
Technische Universität München

Fakultät für Mathematik

Unobserved variables and applications of
stochastic processes in life sciences

Gerd Bendix Koopmann

Vollständiger Abdruck der von der Fakultät für Mathematik der Technischen Universität

München zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzender: Prof. Dr. Tim N. Hoffmann

Prüfer der Dissertation: 1. Prof. Dr. Johannes Müller

2. Prof. Dr. Markus Kirkilionis

University of Warwick, Vereinigtes Königreich

Die Dissertation wurde am 13.10.2021 bei der Technischen Universität München eingere-

icht und durch die Fakultät für Mathematik am 05.07.2022 angenommen.



Abstract

Unobserved data play a big role in applied science. The first part of the thesis deals with a

model for ’Contact Tracing’. By solving and simulating this model, we can achieve insights

into the effect of tracing delays on unobserved aspects of the process. E.g., the impact of

Covid-19 tracing apps might not only be based on improved detection of casual contacts,

but also on a drastic reduction of tracing delays.

The second part starts from the perspective of observed data of models consisting of sys-

tems of ordinary differential equations having a polynomial right-hand side. The gradient of

the data is the left-hand side of the ODEs; the parameters of the right-hand side’s polynomi-

als are obtainable by regression, which is called Gradient Matching. Assume we know the

ODEs, including the polynomial right-hand sides, but we did not observe all components

of the data, e.g., we did not observe the current of an LC-oscillator. Then we show how to

estimate the unobserved component using the model, the model parameters, and the ob-

served voltage. Due to the local nature, this ansatz does not require initial conditions and

provides robust results even if noise events at discrete time points change the trajectory of

the observed system, e.g., Dirac impulses re-triggering the oscillator.
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Zusammenfassung

Unbeobachtete Daten spielen in der Anwendung oft eine große Rolle. Die Arbeit beschreibt

im ersten Teil ein Modell zur Kontaktverfolgung bei infektiösen Krankheiten, mit dessen Hilfe

durch Lösen und Simulieren Einblicke in den Effekt der Verzögerung der Kontaktverfolgung

auf unbeobachtete Aspekte des Prozesses erreicht werden können. Zum Beispiel basiert

die Wirkung der Covid-19-Apps möglicherweise nicht nur auf der verbesserten Erkennung

von Alltagskontakten, sondern auch auf der drastischen Reduktion der Verfolgungszeit.

In einem zweiten Teil gehen wir allgemein von den beobachteten Daten aus, die durch Mod-

elle beschrieben werden können, welche aus Systemen gewöhnlicher Differentialgleichun-

gen mit polynomieller rechter Seite bestehen. Der Gradient der Daten ist die linke Seite

der DGLs; die Parameter der rechten Seite können durch Regression ermittelt werden.

Dieses Verfahren heißt Gradient Matching. Angenommen wir kennen die DGLs und die Pa-

rameter der rechten Seite, aber wir haben nicht alle Komponenten der Daten beobachtet,

zum Beispiel fehlt uns der Stromfluss eines LC-Oszillators. Wir zeigen, wie unbeobachtete

Daten mithilfe der Gleichungen und Parameter des Gradient Matching Ansatzes und der

beobachteten Spannung geschätzt werden können. Durch diesen Ansatz sind wir unab-

hängig von den Startwerten des Experiments und robust gegen einzelne Störungen, die

die Lösungstrajektorie verschieben, beispielsweise gegen Dirac-Impulse die den Oszillator

wiederholt anschwingen.
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Introduction

When analyzing a process, there are often sub-processes, which are hard or impossible to

observe. On the other hand, the processes can be modeled based on previous knowledge.

In our first example, ’Contact Tracing’, there is knowledge about the dynamics of the pro-

cess. This enables us to build a model. In turn, the analysis and simulation of the model

allows us to gain insight into the process that was not achievable before.

In another case, there are occasions when accurate and high throughput data are available

without knowing the underlying process. In that case, the data can be used to derive the

underlying dynamics, at least if the class of dynamical systems can be restricted [BPK16;

Man+16].

A third problem is partially observed data. We assume here, that we know the dynamical

system. The goal is not to reconstruct the dynamical system, although this might be possi-

ble to a certain degree. In this case, we use the information about the dynamical system to

fit the unobserved or partially observed data to reconstruct the unobserved components of

the process.

We start the first topic, chapter 1, dealing with contact tracing in the onset of an epidemic.

In the case of infectious diseases, there is a general understanding of how people infect

each other through contacts. Contact tracing means that we detect an infected individ-

ual and start a tracing event. This tracing event consists of searching the contacts of the

infected individual to identify chains of infection and to stop the spread of an epidemic.

Identifying and searching for the contacts of an infected individual involves time and intro-

duces a tracing delay, the delay between collecting the information about a contact and

actually stopping this contacted individual from further spreading the epidemic. Analyzing

the model allows us to gain more insight into the influence of tracing delay on the effect of

tracing. The influence of the tracing delay on the effect of tracing gained recent importance

in the development of digital contact tracing. E.g., the effect of tracing apps as introduced

to fight the Covid-19 epidemic might not only be based on the improved detection rate of

casual contacts, but also on the reduced tracing delay [Kre+20]. By drastically reducing the

tracing delay, the possible infected contacts have less time to further spread the disease. In

the case of very long tracing delays, the infected contacts might already have recovered by
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the time successful tracing has taken place. This influence of the delay hints at the critical

influence of the timing. Fraser et al. [Fra+04] also state that timing is critical. Furthermore,

the model enables us to classify contacts into infectors, who infected the current individual

and infectees, who were infected by the current individual.

In chapter 1, we model the initial spread of the disease, the onset. The onset is charac-

terized by the exponential spread. In the pure onset case, every contact of an infected

individual involves a susceptible individual, and there is a chance of spreading the disease.

When simulating a population consisting of a fixed number of individuals, we have a finite

population. In a finite population, however, there is a chance of two infected individuals

contacting each other, but the prevalence is low during the onset case. In that case, we

can neglect the probability of two infected individuals making contact; thus, the model and

the simulation match. In chapter 2, we extend the model to the endemic case, which is

a steady state. This steady state might exist at a prevalence level, which enables infected

individuals to contact other infected individuals at a rate that we can not neglect. We call the

contacts between infected individuals cluster contacts. The more infected individuals exist,

the more cluster contacts and fewer infective contacts occur. That means fewer infective

contacts trace infectors, but every tracing event can include cluster contacts and the tracing

by cluster contacts. Chapter 2 builds the endemic model and includes the tracing by cluster

contacts. The chapter compares the simulation of the process based on a finite population

of individuals to the endemic model. We analyze the change of the influence of the trac-

ing from the onset to the endemic case. Because we have a model, we can separate the

individual effect of cluster contacts when analyzing the tracing influence. When entering

the endemic phase, the analysis will reveal less influence of tracing by the infectees. The

steady state allows only one infection per infected individual on average and, therefore, an

average of up to one infectee resulting in a tracing event. Nevertheless, the overall effect

of the tracing will stay constant, because the tracing by cluster contacts will substitute the

tracing by infectees in a first-order approximation.

The next approach serves as an introduction to our third perspective on unknown dynamics.

It was motivated by another common situation in life science: High-quality time series of the

state variables are available.

Despite the existence of the data, little might be known about the underlying processes, and

the parameters are unknown. The data, of course, include information about the underlying

dynamics. However, it is impossible to recover the dynamical system unambiguously from

single measured trajectories. Therefore, we restrict the complexity and only allow for ODEs

with a polynomial right-hand side. The derivative on the left-hand side is estimated from

the data. We can estimate the structure and parameters using regression, which is called

viii
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Gradient Matching in this case. At this point, we could integrate previous knowledge about

the underlying process to support the regression. Because we choose a polynomial right-

hand side, which allows for a lot of collinearity, we will employ penalized regression. In

many cases, that approach allows recovering a reasonable dynamical system, which is

robust against shot noise within the dynamical system.

In the praxis without Gradient Matching, shot noise influencing the dynamic superimposes

a problem. The noise is not part of the dynamic we want to observe, and it is not influencing

the measurement apart from its localized occurrences, but results in an altered trajectory of

the dynamical system. E.g., if we want to observe an LCR-Oscillator triggered by periodic

Dirac-impulses, there is a new trajectory each time the system is triggered. The impulse

is not part of the model, and from our point of view, its random occurrence is noise. It is

convenient to record the data over multiple impulses to collect more data. However, if we

use the classic approach and fit the parameters by solving the differential equations, we

need initial conditions. Moreover, each new trajectory needs new initial conditions to solve

a differential equation. The initial conditions can be estimated for every trajectory, and there

are existing approaches to fit the parameters of a differential equation not only by starting

once, but also by starting at multiple different times, to not rely on a single initial condition

(see multiple shooting methods [SB96][p. 516ff.][PT07]). Additionally, the multiple shooting

fixes the problem of initial values, which are very sensitive to noise, e.g., if exponential

growth starts from values close to zero. However, that method requires knowledge about

the location of each impulse to align the initial conditions and the start of new trajectories.

The local character of Gradient Matching bears reasonable stability of the result with respect

to shot noise. At the state of solving the regression, the algorithm only sees pairs of values

and corresponding derivatives. Gradient Matching does not require initial values. Therefore,

there are no noisy initial values from noisy data. We do not have to deal with cases like

exponential growth relying on initial values starting at levels close to zero, which force us

to estimate better initial values or start the evaluation of a differential equation at multiple

locations. The experiment in chapter 4 illustrates that we indeed recover the appropriate

parameters of the ODE in many cases despite a Dirac impulse resetting the trajectory.

This observation is also essential in our third part and serves to introduce the recovery of

unobserved variables. Starting at section 3.2 this represents the central part of chapter 3.

Some state variables of the dynamical system are easy to observe, and others are harder

to observe or unobservable. Opposite to the parameter estimation from recorded data, we

know the parameters, but we did not record all the data. In terms of the LCR-oscillator

example, we know the differential equation and all components in our system, we recorded

the voltage, but the current was unobservable.
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Using the Gradient Matching approach, we recover unobserved state variables, vectors

of samples, instead of parameters. Especially when recording long time series of state

variables, the robustness of this method with respect to time-discrete events due to shot

noise and the independence of initial values is an advantage. Neither the initial values

nor the positions of shot noise events and corresponding new initial values have to be

estimated.

We prove that superimposing a function representing noise on our observed state variable

generates a continuous impact on the recovered state variable representing the unobserved

state variable. This property is necessary to solve the optimization problem successfully to

recover the unobserved state variable.

Finally, both ways of employing Gradient Matching, the estimation of the shape and the

parameters of the dynamical system and the recovery of unobserved data, are tested in an

experiment using measured data in chapter 4.
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1 Contact Tracing – The Onset Case

We deal with an infectious disease spreading within a homogeneous population of finite

size. The spread starts with a small number of infected individuals. The infected individuals

make random contacts. Each contact of an infected individual with a susceptible individual

includes the probability of infecting the susceptible individual. Contact tracing means we

trace the contacts of diagnosed individuals, the index cases, to prevent the contacts from

further spreading the disease.

Between the diagnosis of an index case, and that of an infected contact, there is a delay.

We want to understand the influence of this delay on the process of contact tracing. Contact

tracing is meant to reduce the spread of a disease by reducing every infected individual’s

capability to infect more contacts. Thus, we analyze the influence of the delay on the length

of the infectious period.

infector

infectee

a

infectee

b

Figure 1.1: Infectors are individuals,
who infected other individuals, the in-
fectees. These infectees can be in-
fectors themselves.

First, we analyze the onset of an epidemic1. We

can neglect two infected individuals making contact

during the onset of an epidemic within a large ran-

dom mixing homogeneous population. Thus, we can

approximate the process by a branching process,

which implies a population of infinite size as there

are no contacts between infected individuals. The

primary infected person starts a directed tree of in-

fected individuals, where the infected individuals are

the nodes, and a directed edge goes from infector to

infectee (see fig. 1.1). Ball and Donnelly [BD95] prove the convergence of the branching

process and the spread of the epidemic in the onset phase for large populations (further

reading in [BP19, chapter 2.3, p. 353]).

We formulate the contact tracing on top of the trees of the branching process. We distin-

guish one-step and recursive tracing. When we observe an infected individual, one-step

contact tracing starts a tracing event for this infected individual. The tracing event follows

1This analysis of the onset case and the baseline model follow the paper [MK16] ’The effect of delay on contact
tracing’.
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CHAPTER 1. ONSET – CONTACT TRACING

the branches of that particular individual and analyzes the direct contacts. At this point,

we can respect the tracing delay and the probability of recalling this contact successfully.

Recursive tracing starts a new tracing event for every infected individual found during this

process. This recursion allows for tracing whole clusters of infected individuals. However,

the delays involved when following each branch add up. A small probability of recalling a

contact has a similar effect compared to long delays. The probabilities are multiplied, and

reaching a distanced infected individual becomes unlikely the further the distance within the

tree.

infector

infectee individual

infectee

a

infectee

b

infector

infectee

forward

backward

infector

infectee

Figure 1.2: Forward and backward tracing visu-
alized within the infection tree. The highlighted
individual is an infectee when concentrating on
the contact with the infector starting the tree,
the index case. On the other hand, the individ-
ual is an infector and has its own infectees.

When further categorizing the tracing, the

directed tree separates two directions.

The tree can be traced following the direc-

tion of the infection, which results in for-

ward tracing. We call the opposite direc-

tion backward tracing. Figure 1.2 shows

the influence of both directions on a high-

lighted individual. In the case of forward

tracing, our highlighted individual, the in-

fectee, is traced by its infector. Apart from

the start of the epidemic by the index case,

every infected individual has an infector.

The same individual acted as an infector.

As an infector, it can be traced by back-

ward tracing by one of its infectees, if there

are infectees. In the analysis, we will (ar-

tificially) only allow for backward tracing in

the first step, and only for forward tracing

in the second step. Combining the forward

and backward direction on these trees takes all branches connected to an individual spawn-

ing a tracing event into account. We call this case full tracing.

The analysis of this branching process allows us to calculate the effect of tracing on each

infected individual’s probability to stay infective after a given amount of time.

We compare the analysis of the branching process with simulations of finite populations.

In this individual-based model, IBM, we keep track of the status of every individual and

monitor every contact. This enables us to separate forward, backward and full tracing,

activate the tracing delay, vary the tracing delay, and deactivate these processes. Sampling

the infective period of infected individuals results in the probabilities of being infective after

2



CHAPTER 1. ONSET – CONTACT TRACING

a given amount of time, which we compare to the branching process results.

In the branching process model, we stop the infected individuals from spreading the dis-

ease. The fact that the individuals are isolated and instantly recovered does not influence

the branching process because there will not be a second contact. In the case of simulating

an IBM, individuals are susceptible again after recovery. Due to the finite size of the popula-

tion, individuals can contact infected individuals multiple times, although it is unlikely during

the onset case. From the model perspective, being susceptible S or infective I is not only

an attribute of the individual but a classification. Individuals transfer from the susceptible

to the infective class after an infective IS contact. Observed or unobserved recovery and

detection by tracing events result in a transfer from the infective to the susceptible class.

We call the model SIS due to these both directions. According to Hethcote, the SIS model

is one of the ’Three Basic Epidemiological Models’ [Het89], and it becomes crucial when

extending our initial baseline model, which bases on the branching process.

After we understand the onset, we will investigate the endemic equilibrium and the adap-

tions we have to implement in our branching process model in chapter 2. Leaving the onset

case, we acknowledge the finite population size. The finite population introduces contacts

between already infected individuals, which we call cluster contacts. These contacts influ-

ence the spread of the disease. If not every contact involves a susceptible individual, thus,

not every contact involves the chance of infecting a new individual, there are fewer contacts

actually spreading the disease. Furthermore, it influences the tracing. The infection trees

turn into a mesh, which only resembles a tree on a very local scope. When performing

one-step tracing, every infected individual still has an infector and might have infectees.

In addition, the infected individual might have cluster contacts. In the endemic case, we

respect cluster contact tracing beside the forward and backward tracing of the onset case.

This new aspect in tracing raises the question of how the effect of backward tracing on the

probability to be infective changes when migrating from the onset to the endemic case and if

it is compensated by cluster contact tracing. Furthermore, we will analyze the age structure

of the endemic case compared to the onset case.

Before starting the analysis, the next section 1.1 will provide a brief overview of the literature

on contact tracing since Hethcote and Yorke’s papers on the transmission of Gonorrhea

[YHN78; HY84], and we will categorize the models according to Müller and Kretzschmar

[MK20]. The categories cover pair approximation models, which approximate the interaction

between individuals, and phenomenological approaches, which try not to reproduce the

mechanics of the spread and tracing but to map the phenomenons, the IBM Simulations

and the stochastic branching process, which we use both within this thesis. Section 1.3

covers the SIS model in more detail and introduces the basic reproduction number, which

3
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enables us to quantify the initial speed of the spread of an epidemic before we introduce

the model, and analyze the influence of delays on backward, forward and full tracing.
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1.1 State of the Art

We will classify the epidemiological literature dealing with contact tracing (also see the re-

view article [MK20]) into phenomenological approaches, individual-based simulation mod-

els, pair approximation models, and models based on branching processes.

Among the first papers dealing with modeling contact tracing was Hethcote and Yorke’s

paper on the transmission of Gonorrhea [YHN78; HY84]. They model the number of in-

cidences using an ODE. The model introduces contact tracing by introducing a fraction

parameter f , which respects for that fraction of infected individuals to be removed. We

categorize it as a phenomenological approach as they try to reproduce the outcome by the

model using this fraction and do not base it on underlying mechanics.

1.1.1 Phenomenological Approaches

Phenomenological approaches are not based on first principles. They do not select a set of

supposed processes, which influence the epidemic. Phenomenological approaches adapt

a model, e.g., an epidemiological model consisting of a system of differential equations

modeling the number of infected and susceptible individuals, to the data using correction

terms and parameters. The resulting model allows for predictions regarding the develop-

ment of an epidemic, but it might be hard to correlate the results with subprocesses driving

or prohibiting the outbreak.

E.g., Hsieh et al. [Hsi+05] build an epidemiological model consisting of a system of ordinary

differential equations modeling the number of people knowing of their HIV infection, the

number of people knowing of their HIV infection because of contact tracing, the number

of people not knowing of their HIV infection and the number of people actually suffering

AIDS. The paper benchmarks four linear and nonlinear terms modeling the tracing, i.e., the

transfer of individuals from the group of people not knowing of their infection to the group of

people knowing of their infection due to contact tracing. The terms are linear to the number

of people not knowing of their infection, linear to the number of people knowing of their

infection, the product of people knowing and not knowing of their infection and the former

term normalized by the sum of people knowing and not knowing of their infection. Fitting the

model results in the best fit when using the linear model depending on the number of people

not knowing of their infection. The second best fit was achieved by the term consisting of the

normalized product of people knowing and not knowing their infection. The paper concludes

the normalized product to be a compromise between the two linear terms.

HIV has the property to stay permanent. Infected individuals do not recover from HIV in

contrast to influenza. Fraser et al. [Fra+04] uses more first principles to model influenza

5
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and builds a system of partial differential equations, which respects the probability to stay

infective as a function of time. He includes contact tracing as a fraction of newly infected

individuals, which are traced and stopped from spreading the disease. This approach is

applied multiple times, e.g., to model SARS-CoV-2, see Grasly et al. [Gra+20]. Feretti et al.

[Fer+20] follow a similar approach, but they acknowledge the tracing delay by delaying the

emerging symptoms, which lead to the detection.

1.1.2 Individual-Based Simulation Models

Simulations based on Individual-Based Models, IBMs, on the other hand, implement the

mechanics on an individual level to study the outcome. They consist of the first princi-

ples and have to sample the outcome from the simulation. Because IBMs base on the

individuals, they allow implementing individual-based rules, e.g., if the population is not ho-

mogeneous. Meyers et al. [Mey+05] chose a very detailed approach, even modeling cities

and schools, highlighting the advantages of IBM models. Keeling et al. [KE05] compare

different contact graphs from random graph, lattice, small world, spatial, and scale-free

networks. The paper observes a limited growth of the epidemic in all non-random mixing

networks, especially the lattices, because the epidemic results in a saturation of the envi-

ronment. Imagine a growing circle. The circumference, the surface of the infected cluster,

experiences linear growth. The limited number of possible non-infected contacts prohibits

exponential growth, because infected individuals not living on the border area contact sus-

ceptible individuals at a much lower rate, if susceptible individuals are left. The spread

within the other networks can be located between these two extremes. Small world net-

works include some long-range connections, which compensate for the limits set by the

lattice. They conclude that it is possible to ignore the higher-order structure and only model

pairs of individuals, which allow using pair approximation models, the next approach in

section 1.1.3.

Keeling et al. [KHR20] model the outbreak of the coronavirus on a homogeneous popu-

lation, concluding that the spread of the virus can be contained, if contact tracing detects

more than 70% of the contacts. Liu et al. [Liu+15] integrate a delay to the contact trac-

ing process, concluding that a short intervention delay and a high probability of tracing a

contact can prevent large outbreaks of measles even in the case of moderate vaccination

coverage between 85% to 90%. The model analyzes a very heterogeneous population

generated from a synthetic population, i.a., generated from census data. These two papers

are examples for two advantages of IBMs. On the one hand, they generate data on given

defined contact structures to benchmark analytical models. IBMs can provide the complete
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infection graph and history of contacts for further analysis. On the other hand, the capability

of directly representing the contact tracing allows to integrate a very high level of detail and

quick detailed results to estimate the impact of decisions regarding public health.

1.1.3 Pair Approximation Models

Mean field models approximate stochastic models by deterministic systems of ordinary dif-

ferential equations. Thereby, mean field models ignore the complexity of the spatial struc-

ture, modeling the relationship between individual members of the population. Instead, they

assume a relative frequency of individuals of a specified type, e.g., susceptible, infective, or

recovered. This approximation simplifies the contact structure, and it derives a deterministic

model like the SIR model from a stochastic process. This basic approach can be justified by

its success. Hethcote [Het89] considers the SIR model among the three basic epidemiolog-

ical models. Keeling [Kee99] compares the mean field model to more complex models and

concludes a good capability to cover the deterministic behavior while being relatively stable,

especially compared to the stochastic models. This characteristic of the mean field models

highlights the essential dynamic of the model while not covering stochastic effects or, in

that case, oscillations induced by the contact structure. In the process of this comparison,

Keeling also introduces pair approximation models.

Pair approximation models extend mean field models by respecting the correlations of an

inhomogeneous contact graph. The pair approximation approach does not only respect the

relative frequency in each group like susceptible, infected or recovered. The pair approx-

imation considers pairs of individuals and builds a differential equation modeling the pair

combination like SI. Sato et al. [SMS94] use a lattice contact graph and build the model,

formulate the master equations before employing a pair approximation. Eames and Keeling

[EK02] show the performance of mean field and pair approximation on an inhomogeneous

contact graph showing the capabilities of pair approximation to respect the contact graph.

They point out that pair approximation models allow for integrating contact tracing, because

they cover interactions between two individuals by separate equations.

House and Keeling [HK10] discuss the advantage of contact tracing in clustered contact

graphs using the pair approximation approach.

Karrer and Newman [KN10] developed a message passing approach to model the endemic

case. They do not include contact tracing, but they integrate more information about the

contact graph into the system of differential equations. They do not only pass the infection

along with the contact graph. They introduce a cavity state for an individual and determine

the probability of being infectious for this individual by passing messages along the graph

7
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containing the probability of staying healthy for every individual. Evaluating the differential

equation for the susceptible individuals involves multiple products involving all individuals of

the population. Wilkinson et al. [WBS17] take this message passing approach and prove a

unique, feasible solution.

Clarke et al. [CWT12] take the pair approximation model and apply it to real-world data,

even using the tracing delay as a model parameter.

Overall, we see the advantages of the underlying differential equations to get analytical re-

sults and the great effort involved, if inhomogeneous contact graphs are respected. Apart

from the message passing algorithms, the pair approximation models concentrate on mod-

eling the population level. Therefore, the model is not predestined to implement individual

perspectives, but covers contact properties on the population level well.

1.1.4 Models Based on Branching Process

The pair approximation models viewed the spread of the epidemic from the perspective of

the population. The branching process chooses a more individual-based level and builds an

infection tree to model the influence of the neighboring individuals on the current individual.

The branches are directed from the infector to the infectee. This tree is built by a birth-

death process, and every birth represents a new infected individual within the tree. Every

death means an individual recovered. Recovery means not being available as an infector

and infectee, thus, being removed from the infection tree and breaking up the tree into a

forest. During the onset of an epidemic, contacts between infected individuals are unlikely,

and hence the branching process approximation is appropriate during this phase. Ball and

Donelly [BD95] prove that the branching process, which assumes an infinite population size,

converges to the spread of an epidemic within a finite homogeneous population in the onset

case.

The infection tree allows for an implementation of contact tracing. When an infected indi-

vidual triggers a tracing event, the tracing analyzes the adjacent nodes. At this point, the

process can respect the probability of successfully tracing a contact and a tracing delay.

If an individual is traced successfully, it recovers and is removed from the tree of infected

individuals. The implementation takes the perspective of the recovered individual. Thus,

we model the function of the probability to be infective after a given time since the start of

the infection. The contact tracing lowers the probability of being infective.

Müller et al. [MKD00] and Ball et al. [F G11] analyze the branching process. Klinkenberg et

al. [KFH06] analyze the effectiveness and the effect of delay in tracing on real epidemics like

SARS. Ball et al. [BKO15] introduce a tracing delay and a probability to include unsuccessful

8
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tracing of a contact. Though, this approach only covers forward tracing.

Recent papers adapt the branching process in order to take inhomogeneous populations

into account. Okolie et al. [OM20] adapt the ideas of the pair approximation model and

integrate message passing.

Our baseline model implements the tracing delay within a branching process while being

able to separate the effect of backward and forward tracing. The model provides the proba-

bility of being infective as a function of the time since infection. After evaluating the effect of

varying tracing delays and their variance, we adapt the branching process to the endemic

case. This endemic case integrates the probability of being infective in an age-structured

model. The age-structured model introduces elements of the mean field models and keeps

track of the number of susceptible and infected individuals to adapt the corresponding con-

tact probabilities.

9



1.2. NOTATION CHAPTER 1. ONSET – CONTACT TRACING

1.2 Notation

Constants and Rates

α Spontaneous recovery rate. This recovery is not observed and therefore

not traced α = (1− pobs)γ=
(
α+σ
α+σ
− σ

α+σ

)
· (α + σ︸ ︷︷ ︸

γ

).

β Contact rate.

γ Recovery rate: α + σ.

N Size of population.

pobs Probability of observing a recovery: σ
α+σ

= σ
γ
.

p Probability of being diagnosed, when being infected and tracing is taking

place.

R0 Basic reproduction number denoting the average number of infectees per

infected individuals.

Rct Reproduction number with contact tracing.

r± Update to the basic reproduction number due to forward/backward tracing.

σ Observed recovery, direct observation: σ = pobsγ.

Functions and Variables

a Time since the start of an infection.

η±(p) Update to κ due to forward/backward tracing. Determining the intensity by

the probability of successful tracing is a choice taken due to the approxi-

mation in p.

i(a, t) Number of infected individuals of age a at time t.

I(t) Number of infected individuals at time t. I(t) =
∫∞

0
i(a, t)da.

κ(a) Probability of being infectious after time of infection a.

κ(a, t) Probability of an individual of age a at time t to be infective.

κ+
i (a) Probability of the ith generation being infectious after time of infection a in

case of forward tracing.

κ−(a) Probability of being infectious after time of infection a in case of backward

tracing.

κ#(a) Integral over the probability of being infectious, used for accumulated ef-

fects: κ#(a) =
∫ a

0
κ(τ)dτ = (1 ∗ κ)(a).

10
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κ̂(a) Zero order approximation of κ(a): κ̂(a) = e−(µ+σ)a for a ≥ 0 and κ̂(a) = 0

for a < 0.

φ(t) Distribution of tracing delay.

S(t) Number of susceptible individuals at time t.

t Time since start of the epidemic.

T Expected tracing delay.

Function spaces

C0 Continuous function.

Cn Continuous function having n continuous first derivatives.

Operations

(f ∗ g)(a) Convolution of f and g: (f ∗ g)(a) =
∫ a

0
f(a− τ)g(τ)dτ .

f#(a) Cumulative function of f: f#(a) =
∫ a

0
f(τ)dt = (1 ∗ f)(a).

Table 1.1: Notation – Contact Tracing.
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1.3 Biomathematical Background

We categorize the individuals of our homogeneous population in susceptible cases S and

infected I. Infective contacts allow the transition from S to I, and infected individuals can

recover, modeled by a transition from I to S. This resembles the SIS-model mechanics.

To provide some mathematical background, this section introduces the SIS model and a

measure for the speed of the spread of the epidemic, the basic Reproduction number R0.

In the end, we introduce the convolution and the corresponding notation, which we will use

to distribute the effect of tracing and its delays in the upcoming chapters.

Before introducing the SIS model, we will start with a simpler model, the birth process, also

known as the Yule process [Yul24]. The Yule process assumes each individual to give birth

at a rate of β and never to die. This resembles our branching process of the onset. Every

infected individual contacts other individuals at rate β spreading the disease by creating a

new infected individual. The simplicity of the Yule process allows sketching the transition

from a probabilistic model, which recognizes the individuals and the stochastic of individual

events, to a deterministic model, which models the average by differential equations.

The probabilistic model of this Yule process bases on a Poisson process1.

0 1 . . . n− 1 n n+ 1 . . .λ λ λ λ λ λ

Figure 1.3: The Poisson process. Transitions from one state to the next occur at rate λ.

Figure 1.3 shows a Poisson process starting at state 0. There are only independent transi-

tions to the direct successor n → n + 1. The transition rate is proportional to the time ∆t

spent in a state and the parameter λ. We choose ∆t to be that short that we can neglect

multiple transitions to happen within the same epoch ∆t.

The probability of being in a specific state n at time t now depends on the probability to

observe n positive outcomes since the start of the process at time t = 0. We can calculate

the probability of staying in a state after time t using P (XPλ(t) = n) = (λt)n

n!
e−λt, the Poisson

distribution.

Figure 1.4 visualizes the Yule process. We scale the birthrate β according to the size of the

population. In the case of an epidemic, we have the contact rate β and scale it according to

the number of infected individuals [BvW08, p. 286 ff.]. This scaling models that two infected

1Further reading about this view of the Poisson process can be found in the book of Feller [Fel68, p.446 ff.]. A
more in depth and formal analysis of point processes and Poisson processes can be found in [DV98]. Bailey
[Bai64, p. 84 ff.] focuses on the applications like the Yule Process.
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individuals double the probability to infect a third individual compared to a single individual’s

probability of infecting a second one. We start the Yule process with a single individual.

1 2 3 4 . . .

. . . n− 1 n n+ 1 . . .

1 · β 2 · β 3 · β 4 · β

(n− 2)β (n− 1)β n · β (n+ 1)β

Figure 1.4: The Yule process. The transition rate is proportional to the size of the population
or to the number of infected individuals.

Probabilistic Yule Process We can describe the probability of being in a state, i.e., ex-

periencing a certain number of infected individuals, by describing the two possible events

taking place in a period ∆t relative to the prior probability. There might be no contact,

which means the state did not change during the epoch ∆t or a contact triggered a transi-

tion from state n−1. Thus, the probability P (XY (t+∆t) = n) is derived from the probability

P (XY (t) = n) and not changing the state and from the preceding state P (XY (t) = n− 1)

and the rate of a birth event taking place. We will use Yn(t) = P (XY (t) = n) for better

readability:

Yn(t+ ∆t) =Yn(t)(1− nβ∆t) + Yn−1(∆t)(n− 1)β∆t+ o(∆t).

Subtracting Yn(t) and dividing by ∆t results in a difference quotient, which leads us to the

differential equation for states n succeeding the initial state i, which fig. 1.4 set to 1:

Y ′n(t) =− nβYn(t) + (n− 1)βYn−1(t) for n > i.

We provide initial conditions, which start the system in the state i. Yi(0) = 1 and Yn(0) = 0

for n 6= i. The differential equation for the initial state reduces to Y ′i (t) = −iβY0(t). We can

verify by successive solving of the differential equation the formula

Yn(t) =

(
n− 1

n− i

)
e−iλt(1− e−λt)n−i for n ≥ i > 0.

Further reading and a method of verification using generating functions can be found in

[Bai64, p. 84 ff.].
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Deterministic Yule Process When searching for a deterministic counterpart of the Yule

process, we know that the rate β being scaled by the size of the population results in an

exponential function. The exponential function is the solution of the following differential

equation:

dx(t)

dt
=βx(t).

The initial value and the growth rate, the contact rate β, define the exponential function

x(t) =x(0) eβt with x(0) = i, the initial population size.

A deterministic form of the process is useful when modeling large populations. The larger

the population, the smaller the impact of every single event from the stochastic process, and

the average effect becomes more visible [Ren12, p. 19 f.]. We can hint at the convergence

of the process to the differential equation using the law of large numbers as a heuristic

argument. Because the process does not consist of a single scalar random variable, we

would have to employ Donsker’s theorem [Bil99, p. 86 ff., section 8, theorem 8.2].

Ethier and Kurtz [Kur80] [EK86, p. 452 ch. 11] concentrate on the convergence of stochastic

and deterministic population models1. We will use the convergence results without further

discussing the proof.

Stochastic SIS Process We take the stochastic Yule process and extend it to represent

a stochastic SIS process on a population of N individuals. We implement a fixed number

of N states representing the infected individuals of our population. Because we know the

population size, each state n represents not only a number of infected individuals, butN−n
also denotes the number of susceptible individuals.

1 . . . n− 1 n n+ 1 . . . N

β 1·(N−1)
N

β (n−1)·(N−(n−1))
N

β n·(N−n)
N

β (N−1)·(1)
N

2 · γ n · γ (n+ 1) · γ N · γ
Figure 1.5: A stochastic view on the SIS process.

Figure 1.5 visualizes the transitions between the states. We introduce a recovery rate γ

enabling transitions n → n − 1. The contact rate β, which results in infections, is not only
1Further reading and some more literature can be found in [AB00, p.39].
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proportional to the number of available infected individuals as potential infectors, but also

proportional to the number of available susceptible individuals to become infectees. The

states 1 and N are the boundaries of our process. In the state n = N , there are no further

susceptible individuals to contact. We block state 1 from recovering to prohibit extinction.

Further reading about this model can be found in the book of Nåsell [Nås11, p. 13].

The following model demonstrates the concept and shows the stochastic process resulting

in the deterministic model. We will proceed using the following deterministic version.

Model 1 (Stochastic SIS Model) 1 A stochastic SIS model with at least one permanent

infector consists of the state space:

XSIS(t) ={1, . . . , N}, t ≥ 0 representing the number of infected individuals at time t.

The transition rates for the contacts βn and for the recovery γn for the states

βn =β
n(N − n)

N
for n = 1, . . . , N − 1,

γn =µn, for n = 2, . . . , N

The infection rate in the state n = N would evaluate to 0, but is left out to underline that we

do not leave the state space. The state 0 and recovery rate for n = 1 can be removed to

prohibit the probability of extinction of the endemic, as shown in fig. 1.5.

We start the process with a single individual at t = 0:

P (XSIS(0) = 1) =1,

P (XSIS(0) 6= 1) =0.

The probabilities at later times can be calculated using the transition rates. First, the prob-

ability of being in state n is increased by the birth rate from n − 1. Then there might be no

transition during the epoch ∆t. The third influence is the influx by the recovery rate of the

succeeding state n+ 1 [Cav78].

P (XSIS(t+ ∆t) = n) =P (XSIS(t) = n− 1) ∆tβ
(n− 1)(N − (n− 1))

N

− P (XSIS(t) = n)

(
1−∆tβ

n(N − n)

N

)
− P (XSIS(t) = n) (1−∆tnγ)

+ P (XSIS(t) = n+ 1) ∆t(n+ 1)γ

1We use the stochastic definition of [Fel68, p.448].
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Further reading about stochastic processes and turning this difference equation into differ-

ential equations, Kolmogorov equations, to achieve analytical distributions can be found in

the book of Nåsell [Nås11, p.17 ff.] and in [Ros96].

We will proceed using the deterministic SIS model, which describes the average of the

epidemic spread using two states, susceptible and infected. The transitions between the

states are modeled using differential equations using the defined rates of recovery and

contact. Figure 1.6 visualizes the deterministic SIS-Model.

S

I

β SI
NγI

Figure 1.6: SIS Model.

Hethcote [Het89] considers the SIS model as one of the three ba-

sic epidemiological models. It originates from a more complex

model from Kermack and McKendrick [KM27]1.

Model 2 (SIS Model – Deterministic)

N = Size of population.

S(t) = Number of susceptible individuals at time t.

I(t) = Size of population.

γ = Rate of recovery.

β = Rate of contact.

Ṡ(t) =− βS(t)I(t)

N
+ γI(t).

İ(t) = + β
S(t)I(t)

N
− γI(t).

The rates of the SIS model describe the epidemic, but it is usually not easy to observe if an

epidemic is going to spread and how fast this is going to happen. We introduce the basic

reproduction number to characterize this important property.

Basic Reproduction Number The basic reproduction number R0 can be used to mea-

sure the spread of an epidemic. It denotes the number of infections of a typical infected

individual during his lifetime, assuming that all contacts are susceptible. Regarding the

spread, the basic reproduction number defines a threshold. If R0 is greater than one, the

disease can invade. If R0 is smaller than one, the disease will not invade. Diekman et al.

[DHM90] [DHB13, p. 161 ff.] define R0 as the dominant eigenvalue of a positive linear oper-

ator. This underlines the complexity involved, if nonhomogenous populations are analyzed.

1We only use a much simpler version of the Karmack-McKendrick model, e.g., it includes a latency period.
The paper was reprinted together with its following papers in 1991, [KM91a], [KM91b], [KM91c]. A historical
summary of the modeling of infectious diseases can be found in [And82, p.1 ff.].
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Due to interactions between the groups, the R0 value might be significantly lower than the

value of the most infective individual or lower than the average of the groups.

We analyze a homogenous and random mixing population, which simplifies the definition.

Every infected individual is a typical individual, and we know the corresponding parameters.

In the case of our SIS model, we know the contact rate and the expected lifetime of an

infected individual due to the known recovery rate γ. The probability of surviving, i.e.,

staying infective, of a single individual can be modeled using only the recovery part of the

differential equation

İ(t) =− γI(t).

The probability of being infective right at the time of infection is 1:

I(0) =1.

The solution of the differential equation is an exponential decay:

I(t) =e−γt.

The probability of staying infective follows the exponential distribution, and we know the

expected value of an exponentially distributed random variable X with parameter γ to be 1
γ
,

E[X] =

∫ ∞
0

γxe−γxdx =
1

γ
.

Proposition 3 (Basic Reproduction Number R0) The basic reproduction number R0 de-

notes the unrestricted expected number of infections of a single, typical infected individual.

In the SIS model from model 2, we know the contact rate β and the expected lifetime 1
γ
,

which results in

R0 =
β

γ
.

Our model in the upcoming sections will describe the probability of being infective. We will

include the impact of tracing and tracing delays. These influences are concatenated. The

distribution of the delay operates on the distributed impact of the tracing. Therefore, we

introduce some notation regarding the convolution.

Convolution In our upcoming model, we concatenate the distributed effect of tracing with

the tracing delay distribution. Therefore, we introduce the convolution.
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Notation 4 (Convolution of f and g)

(f ∗ g)(a) =

∫ a

0

f(a− τ)g(τ)dτ.

We need to accumulate functions, which equals a convolution by 1. To shorten the notation,

we introduce the cumulative function.

Notation 5 (Cumulative Function of f :) The cumulative function of f(a) is f#(a):

f#(a) =

∫ a

0

f(τ)dt = (1 ∗ f)(a).
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1.4 Model

This baseline model consists of a branching process formulation and covers the onset case

of an epidemic. This chapter follows closely the publication [MK16] ’The effect of delay on

contact tracing’.

The model describes a random mixing homogeneous population. There is a primary case

introducing the disease. Because we concentrate on the onset, infected individuals only

have contact with susceptible individuals. These contacts occur at a rate β and transmit

the disease. Thus, the rate β is the infectious contact rate in this model. As explained

above, this process builds a directed graph of infected individuals, a directed infection tree.

Infected individuals can recover by spontaneous unobserved recovery at the rate of α or

recover by an observed recovery at the rate of σ. We call the quotient σ
α+σ

the fraction of

observed recoveries pobs. Observed recoveries trigger a tracing event.

Within the tracing event, every branch contacting that individual is followed at the probability

of recalling contacts p. Following a branch involves the tracing delay drawn from the delay

distribution φ. When evaluating the delay, we will use the expected delay T . If the named

contactee is still infective, it also is diagnosed, and removed from the class of infected

individuals If we perform recursive tracing, this observed recovery triggers a new tracing

event.

We analyze the tracing effect by concentrating on the probability of an infected individual to

stay infective. Without tracing, we denote by κ̂(a) the probability to still be infective after time

of infection a. Contact tracing lowers this probability. The directed tree of infections enables

us to concentrate on forward tracing, backward tracing, and full tracing separately. Forward

tracing only respects the tracing in the direction of the contact graph. Forward tracing traces

the infectee by its infector. Thus, every individual, except the initially infected individual, has

a predecessor, which can trigger tracing events. A predecessor, which has a probability of

being traced himself, has a different probability of triggering a tracing event. We respect

this history of the infection by introducing generations i. We denote the resulting probability

of being infective by κ+
i (a). I.e., the probability of the index case to stay infective κ+

0 (a)

equals κ̂(a), because there is no infector, which can trigger a tracing event. All the following

generations will experience a lowered probability of being infective due to the tracing by

their infectors.

Backward tracing respects the opposite direction. The infectors are traced by their infectees.

The contacts create infectees over the lifespan of the infected individual. It is a continuous

process starting with the existence of the infected individual. Thus, the backward tracing

does not involve generations. We denote the probability to still be infectious in the case of
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backward tracing by κ−(a).

For mathematical reasons, we first investigate backward tracing only and then forward trac-

ing only. It turns out that these artificial restrictions allow for a conventient analysis of the

simplified process. Afterwards we use the results obtained to investigate full tracing, the

combination of forward and backward tracing, which we denote with κi(a), where the index

denotes the generation introduced by the forward tracing.

These κ(a) allow us to calculate the basic reproduction number R0 according to proposi-

tion 3 and approximate reproduction numbers Rct respecting the contact tracing, which we

can compare.

Corollary 6 (Basic Reproduction Number R0) In this model, we can calculate the basic

reproduction number by

R0 =

∫ ∞
0

βκ̂(a)da.

Corollary 7 (The Effective Reproduction Number Rct) The reproduction number respect-

ing forward, backward, or full contact tracing can be calculated using the corresponding

probability to stay infective κ(a) within the formula of the basic reproduction number from

corollary 6.

To compare the κ(a) to data from a process directly implementing the population, we use

a simulation based on an individual-based model1. It simulates each individual within the

homogeneous finite population N . We start the disease by introducing several infected in-

dividuals into the population. We prohibit stochastic effects from stopping the epidemic at

this point by using more than one infected individual. Each individual of the population can

become infective or susceptible and has a contact history, which we use to execute contact

tracing. We simulate the rates of unobserved recovery α, observed recovery σ, and the

contact rate β per individual. An observed recovery triggers a tracing event. At first, in the

tracing event we consider all previous contacts since the infection of the individual or since

a defined period. Depending on the probability p, we decide if we recall the particular indi-

vidual and include it into the tracing. Furthermore, we check the infection history. Therefore,

we can separate forward tracing, backward tracing with and without cluster contacts, and

full tracing with or without cluster contacts. After the tracing delay defined by the distribu-

tion φ, which we often set to the Dirac-Delta-Distribution φ = δT , we check the status of the

particular individual. If the individual is infected, we initialize an observed recovery. If we

use recursive tracing, we initialize a new tracing event.

1We describe the simulation and its implementation in more detail in section 6.1.1.
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1.5 Backward Tracing

Our analysis of the tracing concentrates on the probability of being infective after time a

after infection. Without tracing, this probability depends on the unobserved recovery rate

α and observed recovery rate σ. Concentrating on an individual, the differential equation

κ̇(a) = −(α + σ)κ(a) describes the decreasing probability of being infective. At the time of

infection a = 0 the individual is infected, hence κ(0) = 1. Using this boundary value, the

differential equation evaluates to κ(a) = e−(α+σ)a.

We will use the probability of being infective without contact tracing repeatedly as a refer-

ence for the probabilities of being infected while performing contact tracing. Therefore, we

introduce the notation of κ̂(a).

Notation 8 (The Probability of Being Infective without Contact Tracing κ̂(a)) The prob-

ability of being infective after time a after infection without contact tracing is denoted by:

κ̂(a) = e−(α+σ)a for a ≥ 0, and κ̂(a) = 0 for a < 0.

With contact tracing, this probability will be lower. A lower probability of being infective will

result in a smaller reproduction number, which indicates a reduced spread of the disease

or might result in the disease not invading the population.

In this section, we analyze the impact of backward tracing. We add a subscript minus to the

probability of being infective. This κ−(a) describes the probability of being infective under

backward tracing. I.e., an infected individual contacts and infects other individuals at a rate

β during its lifespan. Each of these infectees can trigger a tracing event tracing its infector.

In the case of one-step tracing, the infector is only traced, if the infectee experiences a

supervised recovery at its rate σ. In the case of recursive tracing, an infectee further down

in the infection tree can trigger a tracing event, and the traced infector will trigger a new

event recursively until the tracing reaches the individual we focus on. In the progress of

this section, we will derive a first-order approximation for the recursive tracing and for the

one-step tracing. The analytical approximation consists of an additive first-order effect,

which allows further calculations and general interpretation in opposite to the numerical

solution of the integro-differential equations, which describe the recursive and one-step

tracing. We will exemplify the tracing approximation for the fixed and exponential delay.

The exemplification results in an even more compact expression, which we use to calculate

reproduction numbers.

In the end, we discuss the influence of the different delays and variance on the contact

tracing before we progress to analyze the forward tracing in the succeeding section.
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The tracing incorporates a tracing delay. Therefore, we introduce the tracing distribution φ.

Definition 9 φ denotes the distribution of the tracing delay D. In the case of a fixed delay

distribution φ = δT , we will define the fixed delay by the constant T .

Recursive Backward Tracing Using notation 5 to describe cumulative effects the follow-

ing proposition 10 will characterize κ−(a), the probability of being infective after the age of

infection a.

Proposition 10 (Backward Tracing - Recursive) κ−(a) is given by the following integro-

differential equation:

κ′−(a) = −κ(a){α + σ + pβ[(φ ∗ (1− κ−))(a)− α(φ ∗ κ#
−(a))]}, κ−(0) = 1.

Proof: We rewrite the equation to denote the total hazard rate, and show the abstract struc-

ture. The right-hand side of the resulting differential equation consists of all contributors to

the recovery of an infected individual. An infected individual recovers by spontaneous re-

covery, observed recovery, and in this case by being involved in a backward tracing event,

which we summarize by ’rate of tracing’(a),

−κ′−(a)

κ−(a)
= {α + σ + rate of tracing(a)}.

The total hazard rate consists of spontaneous recovery α, the observed recovery σ =

pobsγ, which sum up to the total recovery rate γ, and the rate of tracing. In the case of

recursive backward tracing, we trigger a tracing event by observed recoveries and by tracing

events. At this stage, we do not have a direct definition for the ’rate of tracing’, but we can

define it in an indirect manner. To characterize the rate of tracing, we calculate the rate of

direct and indirect detection, which means observed recovery and recovery by being traced.

We calculate the rate by subtracting the known spontaneous recovery rate from the global

removal rate:

−κ′−(a)

κ−(a)
− α = {σ + rate of tracing(a)}.
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Using this rate of observing infected individuals, we derive a formula describing the re-

cursive process of being traced from detected descendants. This formula bases on the

descendants of an individual. These descendants are created at rate β, the contact rate.

The descendant is observed at the previously calculated rate at c time units after being in-

fected. κ−(c) is the probability of the descendant still being infectious at time c. The integral

calculates the rate of observing descendants within the interval c ∈ [0, τ) of being infected

per infector.

descendants observed(τ ) =

∫ τ

0

β

(
−κ′−(c)

κ−(c)
− α

)
κ−(c) dc.

In other words, this term indicates the rate of observing descendants, which have been

infected τ timesteps before. We now include the probability p of successfully being traced

and the tracing delay. The tracing delay is denoted by the distribution φ(t). Hence, the

tracing rate reads:

rate of tracing(a) = p(φ ∗ descendants observed)(a)

= p

∫ a

0

φ(a− τ)

∫ τ

0

β

(
−κ′−(c)

κ−(c)
− α

)
κ−(c) dc dτ

= pβ

∫ a

0

φ(a− τ)

∫ τ

0

−κ′−(c)dc− α
∫ τ

0

κ−(c) dc dτ

Since κ−(0) = 1 we obtain.

= pβ

∫ a

0

φ(a− τ)
(

1− κ−(τ)− ακ#
−(τ)

)
dτ

= pβ
[
(φ ∗ 1)(a)− (φ ∗ κ−)(a)− α(φ ∗ κ#

−)(a)
]
.

Inserting the rate of tracing into the formula for the total removal rate results in the integro-

differential equation stated above. 2

We can solve the integro-differential equation numerically and plot the results. The results

shown in fig. 1.7 visualize the exponential decay of κ̂(a) and the graphs for κ−(a) cor-

responding to the backward tracing incorporating various values of fixed delays T . The

longer the delay T , the lighter the color. At the corresponding time T , the κ−(a) branch

away from κ̂ and the backward tracing reduces the probability of being infective. The longer

the delay, the smaller the absolute impact on the overall probability to be infective over time,

because the probability of being infective already decayed.
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No Tracing κ̂(a)
Recursive BW. T = 0
Recursive BW. T = 0.25
Recursive BW. T = 0.75

Figure 1.7: The probability κ−(a) of being infective including recursive backward contact
tracing. The lighter colors indicate a longer tracing delay, and they show a more delayed
impact of the tracing. The parameters used are β = 2, σ = 0.9, α = 0.1, p = 1.

Figure 1.8 shows the probability of being infective relative to the non-tracing case , κ−(a)
κ̂(a)

.

We will call κ−(a)
κ̂(a)

the relative representation. Dividing κ−(a) by κ̂(a) and therefore showing

the relative gain of κ−(a) compared to κ̂(a) allows for an undistracted comparison of the

tracing effects prohibiting the exponential decay from distorting the effects and shrinking

the effects until they become indistinguishable.
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a

κ−(a)
κ̂(a)

No Tracing κ̂(a)
Recursive BW. T = 0
Recursive BW. T = 0.125
Recursive BW. T = 0.25
Recursive BW. T = 0.5
Recursive BW. T = 0.75

Figure 1.8: The relative probability κ−(a)
κ̂(a)

of being infective including recursive backward
contact tracing compared to the no-tracing case. The lighter colors indicate a longer tracing
delay, and they show a more delayed impact of the tracing. The parameters used are β = 2,
σ = 0.9, α = 0.1, p = 1.

The relative representation in fig. 1.8 shows the similar-looking appearance of the different
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κ−(a) apart from the shift induced by the different delays T . We just keep in mind, their

relative impact acts on the exponential function of κ̂(a), which shrinks exponentially as time

progresses. Thus, the absolute impact of a relative divergence shrinks exponentially.

One-Step Backward Tracing We follow the previous thoughts about backward tracing

again, but this time we will limit the tracing to one-step backward tracing.

One-step backward tracing does not start a tracing recursion to trace the infector of the

infector. The absence of the recursion allows for a more direct definition of the tracing,

which observed recoveries of infectees trigger. Without the recursion, the tracing algorithm

does not see the full infection tree, but only the infector and infectees. They represent the

tree within the local scope.

Proposition 11 (One-Step Backward Tracing) Let κ−(a) denote the probability of being

infectious after the time of infection a in case of one-step backward tracing. Then it can be

described by the differential equation:

κ′−(a) = −κ−(a)
{
α + σ + pβσ(φ ∗ κ#

−)(a)
}
, κ−(0) = 1.

Proof: Three mechanics establish the total recovery rate: Spontaneous (unobserved) re-

covery with rate α, the observed recovery σ, and it consists of indirect observed recovery

induced by a contact tracing event.

κ′−(a) = −κ−(a){α + σ + rate of tracing(a)}.

In one-step tracing, only the direct observation of infectees at rate σ can result in a contact

tracing event for the infector. I.e., there is no further recursion involved. The infectees are

created at rate β. The contact is recalled at probability p, and there is a tracing delay φ.

rate of tracing(a) = p

∫ a

0

φ(a− τ)

∫ τ

0

βσκ−(c)dcdτ

= pβσ

∫ a

0

φ(a− τ)κ#
−(τ)dτ

Inserting the ’rate of tracing(a)’ into κ−(a) proves the assumption. 2

It is apparent that one-step tracing is a lower bound for the impact of recursive tracing be-

cause the latter includes the direct tracing by infectees plus the recursive tracing. Figure 1.9

shows the difference in a linear plot. However, the difference is hard to observe. The back-

ward tracing experiences an inherent delay, because the infectees have to be infected to
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exist and to be able to start a tracing event. For recursive backward tracing, the infectee of

an infectee has to experience an observed recovery. When the recursive tracing impacts

the probability of being infective, the attenuation by κ̂(a) obstructs the effect.

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

0.5

1

a

κ−(a)

No Tracing
Recursive BW.
One-Step BW.
Gain by Recursive

Figure 1.9: This figure compares the tracing impact κ−(a) of recursive and one-step tracing
for T = 0, β = 2, σ = 0.9, α = 0.1, p = 1.

If we investigate the gain by recursive tracing, taking a look at the relative effect at a tracing

delay T = 0 and a probability to recall contacts of p = 1 shown in fig. 1.10, we observe

respectable gains spanning significant periods. However, the period is located at times a

after the start of the infection already experiencing significant attenuation.

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
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κ−(a)
κ̂(a)

No Tracing
Recursive BW. T = 0
Recursive BW. T = 0.75
One-Step BW. T = 0
One-Step BW. T = 0.75
Gain by Recursive at T = 0
Gain by Recursive at T = 0.75

Figure 1.10: This figure compares the relative tracing impact κ−(a)
κ̂(a)

of recursive and one-step
tracing for T = 0 and T = 0.75. The parameters used are σ = 0.9, α = 0.1, p = 1.

After observing the relative gain of recursive tracing, which results in an existing but not
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huge absolute gain at perfect conditions of T = 0 and p = 1, we take a look at the difference

between one-step tracing and recursive tracing at a delay of T = 0.75, shown in the same

fig. 1.10. This time, we observe only a minor difference even in the relative plot. Recursive

tracing experiences the delay multiple times.
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κ−(a)
κ̂(a)

No Tracing
Recursive BW. p = 0.1
Recursive BW. p = 0.3
Recursive BW. p = 1
One-Step BW. p = 0.1
One-Step BW. p = 0.3
One-Step BW. p = 1

Figure 1.11: This figure compares the relative tracing impact κ−(a)
κ̂(a)

of recursive and one-step
tracing for p = 0.1, p = 0.3 and p = 1. The parameters used are β = 2, σ = 0.9, α = 0.1,
T = 0.

We observe a similar effect when varying the probability of recalling a contact p, which we

show in fig. 1.11. Every recursion step involves a new probability p of recalling a contact,

and multiplying realistic values of around p = 0.3 reduces the effect of the recursion fast.

Although, we do not experience the interaction between the delay and attenuation of κ̂,

which seems to increase the effect of the delay.
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Simulation BW. T = 0.75
Select Individuals to Sample κ−(a)

Figure 1.12: This figure shows the count of infected individuals among two populations
within an IBM simulation with one-step backward tracing using the tracing delay of T = 0
and T = 0.75. The gray area visualizes the period used to sample individuals to determine
the corresponding κ−(a). The simulations use a population of size 4 · 105 with one-step
backward tracing. The parameters used are β = 2, σ = 0.9, α = 0.1, p = 1.

Simulation IBM simulations1 support the results of the model. We choose one-step trac-

ing using T = 0 and T = 0.75 as two examples. Figure 1.12 shows these two populations of

4 ·105 individuals and highlights the epoch we use to sample infected individuals to estimate

the corresponding κ−(a).

Figure 1.13 shows the matching shape of the stochastic branching model and the IBM

simulation apart from stochastic variance.
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One-Step Simulation BW. T = 0
One-Step Simulation BW. T = 0.75
One-Step BW. T = 0
One-Step BW. T = 0.75

Figure 1.13: This figure compares the tracing impact κ−(a) of the simulation shown in
fig. 1.12 and the one-step tracing model for T = 0 and T = 0.75. The parameters used are
β = 2, σ = 0.9, α = 0.1, p = 1.

1Section 6.1.1 describes the implementation of the IBM simulation in more detail.
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1.5.1 Approximations

As the integro-differential equation of recursive backward tracing from proposition 10 can

only be solved numerically, we will provide an analytical approximation in proposition 12.

The zeroth order of this approximation consists of the removal rate without contact tracing

κ̂(a) from notation 8.

We assume the probability p, which states the probability of recalling a specific contact, to

be small. This small probability allows us to perform a power series ansatz to approximate

proposition 10.

Proposition 12 (Backward Tracing – First Order) The first-order approximation of κ−(a)

in p:

κ−(a) = κ̂(a)− p pobsβκ̂(a)(1 ∗ φ ∗ (1− κ̂))(a) +O(p2).

Proof: Assuming p to be small, we start using a power series ansatz with respect to p.

κ−(a) =
∞∑
i=0

piκ−,i(a).

where κi(a) are independent of p. Then we insert the ansatz into proposition 10:

κ−(0) =1,

∞∑
i=0

piκ′−,i(a) =−

(
∞∑
i=0

piκ−,i(a)

)
·{

α + σ + pβ

[(
φ ∗

(
1−

∞∑
i=0

piκ−,i

))
(a)− α

(
∞∑
i=0

piφ ∗ κ#
−,i

)
(a)

]}
.

Equating powers of p results for p0 and p1 in:

κ′−,0(a) = −κ−,0(a)(α + σ),

κ−,0(0) = 1,

κ′−,1(a) = −κ−,1(a)(α + σ)− βκ−,0(a)
[
(φ ∗ 1)(a)− (φ ∗ κ−,0(a)− α(φ ∗ κ#

−,0)(a)
]
,

κ−,1(0) = 0.

Solving the zeroth order results in an exponentially decaying function:

κ̂(a) := κ−,0(a) = e−(α+σ)a.
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With κ#
−,0(a) = 1

α+σ
(1− κ̂(a)) we reformulate the brackets of the first order:[

(φ ∗ 1)(a)− (φ ∗ κ−,0)(a)− α(φ ∗ κ#
−,0)(a)

]
= (φ ∗ (1− κ̂))(a)− α

α + σ
(φ ∗ (1− κ̂))(a)

=
σ

α + σ
(φ ∗ (1− κ̂))(a).

This results in the simplified equation for the first order:

κ′−,1(a) = −(α + σ)κ−,1(a)− βκ−,0(a)

[
σ

α + σ
(φ ∗ (1− κ̂))(a)

]
.

Recall pobs = σ
α+σ

. Therewith, we obtain:

κ−,1(a) = −e−(α+σ)a

∫ a

0

(
e(α+σ)τ

) βσ

α + σ
e−(α+σ)τ (φ ∗ (1− κ̂))(τ)dτ

= −
∫ a

0

β
σ

α + σ
e−(α+σ)a(φ ∗ (1− κ̂))(τ)dτ

= −β pobs κ̂(a)(1 ∗ φ ∗ (1− κ̂))(a).

Evaluating the first two orders of the ansatz proves the assumption. 2
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κ−(a) No Tracing
Recursive BW. p = 0.3
Recursive BW. p = 1
Approx BW. p = 0.3
Approx BW. p = 1
Deviation Approx p = 1
Deviation Approx p = 0.3

Figure 1.14: This figure compares the tracing impact κ−(a) of recursive tracing and its
approximation for p = 0.3 and p = 1. The linear plot shows that die relative difference in the
case of small values of p happens at a very small scale. The parameters used are β = 2,
σ = 0.9, α = 0.1, T = 0.

Figure 1.14 shows the approximation of recursive backward tracing and the recursive back-

ward tracing. In the case of p = 1, there is a visible deviation, but for smaller values of p
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like p = 0.3, the approximation around p achieves a good match.

We now calculate the first-order approximation of one-step backward tracing, similar to the

first-order approximation of backward tracing.

Proposition 13 (First Order Approximation of One-Step Backward Tracing)

κ−(a) = κ̂(a)− p pobsβκ̂(a)(1 ∗ φ ∗ (1− κ̂)(a) +O(p2).

Proof: The proof follows the ansatz of proposition 12. We start with a power series.

κ−(a) =
∞∑
i=0

piκ−,i(a).

We insert this ansatz into proposition 11.

κ′−(a) = −κ−(a)
{
α + σ + pβσ(φ ∗ κ#

−)(a)
}
, κ−(0) = 1

⇒ κ−(0) = 1,
∞∑
i=0

piκ−,i(0) = 1,

∞∑
i=0

piκ′−,i(a) = −

(
∞∑
i=0

piκ−,i(a)

){
α + σ + pβσ

(
∞∑
i=0

piφ ∗ κ#
−,i

)
(a)

}
.

Separating the powers 0 and 1 results in the following equations:

κ′−,0(a) = −κ−,0(a)(α + σ),

κ−,0(0) = 1,

κ′−,1(a) = −(α + σ)κ−,1(a)− βκ−,0(a)
[
σ(φ ∗ κ#

−,0)(a)
]
,

κ−,1(0) = 0.

Again we achieve κ−,0(a) = κ̂(a) = e−(α+σ)a and simplify the square brackets:[
σ(φ ∗ κ#

−,0)(a)
]

=
σ

σ + α
(φ ∗ (1− κ̂)(a)).

The following calculations are identical to proposition 12, and variation of parameters will

solve the ordinary differential equation proving the assumption. 2
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Figure 1.15: This figure compares the tracing impact κ−(a) of one-step tracing and its ap-
proximation for p = 0.3. The parameters used are β = 2, σ = 0.9, α = 0.1, T = 0.

In recursive tracing, the probability of tracing a path of length 2 or longer has the order

O(p2). Thus, the first-order approximation of the backward tracing and the first-order ap-

proximation of one-step backward tracing coincide. Figure 1.15 shows the match of recur-

sive and one-step backward tracing compared to their approximation. Figure 1.16 shows

that the approximation error and the impact of recursive tracing have the same sign. Thus,

the approximation provides even slightly better results in the case of recursive tracing, a

coincidence of no further importance.
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Figure 1.16: This figure magnifies the
differences between the one-step and
recursive backward tracing and the
corresponding approximation, which
are shown in fig. 1.15.

The fact that we can approximate recursive and

one-step backward tracing using the same approx-

imation becomes more comprehensible when re-

calling figs. 1.10 and 1.11. Figure 1.11 shows re-

cursive and one-step backward tracing using dif-

ferent values of p, visualizing that having to re-

call contacts multiple times multiplies the probabil-

ity and results in small differences for probabilities

like p = 0.3 or p = 0.1. Figure 1.10 shows an

even stronger effect when comparing the fixed de-

lay T = 0 and T = 0.75. In the case of a tracing

delay, the recovery rates α and σ amplify the ef-

fect. The impact of the tracing is shifted to epochs

that cover probabilities converging to zero.
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1.5.2 Specific Delays

We exemplify the equation by introducing specific delays. The less general equations are

easier to evaluate and reveal more structure when analyzing the resulting reproduction

numbers in the next subsection.

We choose the fixed delay due to its simple nature and the exponential delay because of its

use in modeling survival functions.

Fixed Delay

Assume we replace the distribution φ modeling the tracing delay by a fixed delay T :

φ(a) = δT (a).

This distribution allows replacing the convolution by a simple shift, simplifying the calcula-

tions. The following remark introduces this exemplification into the first-order approximation

of proposition 12.

Proposition 14 (First-Order Approximation for a Fixed Delay)

κ−(a) =

{
κ̂(a)− p pobsβκ̂(a)

{
(a− T )− 1−κ̂(a−T )

α+σ

}
+O(p2) for a ≥ T

e−(α+σ)a = κ̂(a) for a < T

Proof: We recall the first-order approximation of backward tracing stated in proposition 12:

κ−(a) = κ̂(a)− p pobsβκ̂(a)(1 ∗ φ ∗ (1− κ̂))(a) +O(p2).

First, we evaluate the convolution integral introducing the delay.

φ ∗ (1− κ̂)(a) =

{
(1− κ̂(a− T )) for a > T

0 for a ≤ T

The delay only takes place in the first-order approximation. As the zeroth-order approxima-

tion is independent of the delay, we conclude

κ−(a) = κ̂(a) = e−(α+σ)a, for a < T.

After introducing this shift into the tracing, we can compute the first convolution, which

calculates the cumulative effect. Therefore, we recall that
∫ a

0
f(τ)dt = (1 ∗ f)(a) from nota-

tion 5. Then we replace the convolution introducing the delay by the shift we precalculated
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before and integrate.

(1 ∗ φ ∗ (1− κ̂))(a) =

∫ a

0

φ ∗ (1− κ̂)(τ)dτ =

∫ a

T

(1− κ̂(a− T ))dτ

= (a− T )− 1

α + σ

(
1− e−(α+σ)(a−T )

)
.

Using this term in the first-order approximation of κ−(a) for a ≥ T results in the assumption:

κ−(a) = κ̂(a)− p pobsβκ̂(a)
{

(a− T )− 1
α+σ

(1− κ̂(a− T ))
}

+O(p2). 2

Exponential Delay

Of course, a fixed delay does not take place in reality, but it represents a rough approxi-

mation. Other distributions can represent more realistic assumptions of the delay. If it can

be assumed that the probability to survive, which means to stay undetected by a search

for an identified contact, remains constant over time, the exponential distribution is a direct

result. We do not analyze more complex delays like the Weibull distribution, which could

model a decreasing probability to find a recalled contact or distributions modeling a non-

monotonous shape of the probability to be found, which could respect the time to set up the

search and a decreasing interest over time.

The exponential distribution does not model the fixed time to set up the search for an identi-

fied contact. However, it models the constant probability of an individual to be found by the

contact search of a previously started contact tracing event.

Proposition 15 Choosing φ(a) = 1
T
e−

a
T results in:

κ−(a) = κ̂(a)− p pobsβκ̂(a)

{
a+ T

T (α + σ)

1− T (σ + α)

(
(1− e−

a
T )− 1− κ̂(a)

(T (σ + α))2

)}
+O(p2).

Proof: To prove the claim we insert the exponential delay into the first order approximation.

We start with the evaluation of 1 ∗ φ ∗ (1− κ̂))(a),

(1 ∗ φ ∗ (1− κ̂))(a) =

∫ a

0

φ ∗ (1− κ̂)(τ)dτ =

=
1

T

∫ a

0

∫ τ

0

e−
τ−τ ′
T · (1− e−(σ+α)τ ′)dτ ′dτ

=
1

T

∫ a

0

[e−
τ
T Te

τ ′
T ]τ0 − e−

τ
T

∫ τ

0

e( 1
T
−(σ+α))τ ′dτ ′dτ

=
1

T

∫ a

0

T − e−
τ
T T − e−

τ
T

[
T

1− T (σ + α)
e( 1

T
−(σ+α))τ ′

]τ
0

dτ
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= a+ e−
a
T T − T − 1

1− T (σ + α)

∫ a

0

e−
τ
T

[
e( 1

T
−(σ+α))τ ′

]τ
0
dτ

= a+ e−
a
T T − T−

1

1− T (σ + α)

([
1

−(σ + α)
e( 1

T
− 1
T
−(σ+α))τ

]a
0

+
[
Te

−τ
T

]a
0

)
= a+ e−

a
T T − T +

1

1− T (σ + α)

(
T
(

1− e
−a
T

)
− 1− e−(σ+α)a

(σ + α)

)
= a+

T 2(σ + α)

1− T (σ + α)(
−1− T (σ + α)

T (σ + α)

(
1− e

−a
T

)
+

1

T (σ + α)

(
1− e

−a
T

)
− 1− e−(σ+α)a

T 2(σ + α)2

)
= a+ T

T (α + σ)

1− T (σ + α)

(
(1− e−

a
T )− 1− κ̂(a)

(T (σ + α))2

)
.

Using this term we achieve the representation of the assumption. 2
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1.5.3 Reproduction Number

The reproduction number enables us to compare the effect of different tracing strategies

and different delays. In this section, we will compare the reproduction number of backward

tracing with fixed delay and with an exponential delay.

First, we recall the basic reproduction number from corollary 6, R0 =
∫∞

0
βκ̂(a)da =[

−βκ̂(a)
(α+σ)

]∞
0

= β
(α+σ)

. Then, we instantiate the effective reproduction number from corol-

lary 7 Rct =
∫∞

0
βκ−(a)da using the first-order approximation of backward tracing from

proposition 12.

Corollary 16 The effective reproduction number in case of backward tracing using the first-

order approximation from proposition 12 reads:

R− =

∫ ∞
0

β (κ̂(a)− p pobsβκ̂(a)(1 ∗ φ ∗ (1− κ̂))(a)) da+O(p2).

Reproduction Number in Case of Fixed Delay Backward Tracing

When using the backward tracing approximation, we can further exemplify the statement in

case of a fixed delay φ(a) = δT (a).

Proposition 17 The reproduction number in case of fixed delay backward tracing is stated

by:

R−,f =
β

α + σ
− p β2 pobs

κ̂(T )

2(α + σ)2
+O(p2).

Proof: First, we recall the first-order approximation of one-step backward tracing from

proposition 13 and introduce it into the formula to calculate the reproduction number:

R−,f(a) =

∫ ∞
0

βκ̂(a)da−
∫ ∞

0

βp pobsβκ̂(a)(1 ∗ φ ∗ (1− κ̂)(a)da+O(p2).

=

∫ ∞
0

βκ̂(a)da− p β2 pobs

∫ ∞
0

κ̂(a)

(
(a− T )− 1− κ̂(a− T )

α + σ

)
da+O(p2).
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Then we concentrate on the backward tracing integral to evaluate:∫ ∞
T

κ̂(a)

(
(a− T )− 1− κ̂(a− T )

α + σ

)
da

=

∫ ∞
T

κ̂(a)ada−
∫ ∞
T

κ(a)Tda−
(∫ ∞

T

κ̂(a)

α + σ
da−

∫ ∞
T

κ̂(a)κ̂(a− T )

α + σ
da

)
=

[
−κ̂(a)a

α + σ

]∞
T

−
∫ ∞
T

−κ̂(a)

α + σ
da−

[
−κ(a)T

α + σ

]∞
T

−
([
−κ̂(a)

(α + σ)2

]∞
T

−
[
−κ̂(2 · a)

2(α + σ)2κ̂(T )

]∞
T

)
=
κ̂(T )T

α + σ
−
[

κ̂(a)

(α + σ)2

]∞
T

− κ(T )T

α + σ
−
([
−κ̂(a)

(α + σ)2

]∞
T

−
[
−κ̂(2 · a)

2(α + σ)2κ̂(T )

]∞
T

)
=

[
−κ̂(2 · a)

2(α + σ)2κ̂(T )

]∞
T

=
κ̂(2 · T )

2(α + σ)2κ̂(T )
=

κ̂(T )

2(α + σ)2
.

Using this auxiliary calculation to solve the whole integral results in the statement. 2

Corollary 18 We can express the reproduction number in the case of fixed delay backward

tracing using the basic reproduction number:

R−,f =
β

α + σ
− p β2 pobs

κ̂(T )

2(α + σ)2
+O(p2)

=R0 − p pobsR
2
0

κ̂(T )

2
+O(p2).

Reproduction Number in Case of Exponential Delay and Backward Tracing

Proposition 19 The reproduction number in the case of exponential delay backward trac-

ing is stated by:

R−,e =
β

α + σ
− p pobsβ

2

(σ + α)22(1 + T (α + σ))
.

Proof: First, we recall the approximation of backward tracing in the case of exponential

delay from proposition 15. We introduce this probability into the formula for the effective
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reproduction number from corollary 7.

R−,e =

∫ ∞
0

βκ̂(a)− βp pobsβ·

κ̂(a)

{
a+ T

T (α + σ)

1− T (σ + α)

(
(1− e−

a
T )− 1− κ̂(a)

(T (σ + α))2

)}
da+O(p2).

Then, we expand the term to solve the resulting smaller integrals:

R−,e =

∫ ∞
0

βκ̂(a)− βp pobsβ

{∫ ∞
0

κ̂(a)ada

+ T
T (α + σ)

1− T (σ + α)

((∫ ∞
0

κ̂(a)da−
∫ ∞

0

κ̂(a)e−
a
T da

)
−
∫ ∞

0

κ̂(a)

(T (σ + α))2
da+

∫ ∞
0

κ̂(a)2

(T (σ + α))2
da

)}
+O(p2).

Now, we solve the individual integrals, starting with the known basic reproduction number:∫ ∞
0

βκ̂(a)da =

∫ ∞
0

e−(α+σ)ada =
β

α + σ
= R0, (1.1)∫ ∞

0

κ̂(a)ada =
1

(α + σ)2
, (1.2)∫ ∞

0

κ̂(a)da =
1

(α + σ)
, (1.3)∫ ∞

0

κ̂(a)e−
a
T da =

T

1 + (α + σ)T
, (1.4)∫ ∞

0

κ̂(a)

(T (σ + α))2
da =

1

(α + σ)T 2(σ + α)2
, (1.5)∫ ∞

0

κ̂(a)2

(T (σ + α))2
da =

1

(2α + σ)T 2(σ + α)2
. (1.6)

Now, we subtract the solutions of eqs. (1.5) and (1.6), and add the result to eqs. (1.2) to (1.4)

while respecting the factor T T (α+σ)
1−T (σ+α)

to evaluate the curly brackets of the reproduction

number.

1

(α + σ)2
+ T

T (α + σ)

1− T (σ + α)

(
1

α + σ
− T

1 + (α + σ)T
− 1

2(α + σ)T 2(σ + α)2

)
=

1

(σ + α)22(1 + T (α + σ))
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We achieve the backward tracing update by adding the factor p pobsβ
2.

=
p pobsβ

2

(σ + α)22(1 + T (α + σ))
.

2

Corollary 20 We can express the reproduction number in the case of exponential delay

backward tracing using the basic reproduction number:

R−,e =
β

α + σ
− p pobsβ

2

(σ + α)22(1 + T (α + σ))
+O(p2)

=R0 −
p pobsR

2
0

2(1 + T (α + σ))
+O(p2).

Comparison of Fixed and Exponential Delay

We choose the representation of the reproduction numbers from corollaries 18 and 20 to

highlight the differences,

R−,f =R0 − p pobsR
2
0

κ̂(T )

2
+O(p2),

R−,e =R0 − p pobsR
2
0

1

2(1 + T (α + σ))
+O(p2).

First, we notice that 1
1+T (α+σ)

is the [0/1] Padé approximation of κ̂(T ) [Pad92, p.14][BG96,

p.8]:

κ̂(T ) =e−(α+σ)T ,

e−(α+σ)T +O(T 2) =[1/0]κ̂(T ) =
1

1 + T (σ + α)
.

5 10 15

0.1

0.2

x

rest
1

1+x
− 1

ex

Figure 1.17: Differences of exponen-
tial delay and fixed delay compared.

Apart from the κ̂(T ) and its approximation, the ap-

proximated reproduction numbers are similar. Fig-

ure 1.17 visualizes that the effect of exponential de-

lay tracing is bigger than the effect of fixed delay

tracing for the practical levels of α, σ and T . We

know that a ≥ 0, σ ≥ 0, and T ≥ 0. Furthermore,

we observed large recovery rates require very small

delays to not prohibit an effect of tracing to become

visible. On the other hand, long delays require very
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small recovery rates, because otherwise, the probabilities will reach similar low levels before

the contact tracing can take effect.

It is easy to see that 1
1+x
≥ e−x for x ≥ 0 because the denominators show ex ≥ 1+x ∀x ≥

0. This observation raises the assumption that the higher variance of the exponential delay

might be an advantage.

Therefore, we imagine a distribution consisting of two fixed delays δT+s+δT−s
2

for T − x >

0, s > 0. We observe

R0 − p pobsR
2
0

κ̂(T )

2
≥R0 − p pobsR

2
0

κ̂(T + s) + κ̂(T − s)
4

.

This is true due to the convexity of e−T

κ̂(T )

2
≤ κ̂(T + s) + κ̂(T − s)

4
.

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

0.5

1

a

κ−(a)
κ̂(a)

No Tracing κ̂(a)
One-Step Fixed Delay T = 0
One-Step Fixed Delay T = 0.5
One-Step Exponential E(D) = T = 0.5

Figure 1.18: The relative probability κ−(a)
κ̂(a)

of being infective including one-step backward
contact tracing without a delay, with fixed delay T = 0.5 and with an exponential delay with
expected value E(D) = 0.5. The parameters used are β = 2, σ = 0.9, α = 0.1, p = 1.

We can observe the advantage of exponential delay over the fixed delay when looking at

the probabilities of being infected after the start of an infection. Figure 1.18 shows that the

exponential distribution variance allows for a significant impact during the beginning of an

infection when more infective contacts can be prohibited.

The IBM simulation shown in fig. 1.20 and fig. 1.19 shows the same results. We choose a

larger epoch to sample the individuals for κ−,e(a) compared to the fixed delay from fig. 1.12

to counter the additional variance gained by the exponential distribution.

40



1.5. BACKWARD TRACING CHAPTER 1. ONSET – CONTACT TRACING

2 4 6 8 10 12 14 16 18 20

0.5

1

1.5

2

·105

time

infected Simulation, Fixed Delay T = 0.5
Simulation, Exponential Delay E(D) = T = 0.5
Select Individuals to Sample κ−(a)

Figure 1.19: This figure shows the count of infected individuals among two populations
within an IBM simulation with fixed-delay backward tracing using the fixed tracing delay of
T = 0.5 and an exponential delay of E(D) = 0.5. The parameters used are β = 2, σ = 0.9,
α = 0.1, p = 1.

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5

0.5

1

a

κ−(a)
κ̂(a)

No Tracing κ̂(a)
One-Step Fixed Delay T = 0
One-Step Fixed Delay T = 0.5
One-Step Exponential E(D) = T = 0.5
IBM One-Step Fixed Delay T = 0.5
IBM One-Step Exponential Delay E(D) = T = 0.5

Figure 1.20: The same graphs as shown in fig. 1.18, but we added the two IBM simulations
shown in fig. 1.19 including one-step backward tracing with a fixed delay T = 0.5 and
tracing with an exponential delay E(D) = 0.5.
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Discussion – Influence of Variance on the Reproduction Number

The larger impact of exponential delay in backward tracing might be supported by the result

of [WL07]. They analyze the spread of disease and summarize that a lower variation in the

life expectancy of a generation corresponds to a larger R0. The exponential delay increases

the variation of the life expectance of surviving individuals.

Nevertheless, we observe that the variation of the tracing delay allows for the tracing within

the early phase of infections when the probability of being infective is large, and more

secondary infections can be prohibited. On the other hand, the slower detections do not

balance this advantage because of the spontaneous recovery. If there is a very long tracing

delay, there is a realistic chance that the individual already recovered. The convex shape of

κ−(a) results in a bigger average infectivity of the traced individuals than a fixed delay would

detect. However, the spontaneous recovery rate is a necessity for this argumentation.
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1.6 Forward Tracing

In this section, we will model forward tracing by employing a recursive approach aligned

by the generations of infected individuals. The recursion starts at the zeroth generation.

The zeroth generation can not be traced by an event triggered by a previous generation.

Therefore, the probability of being infective of the zeroth generation is κ̂ = e−(α+σ)a, see

notation 8. To model the following generations of infected individuals, we will introduce a

notation κ+
i (a|b).

Definition 21 (κ+
i (a|b)) κ+

i (a|b) is the probability for an individual of generation i to be

infectious at age since infection a, given that the infector has had the age since infection b

at the time of the infectious contact.

Proposition 22 (Recursive Forward Tracing) κ+
i (a) for i > 0 follows from the following

recursive formula:

κ+
i−1(b)κ+

i (a|b) = κ̂(a)

{
κ+
i−1(b)− p

∫ a

0

(
−κ+

i−1
′
(b+ c)− ακ+

i−1(b+ c)
)∫ a

c

φ(a′ − c)da′dc
}

κ+
i (a) =

∫∞
0
κ+
i (a|b)κ+

i−1(b)db∫∞
0
κ+
i−1(τ)dτ

.

Proof: Without contact tracing, the probability of an individual being infectious at the age

a of the infection is given by κ̂(a), the probability of the zeroth generation. If the infector

is still alive, the chance of tracing lowers the probability of being still infectious. We are

now going to prove the probability of being infective under the condition of the status of the

infector κi(a|b) = κ̂(a) {1− p rate of tracingi(a, b)}. The rate of tracingi(a, b) depends on

the tracing delay and the age of the infector, given that the infector was infective at the time

the infection took place. Below, we will show that

κi(a|b) = κ̂(a)

{
1− p

∫ a

0

(
−κ+

i−1
′
(b+ c)

κ+
i−1(b)

−
ακ+

i−1(b+ c)

κ+
i−1(b)

)∫ a

c

φ(a′ − c)da′dc

}
.

To be traced as an infectee, the infector needs to become detected. We know that the

infection took place at the age of infection b of the infector. Particularly, the infector was

infectious at that age. Hence, the probability that the infector is still infectious at age since

infection a+ b reads κ+
i−1(a+ b)/κ+

i−1(b).

At time b + c, the rate of being observed as an infector is the probability of being still infec-

tious multiplied by the rate of being observed, i.e., the removal rate minus the unobserved
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removals α.

κ+
i−1(b+ c)

κ+
i−1(b)

(
−κ+

i−1
′
(b+ c)

κ+
i−1(b+ c)

− α

)
=

(
−κ+

i−1
′
(b+ c)

κ+
i−1(b)

−
ακ+

i−1(b+ c)

κ+
i−1(b)

)
.

Now we incorporate a delay distributed according to φ, and we introduce the time a′ ∈ [0, a)

at which a tracing event is triggered. This results in the distributed hazard rate at time a′.

∫ a′

0

(
−κ+

i−1
′
(b+ c)

κ+
i−1(b)

−
ακ+

i−1(b+ c)

κ+
i−1(b)

)
φ(a′ − c)dc.

The distributed effect of the rate to be traced at a′ is now accumulated by integrating over

the interval [0, a).

∫ a

0

∫ a′

0

(
−κ+

i−1
′
(b+ c)

κ+
i−1(b)

−
ακ+

i−1(b+ c)

κ+
i−1(b)

)
φ(a′ − c)dcda′

=

∫ a

0

(
−κ+

i−1
′
(b+ c)

κ+
i−1(b)

−
ακ+

i−1(b+ c)

κ+
i−1(b)

)∫ a

0

φ(a′ − c)da′dc.

Inserting this rate of tracing results in the intermediate equation to prove

κ+
i (a|b) = κ̂(a)

{
1− p

∫ a

0

(
−κ+

i−1
′
(b+ c)

κ+
i−1(b)

−
ακ+

i−1(b+ c)

κ+
i−1(b)

)∫ a

c

φ(a′ − c)da′dc

}
.

This κ+
i (a|b) states the probability of being infective under the condition that the infector is

of age b + a. To achieve κ+
i (a), we respect all possible ages of the infector b. We start

calculating the probability to be infective and the infector, being of a particular age of the

infection b, still being infective. Therefore, we multiply the conditional probability by κ+
i−1(b).

Thus, we achieve the first equation to prove.

To obtain κ+
i (a), we note that the distribution of the age since infection of the infectors at

the time of the infection, which is given by

βκ+
i−1(b)∫∞

0
βκ+

i−1(τ)dτ
=

κ+
i−1(b)∫∞

0
κ+
i−1(τ)dτ

.

Introducing this distribution into κ+
i−1(b)κi(a|b) and integrating all possible ages of the infec-

tor b proves the claim. 2

Figure 1.21 visualizes the recursive forward tracing with various delays from T = 0 to
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p = 1
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1 , T = 0.25

Recursive FW. κ+
1 , T = 0.5

Recursive FW. κ+
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4 , T = 0.75

Gain from 1st to 4th Recursion

p = 0.3
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4 , T = 0.75
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Figure 1.21: The figures show recursive forward tracing with various fixed delays from T = 0
to T = 0.75 in the case of p = 1 and p = 0.3. The gray are shows the improvement due
to the recursion of the tracing between generation one and four. The parameters used are
β = 2, σ = 0.9, α = 0.1, p = 1.
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T = 0.75 in the case of p = 1 and p = 0.3. In the case of T = 0 and T = 0.75, we did not

only plot the first generation κ+
1 (a), but also the fourth generation κ+

4 (a) and highlight the

improved impact of the fourth generation’s recursive tracing in gray.

We choose to plot the probability of being infective respecting forward tracing κ+
i (a) relative

to the no tracing case κ̂(a), i.e., κ
+
i (a)

κ̂(a)
, to highlight the differences between the generations,

which become smaller for lower probabilities of recalling contacts. We show this by lowering

the probability of recalling a contact to p = 0.3.

Both plots show the start of the tracing after the end of the tracing delay. Furthermore, we

can concentrate on the recursive effect and observe that the influence of the recursive effect

starts at the same time as the tracing of the first generation. This recursive effect without

additional delay differs from the backward tracing case. In the recursive backward tracing,

the effect of every additional individual, which was infected and then recovered, involved an

additional delay until it influenced the current individual.

In the case of forward tracing, the previous generations’ delay, e.g., the delay of the infector

of the infector, can progress even before the current individual is infected. This is shown in

fig. 1.22. Figure 1.22 shows an infection tree of three individuals of three generations on

the left, the zeroth, first, and second generation. On the top, there is a timeline. Below the

timeline, the fig. 1.22 shows three graphs showing the κ+
i corresponding to each genera-

tion. The graphs are arranged according to this timeline. On top of these general graphs,

we overlay the interactions of a possible example, which demonstrates how recursive trac-

ing can reach the individual of generation two right after the tracing delay of the infector

progressed.

In the case of the first generation, an individual is traced by its infector. In the case of

generations i > 1 and recursive contact tracing, this infector suffers a higher hazard rate

and triggers more tracing events because it is traced by its infector.

One-Step Forward Tracing

In recursive tracing, the direct detection at rate σ and the indirect detection by contact

tracing trigger tracing events. In one-step tracing, only direct detection triggers a contact

tracing event. Similar to section 1.5, ’One-Step Backward Tracing’, we replace the implicit

description of observed recoveries, i.e., the total hazard rate minus spontaneous recoveries

at rate α, by the direct detection at rate σ.
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Figure 1.22: We visualize recursive tracing by describing a possible timeline of the inter-
actions between the generations. We relate the interactions to the probabilities of being
infective κ+i (a)

κ̂(a)
for three generations i = 0, i = 1 and i = 2 by overlaying the interactions on

top of the graphs. The parameters used are β = 2, σ = 0.9, α = 0.1, p = 0.3.
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Proposition 23 (One-Step Forward Tracing) The recursive formula for κ+
i (a) for i > 0 in

the case of one-step forward tracing is given by:

κ+
i−1(b)κ+

i (a|b) = κ̂(a)

{
κ+
i−1(b)− pσ

∫ a

0

κ+
i−1(b+ c)

∫ a

c

φ(a′ − c)da′dc
}

κ+
i (a) =

∫∞
0
κ+
i (a|b)κ+

i−1(b)db∫∞
0
κ+
i−1(τ)dτ

.

Figure 1.23 shows one-step tracing at p = 1 using similar parameters as fig. 1.21. We

observe a reduced effect of the tracing for generations i = 4 compared to i = 1 in contrast

to the positive effect we observed for recursive tracing in fig. 1.23.
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κ̂(a) One-Step FW. κ+

1 , T = 0

One-Step FW. κ+
4 , T = 0

Loss from 1st to 4th Recursion
One-Step FW. κ+

1 , T = 0.25

One-Step FW. κ+
1 , T = 0.5

One-Step FW. κ+
1 , T = 0.75

One-Step FW. κ+
4 , T = 0.75

Loss from 1st to 4th Recursion

Figure 1.23: The figure shows recursive forward tracing with various fixed delays from T = 0
to T = 0.75 in the case of p = 1. The gray are shows the decreasing effect of the tracing
between generation one and four. The parameters used are β = 2, σ = 0.9, α = 0.1, p = 1.

Figure 1.24 concentrates on forward tracing without delay and compares the first four gen-

erations of recursive and one-step tracing. In the case of recursive tracing, we observe an

increasing effect from generation to generation. The tracing of previous generations results

in more traced individuals within the generation i − 1. More triggered tracing events at the

generation i− 1 result in more tracing at generation i.

In contrast to the improved recursive tracing, the detected cases in generation i− 1 do not

start new tracing events in the case of one-step forward tracing. Furthermore, the detected

individuals are removed and do not experience an observed recovery at rate σ to trace

the individual of generation i. Therefore, we observe a decreased effect of the tracing.

In fig. 1.24 this introduces an alternating sequence. Only unobserved recoveries α and
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Figure 1.24: The figure shows the first four generations of recursive and one-step forward
tracing. It visualizes the gain of recursive forward tracing and compares it to the reduced
effect of one-step forward tracing over the first four generations. The parameters used are
β = 2, σ = 0.9, α = 0.1, p = 1.

observed recoveries σ, which start tracing events, at the zeroth generation of κ0(a) = κ̂(a)

results in a lot of detected cases in the first generation of κ+
1 (a). A lot of detected traces

in κ+
1 (a) result in fewer observed recoveries σ, which results in few detections within the

second generation of κ+
2 (a), resulting in more detections in the third generation of κ+

3 (a)

before detecting fewer infected individuals in the fourth generation of κ+
4 (a).

Simulation The simulations of our individual-based model support the plots of fig. 1.24,

which compare one-step and recursive forward tracing. Figure 1.25 shows the number of

infected individuals within two populations with recursive forward tracing up to the depth

of four and one-step forward tracing. In the case of recursive forward tracing, we had to

introduce more infected individuals because the epidemic was not sustainable due to the

increased effect of recursive tracing.

Figure 1.26 shows that the recursive forward tracing κ+(a) sampled from the population be-

tween time t = 2.5 till t = 5.5 corresponds to the second generation κ+
2 (a) of the recursive

forward tracing.

In the case of one-step tracing, we observe a slightly better effect than the one of the one-

step κ+
2 (a). This might be the case due to a combination of the small sample size and some

individuals being sampled as a member of the first and third generation, which experience

a larger one-step tracing effect than the second generation.
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Figure 1.25: The number of infected individuals of two populations of 4 · 105 individuals. We
used more initially infected individuals in the case of recursive tracing up to the depth of
four, because the spread of the epidemic was not sustainable and the number of infected
individuals decreased as soon as the recursive tracing took effect. The parameters used
are β = 2, σ = 0.9, α = 0.1, p = 1.
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Figure 1.26: The probabilities of being infected sampled at time t = 2.5 to t = 5.5 cor-
responding to the populations plotted in fig. 1.25. The individuals used to sample the κ+

corresponding to the simulation became infected between the time t = 2.5 and t = 5.5.
Thus, they correspond to various generations of infected individuals. The parameters used
are β = 2, σ = 0.9, α = 0.1, p = 1.
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1.6.1 First-Order Approximation

We approximate the recursion by employing a first-order approximation. For technical rea-

sons, we do not allow φ to have a point mass at t = 0. Later we will use the closed-form to

express dependent expressions, like the reproduction number.

Proposition 24 We assume the distribution of the tracing delay does not include masses

at zero, i.e., limε→0

∫ ε
0
φ(a′)da′ → 0. Then the first-order approximation of κ+(a) for i > 0

reads:

κ+
i (a) = κ̂(a)− ppobsκ̂(a)((1− κ̂) ∗ φ)(a)) +O(p2).

Proof: First, we recall the recursive equation from proposition 22 describing the forward

tracing.

κ+
i (a) = κ̂(a)

{
1− p

∫∞
0

∫ a
0

(−κ+
i−1
′
(b+ c)− ακ+

i−1(b+ c))
∫ a
c
φ(a′ − c)da′dc db∫∞

0
κ+
i−1(b)db

}
.

We aim at a first-order approximation of κ+
i . Therefore, it is sufficient to replace κ+

i−1(a) on

the right-hand side by the zero-order approximation that is κ̂(a) = e−(α+σ)a. Thereby, the

denominator simply reads
∫∞

0
κ̂(b)db = 1

(σ+α)
. The numerator requires more attention:

∫ ∞
0

∫ a

0

(
−κ+

i−1
′
(b+ c)− ακ+

i−1(b+ c)
)∫ a

c

φ(a′ − c)da′dc db

≈
∫ ∞

0

∫ a

0

(α + σ)e−(α+σ)(b+c) − αe−(α+σ)(b+c)

∫ a

c

φ(a′ − c)da′dc db

=

∫ ∞
0

∫ a

0

σe−(α+σ)(b+c).

∫ a

c

φ(a′ − c)da′dc db

Separate independent factors:

=σ

∫ ∞
0

e−(α+σ)bdb

∫ a

0

e−(α+σ)c

∫ a

c

φ(a′ − c)da′ dc.

Employ the antiderivatives when possible:

=
σ

−(α + σ)

(
0− e0

) ∫ a

0

1

−(α + σ)

d

dc
e−(α+σ)c

∫ a

c

φ(a′ − c)da′ dc.

Simplify and shift the innermost integral:

=
−σ

(σ + α)2

∫ a

0

d

dc
e−(α+σ)c

∫ a−c

0

φ(a′′)da′′dc
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Employ integration by parts:

=
−σ

(σ + α)2

{
e−(α+σ)c

∫ a−c

0

φ(a′)da′
∣∣∣∣a
c=0

−
∫ a

0

e−(α+σ)c d

dc

∫ a−c

0

φ(a′)da′dc

}
.

We now use
∫ a−a

0
φ(a′)da′ = 0 from the preconditions.

=
−σ

(σ + α)2

{
−
∫ a−0

0

1 · φ(a′)da′ +

∫ a

0

e−(α+σ)cφ(a− c)dc
}

=
σ

(σ + α)2

{∫ a

0

1 · φ(a− c)dc−
∫ a

0

e−(α+σ)cφ(a− c)dc
}

=
σ

(σ + α)2
((1− κ̂) ∗ φ)(a).

With pobs = σ
σ+α

, we obtain the result:

κ+
i (a) = κ̂(a)

{
1− p

∫∞
0

∫ a
0

(−κ+
i−1
′
(b+ c)− ακ+

i−1(b+ c))
∫ a
c
φ(a′ − c)da′dc db∫∞

0
κ+
i−1(b)db

}

= κ̂(a)

{
1− p

σ
(σ+α)2

((1− κ̂) ∗ φ)(a)
1

σ+α

}
+O(p2).
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Figure 1.27: The probabilities of being infective of the fourth generation κ+
4 (a) of recursive

and one-step tracing in the case of p = 1 and p = 0.3 compared to the approximation
κ+.The parameters used are β = 2, σ = 0.9, α = 0.1, p = 1.

Figure 1.27 visualizes the forward tracing approximation compared to the one-step and
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recursive tracing of the fourth generation using the probability of recalling contacts p = 1

and p = 0.3.

As observed in the relative plots of the recursive forward tracing case, the difference be-

tween one-step and recursive tracing in the case of p = 0.3 is considerably smaller as the

probability of p = 0.3 affects each generation and breaks the recursions. In that case, we

observe a good fit for the forward tracing approximation.

In the proof for proposition 24, we constrained the delay to not including point masses at

zero. This constraint simplifies the integration by parts. However, this assumption can be

removed by an approximation argument. Particularly, also the case of no delay (T=0) can be

handled by proposition 25. Thus, we recover the result of the model without delay [MH07,

Proposition 3.2].

Proposition 25 Removing the delay distribution φ(a) by replacing it with a fixed delay of

length zero, i.e., φ(a) = δ0(a), allows for evaluation of the forward tracing approximation for

i > 0 to

κ+
i (a) = κ̂(a)− p pobs κ̂(a)(1− κ̂(a)) +O(p2) for i > 0.

Proof: To prove the claim, we start right before using integration by parts. Furthermore,

we start using δε(a) to avoid δ0(a) at the integral border. Then, we show that in case of no

delay the reason to perform integration by parts instead of a direct integration vanishes.

σ

∫ ∞
0

e−(α+σ)bdb

∫ a

0

e−(α+σ)c

∫ a

c

δε(a
′ − c)da′ dc

=
−σ

−(α + σ)

∫ a

0

e−(α+σ)c

∫ a

c

δε(a
′ − c)da′ dc

Shifting the inner integral and writing
∫ a−c

0
δ0(a′)da′ underlines that it always equals 1 within

the range of the outer integral c ∈ [0; a] for ε < a. Now, we introduce an approximation

argument and take the limes from above δ0 = limε→0 δε. Using this argument, we write:

=
−σ

−(α + σ)

∫ a

0

e−(α+σ)c · 1 dc

=
−σ

−(α + σ)

1

−(σ + α

(
e−(α+σ)a − 1

)
=

σ

(σ + α)2
(1− κ̂(a)).

This calculation proves the result of proposition 24 is valid in case of a fixed delay of length

zero. 2
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Figure 1.28: The count of infected individuals among a population of 4 · 105 with one-step
forward tracing with a recall probability p = 0.3 and a contact rate β = 2, spontaneous
recovery α = 0.1, and supervised recovery σ = 0.9.

Simulation We support the applicability of the approximation by IBM simulations. This

time, we simulate a population of 4 · 105 individuals with one-step forward tracing at the

fixed delay of T = 0 and T = 0.75. Figure 1.28 visualizes the epoch we used to sample the

infected individuals we use to calculate κ+(a).

Figure 1.29 shows the matching shape of the approximation κ+, κ+
4 (a) calculated by the

recursive model and the corresponding κ+(a) sampled from the data of the simulation.

Because we use a realistic probability of recalling a contact p = 0.3, we observe a good fit

of the approximation, the model, and the simulation.
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Figure 1.29: The sampled probability of being infective κ+(a) of the individuals of various
generations from the epoch between t = 2.5 and t = 7 corresponding to fig. 1.28 at T = 0
and T = 0.75 compared to the approximation and the fourth generation of the recursive
model. The green plots from the fourth order of the forward tracing recursion show the
values shown in fig. 1.24. We show the forward tracing recursion solution to visualize the
effect of different tracing delays without noise. The dashed black and gray lines T = 0 and
T = 0.75 visualize the quality of the fit of the simulation.
The onset graphs, including tracing, branch away from the graph κ̂(a) without tracing. The
time of this branching depends on the tracing delay T .
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1.6.2 Specific Delays

Similar to backward tracing, we exemplify the equation by replacing the general distribution

φ(a) with specific distributions, which allow further computation.

Fixed Delay

Proposition 26 Replacing the delay distribution φ(a) by a fixed delay φ(a) = δT (a) exem-

plifies the equation:

κ+
i (a) =

{
κ̂(a)− p pobsκ̂(a)(1− κ̂(a− T )) +O(p2) a ≥ T and i > 0,

κ̂(a) +O(p2) a < T or i = 0.

Proof: This proposition is an immediate consequence of proposition 24,

κi(a) = κ̂(a)− p pobsκ̂(a)((1− κ̂) ∗ φ)(a)) +O(p2),

and the evaluation of the delay φ∗ (1− κ̂)(a) = (1− κ̂(a− t)) while respecting that κ(a) = 0

for a < 0. 2

Exponential Delay

Proposition 27 Using an exponential delay distribution φ(a) = 1
T
e
−a
T , the first-order ap-

proximation of κ+(a) for i > 0 reads

κ+
i (a) = κ̂(a)− p pobsκ̂(a)

(
1− e−

a
T − κ̂(a)− e− a

T

1− T (α + σ)

)
+O(p2).

Proof: Again, we take the first-order approximation from proposition 24. We insert the

distribution and compute the part dealing with delay:

((1− κ̂) ∗ φ)(a))

=

∫ a

0

(
1− e−(α+σ)(a−τ)

)
e
−τ
T

1

T
dτ

=
1

T

∫ a

0

e
−τ
T − e−(α+σ)a+(−(α+σ)− 1

T )τdτ

=
1

T

(
(−T )[e

−τ
T ]a0 −

κ(a)

(α + σ)− 1
T

[
e((α+σ)− 1

T
)τ
]a

0

)
=1− e

−a
T − 1

T

κ̂(a)

(α + σ)− 1
T

(
κ̂(−a)e

−a
T − 1

)
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=1− e
−a
T − e

−a
T − κ̂(a)

T (α + σ)− 1
.

Inserting into the first-order approximation now proves the assumption. 2
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Figure 1.30: Recursive forward tracing with exponential delay from zero to E = T = 0.75.
The parameters used are β = 2, σ = 0.9, α = 0.1, p = 0.3.

Figure 1.30 visualizes recursive forward tracing with exponential tracing delays from no

delay to E = 0.75. In the case of an exponential delay, we do not see the effect of the

tracing branching away from the no-tracing case in a clearly visible junction. Instead of

junctions, we observe a more gradual start of the tracing. Figure 1.31 compares recursive

forward tracing with fixed delay T = 0.75 to recursive forward tracing with exponential delay

E = 0.75. We observe that the gradual start of the exponential delay allows for a lot of

tracing until the fixed delay tracing starts.
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Figure 1.31: We compare the first and fourth generation of recursive forward tracing with
exponential delay with E(D) = T = 0.75 to the first and fourth generation of recursive
forward tracing with fixed delay T = 0.75. The parameters used are β = 2, σ = 0.9,
α = 0.1, and p = 0.3.
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Figure 1.32: The infected individuals of recursive forward tracing until the fourth generation
with exponential delay compared to recursive fixed delay forward tracing at p = 0.3, the
fixed delay T = 0.75, and the exponential delay E(D) = T = 0.75. The other parameters
used are β = 2, σ = 0.9, and α = 0.1.

Simulation The IBM simulations support the shape of κ+
4 (a) shown in fig. 1.31. We sim-

ulated two populations using recursive tracing up to the depth of four with fixed and expo-

nential delay. To counter the variation, we sampled from t = 2 till t = 12. The sampled

κ+(a) for the exponential and the fixed delay forward tracing show the effect of exponential

delay before the fixed delay progressed and the slightly stronger effect of fixed delay tracing
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at later times of infection a.
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1 , Exponential Delay E(D) = T = 0.75

FW. κ+
4 , Exponential Delay E(D) = T = 0.75

Gain from 1st to 4th Recursion
FW. κ+

1 , Fixed Delay T = 0.75

FW. κ+
4 , Fixed Delay T = 0.75

IBM FW. κ+(a) Fixed Delay T = 0.75
IBM FW. κ+(a) Exp. Delay E = T = 0.75

Figure 1.33: The sampled probability of being infective κ+(a) of recursive forward tracing
until the fourth generation with exponential delay compared to recursive fixed delay forward
tracing at p = 0.3 and T = 0.75 fig. 1.32. For reference, we plotted the probabilities of being
infective κ+

1 (a) and κ+
4 (a) of recursive forward tracing with exponential and fixed delay. The

other parameters used are β = 2, σ = 0.9, and α = 0.1.
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1.6.3 Reproduction Number in Case of Forward Tracing

We recall corollary 7 introducing the effective reproduction number, which states the number

of infectees per infector in the onset case respecting contact tracing. In the case of forward

tracing, we conclude the following corollary.

Corollary 28 The effective reproduction number in the case of plain forward tracing reads

R+
i =

∫ ∞
0

βκ+
i (a)da.

Using the first-order forward tracing approximation, we can expand κ+
i (a) for i > 0:

R+
i ≈

∫ ∞
0

β (κ̂(a)− p pobsκ̂(a)((1− κ̂) ∗ φ)(a)) da+O(p2).

For R+
0 the forward tracing resembles the no tracing case:

R+
0 = R0.

Reproduction Number in the Case of Fixed Delay Forward Tracing

Instead of using the general forward tracing approximation to calculate the reproduction

number, we can solve the integral using the exemplified approximations, and we start using

the approximation for a fixed delay φ(a) = δT (a).

Proposition 29 The effective reproduction number in the case of forward tracing with fixed

delay reads for i > 0:

R+,f
i =

β

α + σ
− p pobsβ

κ̂(T )

2(α + σ)
+O(p2).

Proof: First, we recall the single-step approximation of the reproduction number using a

fixed delay and introduce it into the effective reproduction number from corollary 7.

R+,f
i =

∫ ∞
0

βκ̂(a)− p pobsβκ̂(a)(1− κ̂(a− T ))da+O(p2)

=

∫ ∞
0

βκ̂(a)da− p pobsβ

∫ ∞
0

κ̂(a)(1− κ̂(a− T ))da+O(p2).
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Then we concentrate on the integral, which describes the forward tracing update:∫ ∞
T

κ̂(a) · (1− κ̂(a− T ))da =

∫ ∞
T

κ̂(a)−
∫ ∞
T

κ̂(a)κ̂(a− T )da

=

[
−κ̂(a)

α + σ

]∞
T

−
[
−κ̂(2a)

2(α + σ)κ̂(T )

]∞
T

=
κ(T )

2(α + σ)
.

Using this result, we evaluate the integral:

R+,f
i =

∫ ∞
0

βκ̂(a)da− p pobsβ

∫ ∞
0

κ̂(a)(1− κ̂(a− T ))da+O(p2)

=
β

α + σ
− p pobsβ

κ̂(T )

2(α + σ)
+O(p2).

2

Corollary 30 We can express the reproduction number in the case of fixed delay forward

tracing for i > 0 using the basic reproduction number:

R+,f
i = R0 − p pobsR0

κ̂(T )

2
+O(p2).

Reproduction Number in the Case of Exponential Delay Forward Tracing

Proposition 31 The effective reproduction number in the case of forward tracing with ex-

ponential delay reads for i > 0:

R+,e
i =

β

α + σ
− p pobs

β

α + σ

1

2(1 + T (α + σ))
+O(p2).

Proof: First, we recall the single-step approximation of the reproduction number using an

exponential delay and introduce it into the effective reproduction number from corollary 7.

R+,e
i =

∫ ∞
0

βκ̂(a)− p pobsβκ̂(a)

(
1− e−

a
T − κ̂(a)− e− a

T

1− T (α + σ)

)
da+O(p2).

Then, we expand the term and solve the resulting smaller integrals:

R+,e
i =

∫ ∞
0

βκ̂(a)da− p pobsβ

{∫ ∞
0

κ̂(a)da−
∫ ∞

0

κ̂(a)e−
a
T da

−
∫ ∞

0

κ̂(a)κ̂(a)

1− T (α + σ)
da+

∫ ∞
0

κ̂(a)e−
a
T

1− T (α + σ)
da

}
da+O(p2).
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Now, we solve the individual integrals:∫ ∞
0

βκ̂(a)da =

∫ ∞
0

βκ̂(a)da =
β

α + σ
= R0,∫ ∞

0

κ̂(a)da =

∫ ∞
0

κ̂(a)da =
1

α + σ
,∫ ∞

0

κ̂(a)e−
a
T da =

T

1 + (a+ σ)T
,∫ ∞

0

κ̂(a)κ̂(a)

1− T (α + σ)
da =

−1

2(α + σ)(T (α + σ)− 1)
,∫ ∞

0

κ̂(a)e−
a
T

1− T (α + σ)
da =

−T
(1 + T (α + σ))(T (α + σ)− 1)

.

Now, we insert the solutions into the integral:

R+,e =
β

α + σ
− p pobsβ

{
1

α + σ
− T

1 + (a+ σ)T

− −1

2(α + σ)(T (α + σ)− 1)
+

−T
(1 + T (α + σ))(T (α + σ)− 1)

}
+O(p2)

=
β

α + σ
− p pobsβ

{
2(1 + T (α + σ))(T (α + σ)− 1)− T · 2(α + σ)(T (α + σ)− 1)

2(α + σ)(1 + T (α + σ))(T (α + σ)− 1)

+
1 + T (α + σ)− T 2(α + σ)

2(α + σ)(1 + T (α + σ))(T (α + σ)− 1)

}
+O(p2)

=
β

α + σ
− p pobsβ

{
(α + σ)T − 1

2(α + σ)(1 + T (α + σ))(T (α + σ)− 1)

}
+O(p2)

=
β

α + σ
− p pobs

β

α + σ

1

2(1 + T (α + σ))
+O(p2).

2

Corollary 32 We can express the reproduction number in the case of exponential delay

forward tracing for i > 0 using the basic reproduction number:

R+,e
i = R0 − p pobsR0

1

2(1 + T (α + σ))
+O(p2).

Comparison of Fixed and Exponential Delay

This comparison resembles the backward tracing case from section 1.5.3 ’Comparison of

Fixed and Exponential Delay’. Therefore, we recall the effective reproduction numbers in
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the case backward tracing with fixed and exponential delay:

R−,f =R0 − p pobsR
2
0

κ̂(T )

2
+O(p2),

R−,e =R0 − p pobsR
2
0

1

2(1 + T (α + σ))
+O(p2).

We compare the backward tracing to the forward tracing case for i > 0:

R+,f
i =R0 − p pobsR0

κ̂(T )

2
+O(p2),

R+,e
i =R0 − p pobsR0

1

2(1 + T (α + σ))
+O(p2).

By comparing the additive terms of the approximation of the reproduction number, we ob-

serve a similarity apart from the additional factor of R0 in the backward tracing case.

Hence, we conclude the same advantage of the exponential delay over a fixed delay in the

forward tracing case.
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1.7 Full Tracing

Now we combine forward tracing κ+ and backward tracing κ− to full tracing κ. We construct

a recursive formula consisting of the backward tracing from proposition 10 and the forward

tracing from proposition 22. Note: In the case of κ0(a), i.e., the first generation, no forward

tracing occurs. In that case, only the backward tracing is active due to the lack of infectors

from a previous generation.

Proposition 33 (Recursive Full Tracing) κi for i > 0 follows from the following recursive

formula, in which the zeroth generation κ0(a) only experiences recursive backward tracing

κ′0(a) = −κ0(a)
{
α + σ + pβ

[
(φ ∗ (1− κ0))(a)− α(φ ∗ κ#

0 )(a)
]}

,

κ0(0) = 1.

In the case of i > 1, the recursion formula for κi(a) includes recursive forward tracing

κi−1(b)κi(a|b) = κ0(a)

{
κi−1(b)− p

∫ a

0

(−κi−1
′(b+ c)− ακi−1(b+ c))

∫ a

c

φ(a′ − c)da′dc
}
,

κi(a) =

∫∞
0
κ+
i (a|b)κi−1(b)db∫∞

0
κi−1(τ)dτ

.

Proof: Forward tracing is triggered by the infector, backward tracing is triggered by the

infectee. For the focussed individual, these two groups are independent, and we combine

their influence.

In the case of recursive forward tracing from proposition 22, we took the probability of being

infective without tracing κ̂(a) to calculate κ+
i−1(b)κ+

i (a|b) by multiplying the probability to not

be detected by forward tracing. Because of the independence of the backward tracing from

the forward tracing, this influence of backward tracing acts on each generation independent

of the forward tracing. Thus, we use κ0(a) = κ−(a) instead of the probability to be infective

without tracing κ̂(a) to calculate full tracing. 2

We plot the probability of being infective corresponding to recursive full tracing of the first

and fourth generation κi
κ(a)

to compare it to the first and fourth generations of forward tracing
κ+i
κ(a)

and one-step and recursive backward tracing κ−(a)
κ̂(a)

in fig. 1.34. Dividing the probabil-

ity of being infective with tracing by the probability of being infective without tracing κ̂(a)

highlights the tracing effect.

We observe an increased effect from recursive tracing from the first to the fourth genera-

tion, and we note that these generations do not exist in backward tracing. Nevertheless,
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Recursive BW. κ−(a)
Gain from Recursive Tracing
Recursive Full κ1(a)
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Figure 1.34: Comparison of the probability to be infective κ of recursive forward tracing,
recursive full tracing and one-step and recursive backward tracing divided by the probability
κ̂(a) of being infective without tracing to highlight the tracing effect. The parameters used
are β = 2, σ = 0.9, α = 0.1, p = 1, and T = 0.

we observe the increased effect of the full tracing when the recursive backward tracing is

combined with recursive forward tracing.

One-Step Tracing

We can apply the arguments of the recursive model proposition 33 on the one-step back-

ward tracing from proposition 11 and forward tracing from proposition 23.

Proposition 34 (One-Step Full Tracing) We characterize κi for i > 0 by the following re-

cursive formula, in which the zeroth generation κ0(a) only experiences one-step backward

tracing

κ′0(a) = −κ0(a)
{
α + σ + pβσ(φ ∗ κ#

−)(a)
}
,

κ0(0) = 1.

In the case of i > 1, the recursion formula for κi(a) includes one-step forward tracing

κi−1(b)κi(a|b) = κ0(a)

{
κi−1(b)− pσ

∫ a

0

κi−1(b+ c)

∫ a

c

φ(a′ − c)da′dc
}
,

κi(a) =

∫∞
0
κ+
i (a|b)κi−1(b)db∫∞

0
κi−1(τ)dτ

.
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Figure 1.35: Comparison of one-step forward tracing, one-step backward and recursive
backward tracing and full tracing. The parameters used are β = 2, σ = 0.9, α = 0.1, p = 1,
and T = 0.

We complete the comparison of recursive forward, backward and full tracing from fig. 1.34

by comparing the corresponding one-step forward, backward and full-tracing probabilities

of being infective divided by κ̂(a) in fig. 1.35. We observe the increased effect of the one-

step full tracing compared to one-step forward and one-step backward tracing. We note

that there are no generations in backward tracing as they are present in forward tracing.

Therefore, the fourth generation of full and forward tracing can not be compared to recursive

backward tracing.

Simulation

The simulations of our individual-based model support the recursive and one-step full trac-

ing. Figure 1.36 shows the infected individuals within a population of 4 · 105 individuals with

one-step full tracing. The highlighted area shows the times t used to sample the probability

of being infective κ(a).

Figure 1.37 shows the sampled probability of being infective. We observe the κ(a) from the

simulation matching the shape of the κ1(a) from the model.
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Figure 1.36: The number of infected individuals in a population of 4 · 105 individuals and
one-step full tracing with fixed delay of T = 0.5. The other parameters used are β = 2,
σ = 0.9, α = 0.1, and p = 0.3.
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Figure 1.37: The sampled probability of being infective with one-step full tracing from an IBM
simulation of a population of 4 · 105 individuals with fixed delay of T = 0.5. The parameters
used are β = 2, σ = 0.9, α = 0.1, and p = 0.3.
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1.7.1 First-Order Approximation

The recursion involving an integro-differential equation of the recursive full tracing from

proposition 33 can only be solved numerically. In proposition 33, we already noted the

independence of the forward and the backward tracing.

When calculating the approximation for backward tracing in proposition 12 and the approx-

imation for forward tracing in proposition 24, the first-order approximation turned out to be

an additive correction. We will use this knowledge in proposition 35.

Proposition 35 The first-order approximation of the zeroth generation reads

κ0(a) = κ̂(a) {1− p pobsβ(1 ∗ φ ∗ (1− κ̂))(a)}+O(p2).

If the tracing delay does not have a positive mass at zero, i.e.,
∫ ε

0
φ(a′)da′ → 0, for ε→ 0,

we can use the approximation from proposition 24 for i > 0, where we used that fact to

simplify the integration by parts.

κi(a) = κ̂(a) {1− p pobsβ(1 ∗ φ ∗ (1− κ̂))(a)− p pobs(φ ∗ (1− κ̂)(a)}+O(p2).

Proof: The first-order approximation for κ0(a) consists of κ−(a) as no forward tracing oc-

curs in the zeroth generation. In that case, only the backward tracing takes place. For all

following generations, we add the forward tracing approximation from proposition 24

κ+(a) = κ̂(a)− p pobsκ̂(a)((1− κ̂) ∗ φ)(a)) +O(p2).

The approximation shows a clear distinction between forward and backward tracing. Both

subtract from the total probability of being infectious. 2

The constraint of no mass of the distribution at zero can be removed using the argument of

proposition 25 to allow for no delay approximations.
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1.7.2 Specific Delays

Like in the case of backward tracing and the case of forward tracing, we can exemplify the

computation for κi. We already observed the independent additive effect of the forward and

backward parts of the tracing in the full tracing approximation in proposition 35.

Fixed Delay

The fixed delay approximation now consists of three cases, because it inherits the case

distinction from backward tracing for the zeroth generation.

Proposition 36 (First Order Approximation for Fixed Delay) Replacing the delay distri-

bution φ(a) with a fixed delay φ(a) = δT (a) exemplifies the equation to:

κi(a) = κ̂(a)×
(

1− p pobs

{
β
(

(a− T )− 1−κ̂(a−T )
α+σ

)
+ (1− κ̂(a− T ))

})
for a ≥ T, i ≥ 1(

1− p pobs β
{

(a− T )− 1−κ̂(a−T )
α+σ

})
for a ≥ T, i = 0

1 for a < T

+O(p2)

Proof: In the case of a < T , no tracing takes place, and hence κ(a) and κ̂(a) coincide. In

the case of the first generation i = 0, no forward tracing occurs, and we follow the backward

tracing approximation for fixed delay from proposition 14 for a ≥ T .

In the case of full tracing for i > 0, we add the fixed delay forward tracing approximation

from proposition 26 for a ≥ T . 2

Exponential Delay

We recall the exponential delay backward tracing from proposition 15 and the forward trac-

ing from proposition 27. Then we use the exponential delay backward and forward tracing

to replace the backward and forward tracing in the full tracing approximation from proposi-

tion 35.
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Proposition 37 (First Order Approximation for Exponential Delay) The full tracing first

approximation with exponential delay for i > 0 is stated by:

κ−(a) =κ̂(a)− p pobsβκ̂(a)

{
a+ T

T (α + σ)

1− T (σ + α)

(
(1− e−

a
T )− 1− κ̂(a)

(T (σ + α))2

)}
− p pobsκ̂(a)

(
1− e−

a
T − κ̂(a)− e− a

T

1− T (α + σ)

)
+O(p2).
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1.7.3 Reproduction Number

We recall the effective reproduction number from corollary 7 and its approximations in the

form of the effective reproduction number approximation in the case of backward tracing

corollary 16 and the effective reproduction number approximation in the case of forward

tracing corollary 28.

We observed the additive effect of the first-order approximation of the backward and the for-

ward tracing. This property remains after integrating the effect to calculate the reproduction

number.

Inserting the first-order approximation of full tracing into the formula to calculate the repro-

duction number results in the following statement.

Corollary 38 The effective reproduction number approximation in case of full tracing reads

R±i =

∫ ∞
0

βκi(a)da

= R0 − p pobs



{ ∫∞
0
β2κ̂(a)(1 ∗ φ ∗ (1− κ̂))(a)da

+
∫∞

0
βκ̂(a)((1− κ̂) ∗ φ)(a)da

}
+O(p2) for i > 0

∫∞
0
β2κ̂(a)(1 ∗ φ ∗ (1− κ̂))(a)da+O(p2) for i = 0

.

Because there is no forward tracing for the zeroth generation, the reproduction number

approximation for the zeroth generation resembles the reproduction number approximation

of backward tracing from corollary 16.

Reproduction Number with Fixed Delay

As before in the backward tracing and forward tracing case, we exemplify the effective

reproduction number of the full tracing case employing a fixed delay.

Proposition 39 The effective reproduction number approximation in case of fixed delay

φ(a) = δT (a) full tracing for i > 0 is given by:

R±,fi =
β

(α + σ)
− 1

2
ppobsκ̂(T )

β

(α + σ)

(
β

(α + σ)
+ 1

)
+O(p2).

Proof: The result follows along the lines of proposition 29 and proposition 17. 2
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Corollary 40 When expressing the fractions β
(α+σ)

byR0, the effective reproduction number

in the case of full tracing for i > 0 and fixed delay reads:

R±,fi =R0 −
1

2
p pobsκ̂(T )R0(R0 + 1) +O(p2).

Reproduction Number with Exponential Delay

Proposition 41 The effective reproduction number approximation in case of exponential

delay φ(a) = e−
a
T full tracing for i > 0 is given by:

R±,ei = R0 − p pobs
β2

(α + σ)2

1

2(1 + T (a+ σ))
− p pobs

β

α + σ

1

2(1 + T (a+ σ))
+O(p2).

Proof: The result follows along the lines of proposition 31 and proposition 19. 2

Corollary 42 When expressing the fractions β
(α+σ)

byR0, the effective reproduction number

in the case of full tracing for i > 0 and exponential delay reads:

R±,ei = R0 − p pobsR0(R0 + 1)
1

2(1 + T (a+ σ))
+O(p2).

When comparing the approximations of the effective reproduction number with exponential

delay and with fixed delay in the case of backward tracing, we observed an increased

effect of the exponential delay. We transferred the conclusion to the forward tracing case.

Because the full tracing case adds the effect of forward tracing and backward tracing, we

again conclude an increased effect of the exponential delay.
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1.8 Summary, Discussion, and Outlook

We introduced backward and forward tracing before combining both tracing directions to

achieve full tracing. We modeled one-step and recursive versions and compared them to

the first-order approximation, which corresponded to the one-step tracing.

We took the approximation and exemplified it using fixed and exponential delays. This al-

lowed for the comparison of these delays and the analysis of their influence on the effective

reproduction number. In the first-order approximation, the effect of backward- and forward

tracing behave additively. We used this additive behavior to combine both effects into the

full tracing approximations and the reproduction number. That raises the question, which of

these additive parts has a greater effect.

There is a long-lasting discussion, if the forward tracing or backward tracing direction is

more effective [Koj+21]. If we inspect the two terms, we find that the reproduction number

enters the backward term quadratically, while it is affine-linear for the forward tracing case.

That might indicate that backward tracing is more important if R0 is large, while forward

tracing is more effective in the case of a relatively small basic reproduction number R0.

However, these conclusions are only valid if p is small. In the case of large p, it is more

likely to follow longer infection chains, and in that, backward and forward tracing will be

combined. Most likely, the conclusions stated here need to be adapted in that more general

case.

In the next chapter, we will extend the onset model to the endemic case by extending the

backward tracing to an age-structured model and using the forward tracing approximation

to extend the model to cover full tracing.
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2 Contact Tracing – The Endemic Case

The onset model for backward tracing in the previous sections concentrates on the onset

of an epidemic when we can assume every contactee to be susceptible. The onset model

assumes a constant probability of infecting a contactee. When leaving the onset case, not

every contact transmits the infection. An infection event can not occur in a contact between

two infected individuals, which becomes more likely, the higher the prevalence of a disease.

We extend the onset model to an age-structured model to cover the endemic case. In the

case of forward tracing, the paper [Sca+21] uses an age-structured model for that purpose.

We start using the onset model for one-step backward tracing. The age-structure recovery

rate is computed on the base of the probability to be infectious at age of infection as de-

termined above. To cover full tracing, we add the one-step forward tracing approximation

as a correction term. Furthermore, we also take the probability and the effect of a con-

tact between two already infected, non-susceptible individuals into account. We call these

contacts of two non-susceptible individuals cluster contacts. Cluster contacts increase the

tracing probability without infecting new individuals.

In the course of the following chapter, we will describe the endemic model without delay and

add the delay in a second step. Then we will compare the results of the endemic model to

the IBM simulation and the onset model. In the case of the IBM simulation and the endemic

model, this comparison includes the number of susceptible individuals and the probability

of being infective κ(a) of the endemic case.

Part of the contact are cluster contacts. As both contacts in a cluster contact are already

infected, the infection is not transmitted, that is, no new infectee is produced. An infected

individual has fewer infectees, and hence the intensity of backward tracing is also reduced.

Section 2.3 will investigate this effect in further detail. On the other hand, cluster contact

tracing can be added, which replaces the loss of backward tracing, which we investigate in

section 2.3. I.e., the loss of backward tracing when entering the endemic case results in a

higher probability to be infective, but the added cluster contact tracing compensates this loss

resulting in a κ(a) of similar shape compared to the κ(a) of the onset case. Nevertheless,

section 2.4 shows that the age structure of infected individuals differs in the onset and

the endemic case. The age structure of the onset case is determined by the exponential
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growth. In the endemic case, the age structure is determined by the influence of the tracing

because the number of infected individuals reached an equilibrium.
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2.1 Model

In the previous chapter, we achieved full tracing in the onset case by adding the backward

tracing integro-differential equation result into the recursive process of forward tracing. The

backward tracing was a time-independent, but age-dependent result, and the recursive

forward tracing resulted in generations.

By adding a time dependency and respecting the current number of infected individuals,

we turn the onset model of one-step backward tracing into an age-structured population

model suited for the endemic case. The time-dependent nature of the endemic backward

tracing model makes it difficult to integrate it into the recursive forward tracing model. On

the other hand, we can reduce the forward tracing recursion to one-step tracing. In that

case, we can solve the endemic backward tracing model numerically and then apply the

correction of the one-step forward tracing. That procedure integrates an approximation of

the forward tracing recursion result into the differential equation of the endemic one-step

backward tracing model, instead of using the backward tracing model within the forward

tracing recursion like in the previous chapter.

We simplify the model by reducing the complexity to one-step tracing. The analysis of the

infection tree is localized around the infectee and its infector. The infector always exists, and

if the infectee becomes an infector, it has its own infectees. Instead of building the whole

tree, we only consider this local structure of the predecessor and successor of the current

individual.

The cluster contacts, which emerge in the endemic case, turn the global infection tree,

which we considered in the onset case, into a mesh as already infected individuals contact

each other. Nevertheless, the local structure of one-step forward tracing or one-step back-

ward tracing only considering the predecessor, the infector, and the possible successor,

the infectee, does not observe the mesh. The theory of the previous chapter still works

when considering one-step tracing, because the local structure, when considering only di-

rect neighbors of the current individual always resembles a tree and that still holds true,

when considering cluster contacts.

In the previous chapter where we investigate the onset case, we observed that especially

in the case of low tracing probability, the recursive tracing over multiple levels of the tree

becomes unlikely. Considering this, concentrating on one-step tracing and approximating

the mesh locally and treat it as a local tree seems to be a feasible approach.
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A Note about the Contact Rate β

In the onset model (chapter 1), β incorporated not only the contact rate, but it was a com-

bined contact and infection rate. As we have varying infection rates in the endemic model

due to a varying number of susceptible individuals, but a constant contact rate, we have to

add a factor respecting the probability of a contacted individual to be susceptible.
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2.1.1 Introduction of the Model without Delay

We first introduce an endemic model of contact tracing without delay to explain the tran-

sition from the onset model of contact tracing with delay to an endemic model. After this

intermediate step, we will add a delay.

Visualizing the Probability of Being Infective

In previous sections, we calculated the likelihood of being infective κ(a), which we represent

by fig. 2.1. This κ(a) was independent of the time t as long as we stayed within the onset

of an infection. As we now extend this to the endemic case, we take κ(a) and add time

dependency to achieve κ(a, t).
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Figure 2.1: An example of the probability of being infective κ(a) without tracing.

In the case of the endemic model, the probability of being infective does not only depend

on the age since infection, but also on time. The time-dependency is introduced by a

time-dependent likelihood of being traced modeled by the tracing probability. This tracing

probability is time-dependent because of the time-dependent fraction of susceptible and

infective individuals of the total population. The fraction of susceptible and infective individ-

uals influences the spread and the tracing because only contacts between an infective and a

susceptible individual spread the infection. However, contacts between infected individuals

can result in tracing events, which we call cluster contact tracing.

In fig. 2.2, we introduce cohorts [IM17, p. 9, p. 79]. The cohorts consist of a group

of individuals, which became infected at the same time or time period. When the time

t progresses, the age a of the cohort progresses at the same time. Figure 2.2 is a scalar

field. The probability of being infective corresponding to a cohort can be read at the diagonal

starting at the time the cohort was infected1. We omitted a three-dimensional plot of the

scalar field and annotate the black cohort with a graph showing its corresponding likelihood

of being infective.

1This is the characteristic of the corresponding transport equation.
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Figure 2.2: The probability of being infective κ(a, t) showing the cohorts of the index cases
and of an infection at t = 1. It shows the values of the likelihood of being infective κ(a, a) for
one cohort and an normalized evaluation of κ(a, t) at time t = 3 multiplied by the number
of infected individuals per cohort, which resembles an age distribution.

Furthermore, we annotated the age distribution at time t. We can evaluate the number of

infected individuals at time t of age a by evaluating the probability of being infective κ(t, a)

and multiplying it by the number of infected individuals of the cohort at time t − a. Plotting

the number of infected individuals at time t and normalizing the graph results in the age

distribution.

Visualizing an Infection

Beside introducing the cohorts and age distribution, fig. 2.2 shows an example of an infec-

tion to relate the cohorts and age distribution within the scalar field.

79



2.1. MODEL WITHOUT DELAY CHAPTER 2. ENDEMIC – CONTACT TRACING

We visualize the probability of being infective κ(a, t) for two selected age groups. The

example only consists of supervised σ and unsupervised α recovery. We do not include

tracing, time dependency, or conditional probability. At first, we neglect all effects to show

the onset case visualized in fig. 2.1 in an endemic setting fig. 2.2 and introduce the notation

of visualizing the probability of being infective within the endemic model.

For each index case, there is the probability of being infective. We visualize this probability

at time t = 0. The characteristic of the infector is shown in black. As time t progresses,

the age a increases. Therefore, the individual progresses at a diagonal. The probability

of being infective of this index case is κ(a, a) = κ(a), and it decays exponentially. The

identity t = a holds true, because the infection started at time t = 0. The likelihood of being

infective on this diagonal is plotted next to it as an annotation and resembles the probability

of fig. 2.1. This cohort contacts other individuals at a rate β resulting in a continuous

increase of new infectees. At time 1 we visualize one of these infections resulting in a new

cohort. This visualized infection is an example to represent the continuous process. At the

time of infection of an infectee, we know that the infector is infective. This fact affects the

infector’s probability to be infectious. This does not influence the κ(a) of a cohort, but it will

be respected later, when implementing the contact tracing. Now, we just add an infectee.

The characteristic of the cohort resembling the infectee is shown in red, and we assume

the same exponential decay of the likelihood of being infective as shown in the subgraph

κ(a).

At time 3 we evaluate κ(a, t). We only show the cohorts spawned at 0 and 1. Based on

the probability of being still infective we can calculate the fraction of infected individuals per

cohort. This is achieved by multiplying the number of initially infected individuals by the

corresponding probability of being infective at time κ(a, 3).

Example: When evaluating the number of infected individuals i(2, 3), we have to check

the number of newly infected individuals at time t − a. These infections at time t − a,

i(0, t − a) = 1, correspond to the evaluated age group a at time t. Assigned to that cohort

is a probability of surviving/being infective κ(a, t). Multiplying the initial number of infected

individuals and their probability of being infective results in the number of surviving/infective

individuals.
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2.1.2 Model without Delay

This model is an intermediate step before introducing the delay. In opposite to the onset

model, the endemic model respects the finite size of the population, because contacts be-

tween infected individuals are possible during the progress of the endemic. The probability

of contacting a susceptible individual is dependent on the size of the populationN , the num-

ber of infected individuals I(t) at time t and the resulting number of susceptible individuals

S(t). We model the interactions in a SIS model.

In the case of contacts between infected and susceptible individuals, which we treated in

the onset model, we adapt for the changing number of infected individuals by multiplying

the contact rate β by S(t)
N

, the fraction of the susceptible individuals at time t within the

population N . Furthermore, we introduce contacts between infected individuals. In the

case of these cluster contacts, we respect the age distribution of the contacted individuals

at the time of contact. We respect the fact that in the case of an II contact, a cluster

contact, both individuals are infected. We include the observed and unobserved recovery,

the backward tracing and the cluster contact tracing in one differential equation to calculate

κ−, all respected tracing effects beside forward tracing. To approximate forward tracing,

we take the first-order approximation of forward tracing without delay from proposition 25

to calculate the probability of being infectious with forward tracing κf . We need a gradient

on the characteristic of a cohort to progress the number of infected individuals by a forward

Euler step. The forward tracing approximation does not provide this gradient, therefore we

introduce the derivative along the direction of the characteristic D1. All infected individuals

at time t, I(t), then infect new individuals at an infection rate stated by the contact rate, the

probability to contact a susceptible individual S(t)
N

and the probability of actually infecting the

contact πIS.

We first state our model, and provide a derivation afterwards.

Model 43 Full tracing not only including the onset of an epidemic by considering the prob-

ability of contacting already infected individuals can be modeled by the following equations:

(∂t + ∂a)κ−(a, t) = −κ−(a, t)

(
α + σ

+ p

∫ a

0

β · S(t− c)
N

· κ−(c, t) · σdc

+p

∫ a

0

β

∫ ∞
0

i(ã, t− c)
N

· κ−(c+ ã, t)

κ−(ã, t− c)
σdãdc

)
κ−(0, t) = 1

κf (a, t) = κ−(a, t) {1− p pobs(1− κ̂(a))}
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(∂t + ∂a)i(a, t) = −i(a, t) ·
(
−D1κf (a, t)

κf (a, t)

)
I(t) =

∫ ∞
0

i(t, a)da

i(t, 0) = βπIS
S(t)

N
I(t)

S(t) = N − I(t).

Derivation: We start assembling the equation for κ(a, t) by introducing the observed and

unobserved recovery σ and α. The boundary value describing the probability of being

infective at the start of the infection is 1:

(∂t + ∂a)κ−(a, t) = −κ−(a, t) (α + σ) ,

κ−(0, t) = 1.

This equation will result in an exponential decay of the likelihood of being infective. In the

next step, we include direct backward tracing. Direct backward tracing operates on a cohort

and incorporates the influence of its infectees. These infectees are created at the contact

rate β. While being infective, they are recovered at the observed recovery rate σ recalling

the infector at a probability of p. In the onset case, this resulted in the rate p · β
∫ a

0
κ(c)σdc,

because there are infectees at the age 0 to a, which can recover.

Now, introducing the time, we have κ(c, t). Because we not only concentrate on the onset of

the outbreak, there is a probability of contacting already infected individuals, which lowers

the probability of producing infectees. Figure 2.3 exemplifies the contact, considering a

fraction of the population being non-susceptible. The cohort k(a, t) was produced at time

t − a. We will incorporate this effect by respecting the fraction of susceptible individuals

among the population at that time, i.e., S(t−c)
N

.

p

∫ a

0

β · S(t− c)
N

· κ−(c, t) · σdc.

The neglected contact between already infected individuals has to be respected now. We

will call this contact between infected individuals cluster contact. Cluster contacts only in-

fluence the tracing rate. Although no new individuals were infected, this contact can be

recalled during an independent tracing event leading to accidental detections.

These cluster contacts result in less backward tracing, because there are fewer new infec-

82



2.1. MODEL WITHOUT DELAY CHAPTER 2. ENDEMIC – CONTACT TRACING

−1 −0.5 0.5 1 1.5 2 2.5 3

0.5

1

1.5

2

2.5

3

3.5

infection

κ(a, t)κ(0, t)
κ(2, t)

pro
ba

bil
ity

to
be

inf
ec

tiv
e

fra
cti

on
of

su
sc

ep
tib

le

ind
ivi

du
als

S(t− a)

S(t− 2)

S(t− 0)

a

t

Infector
Infectee

Figure 2.3: The cohorts of an infective contact, which results in tracing events without delay:
p
∫ a

0
β · S(t−c)

N
κ−(c, t) · σdc

tions, because there are fewer susceptible individuals. This decrease in the rate of back-

ward tracing will be compensated by tracing events due to cluster contacts, i.e., tracing by

other already infected contacts.

Contrary to the classic backward tracing, cluster contacts do not start an infection and the

individuals have age since infection a > 0 at the time of the contact. Furthermore, there is

no limit on the age of an infected individual. This undefined age means we do not only have

to respect the fraction of infected individuals of the population at the time of the contact

taking place I(t−c)
N

to distinguish cluster contacts from infective contacts.

Additionally, we have to take into account the age distribution iP (ã, t) of the contactee

iP (ã, t − c) = i(ã,t−c)∫∞
0 i(a′,t−c)da′ = i(ã,t−c)

I(t−c) at the time of the contact. Figure 2.4 visualizes an

example of such an age distribution of the contactee within a cluster contact taking place at

time t = 1. At the time of a possible tracing event, when evaluating the corresponding infec-

tivity likelihood κ(c+ ã, t), which is distributed by the age distribution, we have to normalize

the likelihood to be one at the time of the contact by dividing by κ−(ã, t− c):

p

∫ a

0

β
I(t− c)
N

∫ ∞
0

i(ã, t− c)∫∞
0
i(a′, t− c)da′

· κ−(c+ ã, t)

κ−(ã, t− c)
σdãdc

= p

∫ a

0

β
1

N

∫ ∞
0

i(ã, t− c) · κ−(c+ ã, t)

κ−(ã, t− c)
σdãdc.
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Figure 2.4: A cluster contact, which results in tracing events. In opposite to an infective
contact, we don’t have a single probability κ(a, t) of an infectee, which was infected at the
time of contact. Now, we have an integral over all κ(c + ã, t) of possible cohorts i(ã, t − c)
of the contactee at the time of contact t− c. Therefore, we have to normalize the probability
at the time of contact to 1 by dividing each probability by κ(ã, t− c).

Furthermore, i(ã, t − c) can then be written as a product of the initial size of the cohort

i(0, t− c− ã) multiplied by their survival probability κ(ã, t− c).

= p

∫ a

0

β
1

N

∫ ∞
0

i(0, t− c− ã) · κ−(c+ ã, t)σdãdc.

Now, the forward tracing step is applied. Therefore, we remember the one-step approxima-

tion of the recursive full tracing from proposition 35:

κi(a) = κ̂(a)

1− p pobsβ(1 ∗ φ ∗ (1− κ̂))(a)− p pobs(φ ∗ (1− κ̂))(a)︸ ︷︷ ︸
forward tracing

 .
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In the onset case, the forward tracing part of this approximation can be applied as a linear

correction term to one-step backward tracing. This method is now used to add the one-step

forward tracing correction into the endemic equation, to get an approximation for the full

tracing κf (a, t).

The approximation of the correction consists of κ−(a, t), the probability of the infectee to

be still infective. This probability is multiplied by the approximated probability of the infector

being recovered (1 − κ̂)(a), which is multiplied by the probability pobs = σ
σ+α

of being an

observed recovery and the probability p, which is the probability of recalling the contact

during a tracing event.

κf (a, t) = κ−(a, t) · P (not traced via infector)

= κ−(a, t) · (1− P (traced via infector))

= κ−(a, t) · (1− P (infector not infectious) · pobs · p)

≈ κ−(a, t) · (1− (1− κ̂(a)) · pobs · p)

= κ−(a, t)− κ−(a, t)(1− κ̂(a)) · pobs · p.

Using this new probability of being infective in case of full tracing κf (a, t), we calculate our

hazard rate. The hazard rate is the normalized change of infected individuals in the direction

of the characteristic (1, 1) of a cohort −D1κf (a,t)

κf (a,t)
, where D1κf (a, t) = ∂

∂τ
κf (a+ τ, t+ τ)

∣∣∣
τ=0

.

Using this information, the PDE for the distribution of the infected individuals i(a, t) can be

constructed:

(∂t + ∂a)i(a, t) = −i(a, t) ·
(
−D1κf (a, t)

κf (a, t)

)
.

Obviously, the integral over the infected individuals at time t results in the total number of

infected individuals at that time:

I(t) =

∫ ∞
0

i(t, a)da.

The boundary value for the distribution of the infected individuals is the number of newly

infected individuals. The number of newly infected individuals is calculated by the contact

rate β, the probability of infecting a contact πIS, which will be set to 1 within the thesis, and

the probability of the other contact being susceptible S(t)
N

.

i(t, 0) = βπIS
S(t)

N
I(t).
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Finally, calculating the number of susceptible individuals knowing the number of infected

individuals is trivial:

S(t) = N − I(t).

2
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2.1.3 Introduction of the Model with Delay

The previous section was introducing the model without delay to provide an overview before

starting more complicated operations. In this section, we will introduce the tracing delay. In

fig. 2.5 we visualize an example after an individual recalls an infective contact or a cluster

contact, there is a tracing delay before the identified individual is treated.

−1 −0.5 0.5 1 1.5 2 2.5 3 3.5 4 4.5

0.5

1

1.5

2

2.5

3

3.5

Tracing delay φ

a∗

infection

κ(a, t)κ(0, t)
κ(2, t)

S(t− a)

S(t− 2)

S(t− 0)

a

t

Tracing Delay
Infector
Infectee

Figure 2.5: An infective contact, which results in tracing events. After the red infectee is
detected it triggers a tracing event. The gray area visualizes the tracing delay. The age
of the black cohort of the infector is denoted by a∗. A diagonal line visualizes the cohort
because the time progresses while the age of individuals within a∗ grows.

Figure 2.5 shows the delay in the direction of the cohorts, a diagonal direction. It does not

delay in a single direction like age or time. Our coordinates live in the direction a and t.

Within the cohort, we introduce a∗. When aging a∗ + 1, it means a+ 1 and t+ 1.

Definition 44 Convolution in the direction of the characteristic of a cohort.

(φ ∗ f)(a, t) := (φ(·) ∗ f(a+ ·, t+ ·))(a, t)

=

∫ a

0

φ(τ) · f(a− τ, t− τ)dτ
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2.1.4 Model with Delay

Using the previous definition and the tracing defined in the previous section, we derive the

following model.

Model 45 (Tracing with Delay) This model includes full tracing with tracing delay. It not

only includes the onset of an epidemic by considering the probability of contacting already

infected individuals. The tracing delay influences the backward tracing Tb and the cluster

contacts Tc. Furthermore, it influences the approximation of the forward tracing correction

Tfc.

Tb(a, t) = p

∫ a

0

β · S(t− c)
N

· κ−(c, t) · σdc

Tc(a, t) = p

∫ a

0

β

∫ ∞
0

i(ã, t− c)
N

· κ−(c+ ã, t)

κ−(ã, t− c)
σdãdc

Tfc(a, t) = p · pobs · ((1− κ̂))(a), a ≥ 0

Tfc(a, t) := 0, a < 0

(∂t + ∂a)κ−(a, t) = −κ−(a, t) (α + σ + (φ ∗ Tb)(a, t) + (φ ∗ Tc)(a, t))

κ−(0, t) = 1

κf (a, t) = κ−(a, t) {1− (φ ∗ Tfc)(a, t)}

(∂t + ∂a)i(a, t) = −i(a, t) ·
(
−D1κf (a, t)

κf (a, t)

)
I(t) =

∫ ∞
0

i(t, a)da

i(t, 0) = βπIS
S(t)

N
I(t)

S(t) = N − I(t).

In the following chapter, we will deal with constant delays T . Therefore, we introduce the

model with constant delays and explain how to introduce the delay and evaluate the con-

stant delay.

Proposition 46 (Tracing with Constant Delay) Full tracing with constant tracing delay T ,

not only including the onset of an epidemic by considering the probability of contacting

already infected individuals, can be modeled by the following equations:
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(∂t + ∂a)κ−(a, t) = −κ−(a, t)

(
α + σ

+ p

∫ a−T

0

β · S(t− T − c)
N

· κ−(c, t− T ) · σdc

+p

∫ a−T

0

β

∫ ∞
0

i(ã, t− T − c)
N

· κ−(c+ ã, t− T )

κ−(ã, t− c− T )
σdãdc

)
κ−(0, t) = 1

κf (a, t) = κ−(a, t) {1− p pobs((1− κ̂))(a− T )}

(∂t + ∂a)i(a, t) = −i(a, t) ·
(
−D1κf (a, t)

κf (a, t)

)
I(t) =

∫ ∞
0

i(t, a)da

i(t, 0) = βπIS
S(t)

N
I(t)

S(t) = N − I(t).

Proof: As before, we start assembling the equation for κ(a, t) by introducing the observed

and unobserved recovery σ and α. The boundary value describing the probability of being

infective at the start of the infection is 1.

(∂t + ∂a)κ−(a, t) = −κ−(a, t) (α + σ)

κ−(0, t) = 1.

In the next step, we include direct backward tracing respecting the likelihood of contacting

a susceptible individual as we did in the previous model 43 and call it Tb before adding the

delay. Tb consists of the probability p of recalling the infector, the contact rate β, the rate of

supervised recovery σ and an integral integrating the time dependent probability of being

infectious κ−(a, t) and the probability of contacting a susceptible individual S(t) since the

start of the infection till the current age a.

Tb(a, t) = p

∫ a

0

β · S(t− c)
N

· κ−(c, t) · σdc.

Now use the definition 44 of the convolution along the cohort to calculate the tracing delay

φT .

φt ∗ Tb(a, t) = Tb(a− T, t− T )
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= p

∫ a−T

0

β · S(t− c− T )

N
· κ−(c, t− T ) · σdc.

When modeling the cluster contacts Tc(a, t), we have to respect the probability of meeting

an already infected individual I(t−c)
N

. Additionally, we have to respect the age distribution

iP (ã, t) at the time t − c described by iP (ã, t − c) = i(ã,t−c)∫∞
0 i(a′,t−c)da′ = i(ã,t−c)

I(t−c) and the cor-

responding infectivity likelihood κ(c + ã, t) of the contacted individual, which is distributed

by the age distribution. We visualize an example cluster contact in fig. 2.6. As we define

the cluster contacts as contacts between infected individuals, we normalize this infectivity

likelihood of a cohort of age ã at the time of the contact to 1 at the time of the contact t− c
by dividing the infectivity likelihood by κ(ã, t− c).
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Figure 2.6: A cluster contact, which results in a tracing event similar to fig. 2.4. This time,
there is a constant tracing delay, which introduces a delay between the detection and the
influence of the tracing event. In opposite to an infective contact, we do not have κ(a, t) of
an infectee, which was infected at the time of contact. Now, we have an integral over all
κ(c + ã, t − T ) of possible cohorts i(ã, t − c − T ) of the contactee at the time of contact
t − c − T . Dividing by κ−(ã, t − c − T ) respects the conditional probability, because the
contactee of the cluster contact is infective at that time, which is independent of its age.
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Tc(a, t) = p

∫ a

0

β
I(t− c)
N

∫ ∞
0

i(ã, t− c)∫∞
0
i(a′, t− c)da′

· κ−(c+ ã, t)

κ(ã, t− c)
σdãdc

= p

∫ a

0

β
1

N

∫ ∞
0

i(ã, t− c) · κ−(c+ ã, t)

κ(ã, t− c)
σdãdc.

Again use the convolution from definition 44 to calculate the tracing delay φT .

φt ∗ Tc(a, t) = Tc(a− T, t− T )

= p

∫ a−T

0

β
1

N

∫ ∞
0

i(ã, t− c− T ) · κ−(c+ ã, t− T )

κ(ã, t− c− T )
σdãdc.

Now, the forward tracing step from proposition 35 is applied as in model 43, the model with-

out delay. The correction consists of the probability of the infectee still being alive κ−(a, t),

and the infector having an observed recovery, i.e., is not infective anymore (1− κ̂(a)) mul-

tiplied by the probability of an observed recovery σ
σ+α

and the probability of recalling the

contact p. Taking the tracing delay into account, which was started by the observed recov-

ery of the infector, we get p · pobs(1− κ̂(a− T )).

κf (a, t) = κ−(a, t)− κ−(a, t) · p · pobs(1− κ̂(a− T )).

Using this new probability of being infective in case of full tracing κf (a, t), we calculate

our hazard rate. The hazard rate is the normalized change of infected individuals in the

direction of the characteristic (1, 1) of a cohort −D1κf (a,t)

κf (a,t)
. Using this information, the PDE

for the distribution of the infected individuals i(a, t) can be constructed:

(∂t + ∂a)i(a, t) = −i(a, t) ·
(
−D1κf (a, t)

κf (a, t)

)
.

The rest of the model is identical to the model without delay. 2
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2.2 Compare Onset, Endemic, and IBM Model

This section will compare the IBM simulation1, the onset model, and the endemic model

output to show the fit between the onset model, the endemic model and the IBM simulation

in the onset and in the endemic case.

We will start by taking a look at full tracing with cluster contacts and delay. To understand

the accuracy of the endemic model in case of backward tracing and the approximation in

case of forward tracing, we also compare the backward and forward tracing case.
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Figure 2.7: Left: Full tracing with cluster contacts (solid line) and forward tracing (dashed
line) with a recall probability p = 0.3, a delay T = 0.5, a contact rate β = 2, supervised
recovery rate σ = 0.9, and unsupervised recovery rate α = 0.1. The simulation is shown in
black, the numerical result of the endemic model in blue and for comparison the theoretical
limits without tracing and respecting the forward tracing approximation in green.
Right: The solid black line shows the backward tracing simulation without cluster contacts
and a recall probability p = 1 to enlarge the effect of tracing. The solid blue line shows the
numeric result, the dashed blue line adds cluster contacts, while the dotted blue line shows
backward tracing without cluster contacts but with p = 0.3 for better comparability.

Figure 2.7 shows the graphs of infected individuals. These graphs permit the classification

of time points into the onset of the infection, the endemic case, and the transition between

these states. Exponential growth characterizes the onset. When collecting the information

to calculate the probability of being infective, the individuals’ whole lifespan must be re-

spected. The equilibrium indicates the endemic case. The time, which can not be assigned

1A description of the simulation based on an individual-based model, IBM, can be found in Appendix 2 –
Programs section 6.1.1.
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to one of these cases will be the transition.

The left graph shows the forward tracing and the full tracing case. Both cases use a recall

probability of p = 0.3. This value is a compromise. Low values of p within the approximation

result in a small impact of tracing but a higher accuracy. In the case of lower values of p,

the higher accuracy results from a higher accuracy of the approximations used, and the

higher accuracy results from less influence of the different generations of the tracing. The

simulation does not separate generations. Thus, traced individuals are prohibited from

triggering a tracing event themselves in the one-step tracing case. But, the higher the recall

probability, the higher the impact, which is easier to visualize.

On the other hand, the analytic approximation enables us to calculate analytic limits in the

equilibrium case, which become inaccurate for bigger values of p. Using the formula to

calculate the reproduction number R =
∫∞

0
βκ̂(a)da for the onset case, we can derive an

equation from the reproduction number to fit the endemic case by adding the probability

of contacting a susceptible individual N−I(t)
N

. Furthermore, we know that the equilibrium

case is characterized by a reproduction number of exactly one. On average, every infected

individual infects another individual. This process results in a constant number of infected

individuals. The resulting equation can be solved to achieve I(t), for times t representing

the equilibrium case1.

Remark 47 (Infected Individuals Calculated from Reproduction Number) We know the

formula for the reproduction number. The reproduction number equals 1 in the endemic

case. Therefore, we can solve the formula 1 = R =
∫∞

0
βN−I(t)

N
κ̂(a)da for I(t) in the

endemic case to calculate the number of infected individuals.

2.2.1 Overall Match in Case of Full Tracing with Cluster Contacts

The black and blue solid lines in fig. 2.7 (left panel) show the simulation and numeric solution

of the endemic model, illustrating the number of infected individuals during an outbreak and

the steady state of an epidemic. The solid lines cover full tracing, i.e., forward and backward

tracing, and also cluster contacts are traced.

Figure 2.8 shows the corresponding probability of being infective κ(a) at the age of infection

a.

In the onset case, we note the very good match of the endemic model and the onset model.

The logarithmic scale shows some divergence of the simulation when κ(a) approaches

zero.

1In the chapter 5 ’Appendix’ section 5.1.1 describes how to calculate the equilibrium case without tracing, with
forward or with backward tracing.
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Figure 2.8: κ(a) of full tracing with cluster contacts and delay of T = 0.5. Furthermore,
unsupervised recovery rate α = 0.1, supervised recovery rate σ = 0.9, contact rate β = 2.
The endemic model onset cohort starts at time 2; the endemic model endemic cohort starts
at age 25. The simulation samples are drawn between time 1.5 and 2.5, and between 17
and 23, when the spread of the infection reaches a steady state.

Discussion

Overall, the match of the infection probabilities is satisfying. When concentrating on the

simulation of the endemic case, there are effects not covered in the mathematical model or

the simulation. Let us review some of them.

We do not cover reinfections. In a population having such a high number of infected people,

which recover, some traced people will have been recovered and infected again until they

are traced. We programmed the IBM simulation to ignore these contacts during tracing

to disable this effect if the infector of the infectee changed since the initial contact. In the

sense of tracing, this are lost contacts resulting in less effective tracing. The same is true for

one-step tracing. Infectees or infectors removed by one-step tracing can not trigger tracing

events themselves. We do not respect this effect for backward tracing and in the case of

forward tracing, the IBM simulation always considers a mix of generations.

A certain part of the small divergence in the graph of infected individuals of full and for-

ward tracing can be traced to the forward tracing being an approximation, which slightly

overestimates the effect.

To better understand the effects, the next sections 2.2.2 and 2.2.3 will show the fit of the

endemic model concentrating on forward and backward tracing only. Afterward, we will

focus on adapting the onset case to the endemic case and showing the influence of cluster

contacts during this transition.
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2.2.2 Forward Tracing
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Figure 2.9: κ+(a) of forward tracing and delay of T = 0.5. Furthermore, unsupervised
recovery rate α = 0.1, supervised recovery rate σ = 0.9, contact rate β = 2. The endemic
model onset cohort starts at time 2; the endemic model endemic cohort starts at age 25. In
the case of the simulation, the samples are drawn between time 1.5 and 2.5 and between
17 and 23, when the spread reached a steady state.

The number of infected individuals of the simulation and the endemic model displayed in

fig. 2.7 shows a small divergence around the theoretical limit. We calculate this theoretical

limit in the appendix lemma 83.

When examining the probabilities of being infective after the age of infection a, the function

κ(a) from fig. 2.9 shows a very good resemblance of the onset model, endemic model, and

simulation in the onset and the endemic case. Furthermore, the onset and endemic case

are very similar.

Discussion

The number of infected individuals not being exact can be explained by the approximation

used. The forward tracing correction within the endemic model from model 45 is done by

an analytical term approximating the forward tracing derived in proposition 24. Because

this is an approximation, it slightly overestimates the tracing and the approximation does

not respect the mix of generations, which present during every epoch of the IBM simula-

tion. Though, the low value of p = 0.3 successfully reduces these effects. In fig. 2.9, the

divergence is neglectable and becomes visible in fig. 2.7, because the number of infected

individuals depends on the integral of the probability to be infective and thus integrates the

error.

Nevertheless, the forward tracing approximation is a very good approximation for κ(a) for

the onset and the endemic case.
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The similarity between the onset and the endemic case of the model is evident due to the

same approximation being used, which is relatively independent of the number of infected

individuals. I.e., the impact of the forward tracing within the simulation does not change

from the onset to the endemic case. The same is true for the IBM simulation. In the case of

forward tracing, this can be explained. Because in the case of forward tracing, κ(a) is largely

independent of the contact rate and the probability of susceptible contacts. Every infectee

has exactly one infector, which can trace his infectee. This process does not change when

the epidemic changes from the onset to the endemic case.

2.2.3 Backward Tracing – Separation of the Different States
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Figure 2.10: κ(a)− of backward tracing and delay of T = 0.5. Furthermore, unsupervised
recovery rate α = 0.1, supervised recovery rate σ = 0.9, contact rate β = 2, and p = 1.
The endemic model onset cohort starts at time 2; the endemic model endemic cohort starts
at age 25. In the case of the simulation, the samples are drawn between time 1.5 and 2.5
and between 17 and 23, when the spread reached a steady state.

Again, we see a good resemblance between the model and the simulation. In opposite to

the forward tracing shown in section 2.2.2, the backward tracing in fig. 2.10 shows a clear

separation between the onset and the endemic case. In section 2.3, we will explain this

separation, and we will show in the paragraph ’Cluster Contact Tracing Substitutes Lost IS

Tracing’ that cluster contacts remove this clear separation.

Discussion

The separation of the onset and endemic cases in the case of backward tracing can be

explained by the rate of contacting susceptible individuals. During the onset case, the
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number of infected individuals is small. Every contact can be expected to be an IS contact,

which results in a new infection1.

In the case of backward tracing, more infective contacts result in more possibilities to be

traced. When the reproduction number in the endemic case drops to 1, every infected

individual can on average only be traced by a single infectee. This low average number of

backward tracing cases is lower than the contact rate β = 2 during the onset case.

The deviation between the endemic cases of the simulation and the endemic model shows

a slightly higher probability of still being infective in the simulation case. This deviation is

only visible on the logarithmic scale and does not obfuscate the separation of the onset case

and the endemic case. A big part of it can be traced back to the one-step tracing. Traced

individuals can not trigger a tracing event themselves. That explains that the difference

gradually starts at around 2 ·T . There is the tracing delay to detect the infectee by backward

tracing. If this infectee wasn’t removed by tracing, it could trigger a tracing event influencing

the current individual after another delay of T .

2.2.4 Overall Discussion

The full tracing shows good accuracy while there is a visible deviation of κ(a) and a small

deviation in the number of infected individuals. When taking a closer look at the κ(a) of

backward and forward tracing, backward tracing shows only a slight deviation in the en-

demic case. We note, the backward tracing is separated in the onset and the endemic

case. On the other hand, in the case of the number of infected individuals of the full tracing,

the forward tracing shows the limitations of the approximation, which is responsible for a big

part of the small deviation visible in the number of infected individuals.

The next subsections will cover some of the observed effects. Section 2.3 will show how

the backward tracing of the endemic model changes when leaving the onset case, which is

equivalent to the onset model, and entering the endemic case. We will then proceed to the

absence of this separation in the case of additional cluster contact tracing.

These cluster contacts added to combined forward and backward tracing result in full tracing

with cluster contacts. We observe cluster contacts to increase another slight inaccuracy of

κ(a), because the model diverges slightly from the simulation. If a high percentage of the

population is infected, there is a possibility that a cluster contact was recovered and infected

again before a tracing event started. We call this effect reinfection and do not model this.

The IBM simulation does not trace contacts, which have been infected by a third individual

1When ignoring the tracing, respecting an infection probability is equivalent to adapting different values for β.
Contacts not resulting in an infection will not be traced. They are equivalent to contacts not taking place, and
the model can therefore neglect these contacts to model the spread.
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since the contact considered in the tracing event, to match the endemic model as close as

possible.

Although not influencing the tracing directly, it does have an impact, because it does reduce

the effective number of contacts. On the other hand, we conclude that it is only a minor

effect taking place at unrealistic high infection rates. In the case of such a high percent-

age of the population being infected, other methods than contact tracing might be more

successful and should be considered. One possible alternative to contact tracing might be

identifying and sampling core groups, so-called clustering. At high percentages of infection,

the probability of drawing an infected individual might be comparable to the probability of

an infected individual to recall his contacts.

Finally, section 2.4 will show that similar κ(a) do not mean similar age structures in the

onset and the endemic case.
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2.3 The Adaption to the Endemic Case

The endemic model (model 45) adapts the onset model (proposition 33 ’Full Tracing’) to the

endemic case. We describe the characteristics of this adaption. Because forward tracing is

independent of the onset or endemic case, there is no forward tracing adaption to analyze.

Furthermore, the endemic model adds the same forward approximation, which is used in

the onset model introduced in section 2.2.2 (Forward Tracing).
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Figure 2.11: κ(a)− of backward tracing between the onset case at t = 2 and the endemic
case at t = 25 of the endemic model with fixed delay T = 0.5. Furthermore, unsupervised
recovery rate α = 0.1, supervised recovery rate σ = 0.9, contact rate β = 2, and p = 1.
Green depicts the onset of the endemic model as a solid line and the endemic case as
a dashed line. Red and orange depict the transition between the onset and the endemic
case. Blue depicts the endemic model with backward tracing and cluster contact tracing.
The endemic case with cluster contact tracing is very similar to the onset case in contrast
to the separation of endemic and onset without cluster contact tracing. Thus, the following
three plots almost overlay: The endemic model with backward tracing in the onset case and
the onset and the endemic case of the endemic model with backward and cluster contact
tracing.

We analyze the transition of the endemic model from the onset to the endemic case by

concentrating on the probability κ(a) first. Because κ(a) describes the probability of being

infected after time a, we determine κ(a) for individuals born at time t and select values of t

from the onset (t = 2), the transition (t = 6 and t = 8), and the endemic case (t = 25).

Figure 2.11 shows how κ(a) changes during the transition from the onset case to the en-

demic case, and it shows how the κ(a) of the endemic case resembles the onset in the

case of additional cluster contact tracing. I.e., there is an apparent difference between the

onset and the endemic case in the case of backward tracing only. In the case of additional

cluster contacts, this difference is gone.

99



2.3. ENDEMIC ADAPTION CHAPTER 2. ENDEMIC – CONTACT TRACING

The Endemic Model Resembles the Onset Model in the Onset Case

The backward tracing part of the endemic model (model 45) adapts the onset model from

proposition 11 (One-Step Backward Tracing) to the endemic case. The endemic case is

modeled by including the possibility of infected individuals contacting each other, which is

excluded in the onset case. The addition of a time axis and introducing an age-structure

allows for calculating a graph of infected individuals at the time of the epidemic t. Despite

these additions, the endemic model has to fit to the results of the onset model in the onset

case.

Proposition 48 (The Endemic Model Resembles Onset Model in the Onset Case)

The backward tracing with or without the cluster contact tracing subset of the endemic

model from model 45 equals the onset model from proposition 11 (One-Step Backward

Tracing) in the onset case when t→ 0.

Proof: The onset case is characterized by exponential growth. We observe t → 0 ⇒
S
N
→ 1. If every contact is an IS contact, there will not be contacts between two infected

individuals (cluster contacts). Thus:

κ−(0, t) = 1

Tb(a, t) = p

∫ a

0

β · S(t− c)
N

· κ−(c, t) · σdc

Tc(a, t) = p

∫ a

0

β

∫ ∞
0

i(ã, t− c)
N

· κ−(c+ ã, t)

κ−(ã, t− c)
σdãdc

(∂t + ∂a)κ−(a, t) = −κ−(a, t) (α + σ + (φ ∗ Tb)(a, t) + (φ ∗ Tc)(a, t))
S(t)
N
→1
⇒ κ′−(a) = −κ−(a)

{
α + σ + pβσ(φ ∗ κ#

−)(a)
}
, κ−(0) = 1.

2

Figure 2.7 shows the number of infected individuals and helps to classify a time t into the

onset or endemic case. If cluster contact tracing is not activated, the equilibrium shows a

higher number of infected individuals. κ(a) of the endemic case shows a higher probability

to be infective (as shown in fig. 2.11). Without the tracing of cluster contacts, every cluster

contact prohibits the possible tracing by an infective IS contact. In the limit of the onset

case, no cluster contacts are prohibiting IS contacts and the resulting backward tracing and

the endemic model resembles the onset model.
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Cluster Contact Tracing Substitutes Lost IS Tracing

Figure 2.7 shows the good match of the onset and the endemic case in the case of active

cluster contact tracing. Without cluster contact tracing, we observed less effective backward

tracing because fewer infections per infector during the endemic case result in less tracing.

On the other hand, the contact rate β stays constant. Instead of an IS contact, cluster

contacts between infected individuals occur and substitute the common backward tracing.

Proposition 49 Let Tb(a, t) and Tc(a, t) denote the backward tracing and cluster contact

tracing rates used in the endemic model without delay (model 43):

Tb(a, t) = p

∫ a

0

β · S(t− c)
N

· κ−(c, t) · σdc,

Tc(a, t) = p

∫ a

0

β

∫ ∞
0

i(ã, t− c)
N

· κ−(c+ ã, t)

κ−(ã, t− c)
σdãdc.

Then cluster contact tracing Tc replaces the lost backward tracing Tb by IS contacts in the

endemic case. The overall effectivity of the tracing both terms stays constant in a first-order

approximation

Tc(a, t) + Tb(a, t) ≈ p

∫ a

0

β · κ−(a) · σdc for all a ≥ 0.

Proof: In a first-order approximation, the sum of the integrals stays constant, because the

integrands are similar apart from a factor resulting in a linear combination of backward

tracing and cluster contact tracing.

First, we remember the one-step backward tracing from proposition 13.

κ−(a) = κ̂(a)− p pobsβκ̂(a)(1 ∗ φ ∗ (1− κ̂)(a)) +O(p2).

We observe the use of the zeroth-order approximation. The zeroth-order approximation

does not include tracing and therefore is independent of the onset and endemic case.

Then we use the zeroth-order approximation of κ−(a) to approximate the backward tracing

Tb(a, t) within the integro differential equation, before tracing the backward tracing and the

cluster-contact tracing back to the backward tracing of the onset case:

Tb(a) = p

∫ a

0

β · κ̂−(c) · σdc.

After using the first-order approximation for Tb and observing Tc being a linear combination

of shifted and scaled first-order approximations, we observe the sum Tc(a, t) + Tb(a, t) of
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first-order approximations being independent of the number of infected individuals.

Tb(a, t) = p

∫ a

0

β · S(t− c)
N

· κ−(c, t)︸ ︷︷ ︸
B(c,t)

·σdc,

Tc(a, t) = p

∫ a

0

β

∫ ∞
0

i(ã, t− c)
N

· κ−(c+ ã, t)

κ−(ã, t− c)︸ ︷︷ ︸
C(c,t)

σdãdc.

Replace κ−(c, t) by its zeroth order approximation κ̂(c):

B(c, t) =
S(t− c)
N

· κ−(c, t)

⇒ B(c, t) ≈ S(t− c)
N

· κ̂−(c).

Now, replace κ−(c, t) by its zeroth order approximation κ̂(c) like in the first order approxi-

mation of backward tracing:

C(c, t) =

∫ ∞
0

i(ã, t− c)
N

· κ−(c+ ã, t)

κ−(ã, t− c)
dã

⇒ C(c, t) =

∫ ∞
0

i(ã, t− c)
N

· κ̂(c+ ã)

κ̂(ã)
dã+O(p)

Apply κ̂−(c+ã)
κ̂−(ã)

= e−(σ+α)(c+ã)

e−(σ+α)(ã) = e−(σ+α)(c) = κ̂−(c).

=

∫ ∞
0

i(ã, t− c)
N

· κ̂(c)dã+O(p)

Calculate the trivial linear combination.

=
I(t− c)
N

· κ̂−(c) +O(p)

T (c, t) = C(c, t) +B(c, t) ≈
(
S(t− c)
N

+
I(t− c)
N

)
· κ̂(c) = 1 · κ̂(c).

2

In the case of the onset, the endemic and the onset model are identical. When approaching

the endemic case, fewer infections per infector are taking place. The number of infections

per infector approaches 1, and the backward tracing becomes less effective. However, the

lost backward tracing is replaced by cluster contact tracing.

The reduced number of infections while keeping a tracing effect similar to the onset results
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in fewer infected individuals, as seen in fig. 2.7.
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2.4 The Age Structure

In the last part, we investigated the probability of being infective in the case of backward

tracing without and with cluster contact tracing. With cluster contact tracing, we obtained the

probability κ−(a) independent of the onset and the endemic case. Now, we will investigate

the age structures in the onset and the endemic case.

The age structures of the onset and the endemic case differ. We approximate the age struc-

tures in the no tracing case. Without tracing, the probability of being infective in the endemic

case after time a is κ(a), which is also the zeroth-order approximation of backward tracing.

In the onset case, the structure is determined by the contact rate. Figure 2.12 shows this

approximation compared to the numerical age structure from the endemic model1.
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Endemic Model - t = 5

Onset β · e−βa, β = 2
Endemic Model - t = 25

Endemic (α + σ) · e−(α+σ)·a

Figure 2.12: Distribution of i(a) without tracing during the onset at time t = 5 and during the
endemic phase at time t = 25 using a contact rate β = 2, supervised recovery rate σ = 0.9,
and unsupervised recovery rate α = 0.1.

The Onset Age Structure without Tracing

We use a PDE to calculate the age structure of the onset of the spread like it is modeled by

the onset model. [MH07, p.233, proof of proposition 3.6]

Proposition 50 (The Onset Age Structure without Tracing) The onset age structure with-

out tracing can be described by iP (a) = β · e−βa

1Figure 2.7 shows the number of infected individuals from the start of an endemic until the equilibrium in case
of no tracing.
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Proof:

We take a partial differential equation modeling the infected individuals z using the hazard

rate derived from κ̂(a).

∂tz + ∂az =

(
κ̂′(a)

κ̂(a)

)
z.

The boundary condition is defined by the contact rate β and the size of the population∫∞
0
z(t, a)da.

z(t, 0) = β

∫ ∞
0

z(t, a)da.

Choose the ansatz:

z(t, a) = eλ̂tu(a).

Insert the ansatz into the partial differential equation:

⇒ eλ̂tλ̂u(a) + eλ̂tu′(a) =

(
κ̂′(a)

κ̂(a)

)
eλ̂tu

⇒ λ̂u(a) + u′(a) =

(
κ̂′(a)

κ̂(a)

)
u

⇒ u′ =

((
κ̂′(a)

κ̂(a)

)
− λ̂
)
u

⇒ u(a) = Ce
∫ a
0
κ̂′(τ)
κ̂(τ)
−λ̂dτ

= Celn(κ̂(a))−ln(κ̂(0))−λ̂a

Simplify the term by using the boundary condition κ̂(0) = 1⇒ ln(κ̂(0)) = 0.

= Celn(κ̂(a))−λ̂a

= Cκ̂(a)e−λ̂a.

This turns the ansatz into:

z(t, a) = eλ̂tCκ̂(a)e−λ̂a

= Cκ̂(a)eλ̂(t−a).
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Now use the boundary condition of the PDE to remove C and evaluate λ.

z(t, 0) = eλ̂tCκ̂(0)e−λ̂0 = β

∫ ∞
0

z(t, a)da

= β

∫ ∞
0

eλtCκ̂(a)e−λ̂ada

⇒ κ(0)e−λ̂0 = 1 = β

∫ ∞
0

κ̂(a)e−λ̂ada

⇒ 1

β
=

∫ ∞
0

e−(α+σ)ae−λ̂ada

⇒ λ̂ = −α− σ + β.

To gain the age distribution we have to normalize u(a):

iP (a) =
u(a)∫∞

0
u(a)da

=
e−λ̂aκ̂(a)∫∞

0
e−λ̂aκ̂(a)da

=
e−λ̂aκ̂(a)

1
β

= βe−λ̂aκ̂(a)

= βe−βa.

2

The Endemic Age Structure

On the other hand, the endemic age structure equals the shape of the probability of being

infective κ(a).

The age structure iP (a) being equal to the shape of κ(a) in the endemic state is expected.

The endemic case is characterized by reaching the equilibrium state. Therefore, the time t

can be neglected. Normalizing κ(a) and multiplying this probability by the total number of

infected individuals at that time I(t) results in the number of infected individuals of age a at

time t denoted by i(a, t). In the endemic equilibrium, i(a, t) will be independent of time. We

obtain:

i(a) = I · κ(a)∫∞
0
κ(a)da

.
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Now, dividing by the number of infected individuals results in the distribution of individuals

still being infective at age a

iP (a) =
i(a)

I
=

κ(a)∫∞
0
κ(a)da

.

This consideration leads to the following proposition, which provides an alternative proof for

the endemic case without tracing.

Proposition 51 (Endemic Age Structure without Tracing) In the endemic case, we ap-

proach an equilibrium. Thus, i(a, t), I(t) and κ(a, t) do not depend on t. With p = 0, we

can describe the age distribution iP (a) by iP (a) = i(a,t)
I(t)

= κ(a,t+a)∫∞
0 κ(a,t+a)da

.

Proof:

As in the onset case, we take the partial differential equation modeling the infected individ-

uals z using the hazard rate derived from κ̂(a). This time, we expect a result independent

of time t and choose the ansatz z(t, a) = u(a).

∂tz(t, a) + ∂az(t, a) =

(
κ̂′(a)

κ̂(a)

)
z(t, a)

⇒ u′(a) =

(
κ̂′(a)

κ̂(a)

)
u(a)

⇒ u(a) = Ce
∫ a
0
κ̂′(a)
κ̂(a)

dt

= Celn(κ̂(a))−ln(κ̂(0)) = Cκ̂(a).

Normalizing results in the distribution and removes the unknown variable C. 2

The difference between the onset age structure and the endemic age structure is visualized

in fig. 2.12 and summarized in the following remark.

Remark 52 Without tracing, p = 0, we can describe the age structure in the onset and

endemic case. The onset distribution of infected individuals iP (a) = βe−βa is characterized

by the contact rate β. The endemic distribution iP (a) = κ̂(a) = e−(α+σ)a is determined by

the recovery rate σ + α.

In opposite to proposition 50 (The Onset Age Structure without Tracing) the proposition 51

(The Endemic Age Structure) did not need to employ the boundary condition to eliminate

a free variable. If analyzing the boundary condition despite this fact, we observe it can be

used to determine the number of infected individuals, because it resembles the calculation

from remark 47 (Compare Onset, Endemic, and IBM Model). Compare the calculations to

deduce the number of infected individuals from the reproduction number.
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Figure 2.13: We use the endemic model to calculate the distribution of i(a) with backward
tracing and optional cluster contact tracing during the onset at time t = 5 and during the
endemic phase at time t = 25 using a contact rate β = 2, supervised recovery rate σ = 0.9
and unsupervised recovery rate α = 0.1.

The Age Structure with Tracing

In the endemic model (model 45), we obtain the onset age structure and the endemic age

structure at an arbitrary time. However, evaluating arbitrary points in time does not always

result in artifact free distributions. During the onset, very early times result in old individuals

not existing within the age distribution yet1. Therefore, we start at time t = 5.

Figure 2.13 shows the age distribution with backward tracing in the onset and the endemic

case compared to cluster contact tracing in the onset and the endemic case. The age

distributions of the endemic and onset case are separated. Adding cluster contact tracing

does not stop this separation; it does not result in similar age distributions of the onset and

the endemic case. There is a visible effect of cluster contact tracing on the age distribution,

but this time there are no ’lost’ IS-contacts replaced by cluster contact tracing.

Previously, when concentrating on the probability of being infective κ(a) shown in fig. 2.11,

adding cluster contact tracing resulted in similar probabilities of being infective at age a of

the infection, when comparing the onset and endemic case.

The analytic formulas (see fig. 2.12) show that the age structure of the onset is dominated

by the initial spread, which is defined by the contact rate β. On the other hand, the endemic

case is characterized by the strength of the recovery rate.

1A graph showing the age distribution at t = 2 looking similar to the age distribution at t = 5 can be found in
the appendix (section 5.1.4). Because the maximum age at t = 2 is limited by that time, the distribution of
that graph stops at age 2.
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2.5 Summary and Outlook

In this chapter, we created a model to cover the endemic case, which lead to adapting the

backward tracing of the onset model to the endemic case. We included the cluster contact

tracing, which consists of the non-infective contacts between infected individuals. Because

these contacts are non-infective, they do not result in backward tracing.

First, we observed a good fit between our model and our IBM simulation.

Then, we observed that in a first-order approximation, the tracing by the cluster contacts

compensates the smaller effect of backward tracing in the endemic case. When including

cluster contact tracing, the probability of staying infective per individual stays approximately

constant, not being dependent on the onset or endemic case.

When analyzing the age structure, other effects are determining the shape. During the

onset phase, the spread of the infection dominates the structure, while in the endemic

phase, the recovery rate, which is influenced by cluster contact tracing, shapes the age

structure.

Outlook

Currently our evaluations of the model use a likelihood to infect a contact of 1. During the

onset phase, there is no difference between not infecting an individual and not contacting

an individual at all. This is not necessary true in the endemic case. As an educated guess,

a smaller likelihood would result in the cluster contact to more than compensate the loss

in backward tracing. This smaller effect might persist even if we introduce a non-infective

contact tracing class, because a big part of these non-infected contacts will stay susceptible

for a longer time and will not be able to trigger any tracing cases.

Apart from non-infective-contacts, which might become infected until the contact is analyzed

within a tracing event, there are reinfected contacts, contacts which recover and become

infected again before being covered and analyzed in a tracing event. These higher order

interactions should not be likely in realistic scenarios. To match the model at these unreal-

istic incidence rates, we added an option into the IBM simulation to only trace the contacts,

which actually took part in an infection or in a cluster contact within the current infection

of the individual. Analyzing these interactions could make the mathematical model slightly

more precise.

It would be interesting to analyze the mix of generations we observe within the IBM sim-

ulation. The interaction of different generations plays a significant role, when analyzing

one-step tracing. In a real-world scenario, we can not classify all individuals of an epoch

as a member of a single generation. Furthermore, if the infectee or infector was traced
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determines if the infectee or infector can trigger a tracing event, which is highly dependent

on the generation.
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3 Gradient Matching

In this chapter, we employ Gradient Matching to recover unobserved state variables of a

dynamical system with known parameters. E.g., as a practical example in chapter 4 we

observe an LC oscillator, we know the capacity, the inductor, and the resistance, but we

only record the voltage. By employing Gradient Matching we recover the corresponding

unobserved current.

Gradient Matching is usually employed to fit the parameters of a differential equation ac-

cording to a given dataset. In contrast to classical methods, the differential equations are

not solved during the process of fitting the parameters. Instead, the algorithm works solely

on the equation itself.

As the data samples xi = x(ti) at time point ti, i = 1, . . . , n, of an observed process

are known, let us assume we can calculate a derivative ẋi numerically. We have an ODE-

model for the data ẋ = f(x;µ) with parameter vector µ. Finding the best parameters of the

model f(.) boils down to solving the system of equations ẋi = f(xi). The classic problem

of identifying ODE-parameters requires to solve the ODE and compare the solution and

the observed data to optimize the set of parameters. This Gradient Matching approach

does not require to solve the ODE. Furthermore, we will restrict the model f(.) to consist

of polynomials. The parameters of the model control the monomials linearly, and we can

employ regression. If we minimize the number of parameters not equal zero by penalizing

them while minimizing the residual, the penalized regression allows for a different view on

the solution. Now, the process of identifying the correct parameters resembles a symbolic

view on constructing the right-hand side of the ODE.

Approaches using the data and the derivative of the data to estimate parameters of an ODE

have been around for a relatively long time. Many approaches explicitly underline the two

steps of recovering a derivative from noisy observations and using this derivative to calcu-

late parameters in a second step (see Himmelblau in 1967 [HJB67]). We consider a paper

of Kate BAK [Bak+63] as an early example of this approach in 1963. In addition to numer-

ical smoothing and differentiation, the paper mentions practical approaches by drawing a

smooth line through the plotted data samples and using a tangent meter [Fra48] to obtain
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the derivative, which is then used to determine rate constants1. Some advantages of Gra-

dient Matching from that time might be obsolete in many cases. Since we use computers to

solve the equations, we do not see big rate constants as a problem when solving an ODE.

On the other hand, there are drawbacks of Gradient Matching, which became much more

manageable. Gaining smooth derivatives does not require the effort it required before high

throughput data became available. Squire [Squ71] picks up the approach using very few

data points and concludes the difficulty to gain usable derivatives from experimental data.

Apart from difficulties due to noise, the example shows an advantage of Gradient Matching

to directly compute parameters within a regression, which does not require repeated eval-

uation of the differential equation. The paper of Varah [Var82] applies this approach to the

Lotka-Volterra predator-prey model in 1982 and furthermore benchmarks the advantages

and disadvantages compared to a classic method evaluating the ODE. In 2002 this is picked

up by Ellner[ESS02] and established the term Gradient Matching. Brunel[Bru08][BCd14]

elaborates this approach by analyzing the nonparametric estimators to achieve a smooth

representation. He analyzes the consistency of the estimators and even covers the estima-

tion of parameters of partially observed data. Brunton[BPK16] recently combined the Gra-

dient Matching approach with compressive sensing to match arbitrary dynamical systems.

Although he traces the idea back to symbolic regression [SL09], which is better known in

the form of genetic algorithms in computer science, his work continues the path of Gradient

Matching. His addition to the evolution of Gradient Matching fits the pattern defined by the

legacy, even more, when he later applies his algorithm to biological systems [Man+16]. The

compressive sensing approach, which has some similarities to our approach we applied in

chapter 4, not only estimates the values of the parameters, but it also identifies the correct

parameters. Furthermore, the approach allows integrating expert knowledge to guide the

identification of an unknown differential equation. Partial knowledge can be used to improve

the identification and estimation of the parameters.

In this Gradient Matching approach, the sensitive part is the process of approximating a

good derivative. The fitting is a regression. We chose polynomials as a right-hand side,

and the regression determines the parameters corresponding to the monomials. We pe-

nalize the number of monomials by using the l0 norm, which means, when solving the

regression the number of monomials having a parameter 6= 0 is multiplied with a constant

and added to the residual error. This penalization reduces the number of parameters to

the more essential parameters. Furthermore, this penalization limits the negative effect of

1A tangent meter like the version described by Frampton [Fra48] is more advanced than the commonly used
set square with protractor (German: Geodreieck). The main difference: The tangent meter employs a prism
at the contact point of the tangent and the curve, which enables the user to place the angle of the meter with
higher accuracy. Furthermore, there is a reference to support the user in determining the angle of the tangent.
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collinearity, because the more collinear the terms corresponding to two parameters are, and

the higher the penalty, the higher the likelihood of one of the parameters to equal zero. The

robustness against collinearity allows for overdetermined systems. If polynomials are used,

the parameters of the monomials often correspond to the parameters of the analyzed mod-

els in many cases. On the other hand, no effort of actually solving the differential equation

has to be made, because fitting the parameters is done by the regression.

The great advantage of assembling the right-hand side of the differential equations using

simple operations, which do not employ complicated solvers, is paid by the need to differ-

entiate the data. Differentiating amplifies the noise in opposite to solving the differential

equation, which can be seen as an integration canceling the noise.
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Figure 3.1: Gradient Matching vs classical method, exemplify the matching of an ODE of
constant frequency to a process of slightly varying frequency. The frequency of the process
is raised between x = 0 and x = 3, which results in a persisting shift for all following
samples after x = 3.

In the case of classical methods, the parameters of an ODE are fitted by employing a max-

imum likelihood approach, which searches for the least difference between the solution of

the ODE and the observed process, as visualized in fig. 3.1. Figure 3.1 visualizes a process

of varying frequency fitted by an ODE solution only representing constant frequencies. The

figure shows an epoch of the process of slightly higher frequency between x = 0 and x = 3

accumulating an error. Gray shading marks the accumulating error. It results in a phase

shift, which remains constant during the following epoch of matching frequency. We mark

this remaining phase shift by red shading. In the example of a fast oscillation of an unstable

frequency, which is observed over a longer period, this accumulating error can result in a

loss of synchronization between measurements and model. The global function averages

noise, but has to cope with random changes in the process or rare effects not covered in

the ODE. Conversely, Gradient Matching calculates the parameters by employing regres-

sion. This regression includes every data sample of the state variable and its corresponding
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derivative independently of the rest of the data, the history and the future progress. I.e., in

the theoretical limit case, every data sample could be a part of the solution on a different

trajectory with different initial conditions.
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Figure 3.2: Local noise events of
sample values result in a local
noise spike in the derivative.

If the exact derivative is given, the Gradient Matching

algorithm is completely localized evaluating every sam-

ple on its own and then using these samples to esti-

mate the parameters. If noise occurs as single altered

data sample of the state variable (fig. 3.2), it will have a

comparable local or limited effect on both approaches.

In the classical approach, it will be a single error, as it

differs from the solution of the solved ODE. In the case

of Gradient Matching, it is wrong pairs of data and cor-

responding derivative, which will be overruled by cor-

rect pairs during the regression as it happens during integration in the classical method.
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Figure 3.3: Gradient Matching vs classical method. The process halts from x = 2.0 or
x = 2.2. Extrapolating the process would result in a persistent error, because it is shifted to
the actual process. The correlation of the value to the derivative, which we concentrate on
using Gradient Matching, persists and is not influenced by the halt of the process.

Figure 3.3 shows a process, which halted for a short period of time. The problem of constant

additive errors in the time when integrating differential equations was already mentioned in

[Bak+63]. After the halt, fig. 3.3 visualizes that the following derivatives still fit the corre-

sponding data points after the additive error in time. Again, the Gradient Matching analyzes

the data and the corresponding derivative. Events outside this local scope do not influence

the analysis. It is translation invariant. The solution of the ODE, which extrapolates the

previous data, will have an offset compared to all the following data.

Because we analyze the sample and its derivative in the case of Gradient Matching, even

permuting each sample would not influence the outcome. Presumingly this behavior can

be exploited to gain robustness against singular effects.
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Figure 3.4: Singular event – jumping
between trajectories.

As the Gradient Matching solution is not dependent

on initial values of the differential equation, the al-

gorithm would not even be bothered by an effect

resulting in the data jumping into a different trajec-

tory having different initial conditions. In real-life ex-

periments, the variation of initial values of the differ-

ential equations often results in very different out-

comes. They can result in ill-posed problems. Fig-

ure 3.4 shows exponential growth. The initial values

are close to zero. Therefore, small offsets due to

noise result in very different trajectories and might

even change the sign of the differential equation. When using a small measured value as

initial value of the exponential growth differential equation, the noise will determine if the

differential equation grows towards plus or minus infinity. The paper [Var82] points out the

advantage of being independent of initial conditions. The local structure allows calculat-

ing each sample independent of each other. Because no ODE is solved, the first samples

do not influence the rest of the trajectory. Noise at that initial stage does not prohibit the

calculation of the major rest. In the end, variations in the initial phase will just add to the

noise level of the regression. There are enhancements to the classic methods regarding

this problem. The classic methods solve the differential equation numerically, starting at the

initial conditions. They perform an optimization on the parameter of the differential equation

by repeatedly solving the equation. The multiple shooting method [SB96][p. 516ff.] breaks

the ill-posedness of the problem by starting at different times of the differential equation. A

practical description and an updated comparison to other methods is provided by [PT07].

Instead of solving one differential equation over the whole space, the space is divided into

smaller subspaces, which are solved independently having their own initial values.

To further underline the feature of Gradient Matching to be independent of the initial con-

ditions without having to rely on enhancements of the original idea, we exaggerate the

problem and assume a system, which switches to a different trajectory. In the classical

approach using the multiple shooting method, detection of the incidents, which affects the

trajectory, is necessary. Otherwise, a larger chunk of the data would result in misleading

parameters flawing the result of the calculation.

This change of the trajectory is illustrated in the exponential growth example from fig. 3.4.

The Gradient Matching algorithm will not note that half of the samples are sampled of a

positive and half of the samples of a negative trajectory of the exponential growth function.

Varying the parameter of growth on the other hand, would result in the search of a new
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parameter trying to approximate all variations of the data. The experiments performed

on measured data in chapter 4 show a practical example and support this assumption.

They deal with an oscillating circuit. That circuit is triggered by Dirac impulses repeatedly

because the damping is high. If we had to integrate the differential equation, we would have

to detect the Dirac impulses, which start the oscillation, i.e., a new trajectory. Because of the

independence of the trajectories, Gradient Matching does not have to detect the impulses.

It can just record the data and ignore the fact that it jumps to a new trajectory every time a

new impulse is triggered.

This comparison between Gradient Matching and classical methods is summarized in ta-

ble 3.1. Of course, a model describing the data, which relies on being reinitialized with

different initial conditions from time to time, does not seem to be doing a very good job. On

the other hand, when monitoring an oscillation, it seems obvious to not model the Dirac im-

pulse triggering the oscillation in the differential equation. This impulse is only a side effect,

and its existence within the model would distract from the actual dynamic happening. The

same is true if the growth is monitored in biological experiments. Many times, an offset in

time or a delay in bacteria growth is considered as noise. In many cases, not modeling the

noise is not a flaw in the model, but a necessary step to focus on the essential dynamics.

In the following chapters, we will use Gradient Matching and restrict the right-hand side of

the ODE to polynomials. We choose polynomials, because of the capability to describe the

right-hand side of typical equations occurring in models like the Lotka-Volterra equations,

spring/mass systems, LC oscillators, and chemical reactions. These models result in equa-

tions of the form ẋ = a+ bx+ cx2 + . . .. If the pair (x, ẋ) is available by sufficiently smooth

data points, linear regression can in general estimate the parameter.

Gradient Matching versus Classical Methods

Property Classical Method Gradient Matching

View Works on solution of differential

equations.

Works on the equations itself.

Visualization Solution of ODE minimizes dis-

tance to data samples.

1 2 3−1

1
x

y

Works on the equation like sym-

bolic regression and minimizes

the error of the regression.
ẋ = a+ b · x+ c · x2 + d · x · y . . .

ẏ = e+ f · y + . . .
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Tool
∫

Solving the differential equa-

tion is achieved by integrating the

data.

d
dx

In case of Gradient Matching

the data has to be derived.

Locality Nonlocal Local

Side effect Sensitive to poisson noise and ini-

tial conditions.

Amplification of noise.

Computational

Complexity

Multiple evaluations of ODE. Linear + computations enhancing

the derivative or identifying the ex-

istence of parameters.

Table 3.1: Gradient Matching versus Classical Methods.

3.1 Numerical Derivatives

When applying Gradient Matching in practice, there are various ways to achieve a numerical

derivative of the data. Above, we already mentioned the disadvantage of Gradient Matching

of amplifying noise when deriving the data. Furthermore, we should try to maintain one of

the advantages of Gradient Matching, the local approach. On the other hand, there is no

per-sample local numerical derivative. Often, respecting more samples results in a less

local approach; this is especially true if smoothing or averaging is used. However, various

algorithms are tradeoffs between being more localized or being more noise resistant.

A numerical derivative can be achieved by fitting a polynomial locally like Ellner [ESS02] or

[SB75], applying splines [Var82], smoothing the function, and applying a relatively stable

approach like the five-point stencil or using optimization and a total variation approach like

Chartrand[Cha11].

Thereby, the total variation approach will keep discontinuities, i.e., jumps from one trajec-

tory to another. The drawback is the involved l1 norm, which is not as easy to handle

within optimizers. On the other hand, a traditional way of smoothing by applying splines or

polynomials will be a less localized approach and usually not model discontinuities.
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3.2 Latent Function Recovery Using Gradient Matching

In this chapter, we concentrate on a dynamical system of two equations. While only ob-

serving one component x(t) of the trajectory, we use Gradient Matching to construct a

functional, which allows constructing a locally unique solution of the second component

y(t) of the trajectory.

This tool helps in cases of partially observed data. Sometimes it is harder to observe

some components of the data compared to other components. This scenario results in

missing components or components of low quality. To provide an example, we can imagine

measuring the current and the voltage of an LC-oscillator. Measuring the voltage is a lot

easier than measuring the current, if the current is measured by employing a shunt resistor

(see the example provided in chapter 4, Gradient Matching Experiment).

After showing the existence and local uniqueness of the classical solution in the exact

(noise-free) case, we add noise and show the applicability of the implicit function theorem

at the location of the ’true’ solution. The implicit function theorem hints the existence of an

approximating solution near the unknown ’true’ y(t) trajectory for sufficiently small levels

of noise. This proof is performed by showing that the optima underlie a continuous transi-

tion as the level of noise rises. Furthermore, we exemplify the theory by the experiments

performed in chapter 4. On the other hand, we note that local optima might appear, which

will prohibit reaching the correct solution in case of higher noise levels, especially in more

complex dynamical systems.
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3.3 Notation

Function spaces

C0 Continuous functions.

C0(Ω) Continuous functions with compact support within Ω. In literature,

Cc(Ω) is a common alternative notation.

Cn Continuous function having n continuous first derivative y.

Cn,a In addition to Cn Hölder spaces [Eva10][pp.240-241] fulfil the Hölder

condition |f(x)− f(y)| ≤ C‖x− y‖α.

Lp Function space of measurable functions using the norm ‖f‖Lp :=(∫
Ω
|f |pdµ

) 1
p <∞.

W n,p The Sobolev space. A function within the space and its first n deriva-

tives have a finite Lp norm.

W 1,2
0 Closure of a smooth function with zero boundary condition using the

Sobolev norm ≡ C∞0
‖.‖W1,2 .

Operator Spaces

L Bounded, linear Operators

Variables

η(t, λ) Poisson disturbance with parameter λ.

n(t) The function n(t) ∈ W 1,2
0 describes the noise. The subscript nx(t)

or ny(t) denotes the corresponding state variable x(t) or y(t).

x(t) The observed function, a solution of the first equation of the dynam-

ical system.

x̃(t) x̃(t) = x(t) + n(t, µ = 0, σ) - The observed data x(t) with Gaussian

noise added.

y(t) The unknown second component of the dynamical system.

ỹ(t) Approximation of y(t).

ŷ(t) True y(t).

u(t) Difference to ŷ.
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Functions

1Ω Indicator function.

f1(x, y) Right-hand side function of the first equation.

f2(x, y) Right-hand side of the second equation of the dynamical system.

f2,x The derivative in direction of x of f2.

Table 3.2: Notation – Gradient Matching.
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3.4 Model

This chapter deals with a dynamical system in two components, x(t) and y(t). However,

the ’true’ function ŷ(t) ∈ W 1,2 of the original system is assumed to be unobserved. This

’true’ function fulfills the second equation exactly.

This system raises the question, whether there is sufficient information to recover an ap-

proximation ỹ(t) on a given period of time t ∈ (0, τ) only by observing x(t) and knowing the

right-hand side of the differential equations. The right-hand side of the differential equations

describing the dynamical system consists of the functions f1, f2 ∈ C0,1
loc (R2,R) correspond-

ing to the first component x(t) and the second unknown component y(t). The time period

is restricted by the finite time τ of observation of the trajectory x(t). Furthermore, it raises

the question, whether this approximation stays near the ’true’ function ŷ(t) ∈ W 1,2 when

noise is introduced. A pursued behavior would be a continuous shift of the approximated

optimum when increasing the noise. Discontinuous behavior would start at higher noise

levels, when ỹ leaves the shrinking neighborhood of ŷ and enters a different local optimum.

A not desirable behavior would be an ill-posed behavior being inherently discontinuous.

Problem without Noise

The trajectory consisting of the two funcitons, the observed x(t) ∈ C1 and the unobserved,

’true’ ŷ(t) ∈ W 1,2, solves the following dynamical system.

The function x(t) has to be differentiable to allow being analyzed by Gradient Matching

tools.

Problem 53 (Dynamical System) The function x(t) ∈ C1 and the ’true’ function ŷ(t) ∈
W 1,2 solve the following dynamical system. For x(t) ∈ C1, f1, f2 ∈ C0,1

loc (R2,R) and τ ∈ R+

find ỹ(t) ∈ W 1,2 such that:

x′(t) = f1(x(t), ỹ(t)), t ∈ [0, τ ], (3.1)

ỹ′(t) = f2(x(t), ỹ(t)), t ∈ [0, τ ]. (3.2)

We note, the recovered ỹ(t) does not have to match the ’true’ function ŷ(t). The dynamical

system with a given observed function x(t) might not have a unique solution ỹ(t) as we

show in an example in section 3.7.4.

When searching for a function ỹ(t) fulfilling these equations, we intend to minimize the

residuals x′ − f1(x, y) and y′ − f2(x, y). Therefore, we define a functional J(y(t)) in defini-

tion 54, adding the residuals. This functional has a global minimum at J(ŷ(t)) = 0 as the

’true’ solution fulfills the equation without any residuum.
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Definition 54 Define the functional J : W 1,2 → R describing the error from problem 53 by

J(y(t)) =
1

2
‖x′(t)− f1(x(t), y(t))‖2

L2(0,τ) (3.3)

+
1

2
‖y′(t)− f2(x(t), y(t))‖2

L2(0,τ), (3.4)

I =[0, τ ].

To meet the structure of our problem, we require from now on the following assumptions.

Hypothesis 55 (General Preconditions) In the remaining part of the chapter, we assume

there exists a ŷ fulfilling the problem 53 resulting in J(ŷ) = 0, in the case of no noise.

Furthermore, we assume that yn ∈ W 1,2 is a sequence with:

1. ‖yn‖L∞ ≤ ζ,

2. lim
n→∞

J(yn) = 0,

3. ∀t : (f1,y(x(t), y(t)))2 ≥ ε > 0⇒ ‖f1,y‖2 > 0.
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3.4.1 Deriving the Objective Function at the True Optimum

Before we proceed in section 3.4.2 to prove the existence of a classical solution of the

objective function, we will derive the objective function from definition 54. We show ŷ,

which is defined as the original, ’true’ function and fulfills J(y) = 0, is an isolated optimum.

Therefore, we assume y(t) ∈ W 2,2 within this subsection and calculate the first and second

derivative of the objective function at the location of the ’true’ function ŷ(t).

The second derivative will indicate that ŷ(t) is an isolated optimum, and we will proceed in

section 3.4.2 to prove the existence of a classical solution of the objective function. That

proof for the existence of the classical solution does not rely on the derivatives of this sub-

section.

First Derivative of the Objective Function

We calculate the derivation in the direction of a test function using test functions with com-

pact support φ ∈ C∞0 [RR04, p.124 def. 5.1]. The boundary values of our domain are not of

further interest, and the support prohibits them from introducing more terms into the weak

derivative.

Lemma 56 First derivative of functional J stated in definition 54 using the test function

φ ∈ C∞0 (0,τ) and y ∈ W 2,2.

∂

∂ε
J(y + εφ)|ε=0 = −

∫ τ

0

((x′ − f1) · f1,y + (y′′ − f2,x − f2,y) + (y′ − f2) · f2,y)φ dt.

Proof:

∂

∂ε
J(y + εφ)|ε=0 =

∫ τ

0

∂

∂ε

1

2
( x′(t)− f1(x(t), y(t) + εφ(t)) )

2

+
∂

∂ε

1

2
( y′(t) + εφ′ − f2(x(t), y(t) + εφ(t)) )

2
dt

∣∣∣∣
ε=0

=

∫ τ

0

(x′ − f1(x, y + εφ)) · (−1)f1,y(x, y + εφ)φ

+ (y′ + εφ′ − f2(x, y + εφ)) · (φ′ − f2,y(x, y + εφ)φ) dt|ε=0

=

∫ τ

0

(x′ − f1(x, y)) · (−1)f1,y(x, y)φ

+ (y′ − f2(x, y)) · (φ′ − f2,y(x, y)φ) dt
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=

∫ τ

0

(x′ − f1(x, y)) · (−1)f1,y(x, y)φ

− d

dt
(y′ − f2(x, y))φ− (y′ − f2(x, y)) · (f2,y(x, y)φ) dt.

2

The exact solution, ŷ, results in the derivative of the objective function to evaluate to zero,
∂
∂ε
J(ŷ + εφ)|ε=0 = 0.

This can be verified when inspecting the last step of the calculation. The factors (x′ − f1(x, y))

and (y′ − f2(x, y)) evaluate to zero, and the derivative d
dt

(y′ − f2(x, y)) evaluates to zero,

because the inner term y′ − f2(x, y) evaluates to zero for all values of x and y.

Second Derivative of the Objective Function

We simplify the equations by inserting the exact solution. I.e., in case of the second equa-

tion of the dynamical system: ŷ′ = f2(x, ŷ)⇒ 0 = ŷ′ − f2(x, ŷ).

In the case of the first equation of the dynamical system: x′ = f1(x, ŷ)⇒ 0 = x′ − f1(x, ŷ).

Lemma 57 (Second Derivative, if y Matches the True, Exact Function ŷ, y = ŷ)

∂2

∂ε2
J(y + εφ)

∣∣∣∣
ε=0

=

∫ τ

0

(f1y(y) · φ)2 + (φ′ − f2y(y) · φ)2dt.

Proof:

∂2

∂ε2
J(y + εφ)

∣∣∣∣
ε=0

=
∂2

∂ε2
1

2

∫ τ

0

(x′ − f1(y + εφ))2dt (3.5)

+
∂2

∂ε2
1

2

∫ τ

0

((y + εφ)′ − f2(y + εφ))2dt

∣∣∣∣
ε=0

(3.6)

To avoid bulky equations, we employ auxiliary calculations for term 3.5 and term 3.6.

Term 3.5:
∫ τ

0

d

dε
(x′ − f1(y + εφ))(−1)f1,y(y + εφ)φdt

=

∫ τ

0

(f1(y + εφ)− x′) · f1yy(y + εφ)φ2dt

+

∫ τ

0

f1y(y + εφ)φf1y(y + εφ)φdt

⇒
∫ τ

0

f1y(y + εφ)2φ2dt.
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In the exact case the term (f1(x, ŷ) − x′) equals zero and can be neglected, which is also

true in case of ŷ′ and f2.

Term 3.6:
∫ τ

0

∂

∂ε
(y′ + εφ′ − f2(y + εφ)) · ((−1)f2y(y + εφ)φ+ φ′)dt

=

∫ τ

0

(φ′ − f2y(y + εφ)φ)((−1)f2y(y + εφ)φ+ φ′)

+ (ny′ − f2(y + εφ) + εφ)((−1)f2yy(y + εφ)φ)dt

⇒
∫ τ

0

(φ′ − f2y(y + εφ)φ)2dt.

Combining the two auxiliary calculations and using ε = 0 results in the statement. 2

We can employ the second derivative to show ŷ is a localized optimum.

Lemma 58 (Strict Local Optimum ŷ) If y is a minimum with J(y) = 0 matching the ’true’

solution y = ŷ, it is a strict local optimum.

Proof: We take the derivative from lemma 57 and the prerequisites from hypothesis 55 to

show the second derivative is positive:

∂2

∂ε2
J(y + εφ)|ε=0 =

∫ τ

0

f1y(x, y)2φ2 + (φ′ − f2y(x, y)φ)2dt

≥
∫ τ

0

(f1,y(x, y))2φ2dt

Now, according to hypothesis 55.

≥ ε

∫ τ

0

φ2 dt = ε‖φ‖L2 > 0.

The positive second derivative indicates a strict local minimum. 2
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3.4.2 Existence of the Classical Solution

Before adding noise, we deal with the exact model. In a real-world scenario, numerical

solvers are appropriate, which converge iteratively. In the case of the exact model, we

prove that lim
n→∞

J(yn) = 0 implies the existence of a converging subsequence.

Theorem 59 If a sequence yn ∈ W 1,2 satisfies hypothesis 55, then there is a converging

subsequence ynl → y∞ in L2 so that y∞ ∈ C1 and (x(t), y∞(t)) is a classic solution of

problem 53.

Before we prove this theorem, several lemmata are required. These lemmata bound y and

its sequence elements yn in W 1,2, then y∞ in L∞ and y∞ in W 1,2. After those lemmata, we

analyze the convergence of the elements.

In the following, ζi denote non-negative constants.

Lemma 60 (Priori Bound in W 1,2) Let y ∈ W 1,2(I) for I = [0, τ ]. Let furthermore the

function y and therefore J(y) be bounded (‖y‖L∞ ≤ ζ1, |J(y)| ≤ ζ2) as stated in problem 53,

definition 54, and hypothesis 55.

Then there is ζ3 only depending on ζ1, ζ2 such that ‖y‖W 1,2 ≤ ζ3(ζ1, ζ2).

Proof: The function f2 ∈ C0,1
loc (R2,R). Furthermore, x is a fixed function in C1, and y is

bounded in L∞. Hence, the function f2(x, y) is bounded in L2 by a constant ζ4.

Using this bound and employing the triangle inequality, the bounded functional J(x, y) yields

an estimate for ‖y′‖L2 .

‖x′ − f1(x, y)‖2
L2 + ‖y′ − f2(x, y)‖2

L2 = J(x, y) ≤ ζ2

⇒ ‖y′ − f2(x, y)‖L2 ≤
√
ζ2

⇒ ‖y′‖L2 = ‖y′ − f2(x, y) + f2(x, y)‖L2 ≤ ‖y′ − f2(x, y)‖L2 + ‖f2(x, y)‖L2

≤
√
ζ2 + ζ4 = ζ5.

Now use ‖y‖L∞ ≤ ζ1 to estimate ‖y‖L2 :

ζ6 =

(∫
I

‖y‖2
L∞

) 1
2

≤
(∫

I

ζ2
1

) 1
2

= |I| · ζ1.

Combining both estimates ζ5, ζ6:

‖y‖W 1,2 = ‖y‖L2 + ‖y′‖L2 ≤ ζ6 + ζ5 ≤ ζ3.
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ζ3 depends on ζ6 and ζ5 which depend on ζ1 and ζ2 proving ‖y‖W 1,2 ≤ ζ3(ζ1, ζ2). 2

Regarding yn is bounded in L∞, but the minimizing sequence only controls yn in L2, an L∞

bound for y∞ has to be assured.

Lemma 61 Let yn ∈ L2∩L∞ be bounded in L∞, ‖yn‖L∞ ≤ ζ, and assume there is y∞ ∈ L2

such that yn
n→∞−−−→ y∞ ∈ L2, then ‖y∞‖L∞ is bounded such that ||y∞||L∞ ≤ ζ.

Proof: Let µ be the Lebesgue measure on R+. If ‖y∞‖L∞ > ζ then ∃ε > 0 : µ({t|y∞(t) ≥
ζ1 + ε) > 0.

Let ε > 0, and define Ωε = {t|y∞(t) ≥ ζ + ε}. Then, if µ(Ωε) > 0, i.e. the set of values

exceeding the bound is not a null set:

||yn − y∞||L2 =

∫
I

(yn − y∞)2dx

≥
∫

Ωε

(yn − y∞)2dx

≥
∫

Ωε

ε2dx > 0.

This contradicts ‖yn − y∞‖2
L

n→∞−−−→ 0 and therefore proves ||y∞||L∞ ≤ ζ 2

We remember hypothesis 55. As J(yn)
n→∞−−−→ J(y∞) = 0 shows, the function y∞ is fulfilling

the objective function. Therefore, we can concentrate on subterms of the objective function

from definition 54, when proving the regularity of y∞.

Problem 62 We concentrate on line 3.4, the second part, of the functional J from defini-

tion 54, and turn it into a weak formulation:

K : W 1,2 ∩ L∞ ×W 1,2
0 → R

K(y, φ) =

∫ T

0

−y · φ′(t)− f2(x, y) · φ(t)dt

= (−1)

∫ T

0

y · φ′(x) + f2(x, y) · φ(t)dt.

After bounding yn in W 1,2 in lemma 60 and extending this bound to an L∞ bound for y∞
in lemma 61 we show y∞ ∈ W 1,2. We will show y∞ ∈ W 1,2 using problem 62 and the

boundedness of ||y∞||L∞ in lemma 63.

Furthermore, lemma 63 shows that y∞ solvesK(y, φ) from problem 62 in distribution, which

is the last intermediate step before proving that y∞ is a classic solution (theorem 59) of the

dynamical system problem 53.
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Lemma 63 (Priori Bound in W 1,2) Let yn ∈ W 1,2 ∩ L∞, y∞ ∈ L∞ with J(yn)
n→∞−−−→

J(y∞) = 0. Let furthermore the function yn and the functional J(yn) be bounded: ||yn||L∞ ≤
ζ1, ||J(yn)|| ≤ ζ2.

1. y∞ ∈ W 1,2.

2. K(yn, φ) converges: K(yn, φ)
n→∞−−−→ 0, i.e., y∞ is a solution of problem 62.

Proof: First use the convergence of J(yn) to simplify the equation used for both claims:

∫
−yn · φ′ −f2(x, yn) ·φdt = K(yn, φ) ≤ J(yn) · ||φ||L2

↓ ↓ ↓ n→∞
∀φ ∈ W 1,2

0

∫
−y∞ · φ′ −f2(x, y∞) ·φdt ≤ 0.

(3.7)

(1) We use lemma 61, which provides a bound for y∞, and as x is bounded for f2 ∈ C0,1. We

can find a constant ζ3 bounding yn in the Sobolev norm: ||yn||W 1,∞ ≤ ζ1 ⇒ ||yn||W 1,2 ≤ ζ3.

Using this bound y∞ ∈ W 1,2 can be shown.

⇒
∫
−y∞ · φ′dt−

∫
f2(x, y∞)φdt ≤ 0

⇒
∫
−y∞ · φ′dt ≤

∫
f2(x, y∞)φdt ≤

(∫
f2(x, y∞)2dt

) 1
2

︸ ︷︷ ︸
=ζ3

(∫
φ2dt

) 1
2

︸ ︷︷ ︸
||φ||L2

⇒
∫
−y∞ · φ′dt ≤ ζ3||φ||L2 ,∫
y∞ · φ′dt ≤ ζ3||φ||L2

⇒
∣∣∣∣∫ y∞ · φ′dt

∣∣∣∣ ≤ ζ3||φ||L2 .

Now the equivalence of y∞ ∈ W 1,2(I) and
∣∣∫
I
y∞φ

′dt
∣∣ ≤ ζ||φ||L2 [Bré11, p. 268 proposition

9.3] can be used.

(2) Recall eq. (3.7), which also shows K(y∞, φ) ≤ 0 for all φ ∈ W 1,2
0 . We conclude:{

be φ ∈ W 1,2
0 → K(y∞, φ) ≤ 0

−φ ∈ W 1,2
0 ⇒ K(y∞, φ) = −K(y∞, φ) ≤ 0

⇒ K(y∞, φ) = 0.
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So K(y∞, φ) converges to zero. 2

Lemma 63 now justifies the step y′∞ = g(t) in D′ in the proof of theorem 59. The existence

of an absolute continuous antiderivative is provided by lemma 64.

Lemma 64 (Antiderivative of Regular Distributions [Wal74, p.81 (7)]) Given a regular dis-

tribution f and let g(t) =
∫ t

0
f(τ)dτ . Then, g is a regular distribution and absolute continu-

ous.

Proof (of Theorem 59): According to lemma 63, there is y∞ ∈ W 1,2, ynl → y∞ ∈ L2 and

y∞ solves eq. (3.2) of problem 53 weakly. We show by bootstrapping, that y∞ ∈ C1 is a

classical solution of eq. (3.2).

Let y∞ ∈ L∞ be fixed, ∀φ ∈ W 1,2
0 : K(y∞, φ) = 0 ⇒ y′∞ = g(t) for g(t) = f2(x(t),

y∞(t)) ∈ L∞ in distribution.

⇒Lemma 64 y∞(t) =

∫ t

0

g(τ)dτ + ζ ′ ∈ C0 (3.8)

⇒ g(t) = f2(x(t), y∞(t)) (3.9)

⇒Lemma 64 y∞(t) =

∫ t

0

g(τ)dτ + ζ ′ ∈ C1 (3.10)

⇒ y′∞ = g(t) for g(t) ∈ C1 in D′. (3.11)

In eq. (3.8) the regularity of y∞(t) is lifted by integration from being bounded to C0, which

can be used in eq. (3.9) to lift the regularity of g(t) from the original ||g(t)||L∞ < ζ to

g(t) ∈ C0, because f2 ∈ C0,1
loc (R2,R).

We use the deduced property g(t) ∈ C0 in eq. (3.10) to deduce a better regularity for y∞,

i.e., y∞ ∈ C1. In turn, that better regularity enables us to calculate the derivative of y∞ from

g(t) in eq. (3.11). 2
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3.5 Noise

In the next step, we analyze the behavior of the solution of the dynamical system from

problem 53 in the presence of noise. White noise is a common form of noise.

Heuristically, continuous white noise is formally defined as the derivative of the Brownian

motion [FK05, p.124]. However, there is no derivative of the Brownian motion, because

there is no regularity [KK93, p. 23]. There are approaches that stick close to the definition

and circumvent the fact that the Brownian motion can not be derived using a system of

first-order Itô stochastic equations [FK05, p.124]. A continuous white noise signal can not

exist in reality. Looking at the power spectral density, which would cover all frequencies,

there would be an infinite amount of energy within this signal [KK11, p.45], [Mül90, p. 88].

In a more practical approach, white noise is defined by a constant power spectral density

on a defined bandwidth [Mül90, p.42 Fig.13]. When analyzing the practical example of

an electrical circuit, the observed white noise visualized in fig. 3.5 has a lower and upper

bound. The lower bound is determined by red noise, which needs long observations to

become visible. On the other hand, the high frequencies are limited by the circuit bandwidth

[Gar04, p. 19].

white noise

red noise

circuit bandwith

f

Figure 3.5: Noise contributions in the frequency domain according to [TS11, Fig. 2.17,
p.32].

In contrast to time-continuous white noise, discrete white noise can be created by drawing

samples from a normal distribution. We could define a continuous noise function as identical

to the discrete white noise at the discrete samples, e.g., using sinc interpolation. Because

the following considerations do not rely on the independence properties of a hypothetical

white noise, nor on the scale of the noise, we decided to not deal with the complications
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of defining a suitable noise model fulfilling a particular definition of noise1 and introduce an

arbitrary noise function nc ∈ W 1,2
0 .

3.6 Modeling Noise

We introduce a function n(t) ∈ W 1,2
0 , which plays the role of the observation-noise within

the rest of the chapter.

Definition 65 (Continuous Noise) The observed noise is described by n(t) ∈ W 1,2
0 . The

subscript nx(t) or ny(t) can denote the corresponding state variable x(t) or y(t).

This continuous noise is added when observing the process. This results in a new definition

of the previous problem 53.

Problem 66 (Dynamical System Observed under Gaussian White Noise) For x̃(t) ∈ C1,

f1, f2 ∈ C0,1
loc (R2,R) and τ ∈ R+ find ỹ(t) ∈ W 1,2 such that:

x̃′(t) = f1(x̃(t), ỹ(t)), t ∈ [0, τ ], (3.12)

ỹ′(t) = f2(x̃(t), ỹ(t)), t ∈ [0, τ ], (3.13)

x̃(t) = x(t) + nx(t). (3.14)

1Nevertheless, a closer analysis of the robustness against Poisson noise could be beneficial for practical
implementations.
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3.7 Behavior of Solution – Noisy Input

Now we are going to investigate the influence of noise on the optima and prove a continuous

influence at the transition from no noise to a noisy situation. The introduction of noise can

lead to altered optima. In the following section, we are investigating how the introduction of

noise influences an optimum by introducing a parameter λ, which scales the influence of

noise starting at zero influence.

3.7.1 Trace the Optimum by the Implicit Function Theorem

We intend to use the implicit function theorem. Therefore, we show three properties of the

operator A(λ, u)[φ] = ∂
∂ε
JN(λ, u+ εφ)|ε=0 derived in lemma 68. We derive the loss function

to find the minimum. This is accomplished by the Fréchet derivative of the functional from

definition 67, which is providing the optimum under the influence of noise, ∂
∂ε
JN(λ, u +

εφ)|ε=0 = 0. Then the implicit function theorem is used to find the trajectory of minima

under the variation of noise. The invertibility of the Operator will be shown. Therefore, we

show the invertibility of the functional in its second argument. We will prove the invertibility

using the linearity.

Then, after having shown the coercivity, the Lax-Milgram theorem ensures the invertibility

of the operator.

We start by introducing the noise nx from definition 65, which will be added to the model.

Now we use definition 65 instead of definition 54 to include noise. Previously, ŷ was defined

in W 1,2. To add noise and restrict the variation of ŷ, which we call u, to W 1,2
0 , we define a

new functional.

Definition 67

JN : U ⊂ R×W 1,2
0 →R

(λ, u) 7→JN(λ, u)

JN(λ, u) =
1

2

∫ T

0

((x+ λnx)
′ − f1(x+ λnx, ŷ + u))2 dt

+
1

2

∫ T

0

((ŷ + u)′ − f2(x+ λnx, ŷ + u))2 dt.

We derive the functional from definition 67 , which fulfills the equation JN(0, 0) = 0 from

definition 67 in the case λ = 0, as ŷ was fulfilling J(ŷ) = 0 from definition 54 in the absence

of noise. This is a global minimum, and therefore, the derivative in the direction of y is zero.
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Lemma 68 Derivative of Jn(λ, u) at λ = 0 in direction of y.

A : R×W 1,2
0 →L(W 1,2

0 ,R)

(λ, u) 7→A(λ, u)

A(λ, u)[φ] =
∂

∂ε
JN(λ, u+ εφ)|ε=0

=

∫ T

0

((x+ λnx)
′ − f1(x+ λnx, ŷ + u))(−1)f1y(x+ λnx, ŷ + u)φ dt

+

∫ T

0

((ŷ + u)′ − f2(x+ λnx, ŷ + u)) · (φ′ − f2y(x+ λnx, ŷ + u)φ) dt.

Proof:

A : R×W 1,2
0 →L(W 1,2

0 ,R)

(λ, u) 7→A(λ, u)

A(λ, u)[φ] =
∂

∂ε
JN(λ, u+ εφ)|ε=0

=
∂

∂ε

(
1

2

∫ T

0

((x+ λnx)
′ − f1(x+ λnx, ŷ + u+ εφ))2 dt

+
1

2

∫ T

0

((ŷ + u+ εφ)′ − f2(x+ λnx, ŷ + u+ εφ))2 dt

)∣∣∣∣
ε=0

=

(∫ T

0

((x+ λnx)
′ − f1(x+ λnx, ŷ + u+ εφ))

· (−1)f1,y(x+ λnx, ŷ + u+ εφ)φ dt

+

∫ T

0

((ŷ′ + u′ + εφ′ − f2(x+ λnx, ŷ + u+ εφ))

· (φ′ − f2,y(x+ λnx, ŷ + u+ εφ)φ) dt

)∣∣∣∣
ε=0

=

∫ T

0

((x+ λnx)
′ − f1(x+ λnx, ŷ + u)) · (−1)f1,y(x+ λnx, ŷ + u)φ dt

+

∫ T

0

((ŷ′ + u′ − f2(x+ λnx, ŷ + u)) · (φ′ − f2,y(x+ λnx, ŷ + u)φ) dt.

2

Because we introduced noise, generically the optima are shifted. So instead of an exact

solution of the ODE from problem 66 leading to JN(λ, u) = 0, there will only be an available

approximation JN(λ, u) ≥ 0. However, this approximation is still a local minimum fulfilling

A(λ, u) = 0.

The introduction of noise by the parameter λ and the resulting shift of the optima ŷ to
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ỹ = ŷ + u now raises the question of the trajectory of this shift of the optimum. The

definition of the trajectory by A(λ, u) = 0 resembles the implicit function theorem [Bag92,

p.257, th. 12.8]1.

Theorem 69 (Implicit Function Theorem) [Bag92, p.257, th. 12.8] Let the following pre-

conditions be fulfilled:

• E and F are Banach spaces with the max norm.

• There is a map f of an open subset O in E × F into F , which is continuously differ-

entiable at a point x = (x1, x2) ∈ O.

• There is a bijective, linear transformation T (w) = dfx(0, w) ⊆ F → F .

Then, there exists the neighborhoods U1 and U2 of x1 in E and x2 in F . Furthermore, there

exists a unique continuous function g : U1 → U2. Its graph coincides with the level set

f−1(f(x)) ∩ (U1 × U2).

The spaces of the transformation T : E × F → F as stated in [Bag92, p.257, th. 12.8]

are fulfilled by A due to the property of W 1,2
0 to be a Hilbert space, i.e. L(W 1,2

0 ,R) can

be identified as W 1,2
0 [Yos68, p.91, Cor. 1]. To ensure the solvability of the equation, the

derivative of A in the direction of y has to result in an invertible operator.

Lemma 70 (Derivative of A(λ, u)) We define B(λ=0)[u, φ] to be the derivative of A(λ, u)

at the scale of the noise λ = 0:

B(λ=0)[u, φ] : R×W 1,2
0 → L(W 1,2

0 ,R)

(λ, u) 7→ d

dε
A(λ, εu)[φ]

∣∣∣∣
ε=0

B(0)[u, φ] =

∫ T

0

(f1,y(x, y))2φudt+

∫ T

0

(φ′ − f2yφ)(u′ − f2yu) dt.

Proof:

B(λ=0)[u, φ] =
d

dε
A(λ, εu)[φ]

∣∣∣∣
ε=0

=
d

dε

∫ T

0

(x′ − f1(x, ŷ + εu))(−1)f1y(x, ŷ + εu) · φ dt
∣∣∣∣
ε=0

+
d

dε

∫ T

0

(ŷ′ + εu′ − f2(x, ŷ + εu))(φ′ − f2,y(x, ŷ + εu)φ) dt

∣∣∣∣
ε=0

1The theorem is also covered in the chapter 4.8 ’The Implicit Function Theorem’ of the book ’Applied Functional
Analysis - Main Principles and Their Applications’ [Zei95, p.250, Ch. 4.8] and [Bag92, p.257, th. 12.8].
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=

∫ T

0

(x′ − f1(x, ŷ + εu))(−1)f1y(x, ŷ + εu) · φ · (−1)f1,y(x, ŷ + εu) · u dt
∣∣∣∣
ε=0

+

∫ T

0

(x′ − f1(x, ŷ + εu))(−1)f1yy(x, ŷ + εu)u · φ dt
∣∣∣∣
ε=0

+

∫ T

0

(u′ − f2,y(x, ŷ + εu)u)(φ′ − f2,y(x, ŷ + εu)φ) dt

∣∣∣∣
ε=0

+

∫ T

0

(ŷ′ + εu′ − f2(x, ŷ + εu))(−1)f2,yy(x, ŷ + εu) · φ · u dt
∣∣∣∣
ε=0

After evaluating ε = 0, we use the exact property of x and ŷ in the absence of noise.

=

∫ T

0

(−1)f1,y(x, ŷ) · u(−1)f1y(x, ŷ)φ dt

+

∫ T

0

(x′ − f1(x, ŷ)︸ ︷︷ ︸
=0

(−1)f1,yy(x, ŷ) · u · φ dt

+

∫ T

0

(u′ − f2,y(x, ŷ)u)(φ′ − f2,y(x, ŷ)φ) dt

+

∫ T

0

(ŷ′ − f2(x, ŷ))︸ ︷︷ ︸
=0

(−1)(f2yy(x, ŷ) · u · φ) dt.

Now evaluate B at ŷ for λ = 0.

B(0)[u, φ] =

∫ T

0

(f1,y(x, y))2φudt+

∫ T

0

(φ′ − f2yφ)(u′ − f2yu) dt.

2

The invertibility of B can now be shown by applying the Lax-Milgram theorem [RR04, p.290,

Theorem 9.14], which is quoted in theorem 751. The theorem requiresB(x, y) to be defined

on a product Hilbert space X ×X, which satisfies bilinearity, boundedness, and positivity.

Definition 71 (Bilinearity, Boundedness, and Positivity) [RR04, p.290, Theorem 9.14]

Let X be a Hilbert space and B(x, y) defined on X ×X → R.
• Bilinearity, ∀α1, α2, β1, β2 ∈ R:

B(α1x1 + α2x2, y) = α1B(x1, y) + α2B(x2, y) and

B(x, β1y1 + β2y2) = β1B(x, y1) + β2B(x, y2).

• Boundedness, ∃ ζ > 0 :

|(x, y)| ≤ ‖x‖ · ‖y‖ · ζ.

1A complex version of the Lax-Milgram theorem can be found in [Yos68, p.92, ch.III.7].
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• Coercivity , ∃δ > 0 :

B(x, x) ≥ δ‖x‖2.

Corollary 72 B(0,y) : W 1,2
0 ×W 1,2

0 → R is bilinear.

Now we show the boundedness.

Lemma 73 (B(0)[u, φ] Is Bounded.) |B(0)[u, φ]| ≤ ζ‖u‖W 1,2 · ‖φ‖W 1,2 .

Proof: To achieve a bound for the second part of the functional, it is essential that u and φ

are estimated in the Sobolev norm to have an upper bound for the derivatives occurring in

part two of B. We use a shortened notation for the i-th component of f in direction of x to

improve the readability: fix = fix(t) = fix(x(t), y(t)).

|B(0)[u, φ]| ≤ |
∫ T

0

(f1,y(x, y))2φudt|︸ ︷︷ ︸
Part 1

+ |
∫ T

0

(φ′ − f2yφ)(u′ − f2yu)dt|︸ ︷︷ ︸
Part 2

Part 1 ≤‖1[1,T ]f
2
1,y‖L∞ ·

∫ T

0

|φu|dt ≤ ‖1[1,T ]f
2
1,y‖L∞ · ‖φ‖L2‖ u‖L2

Part 2 ≤‖φ′ − f2yφ‖L2‖u′ − f2yu‖L2 ≤ (‖φ′‖L2 + ‖f2yφ‖L2) · (‖u′‖L2 + ‖f2yu‖L2)

≤
(
‖φ′‖L2 + ‖1[1,T ]f2y‖L∞‖φ‖L2

)
·
(
‖u′‖L2 + ‖1[1,T ]f2y‖L∞‖u‖L2

)
=‖φ′‖L2‖u′‖L2 + ‖1[1,T ]f2y‖2

L∞‖u‖L2‖φ‖L2

+‖1[1,T ]f2y‖L∞ (‖u′‖L2‖φ‖L2 + ‖u‖L2‖φ′‖L2)

Now add all the factors.

ζ :=‖1[1,T ]f
2
1,y‖L∞ + ‖1[1,T ]f2,y‖L∞ + ‖1[1,T ]f2,y‖2

L∞

Collect the auxiliary computations into one equation.

|B(0,y)[u, φ]| ≤
(
‖1[1,T ]f

2
1,y‖L∞ + ‖1[1,T ]f2,y‖2

L∞

)
· ‖φ‖L2‖ u‖L2 + ‖φ′‖L2‖u′‖L2

+‖1[1,T ]f2y‖L∞ (‖u′‖L2‖φ‖L2 + ‖u‖L2‖φ′‖L2)

≤ζ · ‖u‖W 1,2 · ‖φ‖W 1,2 .

2

Lemma 74 (Coercivity) There exists a constant δ such that B(x, x) ≥ δ‖x‖2
W 1,2 .

To prove this lemma the precondition (f1,y( x(t), y(t) ))2 ≥ ε > 0 of hypothesis 55 has to

be fulfilled.
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Proof: Recall that |a · b| ≤ εa2 + 1
ε
b2, as 0 ≤ (

√
εa+ 1√

ε
b)2. In the following equation, we will

use this auxiliary calculation to split the mixed term of the expansion. The ε will be used to

distribute the term in a way, which does vanish neither η, nor η̃. This is possible due to the

precondition ‖f1,y‖2 > 0, which can balance the arbitrary small (1− ε)‖f2,y‖.

B0(φ, φ) =

∫ T

0

(f1,y)
2φ2dt+

∫ T

0

(φ′ − f2,yφ)2dt

=

∫ T

0

(f1,y)
2φ2dt+

∫ T

0

(φ′)2dt− 2

∫ T

0

f2,yφφ
′dt︸ ︷︷ ︸

∗

+

∫ T

0

(f2y)2φ2dt

Now apply Young’s inequality at *
(
−2|
∫ T

0
f2yφ · φ′dt| ≥ −ε

∫ T
0
f 2

2yφ
2dt− 1

ε

∫ T
0
φ′2dt

)
.

≥
∫ T

0

(
f 2

1,y + f 2
2,y − εf 2

2,y

)︸ ︷︷ ︸
η

φ2dt+

∫ T

0

(
1− 1

ε

)
︸ ︷︷ ︸

η̃

φ′2dt

≥︸︷︷︸
∃ε>1

min(η, η̃)‖φ‖2
W 1,2 .

The possibility of having a bound ε > 1, while still allowing η > 0 due to the precondition,

ensures the positivity of η and η̃. 2

Theorem 75 (Lax-Milgram) [RR04, p.290, Theorem 9.14] [Yos68, p.92] Let B : W 1,2
0 ×

W 1,2
0 → R be a functional defined on the product Hilbert space W 1,2

0 ×W
1,2
0 which satisfies

the conditions: Bilinearity, boundedness and coercivity.

Then there exists a uniquely determined bounded linear operator S with ‖S‖ ≤ δ−1 and a

bounded linear inverse S−1 with ‖S−1‖ ≤ γ such that (x, y) = B(x, Sy).

Corollary 76 Because bilinearity, boundedness, and positivity are proven in corollary 72

and lemmata 73 and 74, using Lax-Milgram, theorem 75, f1,y > δ > 0 means B(y, φ) can

be inverted.

3.7.2 Quantify the Influence of Noise and Upper Bound for Condition

Number

It is easy to see that δ−1 provides an upper bound for the immediate influence of noise. The

higher the value of δ−1, the larger the possible initial influence of noise in altering the result

at the transition from zero noise to a noisy observation.
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Evidently, an upper bound for a condition number like value was calculated as a by-product

of proving the boundedness and coercivity, by δ, γ from theorem 75 as it states: ‖S−1‖ ≤ γ

and ‖S‖ ≤ δ−1.

Remark 77 (Condition Number Like Value - Upper Bound) κ̃ = ‖S−1‖‖S‖ ≥ δ−1γ.
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3.7.3 Example

This subsection shows a practical example of recovering an unobserved variable using the

Gradient Matching ansatz by minimizing a loss function J(yi) on discrete space.

We generate some data by taking the Lotka-Volterra equations modeling a predator-prey

system perturbed by poisson noise. We will recover the trajectory of the predator. The data

generation restarts using different random initial conditions to show the Gradient Matching

to be independent of said initial conditions.

Problem 78 (Lotka-Volterra Example) There is a prey x(t) and a predator y(t), t ∈ [0, 40].

ẋ(t) = 0.5 · x(t)− 0.1 · x(t)y(t), (3.15)

ẏ(t) = −0.9 · y(t) + 0.03 · x(t)y(t). (3.16)

The simulation, the trajectory, is restarted at time points τi drawn from a Poisson distribution

with parameter λ = 0.01. These time points define the positions, marking the restarts to

simulate Poisson noise. The initial conditions are uniformly drawn x(τi+) ∼ U([7, 50])

and y(τi+) ∼ U([3, 9]) using fixed-point arithmetic with accuracy 10−3. The trajectory is

generated using the ’ode’ function from the ’deSolve’ package using ’lsoda’ in its default

configuration. We take an array of samples on a discrete space ti+1 − ti = 0.1, t ∈ [0, 40].

Finally, additive Gaussian white noise is added by drawing values fromN (0, 1.2). The result

of this simulation can be seen in fig. 3.6.

5 10 15 20 25 30 35 40

20

40

samples

population

x̃: Observed x
x̂: True x
ỹ: y

ŷ: True y

Figure 3.6: The example system showing the true functions x̂ and ŷ and the observed
function x̃ and the function ỹ as it could have been observed.

After preparing the data shown in fig. 3.6, the noisy, observed x̃(ti) is handed to the al-

gorithm. We describe the separate steps of the program running the algorithm in more
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detail in section 6.2.2. The initial data for ỹ(ti) are uniformly distributed integer values

y(t) ∼ U([0, 100]). Before handing the discrete version of the objective function stated in

definition 54 to the solver ’rgenoud’ using BFGS and genetic optimization, we compute the

derivative of x(t) using total variation differentiation [Cha11]. The differentiation within the

objective function is done using a five-point stencil. All differentiations are capped to their

99% quantile to further limit the influence of the jumps, which result in exceptionally high

derivatives. By this approach, the influence of these derivatives, which do not fulfill the

differential equations, is limited.

The result of this optimization compared to the ’true’, noise-free data can be seen in fig. 3.7.

5 10 15 20 25 30 35 40

20

40

samples

population

x̂: True
ŷ: True

x̃: Observed x
y0: Initial Values
ỹ: Reconstructed

Figure 3.7: The reconstructed ỹ compared to the unobserved original ŷ given the observed
function x̃ and the starting values y0. The vertical lines indicate the time points of the
Poisson noise.

5 10 15 20 25 30 35 40

2

4

6

8

10

samples

population
ỹ: Reconstructed

ŷ: True

Figure 3.8: Here only the reconstructed ỹ and the true ŷ are shown.

As the scale of ŷ(t) and ỹ(t) results in a hardly observable difference ŷ(t) − ỹ(t) the plot,
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fig. 3.8, shows a rescaled version of the previous curves allowing a judgment of the quality

of the approximation.
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3.7.4 Uniqueness Example

We understand that the addition of noise and the involved optimization can result in lo-

cal optima. This section will provide an example to illustrate the existence of non-unique

solutions in the exact case. Furthermore, we hint at the existence of local optima in the

presence of noise not resembling a solution of the exact case.

We start constructing an example, which allows for two initial conditions for the unobserved

state variable resulting in two separate unique solutions in the analytical sense.

We start this construction using a dynamical system of two state variables, x and y. The

variable y will denote the unobserved state variable. We decided to use a system, which

results in a repeating pattern, an oscillation resembling sine and cosine (see fig. 3.9).

5 10

−1

−0.5

0.5

1 x
y

Figure 3.9: Solution of problem 79
using the initial conditions x(0) = 1
and y(0) = 0.

Problem 79 (Basic Dynamical System)

ẋ = y,

ẏ = −x.

The basic problem 79 will now serve as a basis to

extend it to a dynamical system with two equivalent

solutions. As an intermediate step, we will drop the

prerequisite of the right-hand side to be polynomial.

Nevertheless, it will keep the Lipschitz continuity.

We will shift the levels of the state variables x and y

and control the influence of the sign manually.

First, we shift the state variable x upwards. There-

fore, we need to replace x by (x− 1) to still positively and negatively influence y.

The influence of y on x should be independent of the sign of y. Therefore, we square y and

realize the change of the sign of y influencing the first equation by subtracting one. The

factor for y in the first equation is empirical.

We allow a second solution for y with an opposite sign by multiplying an approximation of

the signum function to the second equation, y√
y2+ε

.
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Problem 80 (Non-Unique Problem)

ẋ = (2.6 · y)2 − 1,

ẏ = − y√
y2 + ε

· (x− 1),

ε = 0.001,

x(0) = 0.5, y1(0) = 0.6, y2(0) = −0.6.

1 2 3 4 5 6 7 8 9 10 11 12

−1

1

x1
x2
y1
y2

Figure 3.10: Solution of problem 80.

Figure 3.10 shows the two solutions of problem 80, which have an identical solution for

x, but two solutions y1 and y2 for the state variable y depending on the sign of the initial

condition. The figure visualizes that the two solutions y1 and y2 become almost identical

when approaching zero. As Gradient Matching is a local approach, it seems possible that

the algorithm mixes these solutions in the presence of noise. Such a mixed curve combining

parts from y1 and y2 into a new, seemingly continuous curve does not resemble a solution

to the problem. However, it might have a considerable potential to resemble a local optimum

when searching for an optimal solution by optimization.

Polynomial Problem

The approximation to the signum function y√
y2+ε

is not a polynomial. Nevertheless, it re-

sembles a smooth function, which can be turned into a polynomial by approximating it using

a Taylor series expansion. Obviously, the limit ε → 0 is not a smooth function. Smaller ε

values quickly increase the effort it takes to achieve a sufficient Taylor series expansion

covering the range of the function. However, a relatively conservative choice of a fixed ε,

which we use below, and a Taylor series expansion up to the order of 17 are sufficient to

provide a polynomial right-hand side for this example.
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Problem 81 (Polynomial Problem)

ẋ = −(2.4 · y)2 + 0.2,

ẏ =

(
0.1 · Y√

ε
− (0.1 · Y )3

2 · ε3/2
+

(3 · (0.1 · Y )5

8 · ε5/2
− 5 · (0.1 · Y )7

16 · ε7/2
+

35 · (0.1 · Y )9

128 · ε9/2

−63 · (0.1 · Y )11

256 · ε11/2
+

231 · (0.1 · Y )13

1024 · ε13/2
− 429 · (0.1 · Y )15

2048 · ε15/2
+

6435 · (0.1 · Y )17

32768 · ε17/2

)
· (X − 0.2),

ε = 0.001, x(0) = 0.45, y1(0) = 0.15, y2(0) = −0.15.

Figure 3.11 visualizes two possible solutions for problem 81, having an identical solution for

state variable x and two different solutions y1 and y2, for the state variable y.

2 4 6 8 10 12 14 16 18 20 22 24

−0.2

0.2

0.4

0.6 x1
x2
y1
y2

Figure 3.11: Solution of problem 81.
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3.8 Summary and Outlook

In summary, this chapter presented an approach to recover an unobserved state variable

of a dynamical system using Gradient Matching. We proved the existence of a classic

solution without noise regarding the preconditions. In a second step, we added a function

resembling noise and hinted at the continuous effect on the solution depending on the scale

of this function.

The ansatz leaves many topics for further investigation. A rigorous analysis of the observ-

ability based on existing theory like the Luenberger observer would help to describe the

performance and limits of the ansatz. It would be interesting to investigate if identifying the

parameters and reconstruction of unknown state variables could be combined. E.g., is it

possible to observe the number of predators in a predator-prey system and estimate the

number of the prey and the parameters of the system?

This combination might be achieved within an expectation-maximization algorithm, which

would resemble some similarities to algorithms for blind deconvolution [PF16]. In the case

of blind deconvolution.

Furthermore, there are other interesting approaches to parameter identification. There-

fore, we would like to locate our Gradient Matching approach using penalized regression

and a polynomial right-hand side among some of these alternative approaches to mention

possible directions for further research.

Suppose a space possesses an orthogonal basis, and the parameters coincide with the

direction of this orthogonal basis. In that case, the identification is a simple task, which a

projection can perform on the existing basis.

Polynomials are no orthogonal basis for functions. The monomials can be seen as an over-

complete set spanning the space. We call this spanning set the dictionary. The identification

of the parameters within this set is called dictionary learning [Tro+05][Tro06][NT09]. We will

use an approach to identify a sparse representation within this dictionary in chapter 4 to

identify the parameters. The dictionary allows for sparse parameters, which provide an

interpretation, which is less likely, if we are constrained to an orthogonal basis.

Large data sets might enable to learn the dictionary from the observed data [IB20] [DI18,

p. 216 Remark 8.4]. If the reconstructed dictionary does not consist of monomials, it might

lead to further insights into the observed problem.

Independent of the dictionary learning approach, disentanglement by β-variational autoen-

coder [Bur+18] might be an interesting approach using neuronal networks. The autoen-

coder might detect transformations, which are not reproducible by a sparse set of parame-

ters found within the dictionary approach.
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4 Gradient Matching Experiment

To show the applicability of the methods used in chapter 3 ’Gradient Matching’1 and sec-

tion 3.2 ’Latent Function Recovery Using Gradient Matching’2, we perform three experi-

ments. We will show on a first dataset how Gradient Matching will successfully estimate the

parameters of a dynamical system. In a second experiment, we will show the robustness of

the algorithm. Therefore, we will use a new dataset, which consists of multiple trajectories

of a dynamical system, and we adjust the penalty parameter τ to allow for a smaller, a

medium, and a larger set of parameters to be estimated. All sets of parameters will cover

the most important parameters and characteristics of the dynamical system. However, the

local nature of Gradient Matching and invariance to gradual drift might influence the sen-

sitivity towards such global changes like drift and damping. The third experiment adds a

new dataset, which contains a state variable of bad quality as an example of unobserved

data. In this case, there are two goals. First, we will show that the algorithm successfully re-

constructs the unobserved data, and the recovered state variable will be more precise than

the observed one. Then, we will repeat the algorithm using the good dataset. This good

dataset will support the hypothesis that the algorithm recovers the state variable, which we

measured.

The dynamical system providing the data will be a harmonic oscillator consisting of an

inductor L, a capacitor C, and a resistor R. We will start the oscillation by a short impulse,

which resembles a Dirac impulse. Our oscilloscope can measure the voltage directly. It

does not measure the current, but the voltage of a small shunt resistor. The voltage of

the shunt resistor allows us to calculate the current by employing Ohm’s law U = I · R
using the known resistance. However, the shunt resistor increases the energy loss of every

oscillation, the damping. The damping stops the visible oscillation after around 10 periods.

Retriggering the oscillation and starting a new trajectory by periodic Dirac impulses is a

convenient way to record more data. The Gradient Matching can process the data covering

multiple trajectories in a single run without separating them, because it is invariant to the

change of the trajectories.

1We describe the corresponding program flow to estimate the parameters in section 6.2.1.
2We describe the corresponding program flow to estimate unobserved components in section 6.2.2.
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The current we observe by employing the low resistance of the shunt resistor is the hard

to observe state variable of the third experiment. The resistance has to be low to not

add too much to the internal resistance of the inductor and capacitor. On the other hand,

using Ohm’s law, a low resistance of the shunt resistor results in a low observable voltage.

Because of the damping due to the high resistance of the overall circuit, the voltages will

drop close to the minimum sensitivity of the oscilloscope. There are conflicting goals. A high

resistance would result in damping, which damps the oscillation close to zero within a very

short time. A low resistance of the shunt resistor does not eliminate the resistance, which

is present as a parasitic element of real-world capacitors or inductors. If the resistance

is very low, it prohibits a good measurement in the first place. Furthermore, there is the

8 bit resolution of the oscilloscope1. The 8 bits represent the whole range of observable

voltages. We will observe that the high speed of the oscilloscope allows for a surprisingly

differentiable signal despite the 8 bit, because the noise works like dithering. Smoothing

the signal will result in more than 8 useable bits. We will observe the possible quantization

artifacts, if we remove the noise.

We recognize that recording the current without impacting the system too much and without

more equipment to sense the current directly is considerably more challenging than mea-

suring the voltage. Therefore, it is a good example to test the algorithm, which recovers

unobserved state variables. In this setting, it can be beneficial, because observing good

data is challenging. On the other hand, we can record data of sufficient quality to check the

result of the recovered state variable. If we do not use the full 8 bit, the quantization and the

noise show, and we see the distortion and errors in our state variable. This observed and

bad data illustrates the improvement we achieve by recovering the current state variable

using our algorithm.

When recording the voltage of the shunt resistor using the full 8 bit, we observe a relatively

precise picture of the current. This relatively precise picture illustrates the quality of our

recovered state variable when comparing both state variables.

4.1 Estimate the Parameters

Our implementation of Gradient Matching assumes a dynamical system of n ordinary dif-

ferential equations2. These n ODEs have a polynomial right-hand side, and the left-hand

side consists of the derivative of the data.

Examples for models of this format are Lotka-Volterra predator-prey systems, chemical

1There are high resolution modes, but they limit the speed, the samplerate of the scope.
2When exceeding more than three equations, noise is becoming an increasing problem.
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reactions, spring/mass systems, or when rearranging the parameters in our case an LCR

circuit. Compared to the previously mentioned systems, an electric voltage is extremely

easy to measure by using oscilloscopes.

In this section, we will build an electric circuit, we will measure its oscillations by measuring

the voltages, smooth the data, reduce the number of samples, and we run the Gradient

Matching algorithm on the acquired voltage and current data, which is calculated from the

voltage of the shunt resistor. The Gradient Matching algorithm will estimate the parameters.

4.1.1 Experimental Setup

This experiment consists of an LCR oscillator and a trigger source, creating a Dirac-like

impulse. The LCR oscillator consists of an 18 nF ceramic capacity1, an added resistor of

0.6Ω, an inductivity of unknown resistance, and an impedance between 5 and 600 µH. The

negative Dirac impulse triggers the oscillator.

The schematic fig. 4.1 shows the circuit and the connections ’Gnd’, A ,and B, which we use

to measure the voltage of the free oscillation. ’Gnd’ is the reference level for the measure-

ment. We use connection A to measure the voltage of the shunt resistor R1.2 to calculate

the current. We use connection B to measure the voltage of the free oscillation. The voltage

level is measured by a Rohde und Schwarz RTO2044 4Ghz oscilloscope (see the screen-

shot of the measurement in fig. 4.1).

Gnd

A
R1 R1.2

B
L1 C1

Trigger

Figure 4.1: Circuit diagram and screenshot of the oscilloscope of the parallel LCR oscillator.

1This capacity itself consists of two 103M ceramic capacities, which means 2·10 nF at 20% tolerance. However,
our LCR meter Voltcraft LCR-300 measured it at 18 nF.
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4.1.2 Model

The following set of equations models the LCR oscillator:

L
dI(t)

dt
= U(t) +R · I(t),

C
dU(t)

dt
= I(t).

We reformulate the equation, because the values for L and C are on the left-hand side,

which does not follow the required pattern of the algorithm. The algorithm does not expect

parameters on the left-hand side. It is a result of the assumption that the left-hand side is

the derivative of the data and the right-hand side a polynomial. We use:

dI(t)

dt
=

1

L
· U(t) +

R

L
· I(t),

dU(t)

dt
=

1

C
· I(t).

Furthermore, the resistance R in the equation will cover all resistive influences. That will be

a sum of the known resistor R1.2 and losses of the wires, resistor, capacity, and additional

high-frequency losses. The circuit diagram fig. 4.1 summarizes these additional losses by

R1. We use the resistor R1.2 to calculate a current value from a measured voltage.

4.1.3 Measurements and Calculation

Because the realization of every Dirac impulse introduces unwanted nonlinearities, we start

measuring a single impulse (see fig. 4.2).

We use the Gradient Matching algorithm to calculate the capacity, inductivity, and resistance

values. These values become visible after rearranging the terms.

U̇ = 0.061
1

nF
· I ⇒ 16.4 nF · U̇ = I,

İ = −26.1
1

mH
· U − 284

Ω

mH
· I ⇒ 38.3 µH · İ = −U − 10.9Ω · I.

We set the factors of I and U to one by dividing the equations, the values for L = 38.3 µH,

C = 16.4 nF and R = 10.9Ω show up. The value of the capacity is within 15% of the

capacity used. We measured that capacity at 18 nF, and it is labeled as 2 · 103M = 2 · 10 nF
at 20% tolerance.
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Figure 4.2: The raw data measured at the connectors A and B. The voltage measured at
A is tiny because of the low resistance and therefore scaled by a factor of 20. Figure 4.1
shows a screenshot of the scope recording the data.

4.1.4 Discussion

We consider the values to be rather precise. The value of the resistor is acceptable con-

sidering the unknown resistance of the capacity, the solder joints, the coil, and the losses

induced by employing a magnetic core of unknown material properties.

We can check the validity of the calculated values, especially of the inductor, by comparing

the theoretical frequency of the oscillator and the measured frequency. Calculating the

frequency results in f = 1
2π
√
LC

= 1
2π
√
16.4 nF·38.3 µH = 201 kHz. A quick check on the data

shows a period of just below 5 µs, which would result in a frequency of a little over 200 kHz.

This result shows no extraordinary performance, but it indicates that this ansatz can result

in reasonably accurate results. The next two experiments will show the application of this

algorithm in the presence of Dirac impulses.
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4.2 Robustness – Dirac Impulse Noise

The previous experiment demonstrated that the concept can extract the model and its pa-

rameters from data. However, especially when the form of the model equation is actually

known, other established methods are available, which are less sensitive to noise as they

do not depend on the quality of the derivative. They are usually based on integrating the

differential equation. This integration requires initial conditions. When measuring a single

impulse and when starting the analysis after the Dirac impulse, the initial values can be

estimated from the first samples of the signal. Integral methods can be applied without

knowing the initial values beforehand.

In opposite to those methods, the Gradient Matching ansatz is a much more local ansatz.

There are no initial values. The present experiment shows that it is not even necessary

to stay on one trajectory to calculate the parameters1. That means we can record data

spanning multiple events without caring about the local perturbations by Dirac impulses and

changed trajectories for every new oscillation. This robustness is an advantage compared

to classical methods.

4.2.1 Experimental Setup

The setup is identical to the one of the previous experiment. This time an RTO1024 was

used to record the data, and environmental parameters changed the inductivity.

Figure 4.3: Screenshot of the oscilloscope recording the parallel LCR oscillator.

1This independence of the initial values is virtually possible with the classical approaches, too, if they detect
the restart and estimate the initial values. However, in the case of Gradient Matching, the algorithm does not
have to detect the impulses to deal with the effects. As this algorithm is very local, the effect stays local, too.
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4.2.2 Measurements and Calculation

This experiment includes Dirac-like impulses to trigger the free oscillation, which introduces

noise spanning more than a single sample in practice. This impulse is not a part of the

model, so the resulting noise is observable as outliers. As in the previous experiment,

there are Gaussian noise and quantization artifacts introduced by the 8 bit resolution of the

oscilloscope, which influences the derivative, but the high throughput of the oscilloscope

compensates these challenges. The noise still allows a useful measurement.

The Dirac-impulses are not as insignificant as the theory could be. The impulses have

to transfer enough energy to start the oscillation and are not of infinitesimal short length.

Furthermore, the temporal derivative of Gradient Matching has to process the impulses. In

the case of evaluating data from theoretical models, we can use the model equations to

generate a temporal derivative per data sample. In the practice of Gradient Matching1, we

use a numerical derivative, the five-point stencil, which needs a relatively smooth function.

The recorded data is not smooth because there is an 8 bit resolution. Obtaining a smooth

function is not a problem due to the high throughput data. The data is recorded at a sample

rate of 5GS s−1, and the frequency of our signals apart from the Dirac impulses is below

0.5MHz. We choose to use a running mean filter2 of a sample length up to 4001 S and

to reduce the amount of data by only using every 25th sample for all the calculations after

employing the running mean. The high throughput, the Gaussian noise, and the running

mean result in high resolution and high throughput data. Figure 4.4 shows the resulting

data.

We use penalized regression to perform the parameter estimation of the Gradient Match-

ing, because the polynomial right-hand sides of the ODEs include collinearity. Penalized

regression introduces a penalty value τ into the regression. Every new parameter, hence

every new monomial, reduces the residual value of the regression, but a penalty value is

added to the residual. Thus, the additional monomial is only accepted if it is more beneficial

than the penalty.

When analyzing this data spanning a time interval that includes three Dirac impulses, we

initialized the penalty value τ of the penalized regression to calculate three sets of param-

eters representing an ODE. Each penalty value results in a different set of parameters.

The free oscillation of an LCR-circuit can be described by the following formula, which we

1The program flow of the algorithm is described in section 6.2.1
2We tested the effect of a Gaussian kernel, but the runtime of the tested packages did not justify the neglectable
benefits due to the high throughput data available.
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Figure 4.4: The smoothed recorded data, which we used to run the algorithm. The data
was recorded at fig. 4.3.

already covered in the previous experiment:

dI(t)

dt
=

1

L
· U(t) +

R

L
· I(t) ⇒ L

dI(t)

dt
= U(t) +R · I(t),

dU(t)

dt
=

1

C
· I(t) ⇒ C

dU(t)

dt
= I(t).

We compare the three results of the penalties τ = 0.015, τ = 0.018, and τ = 0.20 with

this ’true’ formula. All penalties resulted in relatively similar and realistic values for the

capacitor and inductor, and therefore in similar frequencies of the solutions corresponding

to the parameters, which are shown in fig. 4.5.

τ = 0.015,

U̇ = 0.183
1

µFΩ
· U + 0.0631

1

nF
· I ⇒ U̇ · 15.8 nF = 2.9

1

kΩ
· U + I,

İ = −28.8
1

µH
· U − 200.32

Ω

µH
· I ⇒ İ · 34.7 µH = −U − 6.95Ω · I.

The low penalty of τ = 0.015 introduced an additional parameter. Although the estimated

value corresponding to the resistance is close to the resistance estimated for τ = 0.018, the

damping of the resulting system of ODEs does not match. Figure 4.5 shows the solution

using estimated initial values.

τ = 0.018,

153



4.2. DIRAC IMPULSE NOISE CHAPTER 4. GRADIENT MATCHING

U̇ = 0.0618
1

nF
· I ⇒ U̇ · 16.2 nF = I,

İ = −28.8
1

µH
· U − 200.32

Ω

mH
· I ⇒ İ · 34.7 µH = −U − 6.95Ω · I.

The resulting system of ODEs corresponding to τ = 0.018 matches the system of the LCR-

circuit. Figure 4.5 shows a solution, which experiences similar damping compared to the

measured waveform.

τ = 0.020,

U̇ = 0.061868
1

nF
· I ⇒ U̇ · 16.16 nF = I,

İ = −28.174
1

µH
· U ⇒ İ · 35.5 µH = −U.

The high penalty of τ = 0.020 results in a smaller set of parameters. Gradient Matching

estimated the inductor and capacity and, therefore, the correct frequency. However, the

penalty suppressed the monomial corresponding to the resistor and did not include damping

into the model. Figure 4.5 shows the solution of this ODE, an oscillation without damping.

4.2.3 Discussion

We observe: The small penalty results in an additional parameter. The medium one recov-

ers the correct number of parameters, and the largest penalty value results in a dynamical

system, which misses the resistance value and, therefore, the damping. Independent of

the correct right-hand side of the differential equations, i.e., the correct number of param-

eters, the experiment demonstrated how a range of penalty values resulted in the correct

capacity and inductivity values. Combined, these values define the frequency of the oscil-

lation. Locally they have a strong effect on the shape of the signal and a major effect on

the derivative, impacting the regression. Even the resistance was similar, when available.

On the other hand, the damping of the oscillation seems to be sensitive to noise and the

value of the penalty value τ . Figure 4.5 shows the three dynamical systems resulting from

the three penalty values.

This effect seems comprehensible. On the one hand, there are global effects, like the

damping of the oscillator. These global effects are easy to identify when looking at the
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Figure 4.5: Plot of the dynamical systems built from the parameters calculated by using the
parameters τ = 0.015, τ = 0.020 and τ = 0.018 and using the same initial values.

data globally. On the other hand, there is the algorithm evaluating the derivatives of the

waveform per sample. That is a very local property. Locally, damping only has a very small

effect. If this effect is perturbed by noise and other influences not covered by the model,

the damping is an effect, which is hard to detect.

The Dirac impulses introduce some of the noise. They span over a noticeable time. They

are neither symmetric like Gaussian noise nor covered by the model of the oscillator. Of

course, it is possible to preprocess the data and remove the impulses. In this case, writing

a simple preprocessor deleting the start impulses would be an easy task. On the other

hand, we expect classic methods to have very little problems to detect the damping, and

the classical methods can be extended to detect the impulses. These impulses mean a

jump into a different trajectory of the dynamical system.

Preprocessing of this kind is not performed to show the advantage of Gradient Matching.

Gradient Matching does not have to deal with the jumps to different trajectories because it

does not matter to the ansatz and only introduces a little noise, which can be suppressed

by the noise reduction within the algorithm. This reduction can consist of smoothing or

neglecting derivatives exceeding a certain value.
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4.3 Gradient Matching – Recover Latent Function

Experiment

This time we use the algorithm to recover unobserved data1. In the case of an LCR oscil-

lator, it is often easier to observe voltage than current, especially if the current is observed

by measuring the voltage over a tiny resistor, the shunt. In this section, we will use two

recorded datasets. One will use most of the available 8 bit range of the oscilloscope to

record the current indicating voltage. However, it will still be noisy data due to the small

resistor, resulting in small voltages close to the noise-floor. The other dataset will only use

a fraction of the available bit range to record the data. That will result in high quantization

effects, especially when the recorded voltage becomes small during the dampened oscilla-

tion. We will take the dataset, which shows the quantization effects first. It will neglect the

poorly recorded current and consider the current as an unobserved state variable. Instead,

we will use the algorithm to recover a state variable from the voltage data and the known

parameter of the dynamical system, the LCR-oscillator.

After comparing the poor data and the recovered data to show the improvement, we will

use the better dataset. The better dataset already provides an acceptable current indicating

voltage for comparison. We use the acceptable data to demonstrate that the data did not

only improve visually, but the correct shape of the data can be recovered. This time we

neglect the good data and expect the recovered data to resemble a similar shape.

4.3.1 Experimental Setup

The setup will be identical to the previous section using an RTO1024.

4.3.2 Measurements and Calculation

Low Resolution

The oscilloscope records the data at 8 bit resolution. We measure the current by using a

shunt resistor. The voltage resulting from the current is relatively small, and it is not scaled

to cover the maximal range. Because it does not cover the maximal range, it is recorded

using just a fraction of the 8 bits. Figure 4.6 shows the whole function, which looks relatively

smooth, especially after smoothing. We apply a running mean filter in a preprocessing

1Section 6.2.2 shows the program flow of the algorithm. Section 3.4 introduces the functional, which is opti-
mized to recover an unobserved state variable.
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step. The running mean applied to the noise interpolates between the 8 bit quantization

levels and enables smooth gradients.
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Figure 4.6: Screenshot of the oscilloscope of the parallel LCR oscillator. At this scale, the
recorded data looks good after smoothing. Figure 4.7 zooms the tail of the oscillation and
shows the raw observation at a larger scale. Figure 4.9 shows the smoothed values of the
current on a larger scale compared to the reconstructed values.

The quantization due to the low resolution becomes very visible when the amplitude con-

verges to zero. That becomes especially apparent when zooming into the raw data, as

shown in fig. 4.7.
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Figure 4.7: When zooming into the oscillation of the originally recorded data while converg-
ing to zero, massive quantization artifacts become visible. Median filtering removes the
noise, but erases a lot of information left in the noise. Nevertheless, it is evident that even
filtering will not repair the positive offset in the recorded current values.

Using a median filter shows that most of the dynamic of the current is represented by

one bit. I.e., after using the median filter, only two voltage level describing the current

are left. Two bits cover almost the whole dynamic of the unfiltered data except for rare
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exceptions. Smoothing can dampen the quantization artifacts, but there seems to be an

offset. Smoothing does not remove the offset. Strong smoothing would dampen the signal,

too, but it would be necessary to generate a smooth function1. On the other hand, there are

almost 3 bits describing the dynamic of the voltage.

The voltage can be smoothed and used to find the correct current using the known differ-

ential equation and nonlinear optimization.
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Figure 4.8: The current calculated from the observed low-resolution voltage of the shunt
resistor compared to the calculated, reconstructed voltage.

Figure 4.8 shows the result of calculating the current of the shunt resistor compared to the

poorly observed data filtered by a running mean.

Zooming into the first tail of the oscillation (fig. 4.9) emphasizes the artifacts from the low-

resolution current data compared to the current values reconstructed from the voltage data.

Offset errors, noise, and distortion become more visible at low current levels. The recon-

structed signal does not show the strong offset error of the current signal calculated from

the observed voltage of the shunt resistor. Furthermore, the reconstructed signal suffers

from less noise. The last period of the oscillation becomes much more visible in the recon-

structed signal; while almost invisible within the current data calculated from the observed

voltage of the shunt resistor.

The next part will describe the other dataset, the good data, which uses most of the 8bit

range to record the voltage of the shunt resistor. Repeating the experiment and recording
1An alternative could be filters optimized to remove quantization artifacts.
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the current sensing voltage of the shunt resistor at a higher resolution allows us to compare

the quality of the recovered signal to an observed signal of better resolution.
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Figure 4.9: The current from the observed and smoothed low-resolution voltage of the shunt
resistor compared to the reconstructed current. We zoomed the current values to show the
differences, which were less prominent in the full data fig. 4.8.

Higher Resolution

Figure 4.10: Screenshot of the oscilloscope of the parallel LCR oscillator. The first channel
records the voltage in yellow. The second channel records the voltage of the shunt resistor
in orange.

This time, the voltage measurements of the shunt resistor span most of the 8 bit range.
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Figure 4.11: The current calculated from the observed voltage of the shunt resistor com-
pared to the reconstructed current.

Figure 4.10 shows a screenshot of the oscilloscope recording the data. The first channel

records the voltage, the second channel the voltage of the shunt resistor. This time, the

voltage of the shunt resistor uses the whole 8 bit. Nevertheless, the higher noise level is

visible compared to the first channel. Figure 4.11 shows the current calculated from the

observed shunt resistor voltage compared to the recovered current by the algorithm based

on Gradient Matching. When zooming into the function (fig. 4.12), it is visible that the

reconstruction resembles the observed shape of the waveform, but its mean value is closer

to zero. It suffers less from an offset error.

30 35 40 45 50 55 60 65

−2

−1

1

2
·10−2

µs

A I - Observed
I - Reconstructed

Figure 4.12: The current calculated from the observed voltage of the shunt resistor com-
pared to the reconstructed current. We zoomed the current values to show the differences.
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Result of the Algorithm

We observe that the algorithm calculated an useable waveform describing the current de-

spite the bad data quality. Figure 4.9 visualizes this improvement of the recovered values

compared to the observed waveform. In the case of available 8-bit data of the current, the

calculated waveform was remarkably close to the observed waveform but lacked an offset

error. Figure 4.12 shows the comparison in the case of good data.

4.3.3 Discussion

All in all, we find that it is possible to recover unobserved components in case of bad

data. In the case of acceptable data, the waveform reconstructs the expected shape of

the observed data. This indicates that we recover the ’correct’ solution. Furthermore, the

algorithm can recover improved data even in cases of available data of acceptable quality,

which was recorded at non-optimal circumstances like measuring a current using a small

shunt resistor without having a high voltage resolution. Figure 4.12 shows that despite the

smooth values of the recorded waveform, the algorithm was able to recover a component

lacking the visible offset error. Although the observed data is of acceptable quality, the

quality of the reconstruction is slightly better while preserving the same shape.

This recovery is possible without having to estimate initial values or having to detect the

Dirac impulses, which act as Poisson noise and alter the trajectory of the dynamical system.
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5 Appendix

The appendix provides additional information on auxiliary calculations and additional graphs.

5.1 Contact Tracing

The appendix covering the contact tracing collects several additional calculations and graphs.

It starts calculating theoretical equilibria in the case of no tracing, one-step backward trac-

ing, and forward tracing using the corresponding approximations. We calculate those equi-

libria using the approximation of the effective reproduction number Reff. In the case of for-

ward tracing, we use the same forward tracing approximation within the endemic model as

we use within Reff, which leads to a very good fit between the model and the approximation

in that case.

We show the accuracy of the theoretical limits using the example of forward tracing in sec-

tion 5.1.2.

When evaluating the recursion formula of the forward tracing and using a fixed delay nu-

merically, it can be further simplified. We show this calculation in section 5.1.3.

In the end, section 5.1.4 shows why using t = 5 is a viable time to sample an age distribu-

tion, although it is at the end of the onset case.
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5.1.1 Calculating Theoretical Equlibria

The equilibrium of the epidemic is characterized by a reproduction number Reff = 1, i.e.,

on average, every individual infects another individual. Higher or lower reproduction num-

bers would result in raising or falling numbers of infected individuals, which contradicts the

equilibrium.

Thus, we can take the calculations and approximations of the R values without tracing,

with fixed delay backward tracing, fixed delay forward tracing, and fixed delay full tracing

from the onset case. We adapt the contact rate of susceptible individuals for the endemic

case. We use the adapted reproduction numbers and use them in an equation, which we

can solve for the number of infected individuals. Note that the integration of κ accumulates

the approximation errors, and we do not respect cluster contacts. Without tracing, the

reproduction number is exact. In the case of forward tracing, we achieve good results

because we use the forward tracing approximation and therefore use a relatively low p. The

low p results in smaller approximation errors, and there are no cluster contacts to respect.

Lemma 82 (Equilibrium Without Tracing) The number of susceptible individuals in the

equilibrium case without tracing is defined by S = N(α+σ)
β

.

Proof: No contact tracing results in a probability of being infective of κ̂(a) = e−(σ+α)a.

We take the reproduction number without tracing from corollary 6, R =
∫∞

0
βκ̂(a)da. We

adapt the contact rate to the endemic case. Thus, there is only a fraction S
N

of susceptible

individuals to infect, which results in R =
∫∞

0
β S
N
κ̂(a)da. We define 1

!
= R and solve for the

number of susceptible individuals S.

1
!

= R =

∫ ∞
0

β
S

N
κ̂(a)da = β

S

N

[
−e−(α+σ)a

σ + α

]∞
0

da =
β · S

N(α + σ)

⇒ S =
N(α + σ)

β

2

Using the population size of 4 · 105 and β = 2, which was often used during the thesis, we

get the following number of infected individuals in the equilibrium case.

S =
N(α + σ)

β
=

4 · 105

2
= 2 · 105.
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Lemma 83 (Equilibrium with Fixed Delay Forward Tracing) The number of susceptible

individuals in the equilibrium case with forward tracing is approximated by

S =
N

β
(

1
α+σ
− p pobs

κ̂(T )
2(α+σ)

) +O(p2).

Proof: We recall the reproduction number of fixed delay forward tracing proposition 29 and

add the adaption of the contact rate to the endemic case by multiplying the contact rate β

by S
N

.

1
!

= R = β
S

N

(
1

α + σ
− p pobs

κ̂(T )

2(α + σ)

)
+O(p2)

⇒ S =
N

β
(

1
α+σ
− p pobs

κ̂(T )
2(α+σ)

) +O(p2).

2

To calculate the number of infected individuals, we use I = N − S. The formula

I = N

1− 1

β
(

1
α+σ
− p pobs

κ̂(T )
2(α+σ)

)


evaluates to I = 1, 688 · 105 using the population size of N = 4 · 105, β = 2, T = 0, and

p = 0.3. Evaluating the formula for T = 0.5 results in I = 1, 82 · 105. Figure 2.7 shows the

equilibrium for T = 0.5 and the results of the simulation and endemic model for comparison.

Section 5.1.2 focuses on showing some theoretical equilibria of forward tracing.

Lemma 84 (Equilibrium with Fixed Delay Backward Tracing) If p � 1, the number of

susceptible individuals in the equilibrium case is approximated by

S =
(α + σ)N

(
1−

√
1− 2κ(T ) p pobs

)
β κ(T ) p pobs

+O(p2).

Proof: Recall the reproduction number of fixed delay backward tracing proposition 17

R =
β

α + σ
− pβ2pobs

κ̂(T )

2(α + σ)2
+O(p2).
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Add the adaption of β to the endemic case.

1
!

= R =
S
N
β

α + σ
− p S

2

N2
β2pobs

κ̂(T )

2(α + σ)2
+O(p2)

⇒ S = −
−N2(α + σ)2

(
− β
N(α+σ)

−
√

β2

N2(α+σ)2
− 2β2κ(T )pobsp

N2(α+σ)2

)
β2κ(T )p pobs

+O(p2)

=
N(α + σ)

(
β +N

√
β2(1−2κ(T )p pobs

N2(α+σ)2
(α + σ)

)
β2κ(T )p pobs

+O(p2)

=
N(α + σ)

(
1 +

√
(1− 2κ(T )p pobs

)
βκ(T )p pobs

+O(p2)

When evaluating the term for a population of N = 4 · 105 and the parameters α = 0.1,

σ = 0.9, β = 2, p = 0.3, pobs = 0.9 and a probability of still being infective after the delay

T of κ(T ) = 1, we calculate a susceptible fraction of the population bigger than the total

population. Therefore, we concentrate on the other result of the quadratic equation and

note that in general a low value of p is needed. The low value of p not only ensures more

accurate approximations of the backward tracing, but is also necessary for a real result of

the square root.

∨S = −
−N2(α + σ)2

(
− β
N(α+σ)

+
√

β2

N2(α+σ)2
− 2β2κ(T )pobsp

N2(α+σ)2

)
β2κ(T )p pobs

+O(p2)

=
N(α + σ)

(
β −N

√
β2(1−2κ(T )p pobs

N2(α+σ)2
(α + σ)

)
β2κ(T )p pobs

+O(p2)

=
N(α + σ)

(
1−

√
(1− 2κ(T )p pobs

)
βκ(T )p pobs

+O(p2)

2

The approximation bases on a power series around p. Lower values of p result in more

accurate approximations. If we evaluate the formula using N = 4 · 105, β = 2, T = 0, and

p = 0.1 and calculate I = N − S = 1.9 · 105, we achieve a good fit. Figure 2.7 shows the

theoretical equilibrium and a simulation reaching the theoretical equilibrium at 1.802 · 105

individuals for N = 4 · 105, β = 2, T = 0.5, and p = 0.3.

Equilibrium with Fixed Delay Full Tracing The reproduction number of fixed delay full

tracing can be calculated similar to backward tracing and forward tracing using the corre-

sponding reproduction number from proposition 39. Nevertheless, it combines the approxi-
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mation errors from both approximations.
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5.1.2 Example Equilibria in the Forward Tracing Case

We use the forward tracing approximation to integrate forward tracing into the endemic

model. Therefore, forward tracing is a good candidate to show the theoretical limits from

section 5.1.1 and how they represent the simulated values.

5 10 15 20 25 30 35 40

0.5

1

1.5

2
·105

time

infected Theory w/o Tracing
Theory with Delay T = 0.5
Simulation T = 0.5
Endemic Forward T = 0.5
Theory with Tracing
Simulation
Endemic Forward

Figure 5.1: The count of infected individuals among a population of 4 · 105 with forward
tracing with a delay of T = 0.5, a recall probability p = 0.3 and a contact rate β = 2, spon-
taneous recovery α = 0.1 and supervised recovery σ = 0.9. Black shows the simulation of
the spread, blue the partial differential equation and green the theoretical equilibrium.

Figure 5.1 shows forward tracing with and without a tracing delay of T = 0.5. We observe

a good correspondence between the numeric evaluation of the approximation within the

endemic model, the theoretical limit, and the simulation. Overall, there is a slight overesti-

mation of the tracing effect by the approximation.

All calculations base on the probability of being infective κ(a). Figure 5.2 shows this prob-

ability of being infective. The theoretical probability of being infective from the endemic

model, the probability from the onset model, and the probability sampled from the simula-

tion do not show divergence. Furthermore, fig. 5.2 shows an obvious impact of the tracing

delay.

There is the green and dashed graph κ̂(a) showing the highest probability in case of no

tracing. The three graphs for the onset model, endemic model, and simulation are similar

to κ̂(a) for a < T = 0.5. After a ≥ T = 0.5, they branch away from κ̂(a) converge to

the three graphs, which originate from tracing without a tracing delay. The graphs without

a tracing delay show the smallest probability to be infective after a time a, because of the

more effective tracing. The logarithmic plot fig. 5.3 magnifies the differences between the

graphs when converging to zero. It shows a shrinking effect of the tracing delay over time.
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0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4

0.2

0.4

0.6

0.8

1

a

κ(a) κ̂(a) = e−(α+σ)a

Onset Theory T = 0.5
Simulation T = 0.5
Endemic T = 0.5
Onset Theory T = 0
Simulation T = 0
Endemic T = 0

Figure 5.2: The probability of being infective κ(a) per individual plotted using a linear scale
corresponding to fig. 5.1.

The tracing effect stays prominent, and there is no difference visible between the models

apart from the stochastic variation of the simulation.

0.5 1 1.5 2 2.5 3 3.5 4 4.5

10−2

10−1

aκ(a)

κ̂(a) = e−(α+σ)a

Onset Theory T = 0.5
Simulation T = 0.5
Endemic T = 0.5
Onset Theory T = 0
Simulation T = 0
Endemic T = 0

Figure 5.3: The probability of being infective κ(a) per individual plotted using a logarithmic
scale corresponding to fig. 5.1.
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5.1.3 Simplifying the Fixed Delay Forward Tracing Recursion

The forward tracing model, which is a part of the full tracing model, employs an outer un-

bounded integral. We can alter the order of the integrals by employing Fubini. Employing

Fubini allows to move the unbounded integral inside, and it can be precalculated. Further-

more, the convolution is transformed into a shift operation using the fixed delay.

Model

Recall the forward tracing from proposition 22 and its application within full tracing from

proposition 33. The replacement of κ+
0 (a) = κ̂(a) by κ+

0 (a) = κ−(a) defines the difference

between forward- and full- tracing, because κ+
0 (a) = κ−(a) includes backward tracing

κ′0(a) = −κ0(a)
{
α + σ + pβ

[
(φ ∗ (1− κ0))(a)− α(φ ∗ κ#

0 )(a)
]}

, (5.1)

κ0(0) = 1.

In case of i > 1 the recursion formula for κi(a) is given by

κi−1(b)κi(a|b) = κ0(a)

{
κi−1(b)− p

∫ a

0

(−κi−1
′(b+ c)− ακi−1(b+ c))

∫ a

c

φ(a′ − c)da′dc
}

(5.2)

κi(a) =

∫∞
0
κ+
i (a|b)κi−1(b)db∫∞

0
κi−1(τ)dτ

(5.3)

The three nested integrals are computationally demanding. They result in two nested inte-

grals within an unbounded integral.

Simplification

Lemma 85 (Fixed Delay Simplification of the Forward Tracing Recursion) When restrict-

ing the delay distribution to a Dirac distribution, the formula can be further simplified.

κi(a) =

∫∞
0
κ0(a)

{
κi−1(b)− p

∫ a
0

(−κi−1
′(b+ c)− ακi−1(b+ c))

∫ a
c
φ(a′ − c)da′dc

}
db∫∞

0
κi−1(τ)dτ

=κ0(a)

{
1− p

∫ a−T
0
−κ+

i−1(a′)da′ − α
∫ a−T

0
K(a′)da′∫∞

0
κi−1(τ)dτ

}
,

K(a′) =

∫ ∞
a′

κ+
i−1(b)db
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Proof:

Remember how Fubini can be used to change the order of finite integrals in R2 of an inte-

grable function f(x, y) by swapping the integrals.∫
X

(∫
Y

f(x, y)dy

)
dx =

∫
X×Y

f(x, y)d(x, y) =

∫
Y

(∫
X

f(x, y)dx

)
dy

The simplification consists of two steps. First, simplify by integrating and respecting κ(0) =

1: ∫ a−T

0

∫ ∞
0

−κ+
i−1
′
(b+ a′)db =

∫ a−T

0

−κ+
i−1(b+ a′)db.

Then by separating an inner one dimensional integral, which can be precalculated:∫ a−T

0

∫ ∞
0

ακ+
i−1(b+ a′)dbda′ = α

∫ a−T

0

∫ ∞
a′

κ+
i−1(b)dbda′

In this case, the shift of the function by a′ is replaced by a shift of the array bounds. Both by

employing Fubini to exchange inner and outer integral.

Then convolving with the distribution φ(τ) is now simplified to a shift:
∫ a
c
f(τ)φ(τ − c)dτ =∫ a

c
f(τ)δT (τ − c)dτ . As in our case f(a) = κ(a) = 0, ∀a < 0, this is similar to shifting the

integration bounds
∫ a−T

0
f(τ)dτ .

∫ a

0

(
−κ+

i−1
′
(b+ c)

κ+
i−1(b)

−
ακ+

i−1(b+ c)

κ+
i−1(b)

)∫ a

c

φ(a′ − c)da′dc

Swap the inner and outer integral.

=

∫ a

0

∫ a′

0

(
−κ+

i−1
′
(b+ c)

κ+
i−1(b)

−
ακ+

i−1(b+ c)

κ+
i−1(b)

)
δT (a′ − c)dcda′

=
1

κ+
i−1(b)

∫ a

0

(
−κ+

i−1
′
(b+ a′ − T )− ακ+

i−1(b+ a′ − T )
)
da′

=
1

κ+
i−1(b)

·
∫ a−T

0

(
−κ+

i−1
′
(b+ a′)− ακ+

i−1(b+ a′)
)
da′
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Multiply by κ+
i−1(b) and integrate

⇒
∫ ∞

0

∫ a−T

0

(
−κ+

i−1
′
(b+ a′)− ακ+

i−1(b+ a′)
)
da′db

=

∫ a−T

0

∫ ∞
0

−κ+
i−1
′
(b+ a′)db−

∫ ∞
0

ακ+
i−1(b+ a′)dbda′

=

∫ a−T

0

−κ+
i−1(b+ a′)da′ −

∫ a−T

0

∫ ∞
0

ακ+
i−1(b+ a′)dbda′

=

∫ a−T

0

−κ+
i−1(b+ a′)da′ − α

∫ a−T

0

∫ ∞
a′

κ+
i−1(b)dbda′

∫∞
a′
κ+
i−1(b)db can now be precalculated to save computation time

Inserted into the whole equation, we get:

κi(a)

=

∫∞
0
κ0(a)

{
κi−1(b)− p

∫ a
0

(−κi−1
′(b+ c)− ακi−1(b+ c))

∫ a
c
φ(a′ − c)da′dc

}
db∫∞

0
κi−1(τ)dτ

= κ0(a)

∫∞
0
κi−1(b)db∫∞

0
κi−1(τ)dτ

− κ0(a)

∫∞
0

{
p
∫ a

0
(−κi−1

′(b+ c)− ακi−1(b+ c))
∫ a
c
φ(a′ − c)da′dc

}
db∫∞

0
κi−1(τ)dτ

= κ0(a)

{
1− p

∫ a−T
0
−κ+

i−1(a′)da′ − α
∫ a−T

0
K(a′)da′∫∞

0
κi−1(τ)dτ

}
,

K(a′) =

∫ ∞
a′

κ+
i−1(b)db

2
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5.1.4 Samples of the Onset Age Structure

In section 2.4 ’The Age Structure’, we take an age distribution at time t = 5 to represent

the onset age distribution. However, fig. 5.4 shows t = 5 to be about to leave the onset

phase of exponential growth. We could not choose a much earlier time, because the cohort

starting at time t = 0 does not reach the maximum time of numeric evaluation we choose

to be at a = 5. Furthermore, the probability of being infective, shown in fig. 5.5, visualizes

that there is still a significant probability to be infective at earlier ages, like the age of 3. The

following graphs show that t = 5 is a valid choice to visualize the age distribution of the

onset case.

2 4 6 8 10 12 14 16 18 20

0.5

1

1.5

2
·105

time

infected

Simulation
Endemic Model

Theory

Figure 5.4: The count of infected individuals among a population of 4 · 105 and a contact
rate β = 2, spontaneous recovery α = 0.1 and supervised recovery σ = 0.9. Black shows
the simulation of the spread, blue the partial differential equation and green the theoretical
equilibrium.

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

0.2

0.4

0.6

0.8

1

a

κ(a) Simulation Onset
Simulation Endemic

κ̂
Endemic Model BW t = 2
Endemic Model BW t = 25

Figure 5.5: This κ(a) corresponds to fig. 5.4. In opposite to the age distribution, the proba-
bility to stay infective after a period of time a of the onset is similar to the endemic case, if
no tracing is performed.
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Figure 5.5 shows the probability of being infective after a period of time a to be independent

of the onset and endemic caste, which is expected without tracing. Figure 5.6 shows the

onset and endemic age distributions to be different. The age distribution sampled at t = 2

shows the cohort starting at t = 0 as a spike at a = 2, because the individuals of the

initial Dirac impulse cohort have a significant probability of being still infective at age a = 2.

However, there is just very little difference between the cohort at t = 2 and t = 5 apart from

the artifacts from the initial population creating the spike in the age distribution at t = 2. The

logarithmic plot fig. 5.7 support this observation. Therefore, we choose the age distribution

at t = 5 to omit the starting Dirac age group1 artifacts. We do not distract the reader from

the message, which is the impact of exponential growth on the age distribution.

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2

0.5

1

1.5

2

a

dist of i(a) Endemic Model Onset2
Endemic Model Onset5

Endemic Model Endemic
2 · e−2a

Endemic 1 · e−1·a

Figure 5.6: Linear plot of the age distribution of i(a).

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2

10−1

a

dist of i(a)

Endemic Model Onset2
Endemic Model Onset5

Endemic Model Endemic
2 · e−2a

Endemic 1 · e−1·a

Figure 5.7: Logarithmic plot of the age distribution of i(a).

1An age group consists of individuals of a cohort of a specified age.
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6 Appendix 2 – Programs

This chapter describes the concepts and functionality of the larger programs used within

the thesis.
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6.1 Contact Tracing

The iterative models and delay equations of the onset case of contact tracing were solved

using the methods of R [R C18] and the package deSolve [SPS10], which solves ordinary

differential equations, delay differential equations, and partial differential equations.

6.1.1 Simulation

The simulation takes the size of a starting population, the initial percentage of infected

individuals, the time to end the simulation, and the rates defining the spread of the infection.

The output consists of two tables. One table notes the number of infected individuals every

time an infection or recovery took place. The other table stores the time of the infection and

the duration of the infection for every healed individual. That table will be used to sample κ.

Concept

The time between contacts can be modeled by an exponential distribution. Therefore, we

can use an exponential distribution to predict the next contact per individual; the contact is

seen as an event. These individuals are then stored in a queue sorted by the next event

to be processed. Furthermore, the queue contains supervised and unsupervised recovery

events.

When using this architecture, there is no time grid, which dictates a resolution. There is

no iteration taking place without an event being processed. These two properties ensure

a high resolution in time and a high speed, which only depends on the number of events

being processed.

Implementation

individual

population Waiting: Contact Supervised R. Spontaneous R.

2..*

1..1

1..1
1..1

1..1

2..*

0..1

0..*

0..1

0..*

Figure 6.1: Simplified core class structure of the C++ Simulation.
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The simulation of the contact tracing bases on two classes, the class ’population’ and its

corresponding individuals, modeled in the class ’individual’. The class ’population’ plans

the simulation. It creates the individuals in its constructor, simulates, e.g., plans, the con-

tact, and keeps track of all contact and recovery processes by a queue. The contacts are

distributed exponentially. Therefore, the time until contact occurs can be drawn from an

exponential distribution and memorized by storing a pointer in the contact queue. When

executing a contact, a pointer of the ’individual’ is stored in the queue if an infection occurs

and new contacts are planned. The probability pobs defines if the individual will be enqueued

in the queue as supervised (medic) or spontaneous recovery. Supervised recovery means

a medic treats the individual, and the contact tracing is triggered. The relation of the classes

and queues is outlined in fig. 6.1.
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6.1.2 Evaluate the Endemic Model

Given a population size N , a number of initially infected individuals I0, the contact rate β,

and the parameters of supervised- and unsupervised recovery σ and α, it calculates the

number of infected individuals over time. Like the IBM simulation, this program takes a

maximum time to stop the numeric evaluation.

In addition, it takes a maximum age per individual amax and a resolution h, which was not

necessary to simulate the population using the IBM simulation from section 6.1.1. A matrix,

which saves κ(t, a), is generated using that information.

The recall likelihood of contacts p, the infectivity likelihood pis, and the tracing delay T are

needed to calculate the tracing. The forward tracing, backward tracing (with and without

adaption to the endemic case), and cluster contact tracing can be activated.

The results of the probabilities and rates are stored in matrices of the sample size (0 :

namax ,−amax − 1.1T : ntmax)).

We use the forward Euler algorithm due to the simplicity of its implementation. The negative

side effects of this algorithm, like underestimating exponential decay, and the stability issues

do not influence the result at a significant level when evaluating short periods at the chosen

levels of α and σ. Therefore, we estimate the decay and evaluate the Dahlquist equation

[Dah56]. During the thesis, we choose an overall supervised and unsupervised recovery

rate of the magnitude of 1. When searching for an upper limit for the tracing effect, we

can employ a rough estimation by taking the contact rate, which we choose to be 2. To

leave some buffer, we estimate λ = −10. Now, we evaluate the equation |1 + h λ| < 1

to calculate the stability area. As long we ensure h < 0.1, the equation hints stability even

after these generous estimations. The forward Euler only achieves linear convergence, so

we choose h = 0.01. On the other hand, the forward Euler algorithm does not spread

the influence of the discontinuous first derivative, which is introduced by the impact of the

tracing. There is only a piecewise linear approximation, no interpolation by polynomials.

So it does not spread the errors, which polynomials can not interpolate, but it keeps this

discontinuity localized.

Program Flow

Initialization

• All vectors and matrices are filled with zeros after initialization.

• Initialize a time axis vector for the time t and age of the cohort a, which map a time t

or age a for each sample n. The time contains a history up to −amax−1.1T to include
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the history for every age group at time 0. An age group is a group of individuals

of a cohort at a specified time. The history of an age group consists of the birth of

the cohort until the specified age at that time. The value h saves the time difference

between two samples.

• Initialize matrices for the probability to still be infective after aging a timesteps κ−(na, nt)

and its derivative κ̇−(t, a).

• Use similar matrices to approximate the forward tracing κ+.

• We use a matrix of similar size i(na, nt) to store the number of infected individuals per

age group sample and time sample, which are calculated using a hazard rate derived

from κ+.

• Initialize similar matrices for the rate of backward tracing by IS contacts and for the

rate of tracing by cluster contacts.

• Initialize the vectors I(nt) and S(nt), storing the number of infected and susceptible

individuals at the specific time samples.

• Save the sample index of time t = 0. The matrix storing the probability of being

infective is initialized with a Dirac start population i(0, nt0) = I0. Before time t = 0,

all samples of age zero are initialized to have an initial probability of being infective of

k−(0, 0 : nt0) = 1.

Now iterate the main loop from nt0 till reaching the second to last sample.

• Sum over all age groups of the matrix, saving the infected individuals per time and

age group to update I(nt) and S(nt). This corresponds to the sum of the column of

i(na, nt).

• Calculate the IS tracing rate for every age group sample na.

– Calculate the adaption of the tracing rate to the higher rate of infected individ-

uals. Thus, save a vector Sfraction of length na − nT + 1 storing the fraction of

susceptible individuals starting at the current time minus the number of tracing

delay samples, nt − nT , till the current time minus the maximum age nt − namax ,

we consider for cohorts.

– Calculate the IS effect by IS(na, nt) = p β σ
∑
Sfraction ·κ−(0 : na−nT , nt−nT )·h.
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• Calculate the cluster contact tracing rate by evaluating the integral

CC(na, nt) = p

∫ a−T

0

β

∫ ∞
0

i(ã, t− T − c)
N

κ−(c+ ã, t− T )

κ−(ã, t− c− T
σdãdc

for every na at the current time nt. This is implemented by three loops.

The outer loop iterates the age group na = namax to be able to work on scalar results.

– Then we integrate the history of the cohort by iterating the variable c. Iterate nc
from 0 till na − nT .

∗ The innermost loop then respects the age distribution of the contacted indi-

vidual at the time of contact. Therefore, ã integrates all possible age groups,

and we iterate nã = 0 : namax .

– We describe the series of nested loops by employing sums. The h is introduced

by the integral over time.

CC(na, nt) = p β σ h

na−nT∑
nc=0

1

N

nc+nã<namax∑
nã=0

i(nã, nt−nT−nc)
κ−(nã, nt − nc − nT )

κ(nc + nã, nt − nT )
.

• Apply backward and cluster contact tracing to the κ̇− matrix column by adding the

backward tracing and cluster contact tracing correction to the healing rates:

κ̇−(:, nt) = −k−(:, nt) · (α + σ + IS(:, nt) + CC(:, nt)).

• Calculate a forward Euler step.

κ−(1 : namax − 1, nt + 1) = κ−(0, namax − 2, nt + κ̇−(0, namax − 2, nt) · h

• Apply the forward tracing correction.

– In the case of no tracing or an age of the cohort na smaller than the tracing delay

nT , this is identical to the κ− and κ̇− matrices.

– In the case of na ≥ nT , apply the forward tracing correction κ+(na : namax , nt) =

κ−(na : namax , nt)− p pobs (k−(na : namax , nt) · (1− κ̂((na : namax − nT ))).

– Update the derivative κ̇+ in the direction of the cohort.

• Progress the existing cohorts at the time sample nt to nt + 1 and from na to na + 1 by
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employing an Euler step using the hazard rate derived from κ+:

i(1 : namax , nt + 1) = i(0 : namax − 1) + i(0 : namax − 1)
κ̇+(0 : namax − 1, nt)

κ+(0 : namax − 1, nt)
h.

• Produce the infected individuals of the next iteration using the number of infected

individuals I(nt) and the contact rate β multiplied by the time till the next step h. The

number of new infected individuals is adapted by the fraction of infections per contact

pIS and the probability of meeting a susceptible individual S(nt)
N

. Thus, i(0, nt + 1) =

β pIS
S(nt)
N

I(nt)h.
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6.2 Gradient Matching

6.2.1 Estimate Parameters

This program takes the data of a dynamical system of a known number of observed com-

ponents.

It assumes the dynamical system to be a system of ordinary differential equations having a

polynomial right-hand side.

It takes a penalty parameter λ. The size of λ determines if the penalty regression favors

larger or smaller sets of parameters to describe the dynamical system.

The result is a set of parameters resembling the observed system as close as possible

while the set is kept as small as possible.

Variations Many variations of this program can perform similar tasks. Instead of using

the data of a dynamical system, we can use a system of ordinary differential equations to

generate the data. These equations allow generating an exact derivative. Because this

eliminates possible errors, the algorithm itself can be benchmarked, the robustness against

certain types of noise, the influence of smoothing, and the performance of the numerical

derivative.

We decided not to use polynomials or splines to smooth the data and by using the five-point

stencil as few polynomials as possible to derive the data. This decision was taken with the

intention to create as few polynomial artifacts as possible, which might be picked up by the

regression step.

Program Flow

Before describing the body of the program, we introduce some subroutines:

The Five-Point Stencil

f ′(x(n)) ≈ −f(x(n+ 2n) + 8f(x(n+ 1))− 8f(x(n− 1) + f(x(n− 2)

12h
.

The first and last two samples of the returned vector are set to zero.

The constant h defines the distance between two samples. The five-point stencil is derived

by taking the Taylor series for f(x± h) and f(x± 2h) and solving it for f ′(x).

Alternative methods used to estimate a derivative were fitting and evaluating local polyno-

mials or using the exact derivative, in case the data was evaluated from a system of ordinary

differential equations, which then provide an exact derivative.
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Penalized Regression Possible algorithms to perform the penalized regression are the

orthogonal matching pursuit [TW10] and iterative thresholding [FR08]. These algorithms

perform an l0 regression.

As a very shortened and rough description, they resemble an incomplete depth-first search

and a breath-first search of monomials of the right-hand side. To concentrate on the fea-

sibility of the approach to gain the true right-hand side of the dynamical system, which

allows for physical interpretation, we choose a brute force search and iterate through the

whole space and not chose the approaches, which are much more feasible from a perfor-

mance point of view. This brute force search allowed for a ranking to compare the best

result with the alternatives to estimate the robustness of the value and the robustness of

the approach. The size of the space is manageable because the approach starts to suffer

from ambiguous solutions when exceeding more than three components in the presence

of realistic noise levels. Furthermore, we do not need degrees greater than two within the

dynamical system to describe most practical situations. In exchange, we know to find the

best approximation instead of approximating it, which adds a new layer of uncertainty. In

addition, this uncertainty depends on the quality of the algorithm, its extensions to ensure

good approximations, and the quality of the implementation, which allows for programming

errors. We avoid this uncertainty by choosing the brute force algorithm.

In practice, the faster algorithms can approximate the outcome of the brute force algorithm

in many cases while vastly outperforming it, especially in the case of higher degrees.

From a performance point of view, the possibilities to avoid l0 optimization should be eval-

uated. While the sparsity of the model is an advantage, the lack of convexity results in a

noncontinuous behavior of parameters. Algorithms like lasso employing the l1-norm do not

reach the sparsity, which can be achieved using l0. The problems resulting from the noncon-

tinuous behavior might be fixed when gradually combining different thresholding methods

[LF20].

Brute Force Penalized Regression The brute force penalized regression iterates through

all possible right-hand sides up to a limited number of monomials, limited maximum expo-

nent, and a limited number of components per monomial, which does not affect the case of

only two components without prohibiting any interaction.

The brute force algorithm calculates a residual for each right-hand side. However, it adds

a penalty of the size of λ, the regularization parameter, for each monomial within the right-

hand side. This penalized regression searches for the best fit while trying to utilize as few

monomials as possible.

In many cases, normalization helps. In the case of an unnormalized dynamical system, the
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algorithm uses too many monomials to limit the residual of large components and neglects

smaller ones, which might be as essential to reproduce the overall dynamic of the system.

On the other hand, employing an orthonormalization results in a sparse solution of the

orthonormal system. This result does not necessarily offer a sparse solution in the original

space and might not translate into a physical explanation.

Initialization

• Load the data of the dynamical system.

• Define: Do not evaluate the first and last samples, defined by the variable ’cropmar-

gin’, of a function to avoid introducing more errors by a broken derivative.

• Define: Limit the exponent and the number of components to two.

• Define: Use the five-point stencil to derive.

• Define: Normalize.

The Body

• Initialize

• Load data

• Preprocessing

– Add noise (if defined)

– Smooth (if defined)

– Calculate the derivative (using the defined algorithm)

– Crop a margin of n samples (if defined)

– Normalize

• Penalized regression (using the defined algorithm)

• Postprocessing

– Denormalize

– Plot the results and solve the estimated dynamical system for comparison.
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6.2.2 Estimate Component

This program estimates an unobserved component of an ordinary differential equation of

two components.

Therefore, it takes the data of an observed component, the first component, and the pa-

rameters of the ODE, which define its structure.

Program flow

First, apply a median filter and perform a running mean filter of length k. Then, perform a

data reduction by subsampling and take every n-th element.

Before starting the actual program, define some subroutines.

The Five-Point Stencil

f ′(x(n)) ≈ −f(x(n+ 2n) + 8f(x(n+ 1))− 8f(x(n− 1) + f(x(n− 2)

12h
.

The first and last two samples of the returned vector are set to zero.

The constant h defines the distance between two samples. The five-point stencil is derived

by taking the Taylor series for f(x± h) and f(x± 2h) and solving it for f ′(x).

Limit the Values The theory limited the space to a maximum value. To automate this

process this function limits the values to exist between the 0.01 and 0.99 quantiles.

The Functional J Describing the Error

• Get a numeric derivative y′(n) of y(n) using the five-point stencil.

• Calculate the returned error

e =
∑N

0 [x′(n)− f1(x(n), y(n))]2 +
∑N

0 [y′(n)− f2(x(n), y(n))]2.

The Body

• Initialize the second component by random values.

• Calculate the derivative of the first component using the five point stencil and cap the

resulting values to exist between the 0.01 and 0.99 quantiles.

• Start the optimization of the second component using the functional J . The opti-

mization is performed by the optimizer Rgenoud [MS11]. Rgenoud is based on the
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Genoud algorithm, which is based on BFGS, but it also uses genetic algorithms to

increase the probability of finding the global optimum [SM98].

• Plot the result.

Alternative Implementations In the Lotka-Volterra example, we used total variation dif-

ferentiation [Cha11] to gain the initial derive of f1. The total variation is the sum of differ-

ences between adjacent samples. The idea of using total variation is the correlation: The

lower the total variation, the lower the noise level. This way of differentiating the function

chooses the derivative to match the observed data in the 2-norm after being integrated.

Furthermore, the noise is controlled in the image space by minimizing the total variation.

This is a remarkably robust way of calculating a derivative, but it can not be used within the

optimization without having to implement more adaptions to deal with the behavior of the

total variation term.

Furthermore, the Lotka-Volterra example caps the values of the derivative at every evalua-

tion of J .
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