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“ I seem to have been only like a boy playing on the seashore, and diverting myself
in now and then finding a smoother pebble or a prettier shell than ordinary, whilst
the great ocean of truth lay all undiscovered before me. ”

Isaac Newton

“ The most beautiful thing we can experience is the mysterious. It is the source of
all true art and science. He to whom the emotion is a stranger, who can no longer
pause to wonder and stand wrapped in awe, is as good as dead. ”

Albert Einstein

“ Here I stand, atoms with consciousness, matter with curiosity. A universe of
atoms, an atom in the universe. ”

Richard Feynman
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Zusammenfassung

In der vorliegenden Dissertation werden Methoden zur Lösung des elektronischen Strukturprob-

lems analysiert. Hierbei besteht das Hauptziel darin, ein besseres mathematisches Verständnis

dieser Theorien zu erreichen.

Zunächst wird die Kohn-Sham-Dichtefunktionaltheorie (KS-DFT) erörtert, welche die am häu-

�gsten verwendete elektronische Strukturmethode für groÿe Systeme darstellt. Hierbei werden

insbesondere die Existenz und Nichtexistenz elektronischer Anregungen sowie die Dissoziations-

grenze diatomarer Moleküle untersucht, beides in der lokalen Dichteapproximation (LDA).

Der nächste Teil befasst sich mit Tensormethoden in der Quantenchemie. Diese ermöglichen

sehr genaue Berechnungen, sind aber aufgrund ihrer hohen Rechenkosten auf kleine Systeme

beschränkt. Wir betrachten Matrix-Product-States (MPS), auch bekannt als Tensor-Trains

(TT), die das Herzstück der Quantenchemie-Dichte-Matrix-Renormierungsgruppe (QC-DMRG)

bilden. Wir untersuchen, wie sich Permutationen der zugrundeliegenden Basis auf die Gröÿe der

involvierten Matrizen der entsprechenden Darstellung für allgemeine Zustände auswirken und

liefern eine vollständige Charakterisierung dieser für Zwei-Elektronen-Systeme unter optimalen

unitären Basistransformationen.

Die Ergebnisse dieser Arbeit sind in verschiedenen Artikeln des Autors enthalten, von denen drei

verö�entlicht wurden, einer angenommen und einer eingereicht wurde. Eine Liste der relevanten

Artikel ist auf Seite ix zu �nden.
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Abstract

This dissertation examines methods for solving the electronic structure problem with its primary

objective being to provide a better mathematical understanding of these theories.

First, we discuss Kohn-Sham Density Functional Theory (KS-DFT), which is the most widely

used electronic structure method for large systems. In particular, we study the existence and

non-existence of electronic excitations as well as the dissociation limit of diatomic molecules,

both in the local density approximation (LDA).

The next part deals with tensor methods in quantum chemistry. These allow very accurate com-

putations, but are limited to small systems due to their high computational cost. We consider

matrix product states (MPS), also known as tensor-trains (TT), which lie at the heart of the

Quantum Chemistry � Density Matrix Renormalization Group method (QC�DMRG). We study

how re-orderings of the underlying basis a�ect the bond-dimensions of the corresponding repre-

sentation for general states and provide a complete characterization of the bond-dimensions for

two-electron systems under optimal fermionic mode transformations.

The results of this thesis are contained in various articles by the author, of which three have been

published, one is accepted and one is submitted. A list of the contributed articles is presented

on Page ix.
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Chapter 1

Introduction

In view of all that [. . . ], the many obstacles we
appear to have surmounted, what casts the pall over
our victory celebration?
It is the curse of dimensionality, a malediction that
has plagued the scientist from earliest days.

Richard E. Bellman

In quantum chemistry, the term electronic structure encompasses both the wavefunctions of the

electrons and the energies associated with them. Its starting point is the full quantum many-

body Schrödinger equation in the Born-Oppenheimer approximation: The electrons are treated

as quantum particles in an electrostatic �eld created by clamped, i.e., stationary, nuclei.

Although the adequate mathematical description for this theory was developed in the 1920s by

people like Heisenberg, Schrödinger and Dirac, it took a long time until quantum mechanics

found its way into applications. The main problem here is that unfortunately the Schrödinger

equation cannot be solved analytically, except for a small number of simple problems like the

hydrogen atom or very elementary molecules or systems.

Furthermore, due to the curse of dimension � for N particles, the system is described by a

partial di�erential equation (PDE) of dimension 3N � as soon as the system grows slightly, it

becomes numerically unfeasible. Solving this curse of dimensionality for theN -body electronic

Schrödinger equation has been a central problem in physics and chemistry for over a century.

This can also be seen from the fact that electronic structure calculations rank among the most

computationally intensive tasks in all scienti�c calculations and a large number of methods exist,

with their applicability varying from case to case.

Even though this plethora of di�erent methods has played an important role in the endeavor of

understanding quantum mechanical systems, especially in quantum chemistry, solid-state physics

and materials science, mathematically rigorous result are quite sparse.

The overarching topic of this thesis is providing a better mathematical understanding of some of

these theories. This is done through analyzing, whether or not certain desirable properties are

ful�lled, and through completely characterizing certain classes of approximations.
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Introduction

The two state-of-art methods considered here will be the quantum chemistry � density matrix

renormalization group (QC�DMRG) with the so-called matrix product states (MPS) at its heart,

and the density functional theory (DFT), with its exchange-correlation functionals.

In our analysis of MPS, i.e., studying how di�erent transformations of the underlying basis a�ect

the size of the involved matrices, in particular, providing lower bounds, we employ (multi-)linear

algebra combined with an old result in number theory by Besicovitch. The considered problems

in DFT , like the existence of excitations and dissociation limits, on the other hand, rely on tools

from the �eld of partial di�erential equations in unbounded domains, like the concentration-

compactness method by Lions as well as the spectral theory of Schrödinger Hamiltonians.

1.1 Outline

In the rest of this chapter, we brie�y discuss the contributed articles in this thesis.

In Chapter 2, we give an introduction to the basic concepts of quantum mechanics necessary

for understanding the electronic structure problem, like the Schrödinger equation for general

molecules, the Born-Oppenheimer approximation and some well known spectral results of the

involved operators.

The main part of the thesis then focuses on the two electronic structure theories mentioned above:

Density functional theory as well as its predecessors are reviewed in Chapter 3. We start with a

historic overview to get a general idea of the di�erent developments in the �eld still in�uencing

the functionals used today and then present the more modern and mathematical formalism.

QC�DMRG, and more explicitly tensors in general, are the topic of Chapter 4. After we discuss

their basic properties and the associated tensor-train decomposition, we move on to describe

how they arise in quantum chemistry and how transforming the underlying basis can a�ect the

involved tensors.

Both of these chapters are concluded with a short summary of our own contributions in these

areas as well as related research articles.

After this overview, we include the contributed articles. Every article is preceded by a summary

of the contributions of the respective work and a description of the individual contribution of

the author of this thesis. Furthermore, we include for each article the permission to use it in this

thesis.

1.2 Summary and Discussion of Results

The contributed articles deal with di�erent aspects of electronic structure models and related

objects. Core Articles I and III deal with questions arising in Kohn-Sham DFT. The �rst

one investigates the existence and non-existence of excitations in the Kohn-Sham DFT setting;

whereas the second one considers the question, whether molecules dissociate correctly in the local

density approximation of DFT.

The behavior of the involved matrices of a matrix product state under basis transformations is

the subject of Core Article II as well as Article IV. Lastly, Article V is concerned with the related

2



Summary and Discussion of Results

topic of quantum channels, more precisely, it examines which quantum channels correspond to

Markovian time evolutions.

Note that the author of this thesis does not claim to be the principal author of the Articles IV

and V.

Core articles as principal author

ˆ Article I [54]: Existence and nonexistence of HOMO�LUMO excitations in Kohn�Sham

density functional theory

In this work we investigate the mathematical status of the simplest class of excitations

in Kohn-Sham density functional theory (KS-DFT), the HOMO-LUMO excitations. Em-

ploying concentration-compactness arguments, we show that such excitations, i.e., excited

states of the Kohn-Sham Hamiltonian, exist for positively charged systems, i.e.,Z > N ,

whereZ is the total nuclear charge andN is the number of electrons. The assumptions on

the exchange-correlation functional under which the result is applicable are realistic and

veri�ed explicitly for the widely used PZ81 and PW92 functionals. By contrast, in the neu-

tral case Z = N , we �nd, using a method of Glaser, Martin, Grosse, and Thirring that in

cases of the hydrogen and helium atoms, excited states do not exist when the self-consistent

KS ground state density is replaced by a realistic but easier to analyze approximation (in

case of hydrogen, the true Schrödinger ground state density).

ˆ Article II [64]: Electronic wavefunction with maximally entangled MPS representation

In this core article, we present an example of an electronic wavefunction with maximally

entangled MPS representation, in the sense that the bond dimension is maximal and cannot

be lowered by any re-ordering of the underlying one-body basis. Our construction works

for any number of electrons and orbitals. Additionally, we provide numerically the singular

value distribution of the matrization of the corresponding tensor, which seems to exhibit a

remarkable almost-invariance under re-ordering. In contrast, for weakly correlated states

re- rdering typically reduces the tail by several order of magnitude [37].

ˆ Article III [11]: Dissociation limit in Kohn-Sham density functional theory

In the third core article, we consider the dissociation limit for diatomic molecules, i.e.,

molecules of the typeX 2, in the Kohn-Sham density functional theory setting, whereX

can be any element withN electrons. Our main result is the following: When the twoX -

atoms in the system are torn in�nitely far apart, the energy of the system convergences to

min
� 2 [0;N ]

�
I X

� + I X
2N � �

�
, whereI X

� denotes the energy of aX atom with � electrons surrounding

it. Additionally, we discuss, whether or not the minimum equals the symmetric splitting

2I X
N for the Dirac exchange functional. The decisive factor turns out to be the �strength� of

the exchange functional, which in the case of this paper is determined through the constant

cxc in front of the Dirac exchange. We provide numerical evidence that for theH2-molecule

with the correct physical value for cxc this gives the expected result of twice the energy of

a H-atom, 2I H
1 .
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Further articles under review

ˆ Article IV [56]: Two-electron wavefunctions are matrix product states with bond dimension

Three

The topic of this article is proving the statement in the title, i.e., precisely that two-electron

wavefunctions can be represented, in a suitable basis, as MPS with bond dimension Three.

Our analysis is carried out for arbitrary single-particle Hilbert spaces, including the in�nite-

dimensional spaceL 2(R3) 
 C2 for electrons.

Furthermore, we show that bond dimension Three is optimal and characterize the minimal

bond dimension for arbitrary states under optimal fermionic mode transformation. Lastly,

we describe the implications of our results for the QC-DMRG method for computing the

electronic structure of molecules. This yields a remarkable low-rank exactness.

Articles as co-author

ˆ Article V [18]: Necessary criteria for Markovian divisibility of linear maps

Here, we study the open problem of characterizing those quantum channels that correspond

to Markovian time evolutions. Whereas there is a complete characterization for in�nites-

imal Markovian divisible qubit channels, no necessary or su�cient criteria are known for

higher dimensions, except for necessity of non-negativity of the determinant.

We start this article by describing how to extend the notion of in�nitesimal Markovian

divsibility from quantum channels to general linear maps and compact and convex sets of

generators. After that we present a general approach towards proving necessary criteria for

(in�nitesimal) Markovian divisibility. Employing this procedure, we prove two independent

criteria which are necessary for in�nitesimal divisibility of quantum channels in any �nite

dimensiond: an upper bound on the determinant in terms of a�( d)-power of the smallest

singular value, and in terms of a product of�( d) smallest singular values. These allow us to

analytically construct, in any given dimension, a set of channels that contains provably non

in�nitesimal Markovian divisible ones. Moreover, we show that, in general, no such non-

trivial criteria can be derived for the classical counterpart of this scenario. This implies that

there cannot be a mapping from the classical stochastic matrices to quantum channels which

both preserves in�nitesimal Markovian divisibility and leaves singular values invariant.
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Chapter 2

The Quantum Many-Body Problem

Anyone who is not shocked by quantum theory has
not understood it.

Niels Bohr

In this chapter, we want to give a brief introduction to the mathematical framework required for

the quantum many-body problem for atoms and molecules, which lies at the heart of this thesis.

We start o� by analyzing the simplest such system, the hydrogen atom, to gain some heuristic

understanding. After that, we introduce the full molecular Hamiltonian and discuss the Born-

Oppenheimer approximation, which builds the foundation of quantum chemistry. This leads to

the electronic Schrödinger operator whose fundamental properties we recall in the second part

of this chapter. We conclude with the so-called dissociation problem and discuss why molecules

bind together, using the hydrogen moleculeH2 as an example. This material can be found in

standard references like [16, 66, 69, 147, 170], while the �rst and the last section take inspiration

from a course of Prof. Gero Friesecke o�ered at TUM in 2016.

2.1 Heuristics and the Hydrogen Atom

In order to gain a deeper insight into the framework presented later in this chapter, let us start

with the simplest quantum chemical system, i.e., the hydrogen atom.

Here, we have a single proton with one electron surrounding it. Thus we can always change

to a reference system with the proton as the origin. So, our system is described by a so-called

wavefunction 	 : R3 ! C with k	 kL 2 = 1 , representing the probability density that the electron

is at position x 2 R3.

As typical in nature, we want 	 to minimize the total energy of the system consisting of the

kinetic energy of the electron and the Coulomb interaction of the electron with the proton, i.e.,

Ehyd [	] =
1
2

Z

R3
jr 	 j2 dx �

Z

R3

1
jxj

j	 j2 dx; (2.1)

5



The Quantum Many-Body Problem

subject to the normalization condition k	 kL 2 = 1 . The kinetic term in (2.1) wants 	 to be �at,

while the electrostatic term favors a high peak at the origin, so we expect a compromise between

these two giving 	 a certain length-scale.

We want both terms to be �nite, thus we restrict ourselves to the admissible functionsA hyd with

A hyd :=
�

	 2 H 1(R3; C)
�
� k	 kL 2 = 1

	
:

Therefore, we are faced with the following minimization problem:

Minimize Ehyd [	] over 	 2 A hyd : (2.2)

This minimization problem can be solved straightforwardly with a suitable chosen ansatz. In-

spired by the variation of constant approach from ordinary di�erential equations, we consider	

to be of the form

	( x) = e � ajx j � (x):

Note that since � is any arbitrary function such that 	 2 H 1(R3; C), we have not made any

restriction so far. Plugging this ansatz into the energy (2.2) gives

Ehyd [	] =
1
2

Z

R3

�
�r

�
e� ajx j � (x)

� �
�2 dx �

Z

R3

1
jxj

e� 2ajx j j� (x)j2 dx

= �
a2

2

Z

R3
e� 2ajx j j� (x)j2 dx +

1
2

Z

R3
e� 2ajx j jr � (x)j2 dx + ( a � 1)

Z

R3

1
jxj

e� 2ajx j j� (x)j2 dx:

(2.3)

Here we �rst expanded out the square

�
�r

�
e� ajx j � (x)

� �
�2 = a2e� 2ajx j j� j2 � 2a Re

�
x
jxj

� � r �
�

e� 2ajx j + e � 2ajx j jr � j2

and then used integration by parts on the middle term

� a Re
Z

R3

x
jxj

e� 2ajx j � r � 2(x) dx = a
Z

R3
� 2(x) div

�
x
jxj

e� 2ajx j
�

dx

= a
Z

R3
� 2(x)

�
2

jxj
e� 2ajx j � 2ae� 2ajx j

�
dx:

Setting now a = 1 and using that 	 = e � ajx j � is normalized in L 2 reduces (2.3) to

Ehyd [	] = �
1
2

+
1
2

Z

R3
e� 2jx j jr � j2 dx:

Therefore 	 is a minimizer if and only if � is constant. In particular, the energy functional is

bounded from below. Employing now again the normalization of	 gives� = 1p
� � with j� j = 1 .

Thus the minimizer is unique up to a phase factor (� 2 C; j� j = 1 ) and is given by

	( x) = �
e�j x j
p

�
: (2.4)

6



Heuristics and the Hydrogen Atom

If we reintroduce physical units, the energy functionalEhyd from (2.1) becomes

Ehyd [	] =
~2

2m

Z

R3
jr 	 j2 dx �

e2

4�" 0

Z

R3

1
jxj

j	 j2 dx;

where ~ is Planck's constant, e denotes the charge of the electron andm its mass, and4�" 0

stands for the electric permittivity of the vacuum.

Thus, the minimizer takes the form

	( x) = �
e� j x j

a0
p

�a 3
0

with a0 =
~2=m

e2=4�" 0
� 0:529� 10� 10m: (2.5)

Here one can see that the length scale of the exponential decaya0, which emerges naturally from

the two prefactors of the minimization, behaves inversely proportional to the particle mass.

Furthermore, we want to look at the Euler-Lagrange equation of our problem. Consider, for any

arbitrary ' 2 H 1(R3; C), the function

f : R ! R; f (" ) = Ehyd

�
	 + "'

k	 + "' kL 2

�
:

Then, f has a global minimum at " = 0 , which implies

0 =
d
d"

f (" )
�
�
�
"=0

= 2 Re
Z

R3

�
�

1
2

�	 �
1

jxj
	 � E hyd [	] 	

�
' dx:

Since' was arbitrary, we obtain

�
1
2

�	 �
1

jxj
	 = Ehyd [	]	 ;

which is in fact equivalent to

�
1
2

�	 �
1

jxj
	 = � 	 for some� 2 R: (2.6)

This equivalence can be seen by mulitplying (2.6) by	 and integrating, resulting in

Ehyd [	] =
1
2

Z

R3
jr 	 j2 �

1
jxj

j	 j2 dx = �
Z

R3
j	 j2 dx = �:

Therefore, we have arrived at the Schrödinger equation for the hydrogen atom, which is just an

eigenvalue problem for a linear partial di�erential equation. We usually write (2.6) in the form

Hhyd 	 = � 	 ; (2.7)

where Hhyd denotes the Hamiltonian of our system

Hhyd = �
1
2

� �
1

jxj
:

7



The Quantum Many-Body Problem

In this section, we heuristically motivated two major points which will be made more precise in

the following sections.

Firstly, as seen in (2.5), the quantum �uctuations of objects depend greatly on their mass. Thus,

it makes sense to decouple nuclei and electrons in our analysis sincemnuc =m ' 1836 � 367000 [66].

This leads us to the so-called Born-Oppenheimer approximation [13], addressed in Section 2.2.

And secondly, the eigenvalue problem (2.6) motivates us to study the entire spectrum of the

corresponding Hamiltonian, not only its lowest eigenvalue. This is exactly the content of the

celebrated HVZ Theorem 2.3. Lastly, let us mention that also the uniqueness and exponential

decay of the wavefunction corresponding to the lowest eigenvalue of the Hamiltonian � the so-

called ground state � observed in our example will carry over to the full system.

2.2 General Molecules and the Born-Oppenheimer Approxima-

tion

After the short heuristical introduction above, we now want to get to the heart of the matter,

and precisely present the quantum description of a molecular system. Note that we will here and

in this entire thesis only discuss the non-relativistic case, but when the system at hand contains

multiple heavy atoms, relativistic e�ects may play an important role [16].

Our starting point is a static isolated molecular system consisting ofM nuclei and N electrons.

In our analysis, we will always treat a nucleus as a whole, specifying its substructure only by

noting the number of protons and neutrons, since this in�uences the total charge. The number

of nucleons of a nucleus also determines additional properties, like the values its spin can take

and thus the symmetry of the wavefunction, but � as we will see below � this will not be of

importance to us.

The state of our system is then entirely described by a complex-valued wavefunction	 of the

form

	( y1; � 1; : : : ; yM ; � M ; x1; � 1; : : : ; xN ; � N );

where 	 depends on the positionyk and spin � k of the k-th nucleus and on the positionx i and

spin � i of the i -th electron. For the position variables, we haveyk ; x i 2 R3, while the spin of the

electrons can only take two values,� i 2 � :=
�

j"i ; j#i
	

. For a nucleus composed ofK nucleons

the situation is slightly more complicated: The spin variable � k can take 1
4(K + 2) 2 values if

K is even and 1
4(K + 1)( K + 3) values if K is odd. We denote this �nite set of possible spin

con�gurations by � K .

The bridge from the wavefunction 	 to our real physical system is given by the fact that

j	( y1; � 1; : : : ; yM ; � M ; x1; � 1; : : : ; xN ; � N )j2 gives the probability density to simultaneously mea-

sure the k-th nucleus at position yk with spin � k and the i -th electron at position x i with spin

� i .

8



General Molecules and the Born-Oppenheimer Approximation

This already gives us one of the important properties that a wavefunction	 has to satisfy in

order to correspond to a physical system. The function	 needs to beL 2-normalizied, i.e.,

jj 	 jjL 2 =
Z

R3( M + N )

X

� 1 ;...;� M
� 1 ;...;� M

j	( y1; � 1; ...; yM ; � M ; x1; � 1; ...; xN ; � N )j2 dy1... dyM dx1... dxN = 1 :

(2.8)

A second deep physics fact is the indistinguishability of identical particles: The system has to

stay independent of the arbitrary labeling that we have forced on the electrons and nuclei. This

leads to the de�nition of bosons and fermions: The function	 has to be

ˆ symmetric under the exchange of two identical particles, which are bosons. In our frame-

work, the only bosons are the nuclei composed of an even number of nucleons.

or

ˆ antisymmetric under the exchange of two identical particles which are fermions. In our

framework, these are precisely the electrons and the nuclei composed of an odd number of

nucleons.

In particular, this antisymmetric behaviour in terms of the electrons takes the form

	( f yk ; � kg; xp(1) ; � p(1) ; : : : ; xp(N ) ; � p(N ) ) = ( � 1)" (p) 	( f yk ; � kg; x1; � 1; : : : ; xN ; � N ); (2.9)

where p denotes a permutation of the set of electron indicesf 1; : : : ; N g and "(p) its signature.

This antisymmetry has three major consequence; the �rst being thePauli exclusion principle

stating that two fermions can not be in exactly the same spin state and position. If, e.g., two

electronsi 6= j have x i = x j and � i = � j , then by (2.9)

	( f yk ; � kg; x1; � 1; : : : ; xN ; � N ) = 0 : (2.10)

Secondly, the wavefunction is orthogornal to any independent state, meaning

h	 ; � i
L 2

�
(R3 � �) N

� = 0 ;

for any � 2 L 2
�
(R3 � �) N

�
depending in the same way on thei - and j - component, i.e.,

�( f xk ; � kg) = ' � (x i ; � i )' � (x j ; � j )� (f xk ; � kgk6= i;j );

with � and ' � being arbitrary. And lastly, (2.9) implies that the probability density j	 j2 is a

symmetric function.

The Hilbert space incorporating all the above restrictions is given by

H = H n � H e;

9
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with

H n = L 2
x

�
(R3 � � 1) � : : : � (R3 � AM ); C

�
;

H e =
N̂

i =1

L 2�
R3 � �; C

�
;

where the subscript ofL 2
x with x 2 f a; sg indicates that certain symmetry and or antisymmetry

properties need to be ful�lled, depending on the structure of the nuclei in the system.

Now, we can give the Hamiltonian describing our molecular system ofN non-relativistic electrons

of massm and chargee and M atomic nuclei of massesm1; : : : ; mM with charges Z1e; : : : ZM e

Hmol = �
NX

i =1

~2

2m
� x i �

MX

j =1

~2

2mj
� yj + V(x; y); (2.11)

where ~ is Planck's constant, x = ( x1; : : : ; xN ) 2 R3N and y = ( y1; : : : ; yM ) 2 R3M stand

for the electron and nuclear coordinates, respectively, andV(x; y) denotes the entire Coulomb

interaction potential of the system, i.e., between the electrons themselves, between the electrons

and the nuclei, and between the nuclei themselves. This potential is given by

4�" 0V(x; y) =
1
2

X

i 6= j

e2

jx i � x j j
�

X

i;j

Z j e
jx i � yj j

+
1
2

X

i 6= j

Z i Z j e2

jyi � yj j
; (2.12)

with 4�" 0 being the electric permittivity of the vacuum.

In the special caseM = 1 , i.e., an atom, the last term in (2.12) vanishes. Furthermore, we call

a molecule neutral or neutrally charged if

MX

j =1

Z j = N: (2.13)

Note, from now on we will � as common in the literature � work with atomic units, where

Planck's constant ~ = 1 , the charge and mass of an electrone = 1 and m = 1 , and also the

electric constant 4�" 0 = 1 .

Now, the minimization problem to �nd the ground state of our system is given by

E mol
0 := inf fh	 ; Hmol 	 i : 	 2 H ; k	 kL 2 = 1g: (2.14)

Since we only want to consider physically realistic states of �nite energy, we need to impose �nite

kinetic energy, i.e., integrability in the L 2 sense of the �rst derivative of 	 . Thus, we further

restrict our Hilbert space H to be the tensor product H = H n 
 H e with

H n = H 1
a;s

�
(R3 � � 1) � : : : � (R3 � � M )

�
and H N

el =
N̂

i =1

H 1�
(R3 � �) N �

;

where the di�erentiability condition is only with respect to the continuous space variables.
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In the next step, we want to motivate the procedure of decoupling the electrons and the nuclei,

which is generally known as the Born-Oppenheimer approximation [13]. We follow the steps

from [66].

As already mentioned above, this procedure is based on the key fact that nuclei are much heavier

than electrons. Thus, the two particles live on di�erent time scales, i.e., the electrons adjust

almost instantaneously to the positions of the nuclei.

Therefore, we �rst assume that the nuclei are clamped at positionsy = ( R1; : : : ; RM ) and consider

the electronic Hamiltonian depending on the parameters(R1; : : : ; RM )

H el
N ((R1; : : : ; RM )) = �

1
2

NX

i =1

� x i +
1
2

X

i 6= j

1
jx i � x j j

�
X

i;j

Z j

jx i � Rj j
: (2.15)

This operator is often referred to as the Born-Oppenheimer Hamiltonian.

Next, with the electrons in their equilibrium position, corresponding to the state of lowest possible

energyEel(y) of H el
N for a given con�guration of nuclei y, one considers the motion of the nuclei.

Here,H el
N (y) in (2.11) is replaced by the multiplication operatorEel(y) as the potential interaction

energy leading to the nuclear Hamiltonian

Hnuc = �
MX

j =1

1
2mj

� yj + Eel(y)

�
�
�
�
y=( R1 ;:::;R M )

+
1
2

X

i 6= j

Z i Z j

jRi � Rj j
: (2.16)

From a physics point of view, one expects the eigenvalues ofHnuc to be a good approximation

for the ones of the full Hamiltonian Hmol . Computing Eel(y) for a given con�guration of nuclei

clamped at positionsy is called solving theelectronic structure problem.

In order to precisely state the Born-Oppenheimer approximation, we de�ne the parameter

� =
1

min
j

mj
;

which, depending on the system at hand, will vary from1=1836to 1=367000[66].

For simplicity, assume that the ground state energyEel(y) of the electronic Hamiltonian H el
N in

(2.15) is non-degenerate, and denote the corresponding normalized minimizer by y(x), i.e.,

H el
N  y(x) = Eel y(x). Then with small technical modi�cations, one can prove the follwoing

result.

Theorem 2.1 (Born-Oppenheimer Approximation (see Chapter 12 in [66]))

To second order in the parameter� , the ground state energyE mol
0 of Hmol is the ground

state energy of the operator

Hef f := Hnuc + v;

whereHnuc is given in (2.16) and v = O(� ) is a multiplication operator of order � given by

v =
MX

j =1

1
2mj

Z

R3
jr yj  y(x)j2 dx:

11
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Thus, henceforth we will ignore the quantum �uctuations of the nuclei and consider them as

point particles with charges Z1; : : : ; ZM clamped at positionsR1; : : : ; RM . Our wavefunction 	

describing the system ofN electrons is then a function inH 1
�
(R3 � �) N ; C

�
with the additional

constraints of L 2-normalization

X

� 1 ;:::;� N

Z

R3N
j	( x1; � 1; : : : ; xN ; � N )j2 dx1 : : : xN = 1 ; (2.17)

and antisymmetry

	( xp(1) ; � p(1) ; : : : ; xp(N ) ; � p(N ) ) = ( � 1)" (p) 	( x1; � 1; : : : ; xN ; � N ): (2.18)

We call functions satisfying these constraints admissible (electronic) wavefunction and write

A N :=
�

	 2 H 1�
(R3 � �) N ; C

� �
� 	 satis�es (2.18) and (2.17)

	
: (2.19)

The (electronic) quantum mechanical energy functional is then given by

Eel[	 ; f R� g] = T[	] + Vee[	] + Vne[	]

=
1
2

X

� 2 � N

Z

R3N
jr 	( x; � )j2 +

� X

1� i<j � N

1
jx i � yj j

�
NX

i =1

MX

j =1

Z j

jx i � Rj j

�
j	( x; � )j2 dx;

(2.20)

where the individual parts of the energy functional areT[	] denoting the kinetic energy, Vee

describing the electron-electron interaction energy, andVne[	] corresponding to the electron-

nuclei interaction energy.

Then, the electronic structure problem becomes, for �xed(R1; : : : ; RM ),

Minimize Eel[	 ; f Rj g] over 	 2 A N : (2.21)

If it is clear from the context that the Rj are �xed, we will drop the explicit dependence and

denote the (electronic) ground state energy by

E 0
N := inf

	 2A N
Eel[	] : (2.22)

In this framework, the total energy of the system is obtain via minimizing of the eletrons and

the clamped nuclei, i.e.,

Minimize Etot [	 ; f Rj g] over A N � R3M ; (2.23)

where

Etot [	 ; f Rj g] = Eel[	 ; f R� g] +
X

1� i<j � M

Z i Z j

jRi � Rj j
: (2.24)

12
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The last interesting object for us is the Born-Oppenheimer potential energy surface

E(f Rj g) = inf
	 2A N

�
Eel[	 ; f R� g]

�
+

X

1� i<j � M

Z i Z j

jRi � Rj j
; (2.25)

which we will discuss more in Section 2.4. Let us just mention that

Minimize E(R) over R 2 R3M ; (2.26)

is called solving the geometry optimization problem, as one searches for the minimizing con�g-

uration of nuclei positions, which yields the molecular geometry.

2.3 HVZ Theorem and Bound States in the Born-Oppenheimer

Approximation

As described in the last section, the HamiltonianH el
N describes our system in the sense that our

ground state is given as its eigenfunction corresponding to the lowest eigenvalue. Therefore, we

want to recall some fundamental properties of this operator in the following section. In partic-

ular, this includes the existence of well-localized and stable states, implying that the quantum

systems under consideration exist as well-localized objects, and are stable under su�ciently small

perturbations [66].

The �rst result goes back to Kato and is essential, since it guarantees that our energies are real

and bounded from below.

Theorem 2.2 (Kato 1951 [85])

The operator H el
N is self-adjoint and bounded from below.

Understanding the energy levels of a given quantum system is still to this day one of the major

problems in physics; in our case the general form of the spectrum is known (see, e.g., [83]). This

result is attributed to Hunziker [82], van Winter [178], and Zhislin [196], with their initials giving

it its name: HVZ-theorem.

Theorem 2.3 (HVZ-Theorem [147])

The essential spectrum ofH el
N takes the following form

� ess(H el
N ) = [
 N ; 1 ); (2.27)

where the ionization threshold
 N = inf �
�
H el

N � 1

�
� 0 and each potential eigenvalue, if it

exists, must lie in (�1 ; 0].

Theorem 2.3 can be interpreted as follows: To obtain the energy values in� ess(H el
N ), remove one

electron from the system and relocate it to in�nity. The electron can move freely there, while

the rest of the system is placed in its ground state, then the energy of the total system takes the

form


 N +
1
2

jkj2; for all momenta k of the electron at in�nity :

13
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Varying this expression over all valuesjkj, gives exactly � ess(H el
N ) = [
 N ; 1 ). Note, that re-

moving more than one electron just creates a more positive energy level and thus gives nothing

new.

Additionally, Theorem 2.3 incorporates the condition E el
N < 
 N for a minimizer to exist, which

corresponds to the physical property of the nuclei being able to bindN electrons in their vicinity.

Physical intuition suggests that this should hold, at least as long asN is not signi�cantly larger

than Z .

The last result of this section, �rst shown by Zhislin [196], states precisely that (for an elegant

mathematical proof see [52]).

Theorem 2.4 (Bound states [66])

For N < Z + 1 , H el
N has in�nitely many eigenvalues

�
E (i )

N

�
i � 1 below its ionization threshold


 N . Additionally the corresponding eigenfunctions	 (i )
N of H el

N , called bound states, decay

exponentially in the sense that

Z

R3

�
� 	 (i )

N (x)
�
�2e2� jx j dx < 1 ; 8� <

q

 N � E (i )

N :

The eigenfunctions, corresponding to eigenvalues aboveE 0
N , are called excited states.

Lastly, let us mention a related open problem, the so-calledionization conjecture, see [162,

Problem 9] or [111, Chapter 12]. It comes from the experimental observations that a neutral

atom can bind at most two extra electrons and tries to prove this rigorously from the �rst

principles of quantum mechanics. The �nal goal here would be to establish a bound of the form

N � Z + C as a restriction on the existence of minimizer. So far, this is unsolved, even though

this problem has been studied extensively by many authors [44,110,112,129,150,155,160]. These

papers resulted in various bounds for the maximal numberN of electrons that a nucleus of charge

Z can bind. In particular, the following bounds were obtained:

N � minf 2Z + 1 ; 1:22Z + 3Z 1=3; Z + CZ 5=7 + Cg;

where C denotes some universal constant.

2.4 Why Do Molecules Bind Together?

In this last subsection, we want to consider an important problem, namely the binding and

dissociation of molecules. As done in the literature, we will only be considering the simplest

molecule, i.e., the hydrogen molecule to illustrate all relevant aspects of this question.

First of all, let us make clear what we mean bybinding: We want to prove that

"H 2 := � min
�
H H 2

�
< 2� min

�
H H �

=: 2 "H ; (2.28)
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where H H 2 and H H refer to the Hamiltonian of the H2-molecule and theH -atom, respectively.

To be more precise, de�ne the Born-Oppenheimer potential energy surface

E H 2 (R) = inf
	 2A

h	 ; H H 2
R 	 i ; (2.29)

where R := jR1 � R2j denotes the distance between the two nuclei atR1 and R2.

In order to see that E H 2 only depends onR and not on R1 and R2 explicitly, note the general

fact that for any Galilean transformation g(x) := Ox + b, with O 2 O (3) a rotation matrix and

b 2 R3 a translation vector, we have

HBO
�
g(R1); : : : ; g(RM )

�
= UgHBO

�
R1; : : : ; RM

�
U � 1

g ; (2.30)

where Ug : L 2
�
(R3 � �) N

�
denotes the unitary transformation

Ug	
�
x1; � 1; : : : ; xN ; � N

�
= 	

�
g� 1(x1); � 1; : : : ; g� 1(xN ); � N

�
:

Therefore, both Hamiltonians in (2.30) are isospectral and thus, one can always reduce the

parameter space of nuclei positions under Galilean transformation. In the case ofH2, this just

so happens to give us the desired assertion.

Now, we can formulate the binding and dissociation ofH2 in the following theorem, which is

visualized in Figure 2.1.

Figure 2.1: Plot of the Born-Oppenheimer potential energy surface of theH2 molecule in terms
of the internuclear distanceR
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Theorem 2.5 (Binding of H2 � [53])

The Born-Oppenheimer potential energy surface ofH2 given by (2.29) satis�es

(i) lim
R!1

E(R) = 2 "H ; i.e., the molecules dissociates correctly.

(ii) min
R> 0

E(R) = "H 2 < 2"H , i.e., H2 is binding.

(iii) lim
R! 0

E(R) = 1 , i.e., the internuclear repulsion dominates.

Since the equivalent statement of Theorem 2.5 in the DFT setting (explained in Chapter 3) is

also the main result in one of our included articles [11] and furthermore gives a more quantitative

behaviour of E (R), let us provide a sketch of the proof. For more details, we refer to the lecture

notes of Prof. Friesecke [53].

Proof. One starts by getting ride of the antisymmetric condition in minimization of (2.29),

compare the appendix of our Article II. Next, it is quite straightforward to obtain a good upper

bound by constructing a test-function from the ground-state ' of the hydrogen atom (2.4)

	( x; y) =
�
' R1 
 ' R2

�
(x; y) =

e�j x � R1 j
p

�
e�j y� R2 j

p
�

:

With this wavefunction at hand, one gets (see, e.g., [167])

E (R) � h 	 ; H H 2
R 	 i = 2 "H + e � 2R � 1

R
+

5
8

�
3
4

R �
1
6

R2�
:

For the lower bounds, we have to split the regimesR ! 0 and R ! 1 : First, notice that

H H 2
R =

1
2

�
�

1
2

� x +
2

jx � R1j

�
+

1
2

�
�

1
2

� x +
2

jx � R2j

�
+

1
jx � yj

+
1
2

�
�

1
2

� y +
2

jy � R1j

�
+

1
2

�
�

1
2

� y +
2

jy � R2j

�

| {z }
= H R 1 ;R 2

+
1
R

;

where the Hamiltonian � 1
2 � � Z

jxj has, by Section 2.1, ground state energy"H Z 2. This yields

statement (iii) as

E(R) � 8"H +
1
R

:

For the lower bound at R ! 1 , we make the idea rigorous that the wavefunction splits into two

parts 	 � ' 1 + ' 2, with each ' i staying only near Ri . To do so, we �rst assume, without loss

of generality by by the Galilean invariance (2.30), that R1 = 0 and R2 = Rêx , and then take a

smooth partition of unity

0 � ~� i � 1; ~� 2
1 + ~� 2

2 = 1 ; ~� 1(x) = 1 for all x �
1
3

; and ~� 1(x) = 0 for all x �
2
3

;
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to de�ne � i : R3 ! R with � i (x) := ~� i
� x1

R

�
. Note that we then have the estimate

�
�r � i (x)

�
� � C

R .

Now, take any ' 2 H 1(R3) with k' kL 2 = 1 and de�ne ' i = � i � ' . Then, we have
2P

i =1
j' i j2 = j' j2

and a short calculation shows

jr ' j2 �
2X

i =1

jr ' i j2 � 2
C2

R2 j' j2:

Additionally, we have

h' i ; HR1 ;R2 ' i i �
�
"H � 3

R

�
k' i k2;

since
�
�x � R1=2

�
� � R

3 on supp' 2=1: Combining the last two inequalities, implies

h'; H R1 ;R2 ' i �
�

"H �
3
R

� 2
C2

R2

�
k' k2;

yielding the �nal lower bound

E(R) � 2
�

"H �
3
R

� 2
C2

R2

�
+

1
R

:

Theorem 2.5 proves that in quantum mechanicsH2, as the prototypical molecule, binds, i.e., there

is chemical bonding between the two nuclei, with a molecular geometry determined by the corre-

sponding Schrödinger equation. Furthermore, it shows the intuitive fact that, if one arti�cially

increases the internuclear distance between parts of these molecules further and further until

ultimately the bond is torn in�nitely far apart, the energy of the limit system is the same as the

sum of the original components.
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Chapter 3

Density Functional Theory and the

Kohn-Sham Equations

Energy is a very subtle concept. It is very, very
di�cult to get right.

Richard Feynman

Although the mathematical description of molecular quantum mechanics, as described in Chapter

2, was already developed in the 1920s by people like Heisenberg, Schrödinger, and Dirac, it took a

long time until it found its way into application. This is due to the fact that the set of admissible

functions A N from (2.19) grows exponentially with the numberN of electrons.

This result is the so-called curse of dimension: Since the wavefunctions, over which one mini-

mizes, are functions on the high-dimensional spaceR3N , a discretization scheme requiresK N -grid

points, if the single-particle spaceR3 is discretized byK -grid points. Take for example a simple

molecule like CO2; it has 22 electrons, so if we use 10 grid points for every dimension, which is

not that much, then the whole system requires1066 grid points, which roughly is the number of

particles in the entire Milky Way galaxy.

Thus one needs a way to reduce the complexity of the system, in order to obtain something com-

putationally feasible even for large systems; this is the realm ofdensity functional theory (DFT).

Introduced by Hohenberg, Kohn, and Sham in two fundamental papers [79,87] in the 1960s, this

theory transforms the high-dimensional Schrödinger problem (2.22) into a low-dimensional one

by converting the original linear system into a non-linear one in fewer variables.

The trade-o� in this approach consists in introducing the so-called exchange-correlation energy

functional, which is in theory exact but in practice unknown. Therefore, many approximations

exist in the literature, trying to model this intricate many-body interaction energy [9,95,137,138].

Despite the long time since its establishment, DFT is still an important and active research

area in physics, chemistry, and mathematics, see, e.g., [14, 29, 48, 59, 80, 123, 145]. As evidence

for its accomplishments, Walter Kohn was awarded the Nobel Prize in chemistry 1998 for his

contribution to its development. Furthermore, according to [177], it is �easily the most heavily

cited concept in the physical sciences [...] twelve papers on the top-100 list relate to it, including

2 of the top 10�.
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Additionally, its success can be seen from the countless quantum chemistry and solid-state physics

packages implementing it, like, e.g., Octopus [3], BigDFT [60, 126, 146], or the more recent

DFTK [76]. The list given in [118] gives an overview over the most notable software packages

for quantum chemistry, with 90% of the them utilizing DFT.

In this chapter, we begin with a short historic overview of the milestones leading up to the

development of DFT, as well as its formative years spanning roughly 1980-2010. After that,

we introduce the modern formalism and precise mathematical framework, and discuss exchange-

correlation functionals, focusing mostly on the so-calledlocal density approximation (LDA). We

conclude this chapter with a detailed discussion of our own contributions to some of the open

problems in this �eld.

3.1 Density Functional Theory and its Predecessor

The full historic developments of DFT, while fascinating, are far too complex and widely branched

to be portrayed here in their full glory. Still, we want to give a compact overview over some of

the main milestones along the way, mostly based on the reviews [10,84].

Just three years after Schrödinger derived his famous equation, Dirac [33] wrote the following:

�The general theory of quantum mechanics is now almost complete, [. . . ]. The underlying

physical laws necessary for the mathematical theory of a large part of physics and the whole

of chemistry are thus completely known, and the di�culty is only that the exact application

of these laws leads to equations much too complicated to be soluble. It therefore becomes

desirable that approximate practical methods of applying quantum mechanics should be

developed, which can lead to an explanation of the main features of complex atomic systems

without too much computation.�

This necessity for �approximate practical methods of applying quantum mechanics� to accurately

explain complex systems is a perfect description of the motivation for density functional theory.

The DFT formalism shows that all the relevant information about a many-body quantum system

at or near its ground state can be expressed in terms of its one-body density� . The intuitive idea

that the energy of the system could be locally modeled by its uniform electron density already

goes back to the early days of quantum mechanics.

The earliest predecessor of modern density functional theory is considered to be Thomas-Fermi

(TF) theory, introduced in 1927 by Thomas [174] and Fermi [45,46]. In their model they recog-

nized the basic nature of the electron density and applied it to atoms.

They assumed the electrons to form a gas satisfying Fermi statistics, with the interaction energy

solely determined by the classical Coulomb potential. The kinetic energy was replaced by a

local density approximation, inspired by the kinetic energy of a homogeneous electron gas; the

variational formulation of it was found by Lenz [103]. This yields the energy functional

ET F [� ] = cT F

Z

R3
� 5=3 dx +

1
2

Z

R3

Z

R3

� (x)� (y)
jx � yj

dx dy +
Z

R3
Vext � dx; (3.1)

where Vext is some external potential, usually the standard Coulomb potential.
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This model and its extensions allow us to approximately describe a variety of quantities, like the

charge density, the electrostatic potential, and the variation of the total energy with the atomic

number. Also its mathematical properties have been studied extensively, see, e.g., [108,154,164].

Furthermore, it is exact in the large Z limit [113], i.e., it captures the leading order behavior of

the ground state energy forZ ! 1 .

However, Thomas-Fermi theory has some serious de�ciencies, mostly because of its poor de-

scription of the outer region of an atom, i.e., it is unable to self-consistently reproduce atomic

shell structure. The most famous problem is the so-called Teller's �no-binding theorem� [172]: It

loosely speaking states that in TF theory neutral atoms or, with some restrictions, ions do not

form molecules or solids. This makes the model unsuitable for chemistry or material sciences at

normal temperatures and pressures.

Dirac [34] extended this approach by incorporating exchange phenomena using Hartree-Fock

theory in terms of a density function. Additionally, as a leading-order correction to the kinetic

energy, the von Weizsäcker's gradient term [185] corresponding to particles very close to the

nucleus was added, resulting in Thomas-Fermi-Dirac-von Weizsäcker (TFDW) theory

E T F DW
Z (N ) := inf

�
ET F DW [� ] : � � 0;

p
� 2 H 1(R3);

Z

R3
� dx = N

�
;

with the energy functional being

ET F DW [� ] = cT F

Z

R3
� 5=3(x) dx +

Z

R3
Vext (x)� (x) dx +

1
2

Z

R3

Z

R3

� (x)� (y)
jx � yj

dx dy

+ cW

Z

R3

�
�r

p
� (x)

�
�2 dx � cD

Z

R3
� 4=3(x) dx:

The exact value of the physical constantscT F ; cW , and cD can be found in, e.g., [108]. The

fact that the above problem has minimizers was proven by Lions [117] for positively charged

and neutral moleculesN � Z . Le Bris [94] extended this to slightly negatively charged ions,

i.e., N � Z + " for some" > 0.

The behavior of the of the energy with respect to the particle number, while completely under-

stood in Thomas-Fermi theory (see Figure 3.1), is here more intricate due to the concavity of

the Dirac term.

Figure 3.1: The Thomas-Fermi energyET F (N ) with respect to the particle number N . For
positively charged systemsN < Z it is strictly convex, for N > Z it remains constant.
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This can be seen from the fact that non-existence for largeN has been solved only quite recently,

in the special caseZ = 0 by Lu and Otto [119], and for Z > 0 but very small by Nam and

Bosch [130]. Another approximation method, which in contrast to TF satis�es the shell structure

coming from the Pauli exclusion principle, is Hartree-Fock (HF) theory.

In [70, 71], Hartree introduced a scheme for calculating the wavefunction of an atom and with

it the idea of a �self-consistent �eld�. In his approach, the wavefunction of an electron i is

determined by the �eld of the nucleus and the other electrons. One starts with an approximate

�eld and iterates until input and output �elds for all electrons are the same. The complete

N -particle wavefunction is then given by the product

	( z1; : : : ; zN ) =  1(z1) � : : : �  N (zN ); (3.2)

where the i are orthonormal and each i solves a Schrödinger equation with a potential created

by the average �eld of the other electrons.

This �Hartree approximation� was generalized to more complex systems by Fock [49] and Slater

[163]. They replaced the product in (3.2) by a determinant satisfying the Pauli exclusion prin-

ciple, later called Slater determinant, i.e.,	 took now the form

	( z1; : : : ; xN ) =
1

p
N !

det

0

B
B
@

 1(z1) : : :  1(zN )
...

. . .
...

 N (z1) : : :  N (zN )

1

C
C
A :

From a modern perspective, this corresponds to the orthonormal projection of the tensor product

in (3.2) onto the antisymmetric-subspace ofL 2
�
(R3

� )N
�
. Plugging this ansatz into the eletronic

energy functional Eel from (2.20) leads to the so-called Hartree-Fock energy,

EHF [	] =
NX

i =1

1
2

Z

R3
jr  i j2 dx +

NX

i =1

Z

R3
V(x)j i j2 dx +

1
2

X

i 6= j

Z

R3
� � R3

�

j i j2(z1)j j j2(z2)
jx1 � x2

dz1 dz2

�
1
2

X

i 6= j

Z

R3
� � R3

�

 �
i (z1) j (z1) �

i (z2) j (z2)
jx1 � x2

dz1 dz2: (3.3)

The self-consistent �eld of Hartree and the generalizations to determinants of wavefunctions

by Slater, Bloch, and Fock were followed by computations of Wigner and Seitz [189, 190], who

developed methods for treating the wavefunction in crystals. In the following years, many the-

oretical results, like the �Hellmann-Feynman theorem� [47, 75], provided more advances in the

development of approximate practical methods.

The starting point of modern density functional theory though can be traced back to Hohenberg

and Kohn [79] and the year 1964. In their paper, they showed a one-to-one correspondence

between the external potentialVext and the (non-degenerate) ground state wavefunction	 and

also between	 , and the ground state density� of an N -electron system,

� (r ) = N
Z

	 � (r; r 2; : : : ; rN )	( r; r 2; : : : ; rN ) dr2 : : : drN ; (3.4)
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where the spin coordinates are not shown explicitly. Through the density� , the external potential

and thus the Hamiltonian can be determined up to a constant. Hence,� su�ces to establish the

excited states as well as the ground state.

In order to apply these ideas to the total energy, they de�ned the universal functionalF [� (r )],

which is valid for any external potential,

F [� ] = h	 � jT + Veej	 � i : (3.5)

Here,T denotes the kinetic energy andVee the electron-electron interaction potential. Hohenberg

and Kohn showed that the energy functionalE[�; V ext ] satis�es a variational principle

EGS = min
�

E[�; V ext ] with E[�; V ext ] =
Z

Vext � dx + F [� ]: (3.6)

The task, which now remains, is �nding good approximations to the functionalF [� ]. This is the

content of the famous paper [87] by Kohn and Sham. Their approach was the following:

F [� ] = TKS [� ] +
1
2

Z

R3
� � d x + Exc [� ]; (3.7)

whereTKS is the kinetic energy corresponding to a system without electron-electron interactions,

� is the classical Coulomb potential for electrons, andExc describes the exchange-correlation

energy. Even thoughTKS is not the true kinetic energy, it is of comparable magnitude and hence

treated here without approximation. This removes many of the de�ciencies of Thomas-Fermi

theory, such as the absence of chemical bonding in molecules and solids [84].

The only term in (3.7), which can not be evaluated exactly, isExc , so approximations for this

term are crucial in applications. Kohn and Sham [87] proposed using the so-called local density

approximation (LDA)

E LDA
xc =

Z

R3
� (x)" xc(� (x)) dx; (3.8)

where " xc describes the exchange-correlation energy per particle of a homogeneous electron gas.

Note, in mathematics the compact notation exc(� ) = �" xc(� ) is more common and will be used

from now on in this thesis.

This approximation works quite well if the density is almost constant, as well as at high densities,

where the kinetic energy dominates the exchange correlation terms. The DFT was soon extended

to �nite temperature [124], spin-polarized systems or external magnetic �elds [144, 184], and in

the 1980s time dependence [120,149,165,194] was brought into the picture.

More complex exchange-correlation functionals, like the local spin density approximations (LSDA)

or the X � approximation followed quickly. But since these can lead to overbinding of molecules

and the corresponding Kohn-Sham eigenvalues often underestimate the optical band gaps mea-

sured in experiments, improved approximations with less mathematical rigor were developed.

Functionals relying on the gradient of the density, i.e., setting" xc = " xc(�; r � ) in (3.8), called

generalized gradient approximation (GGA) [8, 95, 136], did lead to better results in most cases.

Additionally, hybrid functionals, which included a Hartree-Fock-like exchange component, were
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introduced by Becke [9]. His exchange functional has three parameters and used the correla-

tion part from Lee, Yang, and Parr [95] leading to the name B3LYP. It is to this day the most

commonly used approximation in chemical applications [14].

Over the years, many more empirical functionals have been proposed with parameters often

�tted to data of particular types of molecules. Relying too much on experimental data gave

some scientists the impression that DFT is semiempirical in nature [84].

To counteract this development, others proposed an alternative path. In particular, Perdew

and collaborators developed a sequence of approximations without experimental input. They

used the metaphor ofJacob's Ladder, where eachrung builds on the experience of the lower

levels and satis�es certain physical restraints. Their GGA functional PBE (Perdew, Burke and

Ernzerhof [137]) incorporates LSAD from below it and themeta-GGA from TPSS [171] builds

on both of them.

While climbing this ladder, the computational cost increases and the agreement with exper-

iments usually improves, but the theoretical interpretation becomes less clear. As observed

in [123], starting in the early 2000s, newer approximations actually become worse in predicting

the electron densities. This is due to only focusing on the energies and in the process sacri�cing

mathematical rigor in favor of the �exibility of �tting to empirical data.

Historically it took quite some time for DFT to get widely accepted in the applied sciences like

quantum chemistry or solid state physics, as can be seen in Figure 3.2.

Figure 3.2: Number of publications per yeas (1975 � 2014) on topics (�density functional� or
�DFT�), according to the Web of Science Core Collection (February 2015). [84]

The condensed matter theorist Heine [73] looked back on the developments like this:

�Of course at the beginning of the 1960s the big event was the Kohn Hohenberg Sham

reformulation of quantum mechanics in terms of density functional theory (DFT). Well, we

recognize it now as a big event, but it did not seem so at the time. That was the second

big mistake of my life, not to see its importance, but then neither did the authors judging

from the talks they gave, nor anyone else. Did you ever wonder why they never did any

calculations with it?�
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The Seventh International Congress of Quantum Chemistry in 1991 is considered by many a ma-

jor turning point in the fortunes of DFT methods, particularly in chemistry. During the congress,

the presentation of DFT methods led to various discussions among skeptics and proponents.

Despite the opposition in the beginning, this exchange resulted in increasing interest and research

on DFT, and it thus became a more widely spread research area also in quantum chemistry.

Note that the variation in the number of citations in Figure 3.2 should be interpreted with

caution. Many articles which nowadays would be associated to DFT made no reference to it.

Jones in [84] formulates it as follows: �it seems that many realized around this time that they

had been doing density functional calculations all along.�

3.2 Modern Density Functional Formalism

Now, we want to precisely de�ne the mathematical framework needed to investigate DFT. We

follow here the modern formalism introduced by Levy [104] and made rigorous by Lieb [109]. For

a nice introduction to DFT from an applied mathematics point of view, see [114]. Additional

standard references for this would be [134] or [42]. For an overview over DFT with the focus on the

di�erent exchange-correlation functionals, we suggest the nice review article by J. Toulouse [175].

3.2.1 Hohenberg-Kohn Theorem

Recall the quantum mechanical energy functional in the Born-Oppenheimer approximation

Eel[	] := T[	] + Vne[	] + Vee[	] ; (3.9)

where

T[	] :=
1
2

Z

(R3
� )N

NX

i =1

jr x i 	( x1; s1; : : : ; xN ; sN )j2 dz1 : : : dzN

describes the kinetic energy,

Vne[	] :=
Z

(R3
� )N

NX

i =1

V(x i ) j	( x1; s1; : : : ; xN ; sN )j2 dz1 : : : dzN

gives the electron-nuclei interaction energy, and

Vee[	] :=
Z

(R3
� )N

X

1� i<j � N

vee(x i � x j ) j	( x1; s1; : : : ; xN ; sN )j2 dz1 : : : dzN

is the electron-electron interaction energy. Here,V denotes the external potential, usually the

Coulomb potential and vee gives the interaction between the electrons through the Coulomb

interaction vee(x) = 1
jxj . Furthermore, note

R

R3
�

f (z) dz =
P

s2 �

R
R3 f (x; s) dx has been used as
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a shorthand notation. We are then interested in the exact quantum mechanical ground state

energy

E el
0 = inf

	 2A N
Eel[	] : (3.10)

At the heart of the DFT approach lies the one-body density � 	 of an N -particle fermionic

wavefunction de�ned by

� 	 (x) := N
X

� 1 ;:::;� N 2 �

Z

R3
: : :

Z

R3

�
� 	( x; � 1; x2; � 2; : : : ; xN ; � N )

�
�2 dx2 : : : dxN : (3.11)

We can interpret � 	 as providing the average number of particles in space, without taking their

spin component into account, hence the normalization factorN in (3.11).

The main idea now is to replace the in�mum over	 in (3.10) by a two-step minimization of the

form

inf
	

Eel[	] = inf
�

inf
	

� 	 = �

Eel[	] ; (3.12)

where on the right hand side the minimization is done �rst over the density � and then over

all the wavefunctions 	 having this prescribed density. This simple looking procedure allows

to partition the energy functional into two parts: T + Vee being universal, i.e., independent of

the external potential and thus the same for all molecules, andVne being chemically speci�c,

i.e., it is the only term incorporating the structure of the clamped nuclei. Therefore, we de�ne

the Levy-Lieb functional

FLL [� ] := inf
	 2A N
� 	 = �

�
T [	] + Vee[	]

�
(3.13)

and the Hohenberg-Kohn energy functional

EHK [� ] = FLL [� ] +
Z

R3
V(x)� (x) dx: (3.14)

Note that the universal functional FLL : R N ! R is well-de�ned and the in�mum in (3.13) is

actually a minimum [109], when� belongs to the class (3.15) below.

The �rst essential challenge is to identify the set of N -representable densities, that is, those

arising from an N -particle wavefunction 	 2 A N ,

R N :=
�

� : R3 ! R : � is the density of some wavefunction	 2 A N

�
: (3.15)

One necessary condition comes from the Ho�mann-Ostenhof inequality [78]

NX

i =1

Z

�
R3

�

� N

�
�r x i 	( x1; � 1; : : : ; xN ; � N )

�
�2 dz1 : : : dzN �

Z

R3

�
�
p

r � 	 (x)
�
�2 dx; (3.16)

implying that
p

� 	 2 H 1(R3).
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A beautiful result by Lieb [109] proves this restriction to be optimal, i.e.,

R N :=
�

� : R3 ! R : � � 0;
p

� 2 H 1(R3);
Z

R3
� (x) dx = N

�
:

Note, due to the Sobolev embeddingH 1(R3) ,! L 6(R3) we have� 2 L 3(R3). Combining this

with the dual relation
�

L 3(R3) [ L 1(R3)
| {z }

�R N 3 �

� �

= L 3=2(R3) + L 1 (R3);

we see that the chemically speci�c term
R

R3 V(x)� (x) dx is well-de�ned for the entire class of

potentials V 2 L 3=2(R3) + L 1 (R3): In particular, this includes the Coulomb potential which is

not in any L p-space.

Therefore, the Hohenberg-Kohn ground state energy becomes

E HK
0 := inf

� 2R N
EHK [� ] := inf

� 2R N

�
FLL [� ] +

Z

R3
V(x)� (x) dx

�
: (3.17)

As mentioned above, this constrained-search de�nition ofFLL is due to Levy and Lieb [104,109];

historically, in the original paper [79] by Hohenberg and Kohn, the functional was constructed

in a more indirect and slightly less general way. They required� to be the density of some

wavefunction 	 , which is a non-degenerate ground state ofEel for some potentialV , and proved

that two potentials di�ering by more than a constant produce di�erent densities.

We summaries the results by Hohenberg and Kohn in the following Theorem.

Theorem 3.1 (Hohenberg-Kohn, 1964, modern version)
In the above setting the following two statements hold.

(i) (ground state energy) Both minimizations yield the same energy, i.e.,

E HK
0 = inf

� 2R N
EHK [� ] = inf

	 2A N
Eel[	] = E el

0 : (3.18)

(ii) (ground state density) There exists a minimizer � 2 R N of EHK if and only if there
exists 	 2 A N with � 	 = � and 	 being a minimizer of Eel.

(iii) (external potential) There exists a one-to-one correspondence between the external po-
tential V (x) and the ground-state density� (x), i.e., the external potential is a unique
functional (up to an additive constant) of the ground-state densityV [� ](x).

So the minimization over the lower dimensional functionalEHK correctly predicts the exact
quantum mechanical electron energy and density of the whole system.

It is important to mention that the last point of the above Theorem, while accepted in the

physics literature, is not completely settled in mathematics, in the sense that the exact necessary

assumptions for its validity are not yet fully understood mathematically. This is related to the

V -representability problem [42, 122], as well as the many-body unique continuation principle
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[91, 106]. A signi�cant milestone towards understanding this problem is due to Garrigue [59].

He proved the validity of the Hohenberg-Kohn theorem under the assumption that all involved

potentials are in L p(Rd) + L 1 (Rd) with p > max
� 2d

3 ; 2
	

, which in particular includes the

Coulomb potential.

The astonishing result here is that the admissible setR N of densities carries the same information

asA N , but its size does not depend onN . Thus, if one had an explicit form for FLL , there would

be no curse of dimension anymore.

Let us conclude this section by emphasizing that the beautiful but counter-intuitive idea here

was to go from an original linear problem to a nonlinear one in fewer variables, opposite to the

common strategy in undergraduate mathematics to linearize nonlinear problems.

3.2.2 Kohn-Sham Equations

The problem one now faces is that there is no tractable expression ofFLL , which could be used

in practice. Ideally, one would want an expression in terms of the density� for the kinetic energy

T[� ] and inter-particle potential Vee[� ].

The idea by Kohn and Sham [87] was to consider a (�ctional) non-interacting system, described

by some e�ective potential vs, i.e.,

Hs = � 1
2 � +

NX

i =1

vs(x i ); Hs� � = Es� � ;

with the constraint that � � gives the same density� (and chemical potential � ) as 	 � which is

guaranteed by the Hohenberg-Kohn theorem. Note, since we are dealing with a non-interacting

system, the minimizer � � is a Slater determinant, � � = j' 1 : : : ' N i for some orbitals f ' i gN
i =1 .

Furthermore, for a Slater determinant the one-body density can be computed in terms of the

orbitals, to yield

� =
NX

i =1

X

s2 �

j' i (x; s)j2 dx:

Next, since the in�mum in the de�nition of FLL is attained [109] and we have a one-to-one

correspondence between density and wavefunction, we obtain

FLL [� ] = T[� ] + Vee[� ] = h	 � j � 1
2 � + Veej	 � i

= h� � j � 1
2 � + Veej� � i + Ec[� ];

where the correlation energy is de�ned through the last equality. Since we are dealing with a

non-interacting system, the kinetic energyTs[� ] = h� � j � 1
2 � j� � i can be written directly in terms

of the orbitals

Ts[� ] =
1
2

NX

i =1

Z

R3
�

jr ' i j2(z) dz:
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To understand the approximation of the interaction potential, let us note that Vee[	] can be

expressed explicitly through the pair density

� 	
2 (x; y) =

�
N
2

� Z

(R3 )N � 2

X

� 1 ;:::;� N 2 �

�
� 	( x; � 1; y; � 2; x3; � 3; : : : ; xN ; � N )

�
�2 dx3 : : : dxN ;

in the form

Vee[	] =
Z

R3

Z

R3

� 	
2 (x; y)
jx � yj

dx dy:

Starting now with a statistical independence ansatz, i.e.,

� 2(x; y) =
1
2

� (x)� (y); (3.19)

gives the following form for the electron-electron interaction:

h� � jVeej� � i = J [� ] + Ex [� ]; J [� ] =
1
2

Z

R3

Z

R3

� (x)� (y)
jx � yj

dx dy;

where the exchange energyEx [� ] is again de�ned such that equality holds. Finally,

FLL [� ] = Ts[� ] + J [� ]
| {z }
treated exactly

+ Exc [� ]; Exc [� ] = Ec[� ] + Ex [� ]:

Now, the coupling of the �ctional and the real system via the density comes into play. Consider

the Euler-Lagrange equations of both systems with the chemical potential� as the Lagrange

multiplier

@Ts
@�(x)

+ vs(x) = �;

@Ts
@�(x)

+
@J

@�(x)
+

@Exc

@�(x)
+ v(x) = �:

9
>>=

>>;
same solution (�ctional & real system)

From this, we obtain for the e�ective potential vs:

vs(x) = v(x) +
Z

R3

� (y)
jx � yj

dy + vxc
�
[� ]; x

�
; vxc

�
[� ]; x

�
=

@Exc

@�(x)
:

Plugging this back into our energy functional, and using the explicit structure of the kinetic term

Ts in terms of the orbitals, gives the Kohn-Sham energy functional

EKS [�] =
NX

i =1

1
2

Z

R3
jr ' i (z)j2 dz +

Z

R3
v� dx + 1

2

Z

R3

Z

R3

� (x)� (y)
jx � yj

dx dy + Exc [� ]: (3.20)

Up until this point, no approximation has been made, since everything was absorbed into the

exchange-correlation energy. Thus, we have just shifted our problem to �nding a good approxi-

mation of Exc [� ], which will be discussed in the next subsection.

Before we move on, let make some remarks. First, the orbitals in the above equation are known

as the Kohn-Sham ortbials. Since these orbitals come from the �ctitious non-interacting system,
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they are only connected to the real system by having the same density. A direct interpretation,

while widely done in practice is not completely justi�ed, see, e.g., [166,176].

In practice, one usually computes these orbitals by using the self-consistent Kohn-Sham scheme:

�
� 1

2 � + v(x) +
Z

R3

� (y)
jx � yj

dy + vxc
�
[� ]; x

�
�

| {z }
H KS

' i = " i ' i ; � =
NX

i =1

j' i j2 ' i

vs

�

As depicted by the small graphical loop, one starts with an educated guess for the orbitals, then

computes the density, and from there the e�ective potential vs. Then, by solving the Kohn-

Sham equations one obtains an updated version of the orbitals. This scheme is performed until

convergence. The eigenvalues appearing in the Kohn-Sham equations are known as the Kohn-

Sham eigenvalues. There is a lot of discussion about the interpretation of the KS orbitals and

eigenvalues. Since they come from the �ctitious non-interacting system, and are only connected

to the real system by having the same density, a direct interpretation, while sometimes loosely

done in practice, is not theoretically justi�ed, see, e.g., [166,176].

3.2.3 Exchange-Correlation Functionals

Thus, the challenge becomes �nding an accurate approximation forExc [� ]. As mentioned already

in Section 3.1, there is a huge variety of di�erent exchange-correlation functionals (see, e.g., [9,

136, 140, 141]), each with its advantages and disadvantages, see, e.g., the Libxc library [102]

or [121] for an overview.

In the following, we will only consider a certain class of functionals, namely the so-called local

density approximation (LDA), proposed by Kohn and Sham [87]. Here, the exchange correlation

functional is assumed to be of the form

Exc [� ] =
Z

R3
exc(� (x)) dx; (3.21)

where the function exc : [0; 1 ] ! R has to ful�ll certain properties. This usually includes some

weak smoothness assumptions (exc 2 C1([0; 1 ]) as well as growth conditions.

The prototypical example for an Exc [� ] approximation stems from examining the homogeneous

electron gas. In this system, one considersN non-interacting electrons in a 3 dimensional box of

side lengthL , and then considers the thermodynamic limitN; L ! 1 , while keeping the density

� = N
L 3 constant.

Here, one is then able to calculate the exchange energy (note there is no correlation) exactly. It

goes back to Dirac [34] (for a mathematical derivation see [52]) and is given by

Exc [� ] =
Z

R3
exc(� (x)) dx; exc(� ) = � cxc � 4=3; cxc =

3
4

�
3
�

� 1=3

: (3.22)

This is included in almost all LDA type functionals as the exchange term with additive correlation

corrections.
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As mentioned in Section 3.1, functionals currently used in practice, like the `B3LYP' functional

of Becke, Lee, Yang, and Parr [9, 15], rely on more complicated forms (e.g., local in� , or local

in � and r � with even additional terms depending non-locally on the KS orbitals), which are

from a mathematical point of view questionable. These semi-empirical approaches require �tting

of parameters to experimental or high-accuracy-computational data and have only lead to an

improvement in accuracy over the local density approximation of approximately one order of

magnitude [29].

Plugging the above ansatz (3.22) into (3.20), we obtain

E el
0 � E LDA

0 =

inf
�

1
2

NX

i =1

Z

R3
�

jr ' i j2(z) dz +
Z

R3
V(x)� (x) dx +

Z

R3

Z

R3

� (x)� (y)
jx � yj

dx dy +
Z

R3
exc(� (x)) dx

�
�
�
�

' i 2 H 1(R3
� );

Z

R3
�

' i (z)' j (z) dz = � ij ; � (x) =
NX

i =1

X

s2 �

j' i (x; s)j2
�

:

Although LDA leads to one of the simplest types of DFT energy functionals, it is considered �the

mother of all approximations� [139] and even here the resulting mathematical properties are still

far from being well understood.

Proving the existence of minimizers is made di�cult by the non-convexity of the problem due

to the LDA term. Using concentration-compactness techniques, introduced by Lions [115, 116],

it became possible to prove the existence of minimizers in several cases. Le Bris [93] proved

that for a neutral or positively charged system, the Kohn-Sham problem with LDA exchange-

correlation energy admits a minimizer. Anantharaman and Cancès [2] generalized this to the

so-called extended Kohn-Sham model with LDA exchange-correlation energy and also GGA

exchange-correlation in the one orbital case.

Additionally, the question of existence and uniqueness of �nite temperature Kohn-Sham equation

has been studied in [142]. For a discussion of the Kohn-Sham equations in the context of crystals,

see the works of E and Lu [38�41].

Beyond these existence results, little is known in regards to, e.g., uniqueness of solutions or

compactness of the various operators associated with the Kohn-Sham equation. Also, in contrast

to more conventional macroscopic continuum models, it is not clear how the physical nature of

the underlying material, for example, whether it is a metal or an insulator, is re�ected at the

mathematical level [41].

The �rst mathematically rigorous justi�cation of the LDA approach, in the appropriate regime

where � is �at in su�ciently large regions of R3, was given in [107]. Here, the authors provided

a quantitative estimate on the di�erence between Levy-Lieb energy functional in the the grand-

canonical setting of a given density and the integral over the Uniform Electron Gas energy of

this density.

The following section shortly puts the results from Core Articles I and III into context with

related results from the literature. For a more thorough discussion of the techniques used as well

as our own contribution to these papers, see Appendices A.1 and A.3.
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3.3 Contributions in the Analysis of Density Functional Theory
and Related Literature

Our analysis concentrates on the question, whether two main properties, which we have encoun-

tered in the quantum mechanical setting in Chapter 2, carry over to the DFT setting. As we

have seen in this chapter, due to the Hohenberg-Kohn theorem, if we could use the exact but

unknown exchange-correlation functional, all properties of full quantum mechanics would persist

in DFT, as there is no approximation.

What we are interested in is the question: If we consider the approximations used in practice, in

particular the LDA approximations, can we still say the same? The two properties investigated

in our work are the existence of excited states and the dissociation limit, i.e., the analogon of

Theorem 2.4 and Theorem 2.5, respectively.

3.3.1 Excitations in Density Functional Theory

Electronic excitations play an important role in the description of molecular properties such

as absorption spectra, photoexcitation, state-to-state transition probabilities, reactivity, charge

transfer processes, and reaction kinetics [30,31,77]. Therefore, improved understanding of exited

states and their properties is essential in any electronic structure theory.

That said, we are not aware of any previous rigorous results on excitations in KS-DFT. Thus

in Core Article I, we mathematical analyze the simplest such excitations, HOMO-LUMO tran-

sitions, de�ned below, in the setting of the local density approximation (LDA). Treatment of

the whole excitation spectrum, as well as of many-body corrections like the Casida ansatz, lie

beyond the scope of our investigation.

In this transition, an electron pair migrates from the highest occupied molecular orbital(HOMO)

to the lowest unoccupied molecular orbital(LUMO). For the KS-orbitals � = ( ' 1; : : : ; ' n ) ordered

by the size of their eigenvalue, this means

�
' 1; : : : ; ' n� 1; ' n

�
�!

�
' 1; : : : ; ' n� 1; ' n+1

�
; (3.23)

where ' n is the HOMO and ' n+1 � the eigenstate corresponding to the next higher eigenvalue

of the KS Hamiltonian � is the LUMO.

For a systematic comparison of HOMO-LUMO excitations with experimental data, see, e.g.,

[4,195].

To de�ne HOMO and LUMO in a variational way, we consider the excitation energy functional

[57] given by the quadratic form associated with KS Hamiltonian HKS , which allows for a

convenient mathematical analysis of optimal excitations irrespective of degeneracies.

For positively charged systems (i.e., total nuclear chargeZ greater than the number N of elec-

trons), we prove such excitations exist, under realistic assumptions on the exchange-correlation

functional, which we verify explicitly for the widely used PZ81 [141] and PW92 [140] functionals.

By contrast, the neutral caseZ = N holds a surprise. In the cases of the hydrogen and helium

atoms, we prove that excited states do not exist when the self-consistent KS ground state density
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is replaced by a realistic but easier to analyze closed-form approximation (in case of hydrogen,

the true Schrödinger ground state density). Figure 3.3 summarizes these results.

Figure 3.3: Schematic picture of the spectrum of the KS Hamiltonian [54]. Positively charged
systems (left, Z > N ) have in�nitely many excited states above the HOMO and below the
continuous spectrum. For neutral systems (right, Z = N ), it can happen that there are no
excited states, that is, the highest bound state eigenvalue is the HOMO

The quadratic functional minimized by excitations can be viewed as an approximation to the

Kohn-Sham energy functional. As already pointed out in Section 3.1, the latter is closely related

to the Thomas-Fermi-Dirac-von Weizsäcker functional, for which an interesting nonexistence

result of minimizers was proved via completely di�erent methods in [119].

Physically, these results indicate a signi�cant artefact of KS-DFT. In the full N -electron Schrödinger

equation, neutral systems (and even systems withZ > N � 1) are known to possess in�nitely

many excited states below the bottom of the continuous spectrum, see Section 2.4. The analo-

gous result also holds in Hartree-Fock theory: ForZ > N the Fock operator associated with the

Hartree-Fock ground state density possesses in�nitely many bound states below the continuous

spectrum [117, Lemma II.3], the latter being the interval [0; 1 ). It is also known [105] that

the Hartree-Fock energy functional possesses in�nitely many critical points below 0. Our results

suggest that in KS-DFT, the threshold for existence of in�nitely many excited states is shifted

from Z > N � 1 to Z > N . This is a previously unnoticed but important qualitative consequence

of the (well known) incomplete cancellation of the self-interaction energy in KS-DFT.

It is interesting to interpret the nonexistence of excitations from the point of view of numerical

computations in �nite basis sets or mathematical analysis (as in [57]) in bounded domains.

Consider a neutral system for which (exact) excitations do not exist. In a �nite basis set, or a

bounded domain, the spectrum of the KS Hamiltonian is purely discrete and therefore excited

states exist. In the limit as the basis set approaches completeness, or the domain approaches the

whole of R3,

(i) the LUMO energy "L (the lowest unoccupied eigenvalue of the KS Hamiltonian) will remain

well-de�ned, and approaches the bottom of the continuous spectrum which equals0,
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(ii) the LUMO (i.e., the lowest unoccupied eigenstate) will become more and more delocalized,

failing to converge to a bound state.

Thus, in contrast to common (explicit or implicit) belief, restriction to �nite basis sets or bounded

domains may be not just a negligible technicality, but signi�cantly alters the physical nature of

LUMO excitations, from a stable bound state (i.e., invariant under the dynamics of the KS ground

state Hamiltonian) to a delocalized, dispersing state associated with the continuous spectrum.

Point (ii) makes it very tempting to physically interpret the HOMO-LUMO excitation in the

nonexistence case as an (approximation to an) ionization process. This interpretation together

with (i) yields ionization potential � "L � "H = 0 � "H (where "H is the HOMO energy, i.e.

the highest occupied eigenvalue of the KS Hamiltonian), lending new theoretical support to the

famous semi-empirical formula

� "H � ionization potential

which often agrees quite well with experimental data [4,195].

3.3.2 Dissociation Limit in Kohn-Sham DFT

As mentioned above, here we deal with the question whether or not the energy of a molecule

dissociates correctly in KS-DFT with the LDA exchange-correlation functional. Understanding

such problems and the precise electron con�gurations is important for further developing density

functional theory [26,27]. Our main result takes the following form.

Theorem 3.2 (Main Theorem of [11] � Informal Version)
Let E X 2

2N;R and E X
� be the energy of theX 2� molecule with distanceR between the atoms and

of the X -atom with � electrons, respectively. Then we have

lim
R!1

E X 2
2N;R = min

� 2 [0;N ]

�
E X

� + E X
2N � �

�
: (3.24)

Thus, in contrast to the classical dissociation, here we can in general only prove that in the

limit the system splits into two independent subsystems with their individual electron mass

summing up to the one of the original system. One would expect from physical intuition that

the optimal splitting occurs for the symmetric case, i.e., the electrons are distributed evenly over

the subsystems. As we study in our paper, this is not always true, but rather which splitting

is the most stable depends on the strength of the exchange. We quantify this by analyzing our

result more deeply for the Dirac exchange by varying the �strength� of the exchange, i.e., the

constant cxc . As it turns out, if cxc becomes too large, then symmetry splitting takes place, in

the sense that the minimum in (3.24) is not attained at N . Figure 3.4 depicts our numerical

results for the hydrogen case, obtained using the OCTOPUS package [3].

These issues in LDA-DFT and related theories like Thomas-Fermi-Dirac-von Weizsäcker are

caused by the Dirac term�
R

� 4=3, which to some extent makes the functional concave and can

thus lead also to nonattainment, see [119].

Similar observations where made in case of theH2 molecule at �xed bond-length, see [80]. They

show that for �xed electron mass, the structure of the minimizing Kohn-Sham solutions change
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Figure 3.4: The function � 7! E H
� + E H

2� � for increasing values ofcxc . Note that the plot in

the top left corner corresponds to the physically interesting case ofcxc = 3
4

� 3
�

� 1=3; here we get
numerically a symmetric splitting.

character with the variation of cxc as the parameters related to the relative strength of the

exchange-correlation component of the functional.

Additionally, similar results for periodic systems were found in [63]. Here, they prove symmetry

breaking in the Kohn-Sham model for a crystal with a large Dirac exchange coe�cient. In [148]

similar observations were made for the periodic TFDW model. For a discussion about the

related question of binding of atoms and stability of molecules in Hartree and Thomas�Fermi

type theories, see the paper series by Catto and Lions [19�22] as well as Lieb [108].

In general, symmetry breaking in quantum mechanical systems has been observed in various

settings like polaron models [50, 51] or in Hartree-Fock models of atoms [61, 62]. In the physics

literature, di�culties with dissociation calculations in DFT are a prominent topic [5,135,151,173],

but rigorous results in the general case are still lacking.

We are only aware of one other setting in the mathematical literature where dissociation is

rigorously discussed in the full limit R ! 1 , namely [24]. Here they consider the strictly

correlated electrons (SCE) limit [156�158]. Opposite to the independence ansatz in (3.19), the

pair density is here given by

� SCE
2 (x; y) =

1
2N

X

i 6= j

Z

R3
� (z)�

�
x � Ti (z)

�
�
�
y � Tj (z)

�
dz;

with Ti : R3 ! R3, i = 1 ; : : : ; N , being certain optimal transport maps. This connection of DFT

and optimal transport has been an interesting and fruitful discovery [28,29,58]. Here, the system

dissociates correctly, which is easier to prove since the di�cult lower bound is obtained in the

same way as in the quantum mechanical case, due to the only additional term beingV SCE
ee [� SCE

2 ],

which is positive.
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Chapter 4

Tensors and the Quantum Chemistry -
Density Matrix Renormalization Group

All truths are easy to understand once they are
discovered; the point is to discover them.

Galileo Galilei

This �nal chapter covers the second type of method for solving electronic structure problems

discussed in this thesis, theQuantum Chemistry�Density Matrix Renormalization Group (QC-

DMRG). While DFT is one of the main methods for large weakly correlated systems, in the

case of many strongly correlated electrons, there has been no clear choice for a method which

provides a su�ciently accurate, data-sparse representation of the exact many-body wavefunction

[169]. This is where QC-DMRG seems to provide promising results. As the name suggests, this

tensor method was inspired by the Density Matrix Renormalization Group (DMRG), one of the

most e�cient algorithms for numerical treatment of one-dimensional spin chain systems [128],

introduced by White [186,187]. The QC-DMRG method allows for very accurate computations,

but is limited to small systems (around � 50 electrons) due to its high computational cost. For

some recent implementations of this algorithm see [86,101,131,193].

As was discovered later on [35, 133], DMRG operates on a highly interesting class of quantum

states called matrix product states (also known as tensor-trains (TT) in mathematics). The

main idea for MPS consists in factorizing a tensor withL indices into a chain-like product of

tensors of order 3, i.e., matrices depending on an additional physical index, see Figure 4.3 below.

These physical indices correspond to the indices from the original tensor, while the other two,

the so-called virtual indices, give the matrix structure and are contracted over, see (4.4).

Even though it is well known that such a factorization always exists, the caveat is that, in

general, the size of the involved matrices (called the bond dimension) grows exponentially with

the system sizeL [153].

Contrary to the origin of MPS in spin physics, in quantum chemistry the sites are not identical

but correspond to molecular orbitals of the system, making the situation more intricate, as will

be discussed at the end of this chapter.
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We start by shortly recalling what a tensor is, then describe how to obtain the tensor structure

from our quantum chemical wavefunction. After precisely de�ning the framework needed for

MPS, we discuss the problem of how to choose a good tensor network to approximate the states,

which in case of a MPS boils down to how to order the underlying basis orbitals.

As in the previous chapter, we conclude with a detailed discussion of our own contributions to

some open problems in this research area.

4.1 What Is a Tensor?

Oversimpli�ed, tensors are just an array of numbers organized by multiple indices. Each entry

of the tensor is speci�ed by �xing values for the indices. In this thesis, we will usually denote a

tensor by the letter C and its entries, speci�ed by �xing each index i 1; : : : ; i d, by ci 1 ;:::;i d . The

order of a tensor is then the number of indices. For example, a scalarc has no indices, so it is a

tensor of order zero. Similarly, a matrix with entries cij is a tensor of order two, see Figure 4.1.

This is not limited to �nite dimension, i.e., a univariate function can also be considered to be a

tensor of order one, with the corresponding tensor of orderd being a multivariate function of d

variables.

Figure 4.1: Graphical representation of a scalar, a vector, a matrix, and a tensor of order 3.
Each small cube in the �gure represents one entry of the tensor.

Of course, tensors are not just grids of numbers. Like matrices, they are algebraic objects with

certain structures. Let us de�ne tensors as elements of a tensor product space.

De�nition 4.1 (The tensor product)
Let Vi be vector spaces over a �eldK. The tensor product V :=

N d
i =1 Vi = V1 
 : : : 
 Vd

consists of the linear span overK of all elements

v(1) 
 � � � 
 v(d) ; wherev(i ) 2 Vi : (4.1)

The notation 
 denotes the quotient of ordered tuples(v(1) ; : : : ; v(d) ), by relations
�
�v (1) � 
 � � � 
 v(d) = �

�
v(1) 
 � � � 
 v(d) � ;

and
�
v(1) + w(1) � 
 � � � 
 v(d) = v(1) 
 � � � 
 v(d) + w(1) 
 � � � 
 v(d) ;

where the vectorv(i ) 2 Vi , the vector w(i ) 2 V1 , and the scalar � 2 K. The analogous
equations on the other vector spacesV2; : : : ; Vd, also hold.
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Any product of the form (4.1) is called an elementary tensors. From here, we can de�ne a general

tensor, see also Figure 4.2.

De�nition 4.2 (General tensor and rank)
A tensor in

N d
i =1 Vi has rank one if it can be written as an elementary tensor. A general

tensor is a sum of rank one tensors

C =
rX

i =1

v(1)
i 
 � � � 
 v(d)

i ; wherev(j )
i 2 Vj :

The smallest number of rank one tensors that sum toC is called rank ofC.

Some remarks are in order: At �rst glance, this is just the generalization of the rank known

from matrices. While this is true there are some caveats in the cased � 3. First, �nding the

rank of a given tensor and thus the above decomposition � known as CP (canoncial polyadic)

decomposition � is in general NP-hard [88]. Second, the rank is not lower semi-continuous,

i.e., the set of tensors with rank smaller or equal to a given constant~r is not closed. This is

known as the border rank problem [67,92]. An easy and explicit example is due to De Silv and

Lim [32]: It is straigtforward to see that the tensors of rank two given by

An := n
�
x1 +

1
n

y1
�



�
x2 +

1
n

y2
�



�
x3 +

1
n

y3
�

� nx1 
 x2 
 x3

converge forn ! 1 to

A := x1 
 x2 
 y3 + x1 
 y2 
 x3 + y1 
 x2 
 x3;

with A having rank 3.

Figure 4.2: Graphical representation of a general tensor build from a sum of elementary tensors.

Furthermore, note that this de�nition covers algebraic tensor spacesV alg . In our case, the

Vi will be normed spaces and we are interested in the topological tensor spaceV top , which is

de�ned as the closure ofV alg with respect to a chosen norm. We will only be dealing with the

�nite-dimensional case, where all norms are equivalent and thus both notions agree. Let us just

mention that the choice of the norm in in�nite dimensions is more subtle; in particular, the norm

on the tensor space is not �xed by a choice for the norms of the underlying spacesVi .

For more detail, we refer to textbooks on this topic, such as [67], [143] and [92]. The �rst one is

most suited for the context of this thesis, as it focuses on the functional analysis of tensors with

39



Tensors and the Quantum Chemistry - Density Matrix Renormalization Group

numerical treatment of hierarchical tensor decompositions, with applications to solving partial

di�erential equations. The second one deals with spectral theory of tensors with applications to

hypergraph theory, whereas the last one presents the algebra point of view.

4.1.1 Symmetric and Antisymmetric Tensor Spaces

Next, let us de�ne the antisymmetric tensor product, which we will need to incorporate the Pauli

exclusion principle (2.18). Here, tensors are associated with coinciding vector spacesVj denoted

by V :

V := V1 = : : : = Vd:

Then, for any permutation � 2 Pd, where Pd denotes the set of bijections of the setf 1; : : : ; dg

onto itself, we obtain a linear map, again denoted by� , � : V ! V via

�

 
dO

i =1

v(i )

!

=
dO

i =1

v
�

� � 1 (i )
�
:

Each permutation � is a (possibly empty) product of transpositions: � = � � 1 � 1 � : : : � � � k � k

with � i 6= � i (1 � i � k). The number k determines the parity � 1 of the permutation � :

sign(� ) = ( � 1)k . With this we can give the following de�nition.

De�nition 4.3 ((Anti-)symmetric tensor spaces)
A tensor v 2 V is called symmetric if � (v) = v for all permutations and antisymmetric if
� (v) = sign( � )v. This de�nes the (anti)symmetric tensor space:

V sym : =
�

v 2 V : � (v) = v
	

; (4.2)

V anti : =
�

v 2 V : � (v) = sign( � )v
	

(4.3)

In the following, to emphasize the parameterd, we will use the notation
V d

j =1 V for the antisym-

metric tensor space, wherê denotes the exterior product.

4.1.2 The Tensor-Train Decomposition

In the following, we want to consider a decomposition of the tensorC of the form

C(i 1; : : : ; i d) = A1[i 1]A2[i 2] � � � Ad[i d] (4.4)

=
r 1X

� 1=1

r 2X

� 2=1

: : :
r d� 1X

� d� 1=1

A1(1; i 1; � 1)A2(� 1; i 2; � 2) � � � Ad(� d� 1; i d; 1); (4.5)

where theAk 2 Rr k � 1 � nk � r k are tensors of order 3. Note that for allk = 1 ; : : : ; d we havenk � 1

and moreover1 � r k � nk , as well as the conventionr0 = rd = 1 .

The representation in (4.4) is called a tensor-train (TT) decomposition, also known as matrix

product states (MPS) in physics. Moreover, the numbersr k are called the TT-ranks. The order-

3 tensors Ak are called the TT components. Figure 4.3 gives a visualization and shows the

underlying �train-structure�.
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Figure 4.3: Graphical representation of a tensor-train decomposition in the �nite-dimensional
case; the virtual indices� j are contracted over.

Note, an important property is that, in contrast to the manifold of tensors below certain rank,

the TT-manifold with TT-ranks below a certain value is closed, see [67]. Let us give an example

to clarify the de�nition and show, why such a representation could be useful.

Consider the tensorC 2 R3� 4� 5, de�ned by

C(i 1; i 2; i 3) = i 1 + i 2 + i 3; i 1 2 [3]; i 2 2 [4]; i 3 2 [5];

where we used the shorthand notation[n] := f 1; : : : ; ng. Then we can write C in the following

form

C(i 1; i 2; i 3) =
�

1 i 1

�
�

 
1 i 2

0 1

!

�

 
i 3

1

!

=
�

1 i 1

�
�

 
i 2 + i 3

1

!

= i 1 + i 2 + i 3:

Thus by de�ning the matrices

A1[i 1] =
�

1 i 1

�
2 R1� 2; i 1 2 [3];

A2[i 2] =

 
1 i 2

0 1

!

2 R2� 2; i 2 2 [4];

A3[i 3] =

 
i 3

1

!

2 R2� 1; i 3 2 [5];

we found a MPS representation of our tensor

C(i 1; i 2; i 3) = A1[i 1]A2[i 2]A3[i 3]:

Note that the tensor C has 3 � 4 � 5 = 60 elements, while the TT decomposition uses only

(1 � 2 � 3) + (2 � 2 � 4) + (2 � 1 � 5) = 32 elements to represent it. So, we almost need only half

the storage for the TT decomposition. In general, if we de�neR := max f r1; : : : ; rd� 1g and

N := max f n1; : : : ; ndg, then the number of matrix elements we have to store for our MPS

representation is bounded by

M =
dX

k=1

nk � (r k� 1 � r k ) � d � N � R2:

In particular, we expect that M � n1 � n2 � � � nd.

Next, we want to de�ne the important concept of an unfolding of a tensor.
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De�nition 4.4 (Unfolding matrices)
Let C 2 Rn1 � :::� nd be a tensor of orderd, and let

� k :=
kY

s=1

ns and � k :=
dY

s= k+1

ns; k = 1 ; : : : ; d � 1:

Then the kth unfolding matrix Ck = C i 1 ;:::;i k
i k +1 :::i d

2 R� k � � k of C is de�ned by

C
�
(i 1; : : : ; i k ); ( i k+1 ; : : : ; i d)

�
:= C(i 1; : : : ; i d); i s 2 [ns]; s = 1 ; : : : ; d;

where the indices(i 1; : : : ; i k ) enumerate the rows, and(i k+1 ; : : : ; i d) enumerate the columns
of the matrix Ck in colexicographic order, i.e., in column-major order.

Note that this is usually implemented in programming languages like MATLAB or julia by a

single call of the reshape function:

Ck = reshape(C; � k ; � k ):

As another example, consider the tensorC 2 R2� 2� 2, de�ned by

C(i 1; i 2; i 3) = i 1 � 102 + i 2 � 10 + i 3; i 1; i 2; i 3 2 [2]:

Then, the unfolding matrices C1 2 R2� 4 and C2 2 R4� 2 are given by

C1 =

 
111 121 112 122

211 221 212 222

!

; C2 =

0

B
B
B
B
@

111 112

211 212

121 122

221 222

1

C
C
C
C
A

:

Lemma 4.5 (TT-rank equals separation rank [81], [67] )
Let C 2 Cn1 � :::� nd be an arbitrary tensor of orderd. For each unfolding matrix Ck let

r k = rank( Ck ); k = 1 ; : : : ; d � 1:

Then, C admits a TT-decomposition withAk of sizen � r k and Ak+1 of sizer k � m, for some
n; m 2 N, i.e., with TT-ranks not higher than r k . Also, there exists a TT-decomposition with
all r k being simultaneously minimal.

Before we describe the algorithm to construct a TT representation for any given tensorC, we

want to de�ne an important property of the involved tensor components Ak of order 3. Note

that we only de�ne the left-normalized version, but right-normalized tensor are de�ned in an

analogous way. Furthermore, sometimes this property is also called left-orthogonal.
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De�nition 4.6 (Left-normalized)
Let Ak 2 Cr k � 1 � nk � r k be an tensor of order 3. Then,Ak is said to be left-normalized, if

nkX

i k =1

Ak [i k ]yAk [i k ] = Id r k � r k :

Now, we present the higher-order singular value decomposition algorithm, which takes an arbi-

trary tensor C of order d as input and constructs a left-normalized TT decomposition, see [132].

Note that the matrix size which this algorithm produces grows in general exponentially.

Algorithm 1 Higher-order singular value decomposition (HOSVD)

Input : A tensor C 2 Cn1 � :::� nd of order d � 1 ;
Output : Matrices Ak [i k ] 2 Cr k � 1 � r k ; i k 2 [nk ], k = 1 ; : : : ; d; such that

C(i 1; : : : ; i d) = A1[i 1] � � � Ad[i d]:

1: Compute the unfolding C1 2 Cn1 � � 1 with � 1 = n2 � � � nd;
2: Perform a (thin) SVD of C1:

C1 = U1� 1V T
1 ;

with U1 2 Cn1 � r 1 , � 1 2 Cr 1 � r 1 ; V1 2 C� 1 � r 1 and r1 = rank( C1):
3: For i 1 2 [n1], set A1[i 1] : (1; j ) 7! U1(i 1; j ), for all j 2 [r1], that is to say we obtain A1 by

extracting the rows from U1, i.e.

U1 =

0

B
B
B
@

A1[1]
A1[2]

...
A1[n1]

1

C
C
C
A

;

4: Compute the matrix R1 = � 1V T
1 2 Cr 1 � � 1 ;

5: For k = 2 ; : : : ; d � 1:
5.1: Set � k := nk+1 � � � nd and perform a reshape of the matrixRk� 1:

L k = reshape
�

Rk� 1; r k� 1 � nk ; � k

�
2 Cr k � 1nk � � k ;

5.2: Perform a (thin) SVD of L k

L k = Uk � kV T
k ;

with Uk 2 Cr k � 1nk � r k , � k 2 Cr k � r k ; Vk 2 C� k � r k and r k = rank( Ck ):
5.3: for i k 2 [nk ], set

Ak [i k ] : (j 1; j 2) 7! Uk
�
(i k � 1) � r k� 1 + j 1; j 2

�
;

for all j 1 2 [r k� 1] and j 2 2 [r k ];
5.4: Compute the matrix Rk = � kV T

k 2 Cr k � � k ;
6: For i d 2 [nd], set Ad[i d] : (j; 1) 7! Rd� 1(j; i d) for all j 2 [rd� 1].

Comment : One can obtain a left-orthogonal TT decomposition by replacing the SVD by
QR decompositions.

43



Tensors and the Quantum Chemistry - Density Matrix Renormalization Group

We remark that a TT decomposition is never unique, since the product of two consecutive

matrices Ak [i k ] and Ak+1 [i k+1 ] can always be replaced by

Ak [i k ]Ak+1 [i k+1 ] = Ak [i k ]BkB � 1
k Ak+1 [i k+1 ];

whereBk is an arbitrary invertible matrix in Cr k � r k . For numerical purposes, it is thus important

to set a gauge condition on the TT matricesAk [i k ]. The following Lemma takes care of exactly

that.

Lemma 4.7 (Theorem 1 from [81])
Let C 2 Cn1 � :::� nd . The TT decomposition (4.4) of C of minimal rank can be chosen such
that the TT components are left-orthogonal for allk 2 [d � 1]:
Under this condition, the decomposition in (4.4) is unique up to insertion of orthogonal
matrices: For any two left-normalized TT decompositions ofC

C(i 1; : : : ; i d) = A1[i 1] � � � Ad[i d] = B1[i 1] � � � Bd[i d];

there exists orthogonal matricesQ1; : : : ; Qd 2 CR r k � r k such that

A1[i 1]Q1 = B1[i 1]; QT
d� 1Ad[i d] = Bd[i d];

QT
k� 1Ak [i k ]QT

k = Bk [i k ] for k = 2 ; : : : ; d � 1:

The analogous statement can be proved for right-orthogonal TT decompositions.

It can sometimes be advantageous to deal with TT representations that have a mixed left and

right orthogonalisation: e.g., a TT decomposition

C(i 1; : : : ; i d) = A1[i 1] � � � Ad[i d];

where A1; : : : ; Ak are left-normalized andAk+1 ; : : : ; Ad are right-normalized.

Finally, there is a way to write the tensor-train representation of a tensor in order to retrieve

easily a left- or right-normalized TT decomposition. Namely, by keeping the singular value

matrices of the HOSVD (Algorithm 1) of the tensor C, one can achieve a decomposition of the

following type:

C(i 1; : : : ; i d) = � 1[i 1]� 1� 2[i 2]� 2 � � � � d[i d]� d;

where the matrices� k 2 Rr k � 1 � r k satisfy

n1X

i 1=1

� 1[i 1]T � 1[i 1] = Id r 1 � r 1 ;
ndX

i d =1

� d[i d]� d[i d]T = Id r d � r d ;

nkX

i k =1

� k [i k ]T � 2
k� 1� k [i k ] = Id r k � r k ;

nkX

i k =1

� k [i k ]� 2
k � k [i k ]T = Id r k � 1 � r k � 1 ; k 2 2; : : : ; d � 1:
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This representation is called the standard representation or the HSVD (hierarchical SVD) repre-

sentation of the tensorC. In physics, it is attributed to Vidal and called the Vidal representation

of the tensor C [183].

We want to mention that it is possible to convert between all these di�erent representations. But

since we will only be using the left-normalized decomposition in this thesis, we simply refer the

reader to [153] for these intertranslations.

4.2 Where Does the Tensor Come from in Quantum Chemistry?

After this more abstract introduction, let us now come back to quantum mechanics and discuss

how the tensor arises from the wavefunction. E�ectively, we will expand the full wavefunction

into a linear combination of Slater determinants and then make a cuto� in the number of used

orbitals, the associated coe�cients will build the entries of our tensor. We will here present the

general approach for arbitrary Hilbert spaces following [56].

4.2.1 Fock Space and the Occupation Representation

We start our analysis by recalling the fermionic Fock space. First, consider a �nite dimensional

single-particle Hilbert spaceH L . When the particles are electrons,H L would correspond to a

subspace ofL 2(R3
� ) spanned byL spin orbitals, see Chapter 2. Then, the associated state space

for a system ofN fermions is theN -fold antisymmetric tensor product VN;L :=
V N

i =1 H L .

Finally, the resulting Fock space is de�ned as the direct sum of theN -particle spaces,

FL :=
LM

N =0

VN;L ; (4.6)

where V0;L
�= C is spanned by the vacuum statej
 i .

If the orbitals are the lowest eigenstates of the Hartree-Fock Hamiltonian, resulting from the

Euler-Lagrange equation of the Hartree-Fock energy, compare (3.3),VN;L is known in physics as

the full con�guration interaction (full CI) space, see, e.g., [74].

Now given an orthonormal basisf ' 1; : : : ; ' L g of H L , we can write any element	 2 F L in the

form

	 = c0j
 i +
LX

i =1

ci j' i i +
X

1� i<j � L

cij j' i ' j i +
X

1� i<j<k � L

cijk j' i ' j ' k i + : : : ; (4.7)

with j' i 1 : : : ' i N i denoting the antisymmetric tensor product, alias Slater determinant,

j' i 1 : : : ' i N i = ' i 1 ^ : : : ^ ' i N 2 VN;L : (4.8)

Instead of the above '�rst quantized' representation, in QC-DMRG one considers a 'second

quantized' representation by occupation numbers of orbitals in Fock space. A Slater determinant

j' i 1 :::' i N i 2 V N;L is represented by a binary string(� 1; : : : ; � L ) 2 f 0; 1gL , with � i indicating

whether or not the orbital ' i is present (occupied) or absent (unoccupied). An example with

N = 4 and L = 8 looks like this
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j' 2' 3' 6' 8i  ! (0; 1; 1; 0; 0; 1; 0; 1):

Here, ' 1 is unoccupied,' 2 is occupied,' 3 is occupied, and so on. The Slater determinant (4.8),

indexed by its binary label, is in the following denoted� � 1 :::� L , that is to say

� � 1 :::� L := j' i 1 : : : ' i N i if � i = 1 exactly when i 2 f i 1; : : : ; i N g; i 1 < : : : < i N : (4.9)

The coe�cients in the expansion (4.7), indexed by the corresponding binary label, are called

C� 1 :::� L , that is to say

C� 1 :::� L = ci 1 :::i N if � i = 1 precisely wheni 2 f i 1; : : : ; i N g; i 1 < : : : < i N ; (4.10)

yielding the occupation representation of the state	 from (4.7)

	 =
1X

� 1 ;:::;� L =0

C� 1 :::� L � � 1 :::� L : (4.11)

This representation might seem more abstract, but it not only allows for a more compact notation,

it also is more precise in the sense that in �rst quantization' 1 ^ ' 2 and � ' 2 ^ ' 1 are actually

redundant names. Note that if 	 is an N -electron wavefunction, we will use the shorthand

notation N 	 = N 	 , whereN is the number operator. If this is the case, the coe�cientsC� 1 :::� L

are zero whenever
P L

j =1 � j 6= N . This simple fact is crucial for the structure of the unfoldings

of our coe�cient tensor.

4.2.2 Tensor Networks and Matrix Product States

The idea behind tensor networks states is to factorize the large coe�cient tensorC into (smaller)

tensors of lower order, where the structure of the multiplication is described by a graph or

network, see Figure 4.4. We will denote internal or virtual indices, which are just summed over,

by � j , while for the physical indices we use� j .

We only consider here matrix product states, they build the simplest subclass of tensor network

states (TNS), where the underlying graph is a subset ofZ. They correspond to the tensor-

train decomposition from Section 4.1.2. As already mentioned, the name tensor-train is used in

mathematics, while matrix product states is the the preferred term in physics. In this thesis, we

will usually use MPS if there is some physical context, i.e., if orbital functions are involved.

Note though that if one changes the underlying graph to include cycles, then problems arise and

closedness is lost, see, e.g., [7]. For more advanced networks we refer to [67,169]. For an easy to

read full introduction into MPS see [153,161].

A matrix product state (MPS) with respect to the basis f ' i gL
i =1 with size parameters ('bond

dimensions') r i (i = 1 ; : : : ; L � 1) is a state of the form

	 =
1X

� 1 ;:::� L =0

A1[� 1]A2[� 2]:::AL [� L ] � � 1 :::� L 2 F L ; (4.12)
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Figure 4.4: A general tensor network representation of a tensor of order 6.

where for every tuple of labels(� 1; : : : ; � L ) 2 f 0; 1gL , A i [� i ] is a r i � 1 � r i matrix, with the

convention r0 = rL = 1 . Hence, theA i can be viewed as tensors of order3 (depending on three

indices � i � 1, � i , � i ) in Cr i � 1 � 2� r i . The name 'bond dimensions' for ther i has nothing to do

with chemical bonds, but is related to the standard graphical representation of MPS in Figure

4.3, in which each contraction index� i is represented by a horizontal 'bond'.

The minimal bond dimensions with which a given state can be represented, have a well known

meaning as ranks of matrizations of the coe�cient tensorC, as recalled in Lemma 4.5 above.

The set of matrix product states (MPS) with respect to the basisf ' i gL
i =1 with bond dimensions

r i (i = 1 ; :::; L � 1) is denoted by

MPS
�
L; f r i gi ; f ' i gi

�
� F L : (4.13)

Representing arbitrary states inFL as MPS is possible, but requires bond dimensions2L=2(assuming

L is even.), i.e., bond dimensions growing exponentially withL , see [153] or Section 4.1.2.

Now, QC-DMRG takes the MPS ansatz and simply computes corresponding approximation to

the energy by minimizing the Rayleigh quotient

E QC � DMRG
0 = min

�
h	 ; H 	 i
h	 ; 	 i

�
� 	 2 MPS

�
L; f r i gi ; f ' i gi

�
; 	 6= 0 ; N 	 = N 	

�
; (4.14)

where usually one takes some truncation limitM for the bond-dimensions, i.e.,r i � M for all

i 2 f 1; : : : ; Lg. Note that this parameter M allows to interpolate between Hartree-Fock (M = 1 )

and full CI ( M = 2 L=2). In state-of-the-art computations, M usually is chosen to be of the order

� 2000� 5000, see, e.g., [56] for more details.

One major issue in the context of tensor networks is:How to choose a suitable topology of the

underlying network? In our special case of MPS with �xed one-particle basisf ' 1; : : : ; ' L g, this

boils down to: How to order the basis? We want to illustrate this question by means of an

example, following [37].
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Figure 4.5: Schematic picture of a MPS before and after reordering the orbitals [64].

We want to look at the minimal basis H2 setting, i.e., take N = 2 , L = 4 , and consider anH2

molecule with nuclei clamped atRA and RB . For the underlying single-particle Hilbert space

H L , we take the span of the four functions� A (r )� " =#(� ) and � B (r )� " =#(� ), corresponding to the

1s orbitals of hydrogen (compare Section 2.1), just translated to the clamped nuclei respectively,

i.e.,

� A (r ) =
1

p
�

e�j r � RA j ; � B (r ) =
1

p
�

e�j r � RB j :

To obtain the orthonormal basis of H L which we want to consider, we de�ne the associated

bonding respectively antibonding orbitals,

' A (r ) =
� A + � Bp
2 + 2SAB

; ' B (r ) =
� A � � Bp
2 � 2SAB

;

where the overlap integral SAB = h� A ; � B i is just used for normalization. The corresponding

single-particle basis is thenf ' A " ; ' A #; ' B " ; ' B #g, where we used the obvious short-hand

notation to indicate the spin component. Our state of interest is now given by the Slater deter-

minant

	 =
�
�(c' A + s' B ) " ; (c0' A + s0' B ) #

�
; (4.15)

for some coe�cients c; s; c0; s0 2 R with c2 + s2 = c02 + s02 = 1 . As pointed out in [37], this is

an interesting state, as the unrestricted Hartree-Fock (UHF) ground state of minimal-basisH2

has the above form, for any bondlengthR = jRA � RB j; moreover (c; s) 6= ( c0; s0) when R is

large [168]. The occupation representation of	 takes then the form

	 = cc0	 1100 + cs0	 1001 � sc0� 0110 + ss0� 0011 2 F L : (4.16)

Here, we implicitly used the ordering f ' A " ; ' A #; ' B " ; ' B #g. In the following we shortly

want to remark on this. As in practice usually the one body basis consists of the low-lying

eigenfunctions of the Hartree-Fock operator, the simplest method, which was also used in the

early days of QC-DMRG, is to order the orbitals according to their Hartree-Fock eigenvalues.

This ordering is known ascanonical order.

The pioneering article [6] introduced the Fiedler ordering, which combines concepts from quan-

tum information theory and spectral graph theory to achieve signi�cant improvements in the

approximations. Here, one starts by computing the mutual information matrix IM and then (as

all entries are nonnegative, see [17]) interprets it as a weighted adjacency matrix of the complete

graph of the tensor network, in the following way: The second eigenvector of the graph Laplacian

L is computed, this is the so-calledFiedler-vector, and ordering its entries according to its values

gives the so-called Fiedler ordering. Another more recent ordering scheme is the so-called best
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(weighted) prefactor ordering [37]. Here, the authors show an interesting inversion symmetry for

the distribution of singular values, which they utilize to improve the decay of the singular value

distribution of the associated unfolding.

These orderings are important as they can signi�cantly lower the necessary bond-dimensions (and

thus the truncation limit M in (4.14)) of the state of interest. We shortly illustrate this via the

minimal basis H2 example, taken from [37]. For more details, especially the explicit calculations,

we refer to [37]. To avoid the degenerate case, we assume that the constantsc; s; c0; s0 in (4.15)

are all nonzero. The canoncial order is just the ordering in which the bonding orbital with

either spin comes �rst, i.e., f ' A " ; ' A #; ' B " ; ' B #g. Writing out the unfolding of our state in

occupation representation (4.16) gives

 � 1 ;� 2
� 3 ;� 4

=

2

6
6
6
6
4

00 01 10 11

00 ss0

01 � sc

10 cs0

11 cc0

3

7
7
7
7
5

:

Since all entries are nonvanishing, the matrix re-shape has full rank 4 and due to Lemma 4.5, so

does the corresponding bond-dimension.

Applying now the Fiedler or the best (weighted) prefactor ordering, gives in this case the same

new labeling for the single-particle basis, namelyf ' A " ; ' B " ; ' A #; ' B #g. With this re-labeling

of the basis, one obtains for the unfolding of our state in occupation representation (4.16)

 � 1 ;� 2
� 3 ;� 4

=

2

6
6
6
6
4

00 01 10 11

00

01 ss0 sc0

10 cs0 cc0

11

3

7
7
7
7
5

:

Since the middle block can be written as

 
c

s

!
�

c0 s0
�

, it is just a rank-1 matrix, so our required

bond-dimension is minimal. Thus, in conclusion, both re-orderings dramatically improve the

bond-dimension necessary to represent the state of interest.

Lastly, let us shortly introduce the MPS setting also for states of the full Fock space, i.e., utilizing

in�nitely many orbitals. As we will see, this calls for half-in�nite matrix product states, which

we will introduce in a rigorous manner below. Graphically, this corresponds to a half-in�nite

chain, see Figure 4.6. This representation is part of our Article IV [56].

So let H be an in�nite-dimensional separable Hilbert space spanned by orthonormal orbitals

f ' i g1
i =1 , let VN be the N -fold antisymmetric product

V N
i =1 H, and let F be the ensuing Fock

space,

F :=
1M

N =0

VN :
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Analogously to (4.12), we de�ne a matrix product state (MPS) with respect to the basisf ' i g1
i =1

with size parameters ('bond dimensions')f r i g1
i =1 to be a state of the form

	 = lim
L !1

1X

� 1 ;:::� L =0

A1[� 1]A2[� 2]:::AL [� L ]

0

B
B
B
B
@

0
...

0

1

1

C
C
C
C
A

� � 1 :::� L 2 F ; (4.17)

where theA i [� i ] (i = 1 ; 2; :::) are r i � 1 � r i matrices, r0 = 1 , the column vector above has length

rL (so as to make the coe�cient of � � 1 :::� L scalar), and the A i are such that the above limit

exists as a strong limit in the Fock spaceF . The key point about (4.17) is that the A i are �xed

matrices, which only depend on theexact in�nite-dimensional quantum state 	 and encode its

true entanglement structure, whereas �rst truncating the one-body Hilbert space to dimension

L and then MPS-factorizing the ensuing approximation would lead toL-dependentA i 's.

The vector (0; : : : ; 0; 1), appearing in (4.17), may look arbitrary at �rst, but as we showed in [55],

every normalized state	 in the Fock spaceF can be represented in the form (4.17) with left-

normalized A i if the r i are allowed to grow exponentially (i.e.,r i = 2 i ).

The set of tensor-trains (TT) or matrix product states (MPS) with respect to the basis f ' i g1
i =1

with bond dimensions f r i g1
i =1 is denoted by

MPS
�
1 ; f r i gi ; f ' i gi

�
� F : (4.18)

Figure 4.6: Graphical representation of a matrix product state in the in�nite-dimensional case.

4.3 Contributions in QC�DMRG and Related Literature

In this section, we want to give an overview over the active research areas which we have con-

tributed to and put our results into perspective.

As we have seen, in the context of MPS and also of TNS in general, one main question is

how to choose a good network to approximate the state of interest, or even more generally,

how to optimize the underlying one-body basis. Even though mathematical articles addressing

related topics like the singular values of tensors are emerging [65, 68, 159], a good theoretical

understanding of these fundamental questions is still lacking.

We split our investigation into two aspects, concurring with our Articles II and IV. The �rst

will consider pure network optimizations, which reduces in the context of MPS to re-orderings of

the basis, whereas the second part considers arbitrary unitary basis transformations, also known
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as fermionic mode transformation in physics. Lastly, we shortly comment on the connection

between MPS and quantum channels and our work in this related research area.

4.3.1 Maximally Entangled Matrix Product States

It has long been recognized that the topology of the underlying tensor network, i.e., the ordering

of the orbitals, strongly in�uences the size of the matrices in the factorization as well as the overall

approximation quality [6,12,98�100]. It is also of conceptual importance because entanglement

of di�erent parts of quantum systems can be viewed as the result of a coupling across their

common interface [96].

In almost all QC-DMRG codes, only reorderings instead of the more general fermionic mode

transformations of the underlying basis functions are considered. This stems from the fact that

the chosen orbitals are carefully crafted from theoretical and empirical knowledge. As mentioned

above, di�erent ordering schemes exist, like the widely used Fiedler ordering [6] based on an

entanglement analysis of the basis, or newer ones like the best weighted prefactor ordering [37],

which is more tailored to quantum chemistry by utilizing an inversion symmetry of singular

values for Slater determinants. For weakly correlated states, re-ordering typically reduces the

tail by several order of magnitude [37]. To demonstrate the e�ect of orderings, let us present the

example of fermionic Bell-states from our Core article II [64]:

For N electrons occupyingL = 2N orbitals f ' 1; : : : ; ' L g, de�ne  k :=
�
' k + ' k+ N

�
=
p

2 for

k = 1 ; : : : ; N . Then consider the Slater determinant given by	 := j 1; : : : ;  N i . It is quite

straightforward to check that its minimal MPS representation in the basis
�
' k

�
k has maximal

bond dimension2N , see, e.g., [37]. Now applying a re-ordering, which puts paired-up orbitals

next to each other,

�
~' 1; ~' 2; : : : ; ~' L � 1; ~' L

�
=

�
' 1; ' N +1 ; : : : ; ' N ; ' L

�
;

reduces the bond dimension to just 2 in the new basis
�

~' k
�

k . Indeed,

	 =
1X

� 1 ;:::;� L =0

A1[� 1] � � � AL [� L ] ~� � 1 ;:::;� L ; (4.19)

where ~� is speci�ed as in (4.9) with the new basisf ~' kgk and the matricesAk are

A1[� 1] =
�

� 0
� 1

� 1
� 1

�
; AL [� L ] =

�
� 1

� 1
; � 0

� 1

� T
;

A2` [� 2` ] =

 
� 1

� 2`
0

0 � 0
� 2`

!

; A2`+1 [� 2`+1 ] =

 
� 0

� 2` +1
� 1

� 2` +1

� 0
� 2` +1

� 1
� 2` +1

!

:

Here, ` = 1 ; : : : ; N � 1 and � k
� denotes the Kronecker delta.

This motivated us to rigorously investigate by how much orderings can in general improve the

involved matrix sizes. As it turns out, the answer is not at all. Our main result are the following

states. Given any basis set and any number of electronsN and orbitals L , we constructed
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	 P =
X

i 1<:::<i N

� i 1 ;:::;i N j' i 1 ; : : : ; ' i N i

=
1X

� 1 ;:::;� L =0

 � 1 ;:::;� L � � 1 ;:::;� L ;
(4.20)

where the coe�cients � i 1 ;:::;i N are pairwise distinct elements ofP := f p pj : pj primeg. We

showed that the corresponding MPS have maximal bond dimension even under any reordering of

the basis. Additionally, to demonstrate that this is not a mere theoretical artifact, we investigated

the singular value distribution of the unfoldings  � 1 ;:::;� k
� k +1 ;:::;� L and found an extremely slow decay

and a remarkable almost-invariance under re-ordering. This is depicted in Figure 4.7; the plots

were done using the code tensor-train-julia [36].

Figure 4.7: Singular value distribution of the matrization  � 1 ;:::;� 6
� 7 ;:::;� 12 of the state 	 P from equation

(4.20) with N = 6 electrons andL = 12 orbitals, for di�erent orderings.

A related but less extreme observation, that the bond dimension cannot be lowered much by

re-ordering, was made in an interesting numerical study of strongly correlated states in the 1D

Hubbard model [96].

4.3.2 Bond Dimension in Two-Electron Systems

In the past decade, the Quantum Chemistry Density Matrix Renormalization Group (QC-

DMRG) method [23, 97, 125, 188] has become the state-of-the-art choice for systems with up

to a few dozen electrons; see [169] for a recent review.

As seen in (4.14), in QC-DMRG, one chooses a suitable �nite single-particle basis, makes a

matrix product state (MPS) alias tensor-train ansatz for the coe�cient tensor of the many-

particle wavefunction in Fock space, and optimizes the Rayleigh quotient over the matrices.

As discussed in the previous subsection, it has long been known that the accuracy strongly

depends on the choice of basis, and can typically be improved by re-ordering the basis, see,

e.g., [6,37,169], but we found extreme examples where ordering does not yield an improvement.

To only consider a reordering of the basis functions instead of arbitrary ferimonic mode trans-

formation, stems from the fact that the chosen orbitals are carefully crafted from theoretical and
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empirical knowledge. Nonetheless, the question which basis orbitals are best suited for the MPS

representation of a given system, lies at the heart of QC-DMRG.

Additionally, Krumnow, Veis, Legeza, and Eisert [89,90] observed an interesting empirical phe-

nomenon: going beyond ordering andoptimizing over fermionic mode transformations(i.e., gen-

eral unitary transformations of the single-particle basis) can reduce the approximation error

a great deal further in systems of interest. QC-DMRG together with optimization over the

single-particle basis as introduced in [89, 90] can be viewed as a generalization of the classical

Hartree-Fock method, to which it reduces for bond dimension 1. In particular, utilizing the size

of the bond dimension as the key parameter, it interpolates between HF (bond dimension = 1)

and the full con�guration-interaction method (FCI) (bond dimension = 2L=2).

In the absence of previous mathematical results on the in�uence of mode transformations on the

approximation error, we investigate in article IV the simplest caseN = 2 . We �nd a dramatic

e�ect, namely a reduction of the bond dimension needed for exactness of the method from2+ L
2

to 3, where L is the number of single-particle basis functions. This is proven by showing that

general two-particle wavefunctions can be represented exactly with bond dimension3 after a

(wavefunction-dependent) optimal mode transformation, with 3 being optimal. To be more

precise, we prove:

Theorem 4.8 (Characterization Two-particle case [56])
SupposeL � 4 even, 	 2 V2;L , and 
 	 has maximal rank = L . Then, for any basis
f ' 1; ::::; ' L g and any MPS-representation with bond dimensions(r1; : : : ; rL � 1) we have

ˆ r j � 2 for every j 2 f 1; : : : ; L � 1g

ˆ At least one of two consecutive elements(r j ; r j +1 ) for j 2 f 2; : : : ; L � 2g is at least 3.

The bond dimension vector(r1; :::; rL � 1) with lowest`1-norm is given by(2; 2; 3; : : : ; 2; 3
| {z }

L � 4 times

; 2; 2).

Furthermore, there is an explicit representation with optimal bond-dimensions.

Previous exact representations in the form of low-bond-dimension MPS were, to our knowledge,

limited to very special states, the prototype example being the AKLT state from spin physics [1]

which arises as the ground state of a particular translation invariant Hamiltonian.

Finally, we remark that the exact bond-dimension-three representation of two-fermion wavefunc-

tions carries over to the in�nite-dimensional single-particle Hilbert spaceL 2(R3) 
 C2 of full

two-electron quantum mechanics, as shown in the last part of this paper.

4.3.3 Markovian Divisibility for Quantum Channels

As we have recalled, the idea of Matrix Product States originated in DMRG, but with its math-

ematical foundations in terms of the current language of tensor networks later on established

by Östlund and Rommer [133]. Afterwards, these techniques were extended to more general

settings, see, e.g., [127, 179, 181], and it is precisely in the �eld of numerical analysis where the

tensor network ansatz �ourished. Additionally, they were widely implemented due to DMRGs

groundbreaking precision enabling a deeper understanding of the physical properties of quantum

many�body systems [152].
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Although the MPS formalism gained traction, the grounds of its success were not fully under-

stood. This comprehension improved through the connection with quantum information and in

particular with the theory of quantum channels or completely positive maps, which was estab-

lished in [43, 182, 192], see also the works of Verstrate and Cirac [180] and Hastings [72]. For a

good quantum information based review of matrix product states we refer to [25].

Due to this connection, we also included our work dealing with quantum channels. Here we dis-

cuss the open problem of characterizing those quantum channels that can arise from the solution

of a (possibly time-dependent) Lindblad master equation. Endeavours towards a resolution of

this problem have given rise to di�erent notions of Markovianity for quantum evolutions. We

concentrate on the de�nition which is based on connecting Markovianity to certain divisibil-

ity properties of quantum evolutions, in particular, to the possibility of dividing the evolution

into in�nitesimal pieces. Additionally, we are able to extend the approach to general sets of

generators, not only the speci�c case of quantum channels, i.e, Lindblad generators.

De�nition 4.9 (In�nitesimal Markovian Divisibility )
Let G � M d be a compact and convex set ofd � d matrices containing 0 2 M d. We will
refer to elements ofG as generators. We de�ne the set

I G := f T 2 M d j 8" > 0 9n 2 N; generatorsf Gj g1� j � n � G

s.t. (i )keGj � 1dk � " 8j and (ii )
nY

j =1

eGj = Tg:

We call the closure I G the set of linear maps that arein�nitesimal Markovian divisible
w.r.t. G.

While this gives an intuitively plausible notion of time-dependent quantum Markovianity and

some structural properties can be established on its basis, it has so far not given rise to easily

veri�able criteria for Markovianity. Only the trivial necessary criterion of non-negativity of the

determinant was known. In contrast to higher dimensions, in the qubit case, this notion is

completely characterized by Wolf and Cirac [191].

In our investigation, we go beyond this characterization for the 2-dimensional case and obtain

necessary criteria for a quantum channel to be divisible into in�nitesimal Markovian pieces. In

fact we worked with the set of Markovian divisible maps:

De�nition 4.10 (Markovian Divisibility)
Let G � M d be a set of matrices, whose elements we callgenerators. We de�ne the set

DG := f T 2 M d j 9n 2 N; generatorsf Gi g1� i � n � G s.t.
nY

i =1

eG i = Tg:

We call the closureDG the set of linear maps that areMarkovian divisible w.r.t. G.

But as is easy to see by continuity of the matrix exponential, ifG 2 G implies 1
n G 2 G for all

n 2 N, then DG = I G. This is in particular the case if G satis�es the assumptions of De�nition

4.9.
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Our main results for quantum channels take the following form

Theorem 4.11 (Markovian Divisibility [18])
Let T be an Markovian divisible quantum channel, then

0 � det(T) �
�

s"
1(T)

� d
2 :

Also with f (d) = 2 d � 2
p

2d + 1 we have

0 � det(T) �
bf (d)cY

i =1

s"
i (T):

wheres"
i (T) denotes thei th smallest singular value ofT.

With these criteria at hand, we are able to give new examples of provably not (in�nitesimal)

Markovian divisible quantum channels.

Lastly, we study the classical counterpart � stochastic matrices as maps of interest and transition

rate matrices as generators � and �nd that no analogous criterion can hold. This implies that

there cannot be a mapping fromd2 � d2 stochastic matrices tod-dimensional quantum channels

that both preserves in�nitesimal Markovian divisibility and leaves singular values invariant.
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Existence and nonexistence of HOMO�LUMO excitations in Kohn�Sham
density functional theory

Gero Friesecke and Benedikt Graswald

Electronic excitations play an important role in the description of molecular properties such

as absorption spectra, photoexcitation, state-to-state transition probabilities, reactivity, charge

transfer processes, and reaction kinetics. The standard model being employed in numerical

computations of these response properties, is Kohn-Sham density functional theory (KS-DFT),

because of its good compromise between accuracy and feasibility for large systems. As the math-

ematical status of such excitations are still not rigorously understood, we consider the simplest

such excitations, HOMO-LUMO transitions, in the setting of the local density approximation

(LDA). Even in this case we are not aware of previous rigorous results.

For positively charged systems (i.e., total nuclear chargeZ greater than the number N of elec-

trons) such excitations � mathematically, excited states of the KS Hamiltonian � are rigorously

proven to exist in Section 3. These results rely on standard concentration-compactness argu-

ments. Additionally, our assumptions on the exchange-correlation functional are veri�ed explic-

itly for the widely used PZ81 and PW92 functionals in the appendix.

As a corollary we also establish in Section 4 the existence of optimal excitations with respect

to suitable control goals recently introduced by Friesecke and Kniely, without requiring the sim-

plifying assumption in of bounded domains. This is done by proving compactness in a suitable

topology of the set of tuples containing the KS-orbitals, the HOMO, the LUMO and the nuclear

charge distribution, in addition to continuity of the involved functionals.

By contrast, Section 5 shows that in the neutral caseZ = N and for the hydrogen and helium

atoms, such excited states do not exist when the self-consistent KS ground state density is

replaced by a realistic but easier to analyze closed-form approximation (in case of hydrogen, the

true Schrödinger ground state density). This result is presented in Theorem 4 and utilizes a

method by Glaser, Martin, Grosse, and Thirring, which could also be applied to numerical KS

ground state densities. Gero Friesecke was the one suggesting to relax the problem in the neutral

case by considering the Schrödinger density in the hydrogen case and a dilated version of the

hydrogen orbital for Helium � following the ansatz of Hans Bethe.

Additionally, we give a thorough interpretation of this non-existence result from a physics per-

spective as well as from the point of view of numerical computations in �nite basis sets, stressing

the fact that in contrast to common (explicit or implicit) belief, restriction to �nite basis sets or

bounded domains may be not just a negligible technicality, but signi�cantly alters the physical

nature of LUMO excitations, from stable bound state to a delocalized, dispersing state associated

with the continuous spectrum.

Own contribution. I was signi�cantly involved in �nding the ideas with the exception of the

above mentioned relaxation of the problem, and carried out most of the scienti�c work of all

parts of this article. In particular, I proved Theorems 1 through 4. Furthermore, I wrote the

�rst draft of the article as well as all parts of the �nal version except the introduction, which

was written jointly by both coauthors.
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