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Abstract—Although great progress has been made in generic
object detection by advanced deep learning techniques, detect-
ing small objects from images is still a difficult and challenging
problem in the field of computer vision due to the limited size,
less appearance, and geometry cues, and the lack of large-scale
datasets of small targets. Improving the performance of small
object detection has a wider significance in many real-world
applications, such as self-driving cars, unmanned aerial vehicles,
and robotics. In this article, the first-ever survey of recent studies
in deep learning-based small object detection is presented. Our
review begins with a brief introduction of the four pillars for
small object detection, including multiscale representation, con-
textual information, super-resolution, and region-proposal. Then,
the collection of state-of-the-art datasets for small object detec-
tion is listed. The performance of different methods on these
datasets is reported later. Moreover, the state-of-the-art small
object detection networks are investigated along with a spe-
cial focus on the differences and modifications to improve the
detection performance comparing to generic object detection
architectures. Finally, several promising directions and tasks for
future work in small object detection are provided. Researchers
can track up-to-date studies on this webpage available at:
https://github.com/tjtum-chenlab/SmallObjectDetectionList.
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I. INTRODUCTION

BJECT detection consists of two subtasks, that is,

localization and classification, indicating that not only
all object instances need to be accurately located in an
image but also their categories should be correctly recog-
nized. As a promising technology related to computer vision,
object detection has been applied to many application scenes,
such as pedestrian detection [1], [2], face detection [3]-[5],
autonomous driving [6]—[8], and robotic vision [9]-[12]. More
and more object detection tasks are successfully implemented,
because of the continuous development of deep learning tech-
niques [13]. Current state-of-the-art detection models, such
as mask R-CNN [14], cascade R-CNN [15], and hybrid task
cascade [16], have achieved great performances on the large
image datasets, such as MS COCO [17], PASCAL VOC [18],
and ImageNet [19].

Before the advent of deep learning techniques, object detec-
tion task has been studied for several decades [20], [21].
Different methods, such as SIFT [22], histograms of oriented
gradient (HOG) [23], SPM [24], DPM [25], and Selective
Search [26], have been proposed by researchers to extract
local handcrafted features. These methods have also achieved
excellent detection performance on specific applications with
a small-scale dataset. For example, HOG descriptor [23]
could extract line features quickly by counting local gradi-
ent information. However, handcrafted features cannot capture
multiple levels of representation for large-scale datasets, such
as MS COCO [17]; therefore, these traditional handcrafted
methods are less robust to intro-class variability due to the
failure of representing the semantics of the data.

The deep convolution neural network (DCNN) [27] was
proposed to autonomously learn features in order to over-
come these drawbacks of traditional handcrafted features; this
method exhibits powerful detection performance on generic
object detection [14], [16], [28]-[31]. However, as a subcat-
egory of object detection, small object detection has been
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Fig. 1.

(b)
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Comparison between small object detection and generic object detection. (a) Common object image from the ImageNet dataset [19]. Target taxi

covers about 34.4% in this figure. (b) Small object image from the Lost and Found dataset [32]. The small target just occupies approximately 0.3% of the

whole image.

PRECISION COMPARISON OF SEVERAL LEADING GENERIC (r)rll;]]sa]cf ]I)ETECTION ALGORITHMS ON THE MS COCO DATASET [17]
Model Backbone Dataset Avg.Precision,loU: Avg.Precision,Area: DOR
0.5:095 0.5 075 | S M L
YOLOV2 [33] DarkNet-19 COCO 2015 test-dev | 21.6 44 192 | 5 224 355 | 305
RetinaNet [34] ResNet-101 COCO 2015 test-dev | 39.1 59.1 423 | 21.8 427 502 | 284
SSD513 [35] ResNet-101 COCO 2015 test-dev | 31.2 504 333 | 102 345 498 | 39.6
DSSD513 [36] Residual-101 COCO 2015 test-dev | 33.2 533 352 | 13 354 511 | 38.1
Faster R-CNN [30] VGG COCO 2015 test-dev | 26.9 443 278 | 83 282 411 | 32.8
FPN [37] ResNet-50 COCO 2014 minival | 33.9 569 - 17.8 377 458 | 28.0
Mask R-CNN [14] ResNet-101 COCO 2015 test-dev | 38.2 60.3 417 | 20.1 41.1 50.2 | 30.1
Double-Head R-CNN [38] | ResNet-101 COCO 2014 minival | 41.9 624 459 | 239 452 558 | 319
Cascade R-CNN [15] ResNet-101 COCO 2015 test-dev | 42.8 62.1 463 | 23.7 455 552 | 315
Hybrid Task Cascade [16] | ResNet-101-FPN | COCO 2015 test-dev | 47.1 639 447 | 22.8 439 546 | 318

grossly neglected. Different from the rapid progress of the
generic object detection, small object detection has not been
addressed very well. This motivates us to provide the first-ever
survey of recent studies in vision-based small object detection.

A. Motivation

A detailed definition of small objects could be illustrated
with different aspects. For example, [17] illustrates that the
length and width pixels of small objects bounding box should
be less than 32 and [39] states that the bounding box of
small object should cover less than 1% of the original image.
Small object detection suffers more difficulties than generic
object detection due to lower image cover rate, fewer appear-
ance cues, and large datasets. A clear description of small
object detection and generic object detection is displayed in
Fig. 1. Moreover, detection results of most good-performing
generic object detectors based on the MS COCO [17] datat-
set could be found in Table I. In order to facilitate the
readers to follow Table I, we explain the metric used by
MS COCO [17] again here. Traditionally, AP is an aver-
aged precision for each class while mAP is the averaged
precision of all AP. However, MS COCO [17] makes no dif-
ference between them. So Avg.Precision,JoU 0.5:0.95 means
the average AP for IoU from 0.5 to 0.95 with a step size
of 0.05. Avg.Precision, IoU 0.5 corresponds to the AP with

IoU = 0.5 and Avg.Precision,JoU 0.75 corresponds to the AP
with ToU = 0.75. Besides, the metric for object size is: small
objects (less than 322), medium objects (from 322 to 962),
and large objects (larger than 96°). In Table I, we also define
an item called degrade of reduction (DOR), to illustrate the
large gap of performance between large object detection and
small object detection. It can be seen that the average precision
(AP) of small objects is much lower comparing to medium
or large objects. Nearly all generic object detectors trained
in this dataset have a poor performance on the small objects
as the number of medium and large objects is far more than
that of small objects. Furthermore, current surveys of deep
learning-based object detection mainly focus on generic object
detectors, as shown in Table II. Therefore, we identify this
work as a timely complement to the object detection commu-
nity. It is noted that our work mainly focuses on nature scenes,
such as traffic road scene, indoor scene [40], etc. The small
objects detection from aerial perspective [41], [42] is not the
main content of our survey.

B. Challenges for Small Object Detection

Compared with a medium and large object, the small object
is more difficult to be detected and located. First, small object
covers fewer pixels, indicating that features used for detection
are insufficient and feature representation is weak. Otherwise,
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TABLE 11
SUMMARY OF RECENT OBJECT DETECTION SURVEYS WHICH ARE
BASED ON DEEP LEARNING AND RGB IMAGES

Survey Title Year | Published
Deep Learning for Generic Object Detection: 2018 | arxiv

A Survey [43]

Ob_]ectA Detection with Deep Learning: 2019 | TNNLS

A Review [44]

Recent progresses on object detection: a brief 2019 MULTIMED
review [45] TOOLS APPL
A Survey of l?eep Learning-Based 2019 | TEEE Access
Object Detection [46]

Object Detection in 20 Years: A Survey [47] 2019 | arxiv

A Survey of the Four Pillars for Small Object

Detection: Multl-scal'e Representatlon,. 2019 | Ours
Contextual Information, Super-resolution,

and Region Proposal

the larger anchor size in the region-proposal stage of generic
object detectors causes small objects to receive less attention or
even be ignored. Second, objects may appear in any position of
input image such as the corner or overlapping area with other
objects due to the smaller size. Besides, it is also difficult to
distinguish small objects from noisy clutter in the background
and accurately locate their boundaries. Third, AP and mean
AP (mAP) that adopt the IoU threshold to determine true pos-
itive (TP) or false positive (FP) value are commonly regarded
as the performance metrics of object detection. However, AP
and mAP may not be suitable for evaluating the performance
of small object detection because a large difference in IoU
value would be caused by even a small shift of bounding box
in the image. Therefore, a novel evaluation metric tailored for
small object detection is absolutely necessary. Fourth, there
are few authoritative datasets for small object detection. There
are several simple datasets for small object detection existing,
facilitating the comparison of different approaches and pro-
viding insight into the development of different approaches.
However, it is not evident how to extrapolate those results
obtained on simple datasets to more complex scenarios.

C. Four Pillars for Small Object Detection

With the development of object detection based on deep
learning, many novel detection networks tailored for small
objects are proposed. In this article, small object detection
methods are mainly classified into four pillars. The basis
for the division of the four pillars is based on the popular
object detection frameworks such as the definition in mmdetec-
tion [48], which divides the detector into several modules, e.g.,
Backbone, Neck, AnchorHead, RolExtractor, and RolHead.
The first two pillars about multiscale representation and con-
textual information belong to Neck component, which make
refinements or reconfigurations on the raw feature map pro-
duced by the Backbone. The region-proposal pillow is mainly
related to AnchorHead component. While the super-resolution
is not exactly a component of the above, which adds two
branch networks, e.g., generator network and discriminator
network on the basis of baseline detectors. Considering that it
has become an independent research direction of small object
detection, we also describe it as a kind of pillar.

Multiscales Representation: On the one hand, detailed
information in shallow conv layers is necessary for object loca-
tion. On the other hand, semantic information in deep conv
layers facilitates object classification a lot. Due to the tiny
size and low resolution of small objects, location details are
gradually lost in high-level feature maps. While most generic
detectors only adopt the output of final layer for detection
tasks, which contains rich segmentation information but lacks
detailed information. Multiscales representation is a strategy of
combining detailed location information from low-level feature
maps and rich semantic information from high-level feature
maps.

Contextual Information: Leveraging the relationship
between an object and its coexisting environment in the
real world, contextual information is another novel method
to improve small object detection accuracy. The medium
and large objects could provide sufficient ROI features in
generic detectors. However, it is much necessary to extract
more additional contextual information as the supplement of
original ROI features because the ROI features extracted from
the small objects are so few.

Super-Resolution: As mentioned above, fine details are
critical for object instance localization. Super-resolution tech-
niques attempt to recover or reconstruct raw low-resolution
images to a higher resolution, which means more details of
small objects could be obtained. For example, the core idea
of GAN is the generator network and discriminator network.
In this adversarial process, the ability of generator to generate
real-like images and the ability of discriminator to distinguish
between real and fake images is constantly improving at the
same time.

Region-Proposal: Region-proposal is a strategy aiming at
designing more suitable anchors for small objects. The anchors
of current leading detectors mainly focus on generic objects,
indicating that the anchor size, shape, and amount used in
the generic detectors could not match well with small objects.
Otherwise, extra noise information will cause a huge compu-
tational cost and reduce the detection accuracy if these anchor
parameters of generic detectors are directly applied to the
small objects.

According to these four pillars, related small object detec-
tion researches are described with more details in our paper,
which is organized as follows. A summary of related small
object detection datasets is provided in Section II. Then,
small object detection methods are expanded specifically in
Section III. Finally, a discussion of several promising direc-
tions is illustrated in Section IV and our conclusion is drawn
in Section V.

II. SMALL OBJECT DETECTION DATASETS

A less bias benchmark is fundamental for deep learning
research. Although some generic object detection datasets,
such as PASCAL VOC and ImageNet, are accessible, there
is no common accepted dataset for small objects. Most
researchers have to perform and evaluate their small object
detection networks on the datasets built by themselves or
extracted from large datasets such as MS COCO. Based on
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TABLE III
INFORMATION FOR SMALL OBJECT DATASETS. SOME EXAMPLE IMAGES ARE SHOWN IN FIG. 2

Dataset Name Total Images  Annotated images Categories Image Size Instances Instances Size(pixels)
Lost and Found [32] 2,104 2,104 37 2,048x1,024 - -

STS [49] 20,000 4000 7 1,280x960 3,488 3x5-263x248
Tsinghua-Tencent 100K [50] | 100,000 100,000 45 2,048x2,048 30,000 80% smaller than 70x70
GTSDB [51] 900 900 43 1,360x800 1,206 16-128(longer edge)
CURE-TSD [52] 1,719,900 1,719,900 14 1,628x1,236 2,206,106 3x7-206x277

Small Object Dataset [53] 4,925 4,925 10 640x480 & 500x300 8,393 16x16-42x42
CURE-OR [54] 1,000,000 1,000,000 6 480x640 - 726x1,292 -

WIDER FACE [55] 32,203 32,203 1 - 393,703 50% 10-50, 43% 50-300
DeepScores [56] 300,000 300,000 123 1,894x2,668 80 millions

different application scenarios and data sources, some high-
quality datasets about small objects are briefly introduced in
the following sections. Detailed information on small object
datasets is collected in Table III.

A. Datasets for Traffic Road Scene

Datasets for traffic road scene are mainly collected by cam-
era fixed in the front of vehicle. These datasets could be
divided into two major categories, including road obstacles
and traffic signs.

Lost and Found [32]: Lost and Found is the first lost-cargo
dataset for detecting small barriers on the road, which are
collected from 13 different street scenarios and 37 different
obstacle types. These selected objects vary in size, distance,
color, and material. Besides, 112 video stereo sequences are
included, corresponding with 2104 annotated frames.

Swedish Traffic Signs (STS) [49]: The STS dataset con-
tains 3488 traffic signs which are captured on highways and
cities from more than 350 km of Swedish roads in this
dataset. It contains more than 20000 images and 20% of
images are labeled for training. The labeled objects contain
sign types, such as pedestrian crossing, designated lane right,
no standing or parking, priority road, give way, 50 kph, and
30 kph. Moreover, explicit visibility status (occluded, blurred,
or visible) and road status are also included in the dataset.

Tsinghua-Tencent 100K [50]: Zhu et al. [50] built the
Tsinghua-Tencent 100K dataset, which may be the largest
and most challenging traffic sign dataset, including annotated
100 000 images in 45 classes and 30 000 traffic sign instances.
All images in this dataset have a high resolution (2048 x 2048),
and 80% of instances occupy less than 0.1% in the whole
images.

GTSDB [51]: German traffic sign detection benchmark
(GTSDB) is the successor of GTSRB [58], [59]. The record-
ing of GTSDB is finished by a Prosilica GC1380CH camera
with automatic exposure control. The images are selected from
sequences recorded near Bochum, Germany, in different sce-
narios, such as urban, rural, and highway during daytime and
dusk. Image samples are shown in Fig 2(e).

CURE-TSD [52]: CURE-TSD datasets consist of real-world
data and synthetic virtual data, in which 49 challenge-free
real-world video sequences are generated by combining 300
frames from BelgiumTs [60] and another 49 synthesized
video sequences are generated with a game development tool
Unreal Engine4. What is more, the Adobe After Effects are

used to emulate weather and vision system challenges at
post-production.

B. Datasets for Generic Small Objects

Small Object Dataset [53]: In [53], a small object
dataset and validated classic R-CNN detection model on this
dataset were first introduced. Some large image datasets such
as MSCOCO also contain categories about small objects.
However, the image number of small objects is fewer
than that of medium and big objects, significantly caus-
ing the nonuniformity of experimental samples. Thus, this
dataset extracted purely ten categories of small objects from
MSCOCO and Scene Understanding database [61], contain-
ing approximately 8393 object instances and 4925 images.
Moreover, different IoU thresholds were set according to
different categories in order to avoid the problem that the
commonly used 0.5 IoU value causes a low recall for small
objects.

CURE-OR [54]: In Challenging Unreal and Real
Environments for Object Recognition (CURE-OR), there are
1000000 images of 100 objects with varying size, color,
and texture. These objects are grouped into six categories as
toys, personal belongings, office supplies, household items,
sports/entertainment items, and health/personal care items.
The image resolution of the dataset includes: 648 x 968,
756 x 1008, 480 x 640, 460 x 816, and 726 x 1292.

C. Datasets for Single Category

WIDER FACE [55]: As shown in Fig. 2(d), WIDER FACE
contains 32203 images, which are extracted from the public
WIDER dataset [62]. Images in WIDER FACE are categorized
into 60 social event classes, which have much more diversities
and are closer to the real-world scenario. Besides, they are also
divided into three subsets, small, medium, and large, based on
the heights of the ground-truth faces. The small/medium/large
subsets contain faces with heights larger than 10/50/300 pixels,
respectively. The small subset accounts for 50% of WIDER
FACE while medium accounts for 43%.

DeepScores [56]: DeepScores [56] focuses on pages of
written music, containing 300 000 pages of digitally rendered
music scores and 123 different symbol classes. This dataset
could execute tasks, such as object classification, semantic
segmentation, and object detection.
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(d) (e)

Fig. 2. Some image samples and annotations from several datasets focusing on small objects. (a) Lost and Found sample [32]. (b) WIDER face sample [55].
(c) Small-vessel sample [57]. (d) Tsinghua-Tencent 100K sample [50]. (¢) GTSDB sample [51]. (f) CURE-OR sample [54].

III. SMALL OBJECT DETECTION NETWORKS

The frameworks of small object detection are mainly
divided into two paradigms, that is, one leverages handcrafted
features and shallow classifiers, detecting objects such as bar-
riers or traffic signs on the road, which usually has poor
performance because of the weak feature extraction method.
The other adopts DCNN to extract image features and then
modifies leading generic object detection networks to reach
a good tradeoff of accuracy and computational cost. A vary
of novel methods have been proposed to improve traditional
small object detection performance significantly. In Fig. 3,
an overview of small object detection research community is
illustrated. Based on the core theories utilized in each method,
the research works of small object detection are classified into
five categories in this work, namely, multiscale representation,
contextual information, super-resolution, region proposal, and
other methods. The top performing models among each cat-
egory are described in detail while other similar models are
going to be stated briefly in order to give a clear explanation
of each category.

A. Multiscale Representation

Weak feature representations of small object are the main
reason for the poor detection performance. After repeated
downsampling operations from CNN and pooling layers, fewer
small object features exist in the final feature map. Moreover,
with the increase of neural network layers, the inherent hierar-
chy generates feature maps with different spatial resolutions.
Specifically, although deeper layers represent larger receptive
field, stronger semantics, higher robustness to deformation,

overlap, and illumination variances, the resolution of feature
maps becomes lower and more detailed information is lost. In
contrast, shallow layers have a smaller receptive field, leading
to a higher resolution, while they lack semantic information.
1) Multiple Feature Maps Fusion: Some prevailing object
detectors, such as R-CNN, Fast R-CNN, Faster R-CNN, and
YOLO, only use the feature map of the last layer to localize
objects and predict confidence scores, as simply displayed in
Fig. 4(a). Due to lack of detailed information, these models
often fail to detect small objects. Then, single-shot multibox
detector (SSD) introduces the pyramidal hierarchy feature to
assemble each feature map from bottom to the top network
layer, as shown in Fig. 4(b), resulting in improving small
object detection. However, much unnecessary representation
noise and high computation complexity could be caused
by taking all-levels features into consideration. To simplify
network and improve detection, some researchers adopt the
deconvolution layer and only choose several important feature
maps that contain most detailed and semantic information.
MDSSD [63]: Deconvolution Fusion Block was proposed
in [63], which adopted skip connection to fuse more contex-
tual features. In this model, three high-level semantic feature
maps from different scales (conv8_2, conv9_2, and conv10_2
from SSD layers) were first introduced into the deconvolu-
tion layers and then sum with three shallow layers by element
(conv3_3, conv4_3, and conv7 from VGG16 layers). It should
be noted that deconvolution layers are applied to upsample the
high-level feature maps into the same resolution with corre-
sponding low layers. SSD is the backbone of the whole model;
the fusion process is finished in the Fusion Block. The basic
idea is depicted in Fig. 4(c). The detection results on MS

Authorized licensed use limited to: Technische Universitaet Muenchen. Downloaded on May 19,2022 at 06:41:19 UTC from IEEE Xplore. Restrictions apply.



CHEN et al.: SURVEY OF FOUR PILLARS FOR SMALL OBJECT DETECTION

941

e MDSSD [63]

e WIDER FACE [55]
e DeepScores [56]

e [ost and Found [32]

o Swedish TrafficSigns [49]

o Tsinghua-Tencent 100K [50]
¢ GTSDB [51]

¢ CURE-TSD [52]

e [108]-[110]

Others
Other methods

Traffic
road object
detection

e gNet and sqNet [99]
o CFPN [100]

Region-
¢ KB-RANN [101]

proposal
=

o Small Object
Dataset [53]
¢ CURE-OR [54]

o DR-CNN [64]
e MR-CNN [65]
o [66]-[71]

multiple
feature

maps fusion
connect

method of

different
feature
maps

e CADNet [72]

Multi-scale
representation

o Inside-Outside Net [73]
o VSSA-NET [74]

e ContextNet [53]

e MFFD [75]

e [76]-[86]

¢PGAN [87]

¢ GAN [88]

¢ SOD-MTGAN [89]
 JCS-Net [90]

Super-
resolution

o SlimNet [102]
e [103]-[107]

¢ SOAM [91]

o SRPN [92]

o SOS-CNN [93]

¢ SDD-MSN [94]

o SNMS [95]

e [57],[91],
[96]-(98]

Fig. 3.
Relative small object datasets are also collected in this survey.

COCO [17] and PASCAL VOC2007 [111] are collected in
Tables IX and X.

DR-CNN [64]: Different from the element-sum strategy
taken by MDSSD, concatenation strategy was adopted in
the deconvolution region-based convolutional neural network
(DR-CNN) to fuse multiscale feature maps for small traf-
fic sign detection. DR-CNN selects conv3, conv4, and conv5
from VGGI16 to form a fusion feature map for followed
RPN and detection. After each deconvolution module, the
L2 normalization layer is also used to ensure the concate-
nated features on the same scale. Another innovation of this
network is about loss function. Hard negative samples bene-
fit the training phase a lot. However, it is hard for common

Four main solutions for small object detection problem: multiscale representation, contextual information, super-resolution, and region-proposal.

cross entropy loss function to distinguish easy positive sam-
ples from hard negative samples. Therefore, the common
cross entropy loss function is replaced with a novel two-
stage classification adaptive loss function in the RPN and
fully connected network in order to fully leverage hard neg-
ative samples for better performance. The result shows that
DR-CNN achieves excellent performance on the MS COCO
and Tsinghua-Tencent 100 K datasets. Detailed information
are collected in Tables IX and XI.

MR-CNN [65]: The multiscale region-based convolutional
neural network (MR-CNN) was proposed for small traffic sign
recognition, where a multiscale deconvolution operation was
used to upsample the features of deeper convolution layers
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(a) Traditional detector uses one top feature map for the detection network. (b) Detectors take all-level feature maps for detection network via

pyramidal feature hierarchy. (c) Basic idea of multiscale feature maps fusion. Both original deep feature map and fusion maps are leveraged. Specifically, the

fusion module usually takes elementwise product or concatenating operation.

that were concatenated with those of the shallow layer directly
to construct fused feature map. Thus, the fused feature map
could generate fewer region proposals and achieve a higher
recall rate. Moreover, the test result indicates that this method
can effectively enhance feature representation and boost the
performance of small traffic sign detection.

Other Simply Introduced Methods: Sun [66] presented
a multiple receptive field and small-object-focusing weakly
supervised segmentation network to enhance the performance
of small objects detection. In [67], an image block architec-
ture was utilized to divide raw images into fixed size blocks;
then, these blocks were sent to the VGG-16 network as input.
Besides, feature map fusion and image pyramid were also
adopted in order to solve the issue that details of small objects
generally lost in deeper layers. Moreover, fused multiscale fea-
ture maps were applied to locate object position and used
information from deep layers to execute object classifica-
tion [68]. A backward feature enhancement network (BFEN)
was designed to transport more semantic information from
high layers to low layers [69]; then, fine-grained features were
concatenated into a spatial layout preserving network (SLPN),
preserving the spatial information of ROI pooling layer, and
achieving better location accuracy. In [70], the feature maps of
third, fourth, and fifth convolution layers were extracted and
combined into a one-dimensional vector for classification and
localization. Besides, an optimizing anchor size method and
fused multilevel feature maps for road garbage detection were
proposed [71]. Inspired by the Inception module, a novel fea-
ture fusion mechanism was putting forward [112]. They chose
YOLOV3 as the basic framework and used multiscale con-
volution kernels to form various size receptive fields, which
can make full use of low-level information. Furthermore,
multiscale feature maps-based ResNet-50 and merged these
feature maps by means of the feature pyramid network were
generated by means of [113].

2) Connection Method of Different Feature Maps:
Although many methods based on multiscale representation

I/ Current Layer \
|
I - iy
I s, BEEEEEEEEE N
Scale- a3 | 6o [ am e [ s 1™ .
: lmnster | BRI EEEEEEEE Conv(4.1) Eajl—»
| 6 o [ o< [ o [ o ] o | |
! Previous Layer o - [E5]-  =  =| |
| ) o L o] o ,
: BEBEE B |
|
L |
I |
| |
| I
l |
\

\ /I
A /
. S -

Fig. 5. Channel-aware deconvolution block [72].

mentioned above have been proposed to improve small object
detection, there is little relevant work focusing on how to fuse
high-level feature map and low-level feature map.

CADNet [72]: The channel-aware deconvolutional network
(CADNet) was proposed to study the relationship of feature
maps in different channels from deeper layers in order to
avoid the simple stacking of feature maps. The recall rate
of small objects could be improved at a low computational
cost through exploiting the correlation between different scale
characteristic. As shown in Fig. 5, the framework is divided
into three steps, including the scale transfer layer, convolution
layer, and elementwise-sum module. Particularly, the scale-
transfer layer reorganizes four pixels of each four channels
into the same position on a two-dimensional plane in order to
obtain the location details and increase the resolution of the
feature map. Then, more semantic information of the feature
map is exploited by a convolution layer with a 4 x 4 kernel
size; feature maps with the previous layer are connected by
the elementwise method. Thus, the fusion layer contains both
details in the low-level layer and semantic information in the
high-level layer.
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TABLE IV
SUMMARY OF MULTISCALES REPRESENTATION-BASED METHODS

Model | Fusion method

[63] deconvolution layer + skip connections + element-wise sum
[64] deconvolution layer + concatenating

[65] deconvolution layer + concatenating

[67] bilinear upsampling + element-wise max

[68] maxpooling on low-level features + element-wise sum

[69] deconvolution layer + element-wise sum

[70] L2 normalized on selected feature maps + concatenating
[71] bilinear upsampling + concatenating

[72] Channel-Aware deconvolution

[112] Inception [114] -like convolution kernel on low-level features
[113] upsample(2x) + element-wise sum (FPN)

In general, multifeature map fusion helps to capture
detailed information and rich semantic information, facilitating
object location and classification, respectively. However, many
multiscale representation methods increase the computational
burden while improving the detection performance. Moreover,
redundant information fusion design may lead to background
noise, resulting in performance degradation. In Table IV, the
fusion methods of primary models mentioned in this section
are described.

B. Contextual Information

Since small objects only occupy a small portion of the
image, the information that be directly obtained from fine-
grained local areas is greatly limited. Generic object detectors
usually ignore many contextual features outside those local
regions. It is well known that every object always exists in
particular environments or coexists with other objects. Then,
some detection methods based on contextual information were
proposed to leverage the relationship between small objects
and other objects or background. Oliva and Torralba [115]
illustrated that the around region of the small object could pro-
vide useful contextual information to help detect target object.
Besides, the experimental results in [116] also demonstrate that
detection accuracy could be significantly improved by adding
a special context module. Next, several important network
models using contextual information are described in detail.

ContextNet [53]: Augmented R-CNN [53] could be consid-
ered as the first detector focusing on small object detection. In
this work, a novel region proposal network (RPN) is proposed
to encode the context information around a small object pro-
posal. First, according to the size of small objects, the RPN
anchor size is scaled from the original 1282, 2562, 5122
pixel® to 162, 40%, 100 pixel?> and small object proposal is
extracted in conv4_3 feature map rather than the conv5_3 of
VGGI16. Second, a ContextNet module consisting of three
subnetworks is designed to obtain the context information
around the proposal object, as shown in Fig. 6. The same
two front-end subnetworks are composed of a few convo-
Iutional layers followed by one fully connected layers; the
back-end subnetworks consists of two fully connected lay-
ers. The proposal region extracted by a modified RPN and a
larger context region with the same center point with proposal
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region is passed into the two front-end networks, respectively.
Meanwhile, two 4096-D feature vectors obtained from front-
end networks are concatenated before they are inputted into
the back-end network. The experimental results show that
this augmented R-CNN improves the mAP of small object
detection by 29.8% over the original R-CNN model.

Inside—Outside Net [73]: Spatial recurrent neural networks
(RNNSs) are adopted in an Inside—Outside Net (ION) [73] to
search for contextual information outside the target region;
then, skip pooling is taken to obtain multilevel feature maps
inside. Two consecutive four-directional spatial RNN units are
employed to move through each column of the image. This
model concatenates multiple scales and context information
for detection. In the ION method, the context feature map
is generated by mentioned IRNN modules at the top of the
network. It is noted that IRNN is composed of rectified linear
units (RELUs), which is initialized by Le et al. [117]. Besides,
four copies of the conv5 layer of original VGG16 are taken as
input of first four-directional RNN (left-to-right, right-to-left,
top-to-bottom, and bottom-to-up) by a 1 x 1 convolution layer;
then, the output of each direction is concatenated as input to
next IRNN unit. Finally, context features are obtained.

VSSA-NET [74]: In [74], a multiresolution feature fusion
network exploiting deconvolution layers with skip connecting
and a vertical spatial sequence attention module was designed
for traffic signs detection. This network is mainly divided into
two stages. The first stage is a multiscale feature extracting
module, which forms multiresolution feature maps through
Mobile Net [118] and deconvolution layers. The second stage
is constructing a vertical spatial sequence attention module.
Particularly, each column of three feature maps is regarded as
spatial sequence in order to fully exploit context information.
The traditional encoder—decoder model based on the LSTM
network is modified by introducing the attention mechanism at
the decoding stage, which could encode the contextual feature
disregarding the noise.

MFFD [75]: With the improvement of detection accuracy,
the deeper detection network means high computation costs.
A kind of modular lightweight network model that is called
modular feature fusion detector (MFFD) was proposed in [75];
it not only has a great performance on small object detec-
tion but also could be embedded into the resource limited
equipment such as advanced assistance systems (ADASs). Two
novel modules are designed in this network. Among them,
the front module uses small size filters in convolution layers
to reduce information loss while the Tinier module changes
the number of input channels with pointwise convolution lay-
ers (1 x 1 convolution) before entering in the convolution
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