ theorem
in equation 5.7. Therefore, the posterior is approximated with another distribution
denoted with q(w|θ) (referred to as the variational posterior). Its parameters θ are found
in the course of a process called variational learning (Graves 2011, Hinton et al. 1993).
This leads to an optimization problem whose solution is found by minimizing the
KL-divergence between the approximate and the true posterior:

θ∗ = arg min
θ

KL[q(w|θ)||P(w|D)] (5.10)

Re-writing the equation yields:

θ∗ = arg min
θ

∫
q(w|θ) q(w|θ)

P(w) · P(D|w)
dw =

arg min
θ

KL[q(w|θ)||P(w)]−Eq(w|θ)[log P(D|w)]
(5.11)

This can also be expressed by a loss function, which is the loss function of the
bayesian neural network:

F (D, θ) = KL[q(w|θ)||P(w)]−Eq(w|θ)[log P(D|w)] (5.12)

The loss function is commonly referred to as ELBO-loss (Kingma et al. 2014). The left
side of the equation is named complexity cost. It is a feasible KL-divergence between

30

5 Bayesian Deep Learning

the variational posterior q(w|θ) and a prior P(w) which can be calculated analytically
for some choices of priors and posteriors. In the Bayes by Backprop approach, the
KL-divergence is not computed analytically, but approximated as we will see in the next
section. The right side is named likelihood cost as it contains P(D|w) which is also used
in standard maximum likelihood estimation. Additionally, it contains an expectation
over the variational posterior. Also in this case, it is not possible to consider all possible
combinations of weights; as a consequence, next to the approximation of the posterior
a second approximation has to be done: the expectation is approximated by drawing a
fixed number of samples from q(w|θ).

Blundell et al. (2015) showed that F (D, θ) can be approximated with a Monte Carlo
sampling technique, which refers to a technique where a number of random parameter
samples are drawn from the variational posterior. Using this technique, we obtain the
following approximation:

F (D, θ) ≈
n

∑
i=1

log q(w(i)|θ)− log P(w(i))− log P(D|w(i)) (5.13)

Note that with this approach the KL-divergence (thus the complexity cost) is not com-
puted analytically, although this would be an option for some kinds of priors. Blundell
et al. justify the choice of the Monte Carlo-approach with empirical experiments where
they found no performance difference compared to an analytically one. Moreover, they
eventually opted for a prior that cannot be computed analytically (Blundell et al. 2015).

As variational posterior q(w|θ), a diagonal Gaussian posterior is chosen. This means
that with network parameters w1, ..., wn, each distribution q(wi|θ) with i ∈ {0, ..., n} is
an univariate Gaussian and the covariance matrix of q(w|θ) is diagonal. Conceptually,
the posterior can be described with two variables per network parameter, mean and
standard deviation (Blundell et al. 2015).

In practice, an additional observation is taken into consideration: standard deviations
are always positive and neural network weights are typically also allowed to be negative
(Dürr et al. 2020). Therefore, the network parameters are set to θ = (µ, ρ). The standard
deviations σ are obtained with σ = log(1 + exp(ρ)) which is referred to as softplus-
function. A bayesian neural network following this approach can be thought as having
twice as many parameters than a standard neural network with the same functionality.
If the standard network has n parameters, µ and ρ in the bayesian network are n-
dimensional vectors. Thus there are 2 · n parameters. Conceptually, each parameter in
the standard network becomes an univeriate Gaussian distribution parametrized by
mean and standard deviation. This concept is visualized in figure 5.3.

Samples from the variational posterior are obtained with

w = µ + log(1 + exp(ρ)) ◦ ε (5.14)

31

5 Bayesian Deep Learning

Figure 5.3: Concept of a Bayesian neural network. It can be observed that each parame-
ters that one would expect to be a single value in a standard neural network
is a probability distribution (for example Gaussian with parameters µ and
σ.

where ε ∈ [0, 1] is a parameter-free (independent) sample. It is important that e is
parameter-free and the only random variable involved in the computation of w, as
otherwise it would not be possible to compute gradients. The technique of inserting an
independent sample ε is referred to as reparameterization trick (Kingma et al. 2014).

As already mentioned, different distributions can be chosen as prior. Blundell et al.
(2015) propose the following Scale mixture prior:

P(w) = ∏
j

πN (wj|0, σ2
1) + (1− π)N (wj|0, σ2

2) (5.15)

As it can be seen, the prior combines two univariate Gaussians with zero mean and
different variances. Blundell et al. (2015) propose pre-setting the variances σ1 and
σ2 as hyperparameters instead of learning them. π is another hyperparameter. The
authors also propose σ1 > σ2 and σ2 � 1. Altogether, the scale mixture prior provides
a heavy tail on the one hand, on the other hand it "encourages" the weights to tightly
concentrate around zero (Blundell et al. 2015).

So far, it was assumed that gradient descent without mini-batches is used. However,

32

5 Bayesian Deep Learning

Bayes by Backprop can also be adapted for mini-batch gradient descent. Suppose a
training data set D that is split into M mini-batches D1, ...DM. As introduced in chapter
2, mini-batch gradient descent performs an optimization step for each mini-batch. The
loss function for mini-batch i is therefore:

Fi(Di, θ) = πiKL[q(w|θ)||P(w)]−Eq(w|θ)[log P(Di|w)] (5.16)

πi is a weight for the complexity cost; the weights are constrained to ∑M
i πi = 1, but

can be distributed arbitrarily among the mini-batches. In the simplest case, each weight
πi corresponds to 1

M . In this assignment, no difference among mini-batches is made
when it comes to the chosen "trade-off" between complexity cost and likelihood cost.
In this thesis, another assignment given by πi =

2M−i

2M−1 was used. This assignment was
suggested by Blundell et al. (2015) and assigns earlier mini-batches within an epoch
a higher complexity cost compared to later mini-batches (Blundell et al. 2015). In the
next section, Bayes by Backprop through time, and adaption of Bayes By Backprop for
recurrent neural networks, is introduced.

5.5 Bayes By Backprop Through Time

5.5.1 Definition and relation to the given thesis

As seen in section 3, parameters are shared among cells in an unrolled representation
of a recurrent neural network. Therefore, if the network is unrolled for T steps, each
parameter gets T gradient updates. Fortunato et al. propose an algorithm named
Bayes By Backprop Through time which applies Bayes By Backprop to recurrent NNs.
In principle, the algorithm described in the previous section can be applied to the
recurrent case without modifications (Fortunato et al. 2017). The authors assume a
sequence of length T and a recurrent NN that captures that sequence (therefore, its
unrolled representation has T cells). For the whole sequence, the loss function is given
by:

F (D, θ) = KL[q(w|θ)||P(w)]−Eq(w|θ)[log P(y1:T|w, x1:T)] (5.17)

x1:T is the complete input sequence used for training, y1:T is the complete set of
ground truth labels. As (x1:T, y1:T) is the training data, function 5.17 can be seen as
equivalent to the standard ELBO-loss (5.12). As a further step, Fortunato et al. point
out that training of RNNs is oftentimes done with truncated samples (in the course of
generating such samples, x1:T and y1:T are truncated into shorter sequences) and those
samples are combined into mini-batches. Therefore, the loss function for mini-batch
gradient descent in RNNs does not deviate from equation 5.16.

33

5 Bayesian Deep Learning

It is important to point out that in the work for this thesis, the available training
data is not treated as a contiguous sequence, in the sense that it is not split into
truncated samples with the goal to let the network examine each sample exactly once.
As presented in chapter 4, truncated sequences are instead constructed in a way such
that we obtain exactly one prediction for each time-step. Considering that there is also
a "warmup"-phases where the network does not produce any output, it follows that
the network "sees" most of the input vector multiple times during an epoch. For this
reason, despite involving an RNN, the scenerio can be seen as more related to the one
presented by Blundell et al. (2015) than the one presented by Fortunato et al. (2017).

5.5.2 Posterior sharpening

Fortunato et al. propose a technique named posterior sharpening. It aims to make the
posterior distribution more accurate by adding side information about a specific mini-
batch (Fortunato et al. 2017). This technique was also applied in the implementation
for this thesis. Posterior sharpening makes use of a hierarchical posterior of the form

q(w|φ, (x, y)) =
∫

q(w|θ, (x, y)) · q(w|θ)dθ (5.18)

where q(w|θ) corresponds to the original posterior. Let gθ = −∇θ log P(y|θ, x) be
the gradient computed with the likelihood cost of the posterior with respect to the
posterior parameters. Then we compute:

q(w|θ, (x, y)) = N (w|θ − η ◦ gθ , σ2
0 I) (5.19)

were η can be seen as a per-parameter learning rate and σ0 is a scalar hyperparameter.
Altogether, the following algorithm is obtained:

Algorithm 1: BBB with Posterior Sharpening
Sample a mini-batch (x, y) of truncated sequences.
Sample w ∼ N (w|µ, ρ).
Let gw = −∇ log P(y|w, x).
Sample θ ∼ N (θ|w− η ◦ gw, s2

0).
Compute the gradients w.r.t (µ, ρ, η).
Update (µ, ρ, η).

5.6 Evaluating a Bayesian Neural Network

Let us first recall how prediction performance is evaluated in a non-bayesian neural
network for time series forecasting. Let ye be a sequence of ground truth values from

34

5 Bayesian Deep Learning

the test dataset, and let ŷe be a sequence of corresponding predictions. Then prediction
performance can be measured with a performance measure M(y, ŷ). In a bayesian
setting however, the output of the network is not a single value, but can be seen as
a probability distribution like in probabilstic models mentioned in previous sections
of this chapter. However, this probability distribution is not given explicitly, it is
approximated by drawing a certain number of samples. The number of samples taken
per time-step during evaluation is a hyperparameter and does not have to correspond
to the number of samples drawn during training. If 10 samples are drawn during
evaluation, ŷe is a set given by {ŷe

(1), ŷe
(2), ..., ŷe

(10)}. For standard performance metrics,
the mean of ŷe can be taken, the desired performance measure can than be obtained by
computing M(ye, µŷe) in the same way as in a standard neural network. By calculating
the standard deviation σŷe (or alternative deviation measures) it is also possible to
investigate the uncertainty of the network. Chapter 6 gives further details on how
uncertainty estimation is done in order to measure performance of bayesian networks.

35

6 Methodology

6.1 Datasets

6.1.1 The CAMELS-US dataset

Experiments for this thesis were conducted on two datasets. The first one is the
CAMELS-US dataset (Addor et al. 2017, Newman et al. 2014). CAMELS stands for
“Catchment Attributes for Large-Sample Studies”, it is a freely available dataset of
671 catchments across the contiguous United States (CONUS) (Frederik Kratzert et al.
2018). The dataset contains lumped forcings and observed discharge values at a daily
resolution. The available timespan for the data slightly varies between catchments;
however, for all catchments data is available between 1980 and 2010. Within the dataset,
different data sources for the meteorlogical data are available (Daymet: Thornton
et al. 2016, Maurer: Livneh et al. 2013, NLDAS: Xia et al. 2012). All sources take
measurements based on a grid and aggregate the measurements on a catchment-level.
They measure day length, precipitation, shortwave downward radiation, maximum and
minimum temperature, snow-water equivalent and humidity. Kratzert et al. (2018) use
the Daymet data since it has the highest spatial resolution, and exclude the snow-water
equivalent and day length from the set of forcings. As a consequence, 5 forcings are left:
precipitation, shortwave downward radiation, maximum and minimum temperature,
and humidity. We also opted for the same setting in order to draw a comparison to the
standard-LSTM-implementation of Kratzert et al. (2018). In addition to forcings, the
CAMELS-US-dataset provides runoff values for the individual time step. Therefore, the
task can be seen as a kind of rainfall-runoff-task as the model aims to predict runoff
based on meteorological forcings like precipitation.

The 671 catchments are groups into 18 hydrological units (HUCs) that represent
the drainage area of either a major river or the combined drainage area of multiple
rivers (Frederik Kratzert et al. 2018, Seaber et al. 1987). Kratzert et al. (2018) use 4 of
the 18 HUCs, namely the New England region, the Arkansas-White-Red region, the
South Atlantic-Gulf region and the Pacific Northwest region. These 4 HUCs consist
of 241 catchments in total and cover a wide range of meteorological conditions. For
comparability reasons, we also used the same subset of catchments for our experiments.

36

6 Methodology

6.1.2 The Regen catchment

The second dataset used in this thesis consists of meteorological data from the Regen
catchment (Germany) and was provided by the Flood Forecast Center from the Bavarian
Water Authorities (Landesamt für Umwelt (LFU)) (Fiedler 2020). In contrast to the
Daymet source from the CAMELS-US-dataset, the data from the Regen catchment is
not aggregated on a catchment-level. Instead, the data is taken from 55 meteorological
stations and 20 discharge gauges. It is important to point out that discharge stands
for streamflow in this context. Network predictions are evaluated against ground-
truth-streamflow-values as it is often done in rainfall-runoff-modeling (Gauch et al.
2020). All meteorological stations measure the precipitation, 29 stations additionally
measure other meteorological parameters (relative humidity, air temperature, dew point
temperature, global radiation, air pressure, wind speed, sunshine duration) (Fiedler
2020). There can be therefore several available forcings per station. In total, there
are 185 forcings (compared to 5 for CAMELS-US). All forcings are recorded in hourly
resolution between 2003 and 2018. However, we also conducted experiments with
a daily resolution. In the course of pre-processing the data for these experiments,
the forcings are aggregated in different ways to obtain sensible measurements: for
precipitation, global radiation and sunshine duration the cumulative sum is taken, for
discharge, relative humidity, air pressure, dew point temperature and wind speed the
mean value is used. The parameter for the air temperature is duplicated such that the
daily dataset consists of one parameters for the minimum temperature and one for
the maximum temperature. With this modification, the daily dataset consists of 214
forcings. The same re-sampling technique to daily resolution is used by Fiedler (2020).

Within the dataset, gaps of missing data that for instance occur due to system failure
or maintenance are present. Fielder (2020) proposes methods to tackle gaps of missing
data, so called imputation techniques. For daily resolution, Fiedler (2020) suggests the
normal ratio method with respect to distance (NRM_D), for the hourly dataset he suggests
linear regression. He also provides modified datasets with those imputation techniques
pre-applied; we used these datasets for our experiments.

6.2 Summary of applied methods

As a preliminary step, a Bayesian LSTM following the algorithm Bayes by Backprop
through time proposed in Fortunato et al. (2017) is implemented. The implementation
must have the ability to cope with the datasets used in this thesis (CAMELS-US and
Regen catchment) and to pre-process the data in an appropriate way. In the first part
of the experiments, performance on the CAMELS-US dataset was investigated; in the
second part performance on the Regen catchment was examined.

37

6 Methodology

The performance of the obtained models was evaluated using the many-to-one-
architecture described in section 3. Hyperparameter tuning was done with that archi-
tecture, either on a single catchment or on the 27 catchments from HUC 01. As a first
step of hyperparameter tuning, different prior setting and weight initializations were
investigated. The architecture resulting from the previous step was used to determine
a well performing number of hidden units, network layers, batch size, optimizer and
learning rate. We then evaluated the obtained architecture with an additional input
that consists of a periodic signal representing a timespan of one year and examined if
the modification improves performance. Moreover, we examined the optimal number
of samples for Monte Carlo sampling. Finally, we evaluated the obtained architecture
on the set consisting of 241 catchments proposed by Kratzert et al. (2018) and com-
pared the bayesian LSTM (with Bayes by Backprop) with non-bayesian approaches in
terms of accuracy. Moreover, the quality of the uncertainty estimates was examined.
To evaluate the performance of the architecture when predicting multiple time steps
ahead, the architectures described in section 3 were considered. Single-shot-model were
compared to the many-to-many-models on HUC 01; a many-to-many-based model was
also trained and evaluated on the whole set of 241 catchments and compared to the
many-to-one-model. We also considered a network version that considers discharge
as an additional input measure. Both a modified many-to-one-model and a modified
many-to-many-model that consider discharge as input were trained and evaluated on
the aforementioned set of 241 catchments. As a final experiment, the architectures
resulting from the previous step were trained and evaluated on the Regen catchment.
Fiedler (2020) proposes training networks for both daily and hourly resolution re-
spectively with 6 different sets of input features. Following the same approach, we
trained 12 many-to-one-based networks on the Regen catchment and evaluated their
performance.

6.3 Data split for CAMELS-US

For the observed set of CAMELS-US-catchments, meteorological forcing and discharge
data is available from 1980 to 2010. We split the time period into three parts: the period
from 1980 to 1990 was used for training the network, the period from 1990 to 1995
for validation during hyperparameter tuning and the period from 1995 to 2010 as a
test set to evaluate the final architectures resulting from hyperparameter tuning. This
approach differs from the split used by Kratzert et al. (2018) as they do not use a dedi-
cated validation set for hyperparameter tuning. However, not much hyperparameter
tuning was required in the study as they inferred most of the hyperparameters from
experiments on a different dataset. In this study however, it was certainly necessary to

38

6 Methodology

perform hyperparameter tuning; therefore, we decided to use a dedicated validation
set, albeit potentially not optimal for network training as this reduces the amount of
training data (Frederik Kratzert et al. 2018).

6.4 Fundamental implementation

A preliminary step is assembling a suitable implementation for the task. As there
are numerous examples of recent work in the field of deep learning and time series
forecasting that rely on Python as a programming language (Chollet 2017, Frederik
Kratzert et al. 2018, Esposito 2020), the chosen programming language in the work for
this thesis was Python too (more precisely: Python 3.8). In terms of functionality, the
implementation has to fulfill the following criteria:

1. It supports importing and processing the datasets used in this study and making
them suitable for time series forecasting tasks with neural networks. This includes
making them compatible with the models mentioned in chapter 4 (many-to-one,
single shot and many-to-many).

2. It features an implementation of an LSTM network that supports Bayes by Backprop
through time which was introduced in chapter 5. The implementation should both
feature the algorithm presented by Blundell et al. (2015) as well as the posterior
sharpening algorithm introduced by Fortunato et al. (2017).

Esposito (2020) provides an implementation that fulfills criterion (2) to a large extend.
It is realized with the deep learning library PyTorch. The implementation also supports
Bayesian LSTM networks (Esposito 2020). The coarse programmatic structure of such a
network is depicted in figure 6.1.

The raw implementation required several modification to fit the given task. In its
original form, the implementation abstracts from the distinction between complexity
cost and likelihood cost and only reveals the total loss to the interface. However, it is
desirable to distinguish between the two parts of the cost when examining performance.
Moreover, the implementation does not support computing the complexity cost during
the evaluation phase, which we considered a drawback. However, both extensions
could be added to the existing library by minor modifications.

It remained to fulfill criterion (1). Kratzert et al. (2018) provide methods for loading
the CAMELS-US-dataset, truncating it in ways suitable for time series forecasting,
eliminating invalid sequences and scaling it to obtain suitable values for neural network
training. Truncating the data means splitting it into input features (in this task the
forcings) and output features (in this task the only output feature is the discharge) and

39

6 Methodology

Figure 6.1: Programmatic structure of a Bayesian LSTM network. The implementation
provided by Esposito features a module named BayesianLSTM, together
with the fully-connected-layer-module nn.Linear from PyTorch it is possible
to implement a network that consist of a Bayesian LSTM network followed
by a fully connected neural network layer that maps the output vector from
the LSTM network to actual predictions.

to arrange it into input-label-pairs suitable for the model. If for example a many-to-
one-model with a window size of 30 is used, forcings are consulted for all 30 time
steps; in addition, the discharge value of the 30th time step is used as reference. The
process of creating adequate arrays is referred to as re-shaping the data hereafter. For the
many-to-one-model, re-shaping is realized with the following Python-code:

1 num_samples, num_features = x.shape
2
3 x_new = np.zeros((num_samples - seq_length + 1, \
4 seq_length, num_features))
5 y_new = np.zeros((num_samples - seq_length + 1, 1))
6 for i in range(x_new.shape[0]):
7 x_new[i, :, :num_features] = x[i:i + seq_length, :]
8 y_new[i, :] = y[i + seq_length - 1, 0]
9 return x_new, y_new

The above code fragment generates training data from a plain list of forcings x and
a list of discharge values y. Lines 3-5 initialize appropriate data structures. The data
structure for the forcings is 3-dimensional as each training sample consists of a sequence
of time steps, and each such time steps consists of several forcings. The data structure for
the discharge values is 2-dimensional a there is only one discharge value per sequence.

40

6 Methodology

Lines 6-8 fill these data structures with the corresponding data. As all methods are
customized for using them in combination with a neural network implemented in
PyTorch, they could be seamlessly integrated into the implementation provided by
Esposito (2020). After the integration we obtained a holistic implementation that makes
used of PyTorch for the neural networks implementation and of the Python-libraries
pandas and numpy for processing datasets and arrays. Without further modifications,
the methods provided by Kratzert et al. (2018) only support preparing the data for a
many-to-one-based model. To support the remaining models, two aspects have to be
considered.

1. The dataset has to be re-shaped accordingly.

2. The LSTM network has to be modified to support the respective model.

The extensions that were implemented in order to fit the remaining models are
presented in the following section.

6.5 Extensions for predicting multiple time steps

6.5.1 Extension for the single-shot-model

A central aspect for the single-shot-model is that the network should not consider any
input data that belongs to the prediction window. In combination with the criterion
that the model should not produce multiple discharge values for any time steps, this
leads to the following re-shaping procedure:

1 num_samples, num_features = x.shape
2
3 x_new = np.zeros(((num_samples - seq_length + 1) // seq_single_shot, \
4 seq_length, num_features))
5 y_new = np.zeros(((num_samples - seq_length + 1) // seq_single_shot, \
6 seq_single_shot))
7 # Current index in old arrays
8 i = 0
9 for index_new in range(x_new.shape[0]):

10 x_new[index_new, :, :num_features] = x[i:i + seq_length, :]
11 y_new[index_new, :] = \
12 y[i + seq_length - 1:i + seq_length + seq_single_shot - 1, 0]
13 i += seq_single_shot
14 return x_new, y_new

41

6 Methodology

In the above Python-code, seq_single_shot refers to the length of the prediction
window sp, thus to the number of time steps the network predicts. Note that due to the
fact that the network should only produce one prediction per time step there are less
training samples than in the many-to-one-case (if seq_single_shot > 1). This reduction
of the training samples number is achieved by diving by seq_single_shot in lines 3-6
when setting the sizes for the first dimensions of the data structures. Moreover, the data
structure for the discharge values (initialized in lines 5-6) contains multiple discharge
values per training sample.

In terms of the LSTM network implementation, the only modification required when
adapting many-to-one to single shot was changing the output vector size of the final
fully connected layer from 1 to the length of the prediction phase. At this point it
is emphasized again that many-to-one and single shot only differ from a modelling
perspective, not from an architectural one. From an architectural point of view, single
shot can be seen as yet another form of a many-to-one-architecture.

6.5.2 Extension for the many-to-many-model

In the many-to-many-case, the network also considers forcings from the prediction
window. Therefore, data re-shaping differs from the one used in the single-shot-case in
the sense that ground truth discharge values are added before the end of the sequence
of forcings, not after it. The following procedure is used for the many-to-many-case:

1 num_samples, num_features = x.shape
2
3 x_new = np.zeros(((num_samples - seq_length + 1) // seq_single_shot, \
4 seq_length, num_features))
5 y_new = np.zeros(((num_samples - seq_length + 1) // seq_single_shot, \
6 seq_single_shot))
7 # Current index in old arrays
8 i = 0
9 for index_new in range(x_new.shape[0]):

10 x_new[index_new, :, :num_features] = x[i:i + seq_length, :]
11 y_new[index_new, :] = \
12 y[i + seq_length - seq_single_shot:i + seq_length, 0]
13 i += seq_single_shot
14 return x_new, y_new

The initialization of the data structures in lines 3-6 corresponds to the one from
the single shot model. The difference lies in the way the new data structure for the
discharge values is filled in lines 11-12. Instead of filling in discharge values starting

42

6 Methodology

from the last time step of the sequence, they are filled in such a way that they end at
the last time step of the sequence.

In terms of the network architecture, the predictions are now assembled from multiple
output vectors of the LSTM network. This has to be reflected in the implementation
and is realized using a loop that converts each relevant LSTM-output-vector into a
prediction. The following Python-code realizes this procedure:

1 x_, _ = self.lstm_1(x)
2 output = torch.zeros(x.shape[0], self.days_future)
3 counter = -self.days_future
4 while counter <= -1:
5 x_p = x_[:, counter, :]
6 x_p = self.linear(x_p)
7 output[:, counter + self.days_future] = x_p.flatten()
8 counter += 1
9 return output

Line 2 initializes a data structure that collects the predictions for different time steps.
In each step in the loop from line 4 to line 8 a specific output vector from the LSTM
network is extracted (line 5), converted to a prediction using a fully connected layer
(line 6) and finally inserted into the data structure (line 7).

6.6 Extensions for discharge as input measurement

So far, only forcings were considered as input measurements for the network. However,
in a discharge prediction task it is also possible to consider discharge values as inputs
(Gauch et al. 2020). Specially, it is common to consider discharge values from the
warmup window, process-based hydrologic model typically consider discharge values
(or values closely related to discharge) in the calibration period too. An example of
such a process-based model is LARSIM (Large Area Runoff Simulation Model) which
describes continuous runoff processes and is used for the simulation of flood protection
planning, land use changes, and effects of climate change on water resources (Ludwig
et al. 2006). We decided to also experiment with models that take discharge value as
input measurements. In case of the Daymet data from the CAMELS-US dataset, the
same discharge values that were previously used as ground truth can also be used as
input measurements.

Besides adding a new dimension to the input vectors, including discharge values as
input also requires implementing the encoder-decoder-approach introduced in chapter
4: it has to be ensured that the network only considers discharge values from the
warmup window. In a many-to-one-setting for example it is obviously prohibitive

43

6 Methodology

for the network to access the discharge value for the last time step before making
a prediction for that same step. Implementing this approach requires using at least
two LSTM networks that differ in terms of input size. One network, referred to as
the encoder, receives input measurements from the warmup window, another network,
known as the decoder, receives input measurements from the prediction phase and also
produces output values. The following Python-code illustrates a forward pass through
such an encoder-decoder-network:

1 x_warmup = x[:, :x.shape[1] - self.days_future, :]
2 x_pred = x[:, x.shape[1] - self.days_future:, [0, 1, 2, 3, 4, 6]]
3 x_, (h_t_1, c_t_1) = self.lstm_1(x_warmup)
4 if self.num_layers == 2:
5 _, (h_t_2, c_t_2) = self.lstm_2(x_)
6 x_, _ = self.lstm_1_pred(x_pred, (h_t_1, c_t_1))
7 if self.num_layers == 2:
8 x_, _ = self.lstm_2(x_, (h_t_2, c_t_2))
9 x_ = self.linear(x_)

10 x_ = x_.flatten(start_dim=1)
11 return x_

A special feature of the code fragment is that it also supports two LSTM networks
that are "stacked" onto each other (for an introduction on such an architecture refer to
chapter 3). The "top" LSTM network that produces predictions is referred to as lstm_2.
There are two versions of the "bottom" LSTM network: one for the warmup window
(referred to as lstm_1) and one for the prediction window (referred to as lstm_1_pred).
The input arrays for warmup- and prediction windows are created in lines 1-2; it can be
observed that the array for the prediction window consists of one input measurement
less (it does not feature the discharge measurement). In lines 3 and 5, it can be observed
that the last hidden state and cell state of the encoder network (consisting of lstm_1
and potentially lstm_2) are stores in variables. The decoder network (consisting of
lstm_1_pred and potentially lstm_2) is initialized with those stored variables and finally
produced output values.

6.7 Hyperparameter tuning

Hyperparameter tuning refers to the empirical search for beneficial hyperparameters.
As mentioned in chapter 2, performance during hyperparameter tuning is usually
measured on a dedicated validation set. We also followed this approach in this thesis.
During hyperparameter tuning and parts of the final evaluation, a many-to-one-model

44

6 Methodology

Figure 6.2: Overview of hyperparameter tuning steps in the order they were conducted.

was used. Hyperparameter tuning was only conducted for the CAMELS-US-dataset, it
was either done on a single catchment or on the 27 catchments from HUC 01.

6.7.1 Investigation of different prior setting and weight initializations

First, different prior settings and weight initializations were investigated. As a prior, we
restricted our experiments to the scale mixture prior proposed in Blundell et al. (2015).
Therefore, hyperparameters related to the prior are σ1, σ2 and π. With regards to the
initialization of the weights (thus the initialization of the variational posterior) recall
that the posterior is a diagonal Gaussian and can therefore be seen as a combination of
univariate Gaussians. We initialized each of the univeriate Gaussian equally, such as in
total there are only two hyperparameters in terms of the weight initialization: µ and ρ.

6.7.2 Investigation of different batch sizes, learning rates, and LSTM-sizes

The architecture resulting from the previous step was used as a basis to determine a
well performing number of hidden units, network layers, batch size, and a beneficial
optimizer and learning rate. In terms of the hidden units and network size, different
approaches were taken in the field of discharge prediction with LSTM networks.
Kratzert et al. (2018) use two LSTM networks with 20 hidden units each, whilst
in another implementation, the same authors use a single network with 256 units
(Frederik Kratzert et al. 2019). The authors considered this an improvement on the
architecture previously mentioned. These proposals were taken as a starting point for
this work; however, as Bayesian networks can vary heavily from their non-Bayesian
pendants, we considered evaluating different hidden unit numbers an important
part of hyperparameter tuning, although well-performing architectures were already
proposed. Regarding the optimizer, Adam was used in a variety of related tasks

45

6 Methodology

(Esposito 2020, Frederik Kratzert et al. 2018); it was therefore also used in this work if
not stated otherwise. In addition, we also compared it to alternative optimizers during
hyperparameter tuning.

6.7.3 Addition of a yearly periodic signal

In Time series forecasting n.d. a periodic signal representing time is suggested as an
additional input for a time series forecasting task. This is useful as it provides temporal
information to the network and is considered advantageous compared to plain times-
tamps as network inputs, capturing seasonal dynamics is more difficult to impossible
for the network in the latter case. One possibility to include a periodic signal is to
consult evaluations of a sine function scaled such that one period corresponds to a year
in the input data sequence. This approach was also taken in this work.

6.7.4 Investigation of optimal length of prediction phase

We also considered networks making predictions for multiple time step (realized with
the single-shot- or many-to-many-model). It was examined how different lengths
of prediction windows sp affect network performance. A comparison between a
single-shot-model and a many-to-many-model was conducted as we expected to find
performance differences in a side-by-side-comparison between the two models.

6.8 Evaluation of the final architecture

6.8.1 Evaluation on the CAMELS-US-dataset

In this work, the final evaluation consists of training an individual network for each
catchment in a defined set. There are alternative approaches commonly used with
LSTM networks for discharge prediction; those are often related to training a single
network for multiple catchments which is oftentimes referred to as regionalization
(Frederik Kratzert et al. 2018). However, investigating such methods was beyond
the scope of this thesis. For evaluation, we used the set proposed by Kratzert et al.
(2018) that consists of 241 catchments. We consulted three different models: firstly, we
trained a many-to-one-model based on the architecture found during hyperparameter
optimization - this allowed evaluating the resulting networks against the results from
Kratzert et al. (2018) that are based on a non-Bayesian LSTM network. Secondly, we
consulted discharge as an additional input measurement and conducted the same
training on 241 catchments. Lastly, we also evaluated a many-to-many-based model on
the chosen set of 241 catchments.

46

6 Methodology

6.8.2 Evaluation on the Regen catchment

We also conducted experiments on the Regen catchment, Germany. As these experi-
ments are not the primary scope of this thesis, no additional hyperparameter tuning
was done to adapt the model to the Regen catchment. Instead, the many-to-one-based
architecture obtained during hyperparameter tuning for the CAMELS-US-dataset was
re-used for the experiments on the Regen catchment. The experiments are strongly
based on the architectures used by Fielder (2020), whereby he uses a non-bayesian
LSTM network instead of a bayesian one. The normal-holdout-based split into training,
validation and set set was taken over from Fiedler (2020); we used the timespan from
2005 to 2014 as training set and the timespan from 2016 to 2018 as test set. As we did
not conduct hyperparameter tuning, a dedicated validation set was not necessary. In
this case, extending the training set would be sensible; however, we refrained from
doing so in order to better compare our results with the the ones from Fiedler (2020).
In total, there are 185 available input measurements in the dataset for hourly resolution
(214 in the modification for daily resolution). In the course of data preparation (for
example imputation) Fielder (2020) does not consider all measurements useful; after
the pre-processing step, he obtains 75 input measurements for hourly resolution and 86
for daily resolution. As input vectors for the network are still rather high-dimensional,
Fiedler (2020) conducts a sensitivity analysis to investigate which of the input mea-
surements are required for learning. In the course of this analysis, he distinguishes
5 different input feature sets and trains a network for each of these sets. In addition,
he also conducts experiments for a set containing all input features. As all of these
tests are carried out for daily and hourly resolution separately, there are 12 settings
in total. We also followed the same approach which leads us to training 12 bayesian
neural networks for the Regen catchments.

6.8.3 Performance metrics

To evaluate a bayesian neural network, it is necessary to both examine how reasonable
predictions are with regards to the ground truth values (referred to as accuracy in this
thesis) as well as how well the network captures epistemic and aleatoric uncertainty
(referred to as uncertainty estimation). This section presents the used performance
metrics for both evaluation goals.

Performance metrics for accuracy

It is important to point out that there exist several ways of quantifying the error when
evaluating a network. Let yt be a sequence of ground truth values, and let ŷt be a
sequence of corresponding predictions, both taken from the training data set. Further,

47

6 Methodology

let L(y, ŷ) be the loss function that is used to update the network parameters during
training. Then a backward pass during training computes L(yt, ŷt) which can be seen
as a form of quantifying the predictive error that occurs during training. In case of
the bayesian LSTM network used in this task, L is the ELBO-loss introduced in 5. Let
ye and ŷe be sequences of ground truth values and predictions respectively, but taken
from the test data set. It is conceivable to evaluate the quality of ŷe by computing the
same loss function L(ye, ŷe). However, it is equally possible to consider alternative
performance measures M(y, ŷ). In this thesis, multiple performance metrics were used
for evaluation. As it is a common performance measure for regression problems, one of
the measures used in the work for this thesis is the mean squared error (MSE). It is given
by:

MSE(y, ŷ) =
1
n

n

∑
i=1

(y(i) − ŷ(i))2 (6.1)

where n is the length of the sequences y and ŷ. It can be interpreted as a sum of the
"distances" between real and predicted value, whereat each such "distance" is raised
to the power of two. If the effect of the exponentiation is not desired, the root mean
squared error (RMSE) can be used as an alternative. It additionally involves a square
root around the term given by the MSE. Therefore, the RMSE is

RMSE(y, ŷ) =

√
1
n

n

∑
i=1

(y(i) − ŷ(i))2 =
√

MSE(y, ŷ) (6.2)

A metric commonly used in discharge prediction is the Nash–Sutcliffe model efficiency
coefficient (NSE) (Gauch et al. 2020). It is given by:

NSE(y, ŷ) = 1− ∑n
i=1(y

(i) − ŷ(i))2

∑n
i=1(y(i) − y)2

(6.3)

where y is the mean discharge over all ground truth values. The denominator is
therefore the variance of the ground truth values. Therefore one can conclude that
an NSE of 1 corresponds to a perfect predictor (numerator is 0) and an NSE of 0
corresponds to a predictor that constantly predicts the mean of the ground truth values.
Overall, NSE values range from −∞ to 1, where a higher value stands for better
prediction performance.

An alternative to the NSE in the field of discharge prediction is the Kling-Gupta
Efficiency (KGE) (Gupta et al. 2009) Knoben et al. 2019. It is given by

KGE(y, ŷ) = 1−

√
(r− 1)2 +

(
σŷ

σy
− 1
)2

+

(
µŷ

µy
− 1
)2

(6.4)

48

6 Methodology

where r is the linear correlation between predictions and ground truth values, µ is the
mean and σ is the standard deviation. Like in the case of the NSE, a KGE of 1 indicates
perfect prediction performance, and values range from −∞ to 1 too. However, there is
no intuitive interpretation of a KGE of 1 and linguistic terms assigned to specific KGE
ranges (like "good" or "bad") vary between authors (Knoben et al. 2019). Rogelis et al.
(2016) for instance consider model performance to be "poor" for a KGE above 0.5 (to be
precise, negative KGEs are not mentioned) (Rogelis et al. 2016).

A set of other performance metrics used in this thesis is related to the flow-duration
curve (FDC), a visualization method commonly used with time series of discharge
values. When creating a flow-duration curve, the values are sorted descendingly, a
graph then plots observed discharge values against the percentile that exceed that value
(Singh 2015). An example of a flow-duration curve is depicted in Figure 6.3.

Figure 6.3: Example for a flow-duration curve. It can be observed that 20% of the values
exceed a value of 90, whereas 100% of the values exceed a value of 34, which
was therefore the smallest value measured.

Another concept related to the metrics used in this thesis is the percentage bias.
Ranging from −∞ to ∞, its values express whether predictions tend to be smaller or
bigger than ground truth values. It is given by:

PBIAS(y, ŷ) = 100 · ∑n
i=1(ŷ

(i) − y(i))
∑n

i=1 y(i)
(6.5)

From the flow-duration curve, the measures FHV (Peak flow bias), FLV (Low flow bias)
and FMS (Slope of the middle section) are derived (Yilmaz et al. 2008). In the work for
this thesis, the FHV represents the percentage bias of the top 2% values, the FLV the

49

6 Methodology

percentage bias of the bottom 30% values and the FMS the percentage bias of the values
in the middle range from 20% to 70% in the flow-duration curve.

Performance metrics for uncertainty estimation

There are two essential aspects that have to be considered when evaluating how
beneficial uncertainty estimates produced by a network are. Those aspects are reliability
and resolution (Klotz et al. 2020). Reliability expresses how consistent the uncertainty
estimates are with respect to the ground truth values. Recall that a bayesian neural
network typically produced multiple predictions per time step. Now one could imagine
a scenario where the network tends to mostly produce under-estimates. Such a network
would not be considered as very reliable as most of its predictions would likely lie below
the ground truth value. The mean of the predictions for a time step would likely also lie
below the ground truth value. On the other hand, a network whose mean predictions
for specific time steps coarsely match the corresponding ground truth values would
be considered more reliable. A measure for reliability proposed by Klotz (2020) is the
probability plot (more precisely, the probability-probability plot or P-P plot). It plots the
cumulative density functions for ground truth values and obtained predictions against
each other. In this thesis, we decided to measure reliability by constructing a prediction
interval (Tagasovska et al. 2019). A function that determines a prediction interval
takes the different predictions obtained at a single timestep as an input, computes
the empirical mean µ and empirical standard deviation σ of these predictions set and
outputs an interval [µ− cσ, µ + cσ] where c is a hyperparameter. If we switch from
single time steps to time series, such a prediction interval is constructed by combining
the individual prediction intervals for each of the steps. Such a prediction interval can
be denoted with a percentile, an 80% prediction interval for instance indicates that
80% of the ground truth values in the given time series lie within the bounds of the
prediction interval. In the work for this thesis, c was fixed at 2. As this measurement
for reliability is straightforward to interpret, it was used both during hyperparameter
tuning and final network evaluation.

The other aspect that has to be considered when evaluating uncertainty estimates is
resolution. It measures the "sharpness" of the obtained distributions (Klotz et al. 2020).
This can for example be interpreted as the average width of the prediction interval. One
can easily see that the measurement previously introduced is not sufficient to express
resolution. Imagine a scenario where the predictions for single time steps differ heavily
from each other, the obtained prediction interval is therefore very wide. Then it is likely
that this prediction interval has a high percentile (thus most ground truth values will
lie within the prediction interval). However, such a wide prediction interval may have
little to no practical use as it often would make no concrete statement. In the work for

50

6 Methodology

this thesis, the mean absolute deviation, the empirical variance and the empirical standard
deviation are used as measures for resolution (for the latter 2 we use Bessel’s correction).
Those measures are also suggested by Klotz (2020). Empirical variance and empirical
standard deviation are assumed to be already familiar to the reader, the mean absolute
deviation of a set of predictions y is given by

MAD(y) =
1
n

n

∑
i=1
|y(i) − y| (6.6)

where n is the number of predictions in y and y is the mean of the set of predictions.
To all of these measurements a normalization is applied: we divide by the respective
deviation measure (variance, standard deviation or mean absolute deviation) for the
observed values. Therefore, we determine resolution with

res(y) =
D(ỹ)
D(y)

(6.7)

where D is some deviation measurement and D(ỹ) is the mean over all deviations of
the predictions. res ranges from 0 to ∞; a lower value indicates better resolution. At first
glance, it may not be clear how these values correlate: the deviation of observations in
reality, and the mean deviation for network prediction sets of different time steps seem
uncorrelated concepts. However, one may realize that how "narrow" we consider a
prediction interval depends on the amount of fluctuation in the data . This is explained
with a visual example. Figure 6.4 a) shows a prediction interval together with a rather
low variance in the overall observations. Figure 6.4 b) depicts the same prediction
interval, but with a higher variance in the observation. From a graphical point of view,
it becomes clear that resolution is better in b) as this model learns a rather "narrow"
prediction interval despite high variance in the observations.

In the work for this thesis, those measurements are applied during final evaluation
where they are computed for each time step and averaged over the sequence of test
data. Therefore, we obtain one measurement per catchment.

51

6 Methodology

Fi
gu

re
6.

4:
Tw

o
d

if
fe

re
nt

re
so

lu
ti

on
m

ea
su

re
m

en
ts

w
it

h
th

e
sa

m
e

p
re

d
ic

ti
on

in
te

rv
al

.
T

he
tu

rq
u

oi
se

fu
nc

ti
on

re
pr

es
en

ts
th

e
gr

ou
nd

tr
ut

h
ob

se
rv

ed
ov

er
10

ti
m

e
st

ep
s,

th
e

or
an

ge
ra

ng
e

is
th

e
pr

ed
ic

ti
on

in
te

rv
al

.

52

7 Results

In this chapter the result of the conducted experiments during hyperparameter tuning
and final evaluation are presented.

7.1 Hyperparameter tuning

7.1.1 Investigation of different prior setting and weight initialization

As seen in section 5, the Bayes By Backprop-algorithm is not restricted to Gaussian
priors and posteriors. We use a scale mixture prior and a diagonal Gaussian posterior
as proposed by Blundell et al. (2015). Therefore, the prior contains the variances of the
mixture components σ2

1 and σ2
2 . Typically, σ1 > σ2 is chosen as this leads to a heavier

tail in the density than with a plain Gaussian. π is another hyperparameter than can
be set for the scale mixture prior (Blundell et al. 2015).

We performed a grid search over the values π = { 1
4 , 1

2 , 3
4 , 1} and σ1 ∈ {e−2, e−1, 1, 3, 10};

we therefore investigated all values proposed by Blundell (2015). σ2 was kept fixed
at 0.002 to keep the grid search at a computationally feasible level. This is one of the
values proposed by Blundell et al. (2015). Regarding the initialization of the weights
(and therefore the diagonal Gaussian posterior), all means were initialized with 0, for
the initial value of ρ, the values ρ ∈ {−6,−4,−2.5,−1} were investigated (to be precise:
the actual initial values for ρ were drawn from a Gaussian with very small variance
centered at the chosen value). The choice of values for ρ is justified by a suggestion to
initialize the parameter to a small value (Bayes by Backprop from scratch 2017) and with
additional empirical experiments that indicated that ρ ≥ 0 is not beneficial for network
learning in the given task. During this experiment, the other hyperparameters were
set arbitrarily. We used a network architecture consisting of 2 hidden layers with 20
units each, a batch size of 256 and a learning rate of 0.004. To keep the computations
feasible, we only considered input sequences of length 30 (approximately one month in
our case). We trained all networks for 50 epochs as this is the default value suggested
by Kratzert et al. (2018) for a non-bayesian LSTM network.

In order to choose the most beneficial setting of hyperparameters, we considered the
NSE over the validation set after the last epoch, the likelihood cost of the validation
loss and the quality of the prediction interval. In the course of this evaluation, the hy-

53

7 Results

perparameter assignment of σ1 = 10, π = 1, ρ = −2.5 showed the highest performance
regarding the observed criteria as it was the only setting that achieved a validation NSE
of above 0.8 (0.85), whilst achieving a prediction interval of over 60% (65%). Therefore,
this setting was used in the further course of the experiments.

7.1.2 Investigation of different batch sizes, learning rates,
LSTM-network-sizes and optimizer

In a next step, we investigated different batch sizes for training (thus numbers of
performed backpropagation steps per epoch), learning rates and LSTM-network-sizes.
In terms of the batch size, we investigated the values {128, 256, 512}. With regards
to the learning rate, values in the magnitude of 10−4 or smaller were observed to
not ensure fast-enough convergence in a preliminary experiment; therefore, we only
investigated 10−3 and 4 · 10−3. 10−3 is also the standard value suggested by Kratzert
et al. (2018). In terms of the LSTM-network-size, we investigated architectures with 1
and 2 layers and 20, 50 or 256 values each. Using a 2-layer architecture with 20 hidden
units per layer is suggested by Kratzert et al. (2018), while a 1-layer-architecture with
256 hidden units is suggested by Kratzert et al. (2019), both for non-bayesian LSTM
networks for rainfall-runoff modeling.

We considered the same performance measures as in the previous experiment. In this
step we found the setting with a batch size of 256, a learning rate of 0.004 and a single
network layer with 50 hidden units most beneficial. It yielded a validation likelihood
cost of 0.0021 (mean over all setting 0.0023), validation NSE of 0.86 (mean over all
settings 0.80) and 88% of the ground truth values lying in the confidence interval (mean
over all settings 59%). As an additional task, we investigates whether the optimizers
Adagrad and stochastic gradient descent (standard version without modifications) are an
alternative to Adam. However, we found both to perform significantly worse than Adam.

7.1.3 Addition of a yearly periodic signal

Next, we added a periodic signal that represents a year to the input and examined
whether the modification improves network performance. In order to examine this,
we trained the previously obtained architecture on the 27 catchments from HUC 01
with and without said modification. We examined average validation likelihood cost,
validation NSE and the quality of prediction intervals. With regard to those measures,
no significant difference could be observed among the two variants. Nevertheless, we
decided to retain the periodic signal as part of the input in future experiments. It adds
a reasonable source of learning with little computational overhead.

54

7 Results

Model sp Mean MSE Mean NSE Mean values in conf.

single-shot 8 4.33 0.34 56%
many-to-many 8 2.65 0.60 75%

single-shot 16 5.00 0.24 41%
many-to-many 16 3.13 0.52 69%

single-shot 32 5.38 0.18 37%
many-to-many 32 3.20 0.51 70%

Table 7.1: Results from the comparison of the single-shot- and many-to-many-
architecture for predicting multiple time steps. All measurements refer
to the performance on the test set.

7.1.4 Investigation of different numbers of samples

As a final step of hyperparameter tuning, we investigated different numbers of samples
for Monte Carlo sampling of the Bayes-by-Backprop-algorithm. The investigated values
were {1, 2, 5, 10}, which are the values suggested by Blundell et al. (2015). We found
taking 1 or 2 samples to perform significantly worse than taking 5 or 10 samples;
therefore, we considered 5 samples the best trade-off between prediction accuracy and
computational feasibility.

7.1.5 Comparison between single-shot- and many-to-many-based models

We introduced two models for predicting multiple time steps ahead as already men-
tioned in section 3: the single shot model and the many-to-many model. We compared
their performance by evaluating different prediction window sizes: 8, 16 and 32. Each
of those settings was trained for all 27 catchments in HUC 01. With respect to the
previouly obtained hyperparemters, the number of epochs was increased to 100 in
order to provide a longer training phase, as fewer forward steps are performed with
these models. Table 7.1 depicts the obtained measurements.

It can be observed that with an increasing size of the prediction window, performance
deteriorates more significantly when the single shot model is used. This is expected
behavior as said model does not receive any input measurements after the start of
the prediction window, whereas the many-to-many-model is allowed to consider such
measurements. Table 7.2 summarized the results of the conducted hyperparameter
tuning.

55

7 Results

Hyperparameter(s) Final setting(s)

Prior setting: σ1, σ2 π 10, 0.002, 1
Posterior initialization: ρ -2.5

Batch size 256
Learning rate 0.004

Number of network layers 1
Number of hidden units per layer 50

Optimizer Adam
Yearly periodic signal (sin) yes

Number of samples for MC sampling 5
sp for many-to-many 8

Table 7.2: Resulting architecture from hyperparameter tuning.

7.2 Final evaluation for CAMELS-US

The obtained architecture from hyperparameter tuning was evaluated on the subset
consisting of 241 catchments proposed by Kratzert et al. (2018). For the final evaluation,
an individual model per catchment was trained for 50 epochs and evaluated on the
test set every 10 epochs. We tested three variations of the final architecture: a plain
many-to-one-model, a many-to-one-model that additionally takes discharge values
from the warmup window as input, and the most beneficial model for predicting
multiple time steps (according to hyperparameter tuning).

7.2.1 Many-to-one-model

Accuracy

In this experiment we trained one many-to-one-based model per catchment with the
architecture obtained during hyperparameter tuning. Over all catchments, a mean
test set NSE of 0.66 was observed at epoch 50. The model therefore outperformed
the standard LSTM presented by Kratzert et al. (2018) with regard to the NSE, as the
non-bayesian network reached a mean NSE of 0.63. In terms of the median test set
NSE, we found a value of 0.69 over all catchments. This was also higher than the value
0.65 observed by Kratzert et al. (2018). With regards to the test set KGE, we observed a
mean value of 0.70 (the median was 0.70 too).

We also observed that the models heavily underestimate low flow values; this is
reflected in the value for the FLV (mean value: -311 excluding three unrepresentative

56

7 Results

outlier likely caused by negative predicted discharge). The mean FMS and FHV
values (-163 and -15 respectively) indicate that higher discharge values also tend to get
underestimated, but less significantly than low flow values. Such a tendency was also
observed by Kratzert et al. (2018) and was substantiated with the fact that the FLV is
highly sensitive to the minimum predicted discharge value; as the predicted discharge
can easily drop to diminutive numbers or zero, low values for the FLV are common. A
way to tackle this problem is to set a lower bound for the predicted discharge value: the
value should not undercut the minimum observed discharge value from the training
set (Frederik Kratzert et al. 2018). Admittedly, this possibility was not investigated and
is proposed as a further step to improve the architecture.

Figure 7.1: Hydrograph for the test set predictions (many-to-one without discharge as
input) of a catchment in the New England region in the north-east (catch-
ment id: 01013500). The region depicted in gray represents the prediction
interval.

For the remaining measurements related to accuracy one may refer to figure 7.3.

Uncertainty estimation

In terms of reliability, the networks predicted a 75% prediction interval on average after
50 epochs of training. Figure 7.2 depicts the average prediction interval qualities over
the training steps. It can be observed that on average, the networks effectively learn
to become more consistent with the ground truth value as training proceeds. It can
also be observed that very inconsistent prediction intervals (30% prediction intervals
and below) only occurred at the beginning of training. However, it was also observed
that very high prediction interval qualities (96%) are only reached at around epoch 13

57

7 Results

and not at the end of training. This can be explained by a tendency of the networks
to predict broad intervals at the beginning and sharpen them as training proceeds.
Most likely, due to the network’s inability to correctly predict outliers in the data, it is
difficult to produce prediction intervals with an accuracy of 90% or above.

Figure 7.2: Average prediction interval qualities over the training steps. The green line
represents the mean, the light green area represents the range between the
minimum and maximum values observed over the training steps.

Another delightful result with regards to the prediction intervals is that they seem
significantly broader in a high flow regions that are generally difficult for the network
to exactly capture as they consist numerous outliers. This was observed on a number
of exemplary hydrographs from different catchments.

In terms of resolution, a normalized mean absolute deviation of 0.20 over all catch-
ments after training epoch 50 was observed. As this value is near 0 and less than 1, we
verified that the network prediction do not only provide decent reliability, but also high
resolution.

7.2.2 Many-to-many-model with discharge

With discharge as an additional input measurement, significantly better performance
was observed in terms of the observed measurements. This behavior is expected as
discharge usually has a high auto-correlation (Gauch et al. 2020). The mean test set
NSE after 50 training epochs over all catchments was 0.81 (median 0.85), the mean test
set KGE after training was 0.82 (median 0.85). Also with respect to the uncertainty
estimation we observed improvements to the models without discharge as input. On
average, the network produced a 90% prediction interval after 50 epochs of training;
also here, an increase of the prediction interval reliability could be observed as training
proceeded. We also observed that the measurements regarding resolution were superior

58

7 Results

Figure 7.3: Example for a prediction interval in high flow region. It can be observed that
the prediction interval is significantly broader at the high flow region than
in surrounding regions with lower flow. Because of the broad prediction
interval, most of the ground truth values in the high flow region fall into
the predicted range, although they could not be captured exactly.

to the ones for the model without discharge as input. A normalized mean absolute
deviation of 0.17 over all catchments was observed after training.

For hydrographs that show the predictions of these networks for two exemplary
catchments the reader may refer to figure 7.4 and figure 10.1 in Appendix B.

7.2.3 Many-to-many-model

A model that is able to predict multiple time steps was also trained for each catchment.
We chose the many-to-many-based model with a prediction window size of 8 as we
considered it a "trade-off" between high accuracy and still being able to make multiple
discharge predictions in one forward step. To enhance performance, discharge was
consulted as an input measurement also in this case. In contrast to the previous
experiments, the networks were trained for 100 epochs instead of 50 as in preliminary
experiments many-to-many-based networks were found to improve their performance
and to not overfit when such a large number of training epochs was used. In terms
of accuracy, the resulting networks are between the two approaches investigated
previously. The mean test set NSE after 100 training epochs was 0.69 (median 0.73),
the mean test set KGE after training was 0.70 (median 0.73). The produced prediction
intervals can also be said to be middle ground between the previous models. The many-
to-many-models produced an 85% prediction interval on average after training. For
hydrographs that show the predictions of these networks for two exemplary catchments

59

7 Results

Figure 7.4: Hydrograph for the test set predictions (many-to-one with discharge as in-
put) of a catchment in the New England region in the north-east (catchment
id: 01013500). The region depicted in gray represents the prediction interval.

refer to figure 10.2 and figure 10.3 in Appendix B.

7.3 Experiments on the Regen catchment

As mentioned in chapter 6, our experiments for the Regen catchments primarily aim
to provide a comparison to the results from Fiedler (2020), such that a comparison
between a non-bayesian LSTM network and a bayesian LSTM network with similar
conditions is given. In the course of the experiments, we therefore investigated the
accuracy measurements that are also used by Fielder (2020): MSE, RMSE and NSE.
In addition, we present our results concerning uncertainty estimation (reliability and
resolution). The results are shown in tables 7.5 and 7.6.

As equally done by Fiedler (2020) we trained our networks for 25 epochs. However,
we observed that training only for 5 epochs yielded better performance on average for
hourly resulution: therefore, the measurements for hourly resolution are the ones taken
after the 5th training epoch. The results show that the bayesian network outperforms
the non-bayesian one for most feature sets in terms of accuracy (MSE, RMSE and NSE).
Sometimes, the bayesian network achieves significantly higher values than the non-
bayesian pendant. With daily resolution, our network outperformed the non-bayesian
one for all feature set; with hourly resolution, feature sets 3 and 4 showed slightly
better performance with the non-bayesian network. At this point we again point out
that the two network differ in terms of hyperparameters. It was not investigated

60

7 Results

Measurement M1 M2 M3

Test loss 8.12 16.36 136.46
Test likelihood cost 0.01 0.01 0.04
Test complexity cost 8.10 16.35 136.42

Test NSE 0.66 0.81 0.69
Test α-NSE 0.82 0.88 0.80
Test β-NSE -0.0002 0.003 -0.005
Test KGE 0.69 0.82 0.70
Test MSE 5.11 3.31 5.24

Test RMSE 1.84 1.39 1.82
Test FHV -15.15 -9.76 -19.81
Test FLV -379.14 -390.65 -418.16
Test FMS -8.10 -12.23 5.66

Table 7.3: Measurements related to likelihood performance for all three experiments
(M1: many-to-one, M2: many-to-one with discharge, M3: many-to-many
with discharge).

Measurement M1 M2 M3

Prediction interval 75% 91% 80%
Standard deviation (pred) 0.48 0.42 0.52
Standard deviation (obs) 3.58 3.58 3.58

Standard deviation (normalized) 0.13 0.12 0.15
Variance (pred) 0.56 0.40 0.57
Variance (obs) 20.79 20.79 20.79

Variance (normalized) 0.027 0.019 0.027
Mean absolute deviation (pred) 0.38 0.33 0.41
Mean absolute deviation (obs) 1.94 1.94 1.94

Mean absolute deviation (normalized) 0.20 0.17 0.21

Table 7.4: Measurements related to uncertainty estimation (M1: many-to-one, M2:
many-to-one with discharge, M3: many-to-many with discharge).

61

7 Results

further if the accuracy difference is due to Bayes by Backprop or due to the different
hyperparameters. Nevertheless, it can be concluded that Bayes by Backprop and the
specific architecture we found during previous hyperparameter tuning are suitable for
simulation tasks on the Regen catchment and lead to decent accuracy.

We also took measurements related to uncertainty estimation. As it was the case for
the experiments on the CAMELS-US-dataset, we lack comparative values in this case.
The most reliable prediction interval for daily resolution is a 87% prediction interval for
features set 4; the most reliable one for hourly resolution is a 99% prediction interval for
feature set 2. The normalized mean average deviations are in the interval [0.09, 0, 33] for
all experiments (mean 0.19). Based on these measurements, we conclude that also on
the Regen catchment Bayes by Backprop is able to learn sensible uncertainty estimates.

Overall, feature set 2 with hourly resolution was the best performing experiment. It
performed best with respect to all taken measurement. The hydrograph with predictions
from that network is shown in figure 7.6. Restricting ourselves to daily resolution,
feature set 4 yielded the best performance. The hydrograph with corresponding
predictions is shown in figure 7.5 in Appendix B.

62

7 Results

D
ai

ly
 re

so
lu

tio
n

A
ll

in
pu

t f
ea

tu
re

s
Fe

at
ur

e
se

t 1
Fe

at
ur

e
se

t 2

no
n-

ba
ye

si
an

 L
ST

M

ba
ye

si
an

 L
ST

M
no

n-
ba

ye
si

an
 L

ST
M

ba

ye
si

an
 L

ST
M

no
n-

ba
ye

si
an

 L
ST

M

ba
ye

si
an

 L
ST

M

M
SE

11
1.
44
5

68
.5
87

91
.7
59

35
.0
95

98
.4
26

35
.1
96

R
M

SE
10
.5
57

8.
28
2

9.
57
9

5.
92
4

9.
92
1

5.
93
3

N
SE

0.
74
1

0.
84
0

0.
78
7

0.
91
9

0.
77
1

0.
91
8

Pr
ed

ic
tio

n
In

te
rv

al
-

65
%

-
78
%

-
81
%

N
or

m
al

iz
ed

 M
A

D
-

0.
22

-
0.
19

-
0.

16

Fe
at

ur
e

se
t 3

Fe
at

ur
e

se
t 4

Fe
at

ur
e

se
t 5

no
n-

ba
ye

si
an

 L
ST

M

ba
ye

si
an

 L
ST

M
no

n-
ba

ye
si

an
 L

ST
M

ba

ye
si

an
 L

ST
M

no
n-

ba
ye

si
an

 L
ST

M

ba
ye

si
an

 L
ST

M

M
SE

60
.4
01

51
.7
39

58
.1

83
29

.2
66

17
6.
35
4

11
3.
47
4

R
M

SE
7.
77
2

7.
19
3

7.
62

8
5.

41
13
.2
80

10
.6
52

N
SE

0.
86
0

0.
88
0

0.
86

5
0.

93
2

0.
59
0

0.
73
6

Pr
ed

ic
tio

n
In

te
rv

al
-

80
%

-
87

%
-

67
%

N
or

m
al

iz
ed

 M
A

D
-

0.
22

-
0.
21

-
0.
26

Fi
gu

re
7.

5:
R

es
u

lt
s

fo
r

d
ai

ly
re

so
lu

ti
on

.
T

he
no

n-
ba

ye
si

an
L

ST
M

ne
tw

or
k

re
fe

rs
to

th
e

im
pl

em
en

ta
ti

on
of

Fi
ed

le
r

(2
02

0)
,t

he
ba

ye
si

an
LS

T
M

re
fe

rs
to

ou
r

im
pl

em
en

ta
ti

on
w

it
h

Ba
ye

s
by

Ba
ck

pr
op

.T
he

ce
lls

de
pi

ct
ed

in
re

d
ar

e
th

e
op

tim
al

va
lu

es
ob

se
rv

ed
pe

r
m

ea
su

re
m

en
ta

cr
os

s
al

lf
ea

tu
re

se
ts

.A
ll

m
ea

su
re

m
en

ts
re

la
te

to
th

e
te

st
se

t.

63

7 Results

H
ou

rly
 re

so
lu

tio
n

A
ll

in
pu

t f
ea

tu
re

s
Fe

at
ur

e
se

t 1
Fe

at
ur

e
se

t 2

no
n-

ba
ye

si
an

 L
ST

M

ba
ye

si
an

 L
ST

M
no

n-
ba

ye
si

an
 L

ST
M

ba

ye
si

an
 L

ST
M

no
n-

ba
ye

si
an

 L
ST

M

ba
ye

si
an

 L
ST

M

M
SE

9.
91
5

3.
50
4

5.
00

0
2.
22
7

7.
95
7

2.
04

4
R

M
SE

3.
14
9

1.
87
2

2.
23

6
1.
49
2

2.
82
1

1.
43

0
N

SE
0.
97
6

0.
99
1

0.
98

8
0.
99
5

0.
98
1

0.
99

5
Pr

ed
ic

tio
n

In
te

rv
al

-
90
%

-
97
%

-
99

%
N

or
m

al
iz

ed
 M

A
D

-
0.
10

-
0.
11

-
0.

09

Fe
at

ur
e

se
t 3

Fe
at

ur
e

se
t 4

Fe
at

ur
e

se
t 5

no
n-

ba
ye

si
an

 L
ST

M

ba
ye

si
an

 L
ST

M
no

n-
ba

ye
si

an
 L

ST
M

ba

ye
si

an
 L

ST
M

no
n-

ba
ye

si
an

 L
ST

M

ba
ye

si
an

 L
ST

M

M
SE

60
.2
72

67
.1
46

33
.3
61

42
.9
32

29
4.
30
3

15
3.
13
8

R
M

SE
7.
76
4

8.
19
4

5.
77
6

6.
55
2

17
.1
55

12
.3
75

N
SE

0.
85
6

0.
84
0

0.
92
0

0.
89
8

0.
29
7

0.
62
4

Pr
ed

ic
tio

n
In

te
rv

al
-

69
%

-
92
%

-
57
%

N
or

m
al

iz
ed

 M
A

D
-

0.
18

-
0.
20

-
0.
33

Fi
gu

re
7.

6:
R

es
ul

ts
fo

r
ho

ur
ly

re
so

lu
ti

on
.T

he
no

n-
ba

ye
si

an
LS

TM
ne

tw
or

k
re

fe
rs

to
th

e
im

pl
em

en
ta

ti
on

of
Fi

ed
le

r
(2

02
0)

,t
he

ba
ye

si
an

LS
T

M
re

fe
rs

to
ou

r
im

pl
em

en
ta

ti
on

w
it

h
Ba

ye
s

by
Ba

ck
pr

op
.T

he
ce

lls
de

pi
ct

ed
in

re
d

ar
e

th
e

op
tim

al
va

lu
es

ob
se

rv
ed

pe
r

m
ea

su
re

m
en

ta
cr

os
s

al
lf

ea
tu

re
se

ts
.A

ll
m

ea
su

re
m

en
ts

re
la

te
to

th
e

te
st

se
t.

64

7 Results

Figure 7.7: Hydrograph for Regen catchment - Feature set 2 (hourly resolution). The
region depicted in gray represents the prediction interval.

65

8 Conclusion and Outlook

Bayesian neural networks and especially the algorithm Bayes by Backprop (through time)
are suitable for the task of rainfall-runoff modeling. They reach comparable accuracy to
non-bayesian pendants and sometimes even outperform them. Moreover, we showed
that bayesian neural networks produce sensible uncertainty estimates for discharge
values in terms of reliability and resolution. As in the hydrologic domain one is
typically interested in uncertainty estimates rather than in single values, we consider
bayesian neural networks an important contribution to the field of data-driven models
for hydrology.

The focus of this work was on developing a general architecture for the time series
forecasting task, primarily an LSTM-network architecture that produces discharge
predictions for one time step in the future was investigated. We also tested alternatives
that are able to produce multiple predictions. However, it remains to point out that
there exist a number of other architectures that could be developed for that specific task.
For instance, it is possible to set up LSTM-networks based on autoregressive models.
These models consider predictions made in earlier time steps as network inputs for later
time steps. Recall that in the encoder-decoder-approach introduced in chapter 4, the
decoder was not allowed to consider discharge. Following an autoregressive approach,
although the decoder would still not consider observed discharge, it would be allowed
to consider forecasted discharge values from previous time steps. Such a behavior
is particularly interesting for discharge prediction as it allows to mimic traditional
process-based models (Ludwig et al. 2006). Therefore, bayesian autoregressive models
are proposed as an attractive research area for future work.

Moreover, it is important to point out that Bayes by Backprop is not the only approach
to realize bayesian neural networks. A straightforward approach named Monte Carlo
Dropout has proven to be a valid alternative (Gal et al. 2016). Due to its simplicity and
possibly higher computational performance, we consider it a promising alternative for
rainfall-runoff modeling.

In research, LSTM networks were improved with a mechanism named attention
(Bahdanau et al. 2015). It is a technique specially suitable for longer input sequences,
each item in the output sequence is conditional on items from the input sequence. In
other words, each time an output vector is generated, the network chooses the subset of
hidden states that it considers most relevant and produced the output based on those

66

8 Conclusion and Outlook

states (Brownlee 2019, Bahdanau et al. 2015). A neural network architecture present in
recent research that further builds on the attention-mechanism is the transformer. It is
solely based on attention and does not include recurrence (Vaswani et al. 2017). This
architecture typically outperforms recurrent neural networks in machine translation
tasks and also showed high performance in time series forecasting tasks (Wu et al. 2020).
There also exists work that adapted the approach for bayesian inference (Xue et al.
2021). Therefore, we consider transformer-based bayesian networks for rainfall-runoff
modeling a promising field for future research.

Another point that was beyond the scope of this thesis concerns static attributes of
catchments. In rainfall-runoff modeling tasks, it is common to incorporate geophysical
information about catchments next to the forcings into the model input. Kratzert et al.
(2019) showed that this can also be applied to data-driven models like LSTM networks
and proposed an LSTM-network-architecture that achieves superior accuracy than
architectures that do not consult static attributes. Incorporating these attributes into a
bayesian setting is yet another aspect we leave for future work.

67

9 Appendix A - LSTM networks for
hydrology

Figure 9.1: Many-to-one-model for discharge prediction. In this representation, a sin-
gle forward step of the network is predicted. In practice, the network is
trained using mini-batches that consist of several windows. The last cell in
the unfolded representation is used to obtain a single prediction for each
window.

68

9 Appendix A - LSTM networks for hydrology

Figure 9.2: Single-shot-model for discharge prediction. In this representation, the
prediction phase length is 5, thus 5 values are predicted into the future.

69

9 Appendix A - LSTM networks for hydrology

Figure 9.3: Many-to-many-model for discharge prediction. In this representation, the
prediction phase length is 3, thus 3 values are predicted into the future.

70

10 Appendix B - Hydrographs

Figure 10.1: Hydrograph for the test set predictions (many-to-one with discharge as
input) of a catchment in the Arkansas-White-Red region in the north-east
(catchment id: 07149000). The region depicted in gray represents the
prediction interval.

71

10 Appendix B - Hydrographs

Figure 10.2: Hydrograph for the test set predictions (many-to-many) of a catchment in
the New England region in the north-east (catchment id: 01013500). The
region depicted in gray represents the prediction interval.

72

10 Appendix B - Hydrographs

Figure 10.3: Hydrograph for the test set predictions (many-to-many) of a catchment in
the Arkansas-White-Red region in the north-east (catchment id: 07149000).
The region depicted in gray represents the prediction interval.

73

10 Appendix B - Hydrographs

Figure 10.4: Hydrograph for Regen catchment - Feature set 4 (daily resolution). The
region depicted in gray represents the prediction interval.

74

11 Appendix C - Histograms with
probability distributions

Figure 11.1: Histograms that depict the probability distributions of predictions and
observation. The left figure depicts a standard histogram where the y-axis
is normalized to match a probability distribution. The right figure depicts
a cumulative density function.

75

11 Appendix C - Histograms with probability distributions

Figure 11.2: Histograms that depict the probability distributions of predictions and
observation.

Figure 11.3: Histograms that depict the probability distributions of predictions and
observation.

76

11 Appendix C - Histograms with probability distributions

Figure 11.4: Histograms that depict the probability distributions of predictions and
observation.

77

List of Figures

2.1 Simple Neural Network . 5
2.2 Simple Neural Network in matrix-vector-notation 6
2.3 Backpropagation in simple computational graph 8

3.1 Recurrent neural network . 13
3.2 LSTM cell . 14
3.3 Comparison between many-to-one and many-to-many 17
3.4 Recurrent neural network with multiple layers 17

4.1 Sliding window . 21
4.2 Encoder-decoder-model . 23

5.1 Regression example for probabilistic model 25
5.2 Alternative fit to the training set . 26
5.3 Concept Bayesian NN . 32

6.1 Bayesian LSTM network . 40
6.2 Overview of hyperparameter tuning steps 45
6.3 Exemplary flow-duration curve . 49
6.4 Two different resolution measurements with the same prediction interval 52

7.1 Hydrograph (many-to-one) for catchment 01013500 57
7.2 Average prediction interval . 58
7.3 Example for a prediction interval in high flow region 59
7.4 Hydrograph (many-to-one with discharge) for catchment 01013500 . . . 60
7.5 Results for daily resolution . 63
7.6 Results for hourly resolution . 64
7.7 Regen catchment - Feature set 2 (hourly resolution) 65

9.1 Many-to-one-model for discharge prediction 68
9.2 Single-shot-model for discharge prediction 69
9.3 Many-to-many-model for discharge prediction 70

10.1 Hydrograph (many-to-one with discharge) for catchment 07149000 . . . 71

78

List of Figures

10.2 Hydrograph (many-to-many) for catchment 01013500 72
10.3 Hydrograph (many-to-many) for catchment 07149000 73
10.4 Regen catchment - Feature set 4 (daily resolution) 74

11.1 Histograms (many-to-one) for catchment 01013500 75
11.2 Histograms (many-to-one with discharge) for catchment 01013500 . . . 76
11.3 Histograms (hourly resolution, feature set 2) for Regen catchment . . . 76
11.4 Histograms (daily resolution, feature set 4) for Regen catchment 77

79

List of Tables

7.1 Results from the comparison of the single-shot- and many-to-many-
architecture for predicting multiple time steps. All measurements refer
to the performance on the test set. 55

7.2 Resulting architecture from hyperparameter tuning. 56
7.3 Measurements related to likelihood performance for all three experiments

(M1: many-to-one, M2: many-to-one with discharge, M3: many-to-many
with discharge). 61

7.4 Measurements related to uncertainty estimation (M1: many-to-one, M2:
many-to-one with discharge, M3: many-to-many with discharge). . . . 61

80

Bibliography

Addor, N. et al. (2017). The CAMELS data set: catchment attributes and meteorology for
large-sample studies. Boulder, CO. doi: 10.5065/D6G73C3Q.

Bahdanau, Dzmitry et al. (2015). “Neural machine translation by jointly learning to
align and translate.” In: 3rd International Conference on Learning Representations, ICLR
2015 - Conference Track Proceedings, pp. 1–15. arXiv: 1409.0473.

Bayes by Backprop from scratch (2017). url: https://gluon.mxnet.io/chapter18_
variational-methods-and-uncertainty/bayes-by-backprop.html.

Blundell, Charles et al. (2015). “Weight uncertainty in neural networks.” In: 32nd
International Conference on Machine Learning, ICML 2015 2, pp. 1613–1622. arXiv: 1505.
05424.

Brownlee, Jason (2017). What is the Difference Between Test and Validation Datasets? url:
https://machinelearningmastery.com/difference-test-validation-datasets/.

– (2018). Deep Learning for Time Series Forecasting. - Predict the Fu- ture with MLPs, CNNs
and LSTMs in Python. v1.4.

– (2019). Attention in Long Short-Term Memory Recurrent Neural Networks - Machine
Learning Mastery. url: https://machinelearningmastery.com/how-does-attention-
work-in-encoder-decoder-recurrent-neural-networks.

Bungartz, H.-J. et al. (2014). Modeling and Simulation - An Application-Oriented Introduc-
tion.

Chollet, François (2017). Deep Learning with Python, p. 384.
Choromanska, Anna et al. (2015). “The loss surfaces of multilayer networks.” In: Journal

of Machine Learning Research 38, pp. 192–204. issn: 15337928. arXiv: 1412.0233.
Dauphin, Yann N. et al. (2014). “Identifying and attacking the saddle point problem

in high-dimensional non-convex optimization.” In: Advances in Neural Information
Processing Systems 4.January, pp. 2933–2941. issn: 10495258. arXiv: 1406.2572.

Dürr, Oliver et al. (2020). Probabilistic Deep Learning With Python, Keras and TensorFlow
Probability. isbn: 9781617296079.

Esposito, Piero (2020). BLiTZ - Bayesian Layers in Torch Zoo (a Bayesian Deep Lear-
ing library for Torch). https://github.com/piEsposito/blitz- bayesian- deep-
learning/.

Fiedler, Leon (2020). “Sensitivity analysis of a deep learning model for discharge pre-
diction in the Regen catchment.” Master’s Thesis. Technische Universität München.

81

https://doi.org/10.5065/D6G73C3Q
http://arxiv.org/abs/1409.0473
https://gluon.mxnet.io/chapter18_variational-methods-and-uncertainty/bayes-by-backprop.html
https://gluon.mxnet.io/chapter18_variational-methods-and-uncertainty/bayes-by-backprop.html
http://arxiv.org/abs/1505.05424
http://arxiv.org/abs/1505.05424
https://machinelearningmastery.com/difference-test-validation-datasets/
https://machinelearningmastery.com/how-does-attention-work-in-encoder-decoder-recurrent-neural-networks
https://machinelearningmastery.com/how-does-attention-work-in-encoder-decoder-recurrent-neural-networks
http://arxiv.org/abs/1412.0233
http://arxiv.org/abs/1406.2572
https://github.com/piEsposito/blitz-bayesian-deep-learning/
https://github.com/piEsposito/blitz-bayesian-deep-learning/

Bibliography

Fortunato, Meire et al. (2017). “Bayesian recurrent neural networks.” In: arXiv, pp. 1–14.
issn: 23318422. arXiv: 1704.02798.

Gal, Yarin et al. (2016). “Dropout as a Bayesian approximation: Representing model
uncertainty in deep learning.” In: 33rd International Conference on Machine Learning,
ICML 2016 3, pp. 1651–1660. arXiv: 1506.02142.

Gauch, Martin et al. (2020). “A Data Scientist’s Guide to Streamflow Prediction.” In:
arXiv. issn: 23318422. arXiv: 2006.12975.

Gauch, Martin et al. (2021). “Rainfall-runoff prediction at multiple timescales with a
single Long Short-Term Memory network.” In: Hydrology and Earth System Sciences
25.4, pp. 2045–2062. issn: 16077938. doi: 10.5194/hess- 25- 2045- 2021. arXiv:
2010.07921. url: https://hess.copernicus.org/articles/25/2045/2021/.

Glen, Stephanie (n.d.). Probabilistic: Definition, Models and Theory Explained. url: https:
//www.statisticshowto.com/probabilistic/.

Goodfellow, Ian J. et al. (2015). “Qualitatively characterizing neural network optimiza-
tion problems.” In: 3rd International Conference on Learning Representations, ICLR 2015
- Conference Track Proceedings. arXiv: 1412.6544.

Goodfellow, Ian et al. (2016). Deep Learning. http://www.deeplearningbook.org. MIT
Press.

Graves, Alex (2011). “Practical Variational Inference for Neural Networks.” In: pp. 1–5.
Guo, Jiang (2013). “BackPropagation Through Time.” In: Manuscript 1, pp. 1–6.
Gupta, Hoshin V. et al. (2009). “Decomposition of the mean squared error and NSE

performance criteria: Implications for improving hydrological modelling.” In: Journal
of Hydrology 377.1-2, pp. 80–91. issn: 00221694. doi: 10.1016/j.jhydrol.2009.08.
003.

Hinton, Geoffrey E. et al. (1993). “Keeping neural networks simple by minimizing the
description length of the weights.” In: pp. 5–13. doi: 10.1145/168304.168306.

Hochreiter, Sepp et al. (1997). “Long Short-Term Memory.” In: Neural Computation 9.8,
pp. 1735–1780. issn: 08997667. doi: 10.1162/neco.1997.9.8.1735.

Jospin, Laurent Valentin et al. (2020). “Hands-on Bayesian Neural Networks – a Tutorial
for Deep Learning Users.” In: 1.1, pp. 1–35. arXiv: 2007.06823. url: http://arxiv.
org/abs/2007.06823.

Kingma, Diederik P. et al. (2014). “Auto-encoding variational bayes.” In: 2nd International
Conference on Learning Representations, ICLR 2014 - Conference Track Proceedings Ml,
pp. 1–14. arXiv: 1312.6114.

Kingma, Diederik P. et al. (2015). “Adam: A method for stochastic optimization.” In:
3rd International Conference on Learning Representations, ICLR 2015 - Conference Track
Proceedings, pp. 1–15. arXiv: 1412.6980.

82

http://arxiv.org/abs/1704.02798
http://arxiv.org/abs/1506.02142
http://arxiv.org/abs/2006.12975
https://doi.org/10.5194/hess-25-2045-2021
http://arxiv.org/abs/2010.07921
https://hess.copernicus.org/articles/25/2045/2021/
https://www.statisticshowto.com/probabilistic/
https://www.statisticshowto.com/probabilistic/
http://arxiv.org/abs/1412.6544
http://www.deeplearningbook.org
https://doi.org/10.1016/j.jhydrol.2009.08.003
https://doi.org/10.1016/j.jhydrol.2009.08.003
https://doi.org/10.1145/168304.168306
https://doi.org/10.1162/neco.1997.9.8.1735
http://arxiv.org/abs/2007.06823
http://arxiv.org/abs/2007.06823
http://arxiv.org/abs/2007.06823
http://arxiv.org/abs/1312.6114
http://arxiv.org/abs/1412.6980

Bibliography

Kirchgessner, Karsten (2009). “Frequentistische und Bayes’sche Statistik.” In: pp. 1–6.
url: http://ekpwww.physik.uni-karlsruhe.de/$%5Csim$tkuhr/HauptseminarWS0910/
Kirchgessner_handout.pdf.

Klotz, Daniel et al. (2020). “Uncertainty Estimation with Deep Learning for Rainfall-
Runoff Modelling.” In: Ml, pp. 1–32. arXiv: 2012.14295. url: http://arxiv.org/
abs/2012.14295.

Knoben, Wouter J.M. et al. (2019). “Technical note: Inherent benchmark or not? Compar-
ing Nash-Sutcliffe and Kling-Gupta efficiency scores.” In: Hydrology and Earth System
Sciences 23.10, pp. 4323–4331. issn: 16077938. doi: 10.5194/hess-23-4323-2019.

Kratzert, Frederik et al. (2018). “Rainfall-Runoff modelling using Long-Short-Term-
Memory (LSTM) networks.” In: May, pp. 1–26.

Kratzert, Frederik et al. (2019). “Towards learning universal, regional, and local hydro-
logical behaviors via machine learning applied to large-sample datasets.” In: Hydrol-
ogy and Earth System Sciences 23.12, pp. 5089–5110. issn: 16077938. doi: 10.5194/hess-
23-5089-2019. arXiv: 1907.08456.

Kratzert, F et al. (2021). “A note on leveraging synergy in multiple meteorological
data sets with deep learning for rainfall–runoff modeling.” In: Hydrology and Earth
System Sciences 25.5, pp. 2685–2703. doi: 10.5194/hess-25-2685-2021. url: https:
//hess.copernicus.org/articles/25/2685/2021/.

Livneh, Ben et al. (2013). “A long-term hydrologically based dataset of land surface
fluxes and states for the conterminous United States: Update and extensions.” In:
Journal of Climate 26.23, pp. 9384–9392. issn: 08948755. doi: 10.1175/JCLI-D-12-
00508.1.

Ludwig, K. et al. (2006). “The Water Balance Model LARSIM: Design, Content and
Applications.” In:

Newman, A. et al. (2014). A large-sample watershed-scale hydrometeorological dataset for the
contiguous USA. Boulder, CO. doi: 10.5065/D6MW2F4D.

Olah, Christopher (2015). Understanding LSTM’s. url: https://colah.github.io/
posts/2015-08-Understanding-LSTMs/.

Rogelis, María Carolina et al. (2016). “Hydrological model assessment for flood early
warning in a tropical high mountain basin.” In: Hydrology and Earth System Sciences
Discussions March, pp. 1–36. issn: 1027-5606. doi: 10.5194/hess-2016-30.

Ruder, Sebastian (2016). “An overview of gradient descent optimization algorithms.”
In: pp. 1–14. arXiv: 1609.04747. url: http://arxiv.org/abs/1609.04747.

Saxe, Andrew M. et al. (2014). “Exact solutions to the nonlinear dynamics of learning
in deep linear neural networks.” In: 2nd International Conference on Learning Represen-
tations, ICLR 2014 - Conference Track Proceedings, pp. 1–22. arXiv: 1312.6120.

Seaber, Paul R. et al. (1987). “Hydrologic unit maps.” In: USGS Publications Warehouse.
doi: 10.3133/wsp2294. url: http://pubs.er.usgs.gov/publication/wsp2294.

83

http://ekpwww.physik.uni-karlsruhe.de/$%5Csim$tkuhr/HauptseminarWS0910/Kirchgessner_handout.pdf
http://ekpwww.physik.uni-karlsruhe.de/$%5Csim$tkuhr/HauptseminarWS0910/Kirchgessner_handout.pdf
http://arxiv.org/abs/2012.14295
http://arxiv.org/abs/2012.14295
http://arxiv.org/abs/2012.14295
https://doi.org/10.5194/hess-23-4323-2019
https://doi.org/10.5194/hess-23-5089-2019
https://doi.org/10.5194/hess-23-5089-2019
http://arxiv.org/abs/1907.08456
https://doi.org/10.5194/hess-25-2685-2021
https://hess.copernicus.org/articles/25/2685/2021/
https://hess.copernicus.org/articles/25/2685/2021/
https://doi.org/10.1175/JCLI-D-12-00508.1
https://doi.org/10.1175/JCLI-D-12-00508.1
https://doi.org/10.5065/D6MW2F4D
https://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://doi.org/10.5194/hess-2016-30
http://arxiv.org/abs/1609.04747
http://arxiv.org/abs/1609.04747
http://arxiv.org/abs/1312.6120
https://doi.org/10.3133/wsp2294
http://pubs.er.usgs.gov/publication/wsp2294

Bibliography

Singh, Vijay (2015). “Flow Duration Curve.” In: Introduction to Tsallis Entropy Theory in
Water Engineering, pp. 303–326. doi: 10.1201/b19113-16.

Tagasovska, Natasa et al. (2019). “Single-model uncertainties for deep learning.” In:
Advances in Neural Information Processing Systems 32.NeurIPS, pp. 1–12. issn: 10495258.
arXiv: 1811.00908.

Thornton, P.E. et al. (2016). Daymet: Daily Surface Weather Data on a 1-km Grid for North
America. Oak Ridge, Tennessee, USA. doi: https://doi.org/10.3334/ORNLDAAC/
1328.

Time series forecasting (n.d.). url: https://www.tensorflow.org/tutorials/structured_
data/time_series.

Vaswani, Ashish et al. (2017). “Attention is all you need.” In: Advances in Neural Infor-
mation Processing Systems 2017-December.Nips, pp. 5999–6009. issn: 10495258. arXiv:
1706.03762.

Wu, Neo et al. (2020). “Deep Transformer Models for Time Series Forecasting: The
Influenza Prevalence Case.” In: arXiv: 2001.08317. url: http://arxiv.org/abs/
2001.08317.

Xia, Youlong et al. (2012). “Continental-scale water and energy flux analysis and valida-
tion for the North American Land Data Assimilation System project phase 2 (NLDAS-
2): 1. Intercomparison and application of model products.” In: Journal of Geophysical
Research: Atmospheres 117.D3. doi: https://doi.org/10.1029/2011JD016048. url:
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2011JD016048.

Xue, Boyang et al. (2021). “Bayesian Transformer Language Models for Speech Recog-
nition.” In: pp. 7378–7382. doi: 10.1109/icassp39728.2021.9414046. arXiv: 2102.
04754.

Yilmaz, Koray K et al. (2008). “A process-based diagnostic approach to model evaluation:
Application to the NWS distributed hydrologic model.” In: Water Resources Research
44.9. doi: https : / / doi . org / 10 . 1029 / 2007WR006716. url: https : / / agupubs .
onlinelibrary.wiley.com/doi/abs/10.1029/2007WR006716.

84

https://doi.org/10.1201/b19113-16
http://arxiv.org/abs/1811.00908
https://doi.org/https://doi.org/10.3334/ORNLDAAC/1328
https://doi.org/https://doi.org/10.3334/ORNLDAAC/1328
https://www.tensorflow.org/tutorials/structured_data/time_series
https://www.tensorflow.org/tutorials/structured_data/time_series
http://arxiv.org/abs/1706.03762
http://arxiv.org/abs/2001.08317
http://arxiv.org/abs/2001.08317
http://arxiv.org/abs/2001.08317
https://doi.org/https://doi.org/10.1029/2011JD016048
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2011JD016048
https://doi.org/10.1109/icassp39728.2021.9414046
http://arxiv.org/abs/2102.04754
http://arxiv.org/abs/2102.04754
https://doi.org/https://doi.org/10.1029/2007WR006716
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2007WR006716
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2007WR006716

	Acknowledgments
	Abstract
	Contents
	Introduction
	Deep Learning Fundamentals
	Introduction to Neural Networks
	Forward propagation, Backpropagation and Optimization
	Training and evaluation of a neural network

	Recurrent Neural Networks and LSTM Networks
	Introduction to Recurrent Neural Networks
	LSTM (Long Short-Term Memory) Networks
	Forget gate layer
	Input gate layer(s)
	Output gate layer

	Structure of predictions obtained by Recurrent Neural Networks

	LSTM networks for hydrology
	Introduction to streamflow and discharge prediction
	Connection to time series forecasting
	Model used in this thesis
	Many-to-one
	Single shot
	Many-to-many
	Models that use discharge as input measure

	Bayesian Deep Learning
	Probabilistic modeling
	Frequentist and Bayesian statistics
	Bayesian probabilistic models
	A technique to realize bayesian neural networks – Bayes By Backprop
	Bayes By Backprop Through Time
	Definition and relation to the given thesis
	Posterior sharpening

	Evaluating a Bayesian Neural Network

	Methodology
	Datasets
	The CAMELS-US dataset
	The Regen catchment

	Summary of applied methods
	Data split for CAMELS-US
	Fundamental implementation
	Extensions for predicting multiple time steps
	Extension for the single-shot-model
	Extension for the many-to-many-model

	Extensions for discharge as input measurement
	Hyperparameter tuning
	Investigation of different prior setting and weight initializations
	Investigation of different batch sizes, learning rates, and LSTM-sizes
	Addition of a yearly periodic signal
	Investigation of optimal length of prediction phase

	Evaluation of the final architecture
	Evaluation on the CAMELS-US-dataset
	Evaluation on the Regen catchment
	Performance metrics

	Results
	Hyperparameter tuning
	Investigation of different prior setting and weight initialization
	Investigation of different batch sizes, learning rates, LSTM-network-sizes and optimizer
	Addition of a yearly periodic signal
	Investigation of different numbers of samples
	Comparison between single-shot- and many-to-many-based models

	Final evaluation for CAMELS-US
	Many-to-one-model
	Many-to-many-model with discharge
	Many-to-many-model

	Experiments on the Regen catchment

	Conclusion and Outlook
	Appendix A - LSTM networks for hydrology
	Appendix B - Hydrographs
	Appendix C - Histograms with probability distributions
	List of Figures
	List of Tables
	Bibliography

