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Abstract 

Exposure to childhood maltreatment (CM) has consistently been linked to an increased 

risk for developing psychiatric disorders later in life. Due to its reactivity to the environment, 

DNA methylation (DNAm), an epigenetic process regulating gene expression, has been 

proposed as a mechanism for the biological embedding of environmental exposures in early 

life, including CM. Although DNAm is among the best-studied epigenetic mechanisms in the 

context of CM, the understanding of the timing and trajectory of embedding remains limited 

and it is unclear if additional environmental exposures converge on similar DNAm alterations. 

This thesis extends our understanding of the temporal dynamics of biological embedding of 

CM as well as of the effects of concurrent exposures and genetic contributions. In this work, a 

broader adversity score, which, additionally to CM, includes socioeconomic status and other 

contextual stressors based on the life of adverse childhood experiences, and epigenetic 

biomarkers of prenatal exposure to tobacco and alcohol were examined as concurrent 

environmental exposures. The effects of CM alone compared to the effects of a broader 

adversity score on longitudinal DNAm trajectories were examined in the Berlin Longitudinal 

Child Study (Berlin LCS). The Berlin LCS cohort consists of 3 to 5-year-old children (n=173 at 

baseline) of whom 86 experienced CM. These children were monitored for up to 24 months 

with extensive psychometric and biological assessments as well as saliva collection at baseline 

ad 4 follow-up time points providing epigenome-wide DNAm levels using EPIC arrays and 

salivary biomarkers of stress. In general, there were only a few DNAm patterns associated 

with CM or adversity in general that were stable over this timeframe, but regions mapping to 

the genes GRAREML, P3H3, ZNF562 and GSTT1 showed significant changes, with CM and 

the adversity score significantly moderated DNAm trajectories over time. Children exposed to 

CM also showed epigenetic signatures of increased prenatal exposure to tobacco and alcohol, 

with the prenatal exposure score correlating with some of the differentially methylated regions 

associated with CM. Lastly, Weighted gene correlation network analysis (WGCNA) identified 

a module of 268 correlated CpGs which were exclusively associated with CM.  

The findings from the Berlin LCS cohort were extended beyond childhood by replicating 

identified DNAm changes in an independent adolescent sample. This cohort (LMU cohort) 

included 640 adolescents with or without a diagnosis of major depressive disorder (MDD) 

assessed with the Kinder-DIPs as well as information on childhood abuse based on a self-

report. There was only a small overlap of CpGs in CM-associated WGCNA modules, most 

likely due to the heterogeneity of cohorts. The prenatal exposure scores, however, could be 

replicated across tissues and age ranges highlighting the importance of including prenatal 

exposures in the investigation of early life adversities. 
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The last part of this work focused on FKBP5, a key modulator of the stress system, with 

known alterations of its epigenetic regulation following CM. Targeted-bisulfite-sequencing, a 

fine-mapping approach on the DNAm level, allowed the systematic study of DNAm changes 

at the FKBP5 locus following CM, which validated previous findings and yielded new insights 

into the epigenetic regulation of FKBP5 dynamics. The majority of the CpGs covered (n=41) 

were significantly differentially methylated between maltreated and non-maltreated children at 

baseline, of which 25 CpGs showed the same direction of effects after one year. Additionally, 

some of the methylation changes, especially within the 3’ topologically associated domain 

(TAD), between baseline and the follow-up time point correlated with salivary biomarkers of 

acute and chronic stress. Genotype effects for the SNP rs1360780 could be detected for CpGs 

within intron 5 and the 3’TAD with some of the positions showing additive and interactive 

effects with CM. The stability of the findings after one year supports the notion that long-term 

effects of CM may be mediated by DNAm changes. More studies in large, deeply phenotyped, 

longitudinal cohorts, and across different developmental stages and exposures will be 

necessary to replicate these findings and to validate them with molecular experiments. 
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Zusammenfassung 

Traumatische Erlebnisse im Kindesalter, wie z.B. Kindesmisshandlung wurden konsequent mit 

einem erhöhten Risiko für die Entstehung psychiatrischer Erkrankungen zu einem späteren 

Zeitpunkt im Leben in Verbindung gebracht. Aufgrund ihrer Anpassungsfähigkeit als Reaktion 

auf Umweltfaktoren, wurden epigenetische Mechanismen wie die DNA Methylierung (DNAm) 

als molekulare Grundlage für die biologische Einbettung („embedding“) von Umwelteinflüssen 

in den Mittelpunkt gerückt. Obwohl DNAm einer der meist untersuchten epigenetischen 

Modifikationen ist, sind Zeitpunkt und Stabilität der Einbettung von Umweltfaktoren 

weitestgehend unbekannt. Zusätzlich ist unklar, ob verschiedene Umwelteinflüsse miteinander 

interagieren und ähnliche epigenetische Modifikationen herbeiführen, da Faktoren wie 

Kindesmisshandlung oft mit anderen negativen Umwelteinflüssen wie niedrigem 

sozioökonomischem Status und pränatalem Alkoholbelastung auftreten. 

 Ziel dieser Arbeit ist es die Effekte von Kindesmissbrauch sowie Stressbelastung im 

Allgemeinen auf epigenetischer Ebene zu untersuchen und deren Stabilität im zeitlichen 

Verlauf zu ermitteln. Diese Effekte wurden in der Berlin Longitudinal Child Study, einer 

Longitudinal Studie mit 173 Kindern im Alter von 3-5 Jahren, von denen 86 Misshandlung 

ausgesetzt wurden, analysiert. Diese Kinder wurden über den Zeitraum von zwei Jahren 

begleitet und ihre Entwicklung (körperliche und psychische Gesundheit, kognitive und 

sprachliche Entwicklung) dokumentiert. Zusätzlich wurden umfangreiche biologische 

Parameter bestimmt und die DNA Methylierung zu jedem Zeitpunkt gemessen. Während die 

DNA Methylierung für die meisten Regionen über den gemessenen Zeitraum stabil blieben, 

gab es einige Regionen bei denen Misshandlung oder Stress im Allgemeinen die den 

longitudinalen Verlauf moderierten. Zusätzlichen zeigten Kinder die Misshandlung erfahren 

haben, signifikant mehr epigenetische Signaturen pränataler Alkohol- und Tabakbelastung, 

wobei diese Signaturen auch mit den Effekten von Kindesmisshandlung korrelierten. Weiterhin 

wurde ein modul-basierter Ansatz, „weighted gene co-expression analysis“ verwendet um 

ähnlich verändernde DNAm Positionen zu identifizieren, die ausschließlich mit 

Kindesmisshandlung assoziiert waren.  

 Im zweiten Teil dieser Arbeit, wurden die Ergebnisse aus der Kinderstudie in einer 

unabhängigen Kohorte, der LMU Kohorte validiert. Hier wurden 640 Jugendliche mit und ohne 

Diagnose einer Depression sowie der Information zu Misshandlungserlebnissen untersucht, 

um zu prüfen um die epigenetischen Effekte über die Kindheit hinaus stabil bleiben. Nur 

wenige DNAm Positionen aus dem modul-basiertem Ansatz konnten in einem modul-basierten 

Ansatz in der LMU Kohorte repliziert werden. Von den DNAm Regionen aus der Kinderstudie 

überlappten keine, mit denen die in der Jugendkohorte identifiziert wurden. Diese Ergebnisse 

kann mit großer Wahrscheinlichkeit der Heterogenität (Gewebe, Zeitraum, Maß für 

Misshandlung, etc.) zwischen den Kohorten zugeschrieben werden. Interessanterweise, 
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konnten die pränatalen Signaturen repliziert werden, was zeigt, dass diese Faktoren in 

zukünftigen Studien mit einbezogen werden sollten. 

 Der finale Teil dieser Arbeit bezieht sich auf das Gen FBKP5, das als ein wichtiger 

Modulator des Glucocortikoidrezeptors, mit für die Regulation der Stresshormonachse 

verantwortlich ist. Frühere Studien haben bereits gezeigt, dass Kindesmissbrauch zu 

epigenetischen Veränderungen in regulatorischen Regionen dieses Gens führt. Die Mehrheit 

aller DNAm Positionen (n=41) zeigten signifikante Unterschiede zwischen Kindern mit und 

ohne Misshandlung, wobei 25 dieser Unterscheide nach einem Jahr noch immer Effekte in 

gleicher Richtung aufwiesen. Zusätzlich korrelierten einige der Änderungen, besonders in der 

3‘ topologisch assoziierten Domäne (TAD), über ein Jahr mit Änderungen in Biomarkern von 

akutem und chronischem Stress. Weiterhin konnten Genotypeffekte für den Polymophismus 

rs1360780 beobachtet werden, wobei manche Positionen in Intron 5 und der 3‘ TAD additive 

Effekte und Interaktionen mit Kindesmissbrauch zeigten. Mit dieser Arbeit konnten frühere 

Befunde zu dem FKBP5 gen repliziert werden und die wiederholten Messungen erlaubten es 

die Stabilität dieser Befunde nach einem Jahr zu zeigen. Die Ergebnisse dieser Studie 

unterstützen die Hypothese, dass epigenetische Marker zu den Langzeiteffekten von 

Kindesmisshandlungen beitragen. Dennoch werden diese Befunde in einer größeren 

Langzeitstudie mit gut dokumentierten Umwelteinflüssen validiert werden müssen. 
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1. Introduction 

 

1.1. Genetic studies in psychiatric disorders 

A large body of evidence suggests a substantial genetic component to many psychiatric 

conditions (Buxbaum et al., 2010). The genetic influence on all major psychiatric 

disorders has been consistently demonstrated by twin and adoption studies and the 

estimated broad-sense heritability (h2), namely the proportion of phenotypic variation 

explained by genetic variation, ranges from 0.3 for depression to over 0.8 for 

schizophrenia (Agrawal, 2018; Baselmans et al., 2021; Kendall et al., 2021). A meta-

analysis across five primary studies on the heritability of major depressive disorder 

(MDD) estimated an odds ratio (OR) of 2.84 (95% CI = 2.31-3.49) for an increased risk 

for first-degree relatives of MDD patients (Sullivan et al., 2000). The genetic 

contribution to the risk of many psychiatric disorders has been well established by 

family studies. While some loci with larger effect sizes have been detected in autism 

spectrum disorder (ASD) and schizophrenia (SCZ), few or no robust large effect size 

loci have been identified for the majority of psychiatric disorders (Jacquemont et al., 

2006; Sebat et al., 2007). Genome-wide associations studies (GWAS) successfully 

identified numerous genetic loci with small effect sizes involved in many psychiatric 

disorders (Gratten et al., 2014). While some diseases are regulated by a single gene 

and show classical Mendelian patterns of inheritance, psychiatric disorders are best 

classified as 'complex traits', where the variability is a result of a large number of factors 

and can be dissected into sources of variation resulting from genetic factors, non-

genetic factors and their interplay (Grotzinger et al., 2019; Visscher et al., 2012). The 

single nucleotide polymorphisms (SNPs) identified from GWAS using a case-control 

setting explain only a very small amount of the variance and cumulatively they only 

explain a fraction of the known genetic variance (Maier et al., 2018). This discrepancy 

between total heritability (estimated from family studies) and the proportion of 

phenotypic variation explained by all detected SNPs from GWAS was termed ‘missing 

heritability’ (N. Wray et al., 2014). Several explanations have been offered to address 

this problem: i) complex diseases are highly polygenic and GWAS do not capture 

variants with small effects that are rare, ii) family studies have overestimated heritability, 

genetic effects are generally non-additive but a result of complex interactions, and 

finally iii) that complex diseases mostly stem from an interaction of genetic 

predisposition with the environment (Owen & Williams, 2021; Sleeswijk et al., 2019; 

Woo et al., 2017). Especially, the last explanation emphasizes the need to more 

explicitly model the joint effect of genes and environment as a source of unaccounted 

variation (Kaprio, 2012). 
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1.2. Environment as a risk factor for psychiatric disorders 

 

Previous research of environmental exposures as risk factors in psychiatry has yielded 

robust findings and several factors have consistently been associated with mental 

illness (Krapohl et al., 2017; Uher & Zwicker, 2017). These factors include general 

exposures such as low socioeconomic status (SES) (Lupien et al., 2009) and 

urbanicity (Guloksuz et al., 2015; Radhakrishnan et al., 2019) but also exposures 

specific to childhood, e.g., childhood maltreatment (CM) and household dysfunction 

(Teicher & Khan, 2019; Ujhelyine Nagy & Kuritarne Szabo, 2020) and range back to 

exposures during pregnancy such as perinatal stress (Molenaar et al., 2019; Rice et 

al., 2010) or prenatal substance abuse. While these effects are genetically controlled 

to a certain degree, findings from studies show a substantial contribution from 

environmental factors alone (G. D. Smith & Ebrahim, 2003; Van Os et al., 2008). 

 

1.2.1. Early-life adversity induces long-lasting consequences 

 

Childhood adversity (CA), also referred to as early-life stress (ELS), is among the most 

studied environmental risk factors for the development of psychiatric disorders later 

on in life (Gerke et al., 2018; Heim et al., 2008; Merrick et al., 2017). While the 

definition of the term CA varies across studies, it almost always encompasses a 

category of CM that comprises well-defined subtypes such as abuse and neglect 

(Burgermeister, 2007; Humphreys & Zeanah, 2015). Robust evidence for CA 

(including childhood abuse and neglect) being strongly associated with the onset and 

persistence of mental disorders has been presented by several large-scale and 

population-based mental health surveys (Green et al., 2010; Kessler et al., 2010; 

McLaughlin et al., 2010). For instance, a meta-analysis on the effects of childhood 

trauma (CT) across 26 studies showed an increased risk of developing MDD in 

adulthood (OR = 2.80, Z = 7.70, P < 0.001), with the strongest effect for the specific 

childhood stressors emotional abuse (OR = 2.78) and neglect (OR = 2.75) (Mandelli 

et al., 2015). Additionally, another meta-analysis across 184 studies on adult MDD 

reported that individuals with a history of CM were 2.66 (95% CI 2.38–2.98) to 3.73 

(95% CI 2.88–4.83) times more likely to develop MDD in adulthood, presented with 

significantly earlier onset and were twice as likely to develop chronic or treatment-

resistant depression (J. Nelson et al., 2017). These studies show that the effects of 

CA are not limited to childhood and adolescence, but that CA can have long-lasting 

effects accounting for disorders with the first onset in adulthood. The proportion of 
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mental disorders that can be attributed to CA has been estimated to be 40% in 

childhood to 19% in adulthood (Kessler et al., 2010).  

Children experiencing maltreatment are more likely to be exposed to multiple 

adversities across developmental stages including exposure to caregiver mental 

illness, substance use, or domestic violence. Studies investigating the effects of CM 

have mostly focused on specific types of CM but did consider other adversities present 

in the environment (Brown et al., 2019). Various CA subtypes have as well been 

demonstrated to be associated with several psychiatric disorders (Carr et al., 2013; 

Guinosso et al., 2016; Lupien et al., 2009), however, CAs often occur in the context of 

multiple other adversities and are highly correlated making the separation of subtype-

specific effects difficult (Dong et al., 2004). Exposures that occur alongside CM within 

a suboptimal caregiving environment include prenatal exposures such as maternal 

substance use, which need to be accounted for. 

 

1.2.2. Prenatal exposures 

 
Extending the timeframe for environmental effects to before birth, previous work has 

linked the occurrence of prenatal substance exposure (such as alcohol, smoking, or 

cocaine) and maternal psychopathology (maternal stress, perinatal depression, or 

anxiety) to a suboptimal caregiving environment, which is conducive to CM (Flannigan 

et al., 2021; Margolis et al., 2021; Min et al., 2017; Price et al., 2017). A study 

characterizing the co-occurrence of prenatal and postnatal stressors found that 

children with high prenatal adverse exposures were more likely to experience 

postnatal adversities (Lebel et al., 2019).  

Findings from both animal and human studies have reported that exposure to 

prenatal adversity affects the brain and behavior of the offspring (Thomason et al., 

2021; Zeng et al., 2015). The causal role of prenatal exposures on the etiology of 

neurodevelopmental disorders is supported by large population cohorts, which have 

accounted for a wide range of potential confounders, including postnatal stressors. 

Prenatal exposure to certain substances or exposure to maternal conditions via 

endogenous pathways, such as glucocorticoid (GC) signaling, lead to altered 

neurodevelopment (Antonelli et al., 2017; Franks et al., 2020). For instance, a 

prospective study on the long-term effects of prenatal synthetic GC exposure reported 

a significant association with general psychiatric disturbance (B=8.34 [95% CI: .23-

16.45]) and inattention (B= .97 [95% CI: .16-1.80]) at 8 years, with the same direction 

of effect at 16 years (Khalife et al., 2013). 
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Another common prenatal exposure is alcohol use in pregnancy. Alcohol 

exposure in utero is associated with a well-described syndrome and collection of 

physical and psychological complications defined as a fetal alcohol spectrum disorder 

(FASD). Neurobehavioral consequences among individuals with FASDs include 

developmental delay, intellectual disability, hyperactivity, and hypersensitivity to 

stress. Children and adolescents with prenatal alcohol exposure were reported to 

experience high rates of early adversity (Flannigan et al., 2021). A study investigating 

the effects of prenatal alcohol exposure on brain structure in children with and without 

adverse childhood experiences found that prenatal and postnatal exposures interact 

with brain development differently and that the common and divergent effects on 

developmental trajectories require the consideration of multiple exposures (Andre et 

al., 2020).  

While prenatal and postnatal exposures were individually found to be 

associated with the development of psychiatric disorders later on in life, it is likely they 

have converging effects on the overall risk and resilience trajectories. These correlates 

in offspring exposed to prenatal stress include altered neurodevelopment, 

neurocognitive processing as well as aberrant structural and functional connectivity 

(Roos et al., 2021). The role of biological alterations on various different levels 

(including epigenetic modifications, circuit-level alterations, changes on pathway 

levels) in mediating alterations in outcome following prenatal stress is expected to be 

crucial for embedding and as such is gaining attention. Additionally, prenatal and 

postnatal exposures may have cumulative effects or interact with each other, leading 

to worse outcomes than single exposures alone. Future research is needed to 

disentangle common and distinct effects of exposures during different stages of 

development and their potential interaction with genetic variants (Provençal & Binder, 

2015).  

 

1.3. The paradigm of gene-environment interactions in psychiatry 

 

The investigation of Gene-by-Environment (GxE) interactions is based on the fact that, 

so far, neither genetic (G) nor environmental (E) factors alone are sufficient to explain 

the development of psychiatric disorders. The concept of GxE interaction is already 

well-established within the diathesis-stress or vulnerability-stress model in psychiatry, 

which describes that mental disorders are caused by the interactions of dispositional 

(diathesis) and the environmental (stress) factors (Broerman, 2020). 

 Within the framework of the diathesis-stress model, there have been various 

attempts to study the environmental effects on a phenotype that differ between 

individuals based on their genetic background or, worded differently, the differences 
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of genotypes in the susceptibility to environmental exposure (Karg & Sen, 2012; 

Rutter, 2008). 

 Effects of genetic variants and environmental exposures can co-occur in 

different manners and a key challenge is to distinguish “real” interactions from spurious 

ones. GxE correlations, in particular, can produce false-positive results in GxE 

research. These correlations can, for example, occur when an individual’s genotype 

influences the probability of environmental exposure and actually might represent a 

GxG interaction i.e., impulsivity (Bevilacqua & Goldman, 2013) and exposure to 

negative life events. The potential violation of the independence assumption for G and 

E needs to be considered when evaluating the findings of GxE studies (Ding et al., 

2021; Perlstein & Waller, 2020). 

 

1.3.1. Statistical modeling of GxE interactions 

Two models that are commonly used to model GxE interactions are the additive and 

the multiplicative model. Within the additive model, a GxE interaction is given if the risk 

for the phenotype differs from the sum of risks when exposed to only G or only E. The 

multiplicative model constitutes an interaction if the phenotype risk when exposed to 

both, G and E, differs from the product of risks. Thus, a statistically significant GxE 

marks the joint occurrence of two factors (G and E) that produce synergistic (greater) 

or antagonistic (lesser) effects on an outcome that goes beyond the addition or 

multiplication of the single main effects. Based on this definition it is possible that the 

effect of the same gene on a certain outcome can go in different directions depending 

on the environment (Karg & Sen, 2012; Moffitt et al., 2006). 

The biological interpretation of a statistically significant result from the 

multiplicative model is often difficult. Additionally, in some studies there might be a 

deviation from the additive model but not from the multiplicative model or vice versa, 

and that the model-dependency renders positive statistical interactions arbitrary. In 

conclusion, the model to be tested should be considered a priori and should ideally be 

biologically informed (Moffitt et al., 2006). 

One of the first studies investigating GxE interactions in psychiatry was performed 

by Caspi et al., and looked at the moderation of childhood maltreatment (CM) by a 

polymorphism in the serotonin transporter gene (SLC6A4). They found that with 

exposure to CM, the polymorphism increased the risk of depression but the SNP had 

no effect without CM exposure (Caspi et al., 2003). However, while most of the later 

studies examining the altered depression risk in the presence of stress exposure found 



18 
 

effects in the same direction, some of them yielded inconsistent results or reported no 

significant effects (Culverhouse et al., 2018). 

A study by Border et al. attempted to validate previous findings on 18 empirically 

identified candidate genes for depression and tested the main effects of the SNPs, SNP 

x E interactions, and gene-level interactions of E across multiple SNPs. Although the 

sample sizes ranged between 62,000 and 443,000 individuals, there was no clear 

evidence for interaction effects of the polymorphisms tested and traumatic events on 

depression phenotypes for any of the studied candidate genes. In conclusion, they 

suggested moving away from historic candidate gene approaches. Given the highly 

polygenic nature of psychiatric disorders in general, it is not clear why strong GxE with 

single candidate genes would be expected (Border et al., 2019). 

This lack of reproducibility constitutes a major concern in the field of GxE studies, 

prompting the question of “true” interactions even exist. Conflicting results have been 

attributed to the heterogeneity in both outcome measures and measures of 

environmental exposures, but also differences in the modeling approaches and cohort 

characteristics across studies (Border et al., 2019; Karg & Sen, 2012). 

1.3.2. From candidate genes to aggregated approaches 

Taking into consideration the polygenic nature of complex diseases motivates the 

question of the combination of disease-relevant risk variants detected in GWAS might 

improve the assessment of disease risk as compared to single variants (Hyman, 2018). 

Polygenic risk scores (PRS) aggregate the estimated effect of many genetic variants 

on an individual's phenotype (Cano-Gamez & Trynka, 2020). PRS typically use the 

results of GWAS to predict quantitative phenotypes or disease risk at an individual level 

and combine markers into a score based on variation at multiple genetic loci and their 

associated weights. These scores aim to capture the additive effects explained by 

multiple markers. A PRS reflects an individual’s risk compared to others with a different 

genetic constitution but does not give a baseline or time frame for disease progression. 

While PRS does have a potential predictive ability, its current clinical use remains 

limited due to "insufficient" discriminative power at the individual level. 

Employing a polygenic approach, approximately 1-2% of the variation in 

depression (Howard et al., 2019) and anxiety (Levey et al., 2020) could be explained. 

Following the advent of PRS, the joint analysis of environmental exposures and PRS 

(PRS x E) emerged. While in theory, GxE effects should be more likely to be detected 

if polygenic information is used, a meta-analysis of 5,765 individuals with depression 

did not show interaction effects of PRS and CT (Mullins et al., 2016). They reported 
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significant main effects of PRS, explaining 1.1% of the variance in phenotype (p = 1.9 

× 10−6) and severe life events (SLE) and CT on MDD status (p = 2.19 × 10−4 and p = 

5.12 × 10−20, respectively). The PRS x SLE interaction was not significant, PRS x CT 

interaction (p = 0.002) showed an inverse association with MDD status. This could be 

explained by the GWAS-derived PRS being based on a case-control comparison for a 

specific disorder and the additive nature of PRS, which does not model well the 

interaction with the environment of every variant included (Mullins et al., 2016).  

While previous findings from candidate genes as well as polygenic and genome-

wide approaches indicate GxE interactions, uncertainty regarding the question of 

whether and if GxE effects truly exist remains. The incorporation of biological data and 

the replication of a significant phenotypic GxE finding at an intermediate level, 

molecular or biological, could provide supporting evidence for true GxE interactions. A 

particular molecular process that has been proposed as a possible mediator for the 

embedding of environmental exposure in the genome is epigenetic mechanisms (Van 

Winkel et al., 2010). 

 

1.4. Epigenetics as an underlying mechanism for gene-environment interactions 

 

Epigenetic mechanisms refer to processes altering gene expression and translation 

that do not involve changes of the underlying DNA sequence. The term epigenome 

refers to the collection of chemical changes to the DNA and histones, such as 

methylation or acetylation. Epigenetic processes among others encompass DNA 

methylation (DNAm), non-coding RNAs (such as micro RNAs, long non-coding RNAs, 

or small interfering RNAs), and histone modifications. The effect of epigenetic 

modifications is exerted via direct or indirect changes to a chromatin structure 

(Venkatesh & Workman, 2015). Modifications of the chromatin structure are critical for 

the regulation of gene expression because they determine the accessibility and the 

sequential recruitment of regulatory factors to the underlying DNA (Quina et al., 2006). 

Although epigenetic changes are integral to some regular biological processes such 

as cellular differentiation and development, some alterations have been implicated in 

disease states (Portela & Esteller, 2010). Epigenetic marks are tissue-specific, each 

cell type has a distinct epigenetic pattern governing the timing and magnitude of 

gene expression by restricting areas of the genome available for transcription. 

Epigenetic changes can be introduced by several factors including aging, the 

environment/lifestyle, and disease state. After being introduced, epigenetic patterns 

are generally maintained by mitosis. 



20 
 

A large body of evidence suggests that some parts of the epigenome are responsive 

to external environmental factors and conditions including the social environment (Szyf 

et al., 2008). Therefore, it has been suggested that epigenetic modifications and 

mechanisms including DNAm, histone modifications, non-coding RNA, and chromatin 

conformation changes are involved in mediating GxE interactions by changing the 

expression of genes implicated in stress-related psychiatric diseases. As a result, 

epigenetic regulation is considered an additional layer of alteration that fine-tunes gene 

expression levels (Parade et al., 2021).  

 

1.4.1. DNA methylation 

The best investigated epigenetic mechanism is DNAm, which can take place at around 

28 million CpG sites distributed across the human genome (Stirzaker et al., 2014). 

DNAm occurs by the addition of a methyl group (CH3) to the DNA, specifically at the 5-

carbon ring of cytosines in cytosine-phosphate-guanine dinucleotides (CpGs), resulting 

in 5-methylcytosine (5mC) (Figure 1) (Lister et al., 2009). DNAm can influence gene 

expression by affecting the interactions of the DNA with specific transcription factors 

and chromatin proteins. Methylation at CpGs has generally been associated with 

transcriptional repression (Khavari et al., 2010).  DNAm patterns, however, are not 

constant across a gene but vary depending on the genetic architecture of a region. In 

actively transcribed genes, DNAm patterns relate to specific regulatory functions. For 

instance, CpGs are overrepresented in promotors of many genes (Weber et al., 

2007). DNAm marks can be mitotically relayed during cell division, which can lead to 

stable alterations in gene activity and downstream biological processes. Across the 

genome, DNAm holds an essential role in genomic imprinting, a process in which 

gene expression occurs in a parent-specific manner (Peters, 2014). Areas not 

protected by imprinting undergo both active and passive demethylation. DNAm 

patterns proceed to differentiate by developmental stage and by tissue 

(Messerschmidt, 2012). DNAm patterns are introduced by at least three DNA 

methyltransferases, DNMT1, DNMT3a, and DNMT3b, which catalyze the transfer of a 

methyl group from S-adenosyl-L-methionine to cytosine-phosphate-guanine 

dinucleotides. These methyltransferases can be generalized into ones that maintain or 

copy methylation marks after DNA replication, and those that initiate new (de novo) 

methylation marks on DNA (Damelin & Bestor, 2007). 

In order to understand the involvement of DNAm in disease, is essential to grasp 

the distribution of DNAm patterns and that these patterns can vary over time (e.g., 

development) and space (e.g., tissue specificity). A large amount of studies has 
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investigated the association of DNAm with different forms of psychopathology (Barbu 

et al., 2020; Rijlaarsdam et al., 2021; Wiegand et al., 2021), with the prospect that if 

DNAm is the causal link then reversing epigenetic marks may alleviate the disease 

burden. There is however also the possibility that DNAm marks represent a non-causal 

biomarker of stress-related disorders or environmental risk exposure. In this case, 

differences in DNAm may be a consequence of a condition instead of a causal 

mechanism (Barker et al., 2018). Even in this scenario, DNAm can have clinical utility 

and serve as a biomarker of disease. The majority of studies investigating DNAm in 

stress-related disorders such as MDD were performed in peripheral tissues (Penner-

Goeke & Binder, 2019). Due to the tissue specificity of DNAm, studies in peripheral 

tissues may not detect brain-specific DNAm differences that may provide greater 

insight as neurobiological indicators of the disease (A. K. Smith et al., 2015). Most of 

the studies using postmortem brain tissue, however, are generally limited to smaller 

cohort sizes and are not suitable as biomarkers. DNAm measures from peripheral 

samples such as blood or saliva may be of particular relevance for psychiatric disorders 

because they are easily accessible in living patients (Barker et al., 2018). Overall, 

DNAm holds potential as a biomarker indexing both environmental exposure, such as 

childhood adversity, and vulnerability for psychopathology DNAm marks have been 

considered to be well suited as biomarkers as they are chemically robust and preserved 

in a range of sample sources. DNAm marks identified from large epigenome-wide 

association studies (EWAS) have been widely adopted to identify disease-specific 

biomarkers (Ahsan et al., 2017). More recently, DNAm marks have been aggregated 

to composite DNAm-based risk scores that may provide a molecular-level prediction of 

risk groups before disease onset or treatment response of subgroups (Zhang et al., 

2017). For example, Barbu et al. developed a DNAm-based risk score that significantly 

discriminated MDD cases from controls in an independent cohort (Barbu et al., 2020). 

However, the extent to which the DNAm marks identified may represent a causal 

mediator remains unclear. In the case of the DNAm-based risk score, it is unclear what 

exactly is reflected by the score, as multiple environmental factors influence DNAm. 

The authors additionally developed a score based on samples from smokers, which 

reduced the discriminatory power of the score.  
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Figure 1: DNA methylation. Among other epigenetic mechanisms, DNAm regulates gene 

expression and may represent a means of biologically embedding early life stress including 

childhood maltreatment. 

 

So far, over 70 studies have examined associations between CA and DNAm changes, 

however, findings between these studies remain inconsistent, which is partially due to 

differing sample characteristics and methodologies (Cecil et al., 2020a). The majority 

of studies investigating the effects of CA with EWAS or targeted candidate gene 

approaches focused on adults and used retrospective assessment of CA and 

measured DNAm in peripheral tissues (Parade et al., 2021). Some findings, especially 

for NR3C1, could be replicated across multiple studies in different tissues, while 

findings for other candidate genes were conflicting (Romens et al., 2015). One EWAS 

investigating the effects of CA on DNAm in two adult cohorts sampling peripheral blood 

and buccal cells, respectively, did not find any replicated associations on the level of 

individual CpGs but on the level of differentially methylated regions (DMRs). DMRs 

encompass several neighboring CpGs, which show the same direction of effect 

(Houtepen et al., 2018). Only a limited number of studies have examined the effects of 

CA in form of CM in children immediately following exposure and the temporal 

dynamics of these effects are unclear. Most of these studies employed a candidate 

gene approach, that extended some of the findings from adult samples to children. 

Even fewer studies applied EWAS to child cohorts and reported significant effects after 

correction. So far, longitudinal findings were presented for two candidate genes in 

children, NR3C1 and FKBP5. The first study by Parent et al. looked at DNAm changes 

in preschoolers aged 2–5 years (n=260) within 6 months of documentation of CM and 

one year later, showing that the temporal dynamics of NR3C1 methylation and its 

interaction with CM is complex (Parent et al., 2017). A study investigating DNAm 

changes in preschoolers (n=231) with moderate to severe CM in the previous 6 months 

found that CM is associated with change in FKBP5 methylation over time in a six-month 

period, but only in children that were also exposed to high levels of other contextual 

stressors (Parade et al., 2017). Although all of these studies report significant 
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epigenetic associations, it is not reported whether the same loci are affected across 

studies. Additionally, the alterations in DNAm cannot be specifically attributed to CM as 

it is not clear if there is potential confounding by other life events, current symptoms, 

SES and other factors. Another point that needs to be considered is that previous 

studies varied age, tissues, measures of exposure and how candidate genes were 

targeted, further limiting the conclusions that can be drawn. The lack of longitudinal 

assessments often prohibits inferences about the dynamics over time in childhood. This 

work aims to address this data gap and is the first longitudinal study to analyze the 

genome-wide effects of CM on DNAm in children (n = 173) within a narrow age range 

(from 3 to 5 years of age at baseline) over the course of 2 years. Using a broader 

composite adversity score and correcting for prenatal exposures enabled the analysis 

of CM-specific DNAm changes and the assessment of other stressors’ contribution to 

the methylation levels at similar sites. 

 

1.4.2. Measuring DNA methylation 

Several methods for the quantification of DNAm are available, varying in costs, 

coverage (genome-wide vs candidate gene approaches), and resolution. The most 

comprehensive method is whole-genome bisulfite sequencing (WGBS), which provides 

true genome-wide coverage by sequencing the whole genome including all 28 million 

CpGs after bisulfite treatment of DNA, however, this method is limited in application to 

larger samples because of the associated costs and bioinformatics resources required 

(Crary-Dooley et al., 2017). 

1.4.2.1. Array-based DNA methylation measures 

To date, various methods to measure DNAm at different resolutions and in genomic 

regions exist, ranging from genome-wide assays to targeted approaches. Methylation 

arrays allow the investigation of several selected methylation sites across the genome while 

providing high-throughput capabilities that minimize the cost per sample. The Infinium 

Methylation Epic Beadchip represents a more affordable platform for measuring DNAm 

for up to 850,000 single CpG sites across the genome. This array-based method is a 

suitable tool to identify associations between single (or clusters of) CpG sites and 

phenotypes of interest. While the Epic Beadchip is a cost-efficient tool to screen the 

genome for differentially methylated positions (DMP) and regions (DMR), it only assays 

∼3% of all genomic CpGs and might not cover the specific gene of interest well 

(Mansell et al., 2019). While the EPIC array has been designed to address the lack of 

coverage of regulatory regions of its predecessor, the 450k array, including 58% of 

FANTOM5 enhancers, only 7% distal and 27% proximal ENCODE regulatory elements 
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are represented. Additionally, the proportion of distal regulatory elements interrogated 

is still limited and the methylation level of one CpG probe per element is not always 

reflective of the neighboring sites (Pidsley et al., 2016). As the EPIC array does not 

necessarily cover the environmentally sensitive CpGs of interest, a sequencing-based 

approach might be more suitable to study these effects. Lasting effects of 

environmental risk factors may be reflected by very small changes in DNAm and a 

method to measure DNAm with high accuracy and sensitivity in candidate genes for 

large cohorts is needed to replicate previous findings. While whole-genome bisulphite 

sequencing is regarded as the current ‘gold standard’ for the fine mapping of 

methylated CpGs, the high costs of this approach make it unfeasible for DNAm 

measurements in large cohorts (Vargas-Landin et al., 2018). 

1.4.2.2. Targeted-bisulfite sequencing as fine-mapping approach 

Since changes related to environmental exposure might be cell-type specific and most 

studies rely on more complex tissues, assessing effects in mixed tissues requires high 

accuracy in order to detect small changes emerging from a small number of cells. While 

Illumina DNAm arrays represent accurate and cost-effective methods to measure 

DNAm, the currently available arrays lack coverage in key enhancer regions that are 

environmentally sensitive as they only include a small number of probes covering each 

site. Targeted-bisulfite sequencing (TBS) is a fine-mapping approach to measure 

DNAm levels which is based on bisulfite conversion coupled with targeted enrichment 

via PCR, followed by sequencing and subsequent quantification. TBS provides a 

candidate approach to perform high-resolution studies by increasing the depth of read 

coverage per CpG in regions of interest. Measuring DNAm changes with high accuracy 

and sensitivity in candidate loci increases the power to detect and replicate the 

embedding of GxE interactions on epigenetic layers and allows time-course 

experiments in larger numbers of samples to understand the stability of the alterations 

following environmental exposures. Roeh et al., developed and optimized an assay for 

the FKBP5 locus, an important gene in the regulation of the stress system and 

previously linked to stress-related disorders (Roeh et al., 2018).  

1.4.3.  FKBP5: a key modulator of the stress system 

Studies investigating the biological correlates and mediators of the effects of 

early life stress in the form of CM on mental health, suggest that a dysregulation of 

hypothalamic pituitary adrenal (HPA) axis following CM leads to vulnerability to the 

effects of stress later in life (Agorastos et al., 2019; Dunn et al., 2019). The most 

consistent finding on the epigenetic programming of neuropsychiatric systems by 

exposure to adversity in rodent models and human cohorts relate to the genes of the 
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HPA axis by CM (Kular & Kular, 2018). A pioneer study reported an association of the 

epigenetic status of the GC receptor (GR) gene Nr3c1 in the hippocampus with the 

quality of parental care of the pups, the levels of GR, and vulnerability to stress in rats 

(Weaver et al., 2004). This finding was extended to humans by the detection of DNAm 

changes in the NR3C1 gene in the hippocampus of suicide victims with a history of 

childhood abuse, compared to suicide victims or controls with no reported childhood 

abuse (McGowan et al., 2009). Additionally, more recent studies have identified 

epigenetic alterations following adversity in other key player of the HPA-axis including 

the intracellular GR regulator FKBP5 as well as the hypothalamic arginine vasopressin 

(AVP), corticotropin-releasing hormone (CRH), and pituitary proopiomelanocortin 

(POMC) genes (Weaver, 2007). Upon stress activation, the release of CRH from the 

paraventricular nucleus of the hypothalamus is triggered, in turn stimulating the release 

of adrenocorticotropic hormone (ACTH) from the anterior pituitary. This causes the 

adrenals to secrete GCs, which have various physiological stress-coping effects and 

are responsible for terminating the axis activation. The most abundant circulating GC 

in humans is cortisol, which regulates various physiological processes (Tsigos & 

Chrousos, 2002). Within cells, GCs bind to two nuclear hormone receptors, the 

mineralocorticoid receptor (MR) and the GR. MRs have a 10-fold higher affinity for GCs 

than GRs, which indicates different roles for each of the receptors in the regulation of 

HPA axis activity (J. M.H.M. Reul & De Kloet, 1985; Johannes M.H.M. Reul et al., 

2015). While MRs are almost saturated under basal GC levels, GR occupancy 

increases at elevated GC levels during the circadian peak or following stress exposure 

(Hartmann et al., 2021). Conversely, MRs are involved in basal activity and onset of 

stress-induced HPA axis activity, GRs primarily drive its termination.  

The Hsp90-associated co-chaperone FK506-binding protein 51 (FKBP5), 

encoded by the FKBP5 gene, is a negative regulator of GR activity and plays a key role 

in the termination of the stress response by GRs (Binder, 2009). FKBP51 binds to the 

receptor complex and impedes the nuclear translocation of the GR. In return, GR 

activation induces FKBP5 mRNA and protein expression, providing an ultra‐short 

feedback loop for GR activation. FKBP5 induction can vary across individuals and has 

been proposed as a marker of GR sensitivity. FKBP5 transcription is steroid-regulated 

and mediated by binding of the GR to GC responsive elements (GRE). GREs are 

located throughout the locus ranging from upstream of the FKBP5 promoter to introns 

2, 5, and 7 of the gene (Anthony S Zannas et al., 2015). FKBP5 includes several 

polymorphisms and the best-characterized haplotype spans the entire gene containing 

up to 18 SNPs in strong linkage disequilibrium (LD) in Caucasians (r 2 > 40.8, distance 
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4500 kb, 1,000 genomes next generation sequencing project).  This haplotype is 

commonly tagged by the SNPs rs3800373, rs9296158, or rs1360780. 

Klengel et al. reported that FKBP5 expression level differences in response to 

GR signaling that were linked to the epigenetic regulation of the FKBP5 locus. 

Additionally, FKBP5 was shown to confer genetic risk for stress-related disorders, 

specifically in the presence of CM (Klengel et al., 2013). Based on their findings, the 

authors propose the following model of GxE interactions with rs1360780: The risk allele 

causes differential interactions between the enhancer and the transcription start site 

(TSS) upon GR activation. Chromatin conformation capture experiments have shown 

that the “risk allele” of rs1360780 enables the structural interaction of TSS with 

downstream enhancers located in GRE of intron 2, which does not occur in carriers of 

the “protective allele” (Figure 2). This structural interaction leads to an increased FKBP5 

expression by GR. This interaction causes an altered in transcriptional induction of 

FKBP5 and persistent overexpression of FKBP5 leads to a prolonged GR activation. 

The allele-dependent changes in chromatin structure together with the prolonged GR 

activity introduce DNA demethylation at CpGs located within and proximal to GREs. 

During specific developmental periods, the demethylation is stable, and thus results in 

long-term transcriptional changes of FKBP5 upon GR activation (Klengel et al., 2013). 

Differential methylation within the FKBP5 locus has been reported for various 

mental disorders including MDD and Post Traumatic Stress Disorder (PTSD) and could 

partially be connected to CA (Klinger-König et al., 2019; Xie et al., 2010). Demethylation 

following CA has been shown in regulatory elements in intron 2 and 7 of FKBP5 

(Klengel et al., 2013; Parade et al., 2017; Tyrka et al., 2015; Wiechmann et al., 2019), 

consequently increasing gene expression following GR signaling and impeding the 

negative feedback mechanism of the HPA axis. 

Interestingly, the interaction with the genotype and adversity seems to be 

restricted to early life, as no relationship between FKBP5 DNAm and adversity has 

been reported in adults (N. Alexander et al., 2020; Binder et al., 2008). This implies the 

existence of a vulnerable period during childhood in which adverse events can 

influence the stress response in adulthood, affecting risk for stress-related phenotypes 

(Dunn et al., 2019). Dunn et al. investigated several conceptual models that have been 

proposed to account for the effects of adverse experiences on neurodevelopment. The 

authors concluded that a sensitive period model best fits most DNAm sites associated 

with adversity, with experiences occurring before 3 years of age having 

disproportionate influences on methylation. As a conclusion, epigenetic changes as a 

result of GxE interaction effects have been proposed to be established during sensitive 
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periods (e.g., development) and to remain stable over time. Nevertheless, only few 

studies have investigated DNAm changes within FKBP5 following CA directly in 

children. Apart from the study described above by Parade et al., a study by Tyrka et al. 

reported the demethylation of two CpGs within intron 7 of FKBP5 in salivary DNA in 

children exposed to CM.  

The work presented here is the first to systematically investigate FKBP5 

methylation with a fine-mapping approach directly in a child cohort. While the EPIC 

array includes 29 CpGs within the FKBP5 locus, only few CpGs are located in/near the 

regulatory regions (GREs, CTCF) which have been shown to regulate transcription. 

The fine mapping approach is necessary to assess methylation of CpGs relevant for 

the epigenetic regulation of this gene and to investigate the effects of adversity, 

especially CM, on these sites. Additionally, the repeated measures in the cohort allow 

the assessment of the stability of association between CM and salivary DNAm within 

FKBP5. DNAm can exhibit different temporal dynamics, varying between the nearly 

absolute stability of the DNA sequence and short-term variations typical of mRNA 

levels. Previous studies have identified sequence and other marker characteristics that 

are associated with DNAm stability including GC content, CpG density proximity to 

repeat elements. The latter has been suggested to be a result from interplays involving 

CCCTC-binding factor (CTCF), specificity Protein 1 (SP1) and DNA methyltransferases 

(Byun et al., 2012). Understanding the stability of the environmentally induced 

epigenetic changes during development would help elucidate the association between 

CM and the development of psychopathology later on in life. Information on the stability 

of DNAm marks following exposure would be important for the design of studies, as 

well as for the statistical analysis of methylation data. 
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Figure 2: Genotype-dependent epigenetic regulation of the FKBP5 locus. FKBP5 shows robust 

induction by GR across different tissues, however there is significant variation in expression patterns. 

Epigenetic modifications, such as DNAm, constitute an additional layer of regulation of gene expression 

and the relationship between genotype and environmental factors. The SNP rs1360780 with the risk 

allele T is located within an enhancer region of intron 2 of the FKBP5 gene and was repeatedly shown 

to be the functional variant conferring risk in the haplotype. Mechanistically, the tagged haplotype alters 

the ultrashort feedback loop between the glucocorticoid receptor (GR, shown in red) and FKBP5. 

rs1360780 is located close to a functional glucocorticoid responsive element (GRE, shown in green) 

and its T-allele facilitates the binding of the intron 2 GRE to the promoter in response to GR activation, 

which leads to an increased transcriptional response of FKBP5. This results in increased GR resistance 

in T allele carriers, which affects the negative feedback of the stress response. GxE studies have shown 

an interaction effect of the FKBP5 haplotype and early-life stress with risk allele carriers being exposed 

to prolonged and higher cortisol levels. 
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1.5. Aim of the research 

 

The main objectives of this thesis were to first determine if CM specific variation in 

DNAm exists and if it is more accentuated in the context of additional adversity, i.e., if 

different adversities contribute to DNAm changes at the same CpGs or genes. The 

latter is based on the fact that CM is embedded in an environment with multiple 

adversities. Additionally, this work aimed to characterize how CM-associated variation 

in DNAm changes over a short timeframe of two years during childhood. This thesis 

specifically addressed the lack of longitudinal data in the research of the effects of CM 

on DNAm. Longitudinal data allows the examination of the implied temporal order of 

associations (i.e., clarify the direction of effects) and account for other exposures. The 

timing of the effects of CM on epigenetic regulation could also be used to identify 

specific windows of biological embedding. Additionally, the genetic contribution on 

related outcomes was investigated using PRSs. 

Second, this thesis focused on FKBP5, a key modulator of the stress system, with 

known alterations of its epigenetic regulation following CM. The aim here was to 

validate the findings previously reported in a child cohort and investigate the stability of 

the changes of DNAm in regulatory regions of FKBP5. This work systematically 

examined the effects of CM on DNAm employing a fine-mapping approach, addressing 

the lack of coverage of array-based technologies. In order to replicate previously 

reported genotype effects, the interaction between rs1360780 and CM on FKBP5 

methylation was tested. Additionally, the correlation between DNAm changes, 

genotype, and biodata (including cortisol) was investigated.  

The last part of this thesis aimed to validate the longitudinal array-based findings in an 

independent cohort with a different age range. Here, I tested if the maltreatment-

specific DNAm patterns could be replicated in an adolescent cohort, showing that 

effects of CM on DNAm remain stable beyond childhood and impact the risk of 

developing mental disorders later in life. 
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2. Material & Methods 

 

2.1. Study populations 

 

2.1.1. Berlin Longitudinal Child Study Cohort 

 

Within the scope of the Berlin Longitudinal Child Study (Berlin LCS), 173 children and 

their caregivers were recruited, of which 86 presented with documented CM exposure, 

i.e., emotional and physical abuse and/or neglect within 6 months, and 87 non-

maltreated matched controls (Entringer et al., 2020; Martins et al., 2021; Winter et al., 

in review). The maltreatment and control groups were frequency-matched for age, sex, 

and SES. Children were aged between 3 and 5 years at study entry and underwent 

detailed assessments of psychiatric and behavioral symptoms, development, and 

physical health at study entry and at 4 follow-up appointments at 6 month-intervals 

within the time frame of 2 years. Additionally, children provided saliva samples for 

biological measurements, genotyping and measurement of DNAm (Entringer et al., 

2020; Martins et al., 2021; Winter et al., in review). Demographics and the study design 

are summarized in Figure 3 and Table 1. Findings in the Berlin LCS cohort have 

already partially been published in: Martins, J., Czamara, D., Sauer, S., Rex-Haffner, 

M., Dittrich, K., Dörr, P., ... & Binder, E. B. (2021). Childhood adversity correlates with 

stable changes in DNA methylation trajectories in children and converges with 

epigenetic signatures of prenatal stress. Neurobiology of stress, 15, 100336. 

Exclusion criteria from the study included parents under the age of 18 years, 

neurodevelopmental disorders, serious medical disease as well as serious medical 

disease of the parents. Inclusion into the maltreatment group was based on the 

Maltreatment Classification System (see chapter 2.2 measures of CA below) (English 

et al., 2002), according to which children needed to have experienced maltreatment in 

the form of physical or emotional abuse or neglect within the past 6 months. For an 

inclusion into the control group, children were screened to not have been exposed to 

any severe critical or traumatic life event. Due to the timing of the initial study entry 

and to dropout not all families reached T4. The rate of non-completion was higher 

among maltreated children (62.45%) compared to non-maltreated children (40.22%). 

The effect of dropouts on the findings was assessed using a sensitivity analysis (as 

described in section 2.8.3 on validation). 

Approval for the study was obtained from the ethics committee of Charité – 

Universitätsmedizin Berlin. All procedures were conducted in accordance with the 

Ethical Principles for Medical Research as established by the Medical Association 
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Declaration of Helsinki. Written informed consent was obtained from all participants 

after the procedures were fully explained. Children gave consent by painting or signing 

a form that was appropriate for the children's age range. Caregivers received monetary 

compensation for participation and children received a small gift. All caregivers 

received diagnostic results and referral for psychosocial or medical follow-up.  

While no maltreatment-specific intervention took place, maltreated children did 

receive “care as usual”. The children for whom treatment was assessed as necessary 

were referred to the Social Pediatric Center of the Charité or other appropriate 

facilities. At each visit, families received feedback about the child's health and 

developmental status and recommendations for follow-up, where necessary (e.g., 

psychological consultation, dentist visit, etc.). Between 44.7% and 62.2% of the 

families adhered to the recommendations across the time points. 

 

 

Figure 3: Study Design of the Berlin LCS cohort. Clinical assessments, Biodata samples and array-

based DNA methylation (DNAm)  measurements were performed every 6 months. Additionally, the fine-

mapping approach for a targeted DNAm measurement of the FKBP5 locus was applied to the baseline 

and T2 samples. Clinical assessments include the documentation of maltreatment events with the 

maltreatment classification system (MCS), psychometric measurements such as the preschool age 

psychiatric assessment (PAPA) and the Child Behavioural Check List (CBC) as well as developmental 

measures such as the Snijder-Oomens Intelligence test (SON-IQ) and the Wechlser Preschool and 

Primary Scale of Intelligence (WPPSI). Biodata samples included Cortisol (Cort), Alpha-amylase (AA) 

and C-reactive protein (CRP). Figure modified from Martins et al., (2021). 
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Table 1: Demographics of the Berlin LCS cohort. Demographic data, developmental and behavioral 

diagnostics, stratified by time point and case-control status (children exposed to maltreatment and non-

maltreated children). Mean and standard deviation is reported for the quantitative measures. 

 

 T0 T1 T2 T3 T4 

Total  
sample size 

173 146 130 111 90 

Sex, CM1 
Sex, no CM 

m=45, f=41 
m=46, f=41 

m=36, f=30 
m=42, f=38 

m=30, f=30 
m=36, f=34 

m=25, f=22 
m=34, f=30 

m=21, f=17 
m=27, f=25 

Age, maltreated1 
Age, no CM 

4.36±0.83 
4.11±0.73 

4.84±0.85 
4.60±0.73 

5.33± 0.81 
5.03±0.74 

5.85±0.83 
5.54±0.72 

6.39±0.82 
4.04±0.71 

Number CM1 

Number no CM 

86 (49.7%) 
87 (50.3%) 

66 (45.2%) 
80 (54.8%) 

60 (46.2%) 
70 (43.8%) 

47 (42.3 %) 
64 (57.7 %) 

38 (42.2 %) 
52 (57.8 %) 

Adversity score  
CM1 

Adversity score  
no CM 

4.05±1.84 
 
1.04±1.05 

4.17±1.71 
 
0.96±0.97 

4.56±1.72 
 
1.39±1.09 

4.70±1.69 
 
1.34±0.96 

5.00±1.67 
 
1.57±1.02 

SES2 CM1 

SES no CM 

9.38±4.46 
16.10±3.60 

9.88±4.70 
16.01±3.50 

9.75±4.85 
16.41±3.55 

9.76±4.63 
16.40±3.72 

10.18±4.45 
15.94±3.83 

SON_IQ3 CM1 
SON_IQ no CM 

90.09±17.33 
106.32±12.22 

- 93.45±17.40 
109.14±13.00 

- 95.5±16.74 
113.73±13.3 

WPPSI4 CM1 
WPPSI no CM  

90.42±13.33 
105.09±11.96 

- 92.46±14.24 
106.19±9.36 

- 93.37±15.29 
107.69±8.24 

CBCL5 CM1 
CBCL no CM 

54.82±11.39 
41.37±8.97 
 

53.31±10.82 
41.51±9.59 

50.53±11.24 
39.1±7.55 

51.66±11.18 
41.30±7.76 

50.70±12.48 
40.37±8.17 

PAPA6 CM1 
PAPA2 no CM 

49 (28.3%) 
18 (10.4%) 

- 36 (20.5%) 
12 (8.2%) 

- 17 (18.9%) 
10 (11.1%) 

1 CM includes any subject which experienced at least one maltreatment event of sufficient severity and 
refers to the maltreated group 
2 Socioeconomic status (SES) 
3 SON_IQ is a non-verbal intelligence test, which was used as developmental measure 
4 WPPSI Wechsler preschool and primary scale of intelligence, developmental measure with spoken 

component 
5 Child behavioral check list, a caregiver report form for problematic behavior 
6 Preschool age psychiatric assessment (PAPA), at least one symptom in the PAPA questionnaire 

 

 

2.1.2. LMU Cohort 

The LMU cohort (Halldorsdottir et al., 2019) comprised 385 youths aged 8 to 18 years 

with MDD (mean age=15.13 years [SD=2.07], 68% female) and 255 healthy control 

subjects (mean age=15.02 years [SD=2.24], 64% female). Cases in this cohort were 

recruited from two child and adolescent clinics in Munich, with inclusion criteria for the 

cases being a MDD diagnosis based on ICD-10 using a standardized semi-structured 

clinical interview at study entry and intellectual capacity to complete clinical measures. 

Diagnostic criteria according to the ICD-10 are met if the patient experienced persistent 

depressed mood, reduction of energy, and decreased activity. Additional symptoms 
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may occur include decreased enjoyment, interest, concentration and self-esteem and 

increased feelings of guilt and worthlessness. The depressed mood may also be 

accompanied by somatic symptoms such as disturbed sleep, psychomotor retardation, 

agitation, loss of appetite, weight loss and loss of libido. Patients are diagnosed with 

mild, moderate or severe depressive episodes based on the number and severity of 

the symptoms. The control group was recruited via the clinic’s website, flyers and local 

advertisement. Inclusion criteria for the control group comprised no past or current 

mental disorder based on the Kinder-DIPS (Schneider et al., 2017) and intellectual 

capacity to complete clinical measures. Participants received a 20 Euro voucher as 

compensation for participating in the study. Exposure to environmental stressors 

including childhood abuse was evaluated using four items on a self-report 

questionnaire which were adapted from the Life Event Survey (Adams & Adams, 1991) 

and the Munich Event List (Wittchen et al., 1989) (see chapter on measures of CA 

below). Study design and demographic data are summarized in Figure 4 and Table 2. 

 

 

Figure 4: Study Design of the LMU cohort. Clinical assessments for MDD and exclusion of 

comorbidities were assessed using the Kinder-DIPS, exposures were measured using 

questions adapted from the LES (Life Event Survey) and the MEL (Munich Event List).  

Genotyping and array-based DNAm measurements are available for this cohort as well. 

  



34 
 

 

Table 2: Demographics of the LMU cohort. Demographic data, psychobiological diagnostics and 

exposure measures, and the standard deviation are reported for the quantitative measures. 

 baseline 

Total sample size 640 

Sex, MDD cases1 
Sex, controls 

m=124, f=261 
m=91, f=164 

Age, MDD cases1 
Age, controls 

15.13±2.07 
15.02±2.24 

Exposed to CA2 

Not exposed to CA 

392 (61.25%) 
248 (38.75%) 

Age exposed to CA 

Age not exposed to CA 

14.69±2.19 
15.20±2.13 

1 Participants with  MDD episode at study begin 
2 Participants with history of childhood abuse  

 

2.2. Measures of childhood adversity 

 

2.2.1. Childhood maltreatment 

 

The occurrence and features of CM in the Berlin LCS cohort (i.e., subtype, duration, 

severity of the event) were assessed at baseline and all follow-up timepoints (T0-T4). 

At the follow-up visits, information on ongoing maltreatment for each 6-month interval 

were collected. The properties of CM were assessed using the Maternal Interview for 

the Classification of Maltreatment (MCS). The MCS provides specific criteria for 

classifying and quantifying the occurrence and features of subtypes of maltreatment 

and responses were coded accordingly by trained clinicians. A range of maltreatment 

subtypes are covered by the interview including emotional maltreatment (i.e., emotional 

abuse and/or emotional neglect), physical neglect (i.e., failure to provide and/or lack of 

supervision), physical abuse, and moral, legal and/or educational maltreatment 

(English et al., 2002). For each maltreatment incidence, severity is rated on a 5-point 

scale ranging from mild (1) to severe or life-threatening maltreatment (5). Additionally, 

age of onset was specified for each incidence. Severity cutoff scores were used to 

include children in the maltreatment group (emotional maltreatment ≥ 2, physical abuse 

≥ 1, physical neglect ≥ 2). 

 

2.2.2. Childhood abuse 

Environmental stressors, including childhood abuse, in the LMU cohort were assessed 

with a comprehensive questionnaire adapted from the Life Event Survey (Adams & 

Adams, 1991) and the Munich Event List (Wittchen et al., 1989). Each item was rated 
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dichotomously (“yes” or “no”). Participants with the positive endorsement of any item 

were rated as having a history of childhood abuse.  

 

2.2.3. Composite adversity score 

In this work, a broader measure was used to separately analyze the burden of stress 

in general in order to identify alterations that were specific to CM. This composite 

adversity score (ranged: 0–10) is based on Adverse Childhood Experience (ACE) 

categories and sums up: low SES (0 or 1, Winkler & Stolzenberg Index (Winkler & 

Stolzenberg, 1999)), exposure to contextual stressors, and critical life events (0 or 1, 

list included in the Preschool Age Psychiatric Assessment), and exposure to different 

maltreatment categories (range 0–7). Children were included in a high or low adversity 

group by using a median split of the adversity score (high: score ≥ 3, low: score ≤ 2). 

2.3. Outcome measures 

 

2.3.1. Mental health outcomes 
 

Psychopathology was assessed at baseline, T2, and T4. To assess psychiatric 

disorders by administering the electronic version of the Preschool Age Psychiatric 

Assessment (PAPA). The PAPA implements a developmentally sensitive and fully 

structured assessment based on caregiver reports (Egger & Angold, 2004). In this 

interview, the presence, frequency, duration, and onset of symptoms for a 3-month 

period and diagnoses are generated according to DSM-IV, including depressive 

disorders (i.e. MDD, dysthymia), anxiety disorders (i.e., social phobia, specific phobia, 

separation anxiety disorder, generalized anxiety disorder, posttraumatic stress 

disorder), attention deficit hyperactivity disorder, conduct disorder, oppositional defiant 

disorder, and mutism. All interviews were conducted by specifically trained clinicians. 

In this work, the subscales for internalizing symptoms (PAPA_int) and externalizing 

symptoms (PAPA_ext) were used in addition. Maternal MDD and anxiety were 

assessed at baseline using the Beck-Depression-Inventory (BDI) and Beck-Anxiety-

Inventory (BAI) (A.T. Beck et al., 1996; Aaron T. Beck et al., 1988). 

 

2.3.2. Developmental measures 
 

Children completed standardized neuropsychological testing for cognitive, verbal, and 

motor developmental domains at T0, T2, and T4. Nonverbal cognitive development was 

evaluated with the Snijders Oomen Nonverbal Test (SON) for the appropriate age 
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range of 2½ to 7 years. This well-validated test provides standardized intelligence 

quotient (IQ) scores (Tellegen & Laros, 1993). Verbal development was assessed with 

the German Wechsler Preschool and Primary Scale of Intelligence - Fourth Edition 

(Wechsler, 2002). These verbal subtests yield two verbal IQ scores, reflecting 

vocabulary and verbal comprehension. The mean of both scores was used in 

downstream analyses. Percentiles were converted into the metric of standardized IQ 

scores for our analyses. 

 

2.3.3. Behavioral outcomes 

Behavioral and emotional problems were assessed at each time point (T0-T4) using an 

age-appropriate caregiver-report version of the Child Behavior Checklist (CBCL) 

depending on the child’s age (1.5-5 years) (Achenbach, 1999).  

 

 

2.4. Saliva samples & Biodata assays 

Saliva samples were collected at each time point (T0-T4) at three times during the 

clinical visits at 9, 10, and 11 a.m. using oral swabs specially designed for small children 

and were immediately stored at −80 °C. Salivary α-amylase (AA) and cortisol (Cort) 

were measured at three-time points on the day of assessment (9, 10, and 11 a.m.). 

Salivary C-reactive protein levels (CRP) was measured at the 11 a.m. time point. Saliva 

for extraction was collected using ORAgene DNA kits (OG500) at 9 a.m. during the 

clinical visit. DNA was extracted together from the samples collected at all time points 

(T0-T4). An automated and standardized procedure based on magnetic beads for 2 × 

400 μl saliva samples with the PerkinElmer Chemagic360 system was used for DNA 

extraction. 

CRP concentration was measured using a commercial kit (Salimetrics) with a sensitivity 

of 10 pg/ml. Intra-assay and inter-assay coefficients of variability were 6% and 13%, 

respectively. Cort concentration was measured using a commercial ELISA kit 

(Salimetrics) with a sensitivity of 0.007 μg/dL. Intra-assay and inter-assay coefficients 

of variability were 7% and 11%, respectively. AA was analyzed using a commercially 

available assay kit (Salimetrics) according to the manufacturer's instructions. Intra-

assay and inter-assay coefficients of variability were 4% and 10%, respectively.  

 

As a measure for AA and Cort, the area under the curve (AUC) was used for each of 

the markers with respect to ground (AUCg) which was computed on flow-rate corrected 

levels (FR) as measured for AA and Cort. For downstream analyses, a log-
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transformation of the CRP values was utilized. A number of different readouts could be 

extracted from the measures at three-time points reflecting different aspects of the 

cortisol dynamics over time: Cortisol levels at baseline (9 a.m.), peak levels (10 a.m.), 

increase (peak-baseline), AUC with respect to ground (AUCg), AUC with respect to 

increase (AUCi). The readout best reflecting HPA´-axis activity in this sample was the 

AUCg measure, as it was significantly correlated with all measures and best correlated 

with baseline (r = 0.59, p = 6.66*10−16) and peak levels (r = 0.76, p < 2.2*10−26). In 

addition, some of the assessments of the children could not always be performed in the 

same order but the AUCg measure is robust against this kind of difference. 

 

2.5. Genotype data 

 

2.5.1. Genotyping 

Samples were genotyped using the Illumina GSA-24 v2.0 BeadChip. After filtering by 

SNP call rate (exclusion at < 95%), sample call rate (exclusion at < 98%) as well as for 

Hardy-Weinberg Equilibrium (HWE; p-value for HWE < 10−5) and minor (MAF, 

MAF < 0.01), 469,592 SNPs and 167 IDs (83 cases, 84 controls) remained.  

As no genotyping method is 100% accurate and given that genotype mistakes can lead 

to increased random error and bias in gene-disease associations, various checks were 

employed to detect genotyping errors, including testing for deviations from the HWE. 

According to the HWE in absence of other evolutionary influences allele 

and genotype frequencies in a population will remain constant from generation to 

generation. Certain departures from the HWE suggests genotyping errors (Chen et al., 

2017; Wigginton et al., 2005). One specific SNP within the FKBP5 locus (rs1360780, 

located at chr6:35639794) was extracted to compute interaction effects with CM using 

the R-package SNPstats (Clayton & Clayton, 2012). 

2.5.2. Imputation 

Pre-phasing was performed with shapeit v2 (Delaneau et al., 2008) and imputed with 

impute 2 (Howie et al., 2011) with the 1,000 genomes phase 3 reference panel. SNPs 

were filtered by imputation quality (info-score < 0.6), minor allele frequency 

(MAF; > 0.01), and HWE (< 1*10-5) with qctool v2 (Wigginton et al., 2005). For SNPs 

with low MAF the power of detection is extremely low even for large effects. Therefore, 

only SNPs passing a MAF threshold were considered for downstream analysis to yield 

a reasonable statistical power. SNPs that are associated with the trait of interest but 

also present with highly significant deviations from the HWE were excluded from 

downstream analysis. Frequently HWE deviations toward an excess of heterozygotes 

reflect a technical problem in the assay, for example, non-specific amplification of the 
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target region. After quality control, 9,522,926 SNPs and 173 IDs remained for 

downstream analysis. SNPs passing the QC were pruned for linkage(window 

size = 100, step size = 5, r2 = 0.2) with plink v1.9 (Chang et al., 2015)  and used to 

compute principal components. The first three principal components (PCs) explaining 

35% of the genotypic variance. In all models, the genotype PCs were used as 

covariates to correct for population structure and relatedness. 

2.5.3. Polygenic Risk scores 

Polygenic risk scores for educational attainment (EA) (J. Lee et al., 2018), MDD 

(Howard et al., 2019), and SCZ (Ripke et al., 2014) were computed for different P-value 

thresholds (0.001, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5 and 1) using the PRSice 2 software (Choi 

& O’Reilly, 2019). For each PRS the P-value threshold for which the correlation with 

the phenotype (PAPA for MDD and SCZ, and SON_IQ or WPPSI for EA) was highest 

was selected for downstream analysis. Additive and interaction effects of the PRS and 

the environment (either CM or the adversity score) on the outcome were tested using 

linear models and comparing the improvement of the model compared to a null model 

using ANOVA. 

 

2.6. DNA methylation 

 

2.6.1. Array-based measurements  

 

2.6.1.1. Berlin LCS sample 

 

The Methylation EPIC BeadChip (Illumina Inc, San Diego, CA, USA) was used to 

measure DNAm in the Berlin LCS cohort. Samples from all timepoints were extracted, 

plated, and run together. Randomization of the samples was performed with regards to 

maltreatment, age, and sex to avoid confounding batch effects and CM. Hybridization 

and array processing were performed according to manufacturers’ instructions. Data 

were normalized using functional normalization (with npc=4) implemented by the minfi 

package (Aryee et al., 2014). Artifacts in the beta-value distribution were identified by 

visual inspection and thirty-four samples were excluded. Additionally, three samples 

were removed due to large amounts of missing values (>5% of CpGs missing). Batch 

effects were identified and removed with the Empirical Bayes’ method ComBat 

implemented in the R package sva (Leek et al., 2012). Two iterations of batch 

corrections were performed for Chip barcode and position (row/column), which were 

the most significant batches. Known cross-reactive and polymorphic probes were 

excluded from downstream analyses (Y.-A. Chen et al., 2013). Further, probes with 

detection p-value > 0.01 in more than 25% of the samples were also removed. CpG-

https://www.sciencedirect.com/topics/neuroscience/methylation
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sites located on the X or Y were excluded (McCartney et al., 2016). After quality control 

(QC), a total 830,206 CpGs and 634 samples (by timepoint (case; control) T0: 167 

(84,83), T1: 128 (63,65), T2: 125 (57,68), T3: 104 (44,60), T4: 110 (46,64)) were used 

for downstream analysis. Cell composition of the samples was estimated using 

the deconvolution method described by Smith et al. and was corrected for in all 

statistical models (A. K. Smith et al., 2015). 

 

2.6.1.2. LMU sample 

From the blood samples collected, DNA was extracted according to standard 

procedures. Methylation analyses were performed at the Max Planck Institute of 

Psychiatry in Munich, Germany. DNAm from blood samples from the LMU cohort was 

also measured with the Infinium Methylation EPIC BeadChip (Illumina Inc, San Diego, 

CA, USA). Samples were randomized with respect to case-control status, childhood 

abuse, age, and sex. Hybridization and array processing were performed according to 

manufacturers’ instructions. Data were normalized using quantile normalization as a 

first step followed by a beta-mixture quantile (BMIQ) normalization step implemented 

by the wateRmelon package. Artifacts in the beta-value distribution were identified by 

visual inspection and four samples were excluded. Batch effects were identified and 

removed with the Empirical Bayes’ method ComBat implemented in the R package sva 

(Leek et al., 2012). Filtering of the probes (polymorphic, cross-reactive probes, 

detection-pvalue, location on X or Y chromosome) was performed for the Berlin LCS 

sample. After QC, 636 samples and 728,868 probes remained for downstream 

analysis. The cell composition of the samples was estimated using the Houseman 

method. 

2.6.2. Targeted bisulfite sequencing of the Berlin LCS sample 

 

2.6.2.1. Amplicon selection 

 
Targeted bisulfite sequencing of the FKBP5 locus in the Berlin LCS samples was 

performed according to the protocol described by Roeh et al., who optimized 

amplifications of 28 regions within the FKBP5 locus covering 302 CpGs within GR and 

CTCF binding sites as well as the transcription start site of the gene (Roeh et al., 2018). 

Regulatory regions within the FKBP5 locus include upstream, downstream, and intronic 

enhancer regions with GREs and CTCF sites. CTCF sites create boundaries between 

so called topological associating domains (TADs) in chromosomes. TADs partition the 

genome into blocks (at a scale of 100 to 1,000 kb), in which loci show a higher contact 

frequency compared to the rest of the genome. This means that sequences within TADs 

are known to physically interact with higher probability than with sequences outside of 

https://www.sciencedirect.com/topics/neuroscience/deconvolution
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the TAD. Stimulating with a synthetic GR agonist, dexamethasone, Wiechmann et al. 

(2019) examined the effects of GR activation on DNAm in the different categories of 

regulatory regions (Wiechmann et al., 2019). 

 Based on this study, 11 of the amplicons covering regulatory regions of interest 

(FKBP5 enhancers, intron 5, intron 7 as well as CTCF binding sites) plus one control 

amplicon H19 were selected. Two PCR targets were not successful and were excluded 

from further analysis (amplification failed for FKBP5 PCR 13.1 and the pooling FKBP5 

PCR 18 failed).  Amplicons were selected to cover previously described GREs from 

(Klengel et al., 2013)] and the GR ChIP-Seq from the ENCODE project (Bernstein et 

al., 2012). Additionally, Amplicons covering CTCF binding sites were selected using HI-

C peaks (Rao et al., 2015), CTCF-ChIA-Pet interactions from a lymphoblastoid cell line 

(GM12878, (Tang et al., 2015)) and CTCF ChIP-Seq information from the ENCODE 

project (Bernstein et al., 2012). Amplicons selected and the number of CpGs covered 

are summarized in the Table 3. 

Table 3: PCR targets selected for amplification. PCR targets are named according to the 

HAM-TBS method developed by Wiechmann and colleagues (2019). Targets were selected if 

they were located in functionally relevant regions of the FKB5P locus. 

PCR name 

PCR location (hg19) 
# CpGs 

covered 

Functional 

region chr start stop 

FKBP5 PCR 1.2 chr6 35558361 35558652 5 Intron 7 Enhancer 

FKBP5 PCR 1.4 chr6 35558459 35558774 5 Intron 7 Enhancer 

FKBP5 PCR 2 chr6 35569680 35569946 5 Intron 5 Enhancer 

FKBP5 PCR 3 chr6 35578686 35578916 3 Intron 5 Enhancer 

FKBP5 PCR 12 chr6 35683267 35683538 4 

Proximal 

Enhancer 

FKBP5 PCR 13.1 chr6 35693391 35693722 7 

Proximal 

Enhancer 

FKBP5 PCR 17 chr6 35696695 35697046 5 

Proximal 

Enhancer 

FKBP5 PCR 18 chr6 35697684 35697842 2 

Proximal 

Enhancer 

FKBP5cg14284211 chr6 35570168 35570410 1 intronic Enhancer 

CTCF PCR 5.1 chr6 35703966 35704310 3 5'TAD 

CTCF PCR 17 chr6 35490554 35490990 17 3'TAD 
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2.6.2.2. Library preparation and sequencing 

 
Bisulfite treatments were performed on each sample which were then pooled to run one 

PCR amplification per amplicon. In three experiments 3 x 50 ng (total of 150 ng) of DNA 

was used per sample using the EZ DNA Methylation Kit (Zymo Research, Irvine, CA). 

Between 1-5 µl of bisulfite-converted DNA were used for each PCR amplification 

employing Takara EpiTaq HS Polymerase (Clontech, Saint-Germain-en-Laye, France) 

with 49 amplification cycles. Quantification of the PCR amplicons was measured with 

the Agilent 2200 TapeStation (Agilent Technologies, Waldbronn, Germany). Amplicons 

were then pooled in equimolar quantities for each sample. In order to remove primer 

dimers and high molecular DNA fragments, AMPure XP beads (Beckman Coulter, 

Krefeld, Germany) were used for a double size selection (200–500 bp).  

Libraries were prepared using the TruSeq DNA PCR-Free HT Library Prep Kit 

(Illumina, San Diego, CA) according to the manufacturer’s instructions. Each library 

was quantified using the Qubit® 1.0 (Thermo Fisher Scientific Inc., Schwerte, 

Germany), then normalized to 4 nM and pooled. Library concentrations and fragment 

sizes were checked via Agilent’s 2100 Bioanalyzer (Agilent Technologies, Waldbronn, 

Germany) and quantitative PCR using the Kapa HIFI Library quantification kit (Kapa 

Biosystems, Wilmington, MA). Paired-end (PE) sequencing was performed on an 

Illumina MiSeq Instrument (Illumina, San Diego, CA) with their MiSeq Reagent Kit v3 

(2× 300 cycles) with the addition of 30% of PhiX Library. 

 

2.6.2.3. Preprocessing of the TBS data 

 

The quality control of the raw sequencing data was performed using FastQC (Andrews 

et al., 2015). Adapter sequences were trimmed using Cupadapt (Martin, 2011) and 

reads were aligned against a bisulfite-converted reference restricted to the PCR 

targets. The alignment was run using Bismark (Krueger & Andrews, 2011), a 

specialized aligner that maps bisulfite-treated reads to a reference genome. Paired-

end (PE) reads were subsequently stitched with an in-house Perl script, which also 

removed low-quality tails of overlapping PE reads. Methylation levels for all CpGs, 

CHGs, and CHHs were quantified using the R package methylKit (Akalin et al., 2012). 

QC of the DNAm levels included the detection of PCR artifacts, the removal of samples 

with insufficient bisulfite conversion rate (< 95%) as well as the exclusion of CpGs with 

coverage lower than 1,000 reads. 
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2.6.3. DNA methylation-based risk scores 

 
DNAm based risk scores for prenatal smoking- and alcohol exposure were calculated 

based on previous epigenetic studies. Prenatal smoke exposure was estimated by 

using a DNAm score based on 15 CpG-sites identified by Richmond et al., maternal 

alcohol intake during pregnancy and 658 CpGs from a fetal alcohol syndrome  (FAS) 

study by Portales-Casamar and colleagues (Portales-Casamar et al., 2016; Richmond 

et al., 2018). For the construction of the epigenetic scores for prenatal alcohol and 

smoking exposure, the CpGs identified in the previous studies were included. The beta 

values measured in the Berlin LCS cohort (using the EPIC array) were weighted by 

effect size reported by the authors and summed up for a score (Martins et al., 2021). 

 

2.7. Statistical analysis 

 

2.7.1. Linear mixed models 

Differentially methylated CpGs between exposed children and non-exposed children at 

baseline were identified using general linear models (glm; function in R) (Hastie & 

Pregibon, 2017). Significant changes over time for single CpGs were analyzed using 

linear mixed models implemented in the lme4 R-package (D. Bates et al., 2007). All 

models included age, sex, and cell type composition (Buccal, CD14, CD34) as 

covariates as well as the first three PCs (PC1, PC2, PC3) from the genotypes in order 

to correct for different ethnicities and relatedness. The following models were tested: 

assessing significant DNAm changes occurring over time (Model 1), assessing DNAm 

changes over time with additive effect of the environment (maltreatment or adversity in 

general) (Model 2) and assessing interactive effects of DNAm over time and the 

environment (Model 3). 

 

Model 1: 

Model over time (methylation changes due to the aging of the children) 

Beta ~ age + sex + PC1 + PC2 + PC3 + Buccal + CD14 + CD34 + Time + (1|Subject) 

 

 Model 2: 

Additive model (changes over time where the environment adds to the effect): 

Beta ~ age + sex + PC1 + PC2 + PC3 + Buccal + CD14 + CD34 + Time + E + (1|Subject) 
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 Model 3: 

Interactive model (the environment modulates the changes over time): 

Beta ~ age + sex + PC1 + PC2 + PC3 + Buccal + CD14 + CD34 + Time x E + (1|Subject) 

 

 

E represents the stress measure of the environment (either CM or adversity score). P-

values were computed by comparing the models with a corresponding nested model 

using ANOVA (Model1, Model2) and ANOVA (Model2, Model3). 

 

2.7.2. Differentially methylated regions 

DMRs were identified by aggregating the results from the linear mixed models using 

comb-p (Pedersen et al., 2012). P-values for each model of all CpGs available 

(n = 830,206) were combined into regions by choosing a seed CpG (with p < 1 × 10−4 ) 

and extending the region by significant neighboring CpG within the range of 500 bp. All 

results reported were corrected for multiple testing at FDR at 10% over all identified 

regions using the Benjamini-Hochberg Method (Benjamini & Hochberg, 1995).  

 

2.7.3. Weighted Gene Co-expression Network Analysis 

The most variable 10% of all CpGs at baseline (n = 83,021) that passed QC were 

selected for downstream analyses by filtering by median absolute deviation (MAD) and 

taking the CpGs presenting with a MAD in the 90th percentile into further analyses 

(Rousseeuw & Croux, 1993). Weighted correlation network analysis (WGCNA) was 

conducted on the baseline DNAm levels (T0) to identify co-methylation structures. The 

best soft thresholding power was determined to be 5 and the tree-cut height was set to 

0.25. The first soft thresholding power to reach an r2 of 0.8 or better with mean 

connectivity in the hundreds is considered a good scale-free topology fit. As 

recommended by the authors, a signed network was constructed (Langfelder & 

Horvath, 2008).   

Stability analysis of the results was performed using a bootstrap approach. 

Network construction was repeated 50 times by resampling 66% of the data in order to 

identify, which modules remained stable and should be considered for annotation. The 

module-trait relationship was then investigated for the stable modules. A summary of 

all analyses is depicted in Figure 5. 
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2.7.4. Functional Annotation 

Enrichment for pathways was computed by mapping the CpGs to genes using the EPIC 

array annotation and then using the gene list as an input for FUMA, a web tool for 

functional mapping and annotation (Watanabe et al., 2017). CpGs within all stable 

modules were tested for enrichment in specific pathways and overlap with GWAS hits. 

Additionally, significant DMRs were investigated for overlap with pathways. All 

n=36,420 genes represented by CpGs on the EPIC array were used as background for 

the enrichment tests. 

 

2.8. Validation 

 

2.8.1. Power analysis 

A power analysis tailored to longitudinal models using the R-package longpower 

(Donohue et al., 2013) was performed. Functions for computing power and sample size 

for linear models of longitudinal data included in this package are based on the formulas 

from Diggle et al., (1994) and Liu et al., (1997). These formulas are expressed in terms 

of marginal model or Generalized Estimating Equations parameters. Mixed effect 

model parameters (e.g., random intercept and/or slope) of a pilot model (the fitted 

model of the CpG with median effect size was used) are translated into marginal model 

parameters so that the formulas can be applied to investigate the power-sample size 

relationship for two sample longitudinal designs assuming known variance. Power for 

our given sample size of the smaller group (n = 81) was estimated for each of the 

models described above with the parameters of interest being: time, time + adversity 

and time x adversity and an effect size estimate (delta) for a 5% methylation change in 

the pilot model. 

2.8.2. Sensitivity analysis 

In order to test the sensitivity of the model to dropouts, the additive model (time + 

adversity) and the interactive model (time x adversity) were re-run using only the 

complete samples for T3 (n=102) and T4 (n=83). Additionally, the direction of effect 

remaining stable using the complete cases at time point 4 was compared to the results 

using the complete data. An overview of all validation steps is shown in Figure 5. 

 

2.8.3. Validation in the LMU cohort 

A linear model to test for the effects of CA on DNAm was run using the LMU samples. 

Similar to the models over time in the Berlin LCS cohort, this model was corrected for 
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age, sex, cell composition (CD8T, CD4T, NK, Bcell, Mono, Gran), and the first three 

PCs of the genotype. 

Model (testing for effects of CA): 

Beta ~ age + sex + PC1 + PC2 + PC3 + CD4T + CD8T + NK + Bcell + Mono + Gran + 

Time + (1|Subject). 

Analogously to the procedure for the Berlin LCS sample, results from this model were 

aggregated to DMRs with the comb-p software using the same settings. These DMRs 

were then attempted to overlap with the DMRs identified with Model 2 (time + E) and 

Model 3 (time x E) in the Berlin LCS cohort. 

Further, DNAm based scores for prenatal smoke and prenatal alcohol exposure were 

calculated as described above for the individuals of the LMU cohort. This was done in 

order to check if the effects of prenatal exposures remain stable past childhood and if 

it affects case-control status in adolescents. 

Finally, the module-centric approach was repeated in the LMU cohort by running 

WGCNA. The top ten percent most variable CpGs were used as an input with the same 

settings applied on the Berlin LCS sample (softThresholdingPower and Networktype). 

Modules identified were overlapped with modules from the Berlin LCS cohort and were 

checked for association with CA, case-control status, and prenatal exposure scores. 

Modules that correlated with any type of adversity or case-control status were 

annotated using FUMA as previously described. 
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Figure 5: Analysis Flowchart. The top layer shows the available Data (light blue boxes) from 

the Berlin LCS cohort (genotype, DNAm, clinical assessments, and biodata). Primary analyses 

are shown in the second layer (dark blue boxes). The additional analyses such as correlations 

between primary findings or annotations and outcomes (shown in red) and interaction analyses 

(shown in orange) are located in the third layer. Validation steps are shown in green on the 

bottom layer. Arrows denote the input required for each step, dashed arrows show which 

validation steps were taken for which findings. 
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3. Results 

 
In this dissertation, I investigate DNAm changes following exposure to CM or early-life 

adversity in general, directly following the maltreatment exposure in a child cohort 

within a narrow time frame over the course of two years. I examine 1) whether CM 

specific DNAm changes, that can be isolated from the variety of exposures present in 

the environment, exist, 2) if these changes remain stable over time and 3) if these 

changes are associated with clinical or developmental outcomes and salivary biological 

measures such as AA, CRP, and cort. Further, PRS were computed and their 

interaction effect with CM and/or CA on developmental outcomes and clinical 

assessments were examined. Parts of these findings have already recently been 

published in a separate manuscript (Martins et al., 2021). Findings from the Berlin LCS 

cohort including 173 children were validated in an independent adolescent cohort (LMU 

sample, including 640 adolescents) showing that some of the identified DNAm changes 

remain stable well beyond childhood. Finally, I focused on the effects of exposures to 

CM and adversity on DNAm within regulatory regions of a candidate gene, namely 

FKBP5, using a fine-mapping approach. The stability of these DNAm changes was 

investigated as well as their interaction with a genetic risk variant (rs1360780) within 

FKBP5, exploring how the genotype might modify reactivity to exposures. A manuscript 

describing these findings is currently in preparation. 

 

3.1. Childhood adversity correlates with stable changes in DNA methylation 

trajectories  

Using the data from the baseline measurements, an association analysis 

comparing DNAm levels between the maltreated (n = 86) and the control group 

(n = 87) as well as the groups with high (n = 81) and low adversity scores (n = 92) was 

performed for each single CpG (n = 830,621). In the following, a longitudinal analysis 

across all time points was conducted by computing linear mixed models in order to test 

for associations of CM or adversity (adversity score) with epigenetic trajectories: (1) a 

model over time (Model 1) estimating the general effects over time occurring due to the 

aging of the children, (2) an additive model (Model 2) estimating the effects where 

maltreatment or adversity add to the effects over time and finally (3) an interactive 

model (Model 3) estimating the effects over time that are moderated by CM or adversity.  
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Moving away from the analysis on a single CpG level, the results of the linear mixed 

models were then aggregated to DMRs. In addition to the models using all 5-time 

points, Models 1 – 3 were also run using only the first three-time points, which capture 

short-term effects on DNAm trajectories (effects over one year). Due to the reduced 

sample sizes at time points 4 (n = 111) and 5 (n = 90), DMR analysis for Model 2 and 

Model 3 was only performed using the first three-time points. 

Finally, a weighted correlation network analysis was performed to identify clusters of 

highly correlated CpGs that might be associated with prenatal or postnatal exposures. 

This network-based approach can be used to screen for relevant CpGs associated with 

a specific exposure or outcome, which could potentially be used as biomarkers. 

3.1.1. Effects of CM and adversity on baseline DNAm 

Association studies between DNAm levels and maltreatment or the adversity score 

were carried out using the baseline data. CpGs were beforehand limited to the top 10% 

of most variable CpGs over time according to the median absolute deviation. While the 

EWAS for adversity yielded no significant CpGs after correction for multiple testing, 

testing for CM resulted in 4 CpGs with significant differential methylation (diffMeth, 

denoting the mean % methylation difference between the groups) after correction for 

multiple testing: cg01221528 (p = 9.35*10-8, diffMeth = -1.91%) mapping onto exon 9 

of the NT5C1B gene, cg18047890 (p = 3.01*10-8, diffMeth = 3.66%) mapping onto an 

open sea region on chromosome 12, cg09323083 (p = 2.37*10-7, diffMeth = -0.90%) 

mapping onto intron 7 of the TBCD and cg17313621 (p = 2.59*10-7, diffMeth = -2.01%) 

mapping to a different open sea region on chromosome 21.  

3.1.2. Effects of early-life adversity on longitudinal epigenetic trajectories 

Models (1)-(3) (Model over time, Additive model, and Interactive model) were run for 

each CpG using either CM or the adversity score as exposure. Since only a few CpGs 

passed the multiple testing correction and the significant CpGs showed only small 

methylation changes for the respective model (< 2% diffMeth) between exposed and 

non-exposed children, an approach aggregating single CpGs into regions was applied. 

For each model, neighboring CpGs were combined into DMRs showing the same 

direction of effect. 

 

3.1.2.1. Effects of aging 
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Aggregating the results from Model 1 across all time points yielded 7 DMRs with 

significant DNAm changes over the total observation period of 24 months. These DMRs 

mapped onto six genes (GSTM3/5, MCCC1, GSDMS, KCNQ1, AURKC, BLCAP) and 

one long coding RNA (LINC22001) (see supplementary table S1). Model 1 was also 

applied to the first three-time points only. The analysis of short-term effects identified 9 

DMRs mapping onto C5orf63, RUFY1, HLA response elements, NPY, RP11-73B2.6, 

MESTIT1, PIWIL2, CIDEB , and AIRE (shown in supplementary table S2). 

3.1.2.2. Additive effects of time and exposure 

Testing the additive effects of time and CM or the adversity score with Model 2 yielded 

2 significant DMRs with additive effects of time and CM. The two DMRs mapped onto 

HLA-B (dmr1_m2) and the pseudogene ZFP91  (dmr2_m2). The same two DMRs 

emerged for additive effects of time and the adversity score. Effects over time were 

observed for both DMRs in the non-exposed group but blunted in exposed individuals 

(see Figure 6). In addition, both DMRs showed associations with sex (Figure 8) with 

the lowest DNAm levels over time in exposed boys and highest in non-exposed girls.  

3.1.2.3. Interaction effects of time and exposure 

While Model 3, which investigated the changes over time moderated by CM (time x 

CM), showed no significant DMRs, the model for time x adversity score yielded 4 

significant DMRs. These DMRs mapped onto the genes GAREML 

(dmr1_m3), P3H2 (dmr2_m3), ZNF562 (dmr3_m3) and GSTT1 (dmr4_m3). Many of 

the DMRs described above mapped to genes previously reported to be associated with 

prenatal exposures including maternal smoking and FAS as shown in supplementary 

table 2. At baseline, DNAm levels within all these regions were negatively associated 

with adversity score. Two of the DMRs (dmr1_m3, dmr2_m3) showed reduced DNAm 

changes over time in the exposure group (3.0% and 1.2% difference in exposed vs 

2.6% and 0.4% difference in non-exposed). Dmr3_m3 showed small changes over time 

but different directions for the high adversity group (hypermethylation of 0.2%) and low 

adversity group (demethylation of 0.1%). This DMR was significantly correlated with 

SES (Pearson correlation r = 0.17, p = 0.03). Dmr4_m3 was demethylated over time 

with larger changes over time in the high adversity group (0.09%) compared to the low 

adversity group (0.05%). At baseline dmr4_m3 was correlated with externalizing 

symptoms (Pearson correlation r = 0.14, nominal p = 0.03), cortisol (Pearson 

correlation r = 0.13, nominal p = 0.04), and CRP levels (Pearson correlation r = 0.14, 
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nominal p = 0.03). Changes over time by adversity are shown in the right panel of 

Figure 6 for all four DMRs.  

Figure 6: Differentially methylated regions (DMRs) over time. Mean DNAm changes over 

time are shown for all of the DMRs, split by adversity score (groups were obtained using a 

median split, the high scoring group is shown in red and the low scoring group in grey). DMRs 

which were yielded from the time + adversity model (Model 2) are shown in the left panel, and 

the DMRs from the time x adversity model (Model 3) are shown in the right panel.  

Investigating the direction of effect of all DMRs from Model 2 (additive model) and 

Model 3 (interactive model) revealed that all DMRs except one (dmr1_m1) are 

hypomethylated in the exposed group compared to the non-exposed group. Differential 

methylation for each CpG for all DMRs is shown in Supplementary Figure S1. 

3.1.3. Epigenetic signatures of prenatal exposure 

Based on previous findings that exposure to post-natal adversities are preceded by 

prenatal exposures within the context of suboptimal caregiving, I next investigated the 

presence of established epigenetic markers of prenatal adversity such as alcohol and 

tobacco exposure. Based on differentially methylated CpGs following prenatal alcohol 

and prenatal smoke exposure, which were identified in previous studies, I calculated 

poly-epigenetic scores for the Berlin LCS sample. DNAm levels of these CpGs in our 

cohort were weighted by the effect sizes and then summed up to yield scores for both 

exposures (see chapter on DNAm-based risk scores above). While both epigenetic 



51 
 

scores were highly correlated (Pearson correlation r = 0.89, nominal p < 2.2*10−16), 

none of the CpGs used to compute the scores (prenatal alcohol exposure score: 

n = 658 CpGs, prenatal smoke exposure score: n = 15 CpGs) overlapped, and only 

one pair of CpGs were located within the same locus (MYO1G). This suggests that the 

exposures themselves are correlated. 

On average, children with documented prenatal smoke exposure (n = 23) or with 

missing information (n = 36) had a higher epigenetic score for smoking exposure as 

compared to those without reported exposure (t-test, n = 108, mean 

(smoking/missing) = 0.143, mean (non-smoking) = 0.139, nominal p = 0.14; 

documented smoking yes vs no: nominal p = 0.07, Figure 7 left panel). This finding 

validates the prenatal smoke exposure score in the Berlin LCS cohort. Maltreated 

children had significantly higher baseline scores for prenatal smoke exposure (nominal 

p = 0.03) compared to non-maltreated children (Figure 7, middle panel). The prenatal 

smoke exposure was positively correlated with the adversity score (Pearson correlation 

r = 0.16, nominal p = 8.8*10−5). Similarly, maltreated children had a significantly higher 

epigenetic score for prenatal alcohol exposure at baseline than non-maltreated children 

(nominal p = 0.04) (Figure 7, right panel). Both epigenetic prenatal exposure scores 

correlated with the adversity score, however, these correlations were not significant 

(smoke exposure: r = 0.12, nominal p = 0.11 and alcohol exposure: r = 0.14, nominal 

p = 0.05). 

 

Figure 7: Epigenetic scores reflecting prenatal exposure. DNAm-based scores for prenatal 

exposure were contrasted between the group exposed to CM (red, n = 84) and the non-

maltreated group (grey, n = 83). In general, cases had higher levels of smoke exposure (middle 

panel, nominal p = 0.03) and alcohol exposure (right panel, nominal p = 0.04) compared to 

controls. Further, the prenatal smoke exposure score (n = 23 + 36 with missing information) was 

compared between children with documented exposure (red) and non-exposed children (grey) 
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(n = 120). The children with documented smoke exposure also presented with higher epigenetic 

scores (left panel). 

 

3.1.4. Correlation between DMRs, prenatal exposure, and outcome measures 

Next, the relationship between the scores, DMRs, and the clinical or developmental 

measures was investigated. The epigenetic prenatal smoke exposure score positively 

correlated with baseline cortisol AUC (Pearson correlation r = 0.14, nominal 

p = 7.6*10−4), and the psychopathology (Pearson correlation r = 0.16, p = 0.04). Both 

DMRs measures at baseline from Model 2 and 3 DMRs of Model 3 that reflect additive 

or interactive associations of time and adversity score correlated with prenatal smoke 

exposure (strongest correlation r = 0.78, nominal p < 2.2 × 10−16). There was no 

overlap between the CpGs included in the prenatal smoke exposure epigenetic score 

and the CpGs within the DMRs identified.  

In addition, the prenatal alcohol exposure score positively correlated with the AUC of 

cortisol at baseline (Pearson correlation r = 0.09, nominal p = 0.03), CRP levels 

(Pearson correlation r = 0.09, nominal p = 0.03), AA levels (Pearson correlation 

r = 0.15, nominal p = 0.04) and low maternal SES (Pearson correlation r = −0.12, 

nominal p = 0.002). The prenatal alcohol exposure score also correlated with 

developmental scores such as the WPSSI (Pearson correlation r = −0.14, nominal 

p = 0.05). Children with high prenatal alcohol exposure scores scored lower on the 

WPSSI. Children with high prenatal exposure scores additionally presented with 

significantly more externalizing symptoms captured by the PAPA subscale (Pearson 

correlation r = 0.19, nominal p = 0.01). 

All DMRs except one (dmr2_m2) were significantly correlated with both the prenatal 

alcohol and smoke exposure (strongest Pearson correlation r = 0.71, nominal 

p < 2.2*10−16), again pointing towards a convergence of prenatal and postnatal 

exposures on DNAm. There was no overlap between CpGs included in the prenatal 

alcohol exposure score and CpGs within the identified DMRs. Correlations of DMRs, 

exposures (CM, adversity score, prenatal exposure scores, SES), bio data, and 

clinical/developmental outcomes are summarized in Figure 8. 
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Figure 8: Correlations of the baseline data (T0). Correlations at baseline between significant 

hits from differentially methylated regions (DMRs; across 3-time points), age, sex, ethnicity, 

maltreatment, socioeconomic status (SES), composite adversity score and maltreatment 

severity, developmental outcomes (SON_IQ, WPPSI), psychiatric assessments (CBCL, PAPA 

internalizing subscale, PAPA externalizing subscale), biodata (alpha-amylase (AA), C-reactive 

protein (CRP), cortisol (Cort)) as well as prenatal exposure. Significant correlations are marked 

“*”, correlations with 0.05 ≤ nominal p ≤ 0.10 are marked “†”. 

Finally, to disentangle the effects of prenatal exposure and maltreatment on the DMRs 

identified, Models 2 (time + adversity score) and 3 (time x adversity score) were re-run 

including the DNAm based prenatal exposure scores (smoking + alcohol score) as 

covariates. After correcting for prenatal exposure, 13 of 17 CpGs from Model 2 (additive 

model) remained significant with some CpGs having even lower p-values as compared 

to when not correcting for prenatal exposures (lowest nominal p = 1.1*10−12). Similarly, 

25 of 31 CpGs from Model 3 (interaction model) remained significant after correcting 

for prenatal exposures (lowest nominal p = 1.4*10−38). 

 

3.1.5. WGCNA reveals maltreatment specific differential methylation 

In the next step, the regional analysis was expanded to a network-based approach. 

Weighted gene co-expression network analysis (WGCNA) was applied to our DNAm 
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data to obtain a correlation network of the baseline DNAm levels. Due to the 

computational complexity of this analysis, only 10% most variable CpGs (n = 83,021) 

were used as input in order to cluster changes in the variable methylome and associate 

obtained CpG modules with differences in environmental factors including CM, 

adversity score, SES, and prenatal exposure scores. This analysis identified 9 co-

methylated modules (plus one module containing unassigned CpGs), the number of 

CpGs in the respective modules ranged from 56 to 56,344. All modules are described 

in Supplementary table S3. A module stability analysis was performed by resampling 

50 times and repeating network construction with 66% of the samples. Nine modules 

remained stable across all 50 runs and were consistent with modules identified in the 

complete data set. The tenth module (magenta module, which included only 56 CpGs) 

was unstable and thus excluded from downstream analyses. Stability analysis of the 

modules is summarized in Supplementary Figure S2. Additionally, I tested if the 

distribution of the beta-values affected the module detection as there was a significant 

difference in the methylation levels (p < 2.2*10-16) of the CpGs within the modules and 

in the MAD-score of the corresponding CpGs (p = 1.95*10-15) (Supplementary Figure 

S3). However, re-running WGCNA with standardized Z-scores showed no difference 

in the modules (lowest p = 0.28) obtained and using M-values as input yielded no good 

scale-free topology fit (with scale-free fit index r2 ≥ 0.8). Networks with scale-free 

topology retain network characteristics independent of the size of the network (e.g., 

like the number of nodes), meaning that when the network grows the underlying 

structure remains unchanged. (Supplementary Figure S4). Therefore, the analysis 

was performed with beta values. 

One module (green module) was selectively correlated with CM (Pearson 

correlation r = 0.17, nominal p = 0.04) and not significantly correlated neither with 

adversity nor prenatal exposure. This module consisted of 268 CpGs mapping to 165 

unique genes. Functional annotation of genes within the green module showed that 

they were not enriched for any specific pathway or significantly overlapped with hits 

from any relevant GWAS for psychiatric disorders. However, a large portion of the 

genes in this module mapped to non-coding RNAs (47 lincRNA, 3 snoRNA, and 3 

microRNA). The genes within the green module also included interesting genes from 

the C21-steroid pathway which is involved in the biosynthesis of GCs such as cort, 

CYP1A1, CYP2A6, CYP2A7) and genes which have been reported to be important in 

early development (such as DNM1, FOXR1, ZNF570). The mean methylation of the 

green module was lower in maltreated children across all five-time points as compared 

to non-maltreated children (see Figure 9). Maltreated children show demethylation 



55 
 

over time for the average methylation levels in the green module, while non-maltreated 

children show stable methylation levels. 

 

  

Figure 9: Green module mean over time split by CM. Across all time points mean 

methylation of CpGs in the green (n = 268) module is lower in children exposed to maltreatment 

(red) than in non-maltreated children (grey). 

 

Interestingly, the sample module that correlated with CM (green module) also 

showed a strong correlation with sex (Pearson correlation r = −0.79, nominal 

p = 2*10−35). Mean DNAm for the green module was lowest in exposed boys and 

highest in non-exposed girls. Two other modules (red and brown) were correlated with 

developmental (SON_IQ, WPPSI) or behavioral measures (CBCL). None of the 

modules were significantly associated with the adversity score or SES. The turquoise 

module (the largest module, consisting of 56,344 CpGs) was nominally significantly 

associated with the AUC of cort and externalizing symptoms (PAPA subscale). 

Finally, the modules that were associated with interesting outcomes or 

environment variables were functionally annotated and examined for overlaps with top 
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hits from GWASA summary statistics (summarized in Supplementary tables S3 – S5). 

The smaller modules (black, pink, red, yellow, and green) with less than 500 CpGs 

showed no significant enrichments. The other modules were mainly enriched for 

immune signaling and cytoskeleton organizational pathways. 

  

 

Figure 10. Module Trait Relationship in the Berlin LCS cohort. Associations at baseline 

between assigned weighted correlation network analysis (WGCNA) modules and general traits, 
different measures of exposure: adversity score, maltreatment, socioeconomic status (SES), 
and prenatal exposure proxies: alcohol and smoking. Additionally, correlations between the 
modules and developmental outcomes (SON_IQ, WPPSI), psychopathology  (CBCL, PAPA 
internalizing subscale, PAPA externalizing subscale), and biodata (alpha-amylase (AA), C-
reactive protein (CRP), cortisol (Cort)) are shown. Additionally, correlations of WGCNA modules 
and polygenic risk scores (PRS) are presented. Shown on the right is the number of CpGs 
included in each module. The coloring of the tiles reflects the Pearson correlation, the number 
within the tile is the nominal p-value. 

3.1.6. Effects of polygenic risk scores on clinical outcome measures 

PRS for educational attainment (EA), MDD and SCZ were computed at different P-

value thresholds (0.001, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5 and1). No significant correlations 

were found between SCZ risk scores and psychometric outcomes.  

PRS at all cut-offs for EA were significantly correlated with SON_IQ (strongest Pearson 

correlation: r =0.39 p = 1.75*10-7, PRS with P-value cut-off at 0.001) and WPPSI 

(strongest Pearson correlation: r = 0.43, p = 6.98*10-9, PRS with P-value cut-off at 

0.001). The PRS with cut-off at 0.001 (EA_0.001) was used for downstream analyses. 
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The PRS at this cut-off included the top 10.215 SNPs from the GWAS summary 

statistics. EA_0.001 was significantly correlated with SES (r = 0.29, p = 1.15*10-4) and 

CM (r = -0.19, p = 0.01), and showed a trend for high adversity (r = -0.13, p = 0.08). 

This showed that exposed children also presented with lower PRSs for EA. 

The MDD risk scores were not significantly correlated with psychiatric symptoms 

(strongest Pearson correlation: r = 0.14, p = 0.08, PRS with P-value cut-off at 0.3), there 

was a trend that individuals with higher risk scores also showed more symptoms in the 

PAPA. The PRS with p-value cut-off 0.3 best correlated with the PAPA and was used 

for downstream analyses. The PRS at this cut-off encompassed the top 181.285 SNPs 

from the GWAS summary statistic. The MDD_0.3 score also correlated with CM (r = 

0.15, p = 0.04), SES (r = -0.24, p = 0.002), SON_IQ (r = -0.25, p = 0.001) and maternal 

depression captured by the BDI (r = 0.15, p = 0.05).  

The EA score with the best association (EA_0.001) was used to compute an additive 

and interaction models between environmental measures by the PRS and SON_IQ.  

Significant additive effects were found with maltreatment (p = 1.417*10-15), SES (p = 

4.063*10-11) and the adversity score (p =1.892*10-10). Interaction effects were stronger 

for the all Es tested: SON_IQ were found for EA_0.1 x maltreatment (p < 2.2*10-16), 

EA_0.1 x SES (p = 1.773*10-11) and EA_0.1 x adversity score (p < 4.975*10-10) and 

using the interactive model as a null model revealed a significant improvement (best 

for maltreatment: F = 5.499, p = 0.02). Non-exposed children with high educational 

attainment PRS presented with the highest SON_IQ scores, while exposed children 

with low PRS had the lowest SON_IQ scores (see Figure 11). The number of symptoms 

reflected by the PAPA best correlated with maltreatment and adding the PRS for MDD 

(MDD_0.3) to the model yielded no significant improvement. 
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Figure 11: Interaction effect of EA PRS and maltreatment. Non-exposed children with high 

educational attainment PRS (first box in grey) had the highest SON_IQ scores, while exposed 

children with low PRS (last box in red) showed the lowest SON_IQ scores. 

 

3.1.7. Correlation between PRS and DNAm changes following adversity 

In order to investigate the genetic contribution to the DNAm changes associated with 

exposures (parental scores, CM, adversity in general), the association of the PRS for 

EA and MDD and DMRs and WGCNA modules were examined. The PRS for SCZ was 

not considered for downstream analyses.  

First, the correlation between the best PRS for EA and MDD and the DMRs from the 

models including E (Model 2 and Model 3) was tested using the mean methylation 

levels across the DMRs. There were no significant correlations between the PRS for 

EA and the DMRS. The risk score for MDD was correlated with one DMR from the 

additive model (dmr2_m2, p = 0.03, r = -0.17) and one DMR from the interactive model 

(dmr1_m3, p = 0.02, r = -0.19). In both DMRs, individuals with a higher PRS also 

showed demethylation following exposure. 

Second, the best PRS for EA and MDD were in the following tested for associations 

with WGCNA modules. EA_0.001 was significantly correlated with the pink module (p 

= 0.005, r = 0.22), the black module (p = 0.03, r = -0.17) and the red module (p = 0.05, 

r = 0.15). Interestingly, the red module was also associated with the developmental 

measures (SON_IQ and WPPSI, see Figure 10) and the prenatal exposure scores. 

MDD_0.3 exclusively showed a significant correlation with the green module, which 

was also correlated with CM (p = 0.04, r = -0.16). 
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3.2. Validation of findings in an independent cohort 

In order to further test the stability of the findings obtained immediately following CM in 

the Berlin LCS cohort, the analyses were repeated in the LMU cohort consisting of 640 

adolescents aged 8 to 18 years with and without a diagnosis for MDD. This cohort 

includes participants with (n=392) and without exposure to childhood abuse (n=248). 

Replication of the findings from the child cohort would not only show the stability of 

these findings over time but also their reliability across different tissues as the DNAm 

measurements in the LMU cohorts was performed on DNA extracted from blood 

samples.  

3.2.1. No overlap with DMRs at a different age range 

A linear model was run to identify differentially methylated CpGs between the 

adolescents who have been exposed to CA and the non-exposed group. We detected 

170 CpGs significantly associated with CA after correction for multiple testing (lowest 

p = 5.02*10-8). Single CpGs were aggregated to regions using the same settings as in 

the Berlin LCS cohort. While aggregating the CpGs from this model to DMRs yielded 

over 25 significant regions passing the multiple testing correction (lowest p = 6.63*10-

11), none of these DMRs overlapped with the DMRs from the additive (Model 2) and 

interactive model (Model 3) in the Berlin LCS cohort.  

3.2.2. Validation of the prenatal exposure scores 

The epigenetic scores for prenatal alcohol and smoke exposure based on weights from 

previous studies were computed in the LMU cohort and tested for discriminative power 

between cases and controls as well between individuals exposed to CA and non-

exposed individuals. The parental smoke exposure score was significantly higher in 

cases (p = 0.005) and exposed individuals (p = 0.01) as compared to the control group 

or the non-exposed group respectively. While there were significant differences 

between groups for the prenatal smoke exposure score, the prenatal alcohol exposure 

score only showed a trend with cases and individuals with adverse childhood 

experiences presenting with higher scores (p (case-control) = 0.09 and p(risk) = 0.06). 

Results are summarized in Figure 12. 
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Figure 12: Prenatal exposure scores in the LMU sample. The DNAm based prenatal 

exposures scores for alcohol and smoke exposure were computed in the LMU cohort and 

compared between groups. The “risk = y” group denotes participants which were exposed to 

childhood abuse (shown in red) while the “risk = n” group reflects unexposed participants. The 

exposed groups on average showed higher prenatal alcohol exposure scores (left panel) and 

present with significantly higher prenatal smoke exposures scores (right panel) as compared to 

the non-exposed group. 

3.2.3. Co-methylation modules in the LMU sample and their correlation with 
exposure 

WGCNA was run on the most variable CpGs from the LMU sample using the same 

parameters as for the Berlin LCS sample. The most variable 10% of CpGs from the 

Berlin LCS cohort only partially overlapped with the most variable 10% of CpGs in the 

LMU cohort (n=146,85), most likely due to the difference of samples in tissue and age. 

Therefore, the same CpGs selected for running WGCNA in the Berlin LCS cohort were 

used as input (n = 74,307, available after preprocessing in the LMU cohort). While these 

CpGs were not the most variable in the LMU sample, they still presented with some 

variation with MAD scores of these CpGs ranging from 0.11 to 0.45. 

WGCNA revealed 23 co-methylated modules with the sizes of the modules included 

ranging from 32 to 41,665 CpGs. Next, the association of the modules with exposure 

or case-control status was investigated. Of these modules three significantly correlated 

with childhood abuse: the purple module (r = 0.12, p = 0.002), the cyan module (r = 

0.12, p = 0.003) and the dark red module (r = -0.09, p = 0.03). The dark red module 

was also the only module that correlated with a history of childhood abuse (r = 0.13, p 

= 0.001). The majority of modules, including the dark red module, correlated with the 

prenatal exposure scores for alcohol and smoking (strongest correlation: r = -0.8, p = 
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6*10-145). The cyan and the magenta modules both significantly correlated with the 

prenatal exposure scores (strongest correlation: r = -0.44, p = 8*10-4). Both of the 

modules were additionally correlated with age (strongest correlation: r = -0.2, p =3*10-

7) and sex (strongest correlation: r = 0.16, p = 3*10-5). Correlations between all modules 

and traits are summarized in Figure 13.  

The CpGs within all modules were mapped onto genes and used as input for FUMA in 

order to functionally annotate the co-methylation modules in the LMU sample. Of the 

modules which correlated with childhood abuse, the cyan module was enriched in 

pathways related to the neuronal system (lowest p = 0.034), the dark red module was 

enriched in oxidative stress (p = 0.026) and TGF signaling pathways (p = 0.026) and 

the magenta module was enriched in chromatin organization (p = 0.013) and 

mitochondrial pathways (p = 0.038). The majority of the remaining modules showed 

significant overlaps with pathways from KEGG or Reactome, the modules without 

significant overlap with pathways mostly were small (number of CpGs included in the 

module < 100, for most of the unannotated modules) and mapped to only a few genes. 

The overlap with specific pathways for all modules is summarized in Supplementary 

table S8.  

Interestingly, the top five enrichments for two of the modules (blue and grey 60) were 

genes that were associated with long-term depression (strongest enrichment: p = 

2.31*10-5). While the blue module was also significantly correlated with the prenatal 

scores (strongest correlation: r = 0.44, p =7*10-32) and sex (r = 0.11, p = 0.005), the 

grey 60 module was not correlated with any trait. 

Finally, the overlap between the exposure-associated modules from the Berlin LCS 

cohort and the LMU cohort was examined. Most of the CpGs (n = 139) within the green 

module of the LCS analysis overlapped with the tan module of the LMU cohort, which 

was not associated with childhood abuse. The tan module, however, was significantly 

associated with age (r = 0.19, p = 2*10-6), sex (r = -0.78, p = 6*10-130) and both DNAm 

based prenatal exposure scores (strongest r = 0.2, p = 7*10-7). CpGs in the tan module 

did not overlap with any significant pathway. Only a few of the CpGs from the green 

LCS module overlapped with the dark red LMU module (n = 16), the remaining CpGs 

overlapped with the grey module.  
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Figure 13. Module Trait Relationship in the LMU sample. Correlations between DNAm 

leaves in the WGCNA modules and exposures (child adversity reflecting exposure to childhood 

abuse, prenatal alcohol, and smoke exposure scores) and case-control status (MDD diagnosis) 

are shown in this figure. The majority of modules are correlated with age and sex. 
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3.3. Targeted bisulfite sequencing of the FKBP5 locus reveals stable changes 

following childhood maltreatment 

Increased FKBP5 activation via genetic or epigenetic factors has previously been 

associated with increased stress sensitivity and risk for psychiatric disorders in human 

as well as animal studies. The human locus of FKBP5 is located on the short arm of 

chromosome 6 (6p21.31) and spans around 155 kb. The locus encompasses 13 exons 

and 12 introns.  Transcription of the FKBP5 gene is steroid-regulated and mediated by 

binding of the GR to GREs, which are located in a region spanning over 100 kb and 

range from upstream of FKBP5 promoter to introns 2, 5, and 7 of the gene. As 

transcriptional regulatory sites with enhancer regions including GREs are distributed 

across the locus, investigating DNAm changes at the FKBP5 locus following CM using 

a fine-mapping approach is of particular interest. Using TBS, regulatory regions within 

the FKBP5 locus that are not covered in commercially available DNAm arrays (shown 

in Figure 14) can be systematically assessed. In a first step, I investigated differential 

DNAm directly following CM (at baseline) in regulatory regions of the FKBP5 locus and 

then analyzed the stability of these effects at a one-year follow-up measurement (at 

T2). 

The best-characterized polymorphisms within the locus comprise a haplotype spanning 

the entire gene and containing up to 18 SNPs in strong LD in Caucasians (r2 > 40.8, 

distance 4500 kb, 1,000 genomes next-generation sequencing project), and is 

commonly tagged by the SNPs rs3800373, rs9296158, or rs1360780. A mechanism for 

the GxE of childhood abuse and genetic variants of the FKBP5 gene has been 

suggested by Klengel et al. (2013). In this GxE mechanism, functional polymorphisms, 

especially rs1360780, within GRE in intron 2 can alter the 3D chromatin structure of the 

FKBP5 locus and embed CT-dependent epigenetic modification. Therefore, in a 

second step, I investigated the genotype-dependent effects of rs1360780 on DNAm in 

all regions covered. Additionally, additive effects (G + CM) and interaction effects were 

investigated. 

Finally, I tested if the change in DNAm levels between the baseline timepoint (T0) and 

the one-year follow-up timepoint (T2) were associated with any changes in the other 

biodata levels using linear models. In addition, I examined which DNAm changes 

following CM overlapped with DNAm differences between children with and without 

psychiatric symptoms. 
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Figure 14: Genome Browser view of the FKBP5 locus. The first track represents the CpGs 

covered by the Illumina EPIC array. The second track shows ChIP-Seq peaks for NR3C1 

obtained from ReMap (Chèneby et al., 2018), a database integrating DNA-binding experiments 

across various transcription factors. The last track shows the FKBP5 gene. 

3.3.1. Early life stress induces stable DNAm changes in FKBP5 regulatory 

regions 

For each CpG covered by the amplicons selected, differential DNAm between 

maltreated children and non-maltreated children at baseline (T0) was analyzed. The 

majority of the CpGs within regulatory regions of the FKBP5 locus (n=41) showed 

significant differential DNAm changes with the largest methylation differences being 

4,6% (within the proximal enhancer region) and the lowest adjusted p-values being p 

< 1*10-350. Differentially methylated CpGs at baseline are listed in Supplementary table 

S9. 

Next, the stability of the DMPs at baseline was investigated at the one-year 

follow-up timepoint (T2). Of the CpGs with significant differential methylation at 

baseline, 25 showed differential DNAm with the same direction of effect at the follow-

up timepoint. These CpGs were considered to be stable over the timeframe of one 

year. However, due to the drop of the sample size at the follow-time point (n=111) 

compared to baseline (n=168), no CpGs remained significant after correction for 

multiple-testing.  

Stable CpGs were located within intronic and proximal enhancers as well as the topologically 

associated domains (TADs). TADs are self-interacting genomic regions, where DNA 

sequences within this region have a higher probability of interacting with each other than 
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outside of this region. While stable DMPs located within intron 5 and intron 7 were mostly 

demethylated in exposed children, stable DMPs located within the proximal enhancer region 

were predominantly hypermethylated in this group. DMPs in the proximal and distal TAD 

showed mixed directions of effects. Baseline and one-year follow-up DNAm levels of the stable 

CpGs are summarized in Figure 15, sorted by location. 

Figure 15: Differential methylation of the FKBP5 Locus following Childhood Maltreatment. Top 

panel genomic location and variants of the FKBP5 locus, genes located within the locus, locations of 

CTCF factor-mediated chromatin interactions (ChIA-PET data) extracted from lymphoblastoid cell lines 

(GM12878, (Tang et al., 2015). Chromatin interactions are shown by blocks connected by a line, 

transcription factor binding (CTCF & GR) obtained from chromatin immunoprecipitation (ChIP) 

experiments in multiple cell lines from the ENCODE project; locations of targeted bisulfite sequencing 

(HAM-TBS, (Roeh et al., 2018)) amplicons. Bottom panel: Bar plots with differential DNAm for each 

amplicon showing differential methylation at baseline (T0, light bars) and at the one-year follow-up time 

point (T2, dark bars). Plots are color-coded by region (TAD: green, proximal enhancer: purple, intronic 

enhancers: orange).  

 

3.3.2. Genotypic effects of rs136780 on FKBP5 DNA methylation 
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First, genotypic effects of the tag SNP rs1360780 within the FKBP5 locus on DNAm 

within functional regions of FKBP5 were investigated. This SNP has previously been 

associated with differential up-regulation of FKBP5 expression and increased GR 

sensitivity (Klengel et al., 2013; Xie et al., 2010; Zimmermann et al., 2011). In this 

sample, the rs1360780 genotype was significantly associated with two CpGs, located 

in the 3’ distal TAD region. These two CpGs (positions 3549608 and 3549619) showed 

significantly lower DNAm levels (p(3549608)=1.78*10-3 and p(3549619)=2.83*10-3) in 

carriers of the risk genotype (CT/TT), (Figure 16). Two additional CpGs showed small 

correlations with the genotype but did not pass the multiple testing correction (Table 2). 

Figure 16: Genotype-dependent CTCF methylation. Rs1360780 showed a significant effect 

on two CpGs within the 3’TAD. These two CpGs showed significantly lower methylation levels 

in carriers of the risk genotype (AA/AG, shown in red) as compared to carriers of the protective 

genotype (GG, shown in grey). 

 

Table 2: Genotype effects of rs1360780 on FKBP5 methylation. Two CpGs within the 3’TAD 

showed significant genotype effects.  

PCR name position P Adj R2 AIC Functional region 

CTCF PCR 17 35490608 1.8*10-3 0.52 716.85 3’ TAD 

CTCF PCR 17 35490619 2.7*10-3 0.56 745.13 3’ TAD 

 

Next, I tested if CM added to the genotype effect on FKBP5 DNAm. Testing for additive 

effects (G + E) revealed significant effects at 7 CpGs located throughout the locus. One 

of these CpGs was located in the 5’TAD (35704149), two were located in the proximal 

enhancer (35683363 and 35683445), the remaining CpGs are lying within the enhancer 
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region of intron 5 (35569751, 35569757. 35569777 and 35570224). The 5’TAD CpG 

showed the lowest DNAm levels in the group of risk allele carriers (CT/TT) who were 

also exposed to CM and the highest DNAm levels for the unexposed control group. 

This was also the case for one CpGs in the proximal enhancer region (35683363). For 

all CpGs in Intron 5, risk allele carriers exposed to CM showed the highest methylation 

levels. Additive effects are summarized in Table 4. 

 

Table 4: Additive effects of rs1360780 genotype and maltreatment 

PCR name position P Adj R2 AIC Functional region 

CTCF PCR 5.1 35704149 2.7*10-2 0.04 248.51 5’ TAD 

FKBP5 PCR 12 35683363 3.9*10-2 0.01 881.54 Proximal Enhancer 

FKBP5 PCR 12 35683445 4.6*10-2 0.01 883.08 Proximal Enhancer 

FKBP5 

cg14284211 35570224 4.9*10-2 0.07 109.45 Intronic Enhancer 

FKBP5 PCR 2 35569751 4.5*10-3 0.07 389.22 Intron 5 Enhancer 

FKBP5 PCR 2 35569757 1.6*10-2 0.06 339.16 Intron 5 Enhancer 

FKBP5 PCR 2 35569777 1.8*10-2 0.04 316.04 Intron 5 Enhancer 

 

Finally, the CpGs were also tested for an interaction effect between rs1360780 

genotype and CM for one CpGs. Analyzing the interaction effects on DNAm yielded 

two significant CpGs (at position 35569751 in Intron 5, adjusted r2 = 0.10, p = 2.8*10-

2). Carriers of the protective genotype and without exposure to CM had the highest 
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methylation levels, while carriers of the risk allele without exposure to CM had the 

lowest methylation levels (shown in Figure 17 and Table 5). 

Figure 17: Interaction effect of rs1360780 genotype and maltreatment (mt). One CpG with 

the 3’TAD showed an interaction effect between CM and rs1360780. The carriers of the 

protective genotype and without exposure to CM (shown in grey) had the highest methylation 

levels, while carriers of the risk allele without exposure to CM had the lowest methylation levels 

(shown in salmon color). 

 

Table 5: Interaction effects of rs1360780 genotype and maltreatment 

PCR name position P Adj R2 AIC 
Functional 

region 

FKBP5 PCR 2 35569751 2.8*10-2 0.10 106.24 

Intron 5 

Enhancer 
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3.3.3. Association between of FKBP5 methylation changes and biodata 

changes 

 

Additionally, associations of the biodata (Cort, CRP) and AA) and DNAm at baseline 

were investigated. Salivary AA activity has been suggested to be relevant as a stress-

related biomarker and possibly is associated with lifestyle characteristics (Nagata et 

al., 2011). Exposure to different stressors has been shown to promote elevations in 

inflammatory markers such as CRP (Broyles et al., 2012; Gouin et al., 2012). 

Dysregulation of cort levels in children and adults has been associated with exposure 

to CA, however, there is little agreement on the direction of these associations (Iob et 

al., 2021). In this study biodata changes over time were linked to changes in FKBP5 

DNAm levels in children directly following CM. Interestingly, in this cohort baseline 

biodata levels for all measurements did not strongly correlate with biodata levels at the 

one-year follow-up timepoint (T0-T2 correlations: r(Cort) = -0.12, r(CRP) = 0.01, r(AA) 

= 0.07). 

First, associations with DNAm in regulatory regions of FKBP5 and salivary biodata were 

investigated. AA levels were significantly associated with DNAm levels of one CpG in 

the 3’TAD (position: 35490713, adjusted r2 = 0.003, p = 4.4*10-3). CRP levels at 

baseline were associated with DNAm of another CpG in the 3’TAD (position: 35490812, 

adjusted r2 = 0.05, p = 4.0*10-2) and one CpG in the intronic enhancer region of intron 

5 (cg14284211, position: 35570224, adjusted r2 = 0.03, p = 4.1*10-2). Cort levels were 

associated with two CpGs in the 3’TAD (position: 35490787, adjusted r2 = 0.03, p = 

4.0*10-2 and position2: 35490818, adjusted r2 = 0.004, p = 1.7*10-2). Baseline 

correlations between CM, DNAm levels, and the biodata levels are summarized in 

Figure 18. 
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Figure 18: Correlation of baseline methylation levels, biodata levels at both time points, and 

baseline maltreatment. Maltreatment is coded as 0 for controls and 1 for cases, negative 

correlation with methylation level signifies demethylation in maltreated children. All CpGs reported 

show a correlation with methylation at baseline and cortisol levels at T2. 

 

Next, I examined if the DNAm changes between baseline and the one-year follow-up time 

point were associated with changes of the biodata levels within the same timeframe. On 

average, cort levels (AUCg) and CRP levels were reduced after one year, while AA levels 

were increased at T2. Cort and CRP changes were associated with DNAm changes at the 

same six CpG-sites, AA changes were associated with 5 of these positions. Four of the 

CpGs were located within the proximal enhancer region, with the strongest association 

being with CRP level changes and the CpG at position 35696726 (r = 0.14, p = 3.5*10-3). 

DNAm levels of the four sites within the proximal enhancer were higher at T2 as compared 
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to baseline, while the CpG within the intron 5 and cg14284211 were demethylated at T2. 

Results are summarized in Table 6.  

 

Table 6: Associations between differential methylation and biodata. Changes of alpha-amylase 

(AA), Cortisol (Cort), and C-reactive protein (CRP) levels between T0 and T2 were associated with 

DNA methylation changes between T0 and T2 at similar positions, mostly within the proximal 

enhancer region covered by FKBP5 PCR 17. 

PCR name position 

AA 

(adj. R2, 

P) 

Cort 

(adj. R2, P) 

CRP 

(adj. R2, P) 
Functional region 

FKBP5 

PCR 2 35569922 n.s. 

0.002, 

3.7*10-2 

0.03, 

7.8*10-3 Intron 5 Enhancer 

FKBP5 

cg1428421 35570224 

0.05, 

1.9*10-3 

0.004, 

2.2*10-2 

-0.006, 

4.2*10-2 Intron 5 Enhancer 

FKBP5 

PCR 17 35696726 

0.09, 

3.5*10-3 

0.13, 

1.0*10-2 

0.14, 

3.5*10-3 Proximal Enhancer 

FKBP5 

PCR 17 35696799 

0.01, 

1.2*10-2 

0.04, 

1.6*10-2 

0.07, 

1.3*10-2 Proximal Enhancer 

FKBP5 

PCR 17 35696870 

0.08, 

2.1*10-2 

0.12, 

5.7*10-3 

0.10, 

1.8*10-2 Proximal Enhancer 

FKBP5 

PCR 17 35696886 

0.05, 

4.4*10-3 

0.12, 

1.7*10-3 

0.11, 

1.4*10-3 Proximal Enhancer 

 

 

3.3.4. Shared differential DNAm patterns of CM and psychopathology 

Finally, differential DNAm between the children with and without psychopathology (at 

least one symptom using the PAPA questionnaire) were computed in order to check 

the overlap with the differentially methylated CpGs following CM. At baseline, the 

majority of CpGs (42 of the 57 covered) were differentially methylated between children 

that scored high on any symptom on the PAPA and children without symptoms, with 

the largest DNAm difference being 5% change and the lowest p-value being p = 3.1*10-

254. 38 CpGs overlapped with the differentially methylated CpGs following maltreatment. 

Overall, directions of effect compare to the differential methylation analysis: children 

with symptoms show predominantly demethylation in intron 5 and intron 7, high 

methylation in the proximal enhancer region, and mixed direction in TADs. In general, 

the mean % methylation difference was larger when comparing the groups at the 

symptom level. A visual representation of the comparison at baseline between 
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differential methylation between maltreated and non-maltreated children and 

differential methylation between children with and without psychiatric symptoms is 

shown in Figure 19.  

For example, the mean methylation changes across intron 7 in maltreated vs. 

non-maltreated was -1.1% (demethylation in the maltreated group) as compared to -

2.2% (demethylation in the group with symptoms). However, due to small sample sizes, 

any subgroup-specific differential methylation analysis did not yield significant results. 

In addition, CM and symptoms were tested for additive or interaction effects on DNAm. 

For 7 CpGs, the model was significantly improved by adding symptoms. Four of these 

CpGs were located in intron 7, one intron 5, one in the proximal enhancer region, and 

one in the 3’TAD. This data showed nominal significant interaction effects of CM and 

symptoms on DNAm for 3 CpGs of which two were located in intron 7 and one was 

located in the 3’TAD. The subgroup with symptoms that were also exposed to CM also 

had the lowest methylation levels across intron 7 (mean: 65.33% compared to 68.87% 

for the group without symptoms or CM exposure). However, these results did not pass 

the multiple testing correction. 
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Figure 19: Comparison between differential methylation at baseline. For each region, the 
top track (yellow background) represents the differential methylation between maltreated and 
non-maltreated children, while the bottom track shows the differential methylation of children 
with and without symptoms (PAPA). 
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4. Discussion 

 

CM is one of the strongest environmental risk factors for chronic and severe mental 

and physical health problems across the lifespan (Parade et al., 2021). Increasing 

evidence suggests that genetic variants interact with environmental risk factors in a 

complex interplay and that long-lasting effects depend on both the individual's genetic 

background and environmental factors (Stephens & Wand, 2012; A. S. Zannas & 

Binder, 2014). Epigenetic mechanisms, in particular DNAm, have been proposed as a 

mechanism of how environmental exposures are embedded in the genome (Cecil et 

al., 2020a). Numerous studies support the hypothesis that CM is associated with 

epigenetic changes that may subsequently serve as mechanisms of disease (Cicchetti 

et al., 2016; Parade et al., 2017; Parent et al., 2017; Suderman et al., 2014). A 

systematic review (Parade et al., 2021), analyzed over 100 empirical studies that 

focused on the relationship between CM and DNAm, including 69 articles focused on 

candidate genes and 31 articles leveraging epigenome-wide data. Within the 

candidate-focused studies, the most common genes were those that regulate GC 

signaling, such as FKBP5, which modulates the sensitivity of the GR. The majority of 

studies also measured DNAm in adulthood using retrospective measures of CM, while 

only a few investigated DNAm in childhood. Additionally, only two longitudinal findings 

were presented for two candidate genes in children, also focusing FKBP5 (Parade et 

al., 2017). 

While findings from the studies broadly back the association between CM and altered 

patterns of DNAm, limitations such as the lack of longitudinal data, low comparability 

across studies as well as pre-exposure environmental confounding, such as prenatal 

exposures, currently limit the conclusions that can be drawn (Cecil et al., 2020a; Dunn 

et al., 2016). Potential improvements for future work include the harmonization with 

regards to phenotypic and genetic data. Certain effects potentially can only be 

observed in a certain phenotype or within individuals with a specific ethnic origin. 

Exposure information has been gathered differently across previous studies, ranging 

from using retrospective self-reported measures in adults to prospective measures in 

children. Future studies would benefit from a harmonized assessment of phenotypic 

measures and exposures including the pre-exposure environment. 

  Addressing the lack of longitudinal data, this work is, to the best of our 

knowledge, the first epigenome-wide study on longitudinal effects of CM on DNAm at 

the critical time period of early childhood (C. A. Nelson & Gabard-Durnam, 2020).  

 

4.1.  Summary of results 
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In the first part of this thesis, I investigated whether CM-specific variation in DNAm 

measured using the EPIC array exists and if it is more accentuated in the context of 

additional adversities, such as low SES or exposure to life events. The effects of CM 

were assessed in the Berlin LCS cohort, a longitudinal child cohort, consisting of 173 

DNAm saliva samples of children aged between 3 and 5 years, of which 86 were 

exposed to CM. The presence of pre-exposure adversities was assessed using DNAm-

based scores as proxy measures for prenatal alcohol and tobacco exposure. 

Additionally, findings were compared with results using a broader adversity score 

which, apart from CM, also included contextual stressors. Finally, the association of 

CM-induced variation in DNAm with behavioral or biological outcomes was tested and 

CM-associated variation in DNAm changes over time were characterized. Genotype 

effects on the outcomes were investigated by computing PRS x CM interactions.  

 In the second part of this thesis, I aimed to validate the longitudinal array-based 

findings in an independent cohort (the LMU cohort) of 640 adolescents with and without 

MDD and/or history of childhood abuse. Here, I tested if CM-specific DNAm patterns 

identified in the Berlin LCS cohort could be replicated across different age groups and 

tissues. Additionally, I investigated if the effects of prenatal exposure were also still 

present at a later point in life. 

 In the third part of this thesis, I focused on FKBP5, one of the best-studied 

candidates in the context of DNAm changes following CM. A potential molecular 

mechanism incorporating FKBP5 variants and CA was proposed by Klengel et al., 

highlighting rs1360780 as a functional variant in the disease-associated haplotype, 

which showed allele-specific local demethylation of CpGs in a specific GRE enhancer 

(Klengel et al., 2013). While Illumina DNAm arrays provide a method to obtain DNAm 

levels at base-pair resolution in a cost-efficient manner, they do not cover key enhancer 

regions, which are important for the regulation of FKBP5 gene expression and 

epigenetic mechanisms contributing to the development of psychiatric diseases 

(Wiechmann et al., 2019). 

Therefore, I systematically analyzed the effects of CM on DNAm by employing targeted 

bisulfite sequencing (Roeh et al., 2018), in order to replicate previously reported 

findings in a child cohort and to investigate the stability of DNAm changes in regulatory 

regions of FKBP5. Additionally, the interaction between rs1360780 and CM, reported 

by Klengel et al., on FKBP5 DNAm was tested. Additionally, the correlation between 

DNAm changes, genotype, and biodata (including cort) was investigated. 

 Finally, key challenges in the study of GxE and thoughts on future perspectives, 

including methodological considerations for future study design were discussed. 
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4.2.  Differentially methylated regions over time in the context of childhood 

maltreatment  

 

As a first step, I explored the association of DNAm levels with exposure to CM and a 

more global adversity score using data from the baseline measurements. A limited 

EWAS, in which the most variable CpG sites on the array were tested individually for 

associations with exposure to identify DMPs, was run for CM and the adversity score. 

While the analysis for adversity yielded no significant CpGs after correction for multiple 

testing, the model using CM yielded four differentially methylated CpGs, of which two 

mapped to the genes TBCD and NT5C1B. TBCD mutations have been associated with 

infantile neurodegenerative disorders (Edvardson et al., 2016). While NT5C1B has 

been associated with eating disorders and is involved in the regulation of adenosine 

levels (Wade et al., 2013).  

Next, a longitudinal analysis across all time points was conducted by computing linear 

mixed models in order to test for associations of CM or adversity (adversity score) with 

epigenetic trajectories: a model over time (Model 1), an additive model (Model 2) and 

an interactive model (Model 3). While each of the models yielded significant CpGs after 

correction for multiple testing, detected effect sizes were small (< 2% methylation 

change between exposed and non-exposed groups) and therefore the downstream 

analysis was directed towards grouping the single CpGs to DMRs. Additionally, it can 

be argued that observed changes in DMRs can be considered more credible as 

neighboring sites show similar changes, and CpGs are thought to function in groups to 

regulate gene expression. 

 

 

4.2.1. Changes over time 

The region-centered analysis examining changes over time returned 9 DMRs changing 

over 24 months and 7 changing over 12 months, suggesting that overall DNAm pattern 

in saliva is rather stable over this developmental time frame. The changes over time 

mostly mapped to prenatal exposures and impairments during early development 

(Jiang et al., 2020; Kunkle et al., 2017). The DMRs exposure to CM or adversity added 

to or moderated the changes over time and mapped to genes that have previously been 

associated prenatal exposures (tobacco (M. Alexander et al., 2013), alcohol (Nguyen 

et al., 2018), lead (Engström et al., 2015) and beta-blockers (Rojas et al., 2015)) and 

with psychiatric disorders (Roberson-Nay et al., 2020; Zhu et al., 2019). While some 

differences in trajectories could be identified for this short time frame (12 or 24 months), 

future work would need to validate if these changes remained stable beyond childhood 
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as DNAm is a reversible process. A study investigating intraindividual time-dependent 

changes in DNAm, found that  8% to 10% of individuals show changes greater than 

20% over an 11- to 16-year span. Both losses and gains of DNAm were observed over 

time, with various environmental factors potentially contributing to these changes over 

time (Bjornsson et al., 2008). 

 

4.3. Genetic and pre-exposure environmental confounding 

Attributing effects specifically to one exposure, such as CM, poses challenges such as 

identifying confounding factors and establishing directionality (Parade et al., 2021). One 

strength of the Berlin LCS cohort is the longitudinal study design and the measurement 

of DNAm directly following the exposure to CM. However, the CM-associated DMRs 

may also reflect preceding or concurrent exposures (Bosch et al., 2012; Dong et al., 

2004; Green et al., 2010; Sosnowski et al., 2018). CM is known to be reflective of a 

suboptimal caregiving environment and is often correlated with a range of prenatal 

exposures such as maternal substance use (Putnam-Hornstein et al., 2016), smoking 

(Taha et al., 2014), and stressful life events (Kelley, 1992). Additional exposures after 

birth include low SES (Isumi et al., 2021) or community violence (Cicchetti & Lynch, 

2016), which are less likely to be shared by non-maltreated children. These additional 

exposures may partially explain the association between DNAm changes and CM.  

4.3.1. Prenatal exposure as a confounder 

Given the fact that CM and prenatal exposure are often correlated and that a number 

of the identified DMRs lie in regions that were previously associated with prenatal 

exposures, I was prompted to next investigate epigenetic proxies of such exposures in 

the Berlin LCS cohort. Two DNAm exposure scores, for prenatal tobacco exposure 

(Richmond et al., 2018) and prenatal alcohol exposure (Portales-Casamar et al., 2016) 

were computed based on previous findings. This was done as there was no information 

on alcohol consumption during pregnancy available and the information on smoking 

was incomplete. Additionally, DNAm-based scores have been shown to be less biased 

than self-reports (Langdon et al., 2020).  

Indeed, CM-exposed children presented with both significantly higher DNAm 

based smoking scores and significantly higher alcohol exposure scores. In addition, of 

the six DMRs of Model 2 and Model 3 associated with additive and interactive effects 

of time and maltreatment or adversity score, five significantly correlated with both 

prenatal exposure measures (strongest correlation r = 0.71, p < 2.2 × 10−16). These 

findings suggest that maltreated children might present with a higher extent of prenatal 
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exposures as compared to controls and that this might also influence DNAm patterns, 

possibly with larger effect sizes than CM itself.  

Next, I aimed to disentangle the effects of adversity/CM from prenatal exposures. 

To do so, I re-ran Models 2 and 3 correcting for prenatal exposure and found that the 

majority of CpGs within the DMRs remained significantly associated with adversity/CM. 

This supports independent effects of adversity/CM on DNAm, even if there seems to 

be a correlation of DNAm at these sites with prenatal exposures (strongest correlation 

dmr4_m3 and epigenetic smoke exposure score: r = 0.78, nominal p < 2.2 × 10−16). 

While some studies investigated the co-occurrence of prenatal exposures and CM, and 

their individual effects on DNAm none of these studies investigated nor disentangled 

the effects of the exposures on DNAm levels. As prenatal exposure and CM were 

strongly correlated in the Berlin LCS cohort, it was challenging to disentangle the effects 

of the individual exposures. Maltreated children also showed higher prenatal scores, 

while non-maltreated children had lower prenatal scores (groups using a median split: 

n(CM + prenatal exposure) = 48, n(no CM + prenatal exposure) = 33, n(no CM  + no 

prenatal exposure) = 47, n(CM + no prenatal exposure) = 34). Future work would need 

to assess both exposures in larger cohorts and investigate the joint effects on the 

DNAm level. Additionally, a pregnancy cohort with longitudinal data would be required 

to establish the effects of prenatal exposure alone and investigate the dynamics of their 

embedding. 

 

4.3.1.1. Prenatal exposure and cortisol reactivity 

In the Berlin LCS sample, the cort response (AUC) was positively correlated with the 

prenatal exposure scores for smoking (r = 0.14, p = 7.6*10−4) and alcohol (r = 0.09, 

p = 0.03). The majority of studies present an attenuated cort response following 

prenatal tobacco exposure in humans and mice (Azar et al., 2010; Eiden et al., 2015). 

Studies examining the relationship between prenatal alcohol exposure and infant stress 

reactivity reported an increased response after light to moderate exposure (Haley et 

al., 2006; Keiver et al., 2015; May & Gossage, 2011). Based on previous findings of 

altered cort reactivity associated with adversity and CM (Agorastos et al., 2019; Cecil 

et al., 2020a) converging effects of prenatal exposure on the stress system need to be 

considered. Such effects may be mediated by epigenetic mechanisms such as DNAm 

given the joint correlations of adversity, prenatal alcohol and smoking scores, and cort 

response with, for example, dmr4_m3. 

One limitation of the Berlin LCS study is that, while the clinical visit would be perceived 

as a stressful event for the children, the repeated cort measurements obtained do not 
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reflect the cortisol response following a standardized stress test. For a more 

established measure of the HPA-axis activity, for instance, the awakening response, 

samples would be needed to be collected at home, which could not be requested from 

these families. Additionally, children (3–5 years at baseline) were too young to perform 

a Trier Social Stress Test (Kirschbaum et al., 1993). Although this measure of cort is 

more difficult to interpret compared to a standard test, it can be argued that it 

nonetheless allows a comparative evaluation of HPA-axis activity. 

4.3.2. Socioeconomic status 

Similarly, to prenatal exposures, low SES represents a confounder that might partly 

explain or compound the association of adversity/CM on DNAm. In the Berlin LCS 

cohort, low SES and exposure to CM were significantly correlated (r = -0.63, p < 2.2 * 

10-16, see Figure 8). Therefore, I re-ran Models 2 and 3 including SES as a covariate. 

Correcting for SES showed that the majority of CpGs remained significantly associated 

with adversity/CM. Running the models with SES as the only exposure (Time + SES 

for Model 2 and Time * SES for Model 3), showed that only the CpGs within one of the 

DMRs of Model 3 (dmr1_3) were significantly associated with SES, with the p-values 

being larger than using the adversity score (strongest association for SES: p = 9*37*10-

4). Maltreated children presented with lower SES than non-maltreated children (groups 

using a median split: n(CM + low SES) = 64, n(CM * high SES) = 18, n(no CM + low 

SES) = 20, n(no CM + high SES) = 60). Studies have estimated the effects of low SES 

on DNAm (McDade et al., 2019; Needham et al., 2015) with some of the effects 

overlapping with CpGs with differential DNAm following CM (Cecil et al., 2020a) such 

as FKBP5 and OXTR. However, most of the previous studies investigating the effects 

of CM on DNAm did not account for SES (Parade et al., 2021). Future work assessing 

contextual stressors alongside CM will be needed to separate the effects of various 

environmental exposures. 

4.3.3. Genetic contribution to DNAm  

 

Family and twin studies have shown that all psychiatric disorders are heritable to 

varying degrees. Over time, the cohort sizes increased and more risk variants with 

smaller effect sizes were identified, yet there is a knowledge gap in the understanding 

of how these variants contribute to the pathophysiology of psychiatric disorders 

(Starnawska & Demontis, 2021). The majority of the identified SNPs by GWAS are 

non-coding but are enriched in regulatory regions of the genome (Hill et al., 2016). It, 

therefore, has been of great interest to estimate the effects of the identified risk SNPs 

on DNAm.  

https://www.sciencedirect.com/topics/neuroscience/trier-social-stress-test
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Heritability studies have shown that individual genetic variation can influence 

DNAm levels across the genome, with heritability estimates for brain DNAm within a 

50kb window ranging from 3-4% (Quon et al., 2013). This estimate differs from DNAm 

heritability estimates in blood, which were previously reported to be around 18% (Bell 

et al., 2012). Nevertheless, heritable DNAm loci across tissues are enriched in open 

chromatin regions, DNAase I hypersensitive sites, binding sites of transcriptional 

repressor CTCF, and near histone modifications (Banovich et al., 2014). This 

enrichment suggests that heritable DNAm loci may play an important role in the 

regulation of chromatin packaging. 

A study aiming to determine whether there are global longitudinal changes in 

DNAm within individuals found that methylation maintenance demonstrated familial 

clustering, which suggests genomic control (Bjornsson et al., 2008). In this work, the 

first three PCs of the genotype were added to all models to correct for population 

structure and ethnicity. Additionally, known polymorphic probes were excluded from 

downstream analysis. Nevertheless, genetic control on the sites of interest could only 

be shown by determining the best model (G, E, G+E, GxE) for the CpGs of interest 

using the approach as described by Czamara et al. (2021). The Berlin LCS cohort was 

included in the study by Czamara et al. and showed that variable methylation at the 

majority of CpGs (61.25%) were best explained by the interaction model (GxE), while 

only a small fraction was best explained by E alone (0.1%).  

To date, the most studied phenomenon through which genetic variation impacts 

epigenetic regulation is methylation quantitative trait loci (mQTLs). mQTL refers to a 

significant association between the genotype at a SNP and DNAm at a CpG at a 

nearby (cis-) or distant (trans-) position (Gamazon et al., 2012). Intraindividual 

comparisons of DNAm patterns between different brain regions and blood reported 

that correlations between DNAm levels across tissues were likely to result from 

mQTLs. mQTL studies found that several risk SNPs for common psychiatric disorders 

act as mQTLs, for example, a study performed on dorsolateral prefrontal cortex 

samples from SZ patients and matched controls confirmed the abundance of cis-

mQTLs in this tissue and reported the detection of mQTL interactions to be 

independent of the case-control status (Numata et al., 2014). In MDD, evidence was 

presented that some of the MDD GWAS-associated risk SNPs act as cis-mQTLs 

(Barbu et al., 2020; N. R. Wray et al., 2018). Overall, mQTL studies show that 

interpretation of GWAS results can benefit from including mQTL approaches 

(Starnawska & Demontis, 2021). Future work to understand the impact of risk SNP 

would require more systematic studies incorporating DNAm information across lifetime 

and tissues.  
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4.4. Polygenic risk scores 

 
In this work, the genetic contribution to some of the outcomes measured 

(developmental scores and psychiatric symptoms) was assessed using polygenic risk 

scores for educational attainment (EA), MDD, and SCZ and were computed. Within 

the field of GxE studies, the combination of PRS and environmental phenotypes 

(PRSxE) investigates the possible increase or decrease of PRS effects if a specific 

environmental risk factor is present (Mullins et al., 2016). In our study, the PRS only 

moderately correlated with the respective outcomes. Testing the interaction of the PRS 

with CM, the SCZ PRS showed no significant correlations. The MDD PRS did not 

improve the model using CM. This matches the findings from a previous meta-analysis 

of 5,765 individuals with depression, where no interaction effects of PRS and CT could 

be found (Peyrot et al., 2017). The failure to find significant PRS x E interactions might 

stem from the way PRSs are defined. They are typically derived from GWAS based 

on a case-control setting and are constructed to model additive effects of genetic 

variants, which does not incorporate environmental risks very well (Meisner et al., 

2019). Interestingly, the EA PRS showed a significant interaction with all exposures 

(CM, adversity score, and SES) on all developmental outcomes, with the strongest 

interaction being EA PRS x CM (p < 2.2*10-16). Previous studies have reported the 

interaction of EA PRSs and SES to predict EA (Bates et al., 2018). The PRS for EA, 

however, seems also to be associated with intermediate phenotypes, such as 

cognition (Richards et al., 2020; Smith-Woolley et al., 2019), which might explain the 

interaction effects.  

 

4.5. Identifying maltreatment-specific methylation changes in children  
 

WGCNA, a module-centric approach, was performed to identify co-methylated 

modules of CpG-sites when there was a group of CpGs that were specifically 

associated with CM, but not with any of the other exposures. This analysis was limited 

to the 10% most variable CpGs in terms of DNAm levels, as variable CpGs are 

enriched for functional regions and correlate with gene expression (Allum & 

Grundberg, 2020; Lioznova et al., 2019). This approach offers the advantage of not 

only focusing on functionally relevant DNAm regions but also alleviating the multiple 

testing problem. The WGCNA revealed one module (green module, consisting of 268 

CpGs) which was exclusively associated with CM (p = 0.04, r = 0.17) and did not 

correlate with adversity in general (p = 0.8, r = −0.2), prenatal exposure (p = 0.8, 
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r = 0.023) nor SES (p = 0.9, r = 0.009). Although no strong effects on the individual 

CpG level could be observed, this finding suggests that a specific set of co-methylated 

CpGs is correlated with CM. CpGs in this module were on average demethylated in 

exposed children and this remained stable across time. This module also showed a 

strong association with sex (p = −0.79, r = 4*10−34), with the lowest DNAm presented 

in exposed boys. Previous studies have reported sex differences in resilience to CM 

as well as moderating effects of sex on the consequences of CM (Samplin et al., 2013; 

White & Kaffman, 2019). Annotation of the green module yielded no strong functional 

enrichments of the CpGs within this module, but a large proportion of genes (54 of 164 

of the genes) mapped to long non-coding RNAs. Long non-coding RNAs are known to 

regulate gene expression by multiple mechanisms and are considered important 

players in developmental processes such as cell differentiation and genomic 

imprinting. 

 

4.6. Validation of DNA methylation signatures in the LMU cohort 

The next step aimed to externally validate the findings from the Berlin LCS cohort in 

an independent cohort to show the stability of the findings after childhood. The DMR 

analyses, the computation of the prenatal exposure scores, and WGCNA were 

repeated in the LMU cohort consisting of 640 adolescents aged 8 to 18 years with and 

without a diagnosis for MDD. While there were many DMRs comparing participants 

with and without a history of childhood abuse in the LMU cohort, none of these DMRs 

overlapped with the ones identified in the child cohort. The lack of overlap between 

DMRs might be due to multiple reasons: first the difference in the type of tissue which 

was used to measure DNAm, second the fact that changes of DNAm trajectories over 

time cannot be captured at a one-time measurement, and finally, that the DMRs do 

not remain stable past childhood. 

 WGCNA was rerun using the LMU sample and yielded three modules (cyan, 

dark red, and magenta) that were associated with childhood abuse. The dark red 

module was correlated with case-control status (MDD diagnosis) and the prenatal 

exposure scores. Interestingly, this module also significantly overlapped (p = 3.64*10-

6, number of overlapping CpGs = 18) with the module which was associated with CM 

in the Berlin LCS cohort (green module). While the green module in the Berlin LCS 

cohort was exclusively correlated with CM, the dark red module in the LMU cohort was 

correlated with multiple exposures. This may be again due to the tissue specificity of 

DNAm, the difference in age ranges, but also might be due to the heterogeneity on 

how maltreatment was assessed in both cohorts 
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 In contrast to the DMRs and the WGCNA modules, the prenatal exposure 

scores could be replicated in the LMU cohort. Participants with a history of childhood 

abuse also presented with significantly higher smoke exposure scores and with higher 

alcohol exposure scores. The same held for participants with MDD compared to 

healthy controls. The fact that these scores could be replicated across different tissues 

and show strong effects well beyond childhood suggests that exposures in the prenatal 

period of life result in broader and more long-lasting effects on DNAm than CM. This 

is supported by the fact that the majority of WGCNA modules in both the Berlin LCS 

and the LMU cohort were correlated with the prenatal exposure scores.

 Complementing the external validation in the LMU cohort, I overlapped the 

CpGs from the DMRs and the green module with findings from a study on an 

independent adolescent cohort by Cecil et al. (2016).  In this study, the authors 

quantified DNAm in buccal epithelial cell samples from a high-risk sample from the 

London inner-city youth (n = 124; age = 16–24; 53% female), with 68% of the 

participants reporting to have experienced at least one form of maltreatment while 

growing up. CM was retrospectively assessed using the CTQ. Only two DMPs 

associated with physical neglect in the study from Cecil et al., overlapped with CpGs 

within the DMRs (cg16210526 and cg10390589). Interestingly, both of these CpGs 

were also included in the green module associated with CM in the Berlin LCS cohort. 

   

4.7. Improving replication of findings across cohorts 

A large number of studies, including candidate-gene and epigenome-wide studies, 

(Parade et al., 2021) have investigated the effects of CM on DNA and while these 

studies collectively support an association of CM and other adversities with DNAm, 

there are still some replication inconsistencies that need to be addressed in future 

research.  

4.7.1. Tissue specificity of DNAm 

In most of the studies on CM, DNAm has been measured in several peripheral tissue 

types, including blood, saliva, and buccal cells (Cecil et al., 2020b). Studies 

investigating CM in children mostly rely on buccal or saliva samples (Martins et al., 

2021; Parade et al., 2017; Parent et al., 2017), while adolescent and adult cohorts 

measure DNAm in blood (Cecil et al., 2016; Halldorsdottir et al., 2019; Klengel et al., 

2013). Some studies have reported good correspondence of DNAm in blood and saliva 

and the investigation of methylation age has also shown to be consistent across tissues 

(Horvath, 2013). While it has been proposed that psychiatric epigenetic research to 
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identify causal alterations should be limited to brain tissue, many studies point to the 

value of peripheral indicators. According to Langie et al., who performed a whole-

genome comparison of DNAm levels in saliva and blood using the 450k platform, 

DNAm levels of about 96% of the CpGs were comparable between peripheral blood 

mononuclear cells and saliva (Langie et al., 2016). Even though the correlation of 

DNAm in the brain with DNAM in saliva, blood, and buccal cells were all reported to be 

high, the strength of these associations depends on the genomic region of interest 

(Braun et al., 2019). Although the standard procedure of analyzing DNAm data includes 

the estimation and correction for the cell-type composition of the tissue, cell type 

heterogeneity remains a significant challenge for epigenetic research (Parade et al., 

2021).  

It is important to note that this work was performed in saliva DNAm, which may originate 

from a combination of blood leukocytes and buccal epithelial cells. There is some 

evidence showing that salivary DNA may more closely reflect methylation patterns in 

the brain than DNA from leukocytes (A. K. Smith et al., 2015). Saliva therefore might 

be a valuable surrogate tissue for the assessment of pathophysiology and could be 

used to reveal putative peripheral biomarkers. Even though DNAm is tissue-specific, 

some of the effects of CM on DNAm in peripheral tissues might point towards causal 

findings. This holds especially true if findings can be replicated across multiple tissues 

and match effects on other molecular layers, such as gene expression. For example, 

converging lines of evidence indicate that methylation of GREs in FKBP5 in DNA from 

the periphery may have functional effects in the body and may reflect changes to GR 

sensitivity in the brain (Tyrka et al., 2015). 

 

4.7.2. Power and sensitivity considerations 

One major challenge in the study of environmental exposures such as CM is the power 

required to detect true changes and eliminate false positives. Large sample sizes and 

replication cohorts with comparable measures are required, however, the very large 

cohorts typically do not provide the depth of phenotyping and data on the exposure 

(Dunn et al., 2016). Longitudinal studies additionally include the problem of dropouts.  

The Berlin LCS cohort for example presents with a relatively small sample size and a 

high drop-out rate of 47,97% (drop-out rate of 57,83% for maltreated and 40,22% for 

non-maltreated) over time. Additionally, it could be observed that more cases dropped 

out than controls and dropouts had significantly higher adversity scores at baseline 

than the remaining individuals (mean(dropouts) = 2.92, mean(remaining) = 2.18, 
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p = 0.02). Some of these children might have been removed from their social context 

and therefore were excluded from the study. Another explanation could be that some 

of the children reached school age and attending the follow-up assessments might 

have been too time-intensive for the families. In particular, the interaction models over 

all time points are underpowered to detect small effects, as the last time point only 

included 90 samples. 

In order to investigate the effects of dropouts on the study, I performed a sensitivity 

analysis. To do so the linear mixed models, as well as the aggregation step, were re-

run using only the complete samples for time point 4 (n = 102) and time point 5 (n = 83). 

The findings with completers at time point 4 were very consistent with the findings on 

the complete data, however lost significance using only completers at time point 5. It 

needs to be pointed out that here only 38 cases remained in the analysis. 

To address the concerns of sample size, a power analysis tailored to longitudinal 

models was performed. A pilot model of the CpG with the median effect was used to 

estimate power to detect a 5% change in methylation levels attributed to the fixed effect 

of interest (time, adversity, time: adversity). The power of the model over time was 

calculated to be 76,2%, for the additive model (Time + E) it was 79,79% (time) and 

15,9% (adversity). For the interaction model, the power calculated for the interaction 

term was 47%. Although the study was underpowered for testing interactions, the 

findings highlight the importance of the effect of CA specifically on DNAm trajectories. 

4.7.3. Harmonizing exposure measures 

The variability of measures and sample sizes feasible makes it difficult to compare 

findings between cohorts and trade-off between deep phenotyping and sample size. 

Overall, very few studies investigating the effects of CM on DNAm included an 

independent replication sample or meta-analyzed findings from different samples (Cecil 

et al., 2020b). Most of the different information on exposure to CM is collected across 

cohorts, ranging from prospectively to retrospectively assessed questionnaires and 

information from official registries to self-reports. Subjective measures of CM are not 

always in accordance with objectively documented cases of maltreatment but show 

stronger relationships with psychopathology than only objectively ascertained cases of 

maltreatment that are not subjectively recalled as maltreatment (Danese & Widom, 

2020). Additionally, different subtypes of CM (sexual, physical, emotional) might have 

different effects on DNAm (Cecil et al., 2016; Saito et al., 2020). In summary, well-

defined measures of CM that include dimensions of severity, timing, and subjective 

impact would be required across cohorts.  
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4.7.4. Reliability and coverage of DNAm measurement methods 

While array-based technologies are already widely used to measure DNAm, the 

reliability of the data generated is surprisingly variable (Pidsley et al., 2016). A study 

comparing probes on the 450K and EPIC, found that BeadChip reliability correlations 

ranged from −0.34 to 0.95 with a median value of 0.15, and only 2.6% of the ∼420,000 

probes assayed had reliability correlations above 0.8 (Sugden et al., 2020). This 

finding shows patterns of uneven reliability in the repeated measurement of DNAm. 

This needs to be considered when making comparisons with data from older studies. 

Another aspect that needs to be acknowledged when investigating the effects of 

environmental exposure epigenome-wide and specifically on candidate genes is the 

coverage of CpGs. Although commonly available array technologies allow us to 

measure DNAm levels across hundreds of thousands of CpG sites, they only cover 2–

4 % of CpG sites across the genome (Flanagan, 2015), leaving a large proportion of 

CpG sites unmeasured.  Moreover, the EPIC array offers improved but still suboptimal 

coverage of regulatory elements (Pidsley et al., 2016). Using FKBP5, an important 

modulator of the stress hormone system, as an example: The EPIC array covers 29 

CpGs within the gene, of which the majority is located near the TSS. Only a few of the 

CpGs covered within FKBP5 are located within Intron 5 or Intron 7, for which the 

majority of significant findings following CM have been reported (Klengel et al., 2013; 

Klinger-König et al., 2019; Saito et al., 2020). WGBS can capture more than 28 million 

CpGs (Stevens et al., 2013), but the feasibility remains low for the population-based 

EWAS due to the high cost and large genomic DNA input requirements to compensate 

for degradation during DNA bisulfite treatment (Heiss et al., 2020). High-accuracy 

targeted approaches using bisulfite sequencing in candidate loci would increase the 

power to detect and replicate previously reported effects as well as allow researchers 

to perform time-course experiments in large numbers of samples to understand the 

stability of the environmentally induced changes during development (Roeh et al., 

2018). 

 

4.8. Focusing on FKBP5 using a fine-mapping approach 

 

Epigenetic alterations following CM have been documented and could be replicated for 

some candidate genes, with the most commonly studied candidates being those that 

regulate GC signaling, including NR3C1 and FKBP5, which modulate the sensitivity of 

the GR (Parade et al., 2017). Klengel et al (2013) previously suggested the following 

model for the FKBP5 × childhood abuse interaction: genetic differences, such as the 
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well-studied polymorphism rs1360780, lead to divergent chromatin conformations and 

interactions of long-range enhancers with the TSS. This induces a differential 

transcriptional activation of FKBP5 by GR activation in response to CM. DNAm in the 

intronic enhancer regions adds to the differential responsiveness of FKBP5 to GR 

activation (Klengel et al., 2013). While these effects were replicated by some studies 

(Misiak et al., 2020; Tozzi et al., 2018), several studies did not find significant 

associations of CA and FKBP5 methylation (Yeo et al., 2017) or moderation by the risk 

allele (Bustamante et al., 2018; Klinger-König et al., 2019). 

The last part of this dissertation focused on employing a fine-mapping approach 

in order to investigate DNAm changes in key regulatory regions of FKBP5. Targeted-

bisulfite sequencing was applied to a subset of samples from the Berlin LCS. DNA 

originated from saliva samples from two time-points: at baseline (n=162, 83 maltreated 

children, 79 controls) and one-year follow-up (n=117, 54 maltreated children, 63 

controls).  

As already discussed, most of the studies investigating the effects of early-life 

adversity or specifically CM, including the study by Klengel et al., were performed in 

adults using retrospective measures such as the CTQ. Few studies investigated the 

effects of CM on FKBP5 methylation in children. Tyrka et al. previously presented 

evidence for significant demethylation following CM at two CpGs within intron 7 of 

FKBP5 in children aged 3-5 years and a trend for interaction with the FKBP5 

polymorphism rs1360780. Parade et al. (2017) investigated if CM contributed to 

changes in DNAm at the same two sites in intron 7 over 6 months in a sample of 

preschoolers and found an association of FKBP5 methylation over time exclusively 

when the children were exposed to contextual stressors and report a genotype-

dependent effect for child-welfare service utilization. To my best knowledge, this study 

is the first to systematically investigate DNAm alterations following CM at the FKBP5 

locus directly in children with documented cases of maltreatment. Given that the 

interaction with the genotype and adversity seems to be restricted to early life, as no 

relationship between FKBP5 DNAm and adversity has been reported in adults (N. 

Alexander et al., 2020), this work represents an important addition.  

 

4.8.1. Stability of DNAm changes in FKBP5 regulatory regions 

Out of the 50 CpGs covered by the amplicons selected, differential methylation 

between maltreated and non-maltreated at baseline could be observed for the majority 

of CpGs (n = 41, lowest p = 2.04*10-281, largest methylation change: 4.22%). Exploring 
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the direction of effects, the majority of CpGs in the intronic enhancer regions (Intron 5, 

Intron 7) were demethylated in children exposed to maltreatment (lowest p = 4.63*10-

179, largest methylation change: -3.02%). This matches the findings for the two CpGs 

investigated in previous studies: CpG1 at position 35558488 (largest demethylation in 

our data with the lowest p-value, methylation change: -3.02, p = 4.63*10-171) and CpG2 

at position 35558514 (methylation change: -2.57, p = 6.83*10-31). These two CpGs 

showed some of the strongest effects and were located within a consensus GRE motif.  

Reduced intron 7 methylation has previously been associated with higher induction of 

FKBP5 by GR activation, leading to increased GR resistance. Although DNAm marks 

are tissue-specific, GC-induced demethylation of regulatory regions of FKBP5 in blood 

was associated with anxiety-like behavior (R. S. Lee et al., 2011) and levels of FKBP5 

methylation in blood were significantly correlated with both methylation and gene 

expression in the hippocampus (Ewald et al., 2014). Additionally, demethylation of 

intron 7 was also shown in a human hippocampal progenitor cell line following GC 

exposure (Provençal et al., 2020). These findings, together with the findings in the 

Berlin LCS cohort, suggest that this specific peripheral marker might be informative of 

brain function. To date, no studies reported the association of the intron 5 DNAm with 

a psychiatric disorder and the study by Klengel et al. did not find any significant 

association with childhood abuse (Mendonça et al., 2021). This finding might point to 

the fact that intron 5 methylation changes following CM might be tissue-specific. 

However, a human cell experiment line treated with cort showed that changes in intron 

5 CpG methylation and FKBP5 expression were inversely associated (Duis et al., 

2018). Additionally, most of the CpGs in the proximal enhancer regions were 

hypermethylated in the children exposed to maltreatment, while the CpGs within the 

CTCF binding sites (in the flanking TAD regions) showed mixed direction effects. While 

there are no studies specifically investigating the effects of DNAm changes within the 

CTCF sites flanking the FKBP5 locus, a DNAm increase directly at CTCF binding sites 

can lead to loss of CTCF binding and therefore disruption of chromatin interactions, 

which can lead to dysregulated gene expression. The changes at CTCF sites following 

CM were rather small (0.5-1.0%) and a study by Wiechmann et al, investigating these 

sites following dexamethasone (a synthetic GC) treatment showed similar changes and 

proposed that they might alter enhancer function but not disrupt the chromatin 3D 

structure (Wiechmann et al., 2019).  

Next, the repeated measure at the one-year follow-up time point was used to 

assess the stability of the CM effects detected at baseline. Differentially methylated 

CpGs at baseline were considered stable if they showed the same direction of effect 

after one year. This held for 25 CpGs of 41 CpGs across all regulatory regions covered, 
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with some of the CpGs even showing larger methylation differences between the 

groups than compared to baseline. The direction of effect of CpG1 remained stable 

after one year (uncorrected p-value: 0.02, diffMeth: -0.46%), however, this was not the 

case for CpG2. The stable differentially methylated CpGs detected in the Berlin LCS 

cohort overlapped with differentially methylated CpGs following acute dexamethasone 

treatment (1 h, 3 h, 6 h) reported by Wiechmann et al. and co-localizing with GC 

receptor binding sites (Wiechmann et al., 2019). These findings point towards early 

exposure to CM changing the set point of future FKBP5 dynamics in response to stress 

by inducing stable DNAm changes. This supports the proposition that CM increases 

the risk of developing psychopathology due to a sensitization of the neurobiological 

systems implicated in stress adaptation and response (Heim et al., 2008). 

While the repeated measure represents an advantage of this work, as it allows 

the assessment of the stability of CM induced DNAm changes, the smaller sample size 

at the follow-up time point (n=111) might be the cause of the differential methylation 

analysis at this time point to yield no significant effects after correction for multiple 

testing. Although we observed that the effects remained stable after one year, our 

finding needs to be replicated in a larger study. Additionally, in the Berlin LCS cohort 

maltreatment events were still present between the baseline and the follow-up 

measurement, therefore it would be interesting to examine if differential methylation 

effects remain stable without CM and how DNAm changes relate to fluctuating 

exposure to adversity. Finally, it would be necessary to extend the time frame of the 

longitudinal studies to assess to what extent the effects of CM on FKBP5 maltreatment 

are long-lasting. 

4.8.2. Genotype effects at the FKBP5 locus 

 
As a next step, potential genotype effects of rs1360780 on DNAm in functional regions 

of FKBP5 were investigated.  This SNP has previously been associated with differential 

up-regulation of FKBP5 expression and increased GR sensitivity (Klengel et al., 2013; 

Xie et al., 2010; Zimmermann et al., 2011). Carriers of the risk genotype in the Berlin 

LCS cohort showed significantly lower methylation levels at 2 CpGs within the CTCF 

binding site at 3’TAD. Investigating the sites where CM adds to the genotype effect on 

DNAm, we found 4 CpGs in the intronic enhancer, 2 in the proximal enhancer, and 1 in 

the CTCF binding site at the 5’TAD. From these CpGs, one significant interaction was 

identified for one CpGs within intron 5 (at position 35569751 in intron 5, adjusted r2 = 

0.10, p = 2.8*10-2). Carriers of the protective genotype and without exposure to CM had 

the highest methylation levels, while carriers of the risk allele without exposure to CM 

had the lowest methylation levels.   
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 The genotype-specific effects in the Berlin LCS cohort do not match the findings 

of Klengel et al., who reported that FKBP5 risk allele carrier status and early trauma 

exposure lead to demethylation of intron 7 CpGs in FKBP5. While in the Berlin LCS 

cohort intron 7 CpGs were demethylated in children exposed to maltreatment, there 

was no significant genotype effect observed for these CpGs. Nevertheless, the Berlin 

LCS cohort showed significant genotype effects or moderation effects on the 

topologically associated domains, which support the proposed mechanism of 

genotype-mediated long-term environmental reactivity via chromatin interactions. 

Genotype effects of rs1360780 on intron 5 were reported by Duis et al., who performed 

a study using cord blood samples (Duis et al., 2018). They reported an association of 

the risk allele (TT) was associated with methylation at multiple CpGs in 

the FKBP5 intron 5 region. These findings support that rs1360780 might 

influence FKBP5 intronic methylation by acting as cis-mQTL. However, the tissue 

specificity and stability of these findings need to be investigated over a longer time 

frame and past childhood. 

 

4.8.3. FKBP5 DNAm and biodata changes are linked 

Next, I explored the relationship between FKBP5 methylation and biodata levels 

available in our cohort, including cort). In addition to cort, AA and CRP were measured 

in the Berlin LCS cohort. AA is considered an important salivary biomarker of stress, 

with an abrupt increase of AA concentrations following acute stress (Chojnowska et al., 

2021). CRP, among other inflammatory markers, has been reported to be elevated 

following chronic stress (Miller et al., 2019) and is associated with increased risk for 

stress-related disorders (Wium-Andersen et al., 2013). 

At baseline AA, CRP and cort were mainly associated with DNAm of a few CpGs in the 

3’TAD. These CpGs overlapped with some of the CpGs what also showed significant 

associations with the rs1360780 genotype, which might suggest that the salivary 

biomarkers associated with stress are linked to GR activation. Additionally, changes 

between baseline and the one-year follow-up of biodata and DNAm changes over time 

were associated: correlations could be observed for 4 CpGs in the proximal enhancer 

and 2 in the intronic enhancer in Intron 5 (lowest p = 1.7*10-3, adjusted r2= 0.10).  

Interestingly, there was no correlation between cort and any CpG in intron 7 that 

could be detected. This matches recent findings by Alexander et al. who tested the link 

between chronic and acute cort output and FKBP5 methylation in healthy individuals 

and found no significant association, even if the genotype was taken into consideration 

(N. Alexander et al., 2020). The lack of effects of CM on FKBP5 DNAm in a healthy 
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cohort might be explained in the way that it might be a modulator of the mental state 

and can only be observed in individuals with psychopathology. This would need to be 

tested in a larger sample with cases only. 

4.8.4. Overlapping DNAm pattern between CM and psychopathology 
 

DNAm changes at the FKBP5 locus have been reported for various mental disorders 

such as MDD (Park et al., 2019) and PTSD (Kang et al., 2019) and could be attributed 

to CA (Parade et al., 2021). Demethylation following CA has been shown in regulatory 

elements in intron 2 and 7 of FKBP5, consequently increasing gene expression 

following GR signaling and impeding the negative feedback mechanism of the HPA 

axis (Klengel et al., 2013). 

In the last part of the work on DNAm change within regulatory regions of FKBP5, 

I tested if the differential methylation patterns following CM overlapped with DNAm 

differences associated with psychopathology. At baseline, the majority of CpGs (42 of 

the 57 covered) were differentially methylated between children that scored any 

symptom on the PAPA and children without symptoms, with the largest methylation 

difference being 5% change and the lowest p-value being p = 3.1*10-254. 38 CpGs 

overlapped with the differentially methylated CpGs following maltreatment and overall 

the direction of effects (demethylation in the intronic enhancers in children with 

symptoms, hypermethylation in the proximal enhancer, and mixed effects in the CTCF 

binding sites). 

While the small sample size (smallest group: maltreated children without 

symptoms = 15) did not allow a subgroup analysis, the overlap between differential 

methylation following CM and differential methylation in psychopathology supports a 

potential overlap in the underlying molecular mechanisms.  

 

4.9. Conclusion and future directions 

 

Overall, the findings in the Berlin LCS cohort highlight the fact that CM often occurs in 

an environment that also includes various other types of adversities and environmental 

factors that mean CM cannot be investigated as an isolated exposure. The presence 

of additional adversities such as prenatal exposures, SES, and other life events and 

adversities likely contribute to changes observed with CM and possibly also add to the 

overall risk and resilience trajectories. Most of the findings were associated with both 

CM and the adversity score, with stronger effects in some time series models of the 

latter. The findings additionally suggest the convergence of prenatal and postnatal 
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adverse exposures on DNAm, with most of the DMRs following CM correlating with the 

prenatal exposure scores. Only a small DNAm module was exclusively associated with 

CM and did not correlate with the other exposures. While the first part of this work 

identifies some interesting loci, especially located in long non-coding RNAs, its main 

message is focused on the importance of not only mapping the epigenome but also the 

environment, extending the timeframe to well before birth.  

The second part of this thesis, which was directed towards extending the 

findings from the Berlin LCS cohort beyond childhood, revealed key challenges to be 

addressed by future research in CM and epigenetics. None of the CM and adversity-

related findings could be replicated in the LMU cohort, this is most likely due to the 

heterogeneity of both cohorts. Considerations for future study design include the tissue 

in which DNAm is sampled, measures of exposure, time frame, and sample size, 

unmeasured environmental and genetic influences, and the functional characterization 

of epigenetic findings. The fact that the prenatal exposure scores remained stable 

across tissues and age ranges emphasizes the importance of including the pre-

exposure environment, especially the prenatal period, in the study design. Finally, the 

possibilities and limitations of the tools used to measure DNAm need to be considered. 

The choice of measuring method defines the space for the discovery of CpG loci 

associated with CM and while the EPIC platform will remain a central tool, targeted 

approaches might be more suitable to support findings in candidate genes. 

The last part of this thesis, the systematic study of DNAm changes at the FKBP5 

locus following CM, validated previous findings and yielded novel insights into the 

epigenetic regulation of FKBP5 dynamics. The stability of the findings after one year 

supports that long-term effects of CM may be mediated by DNAm changes. It will be 

crucial for future investigations to disentangle shared and distinct patterns of CM and 

psychopathology and include potential moderators in the associations identified. More 

work investigating the regulatory effects of other epigenetic mechanisms on FKBP5 

expression changes will be required. 
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6. Supplement 

 

Supplementary figures and tables include supporting information on the analyses using the 

Berlin LCS data. These figures and tables have previously been published in the 

supplementary material of Martins et al., 2021.  
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6.1. Supplementary Figures 

 

Figure S1: Direction of effect for the differentially methylated regions (DMRs). Differential methylation for each CpG within the significant DMRs obtained 

from models 2 and 3 for T0-T2. DMRs obtained from model 2 are shown in the left panel, DMRs from model 3 in the right. Most of the regions are hypomethylated 

(shown in orange) in subjects with high adversity scores, only one DMR from model 2 is hypermethylated in the exposed group. 
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Figure S2: Module stability analysis in the Berlin LCS sample. Block-wise module construction with a maximum module size of 10,000 (due to computational 

complexity) was repeated (n=50) with 66% of the samples. The full data set was computed using 3 blocks at maxBlockSize of 30,000. Shown here are the 

dendrograms (blocks1-3) of the full data set with the matched assignments of the resampled networks. The top of the plot shows the dendrogram for each of the 

blocks, the bottom shows the assignment to the modules for each CpG, where each row represents one resampled network. 
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Figure S3: Mean methylation and median absolute deviation (MAD) score by module. In order to investigate if the distribution of beta-values impacted the 

module detection.  Differences in MAD scores (left) and methylation levels (right) between the modules were analyzed. Both showed significant differences 

between the modules.  
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Figure S4: Scale-free topology fit and mean connectivity 

using M-values compared to beta values. Comparison of scale-

free topology fit (left) and mean connectivity (right) for 

standardized M-values (top half) and beta values (bottom half). 

The first power to reach an r2 of 0.8 with mean connectivity in the 

hundreds is considered good. 
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6.2. Supplementary Tables 

Table S1: Differentially methylated regions aggregated from linear mixed models (Model 1-3) using all time points (T0-T5). Only regions with 

more than 5 CpGs that passed the multiple testing correction are reported with the nominal p-value. No significant hits were found for models 2 

and 3. 

Models  DMRs # CpGs p-value 

 

genes annotation1 

Time (Model 

1) 

chr5:126409006-126409311 

chr5:178986130-178986831 

chr6:30095135-30095496  

chr7:24323674-24323940  

 

chr7:63386225-63387148  

chr7:130125763-130125985 

chr8:22132562-22133357 

chr14:24780550-24780891 

chr21:45705617-45705743  

8 

13 

17 

7 

 

7 

7 

13 

9 

7 

2.97*10-4 

4.23*10-6 

9.83*10-9 

1.24*10-3 

 

1.43*10-10 

3.21*10-2 

1.23*10-8 

1.18*10-2 

1.70*10-2 

C5orf63 exon 1 

RUFY1 intron 1 

Multiple HLA-REs* 

NPY exon 1 

 

RP11-73B2.6  

MESTIT1 exon 1 

PIWIL2 exon 1 

CIDEB exon 1 

AIRE exon 1 

Prenatal phthalate exposure 

Prenatal lead exposure 

Immune-related  

Maternal stress, neuroendocrine function 

Angiogenesis 

Maternal stress 

Prenatal lead exposure 

Cell death & inflammation 

Autoimmune regulator 

Time + 

Adversity 

(Model 2) 

n.s - n.s.   

Time + 

Maltreatment 

(Model 2) 

n.s - n.s.   

Time x 

Adversity 

(Model 3) 

n.s. - n.s   

Time x 

Maltreatment 

(Model 3) 

n.s. - n.s.   

* regulatory element, n.s.: not significant



116 
 

Table S2: Differentially methylated regions aggregated from linear mixed models (Model 1-3) using the first three-time points (T0-T2). Only regions 

with more than 5 CpGs that passed the multiple testing correction are reported with the nominal p-value. No significant hits were found for the time 

x CM interaction (Model 3). 

Models  DMRs # CpGs adjusted 

p-value 

gene annotation3 

Time  

(Model 1) 

chr1:110254678-110254920 

chr3:182817189-182817627 

chr8:144635259-144635611 

chr11:2721242-2721633 

chr14:106938233-106938452 

chr19:57742259-57742445 

chr20:36148603-36148780 

8 

12 

10 

12 

6 

7 

11 

3.18*10-3 

6.40*10-9 

8.15*10-6 

2.71*10-8 

8.09*10-3 

1.51*10-3 

1.59*10-3 

GSTM3/5 

enhancer 

MCCC1 exon 1 

GSDMS exon 1 

KCNQ1 intron 11 

LINC22001 

AURKC exon 1 

BLCAP intron 1 

maternal smoking, prenatal solvent exposure, 

FAS1 

brain volume in schizophrenia 

pyroptotic cell-death 

neuronal excitability, prenatal arson exposure 

- 

Prenatal lead & prenatal tobacco exposure 

FAS 

Time + 

Adversity 

(Model 2) 

chr6:31275147-31275808 

chr10:42862977-42863595 

10 

8 

7.02*10-7 

9.83*10-9 

HLA-B intron 2 

ZFP91 

pseudogene 

Immune-related gene 

Cell proliferation / migration 

Time + 

Maltreatment 

(Model 2) 

chr6:31275147-31275808 

chr10:42862977-42863595 

10 

8 

1.35*10-5 

2.25*10-9 

HLA-B intron 2 

ZFP91 

pseudogene 

Immune-related gene 

Cell proliferation / migration 

Time x 

Adversity 

(Model 3) 

chr2:26401597-26402319 

chr3:189839037-189839358 

chr19:9785646-9786078 

chr22:24384104-24384401 

10 

7 

8 

8 

1.88*10-8 

3.13*10-4 

9.32*10-4 

1.28*10-4 

GAREML intron 1 

P3H2 intron 1 

ZNF562 exon 1 

GSTT1 exon 1 

FAS, childhood abuse 

Childhood abuse 

Early-onset MDD2 

FAS 

Time x 

Maltreatment 

(Model 3) 

- - n.s.   

1 Fetal alcohol syndrome 
2 Major depressive disorder 
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Table S3: Overview of WGCNA modules in the Berlin LCS sample 

Detailed information on associations with exposure variables and other outcomes of interest summarized in Figure 10, information on GWAS 

overlap and enrichment for pathways (KEGG, GO and Reactome) can be found in Supplementary tables S4 and S5. 

 

Module #CpGs / genes Associations Enrichment 
Brown 659 / 637 - - 

Pink 64 / 49 - - 

Blue 22,531 / 8.371 prenatal scores cell signaling / immune 
related 

Black 91/ 81 - diabetes type I 

Yellow 317 / 143 sex - 

Turquoise 56.344 / 14.736 prenatal scores - 

Green 268 / 164 maltreatment, sex - 

Red 107 / 87  - - 
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Table S6: Module annotation in the Berlin LCS sample: Overlap with GWAS top hits. All 

CpGs within a module were mapped to genes based on the annotation of the EPIC array 

(hg19) and then used as input for enrichment tests with FUMA. Shown here are the top five 

overlapping GWAS hits per module, where enrichment passed the multiple testing correction. 

 

Module* GWAS #genes 
(overlap) 

Adjusted p-
value 

Black - - n.s. 

Blue Heel bone mineral density 
Systolic blood pressure 
Body-Mass-Index 
Monocyte percentage white cells 
Mean platelet volume 

389/767 
349//746 
492/1209 
100/147 
132/233 

1.56*10-46 

2.78*10-32 

1.92*10-27 

5.57*10-25 

5.18*10-21 
Brown Type II diabetes 

Systolic blood pressure 
Modic change 
Atrial fibrillation 
Asthma 

248/458 
36/746 
4/7 
16/221 
18/311 

6.94*10-5 

2.44*10-4 

1.92*10-3 

1.92*10-3 

6.15*10-3 
Green - - n.s. 

Grey Pneumonia 
Drug induced liver injury 
IgE levels 
Asthma 
Neuromyelitis optica 

8/8 
9/13 
10/18 
43/311 
7/9 

3.01*10-8 

5.48*10-7 

9.39*10-7 

9.39*10-7 

4.43*10-6 
Pink - - n.s. 

Red - - n.s. 

Yellow - - n.s. 

* the turquoise module was not annotated as it contained over 50% of the CpGs from the 

analysis  
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Table S7: Module annotation in the Berlin LCS sample: Enrichment in specific 

pathways. The top five pathways per module from the functional annotation analysis using 

FUMA. 

Module* Pathway #genes 
(overlap) 

Adjusted p-
value 

Black - - n.s. 

Blue Chemokine signaling 
Focal adhesion 
Regulation of actin skeleton 
Leukocyte migration 
B-cell receptor signaling 

91/177 
96/195 
98/205 
60/111 
42/72 

4.31*10-11 

1.82*10-10 

7.40*10-10 

1.17*10-8 

1.61*10-7 
Brown Diabetes Mellitus Type I 

Allograft rejection 
6/40 
5/34 

1.93*10-2 

2.71*10-2 

Green - - n.s. 

Pink - - n.s. 

Red - - n.s. 

Yellow - - n.s. 

* the turquoise module was not annotated as it contained over 50% of the CpGs from the 

analysis  
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Table S8: Functional annotation of modules in the LMU cohort. The top five pathways 

per module in the LMU cohort that were associated with any type of exposure using FUMA. 

Module* Pathway #genes 
(overlap) 

Adjusted p-
value 

Black T-cell receptor signaling 
Natural killer cell-mediated cytotoxicity 
Adherens junction 
Cytokine-cytokine receptor interaction 
Chemokine signaling 

11/106 
11/121 
7/73 
12/235 
10/177 

5.71*10-5 
1.09*10-4 
4.67*10-3 
6.24*10-3 
7.99*10-3 

Blue Adherens junction 
Tight junction 
Axon guidance 
Calcium signaling 
Long term depression 

25/73 
33/128 
31/126 
35/170 
19/68 

3.28*10-8 
1.08*10-7 
4.56*10-7 
5.56*10-6 
2.31*10-5 

Brown T-cell receptor signaling 
Neurotrophin signaling 
Natural killer cell-mediated cytotoxicity 
Focal adhesion 
Leukocyte transendothelial migration 

25/106 
22/126 
20/121 
25/191 
17/111 

8.63*10-10 
2.16*10-6 
1.69*10-5 
5.98*10-5 
2.08*10-4 

Cyan Protein-Protein interaction at synapses 
Neuronal system 
Neurexins and neuroligins 

5/85 
9/394 
4/53 

3.43*10-2 
3.43*10-2 
3.77*10-2 

Dark green - - n.s. 

Dark red Reactive Oxygen Species Pathway 
TGF Signaling 

2/46 
2/53 

2.66*10-2 
2.66*10-2 

Green Rho GTPase cycle 
Cell-cell communication 
Extracellular matrix organization 
Collagen formation 
Cell junction organization 

28/421 
13/127 
21/288 
10/87 
10/90 

9.56*10-3 
1.58*10-2 
1-63*10-2 
3.39*10-2 
3.39*10-2 

Green-yellow - - n.s. 
Grey60 MAPK signaling 

Long term Depression 
Phosphatidylinositol signaling 
Gap junction 
GNRH signaling 

15/295 
3/68 
3/76 
3/86 
3/100 

1.77*10-2 
2.11*10-2 
2.11*10-2 
2.27*10-2 
2.82*10-2 

Light cyan - - n.s. 

Light green - - n.s. 

Light yellow - - n.s. 

Magenta Phosphatidylinositol Signaling 
Chromatin Organization 
Mitochondrial Calcium Ion Transport 
Glycosaminoglycan Metabolism 

6/40 
12/252 
4/22 
8/118 

1.32*10-2 

3.81*10-2 

3.81*10-2 

3.81*10-2 
Midnight blue - - n.s. 

Pink Developmental biology 
Cell-cell junction organization 

31/1091 
7/63 

4.04*10-3 
1.09*10-2 

Purple Extracellular matrix organization 
Laminin interaction 
PTK2 signaling 

12/288 
4/30 
4/30 

3.02*10-2 
3.16*10-2 
3.16*10-2 

Red RhoA regulation 
Cell junction organization 
Rho GTPase cycle 
Extracellular matrix organization 
Collagen formation 

9/46 
12/90 
14/135 
21/288 
11/87 

4.20*10-4 
4.20*10-4 
7.43*10-4 
7.43*10-4 
9.17*10-4 

Royal blue Huntington disease 
Inositol phosphate metabolism 

3/163 
2/54 

2.42*10-2 
4.72*10-2 

Salmon - - n.s. 

Tan - - n.s. 
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Turquoise Chemokine signaling 
Focal adhesion 
Regulation of actin skeleton 
MAPK signaling 
Wnt signaling 

75/177 
78/195 
79/205 
91/259 
57/146 

3.36*10-11 
2.71*10-10 
1.36*10-9 
1.22*10-8 
2.18*10-7 

Yellow Focal adhesion 
Receptor tyrosine kinase signaling 
Adherens junction 
Gaba B receptor activation 
Cell-cell communication 

22/195 
36/453 
12/73 
8/36 
15/127 

9,41*10-4 
9,41*10-4 
2.41*10-3 
4.85*10-3 
4.84*10-3 

 

 

Table S9: Differential Methylation at baseline measured by TBS. The significantly 

differentially methylated CpGs (n=41) between maltreated and non-maltreated children. 

 

PCR name position P Adj P diffMeth 

CTCF_PCR_17 35490599 < 1.0*10-350 < 1.0*10-350 -0.21 

CTCF PCR 17 35490608 2.2*10-6 2.7*10-6 -2.49 

CTCF_PCR_17 35490619 < 1.0*10-350 < 1.0*10-350 -0.85 

CTCF_PCR_17 35490654 2.7*10-170 5.4*10-170 -0.60 

CTCF_PCR_17 35490674 6.3*10-57 1.0*10-56 -0.10 

CTCF_PCR_17 35490713 1.1*10-7 1.4*10-7 -0.04 

CTCF PCR 17 35490787 6.7*10-12 9.1*10-12 -0.09 

CTCF_PCR_17 35490818 1.6*10-203 3.8*10-203 0.24 

CTCF_PCR_17 35490820 1.5*10-321 4.1*10-321 0.66 

CTCF_PCR_17 35490825 8.4*10-31 1.2*10-30 -0.02 

CTCF_PCR_17 35490946 1.3*10-173 2.7*10-173 0.34 

CTCF_PCR_17 35490965 5.6*10-50 8.8*10-50 1.16 

CTCF_PCR_5.1 35704069 < 1.0*10-350 < 1.0*10-350 0.70 

CTCF_PCR_5.1 35704149 6.2*10-19 8.6*10-19 -0.48 

CTCF PCR 5.1 35704224 3.7*10-7 4.6*10-7 -0.04 

FKBP5_PCR_12 35683363 8.2*10-34 1.2*10-33 -4.55 

FKBP5_PCR_12 35683445 9.7*10-74 1.7*10-73 -3.92 

FKBP5_PCR_12 35683466 3.7*10-141 7.1*10-141 -3.39 

FKBP5_PCR_12 35683488 < 1.0*10-350 < 1.0*10-350 -2.98 
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FKBP5_PCR_17 35696726 < 1.0*10-350 < 1.0*10-350 3.01 

FKBP5_PCR_17 35696799 < 1.0*10-350 < 1.0*10-350 3.61 

FKBP5_PCR_17 35696823 < 1.0*10-350 < 1.0*10-350 2.95 

FKBP5_PCR_17 35696870 1.1*10-281 2.9*10-281 0.71 

FKBP5_PCR_17 35696886 4.8*10-176 1.0*10-175 1.54 

FKBP5 

cg14284211 35570224 1.6*10-11 2.1*10-11 0.37 

FKBP5 PCR 2 35569751 < 1.0*10-350 < 1.0*10-350 1.30 

FKBP5 PCR 2 35569757 2.4*10-121 4.5*10-121 0.93 

FKBP5 PCR 2 35569777 < 1.0*10-350 < 1.0*10-350 0.73 

FKBP5 PCR 2 35569896 < 1.0*10-350 < 1.0*10-350 0.54 

FKBP5 PCR 2 35569922 1.4*10-234 3.5*10-234 -0.08 

FKBP5 PCR 3 35578830 < 1.0*10-350 < 1.0*10-350 -1.19 

FKBP5 PCR 3 35578891 < 1.0*10-350 < 1.0*10-350 -1.94 

FKBP5 PCR 1.2 35558386 2.1*10-25 2.9*10-25 -0.12 

FKBP5 PCR 1.2 35558438 < 1.0*10-350 < 1.0*10-350 -2.85 

FKBP5 PCR 1.2 35558488 2.8*10-179 6.4*10-179 -3.03 

FKBP5 PCR 1.2 35558513 2.5*10-70 4.1*10-70 -0.45 

FKBP5 PCR 1.2 35558566 < 1.0*10-350 < 1.0*10-350 0.66 

FKBP5 PCR 1.4 35558513 < 1.0*10-350 < 1.0*10-350 -2.57 

FKBP5 PCR 1.4 35558566 < 1.0*10-350 < 1.0*10-350 -0.65 

FKBP5 PCR 1.4 35558710 7.1*10-94 1.2*10-93 -1.75 

FKBP5 PCR 1.4 35558721 < 1.0*10-350 < 1.0*10-350 1.69 
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