
DEPARTMENT OF INFORMATICS
TECHNISCHE UNIVERSITÄT MÜNCHEN

Bachelor’s Thesis in Informatics: Games Engineering

Towards Resilience Methods for Simulation
Applications based on Actor Replication

Manuel Schnaus

DEPARTMENT OF INFORMATICS
TECHNISCHE UNIVERSITÄT MÜNCHEN

Bachelor’s Thesis in Informatics: Games Engineering

Towards Resilience Methods for Simulation
Applications based on Actor Replication

Aktorenreplikation zur Steigerung der
Resilienz von Simulationsanwendungen

Author: Manuel Schnaus
Supervisor: Prof. Dr. Michael Bader
Advisor: Philipp Samfass, Mario Wille
Submission Date: 15.08.2021

I confirm that this bachelor’s thesis is my own work and I have documented all sources
and material used.

Munich, 12.08.2021 Manuel Schnaus

Acknowledgments

Foremost, I would like to thank my advisors, Philipp Samfass and Mario Wille, for
their thorough insights into high-performance computing and for always being there
for questions. I also would like to thank my family and Kim Le for supporting me
during my time writing and for assisting me during the proofreading.

Abstract

High-performance computing is an important field of scientific computing with many
problems offering the possibility of achieving speedups through high levels of paral-
lelization. One framework for programming such a parallelized program is the actor
model. This approach establishes the Single Program Multiple Data (SPMD) principle
through actors advancing the program and communicating with each other through
specified channels. Especially in exascale computing, undetected data corruptions
in an actor can have devastating effects on program executions. In order to detect
possible data corruptions, I propose to employ double redundancy through full repli-
cation of actors. Redundantly computed results can be checked against each other to
find errors. Another important task in high-performance computing is balancing the
workload evenly between cores. While other approaches achieve promising results on
scenarios where imbalances are predictable, they cannot protect the program against
non-static and unpredictable imbalances. For these applications, the possibilty of load
balancing through redundancy is explored. Here, when an actor is slowed down due
to imbalances, its replica can take over and complete the computations, reducing the
waiting times of neighboring actors. Using replication, errors within the actor model
were observed to be detected with a particularly high accuracy under the sacrifice of
runtime. Additionally, the idle time of the actors in unbalanced scenarios was reduced
dramatically using load balancing through redundancy.

iv

Kurzfassung

High-Performance Computing ist ein wichtiges Feld des wissenschaftlichen Rechnens,
bei dem sich einige Anwendungen durch Parallelisierung beschleunigen lassen. Ein
Framework für solche parallele Programme ist das Aktorenmodell. Dieser Ansatz setzt
das Single Program Multiple Data (SPMD) Prinzip ein, indem mehrere Aktoren die Pro-
grammausführung übernehmen und während der parallelen Ausführung miteinander
kommunizieren. Besonders in Exascale-Anwendungen können unentdeckte Silent Data
Corruptions dramatische Auswirkungen auf ein Programm haben. Um solche Fehler
zu identifizieren, verwende ich eine doppelte Redundanz über eine Replikation von
Aktoren. Redundante Ergebnisse können miteinander verglichen werden, um mögliche
Fehler zu finden. Eine weitere wichtige Aufgabe im High-Performance Computing
ist die Balancierung der Rechenarbeit zwischen den Rechenkernen. Obwohl andere
Ansätze in Szenarien mit vorhersehbaren Ungleichgewichten gute Ergebnisse erzielen,
können diese Methoden Programme nicht gegen unvorhersehbare Ungleichgewichte
schützen. Für diese Fälle wird die Möglichkeit des Lastausgleiches durch Redun-
danz vorgeschlagen. Hierbei werden die Berechnungen eines langsamen Aktors von
dessen Replika übernommen, wodurch die Wartezeiten der benachbarten Aktoren
reduziert werden. Über die Replikation ist es möglich, im Aktorenmodell sehr genau
Fehler zu finden, wobei jedoch Laufzeit des Programms geopfert wird. Zudem werden
die inaktiven Zeiten von Aktoren in unbalancierten Szenarien dramatisch durch die
Lastbalancierung über Redundanz reduziert.

v

Contents

Acknowledgments iii

Abstract iv

Kurzfassung v

1. Introduction 1

2. Related Work 3

3. Background 6
3.1. UPC++ . 6
3.2. Actor Library . 7
3.3. Silent Data Corruption . 8
3.4. Pond . 9

4. Replication-based Error Detection and Load Balancing 12
4.1. Replication . 12
4.2. Message Passing . 15
4.3. Error Detection . 22
4.4. Load Balancing . 23

5. Results 27
5.1. Overhead of Replication . 28
5.2. Error Injection . 31

5.2.1. Error Injection Framework . 31
5.2.2. Error Detection . 32

5.3. Replication for Mitigating Dynamic Load Imbalances 36

6. Conclusion and Future Work 40
6.1. Internal Data Checks . 40
6.2. Error Range . 41
6.3. Double Replication for Error Correction 41
6.4. Combination with Error Handling . 42

vi

Contents

6.5. Alternatives to Multiplexing . 43
6.6. Dynamic Channel Size . 43

List of Figures 44

List of Tables 46

Bibliography 47

A. Dependencies i

B. Scripts ii

C. Random Seeds xi

vii

1. Introduction

With today’s algorithms becoming increasingly expensive computationally, achieving
a low time-to-solution is an important goal to keep in mind in computer science. For
example scientific applications like simulations of real-life scenarios can easily become
computationally intense while also being time-sensitive, in which case it is particularly
important to find ways of reducing the time needed for program executions. One
common way of reducing the runtime is parallelization. Here, the principle of Single
Program Multiple Data (SPMD) is often used to execute the same code with different
data on multiple computational units [16]. One popular framework for generally
implementing parallelism in C++ is UPC++ [22], which offers methods for distribut-
ing the execution on multiple ranks and access data across those ranks. UPC++ is
a low-level framework, which increases the effort needed for programming. Actorlib
[19] improves upon this by adding a layer of abstraction offering templates through
which the programmer can easily manage the program execution and communication
between ranks. This abstraction allows the user to create actors on the ranks which
perform all computations in parallel while communicating with each other through
specified channels.

While parallelization can undoubtedly heavily increase the speed of an algorithm,
it also carries some difficulties. In high-performance settings with many calculations
and a large amount of communication between nodes, there is a relevant possibility of
errors occuring within the internal processes of a cluster [9]. These errors can happen
due to untraceable sources like worn down silicon in the processors and tend to corrupt
the memory through bitflips. After a bitflip makes its way into the application, a
program can show unexpected behavior like an early failure or even invalid results.
The latter can be particularly dangerous if the data corruption goes unnoticed by the
program.

Another difficulty of executing a program in parallel is balancing the workload to
all available resources. Since each computational unit does the computations on dif-
ferent data and certain nodes may be slower than others, some units might take a
longer time for their computations than others. Especially when the computational
units communicate with each other, one of them being slowed down might cause the

1

1. Introduction

others having to wait for results.

In order to tackle those two problems in Actorlib, the use of double redundancy
is explored in this thesis. This redundancy is implemented while still keeping the
level of abstraction of Actorlib by replicating each actor and therefore executing their
programs two times. In this thesis, I demonstrate that replication in Actorlib can detect
errors and reduce idle times in unbalanced scenarios.

2

2. Related Work

Resilience is an important aspect of computations. Errors are always possible to occur
and a program should be able to withstand them to a certain degree. Especially in exas-
cale scenarios, the likelihood of errors increases and the importance of handling them
rises with it. There are multiple approaches for handling detected data corruptions
during a program execution.

The most common approach is to use a checkpointing system based on regularly
storing the state of the program and then using this state as an error-free point of
execution from which the program can restart should an error occur. Here, typically
the program is stopped at regular intervals and a checkpoint of the current program
state is saved to a permanent storage device [7].

The form of the checkpoints written into the permanent storage can be classified
into system-level, application-level and runtime-based checkpoints [17]. System-level
checkpoints store the entire system information of the machine including the CPU
registers and the entire address space of the processes in a checkpoint. In this case, the
programmer and the application itself have no information on the checkpoint. In con-
trast, using application-level checkpoints, the programmer specifies which data should
be stored in the checkpoints. As a result, the amount of data needed for each checkpoint
is reduced drastically and the programmer can fit the checkpointing closely to the
application. Runtime-based checkpointing uses a similar concept to application-level
checkpointing. Here, the runtime system provides an interface the programmer can use
to implement checkpoints fitting the application while still allowing the runtime system
to take over some tasks in the background. Yet, in exascale computing, checkpointing
as described here still needs a large amount of memory and computational resources
[17].

One improvement to the checkpointing system is multilevel checkpointing [18]. This
method introduces multiple levels of resiliency and cost to each checkpoint using the
fact that not every failure is equally grave. While the checkpoints with the highest
resilience are written into the permanent storage and can withstand a system failure,
the checkpoints with a lower resilience can be written into the RAM or other faster

3

2. Related Work

storage. Using this approach, the cost of checkpointing can be reduced significantly.

Another way of handling errors during a program execution is message logging
[7]. Here, all messages that a process receives are logged. If an error occurs in one
process, it is restarted and the stored messages can be used to quickly advance it to the
latest state [13]. This approach can either use a pessimistic or an optimistic method for
message logging. The pessimistic approach first blocks all communication of a process
when receiving a message. Then, only when the received message is safely logged, the
process can continue to send messages. Alternatively, an optimistic approach can be
chosen where a received message can be logged later while the process still continues
its communication. While this approach can cause an error to cascade, especially in a
scenario where failures are rare, an optimistic approach can achieve better performances
than the pessimistic method [13].

In order to use these methods, silent errors like bitflips first have to be found during
execution. There are multiple approaches that can do so with varying degrees of
accuracy and cost [6]. One method to discover errors is failure prediction [6]. In order
to do this, for every step in the algorithm, an additional predicted numerical value
is calculated. This can for example be an approximation for a result of the following
timestep in a simulation. Then, a range is calculated surrounding the predicted value.
If the computed value is located outside of this area of possible results, an error is
detected [3]. When predicting the expected value, it is also possible to determine the
impact a possible data corruption could have on a program [8].

A more accurate approach to detect data corruptions is redundancy-based error detec-
tion. This method can be split into hardware-based and software-based redundancy.
In the hardware-based approach, redundant chips are added to the hardware. During
execution, the results of the redundant chips are compared and possible deviations or
errors can be found [23]. This type of redundancy is very common in hardware with a
high need for resilience. For example in the local computers of cars, redundancy can
be used to avoid errors possibly causing accidents [2]. In software-based redundancy,
certain computing units are logically replicated on a system or application level and
executed multiple times. One example for this is RedMPI [10], an extended MPI imple-
mentation that duplicates MPI tasks and checks the results for deviances. One possible
extension to software-based redundancy is adaptively choosing which resources should
be replicated [12].

Alternatively, it is possible to tailor error resilience directly for the executed algo-
rithm [5]. Doing this, the computations in the algorithm are chosen to have numerical

4

2. Related Work

properties inherently robust against silent errors.

In this thesis, an approach using software-based replication is chosen. Here, simi-
larly to RedMPI, code is executed two times using the redundancy to check results.
Specifically, the replication is implemented in the Actorlib [19] parallel library.

5

3. Background

The replication-based approach to detect errors and balance the program load is built
in the C++ Actorlib library [19] on top of the parallelization library UPC++ [22].

3.1. UPC++

Unified Parallel C++ (UPC++) [22] is a parallel programming library built on top of
C++. The library implements Partitioned Global Address Space (PGAS) in which each
process in the program possesses a private and a global address space as shown in
Figure 3.1. These processes are also called ranks in this context.

In order to access objects in the global address space, global pointers are used while
local pointers contain addresses in the local address space. To create a pointer in
the global address space in contrast to a local one, the upcxx::global_ptr data type can
be used. The instantiation of the pointer can be done through the upcxx::new_ or
upcxx::new_array method. When working with a pointer in the global memory locally,
the pointer can be downcasted to an ordinary C++-pointer via the local method of a
upcxx::global_ptr.

In UPC++, the Single Program Multiple Data (SPMD) concept is used, meaning that
every rank in the execution calls the same program with an own memory segment. For
communication between ranks, UPC++ offers no implicit method in order to encour-
age programmers to avoid high-cost data movements. Instead, the library offers an
explicit set of methods for this functionality. One important method for communication
between ranks are Remote Procedure Calls (RPCs). An RPC allows the programmer
to invoke a function on a remote rank with the opportunity to send local data as
parameters. The result of the function can then be retrieved locally by waiting for the
typed upcxx::future. Generally, arguments for an RPC must be serializable trivially.
Alternatively, it is possible to define an own serialization. In order to not limit the
programmer to write high-scale programs, all remote-memory operations including
RPCs are executed asynchronously. The returned futures can be combined in various
ways when for example multiple RPCs are sent at once. The most basic way is the
when_all method waiting until all passed futures are finished.

6

3. Background

Global
address
space

Shared
Segment

Shared
Segment

Shared
Segment

Shared
Segment

Private
Segment

Private
Segment

Private
Segment

Private
Segment

rank 0 rank 1 rank 2 rank 3

Figure 3.1.: Visualization of the PGAS used in UPC++ for a simple case using four
ranks. Each rank in the execution contains a local private memory segment
and a shared memory segment. During execution, a rank’s pointer to its
own shared segment can be downcasted to a local pointer and used as such
in computation [22].

3.2. Actor Library

Actorlib is a parallel library built on top of UPC++ designed to achieve a better pro-
grammability [19]. Instead of running certain code only rank-wise, Actorlib offers an
abstraction using actors running in an ActorGraph. The actors are designed to each
concurrently execute a program. While one actor cannot access the data of another
actor directly, channels can be established between them enabling the transfer of data.
These channels carry a FIFO structure and allow for non-blocking computations by
the actors even when the state of the channel changes. The actors themselves go
through their states of computation independently of each other which enables them to
execute in parallel while avoiding some common problems in parallelism like deadlocks.

This model originated from Hewitt [11] and Agha [1] with Actorlib specifically us-
ing the newer FunState actor model from actorX10 [21]. While the actorX10 library is
based on the same model, Actorlib provides a number of improvements in terms of
optimization and compatibility to common C++ libraries.

In the FunState actor model, the ActorGraph is a multigraph Ga = (A, C) with a
set of actors A and channels between those actors C. The actors a ∈ A are represented
by a tuple a = (ID, r, I, O, F, R) with an unique name ID, an UPC++-rank r which the
actor is placed on, a set of InPorts I and OutPorts O, a set of functions F and a finite
state machine R. In order to establish the channels between actors, each OutPort of an

7

3. Background

actor is connected to an InPort. Then, data can be written into an OutPort, which in
turn is sent to the channel connected to the corresponding InPort. There, the actor to
which the InPort belongs can read the data.

In Actorlib, the abstract base classes Actor and ActorImpl are defined. While this
class takes over the internal UPC++ calls and some other management tasks, the user of
the library implements it to fit a specific application. In particular, the programmer adds
the computations each actor should contribute to the execution into the act method of
the class. In order to add new actors or connect channels between them, the user can
use the methods given by the ActorGraph class, which can be referred to through a
DynamicActorGraph. Each rank has one ActorGraph object containing and managing
the local actors.

Actorlib offers multiple execution strategies for the ActorGraph. The first one is rank-
based with the actors being partitioned to the UPC++ ranks and locally executing
sequentially. Then, it is possible to choose a thread-based execution where actors
within a UPC++ rank are executed in parallel using C++ threads. Lastly, the task-based
execution strategy is based on OpenMP tasks. Here, each time the ActorGraph iterates
over the actors, an OpenMP task is created for each actor calling its act method and
progressing the internal UPC++ backend. This method also allows actors within a rank
to execute in parallel while, in contrast to the thread-based approach, creating as many
tasks as necessary for the execution instead of an arbitrary number.

3.3. Silent Data Corruption

Especially in large-scale architectures, computations made by CPUs are not always
correct. During simple calculations, the processor might flip a bit, invalidating the
result. These so-called Silent Data Corruptions (SDCs) can have multiple sources [9].

The first one is an error in manufacturing or designing the CPU. As the processor
consists of a large amount of transistors, it is probable that some of them are placed
slightly off or manufactured with an error. This can lead to an inconsistent arrival time
of signals, which in turn can cause bitflips. Other common mistakes in manufacturing
can also cause deviances in the voltages or power thresholds of the transistors, which
also can result in the device operating inconsistently. Some of those errors in the
transistors can already be identified in tests during manufacturing and fixed before the
CPU gets into circulation. Yet, errors in the transistors can manifest at any time even
after the CPU already is in circulation. This can happen after weeks, years or at any

8

3. Background

time after being shipped without being noticed by the manufacturer [9].

Another source of errors in the transistors is general degradation. After using a
CPU, the components start getting weaker and especially with all components not
being worn down equally, some failures can be produced. Still, this phenomenon is
much rarer than manufacturing errors since CPUs have error correction mechanisms to
protect the devices against degradation to some degree. Still, when a device is used
beyond their rated life, the silicon within the transistors wears out too much for the
error correction to handle and the CPU is observed to produce evermore failures. Such
failures in the transistors tend to propagate from the hardware to the application and
can influence an application.

Especially with an increasing amount of CPUs in a cluster, transistor failures be-
come more common and present a considerable problem. For example in Actorlib, a
SDC in the hardware can be passed on to the program and spread through the parallel
execution. A bitflip in one actor can influence the messages sent and easily propagate to
the entire ActorGraph, which in certain application can produce errors of high degrees.

3.4. Pond

The implementation of actor replication in Actorlib is tested through the shallow water
proxy application Pond [19]. Pond is based on the code packages SWE [4] and SWE-X10
[20] which offer a similar way of simulation shallow water scenarios. This approach
uses the two-dimensional shallow water equations h

hu
hv

t

+

 hu
hu2 + 1

2 gh2

huv

x

+

 hv
huv

hv2 + 1
2 gh2

y

= S(t, x, y). (3.1)

In this system of equations, t is the time, h is the height of the water, u is the velocity in
the x-direction and v is the velocity in the y-direction. The squared brackets denote
partial derivatives for the values of t, x or y. In SWE, S(t, x, y) is a term chosen to
account for bathymetry. The simulated domain is approximated through a uniform
grid, the blocks of which can be executed in parallel. In order to calculate the explicit
Euler timestep tn → tn+1 of a grid cell at the coordinates (i, j), the Finite Volume scheme
[15]

Qn+1
i,j = Qn

i,j −
∆t
∆x

(A+∆Qn
i− 1

2 ,j +A
−∆Qn

i+ 1
2 ,j)−

∆t
∆y

(B+∆Qn
i,j− 1

2
+ B−∆Qn

i,j+ 1
2
) (3.2)

9

3. Background

is used. In this equation, Qn
i,j denotes the value [hi,j, (hu)i,j, (hv)i,j] at the time tn. Fur-

thermore, ∆t is the length of the timestep and ∆x and ∆y are the grid size in the
direction of the x- and y-axis. Lastly, the net updates A±∆Qn

i± 1
2 ,j

and B±∆Qn
i,j± 1

2
denote

the effect of the accumulated numerical fluxes computed with a Riemann solver from
a cell’s neighbors. These calculations are made within the SWEBlock class, which is
responsible for one grid cell.

While SWE allows for parallelization of the SWEBlocks with MPI processes or OpenMP
threads, SWE-X10 bases the parallelization on the actorX10 library. With actorX10 also
being an actor-based parallelization library, this implementation is closely followed by
the implementation of Pond in Actorlib. In the actor-based approach, each actor in the
ActorGraph is assigned one SWEBlock, to which the actor delegates the computations
for the simulation. In contrast to SWE itself using one rank per SWEBlock, the actor
model allows for multiple actors, and therefore SWEBlocks, to exist on one rank.

Figure 3.2.: Communication in pond with four actors. Each grid partition represents
one SWEBlock contained in an actor. The actors communicate with their
neighboring actors sending the edge data from their block.

The communication between the actors in Pond is the same as in SWE-X10 with
each actor being connected to the actors with neighbouring SWEBlocks in the x-, and
y-direction. This causes the ActorGraph to take the form

Gpond = (Apond, Cpond),

Apond = {ai,j|0 ≤ i < nx ∧ 0 ≤ j < ny},
Cpond = {cai,j,ai′ ,j′ |(i = i′ ∧ |j− j′| = 1) ∨ (j = j′ ∧ |i− i′| = 1)}.

Each actor ai,j ∈ Apond then calculates fluxes until the defined end time tend is reached.
The finite state machine of each actor takes the form shown in 3.3.

10

3. Background

start initial

compute
updates

terminated

mayWrite()
sendData()

tcur < tend ∧mayRead() ∧mayWrite()
receiveData(); computeFluxes();

applyUpdates(); sendData()

tcur > tend
stop()

Figure 3.3.: Finite state machine of a SimulationActor in Pond. Here, the italicized
functions are guard functions while the rest are actions. tcur is the current
time of the simulation [19].

11

4. Replication-based Error Detection and
Load Balancing

For a replication-based detection of SDCs, while there are multiple approaches, the
implementation here is chosen to be built in the Actorlib library [20]. The replication
algorithm developed here adds redundancy within the FunState actor model so that
every actor in the ActorGraph is replicated and multiple versions of the actors are
executed. This approach is similar to the one taken in RedMPI [10].

Both models have in common that the actual detection of errors lies within the com-
munication between tasks or actors. In RedMPI, the errors are checked at the receiving
task of a message. Meanwhile, in Actorlib, additional actors are introduced in order to
manage the error checking and message passing.

For the replication in Actorlib, it is necessary that each actor in the ActorGraph produces
its results deterministically. If a random element exists within an actor, a replicated ac-
tor may produce different results under the same base conditions even though no SDC
occurred. Also, the type of the messages sent between the actors has to be hashable,
either trivially or through a self-defined method. Additionally, this implementation
also allows for the hashing of some additional data types using the hash_reduce method
from the boost library.

4.1. Replication

This concept chooses to perform the replications within the FunState actor model ex-
plained in Chapter 3. Here, in an ActorGraph (A, C) for every actor a = (ID, r, I, O, F, R) ∈
A the replicated actor a′ = (ID′, r′, I, O, F, R) is created and added to the set of actors
A′. The resulting set of actors A′ therefore can be described with

A′ = {a, a′|a ∈ A}. (4.1)

The changes to the connections between actors C are discussed in Section 4.2.

12

4. Replication-based Error Detection and Load Balancing

When replicating an actor in Actorlib, it is important that the new actor has exactly the
same starting parameters as the original actor in order to produce the same results.
Still, the actors have to be able to act independently without changing the other’s data
remotely. In order to achieve this, it is not enough to only copy the memory from one
actor to another. With most actors containing pointers, a shallow copy would enable a
replicated actor to change the contents of its counterpart or even, when the actors are
on separate ranks, lead to segmentation faults or undefined behavior.

With this problem in mind, it is not possible to replicate the actors in the abstract
ActorImpl class and keep the replication completely invisible to the user of Actorlib as
in RedMPI. Instead, the programmer implementing the actors has to define how to
copy actors while keeping the independence between the original and the copy. For
this, my implementation needs the user to implement the abstract copy method for
the child classes of ActorImpl. The return value should be a deep copy with the same
properties as the original actor. In Actorlib, a name change of the replicated actor is
required as a unique identifier helping the ActorGraph distinguish the actors from each
other, replicated or not. All actor calls are based on a map in the ActorGraphs on each
rank mapping the unique name identifier to a upcxx::global_ptr which contains the
corresponding actor. If now two actors had the same name, this map could not use an
actor’s name as its key value. To establish a new identifier for a replica returned by the
copy method, a parameter for the name is passed and the returned actor should have
that name instead of the identifier of the original actor.

While the necessary implementation of a copy method or the possibly needed im-
plementation of a hash-function removes the transparency of the replication, my
implementation aims to give the option of replication to the user of Actorlib. The user
has the option to replicate any actor to a specific rank through the DynamicActorGraph
components of their execution.

In the following applications, the replicateAllActors method is used to replicate all
actors in the ActorGraph to one rank above the original actor. If an actor is on rank i out
of n total ranks, its replica is placed on rank i + 1 mod n. Through this method, the
ActorGraph changes after replication as described in Figure 4.1.

13

4. Replication-based Error Detection and Load Balancing

rank 0 rank 1

1

2

3

4

rank 0 rank 1

1

2

3′ 3

4

1′

2′4′

Figure 4.1.: Example with originally four actors for the placement of actors on the ranks
before (left) and after (right) calling the replicateAllActors method.

Even though this implementation of actor replication gives some aspects of the real-
ization of the replication to the user of Actorlib, it still aims to keep the replication
transparent during the program execution. In order to achieve this transparency, the
replicated actor has to behave exactly in the same way as the original actor. One issue
here is the changed name of the replicated actor for identification purposes. Therefore,
when the user asks for the name of a replicated actor, they will not receive the expected
value, but instead possibly the name of a replicated actor.

In order to circumvent this problem, in the representation of the FunState actor model,
the tuple of an actor is changed to (ID, ID∗, r, I, O, F, R) whereas ID∗ denotes the
original ID of the actor. After this change, the replication of an actor

a = (ID, ID∗, r, I, O, F, R)

written as a tuple takes the form of

a′ = (ID′, ID∗, r′, I, O, F, R). (4.2)

Notably, if the actor a is an original actor in the program as opposed to a replicated
one, it holds that

ID = ID ∗ .

The user of Actorlib still has the possibility to access the actual ID of an actor through
the newly added getReplicationName method of an actor. This allows the organization of
actors and direct access to some data and methods of the ActorGraph which require the
unique identifier of an actor as a parameter. Alternatively, the original getName method
still returns the previously expected value of ID∗ which is the same for the original as
well as replicated actors. This change particularly achieves backwards-compatibility
where a user doesn’t have to reprogram code based on any actors’ chosen name.

When analyzing the data sent by actors in order to find errors, it is necessary to

14

4. Replication-based Error Detection and Load Balancing

know what type of port this message came from. In particular, it is necessary to know
the data type sent in the channel as well as the size of the channel, both of which
are originally not accessible information of an arbitrary Actor or ActorImpl base class
after the creation of the ports. While of course the users himself has that information,
this implementation aims to handle the task in the background without any further
necessary action from the user. That goal is achieved through the creation of the
PortMaker class in Actorlib storing the data type and the capacity of a port. For every
instantiated port of an actor, an according PortMaker is instantiated and stored within
the actor. This PortMaker can later be accessed to create identical ports in a replicated
actor and to pass on the corresponding information.

4.2. Message Passing

One major challenge of replication is connecting the ports and channels in a way that
does not break the communication. In the FunState actor model, the channel connected
to a port is not a part of the actor that is replicated. Instead, only the OutPorts and
InPorts are replicated while, when only considering the previously defined replication
of the actors themselves, the channels still remain the same. If no changes were made to
the communication in this model, one channel would be connected to the corresponding
port of the original actor as well as the same port of the replicated actor.

As mentioned in Section 3.2, a channel can be seen as a queue collecting the mes-
sages written into the connected OutPort. Then, elements of the queue can be read
in an InPort whereas that element is removed from the queue. Now, if one channel is
connected to multiple InPorts, only the first actor to read actually receives the message
while the latter port does not find the now deleted message. Due to this phenomenon,
the original actor and the replica no longer receive the same input and therefore do not
compute the expected results. A similar problem occurs in the outgoing connections of
a replicated actor. The OutPorts of the actors are all connected to the same channel and
with both actors producing results, they are all written twice.

If every actor in the graph is replicated for the same amount of times, the chan-
nels of the actors and their replicas could be connected in a way that both problems do
not occur. While this approach was chosen in [10], in this model, such a combination
is not deterministic with the original actor and the replica running on different ranks.
Due to the different speeds of the ranks, it is not guaranteed that the messages arrive
in a specific order and, without an additional communication protocol, it is impossible
to distinguish what messages arrived from which actor. For example, if the rank of

15

4. Replication-based Error Detection and Load Balancing

the original actor is faster than the one of the replica, it is possible that the original
actor has already written multiple messages while the replicated actor is still stuck
on a previous one. Now, the receiver has no way of concluding whether all of those
messages came from one actor or if the possible discrepancy between the messages
comes from a SDC.

While message passing similar to RedMPI [10] might be a possible solution to this
problem, here it was chosen to remain within the framework of the actor model and
delegate the management of messages to new actors added to the ActorGraph. These
actors are specifically created to multiplex multiple channels to one and demultiplex
one channel to multiple receivers.

These actors are specifically the MulAct combining multiple incoming message to
one output channel and the DemulAct distributing every incoming message to the
connected InPorts. The MulActs and DemulActs are created whenever an actor
a = (ID, ID∗, r, I, O, F, R) is replicated with the replica a′ = (ID′, ID∗, r′, I, O, F, R)
as in Equation 4.2. The resulting DemulAct is defined by

ademul = (IDdemul , ID∗demul , r′, I, Odemul , Fdemul , Rdemul),

Odemul = {oi
0, oi

1|i ∈ I},
oi

k = (IDi
k, ti, ni) k ∈ {0, 1},

(4.3)

with each OutPort having the type ti and capacity ni of a corresponding InPort i ∈ I in
the replicated actor. The identifier of an OutPort IDi

k as well as the identifier of the actor
IDdemul and ID∗demul are arbitrarily chosen to be based on the names of the original
actor and its InPorts in this implementation.

1

1mul

1′

31demul2

Figure 4.2.: Functionality of a MulAct and a DemulAct of an actor 1 and its replica 1′.
Before replication, the original actor 1 had an incoming channel from 2 and
an outgoing connection to 3

16

4. Replication-based Error Detection and Load Balancing

start

forward
Messages

terminated

inActableState()

!inActableState()

Figure 4.3.: A finite state machine for the MulAct or DemulAct. The inActableState is
checking certain neighbours whether they are still running.

MulActs, in their creation, are similar to DemulActs in that they produce corresponding
ports to the original actor. While the DemulActs catch messages before they arrive at
an actor and its replica, the MulActs handle messages sent from the actor. Therefore,
the InPorts of these actors are created based on the OutPorts O of the corresponding
actor.

amul = (IDmul , ID∗mul , r′, Imul , O, Fmul , Rmul),

Imul = {io
0, io

1|o ∈ O},
io
k = (IDo

k , to, no) k ∈ {0, 1}.
(4.4)

Both actors are based on the same general finite state machine only with a different
implementation of the used functions.

The inActableState function checks if any work still needs to be done by the MulAct or
DemulAct and, if not, the actors are stopped. For the MulAct, all actors connected to
its InPorts are checked whether they are done. As soon as they are, all messages that
are supposed to be filtered and sent on have arrived at the MulAct and the actor does
not have anymore tasks after sending these last messages on.

Here, it is notable that first the actors on the same rank as the MulAct are checked
for their state. After, the search for running actors is expanded to all ranks. While
this is the cause for some redundant code, during most of the execution only the local
search will be done due to the fact that the replicated actor is put on the same rank
as the MulAct and DemulAct. Therefore, as long as the replica of the original actor is
running, the search for active neighbors is not expanded. This is usually the case until

17

4. Replication-based Error Detection and Load Balancing

shortly before the end of a run.

The double-staged search for connected running actors is added to the algorithm due
to the high cost of communication between ranks in Actorlib. If locally no connected
running actor is found, RPCs have to be sent to connected remote actors requesting
their status. This is very time-consuming and should be avoided, especially in code
running as frequently as the multiplexing and demultiplexing. Meanwhile, the local
checks are just simple local memory acccesses. For this reason, the DemulAct is also
chosen to not check its incoming connections for active neighbours, but instead the
outgoing ones. A DemulAct is always guaranteed to have an outgoing connection to
the replica of the original actor, which in this implementation is always on the same
rank as the DemulAct. In contrast, the incoming connections can come from any rank
the user specifies, possibly causing very large communication costs.

All in all, the replication of an ActorGraph G = (A, C) results in a new ActorGraph
G′ = (A′, C′). In this graph the actors A′ consists of

A′ = {a, a′, amul , ademul |a ∈ A}, (4.5)

with a′ being the replica of actor a according to Equation 4.2, amul being the corre-
sponding MulAct as in Equation 4.4 and ademul as the DemulAct of actor a following
Equation 4.3. In a simple example with only two actors and the ActorGraph not being a
multigraph the graph changes as depicted in Figure 4.4.

18

4. Replication-based Error Detection and Load Balancing

rank 0 rank 1

1 2

rank 0 rank 1

2′

2mul

2demul 1demul

2

1′

1mul

1

Figure 4.4.: On top is the original ActorGraph containing the actors 1 and 2. Here, actor
1 and actor 2 each have one InPort and one OutPort through which they
communicate. The bottom image contains the corresponding ActorGraph
after replication.

Notably, in this example, every actor only has one connected InPort and one OutPort
which is the reason only one connection can exist between the two actors.

In order to define the possibility of multiple edges between two actors let

C ⊆ {(s, r, os, ir)|s, r ∈ A, os ∈ Os, ir ∈ Ir} (4.6)

be an extended definition of the channels within the ActorGraph. Here, s is the sending
actor and r is the receiver while os is an OutPort of s connected to an InPort ir of r.
When connecting the MulActs and DemulActs, the original connections have to be
removed and afterwards, new connections have to be initialized between the ports. The
resulting channels C′ are defined as follows:

C′ = {(s, smul , os, ios
0), (s

′, smul , os, ios
1), (smul , rdemul , os, ir)|(s, r, os, ir) ∈ C},

∪{(rdemul , r, oir
0 , ir), (rdemul , r′, oir

0 , ir)|(s, r, os, ir) ∈ C}.
(4.7)

In this definition, ios
0 and ios

1 are InPorts of the MulAct smul and oir
0 and oir

1 are OutPorts
of the DemulAct rdemul as described in Equations 4.4 and 4.3. Using this representation,

19

4. Replication-based Error Detection and Load Balancing

(s, smul , os, ios
0) and (s′, smul , os, ios

1) are the channels through which the actors send their
messages to the MulAct. Then, the MulAct forwards the message to the DemulAct of
the receiver through the channel (smul , rdemul , os, ir). Lastly, the DemulAct of the actor r
makes sure the message arrives at both the receiver and its replica through the channels
(rdemul , r, oir

0 , ir) and (rdemul , r′, oir
0 , ir).

In order to implement the task of receiving and sending all messages correctly in
Actorlib, the MulActs and DemulActs delegate the forwarding of messages to so-called
PortConnectors. This object contains three ports. In the case of a MulAct it has two
InPorts and one OutPort while the connectors of the DemulActs have one InPort and
two OutPorts each. For every OutPort in the original actor, a connector is created
in the MulAct while every InPort translates to a connector in the DemulAct. These
PortConnectors hold the type and the capacity of the channels connected to the MulAct
or DemulAct.

The creation of these PortConnectors is delegated to the previously introduced PortMaker
objects. These objects are initialized whenever a port is created in an actor. Then,
when that actor is replicated, each PortMaker creates the corresponding ports for the
MulAct and DemulAct encapsuled in PortConnector objects. This is done through the
createInPort method which takes an actor as an argument and returns the PortConnector
that is after added to the actor.

The algorithm for replicating an actor in Actorlib then looks as depicted in Algo-
rithm 1.

20

4. Replication-based Error Detection and Load Balancing

Algorithm 1: Algorithm for replicating an actor a
Data: original actor a, ActorGraph ag

1 a′ ← a.copy()
2 ag.addActor(a′)
3 if a′.hasOutPorts() then
4 amul ← MulAct()
5 ag.addActor(amul)
6 foreach maker ∈ a′.OutPortMakers do
7 connector← maker.createOutPort(amul)
8 amul .addPortConnector(connector)
9 end

10 end
11 if a’.hasInPorts() then
12 ademul ← DemulAct()
13 ag.addActor(ademul)
14 foreach maker ∈ a′.InPortMakers do
15 connector← maker.createInPort(ademul)
16 ademul .addPortConnector(connector)
17 end
18 connections← ag.getConnections(a)
19 ag.removeConnections(a)
20 ag.reconnectChannels(connections)
21 end

While this is the general algorithm for replication, there are some aspects to it that
are not shown here for simplification. Most importantly, when replicating an actor
to another UPC++ rank, the actors a′, amul and ademul have to be available in the local
memory of the rank to which they are added. Specifically in this implementation, the
actor a′ is initialized with a global pointer on the original rank which makes it possible
to send it to the new rank and access it locally there. In contrast, in the case of the
DemulAct and MulAct, the procedure of creating them and filling their PortConnectors
is completely delegated to the new rank via an RPC. There, the previously locally added
replica of the original actor can be used to access the PortMakers and initialize amul
and ademul .

Another aspect of the replication not mentioned here is the replica’s, the MulAct’s and
the DemulAct’s choice of identifier. When calling the copy method on an actor a unique
name has to be passed as an argument that the ActorGraph then uses to identify the
replica. Similarly, when calling the constructor for the DemulAct or MulAct, a name

21

4. Replication-based Error Detection and Load Balancing

has to be chosen as well.

Lastly, when creating the new connections in the ActorGraph, first the new chan-
nels are determined using the previous connections of actor a. Then, all connections of
the original actor are removed before the new ones are reinitialized.

4.3. Error Detection

The first use of replicated actors is the checking of sent messages for SDCs. In order to
do this, the messages of both the original and the replica actor have to be compared
and checked whether they are equal or if there are possible bitflips.

In RedMPI, it is proposed to check both MPI tasks’ messages by sending a hash
to the replica or the original receiving MPI task. Then, the receiver calculates the hash
of the message coming from one of the two sending actors and compares it to the hash
sent by the other.

Sending task

Sending task’

Receiving task

Receiving task’

Figure 4.5.: Communication in the RedMPI MsgPlusHsh method. The sender and its
replica send messages to the corresponding receiver while sending a hash
of the message along the dashed arrows [10].

In the actor model, due to the structure of the message forwarding system, this way
of cross-referencing is changed. When an actor and its replica both send a message,
they both send it to their MulAct before it arrives at the actual receiver. Since, in this
work, we assume that no errors happen within the channels, the actors sending an
additional hash of their message is an unnecessary overhead. Instead, the MulAct
receiving the messages from the original actor and the replica computes the hash of
all received messages and compares those values. Meanwhile, the actors only send
their message itself and completely leave the task of error checking to the MulAct. This
method effectively achieves the same result as the implementation from RedMPI.

When checking messages in the Actorlib implementation, each MulAct has to check all
incoming port connections for errors. Therefore, the ports and message passing of the

22

4. Replication-based Error Detection and Load Balancing

MulActs are managed in the corresponding PortConnectors of the actor, specifically in
this case the sub-class of PortMultiplexers. These objects are assigned to one port of the
original actor each. The connector has two InPorts, one connected to the original actor
and the other connected to the replica. When receiving messages on these ports, the
PortMultiplexer checks them and sends them to the receiver through its OutPort. Each
PortMultiplexer has two queues in which it stores the hash values of the incoming
messages before they can be checked. Then, every time a message is received in any of
the two InPorts, the following algorithm is executed to detect SDCs:

Algorithm 2: Algorithm for checking for a SDC in a PortMultiplexer
Result: Was a SDC detected?
Data: Queues q0 and q1 for the two InPorts of the PortMultiplexer

1 if q0.size()> 0∧ q1.size()> 0 then
2 return q0.pop() 6= q1.pop()
3 end
4 return false

Here, it is notable that it is never necessary to iterate over the queue of stored hash
values since only one element can be checked at a time here. With Algorithm 2 being
executed each time a message is received, at least one of the two queues contains only
one or no elements. This occurs due to the fact that if both queues contain an element,
the oldest element is checked for errors and then removed.

In this implementation, once a SDC is detected, the program cannot be continued
and has to be terminated or restarted due to the double replication not being able to
correct detected errors. This method of using replication could instead be combined
with a checkpointing system which allows the program to rollback to a previous check-
point once an error is detected. Still, this implementation only focuses on the detection
of errors while leaving their handling to further work.

4.4. Load Balancing

Replication may be attractive for load balancing, as an imbalance created by a delayed
rank can be made up for by its replica. Here, it is expected that with both the replicated
actor as well as the original producing results, the application can use whichever result
arrives faster and therefore reduce wait times. In order to do this, there first needs to
be a change to the message passing.

In a general pessimistic error detection algorithm, a MulAct has to wait for mes-

23

4. Replication-based Error Detection and Load Balancing

sages coming from both an original actor and its replica. With this technique, it is
made sure that the error will not spread. On the other hand, waiting for both messages
can be time-consuming, especially in unbalanced scenarios due to the original and the
replica actor being on separate ranks. If, for example, the rank of the replica and of the
receiver are much faster than the one of the original actor, the receiver might have to
wait for a long time until the original actor reaches the right point in execution.

When forwarding messages immediately, it is important to only send the messages of
the actor that is further in execution. Since the previous implementation of replication
in Actorlib already features a queue to store the hash of messages previously received
from one of the actors, the PortMultiplexers only have to be changed to immediately
forward the messages when receiving it. Now, in order to not send the messages twice,
the PortMultiplexer uses the following algorithm.

Algorithm 3: forwardMessages
Data: InPorts in0, in1, OutPort out

1 while in0.available() do
2 value ← in0.read()
3 valuehash ← hash(value)
4 q0.push(valuehash)
5 if q0.size() > q1.size() then
6 out.write(value)
7 end
8 end
9 while in1.available() do

10 value ← in1.read()
11 valuehash ← hash(value)
12 q1.push(valuehash)
13 if q1.size() > q0.size() then
14 out.write(value)
15 end
16 end

Here, it is still assumed that actors are deterministic and the messages from replicas
and originals arrive in the same order. Therefore, when looking at the queue of hashes
from messages, the actor with the longer queue necessarily has sent more messages in
its execution and therefore its messages should be forwarded while the other actor’s
messages loose their significance for the matter of load balancing.

24

4. Replication-based Error Detection and Load Balancing

In the case of both actors having same sized queues, which in this implementation
means both queues have the size zero, both the replica and the original are at the same
point of execution in terms of messages sent and any newly arriving message can
immediately be forwarded. As long as the other actor is not ahead of an actor, the
message has not been previously sent and a received messages can just be forwarded
in the corresponding OutPort.

The use of replication as a method of load balancing is expected to have the largest
effect in scenarios where the ranks are very unbalanced in terms of speed. When using
redundancy for load balancing, an actor and its replica are put on separate ranks, one
of which is likely to achieve a relatively fast runtime. Generally, in these scenarios,
there are other possible approaches like migrating actors from a slow rank to a faster
one, but most methods suffer from having to predict which rank will be fast or slow
in the following execution in order to find a dynamic solution. Using replication, it is
not necessary to make any prediction on the future of the run but instead the faster
solution is always automatically chosen. On the other hand, a double redundancy
initially induces an overhead factor of at least two due to the double execution of each
actor with an additional overhead of the MulActs and DemulActs. While there might
be scenarios where the overhead of waiting for other actors surpass the overhead of
replication, the initial overhead of redundancy in itself definitely is a considerable
factor.

25

4. Replication-based Error Detection and Load Balancing

MulAct DemulAct PortConnector
This actor manages all
messages coming from
an original actor and its
replica.

This actor distributes all
incoming messages to an
original actor and its
replica.

The PortConnector is an
abstract class offering the
f orwardMessages method.
This base class is used for
multiplexing and demulti-
plexing.

PortMultiplexer PortDemultiplexer PortMaker
This is an implementa-
tion of the PortConnector
class containing one Out-
Port and two InPorts con-
nected to an actor and its
replica. A MulAct con-
tains one PortMultiplexer
for each OutPort of the
original actor. Here, the
error checking and load
balancing is performed.

The PortDemultiplexer is
the second implementa-
tion of the PortConnector
class containing one
InPort and two Out-
Ports connected to an
actor and its replica. A
DemulAct contains one
PortDemultiplexer for
each InPort of the original
actor.

This class is respon-
sible for creating
PortConnectors. A
PortMaker is instantiated
whenever an actor creates
a port. That object offers
the necessary methods to
create a PortMultiplexer
or a PortDemultiplexer
for the port with which it
was created.

Table 4.1.: Overview of added classes to Actorlib involved in the replication.

26

5. Results

The implementation of replication in Actorlib was tested on the CoolMUC-2 cluster
of the Leibniz Supercomputing Centre (LRZ). The CoolMUC-2 cluster consists of 812
28-way Haswell-based nodes with FDR14 Infiniband interconnect [14]. The tests here
are performed with up to 16 nodes with each node using all available 28 cores.

The benchmarks of this extension to Actorlib were all performed in the application Pond
as described in Section 3.4. This implementation of Pond uses the replication of every
actor in the simulation. This is done before the start of the run by the ActorGraph on
rank 0 using the method replicateAllActors. The baseline for the tests is the original
pond application without any added redundancy in the computations in the form of
double replication of actors.

Firstly, the performance of the Pond application is tested with grid sizes of 8000× 8000
and 16000× 16000. These tests are performed with a patch size of 250× 250 and a
simulation end time of 4. The scenario chosen for all tests using pond is the PoolDrop
scenario. The node count for the application is set between 2 and 16 nodes with runs
using 4 and 8 nodes in between. Here, the implementation is tested with the serial
execution of the ActorGraph without multi-threading using OpenMP or C++ threads
within the ranks. In this test case, each scenario is only executed once. Due to the
large runtimes of these runs, it is expected that system noice averages out so single
measurements can accurately represent the runtime differences between the baseline
and the tested implementation.

27

5. Results

5 10 15
0

2,000

4,000

Number of nodes

R
un

ti
m

e
[s

]

5 10 15
1

1.5

2

2.5

O
ve

rh
ea

d

5 10 15
0

1

2

3

·104

Number of nodes

R
un

ti
m

e
[s

]

5 10 15
1

1.5

2

2.5

O
ve

rh
ea

d

Runtime, replication on
Runtime, replication off
Overhead of replication

Figure 5.1.: Results of runs of Pond with a grid size of 8000× 8000 (left) and 16000×
16000 (right) with 2-16 nodes. The end time of the simulation is set to 4
with a patchsize of 250× 250. The orange plot represents the runs without
replication while the blue plot shows the runtimes with replication. The
green plot represents the overhead induced by replication.

x →

y
→

x →

y
→

Figure 5.2.: PoolDrop scenario of Pond at the start of the simulation (left) and at the end
of the simulation (right). The results are visualized in ParaView with red
and blue values representing high or low heights at certain coordinates.

5.1. Overhead of Replication

In Figure 5.1, the plots in orange and blue represent the runs of the baseline and the
execution with replication respectively. The corresponding scale for the runtime of the
executions is shown at the left of each plot measured in seconds.

28

5. Results

Meanwhile, the green lines represent the overhead incurred by the replication de-
termined through the formula

OH =
timereplication

timebaseline
. (5.1)

Here, timereplication and timebaseline denote the measured runtime using replication and
in the baseline. The scale for this overhead is on the right side of each plot.

In the plots from Figure 5.1, it is already possible to qualitatively see the scaling
of the replication. When increasing the node count for the runs, the implementation
with replication evidently scales similarly to the baseline executions in orange. Both in
the smaller and the larger grid size the overhead incurred by the replication remains
stable on a level slightly above a factor of 2.

With no larger imbalances occurring in these scenarios, the load balancing is not
able to achieve a large speedup. For this reason, the minimum expected overhead
incurred by redundant computations of replicated actors here is expected to be around
a factor of 2 only from the replicated actors. The measured data containing the manage-
ment of the messages between actors achieves a value only slightly above that threshold.

In order to further investigate the overhead incurred by this form of replication, the
runtimes and overhead when scaling the computational resources to the redundancy
of replication are shown in Tables 5.1 and 5.2. In this case of double replication, the
node count is doubled while still processing a problem of the same size as the baseline.
Here, the runs without replication using 4 and 8 nodes are compared to the runs with
replication using 8 and 16 nodes and 2 and 4 nodes.

Table 5.1.: Runtime and overhead comparison in Pond runs with a grid size of 16000×
16000, a patch size of 250× 250 and a simulation time of 4. Here, the runtimes
of pond without replication using 4 and 8 nodes are compared to the data
with replication using 8 and 16 nodes.

Nodes Original runtime [s] Replication runtime [s] Overhead

2-4 16455 16491 2.19%
4-8 8390 9180 9.41%
8-16 4330 4870 12.47%

29

5. Results

Table 5.2.: Runtime and overhead comparison in Pond runs with a grid size of 8000×
8000, a patch size of 250× 250 and a simulation time of 4. Again, the amount
of nodes in the runs with replication is scaled to double the amount from
runs without replication.

Nodes Original runtime [s] Replication runtime [s] Overhead

2-4 2106 2195 4.02%
4-8 1173 1161 -1.02%
8-16 557 697 25.13%

The overhead induced by replication shown in Tables 5.1 and 5.2 mainly comes from the
multiplexing and demultiplexing of the messages. While the checking and forwarding
of the messages was observed to be very performant, finding active neighbours creates
a significant overhead. While the algorithm is already improved by the two-phase
checking first looking for active neighbors locally, only these computations still make
up the majority of the computational time in the MulActs and DemulActs. In order to
find connected neighbours in the ActorGraph, the PortGraph storing all connections has
to look up the actor in question from the connections in the ActorGraph. After receiving
the names of the connected actors, it is possible to look up through the ActorGraph
whether or not they are active. These lookups in the PortGraph and the ActorGraph have
proven to create a large overhead.

It might be possible to only check the connected neighbors occasionally instead of in
every act call of the MulActs and DemulActs. This could be done by checking whether
or not messages were received while assuming that the neighbours are guaranteed to
be active when they send a message to their MulAct or DemulAct. Yet, this approach
is based on the messages arriving in regular intervals. Due to the inability to predict
when messages can be received in the future, this approach might even increase the
overhead. Especially in the case of Pond, only very irregularly messages are received by
the MulActs and DemulActs which makes such an approach to reducing the overhead
infeasible.

Alternatively, pointers to the neighboring actors of a MulAct or DemulAct could
be stored directly circumventing the lookups in the PortGraph and ActorGraph. Instead,
checking the neighbours could be done only through efficient memory accesses. The
downside of this approach is that it in itself proposes a static structure of the ActorGraph.
Therefore, when the structure of the ActorGraph or the PortGraph changes, these changes
have to be broadcasted to all MulActs and DemulActs so they can refresh their pointers

30

5. Results

to contain their possibly new neighbours.

5.2. Error Injection

5.2.1. Error Injection Framework

In order to check the functionality of the error detection algorithm within the replica-
tion, the occurrence of SDCs is simulated. Due to the low chance of SDCs naturally
happening, bitflips are artificially inserted into Pond. This method is favorable to
finding natural SDCs for testing in order to achieve meaningful results that are also
reproducible.

Similarly to the testing method in RedMPI, ten experiments are done in each of which
SDCs can be inserted. While RedMPI inserts the errors at a rate of 1 : 5, 000, 000,
this implementation chooses to randomly insert these errors with a probability of
1 : 5, 000, 000 in order to achieve different, random results in the same scenario. This
probability for an artificial SDC is evaluated each time the water heights of a block are
calculated. Then, if an error should be inserted, the water height at a certain point in
the corresponding block has its last bit flipped. While the choice of what bit of the
height is flipped is in this case arbitrary, it can only distort the results of the experiment
if it regularly causes multiple hash values of the height values to collide. Using the
hash_combine method from the library boost to calculate the hash of a sent vector of
floats/doubles, this is observed to not be the case.

In this implementation, I chose two different spatial positions in the grid in which an
error may be inserted. One of these positions is the edge of a SWEBlock. In this case, an
error is added to the heights of the left and the right side of a block. This causes the
error to immediately spread to the bordering blocks, in the communication to which
the error detection is expected to catch the artificial SDC.

The detection of a SDC might be significantly more difficult to detect if the corruption
occurs in the middle of a block. In this case, the error first has to spread to the edge of
a block and only then it can be detected by the error checking algorithm during the
communication. If the simulated time is too short for the error to spread, the error
cannot be found with this method. Additionally, an error might even out throughout
the simulation time.

Another interesting aspect of the error injection is to evaluate how an error might
affect the program. In order to check the effect of the injected errors without detecting

31

5. Results

them, 100 additional tests are introduced to be run with and without actor replication.
In these cases, a smaller grid size of 2000x2000 is chosen for pond with an endtime of 4.
Due to the fewer computations these runs perform, the chance of an error occurring
is increased from the previous value of 1 : 5, 000, 000 to 1 : 350, 000. This number is
chosen so enough runs perform an error injection while other runs do not. The latter
runs are used to determine whether or not false positives occur.

The errors are again possibly inserted whenever the heights of the grid in a SWE-
Block are updated. Then, if a SDC is to be inserted, the height in the middle of the block
is chosen and a random bit of the float is flipped. With this approach the error created
can randomly be either small or large relative to the original height.

SDCs are typically dangerous if, instead of causing a program failure, they remain
undetected and distort the results of computations. Especially in environments without
much error tolerance, one bitflip might cause drastically different results than expected.
Alternatively, there are applications that require a large degree of accuracy which can
possibly not be achieved when an error in the execution is not detected. For this reason,
it is of interest whether the injected bitflips can be detected through a program failure
or if they would go unnoticed without using error detection.

5.2.2. Error Detection

The effect of a bitflip can vary immensely depending on how fault-tolerant the program
is in which it happens and what value is changed. In the case of Pond, the bitflips of
height values at the middle of a block created errors that were observed to spread to
the edges of the block and to the blocks of other actors. Yet, when only flipping a bit in
one height value, the errors tend to become small to a degree that they can’t visually
be identified in the resulting simulation. In order to see what results more errors can
have on pond visually, the error insertion chance was first set to 1 : 200 while always
switching the bit for the height’s sign in case of an error.

In this case, as seen in Figure 5.3, some artifacts are visible but pond still remains
relatively stable. The artifacts created by error insertion start being visible only in
certain timesteps with an insertion chance of 1 : 20, 000 as shown in Figure 5.4.

32

5. Results

x →

y
→

x →

y
→

Figure 5.3.: Part of the end step of a pond simulation visualized through ParaView. In
the image above, no errors were inserted. Below, errors were inserted with
a chance of 1 : 200 creating some artefacts. These errors took the form of a
bitflip at the sign of the middle height of a block.

33

5. Results

x →

y
→

Figure 5.4.: A part of a middle time step of a pond simulation visualized in ParaView.
Here, with a chance of 1 : 20, 000, the sign bit of the middle height of a
block was flipped. In this case, only certain timesteps in the simulation
showed small artifacts that evened out throughout the simulation time.

Pond was observed to produce very stable results even when, instead of a simple bitflip,
a larger error was inserted to a height. In Figure 5.5, when an SDC should be inserted,
instead of flipping one bit, the height in the middle of a block was set to the maximum
float value defined by C++. While this error was possible to spot in the produced fluid
simulation, the results remained stable and converged to results similar to the baseline
without an error.

34

5. Results

x →

y
→

Figure 5.5.: This is a visualization of one block of pond at the end time of the simulation
from ParaView. In this case, with a chance of 1 : 200, 000, the middle height
value of a block is set to the numeric maximum float value.

In order to find out how well errors can be detected through replication, ten runs are
tested for each an inserted error in the middle and at the edge of a block with the
last bit of the water height being flipped. Here, both methods to insert a corruption
use the same random seeds in order to create the same framework condition for the
tests. During ten experiments each with a chance of 1 : 5, 000, 000 for an error to be
inserted, eight runs had an error while the other two runs did not have an artificial SDC.

When inserting the error at the edge of a block or when corrupting the middle of
a block all inserted errors were detected by the error detection algorithms. Additionally,
in the experiments without data corruptions, this implementation produced no false
positives detecting a data corruption where there was none.

The second set of tests performed inserts all errors in the middle of a block with
100 cases but a smaller grid size. When performing these experiments, 47 runs had an
error injected while 53 runs did not have an artificial bitflip. Out of the runs with an
error injection, none were observed to fail. Instead, all executions terminated as if no
error had occurred. Meanwhile, the tests were performed using the same random seed
while enabling actor replication with error checking. Here, all but four errors were still
correctly detected while again no false negatives occurred. The errors that were not
detected were inserted into the middle of a block too late in the simulation for them to
spread to the edges where the error detection is located.

35

5. Results

5.3. Replication for Mitigating Dynamic Load Imbalances

The load balancing through replication is also tested in the pond application with a
grid size of 8000× 8000 with 8 nodes on the CoolMUC-2 cluster. While other methods
for load balancing achieve good results for static imbalances, the approach through
replication aims to balance dynamic imbalances which other approaches might not be
able to predict.

Here, these dynamic imbalances are inserted into the pond library through slow-
ing down half the ranks for a certain time. After the slowed down ranks complete their
slowdown time, they are allowed to continue their execution and the other ranks are
waiting. In this implementation, at any time, every odd rank or every even rank is
allowed to execute while the others wait. This approach is expected to achieve good
results in combination with the approach of replication used in pond. There, every
replica of an actor on a rank n is put on rank n + 1. Then, with every second rank being
slowed down, every actor can either work itself or it has to wait and the replica on the
other rank can take over.

When testing this application with a serial execution of actors, there is a problem
when placing the MulActs and DemulActs. In pond, these actors are placed on the
same rank as the corresponding replica actor. If, now, the rank of the replicated actor is
slowed down and its actors cannot execute, the MulActs cannot act either. When this
happens, the messages of the running original actor arrive at the MulAct to be sent on
and checked for errors but the message will not be forwarded due to the slowdown.
Therefore, the load balancing of the replication does not take effect. Another difficulty
of creating imbalances in Actorlib is the size of the channels between actors. When an
actor is slowed down, the replicated actor takes over computing results and sending
messages. Now, when a receiver of those messages is suspended, it cannot read any-
more messages and the channel can fill up. In particular with using the serial execution
of the ActorGraph.

In order to avoid these two problems, the channel size of the actors is increased
from 128 to 4096. Also, the slowdown to the actors is applied by the ActorGraph.
Therefore, when the rank of an ActorGraph component is slowed down, the actors in
the simulation are skipped while the MulActs and DemulActs are still executed. The
results of this method using the same measure as Tables 5.1 and 5.2 can be seen in
Table 5.3.

Alternatively, the OpenMP implementation of the ActorGraph is used in order to

36

5. Results

Table 5.3.: Runs of imbalanced Pond in a serial execution with an increased channel
size of 4096. Here, the increased channel size in combination with the
imbalances require a large amount of memory during execution. For this
reason, these tests were not performed with two nodes. The run uses a
grid size of 8000× 8000 with a patch size of 250× 250 and an endtime of
4. The runtime and overhead is compared between runs with and without
replication while the runs with replication use the double amount of nodes.

nodes original runtime [s] replication runtime [s] overhead

4-8 2058 2069 0.53%
8-16 1097 1311 19.51%

test the load balancing effect of replication. With this method, instead of calling the act
method of the local actor sequentially, they are executed in parallel through OpenMP
tasks. Now, the actors in the simulation can be slowed down while the DemulActs
and MulActs are allowed to execute normally. This is achieved by slowing down the
actors in the simulation within their act method for five calls with a waiting time of
5000ns. This time was chosen empirically to achieve an imbalance of a runtime increase
factor of around 2 during the execution of the run without replication compared to the
previous baseline. If this imbalance increased the runtime by a much larger amount or
only insignificantly, the true load balancing effect of the replication would not appear.
For a very small overhead, the replicas initially creating an overhead factor of 2 cannot
surpass the factor coming from imbalances. In the case of a larger overhead the original
actor and the replicas would spend most of their time waiting, which would cause the
load balancing to be negligible in comparison.

Using this method, the actors are now able to execute after waiting for a short time
instead of being suspended completely during slowdown. This prevents the channels
from overflowing too easily which is the reason the runs with OpenMP again are able
to use the original channel size of 128. The experiments in Figure 5.6 are executed
under similar circumstances as the tests in Figure 5.1 with a grid size of 8000× 8000.
The only difference here is the usage of the previously defined imbalanced scenario
and the utilization of OpenMP.

37

5. Results

2 4 6 8 10 12 14 16

2,000

4,000

6,000

8,000

number of nodes

ru
nt

im
e[

s]

2 4 6 8 10 12 14 16
1

1.5

2

2.5

ov
er

he
ad

runtime, replication on
runtime, replication off
overhead of replication

Figure 5.6.: Results of a run with an imbalanced version of Pond with a grid size of
8000× 8000 using 4-16 nodes. Here, OpenMP parallelisation is used within
each rank. The end time of the simulation is set to 4 with a patchsize of
250× 250. The orange plot represents the runs without replication while
the blue plot shows the runtimes with replication. The green plot represents
the overhead induced by replication.

38

5. Results

In these experiments, the overhead induced by replication consistently stays below a
factor of 2 within the range between 1.652 and 1.836. While the cost of replication is
still not fully mitigated in this scenario, there is a notable difference to balanced runs
using replication. With the replication inducing an initial minimum overhead factor of
2, it is safe to say that these experiments benefit from a certain degree of load balancing.

Table 5.4.: Runs of imbalanced Pond in an execution using OpenMP multi-threading.
The run uses a grid size of 8000× 8000 with a patch size of 250× 250 and an
endtime of 4. The runtime and overhead is compared between runs with and
without replication while the runs with replication use the double amount
of nodes.

nodes original runtime [s] replication runtime [s] overhead

2-4 4284 4076 -4.85%
4-8 2306 2218 -3.82%
8-16 1208 1270 1.05%

When scaling the nodes in order to make up for the redundancy as in Table 5.4, the
overhead in the unbalanced scenario is consistently smaller than in a balanced run. This
effect is likely caused by a certain degree of load balancing achieved through replication.

Additionally, when analyzing these run with and without replication through In-
tel Vtune Amplifier, it is visible that the approach without load balancing is stuck in
upcxx :: barrier() calls for more than half of the execution time waiting for other ranks.
Meanwhile, in a run with replication, most of the execution time is actually spend
within the actors’ act methods while only a negligible amount execution time is spent
waiting.

All in all, while the load balancing effect of replication does not make the redun-
dant run faster than the baseline, the expected effect can be observed by a certain
amount.

39

6. Conclusion and Future Work

In this thesis, a replication approach of actors was developed for the actor model. This
extension was designed to investigate two possible advantages of using double redun-
dancy compared to the original actor structure. Firstly, the redundant computations
were used to check a program run for internal errors. In particular, this approach was
proposed to detect SDCs that might otherwise go unnoticed. By checking the messages
sent by each original actor and its replicas, it was possible to detect all inserted errors
in the test cases while also not reporting any false positives. While these results are
particularly accurate, in the case of pond, some errors could have been ignored due to
the error-resistant nature of the application.

Secondly, a load balancing approach based on redundancy was proposed. Placing the
original actor and its replica on separate ranks, this model hoped to always have one
of the two actors produce results even when the other one is slowed down. While
this effect was observed in the performed tests on an unbalanced scenario, the load
balancing did not have an effect large enough to justify the usage of replication to
improve the program runtime. Due to large overhead incurred during the message
forwarding in this implementation, the runtimes using replication were not able to
surpass the baseline without replication even in a very unbalanced scenario.

Working on actor replication in the future, there is a number of additions that possibly
could enhance its functionality or improve the runtimes.

6.1. Internal Data Checks

One possible improvement to this model of replication within Actorlib would be to
perform internal data checks for each actor. In this thesis, the replicated actor is only
used in order to perform error checks during an actor’s communication. This might
lead to problems in cases where an error does not spread outside of an actor. One
example for this is an error insertion into the middle of pond while not simulating the
scenario long enough for the error to spread to the edges of the block. Therefore, the
error is not caught in the DemulAct.

40

6. Conclusion and Future Work

This problem might be solved by adding a channel between the original actor and
its replica to the ActorGraph. Through this channel, the actors regularly send their
internal data to their replica or original, which in turn can compare its own state to
the received data. Using this method, internal SDCs that do not spread to other actors
can be detected. Additionally, this data could possibly be used to restore the state of
corrupted actors in case of SDCs.

The major downside of this method is the large amount of data that has to be trans-
ferred between the actors in order to achieve the wanted results. Sending the entire
data of all actors could be very expensive. This is especially the case since the original
actor and its replica, in this implementation, are put on separate ranks. Transferring
these large amounts of data between ranks is likely an unfeasible approach for error
detection. Instead, maybe only a hash of the actor could be sent to the corresponding
redundant actor.

6.2. Error Range

While this implementation of error detection using hash values has a high accuracy,
some small errors might not influence the results enough to be relevant. Using this
thesis’ implementation, these errors are not distinguished from large data corruptions.
Especially in large-scale computing, some small numerical errors or errors due to
parallelism might also cause some indeterminism in the actors, which in turn can be
interpreted as a SDC by the error checking algorithm.

In cases where these errors should not be detected, a small range could be defined
within which errors are deemed acceptable. This might be done similarly to the method
from [3]. One change needed to implement this is the storage of the full received
messages instead of their hash values. When a deviance is found between two hash
values of messages, the distance between the actual message values cannot be evaluated
anymore. One possible problem of this addition might therefore be the increase in
memory cost for the program.

6.3. Double Replication for Error Correction

In this thesis, the double redundancy provided can only detect errors but then does
not introduce a way of handling them. One possible approach for this could be to use
triple redundancy and perform error correction similarly to the implemented detection.

41

6. Conclusion and Future Work

Doing this, the MulAct has to be expanded to accept messages from an original
and two replicas instead of one. Then, when a deviance is detected, the results coming
from two out of the three actors is likely the correct message to be forwarded while
the third message is discarded. Yet, the corrupted actor in itself cannot continue its
computations since the error could have occurred anywhere within the actor and spread
to the communication. Therefore, without introducing a method to rollback an actor
to a working state, only one error can be detected for each actor, which then has to
be stopped. After stopping the actor with an error, the other two actors could still
use double redundancy in order to detect further errors without the possibility of a
correction.

All in all, it is important to keep the fact in mind that SDCs are very unlikely to
occur. Therefore, it might be enough to only correct one error for each actor with the
probability of one actor experiencing multiple data corruptions in one run being fairly
low.

6.4. Combination with Error Handling

Alternatively to correcting the errors with redundancy, it might be possible to combine
the introduced double redundancy with other methods of error handling introduced in
Chapter 2.

The approach that seems most promising in combination with error detection through
replication is checkpointing. Here, in regular intervals, every actor writes checkpoints
into persistent storage. Then, whenever a SDC is detected through the replicated actors,
the original actor and its replica revert to the last checkpoint. When doing this, the
messages received by the actors would have to be stored in order to avoid the actors’
input being lost.

Alternatively, all actors could be reset to a checkpoint. Here, it is important to make
sure that no actor returns to a checkpoint that is ahead in time to any other actor’s
last checkpoint. If that was the case, one actor might resend a message that the actor
further ahead already received before the reset. This, in turn, can cause errors or even
program crashes.

42

6. Conclusion and Future Work

6.5. Alternatives to Multiplexing

In order to solve the problem of the large overhead incurred by the MulActs or
DemulActs another form of message passing between actors might be worth a consid-
eration.

For this, a similar method to the one in RedMPI might achieve good results. Un-
der the assumption that every actor in the ActorGraph is replicated once, there is no
need to forward one message to one receiver or multiple messages to one receiver.
Instead, for example, all replicated actors can only be connected to other replicas and
the originals send their messages to each other. Meanwhile, the actors send a hash of
their messages to the other actor, replica or original. This hash value can then be used
for error detection. Yet, this approach is not able to perform load balancing like the
model in this thesis does.

Instead of sending hash values, sending all messages double to the receiving original
actor and its replica might also be a possible way of approaching the channels using
replication. In this case, each actor receives every message two times and can do the
error detection or load balancing when receiving these messages. Regardless, this
method also only works if every actor was replicated which takes away the user’s
opportunity to implement other approaches like a dynamic replication.

6.6. Dynamic Channel Size

One possible problem of Actorlib is the limited channel size connecting the ports. When
the library’s user creates an actor, they have to specify the sizes of the connected chan-
nels during compilation, after which it cannot be changed anymore. In order to avoid
the problem of possibly overflowing channels, the channel size could be dynamically
changed during the program execution depending on how much space is needed.

The fixed channel size particularly turned out to create problems in some very un-
balanced scenarios. Here, if one actor keeps writing into a channel while another
connected actor is not able to execute due to imbalances a channel overflow crashes the
application.

43

List of Figures

3.1. Visualization of the PGAS used in UPC++ for a simple case using four
ranks. Each rank in the execution contains a local private memory
segment and a shared memory segment. During execution, a rank’s
pointer to its own shared segment can be downcasted to a local pointer
and used as such in computation [22]. 7

3.2. Communication in pond with four actors. Each grid partition represents
one SWEBlock contained in an actor. The actors communicate with their
neighboring actors sending the edge data from their block. 10

3.3. Finite state machine of a SimulationActor in Pond. Here, the italicized
functions are guard functions while the rest are actions. tcur is the current
time of the simulation [19]. 11

4.1. Example with originally four actors for the placement of actors on the
ranks before (left) and after (right) calling the replicateAllActors method. 14

4.2. Functionality of a MulAct and a DemulAct of an actor 1 and its replica
1′. Before replication, the original actor 1 had an incoming channel from
2 and an outgoing connection to 3 . 16

4.3. A finite state machine for the MulAct or DemulAct. The inActableState
is checking certain neighbours whether they are still running. 17

4.4. On top is the original ActorGraph containing the actors 1 and 2. Here,
actor 1 and actor 2 each have one InPort and one OutPort through
which they communicate. The bottom image contains the corresponding
ActorGraph after replication. 19

4.5. Communication in the RedMPI MsgPlusHsh method. The sender and
its replica send messages to the corresponding receiver while sending a
hash of the message along the dashed arrows [10]. 22

5.1. Results of runs of Pond with a grid size of 8000× 8000 (left) and 16000×
16000 (right) with 2-16 nodes. The end time of the simulation is set
to 4 with a patchsize of 250 × 250. The orange plot represents the
runs without replication while the blue plot shows the runtimes with
replication. The green plot represents the overhead induced by replication. 28

44

List of Figures

5.2. PoolDrop scenario of Pond at the start of the simulation (left) and at the
end of the simulation (right). The results are visualized in ParaView
with red and blue values representing high or low heights at certain
coordinates. 28

5.3. Part of the end step of a pond simulation visualized through ParaView.
In the image above, no errors were inserted. Below, errors were inserted
with a chance of 1 : 200 creating some artefacts. These errors took the
form of a bitflip at the sign of the middle height of a block. 33

5.4. A part of a middle time step of a pond simulation visualized in ParaView.
Here, with a chance of 1 : 20, 000, the sign bit of the middle height of a
block was flipped. In this case, only certain timesteps in the simulation
showed small artifacts that evened out throughout the simulation time. 34

5.5. This is a visualization of one block of pond at the end time of the
simulation from ParaView. In this case, with a chance of 1 : 200, 000, the
middle height value of a block is set to the numeric maximum float value. 35

5.6. Results of a run with an imbalanced version of Pond with a grid size
of 8000× 8000 using 4-16 nodes. Here, OpenMP parallelisation is used
within each rank. The end time of the simulation is set to 4 with a
patchsize of 250× 250. The orange plot represents the runs without
replication while the blue plot shows the runtimes with replication. The
green plot represents the overhead induced by replication. 38

45

List of Tables

4.1. Overview of added classes to Actorlib involved in the replication. . . . 26

5.1. Runtime and overhead comparison in Pond runs with a grid size of
16000× 16000, a patch size of 250× 250 and a simulation time of 4.
Here, the runtimes of pond without replication using 4 and 8 nodes are
compared to the data with replication using 8 and 16 nodes. 29

5.2. Runtime and overhead comparison in Pond runs with a grid size of
8000× 8000, a patch size of 250× 250 and a simulation time of 4. Again,
the amount of nodes in the runs with replication is scaled to double the
amount from runs without replication. 30

5.3. Runs of imbalanced Pond in a serial execution with an increased channel
size of 4096. Here, the increased channel size in combination with the
imbalances require a large amount of memory during execution. For
this reason, these tests were not performed with two nodes. The run
uses a grid size of 8000× 8000 with a patch size of 250× 250 and an
endtime of 4. The runtime and overhead is compared between runs with
and without replication while the runs with replication use the double
amount of nodes. 37

5.4. Runs of imbalanced Pond in an execution using OpenMP multi-threading.
The run uses a grid size of 8000× 8000 with a patch size of 250× 250
and an endtime of 4. The runtime and overhead is compared between
runs with and without replication while the runs with replication use
the double amount of nodes. 39

46

Bibliography

[1] G. A. Agha. Actors: A model of concurrent computation in distributed systems. Tech.
rep. Massachusetts Inst of Tech Cambridge Artificial Intelligence Lab, 1985.

[2] P. Bannon, G. Venkataramanan, D. D. Sarma, and E. Talpes. “Computer and
redundancy solution for the full self-driving computer.” In: 2019 IEEE Hot Chips
31 Symposium (HCS). IEEE Computer Society. 2019, pp. 1–22.

[3] E. Berrocal, L. Bautista-Gomez, S. Di, Z. Lan, and F. Cappello. “Lightweight silent
data corruption detection based on runtime data analysis for HPC applications.”
In: Proceedings of the 24th International Symposium on High-Performance Parallel and
Distributed Computing. 2015, pp. 275–278.

[4] A. Breuer and M. Bader. “Teaching parallel programming models on a shallow-
water code.” In: 2012 11th International Symposium on Parallel and Distributed
Computing. IEEE. 2012, pp. 301–308.

[5] P. G. Bridges, K. B. Ferreira, M. A. Heroux, and M. Hoemmen. “Fault-tolerant
linear solvers via selective reliability.” In: arXiv preprint arXiv:1206.1390 (2012).

[6] F. Cappello, A. Geist, W. Gropp, S. Kale, B. Kramer, and M. Snir. “Toward Exascale
Resilience: 2014 update.” In: Supercomputing Frontiers and Innovations 1.1 (2014).
doi: 10.14529/jsfi140101.

[7] D. Dauwe, S. Pasricha, A. A. Maciejewski, and H. J. Siegel. “An Analysis of
Resilience Techniques for Exascale Computing Platforms.” In: 2017 IEEE Inter-
national Parallel and Distributed Processing Symposium Workshops (IPDPSW). IEEE,
52017, pp. 914–923. isbn: 978-1-5386-3408-0. doi: 10.1109/IPDPSW.2017.41.

[8] S. Di and F. Cappello. “Adaptive impact-driven detection of silent data corruption
for HPC applications.” In: IEEE Transactions on Parallel and Distributed Systems
27.10 (2016), pp. 2809–2823.

[9] H. D. Dixit, S. Pendharkar, M. Beadon, C. Mason, T. Chakravarthy, B. Muthiah,
and S. Sankar. Silent Data Corruptions at Scale.

[10] D. J. Fiala, F. Mueller, C. Engelmann, K. B. Ferreira, R. Brightwell, and R. Riesen.
Detection and Correction of Silent Data Corruption for Large-Scale High-Performance
Computing. 2012. doi: 10.2172/1081941.

47

https://doi.org/10.14529/jsfi140101
https://doi.org/10.1109/IPDPSW.2017.41
https://doi.org/10.2172/1081941

Bibliography

[11] C. Hewitt, P. Bishop, and R. Steiger. A universal modular ACTOR formalism for
artificial intelligence.

[12] S. Hukerikar, P. C. Diniz, and R. F. Lucas. “A case for adaptive redundancy for
HPC resilience.” In: European Conference on Parallel Processing. Springer. 2013,
pp. 690–697.

[13] D. B. Johnson. Recovery in Distributed Systems Using Optimistic Message Logging
and Checkpointing. New York, NY: ACM, 1988. isbn: 0897912772.

[14] Leibniz-Rechenzentrum. CoolMUC-2 documentation. 2.08.2021.

[15] R. J. LeVeque, D. L. George, and M. J. Berger. “Tsunami modelling with adaptively
refined finite volume methods.” In: Acta Numerica 20 (2011), 211–289. doi: 10.
1017/S0962492911000043.

[16] T. G. Mattson, B. Sanders, and B. Massingill. Patterns for parallel programming.
Pearson Education, 2004.

[17] E. Meneses, X. Ni, G. Zheng, C. L. Mendes, and L. V. Kale. “Using Migratable
Objects to Enhance Fault Tolerance Schemes in Supercomputers.” In: IEEE Transac-
tions on Parallel and Distributed Systems 26.7 (2015), pp. 2061–2074. issn: 1045-9219.
doi: 10.1109/TPDS.2014.2342228.

[18] A. Moody, G. Bronevetsky, K. Mohror, and B. R. de Supinski. “Design, Model-
ing, and Evaluation of a Scalable Multi-level Checkpointing System.” In: 2010
ACM/IEEE International Conference for High Performance Computing, Networking,
Storage and Analysis. IEEE, 112010, pp. 1–11. isbn: 978-1-4244-7557-5. doi: 10.
1109/SC.2010.18.

[19] A. Pöppl, S. Baden, and M. Bader. A UPC++ Actor Library and Its Evaluation On a
Shallow Water Proxy Application. Piscataway, NJ: IEEE, 2018. isbn: 9781538655412.

[20] A. Poppl, M. Bader, T. Schwarzer, and M. Glass. “SWE-X10: Simulating Shallow
Water Waves with Lazy Activation of Patches Using Actorx10.” In: 2016 Second
International Workshop on Extreme Scale Programming Models and Middlewar (ESPM2).
IEEE, 112016, pp. 32–39. isbn: 978-1-5090-3858-9. doi: 10.1109/ESPM2.2016.010.

[21] S. Roloff, A. Pöppl, T. Schwarzer, S. Wildermann, M. Bader, M. Glaß, F. Hannig,
and J. Teich. “ActorX10: an actor library for X10.” In: Proceedings of the 6th ACM
SIGPLAN Workshop on X10. Ed. by C. Fohry and O. Tardieu. New York, NY, USA:
ACM, 6022016, pp. 24–29. isbn: 9781450343862. doi: 10.1145/2931028.2931033.

[22] UPC++ v1.0 Programmer’s Guide, Revision 2020.10.0. 9.11.2020.

[23] J. F. Wakerly. “Microcomputer reliability improvement using triple-modular
redundancy.” In: Proceedings of the IEEE 64.6 (1976), pp. 889–895. issn: 0018-9219.
doi: 10.1109/PROC.1976.10239.

48

https://doi.org/10.1017/S0962492911000043
https://doi.org/10.1017/S0962492911000043
https://doi.org/10.1109/TPDS.2014.2342228
https://doi.org/10.1109/SC.2010.18
https://doi.org/10.1109/SC.2010.18
https://doi.org/10.1109/ESPM2.2016.010
https://doi.org/10.1145/2931028.2931033
https://doi.org/10.1109/PROC.1976.10239

A. Dependencies

The following libraries were used in order to build the actor-based replication. The
testing was done on the CoolMUC-2 linux cluster of the Leibniz-Rechenzentrum (LRZ).

• Actorlib and Pond: https://bitbucket.org/apoeppl/actor-upcxx/src/master/

• UPC++ 2021.3.0: https://bitbucket.org/berkeleylab/upcxx/wiki/Home

• Intel C++ Compiler 19.0.5

• Intel MPI 2019.7

• NetCDF 4.7-hdf5

• Metis 5.1.0

• CMake 3.16.5

• Boost 1.75.0

i

B. Scripts

In order to build the library and create submittable scripts for the cluster, a number
of scripts have been used from Actorlib and changed to support newly added vari-
ables. When trying to create the submittable jobscripts for pond, first the pond input
parameters have to be set in set_vars_ f or_jobgeneration. Then, the generator creates
the necessary files and folders. Lastly, the builder script builds pond. The resulting
jobscripts can then be submitted to the cluster via the sbatch command.

#!/bin/bash

#job types generate subfolders for every type
_jobtypes=(plain)
_jobtypes=$(IFS=' '; printf '%s' "${_jobtypes[*]}")
export s_jobtypes=$_jobtypes
#sizes of the total grid SxS
_sizes=(8000)
_sizes=$(IFS=' '; printf '%s' "${_sizes[*]}")
export s_sizes=$_sizes
#an actor will have patchsize SxS
export patchsize=250
#number of cpus per node
export corecountpernode=28
#how many nodes the job will run
_nodecounts=(8)
_nodecounts=$(IFS=' '; printf '%s' "${_nodecounts[*]}")
export s_nodecounts=$_nodecounts
#end times for the simulation
_endtimes=(4)
_endtimes=$(IFS=' '; printf '%s' "${_endtimes[*]}")
export s_endtimes=$_endtimes
#the name of folder to save the work
export workdir=test_group
#the upcxx_install path for cmake, if you have installed somewhere else

then change this↪→

ii

B. Scripts

export UPCXX_INSTALL=~/upcxx-intel-mpp3
#add upcxx path to the path, if you have installed somewhere else then

change it↪→

export PATH=$PATH:~/upcxx-intel-mpp3/bin
_seeds=(15 36 79 178 5972 6529 9231 10492 15637 201392)
_seeds=$(IFS=' '; printf '%s' "${_seeds[*]}")
export seeds=$_seeds

#!/bin/bash

#predefined sizes

#WARNING
this script uses the environment variables set in set_vars_for_jobs.sh

basetime=600
#convert_time does not work for every size, check the generator and the

function for the details↪→

#convert from string to array
IFS=' ' read -r -a jobtypes <<< "$s_jobtypes"
#echo ${jobtypes[*]}
IFS=' ' read -r -a sizes <<< "$s_sizes"
#echo ${sizes[*]}
IFS=' ' read -r -a nodecounts <<< "$s_nodecounts"
#echo ${nodecounts[*]}
IFS=' ' read -r -a endtimes <<< "$s_endtimes"
#echo ${endtimes[*]}
IFS=' ' read -r -a seeds <<< "$seeds"

rm -r -f jobscripts
#create jobscripts
if [-d jobscripts/]
then

echo "jobscripts exists"
else

echo "create jobscripts"
mkdir jobscripts

iii

B. Scripts

chmod -R 775 jobscripts
fi

#check for scratch
if [-z "$SCRATCH"]
then

echo "scratch not set"
SCRATCH=${PWD}

fi

#create ${workdir} in scratch
if [-d ${SCRATCH}/${workdir}]
then

echo "${workdir} in scracth exists"
else

mkdir ${SCRATCH}/${workdir}
chmod -R 775 ${SCRATCH}/${workdir}

fi

cd jobscripts

#convert_time does not work for every size, check the generator and the
function for the details↪→

function convert_time {
if ["$size" = "2000"]
then

limit=$((limit / 16))
fi
if ["$size" = "4000"]
then

limit=$((limit / 4))
fi

if ["$nodecount" = "1"]
then

limit=$((limit * 2))
fi
if ["$nodecount" = "4"]
then

iv

B. Scripts

limit=$((limit / 2))
fi
if ["$nodecount" = "8"]
then

limit=$((limit / 4))
fi
if ["$nodecount" = "16"]
then

limit=$((limit / 8))
fi
if ["$nodecount" = "32"]
then

limit=$((limit / 16))
fi

if ["$patchsize" = "250"]
then

limit=$((limit * 4))
fi

limit=$((limit * endtime + 1800))

hours=$((limit / 3600))
mins=$((limit % 3600))
secs=$((mins % 60))
mins=$((mins / 60))

if [["$hours" -ge "0" && "$hours" -le "9"]]
then

hours=0${hours}
fi
if [["$mins" -ge "0" && "$mins" -le "9"]]
then

mins=0${mins}
fi
if [["$secs" -ge "0" && "$secs" -le "9"]]
then

secs=0${secs}
fi

v

B. Scripts

}

#generate folders for each task
for size in ${sizes[@]}
do

for nodecount in ${nodecounts[@]}
do

for endtime in ${endtimes[@]}
do

for job in ${jobtypes[@]}
do

for seed in ${seeds[@]}
do
str=pond-${job}-${nodecount}-${size}x${size}
-${endtime}-${seed}
if [-d ${str}]
then

#rm -r ${str}
echo "old results for "${str}" exists, did not touch"

else
mkdir ${str}

fi

cd ${str}

scriptname=pond-${job}.sh

#write the modified base script
if [-f "$scriptname"]
then

rm $scriptname
fi

cat <<EOF >$scriptname
#!/bin/bash
#SBATCH -J ${str}
#SBATCH -o ${SCRATCH}/${workdir}/${str}/%x.%j.out
#SBATCH -e ${SCRATCH}/${workdir}/${str}/%x.%j.err
#SBATCH -D ./

vi

B. Scripts

#Notification and type
#SBATCH --mail-type=end,fail,timeout
#SBATCH --mail-user=<e-mail address>
Wall clock limit:
#SBATCH --time=${hours}:${mins}:${secs}
#SBATCH --no-requeue
#Setup of execution environment
#SBATCH --export=NONE
#SBATCH --get-user-env
#SBATCH --clusters=cm2
#SBATCH --partition=cm2_std
#SBATCH --nodes=${nodecount}
#SBATCH --ntasks-per-node=${corecountpernode}

module unload intel-mpi
module load slurm_setup
module load intel
module load intel-mpi/2019-intel
module load netcdf-hdf5-all/4.7_hdf5-1.10-intel19-serial
module load metis/5.1.0-intel19-i64-r64

export UPCXX_INSTALL=~/upcxx-intel
export PATH=\$PATH:~/upcxx-intel/bin
export GASNET_PHYSMEM_MAX='32 GB'
#41 GB is the max number in mpp2 (both _inter and _tiny)

upcxx-run -n ${corecountforjob} -N ${nodecount} -shared-heap 512MB
./pond-${job} -x ${size} -y ${size} -p ${patchsize} -c 10 --scenario
2 -o ${SCRATCH}/${workdir}/${str}/out/out -e ${endtime} -a ${seed}

↪→

↪→

cat > ${SCRATCH}/${workdir}/${str}/finished.txt

EOF
chmod 775 $scriptname
echo "Generated "$scriptname
cd ..

done
done

done

vii

B. Scripts

done
done

cd ..
echo ${pwd}
echo "done generating script folders"

echo "generate folders in scratch"
for size in ${sizes[@]}
do

for nodecount in ${nodecounts[@]}
do

for endtime in ${endtimes[@]}
do

for job in ${jobtypes[@]}
do

for seed in ${seeds[@]}
do
str=pond-${job}-${nodecount}-${size}x${size}
-${endtime}-${seed}
if [-d ${SCRATCH}/${workdir}/${str}]
then

echo "old results for "${SCRATCH}/${workdir}/${str}"
exists, did not touch"↪→

else
mkdir ${SCRATCH}/${workdir}/${str}
mkdir ${SCRATCH}/${workdir}/${str}/out

fi
chmod -R 775 ${SCRATCH}/${workdir}/${str}

done
done

done
done
done

#!/bin/bash

#script for building and copying right executables

viii

B. Scripts

module load boost
module load intel
module load intel-mpi
module load netcdf-hdf5-all
module load metis/5.1.0-intel19-i64-r64
module load cmake/3.16.5

make clean
rm CMakeCache.txt
rm -r CMakeFiles
rm cmake_install.cmake
rm Makefile

export UPCXX_INSTALL=~/upcxx-intel
#JOBTYPES is read as an environment variable, the user has to make sure

that the needed jobtypes are compiled!!!!↪→

#no loop for jobtypes here because every job type will have a different
set of arguments so, copy by yourself↪→

cmake . -DCMAKE_C_COMPILER=mpiicc -DCMAKE_CXX_COMPILER=mpiicpc
-DCMAKE_PREFIX_PATH=${UPCXX_INSTALL} -DENABLE_FILE_OUTPUT=OFF
-DBUILD_RELEASE=ON \

↪→

↪→

-DENABLE_LOGGING=OFF -DENABLE_O3_UPCXX_BACKEND=ON
-DENABLE_PARALLEL_UPCXX_BACKEND=ON -DENABLE_MEMORY_SANITATION=OFF
-DIS_CROSS_COMPILING=OFF \

↪→

↪→

-DPRINT=OFF -DINVASION=OFF -DRANKMIG=OFF -DTIME=OFF -DANALYZE=OFF
-DTRACE=OFF -DMIGRATION=0 -DREPLICATION=ON -DBOTTLENECK=OFF
-DINBALANCE=ON -DERRORMIDDLE=OFF -DERROREDGE=OFF

↪→

↪→

make actorlib -j 16
make pond -j 16
#pond-* should be same as pond-${jobtypes[@]} that is an environment

variable↪→

if [-d jobscripts]
then

echo "jobscripts already exists"
else

echo "no sense if jobscripts are not generated"

ix

B. Scripts

exit
fi

cd jobscripts

#copy executables to alreay created files by the generator.sh
for t in ${jobtypes[@]}
do

for i in pond-${t}-*/
do

echo $i
cp ../pond-${t} "$i"

done
done

cd ..

x

C. Random Seeds

Here, the random seeds used for the 100 error detection tests are listed. For every
random seed, it is noted whether or not an error was inserted into the middle of a
block, if the replication-based error detection reported an error and whether or not the
program crashed.

Random seed Error inserted? SDC detected? Program crashed?
10492 Yes Yes No
15637 Yes Yes No
201392 Yes Yes No
5972 Yes Yes No
79 Yes Yes No
15 Yes Yes No
178 No No No
36 Yes Yes No
6529 Yes Yes No
9231 Yes Yes No
142 No No No
5643 No No No
82930480 Yes Yes No
1563735 No No No
623 Yes Yes No
836479 Yes Yes No
17382 No No No
6321230 Yes Yes No
83721 No No No
18291 No No No
632712 Yes Yes No
8372173 No No No
183722 Yes Yes No
635212 No No No
849327382 No No No

xi

C. Random Seeds

Random seed Error inserted? SDC detected? Program crashed?
2138126 No No No
638291 Yes Yes No
86473284 Yes No No
23712684 Yes Yes No
6426382 Yes Yes No
9123846 No No No
2739123 Yes No No
653821 No No No
9263718 No No No
2819827 Yes Yes No
676342 No No No
9283 No No No
29837 Yes Yes No
7231 No No No
93747 Yes Yes No
3273621 Yes Yes No
73 No No No
94371927 Yes Yes No
4325562 No No No
7312273 No No No
9537 Yes Yes No
45912 No No No
736299237 No No No
98 No No No
4636723 Yes Yes No
78216 No No No
983628 No No No
5487 No No No
7895862 No No No
9837261 No No No
1002 Yes Yes No
634726 Yes Yes No
12371 No No No
637772 No No No
1237919 Yes Yes No
638282 No No No
127399 Yes Yes No
726381 Yes Yes No

xii

C. Random Seeds

Random seed Error inserted? SDC detected? Program crashed?
1372920 No No No
7372828 Yes No No
173128 No No No
738247 Yes Yes No
18737 Yes Yes No
8211 Yes Yes No
1932857 Yes Yes No
828391 Yes Yes No
21327 Yes Yes No
82939 No No No
23042 No No No
83201 No No No
23671 Yes No No
83718 No No No
2617 Yes Yes No
838291 Yes Yes No
281273681 No No No
83928 No No No
31278417 No No No
908290 Yes No No
3204972398 Yes Yes No
91 No No No
3622728 No No No
912387 No No No
3712683 No No No
91299 No No No
382929 No No No
92283 Yes Yes No
3829418 No No No
92321 Yes Yes No
38421 Yes Yes No
938223 No No No
3929891 No No No
9483 No No No
4773 No No No
98879 No No No
632212 No No No

xiii

	Acknowledgments
	Abstract
	Kurzfassung
	Contents
	Introduction
	Related Work
	Background
	UPC++
	Actor Library
	Silent Data Corruption
	Pond

	Replication-based Error Detection and Load Balancing
	Replication
	Message Passing
	Error Detection
	Load Balancing

	Results
	Overhead of Replication
	Error Injection
	Error Injection Framework
	Error Detection

	Replication for Mitigating Dynamic Load Imbalances

	Conclusion and Future Work
	Internal Data Checks
	Error Range
	Double Replication for Error Correction
	Combination with Error Handling
	Alternatives to Multiplexing
	Dynamic Channel Size

	List of Figures
	List of Tables
	Bibliography
	Dependencies
	Scripts
	Random Seeds

