IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 22, NO. 12, DECEMBER 2021

7699

Pseudo-Image and Sparse Points: Vehicle Detection

With 2D LiDAR Revisited by Deep
Learning-Based Methods

Guang Chen™', Member, IEEE, Fa Wang“, Sanqing Qu, Kai Chen, Junwei Yu,

Xiangyong Liu™, Lu Xiong

Abstract—Detecting and locating surrounding vehicles
robustly and efficiently are essential capabilities for autonomous
vehicles. Existing solutions often rely on vision-based methods
or 3D LiDAR-based methods. These methods are either too
expensive in both sensor pricing (3D LiDAR) and computation
(camera and 3D LiDAR) or less robust in resisting harsh
environment changes (camera). In this work, we revisit the
LiDAR based approaches for vehicle detection with a less
expensive 2D LiDAR by utilizing modern deep learning
approaches. We aim at filling in the gap as few previous works
conclude an efficient and robust vehicle detection solution in a
deep learning way in 2D. To this end, we propose a learning
based method with the input of pseudo-images, named Cascade
Pyramid Region Proposal Convolution Neural Network (Cascade
Pyramid RCNN), and a hybrid learning method with the input
of sparse points, named Hybrid Resnet Lite. Experiments are
conducted with our newly 2D LiDAR vehicle dataset recorded
in complex traffic environments. Results demonstrate that the
Cascade Pyramid RCNN outperforms state-of-the-art methods
in accuracy while the proposed Hybrid Resnet Lite provides
superior performance of the speed and lightweight model by
hybridizing learning based and non-learning based modules.
As few previous works conclude an efficient and robust vehicle
detection solution with 2D LiDAR, our research fills in this gap
and illustrates that even with limited sensing source from a 2D
LiDAR, detecting obstacles like vehicles efficiently and robustly
is still achievable.

Index Terms— Vehicle detection, 2D LiDAR, autonomous
driving, deep learning, intelligent transportation system.

Manuscript received May 15, 2019; revised October 19, 2019 and
May 2, 2020; accepted June 26, 2020. Date of publication July 29, 2020;
date of current version November 29, 2021. This work was supported in part
by the National Natural Science Foundation of China under Grant 61906138,
in part by the State Key Laboratory of Advanced Design and Manufacturing
for Vehicle Body Open Project under Grant 31815005, in part by the European
Union’s Horizon 2020 Framework Program for Research and Innovation
(Human Brain Project SGA3) under Grant 945539, and in part by the Shanghai
AI Innovation Development Program 2018. The Associate Editor for this
article was J. M. Alvarez. (Guang Chen and Fa Wang contributed equally
to this work.) (Corresponding author: Guang Chen.)

Guang Chen is with the School of Automotive Studies, Tongji University,
Shanghai 200092, China, also with the State Key Laboratory of Advanced
Design and Manufacturing for Vehicle Body, Changsha 410082, China, and
also with the Department of Informatics, Technical University of Munich,
80333 Munich, Germany (e-mail: guangchen@tongji.edu.cn).

Fa Wang, Sanging Qu, Kai Chen, Junwei Yu, Xiangyong Liu, and Lu
Xiong are with the School of Automotive Studies, Tongji University, Shanghai
200092, China.

Alois Knoll is with the Department of Informatics, Technical University of
Munich, 80333 Munich, Germany.

Digital Object Identifier 10.1109/T1TS.2020.3007631

, and Alois Knoll

, Senior Member, IEEE

I. INTRODUCTION

EHICLE detection is one of the most crucial tasks in

many autonomous mobile applications, such as driver-
less cars, auto-parking robots, forward collision warning, and
other ADAS functionalities. Since AlexNet [1], inspired by
cognitive science [2], [3], deep learning has made great
progress in object recognition, detection and semantic segmen-
tation [4]-[8]. Currently, many systems and methods based
on multiple laser beam sensors or visual sensors have been
developed for vehicle and obstacle detection [9]-[12]. How-
ever, due to the considerable cost of a multi-layer LiDAR and
the inaccuracy in distance measuring of vision sensors, it still
remains a demand for more accessible and robust methods
which are based on cheaper and more compact sized LiDARs
with minimum laser beams.

The LiDAR systems usually provide data at a refresh rate
of 10Hz to 50Hz and can measure up to a range of 50m to
120m. The range data is considered the most accurate mea-
surement of distance among existing sensors. A 2D LiDAR
sensor with two-dimensional laser beam is less expensive
both in terms of purchasing price and computation capability
requirements. Especially when considering that a widely used
typical 3D LiDAR, Velodyne HDL-64E, alone produces up
to 75MB point cloud data every second and still need to be
processed in real time, which would be a heavy burden for on-
board systems and almost impossible for most of embedded
systems.

In addition to that, even the most high-class and cutting-
edge 3D LiDAR alone can not cover the entire surrounding
area, which means there must be critical blind spots near
the ego-vehicle that require supplementary sensory while still
with accurate ranging. In particular, radars or ultrasonic radars
produce inaccurate measurements that would downgrade the
overall quality of fusion decision making and may either
cause unpredictable movements or false alarms. Therefore,
that is yet another place where 2D LiDARs could take over
at manageable costs.

Meanwhile in vision based perception, as mentioned before,
target distance estimation from a passive sensor like a monoc-
ular or binocular relies heavily on sensor calibration and
environment illumination, which makes it less accurate and
robust. On the other hand, active types like a kinect RGB-D
is very insufficient in detecting range.

1558-0016 © 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Technische Universitaet Muenchen. Downloaded on May 19,2022 at 06:36:42 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-7416-592X
https://orcid.org/0000-0003-0107-8603
https://orcid.org/0000-0002-1673-2658
https://orcid.org/0000-0003-1607-2837
https://orcid.org/0000-0003-4840-076X

7700

Point Cloud

v ¥
Cascade Pyramid RCNN Hybrid Resnet Lite

Pseudo-Image

Encoder Regi
egion .
9 Points
Proposal
Encoder
Generator

Backbone Extractor

; T

Detection Head

Detection Module

Fig. 1. The framework of proposed methods, Cascade Pyramid RCNN and
Hybrid ResNet Lite. The former converts point clouds into encoded pseudo-
images and learns features from cascade pyramids, while the latter directly
proposes regions of interest (Rols) using a non-learning algorithm before a
light network performing the detection.

To address the above challenges from 3D LiDAR based
and vision based methods, we revisit the vehicle detection
problem with a less expensive 2D LiDAR by utilizing modern
deep learning approaches. We aim at filling in the gap as
few previous work concludes an efficient and robust vehicle
detection solution in a deep learning way in 2D. To this end,
we propose a learning based method with input of pseudo-
images, named Cascade Pyramid RCNN, and a hybrid learning
method with input of sparse points, named Hybrid Resnet Lite.
The framework is illustrated in Fig 1.

The Cascade Pyramid RCNN is constructed based on
fully end-to-end convolution network that takes in only 2D
LiDAR frames. The network mainly consists of three major
modules, the pseudo-image encoder, backbone extractor and
the detection head. The first module encodes point clouds
into unified tensors, while the other two form and learn
across cascade feature map pyramids, fusing cues of targets
of various sparseness and scales. The Hybrid Resnet Lite
directly processes the data collected from 2D-LiDAR in forms
of sparse points instead of pseudo-images. Before the detection
module conducts the prediction, each point is re-encoded, then
a non-learning algorithm proposes Rols from these re-encoded
sparse points.

In summary, we fill in the gap as few previous work
concludes an efficient and robust vehicle detection solution
in a deep learning way in 2D. Our main contribution lies in:

o By addressing the challenges of 3D LiDAR based and
vision based methods, we propose an alternative for
robust and efficient vehicle detection method based on
less expensive 2D LiDAR.

o We revisit the 2D LiDAR based vehicle detection by
developing two modern deep learning based methods: one
focuses on performance by constructing cascade pyramid
architectures and the other pursues speed and light weight
by hybridizing learning based and non-learning based
modules.

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 22, NO. 12, DECEMBER 2021

o To the best of our knowledge, we build the first dataset
dedicated to vehicle detection in 2D range data for
learning based methods. Our proposed Cascade Pyra-
mid RCNN outperforms existing methods using the new
dataset.!

II. RELATED WORK
A. 2D LiDAR Based Detection

Despite the advent of 3D LiDAR sensors comes with richer
perception information in three-dimensional space, horizon-
tally mounted 2D laser scanners are still a very common
part of sensory setups on mobile robot systems. There have
been several research works trying to enhance the performance
based on that. Present methods can be mainly divided into
two categories. One is the conventional hand-crafted feature
extraction from clustering with later machine learning tech-
niques to do the classification and regression. Some focus
on human detection and localization [13]-[16]. While some
others seek to find solutions in detecting vehicles [17]-[23].
Among these, some pre-designed heuristics can be the cues
to look for, like the geometric shape of legs, L-shape of cars
or numerical value of laser points’ medians or means. But
such pre-designed-by-hand features can be easily obscured and
confusing in many real-world scenarios due to occlusions or
field of view limitations.

The other one is the new-fashioned end-to-end deep learning
methods which can learn the optimal features from a large
amount of well-annotated data and output targets positions
without human intervene. Some works on detecting surround-
ing humans or wheelchairs based on convolutional networks
have been proposed [24]-[26]. The basic neural network
architectures are largely similar with those in vision perception
uses [27], [28]. Though this paradigm requires a larger amount
of data with diversity, the learned features are shown to be
more effective and more robust in such tasks. Note that no
previous deep learning method aiming at vehicle detection
with 2D LiDARs only, partly because of the field of view
limitation of 2D LiDARs and the rise of 3D LiDARs such
as Velodyne HDL-64E. However, in particular scenarios, 2D
LiDARs still hold their places. For example, in an auto-parking
scenario, the parking robot needs range measurement from
multiple directions and thus unrealistic to be equipped with
more beams but way more expensive 3D LiDARs in every
direction, especially considering mass production. In addition
to that, even the most high-class 3D LiDAR alone can not
cover the whole surrounding area, which means there must be
blind spots that require supplementary sensory while still with
accurate ranging (not like radars or ultrasonic radars which
produce inaccurate measurements that would downgrade the
quality of fusion decision making and may either cause
unpredictable danger or false alarms), and that’s where 2D
LiDARs could take over at manageable costs.

B. 3D LiDAR Based Detection

With the difficulty of obtaining enough various and well-
annotated point cloud data and dealing with data vectorizedity,

1 https://github.com/ispc-lab/2DLiDAR- VehicleDetection

Authorized licensed use limited to: Technische Universitaet Muenchen. Downloaded on May 19,2022 at 06:36:42 UTC from IEEE Xplore. Restrictions apply.

CHEN et al.: PSEUDO-IMAGE AND SPARSE POINTS: VEHICLE DETECTION WITH 2D LIDAR REVISITED BY DEEP LEARNING

Velodyne
HDL-64E

LMS 511

(a) (b)

Fig. 2.

7701

©

(a) Data acquisition platform: the autonomous driving platform 7iEV with a 3D LiDAR on the car’s top and 2D LiDAR in the front. (b)-(c) The

first row shows 3d and 2d point clouds where white points are from 2D LiDAR and colored points from 3D LiDAR representing different intensity. Birds

eye views of corresponding 2D data are in the second row.

object detection in 3-dimensional point cloud is significantly
more complicated than those within a 2D plane. Intuitionally,
3D convolutional network is the most straight forward way
to be deployed in detecting architectures [29]-[31]. But 3D
convolution is way slower and memory consuming, thus less
state-of-the-art models are developed based on that.

The mainstream methods mainly convert the 3D point cloud
into 2D images by projecting into birds-eye view plane or front
view plane [32]-[34], where each pixel of the projected image
encodes the information of points data in their corresponding
grids. Then the converted pseudo-image can be processed
following 2D image procedures. Some of these take in just
point cloud [35], [36], while some others utilize fusion method
from vision [37]-[39].

Recently, as Pointnet [40], [41] was proposed and proved
to be effective in extracting features directly from raw
point cloud, several models have been developed based
on that [41]-[44], while the most successful ones among
these methods still somehow convert the point cloud into a
pseudo-image [45], [46], which is a dense and unified tensor
compared with sparse and unordered points, and then proceed
with standard 2D image detection architectures. During these
conversions, learned features are, not surprisingly, showing
better performance over fixed handcrafted ones.

However, as 2D laser scan points do not have such data
vectorizedity to encode in a grid, usually with only a few
hundred points in a grid, converting raw data to a pseudo-
image is more straightforward.

III. DATA ACQUISITION
A. System Setup

Our data collecting platform is a refitted electric vehicle
in Fig 2 that is capable of fully autonomous driving named
Tongji intelligent EV, i.e., TiIEV [47]. TiEV is equipped with
several types of sensors. Among these, a Sick LMS511 2D
laser scanner is installed to cover the front blind spot left by
a multi-beam HDL64 on the car’s top. A differential global
positioning system (DGPS) and an inertial measurement

unit (IMU) system which consist of Novatel simpak6 receiver
and Oxts RT2000 GNSS provide accurate ego-motion and
global localization. All sensors have been carefully calibrated
and systemically integrated.

The LMSS511 laser scanner is mounted at approximately
18cm above the ground plane in front of TiEV’s car body,
with a camera behind the windshield and a Velodyne HDL-
64E multibeam LiDAR on the car’s top. Data from the GNSS
and the IMU can be used for ego-motion compensation. The
2D scanner scans at 50Hz with a span of 190° at an angle
resolution of 0.48°, totaling 391 measurements per scan with
ten echoes. Scans start from the rightmost end to the left.

B. Dataset

1) Data Format: We use the Robot Operating Sys-
tem (ROS) to communicate between sensors and IPC (Indus-
trial Personal Computer) and therefore ROS bags to record
data. Point cloud data are given in the format of rosbag
replays. Each bag file contains header topic of timestamps and
diagnostic info, 3D point cloud from a Velodyne 64E-S2 as
topic velodyne_points, 2D laser scan points from a LMS-511-
10100PRO as topic sick_scan, ego-motion and localization
info from Oxts RT2000 as topics imu and GPS, also the coor-
dinates transformations between sensors and vehicle base_link
as tf topics. The total number of bags is 31.

2) Recorded Scenes: We gather data from 9 different sce-
narios in 31 situation cases as shown in Fig 3 Fig 4 and
Fig 5. Each case is recorded in one rosbag file. Various driving
scenarios are taken in, including natural and artificial scenes
and are mainly captured from 9 types of scenes, with about a
total span of 1466.3 seconds, size of 132395.2 MB and msgs
number of 1312034 as in Table I. These scenes are:

a) Static scenes: Static scenes are mainly collected from
off-road parked cars around the campus site. Parking lots,
underground parking garage, roadsides, building front yard
and deserted stations with cars of different models and parked
in unified or arbitrary heading directions. The data collecting
vehicle passes along at different distances. To add to the

Authorized licensed use limited to: Technische Universitaet Muenchen. Downloaded on May 19,2022 at 06:36:42 UTC from IEEE Xplore. Restrictions apply.

7702

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 22, NO. 12, DECEMBER 2021

(a) (®)

Fig. 3.

(c) (@)

Examples of data collecting Scenes. (a) and (d) are campus road scenes, (b) is country road, (c) is underground garage. Video frames (first row) are

from a front camera recorder for annotation purpose, 2D point cloud in light blue with annotations of yellow bounding boxes are shown in birds eye view

(second row).

25 .
20
E 151
[
g
=
i
w
o 10
g + *
2
=
5
+
0-
+
-20 -10 0 10 20 30
Side Distance (m)
Fig. 4. Relative position distribution of targets’ center points. Each blue

cross represents a target observed from the sensor. The yellow triangle is the
observing sensor.

103 4
©
2 107 4
£
5
4
b
[7)
=
&
10! §
10° y ; T r ; T ‘
-150 -100 50 0 50 100 150
Heading (degree)
Fig. 5. Heading angle distribution of targets relative to the ego-vehicle’s

heading. Cars with the same heading of the ego-vehicle (0°) outnumber others.

variety, occlusions like columns, trees, walls, pedestrians or
other cars, etc. are all recorded to reflect the realness in the
environment.

b) Dynamic scenes: Dynamic scenes are mainly about
real road driving scenarios, including campus roads, express-
ways, country roads, and city roads. There are intersections,

bends, ramps, slopes. In real traffic, we record situations like
counter car flow, making turnings, turning around and waiting
for traffic lights. Occlusions involve isolation strips, bushes,
and other barriers appeared along the road.

3) Annotation: We annotate every five frames in a frame
batch per second, which originally consists of 50 frames,
i.e. 10% of total frames are annotated. By doing so, we are
still able to cover the whole dataset’s information. In total,
we annotated 10522 frames of lidar scans. And about half
of them, 4240 annotated frames are with foreground targets.
The average annotation box size is 1.3m in width, 2.4m in
length. We utilized an under-development open sourced point
cloud annotator based on ROS and RVIZ. The process is as
follow: The data are first down-sampled to 5 Hz to keep
synchronization of different data sources, then converted into
.pcd format files for hand labeling according to the point
cloud replays in RVIZ. The final annotations are given in
plain text files each corresponds to its frame file, and each
row [C,0,l,w,h,xc,yc,zc,0,a] stands for a visible target box
with its class C, occlusion i, size in length, width, height,
center coordinates of xc, yc, zc, target directions 6, and target
heading direction «. To utilize the annotation for higher time
resolution, interpolation can be further implemented because
adjacent frames are only with minor changes.

IV. METHODS

We propose two different methods based on deep learning
techniques. Cascade Pyramid RCNN focuses more on perfor-
mance while still maintains real time capability. Hybrid Resnet
Lite pursues faster speed and lighter weight.

A. Cascade Pyramid RCNN

Targets in a 2d point cloud frame can be very sparse in
space and various in scales. To this end, we propose Cascade
Pyramid RCNN which utilizes a two-stage Region proposal
Convolution Neural Network (RCNN) [48] with stacked fea-
ture map structured as in Fig. 6, namely cascade pyramids.
Network architecture and pipeline are illustrated in Fig. 7.

Authorized licensed use limited to: Technische Universitaet Muenchen. Downloaded on May 19,2022 at 06:36:42 UTC from IEEE Xplore. Restrictions apply.

CHEN et al.: PSEUDO-IMAGE AND SPARSE POINTS: VEHICLE DETECTION WITH 2D LIDAR REVISITED BY DEEP LEARNING

7703

TABLE I
DATASET OVERVIEW

ROSbag replay number Scenario types Total Duration (s)

Average Duration (s)

Annotated Frames Foreground Frames

31 9 1466.3

473 10522 4240

(@ / —

(b)

© § =

Fig. 6. Cascade Pyramid Disassembled. (a) Faster RCNN, (b) and (c) are
RCNNs with different feature map pyramids added to the pipelines. (b) and
(c) both are intermediate states in the tear-down comparison between our
proposed model and normal Faster-RCNN. Compared with (c), (b) structure
lacks the third pyramid.

1) Point Cloud to Pseudo-Image: First, we project points in
every frame onto the ground plane with a span of 33.33 meters
and grid resolution of 5.55 cm. Grids with no point will be
applied with zero paddings. Next, each grid is encoded by the
points coordinates x, y and distance to view point d where d =
V/x24+y? as its RGB channel values. It will then be enhanced
by its eight neighbors with bi-linear interpolation. The frames
are later normalized and augmented by shuffling, and random
flipping. After this process, the sparse, unordered and illy
shaped point clouds are transformed into CNN-friendly unified
and dense tensors, and therefore pseudo-images.

2) Feature Map Extractor: As shown in the left part of
Fig.7, pseudo images are extracted to form feature map
pyramids. Through these pyramids, regions of interest (Rols)
are proposed like in [5] by learning from offsets and errors
between proposal boxes and matched ground truths. These Rol
box proposals are then sent to next module.

To be more specific, in the first feature map pyramid
structure, We use a residual network of 50 layers like in [6]
as the backbone feature extractor over pseudo-images. The
process is as follow. Through every couple of conv layers,
the pseudo-image is down-sampled in size, and gradually
extended in channels to reach 256. Five specific sized feature
maps among them are collected together, forming a five-layer
top-down feature map pyramid at increasingly small spatial
resolution.

The second feature map pyramid is constructed reversely.
The second last feature map is then passed through another
conv layer before upsampled three times to build up this four-
layer feature map pyramid. Note that at each up-sampled layer,
the feature map is added by the corresponding feature map
from the previous pyramid.

And the third pyramid composes of feature maps from the
previous two. The second pyramid passes through conv layer
in each level, providing four levels of feature maps. The last
and the smallest feature map is from the first pyramid through
another conv layer.

In this way, cues of different scale features can be better
combined, for later, in the third pyramid, anchor boxes will
be generated simultaneously and independently within each
layer, capturing potential targets of different sizes and scales.
Anchors that are matched successfully with ground truths will
guide the network to produce better-fitted proposals boxes
by learning from their offsets and errors in binary classifi-
cation, box regression and box orientation. Proposals are then
concatenated together, Non-Maximum Suppressed (NMS) [4],
and re-organized by randomly sampling to keep foreground
background balance in ratio.

3) Detection Head: The fourth pyramid structure is used in
Rol detection head. Each proposal box cuts out its Rol feature
map from the second pyramid, together forming yet another
four-layers pyramid with smaller sizes. Rol align [7] is then
conducted to further downsample the feature maps in different
layers to a same size of 7 x 7. Notably, because during Rol
head detection, the variation in target scales is less significant
compared with those in the last module, proposals are assumed
to already approximate the scale of their corresponding targets,
only four levels of feature maps are used. Final detection
of every target proceeds upon the aggregated Rols. Fully
connected layers flatten the last feature map and output the
vector encoding desired results. The output will be overlaid
back onto the original pseudo-image, and NMS-ed before final
losses of classification, box regression, and orientation can be
calculated and backpropagated.

4) Vectorized Angle Representation: As previous works
in 2d LiDAR detection using deep learning usually did not
achieve regression of target headings, we also demonstrate that
the network is capable of regressing relatively accurate target
heading.

Vectorized angle representation is introduced to overcome
the mathematical singularity of regressing single angular value
when estimating heading directions. If we define the direction
angle value ~[-pi, pi], a difference of around 2pi in angle
would be falsely considered the largest in loss calculation and
therefore lead to confusing gradient descent during learning,
pushing the network away from potential optimum. As a
result, this truncated value can confuse the network and cause
unstable learning process.

To get rid of that, regression of two values representing
an angle vector in its Cartesian coordinates instead of a
single radian, i.e., one for the vector’s projection on X axis
and another on y axis would naturally avoid any truncation
or singularity because they can be regarded as continuous

Authorized licensed use limited to: Technische Universitaet Muenchen. Downloaded on May 19,2022 at 06:36:42 UTC from IEEE Xplore. Restrictions apply.

7704

Point Cloud

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 22, NO. 12, DECEMBER 2021

Predictions

Pseudo-Image Backbone Detection
Encoder Extractor Head
ROI Align
A R ROls
(CHW Generate Anchors
- Conv
Conv
(256,H/4,W/4) (256.H/A4W/4) " Upsample ,.Conv (3N,H/4,W/4)
Conv.
(256,H/8.W/8) 256,H/8 W/B)I Nlipsample ..., (3NH/BW/8) Add FC F
(256,H/16,W/16) e SONY" v (256 H/ABW/IB)| Upsample (3N,H/16,W/16)
oy ——— . Proposal boxes (256,7.7)
conv
- 204 2048,)
200
Cut Out 7.7
(b) (©) @

Fig. 7.

Cascade Pyramid RCNN Network Architecture and Pipeline. Pseudo-image encoder first converts point cloud into a 3-dim tensor. Then backbone

network extracts a feature map pyramid by convolution (a) and reversely constructs an upsampled pyramid (b) where on each level it is added by the
corresponding feature map from (a). And the third pyramid (c) composes of feature maps from the previous two, with (b) passes through conv layer on each
level, providing four levels of feature maps, and the last feature map is from (a) through another conv layer. Anchor boxes are generated within each layer
in (c). Detection head collects valid proposal boxes to cut out and align Rol feature maps as (d). Orange tensors are the conv-ed sums of feature maps, blue
tensors stand for upsampled sums of feature maps. The green tensor is the last feature map just before flattened into vectors. Three extra fully connected
layers (FC) following the last vector estimate classification, location and orientation respectively, which are not shown here. Best viewed in color.

(@)

Fig. 8. Cascade Pyramid RCNN feature maps visualized. (a) original input
with one annotated car at the top right. (b) feature maps of five scale levels
from output of the backbone. As shown above, even though the input point
clouds are basically sparse and hollow, the feature maps it learned are densified
spontaneously. The network has learned to infer the densified point cloud
clusters out of the original corner-and-edges.

coordinates on a unit circle.

A0y = Aradius (tx - Sin@

Aay = Aradius (ty - COS@ (D
where A,qq4ius 18 the scaling radius of the unit circle in angle
vector’s Cartesian coordinates, A, and A0, are the vector’s
projection on x axis and on y axis of a heading error. 7, and f,

are the vector’s projection on x axis and on y axis of predicted
heading outputs while 6 stands for target heading in radian.

5) Implementation Details:

a) Data Augmentation: To enrich the diversity and fur-
ther exploit the gathered data, we conduct several data aug-
mentations: Pseudo-image normalization: The pseudo images
are then subtracted by these means along each channel
and divided by the standard deviations. and converted to
BGR255 format for better compatibility with caffe pre-trained
weights.

Object Noise: The noise factors are drawn from uniform
distributions.

Global Rotation and Scaling to the whole point cloud and
all ground-truth boxes: Each ground truth box and the point
cloud are randomly transformed.

b) Network Settings: The network uses an x-y grid
of 0.055 m, making the resolution of input pseudo image
600 x 600. The x, y range is [(—3.33, 30), (—33.33, 33.33)]
meters respectively.

Anchor generation and matching strategy are as follow:
Each anchor is generated by width, length, center point, and
orientation. The anchors in each feature map pyramid layer
have sizes of (4,8,16,32,64) in pixels, strides of (8,16,32,64),
and aspect ratios of (0.5,1.0,2.0). Re-sampling uses positive
and negative ratios of 1:1 in RPN and 1:3 in Rol head. Anchors
are matched to ground truth using the axis-aligned Intersec-
tion over Union (IoU) with gt’s minimum bounding squares.
A positive match is either the highest with a ground truth or
above the positive matching threshold, while a negative match
is below the negative threshold. Anchors that lie between are
ignored in the loss. The threshold is 0.95/0.3 in RPN stage,

Authorized licensed use limited to: Technische Universitaet Muenchen. Downloaded on May 19,2022 at 06:36:42 UTC from IEEE Xplore. Restrictions apply.

CHEN et al.: PSEUDO-IMAGE AND SPARSE POINTS: VEHICLE DETECTION WITH 2D LIDAR REVISITED BY DEEP LEARNING

0.5/0.5 in Rol head. At inference time we apply axis aligned
non-maximum suppression (NMS) with an overlap threshold
of 0.3 IOU in RPN and 0.7 in Rol head. This provides similar
performance compared with rotational NMS but is much faster.
The proposed network is trained using stochastic gradient
descent (SGD) with momentum. The optimizer runs on 2 GTX
1080 Ti GPU with a total of 8 frames per minibatch. Models
are trained for 100 epochs at maximum. The initial learning
rate is 0.0005, with an exponential decay factor of 0.8 and
a decay every 15 epochs. A weight decay regularization
of 0.0005 and a momentum beta value of 0.9 are used.
Training the car detection network on 2 GTX 1080 Ti GPU
takes ~24 hrs.
c) Loss Function: 1. Mean Square Error is used in angle
regression after the vectorized angle encoded. Only positive
samples are taken into calculation and the rest are ignored.

2

be(x,y,m,l)

Lang = ang (A@f n Aef.) @)

where 44, is the scaling factor of heading angle loss,
X, Y, ,l are variables of center coordinates, width and length
of a box b.

2. Focal loss [49] is proved to be able to ease the unbalanced
sample problem in classification, both in sample quantity
and recognition difficulty. Since the number of anchors and
proposals greatly exceeds the possible number of targets,
the foreground samples which are matched with ground truths
are extremely outnumbered by background samples. That
usually means insufficient learning for too little contribution
can be made by valid samples in loss calculation that guides
the network. By using focal loss, classification in these cir-
cumstances will be partly balanced and thus improved.

Leis = —acts (1 — peis)” 1og (peis) (3)

In which a.; and y are the scaling factors of classification
loss, peis is the probability score of a certain category.

3. Smooth L1 loss [4] is introduced to prevent large values
in box regressions using linear error outside [—1, 1] while still
keep a quadratic loss near the optimum to stay sensitive.

Axgt B xgt _ xa A gt _ ygf _ ya
- wa) y - la
w8’ 18!
t__ - r__ _
Awd®' = log o Al =log 1
— ya _ ya
Ax = s , Ay= A
? 1@
10} l
Aw = log e Al = log i)
Lic = D, SmoothL1(Ab) 5)

be(x,y,m,l)

Here, b, b8' and b* denote a box b’s variables from prediction,
ground truth and anchor respectively.

4.Total training loss is calculated by summing up the loss
items above.

Ltotai = Leis + Lioe + Lang (6)

7705

6) Major Differences: First, unlike most architectures that
can not handle bounding boxes with orientations, angle losses
enable our method to regress arbitrary orientations. And a
new kind of angle regression for rotated bounding boxes
was introduced by using vectorized coordinates encodings.
Second, fusions of different-scaled feature maps are repeatedly
preformed along the model pipeline. As a contrast, a Faster-
RCNN makes predictions only on the last layer of all feature
maps and thus lacks the ability to integrate information from
scale variant scenarios. Third, the classification loss function
focusing on sample imbalance is used. Fourth, to match the
proposed boxes in the first stage with ground truth boxes
more efficiently, instead of directly matching two potential box
pairs by the highest IoU, we preformed an axis-aligned IoU
matching by calculating IoUs between a ground truth box’s
minimum bounding square and the proposed boxes.

B. Hybrid Resnet Lite

Since the 2D-LiDAR ranging data only contain a few hun-
dred points, conversion to other forms may hurt the speeding
up of the model. Besides, the pseudo image based method
consumes too much computational resources, which makes
it impossible to deploy on lightweight embedded platforms.
Based on these motivation, we propose our second deep
learning based method which can directly process data from
2D-LiDAR in form of points rather than pseudo images.
The proposed method is composed of two modules. The
first module is used to generate points region proposals, and
the second module is a vehicle detector that uses the proposed
point cluster to achieve classification and regression goals.
Hybrid means our pipeline consists of both non-learning based
and learning based modules, with 1D resnet kernels and Lite
standing for its super light weight. The main architecture and
pipeline are presented in Fig. 9.

1) Region Proposal Module: Different from the Region Pro-
posal Network (RPN) that originates from [5] which generates
anchor boxes over feature maps to predict multiple region
proposals, we implement it using a more traditional algorithm
named DBSCAN [50] to realize the same region proposal
objective, which takes a frame of point cloud as input and
outputs a set of point clusters as object proposals. The basic
idea of the unsupervised DBSCAN algorithm (Density Based
Spatial Clustering of Applications with Noise) is to divide
points into different clusters based on two thresholds, one for
the number of neighbors, MinPts, and the other for the distance
measure,radius €. The produced clusters of DBSCAN consist
of core points and non-core points. The core point means that
there are at least MinPts points within distance threshold e,
while the non-core point signifies that this point is directly
reachable from a core point within distance threshold €. Points
unreachable from any core points are outliers. According
to parameters tuning, the MinPts is set to 10 and the € is
0.6 meter.

Considering the fact that most ranging points which belong
to one target share sequential indices along the scanning
direction, to simplify the region of interest’s representation
from storing all the points inside, we use 3 parameters

Authorized licensed use limited to: Technische Universitaet Muenchen. Downloaded on May 19,2022 at 06:36:42 UTC from IEEE Xplore. Restrictions apply.

7706

Points Encoder <«———— Points Cloud

Vo ot N, gl

(N, 6) (N, 24)

. (N/2, 128)

(N, 64)

B (5129

(N, 128)

R

--+ Convld

— Max Pooling

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 22, NO. 12, DECEMBER 2021

Rol Proposals
Generator

|

Rol Proposals

Class Prediction

I
|
|
|
|
|
-l

Rol Feature Pose Prediction

» Fully Connected ----» Rol Projection

—— Copy and Add —> Rol Pooling

Fig. 9. Hybrid Resnet Lite Network Architecture and Pipeline. The network first extracts a global feature map for each point cloud with the re-coded points
generated from Points Encoder. Then, the network cuts out the corresponding local feature map for each Rol based on encoded proposal vectors. Each Rol
is pooled into a fixed-size feature map and then mapped to a feature vector. For each Rol, the network has two sibling outputs, the class prediction and the

pose regression.

[Idxs, Idxg, Num] to encode one region of interest. The
Idxgs is region proposal’s start index, the /dxg is correspond-
ing to the region proposal’s end index and the Num means
total points number of this point cloud input. In this way,

the region of interest’s data size can be greatly compressed.
2) Vehicle Detection Module: We design a convolution

neural network named Hybrid Resnet Lite to realize the vehicle
detection objective. The feature extraction layers are designed
with the reference to ResNet [6], while convolution kernels
are changed to 1 dimensional ones. To share computation
between local and global feature maps, the feature extraction
layers compute the global feature maps for all input points
in one frame, then the network cuts out the corresponding
local feature map for each region proposal based on encoded
proposal vectors. Features of a proposal are extracted by
adaptively maximum pooling the cut-out of the global feature
map into a fixed-size output. The above process is inspired by
the Rol pooling proposed in [4].

For each region proposal, this vehicle detector has two
sibling outputs. The first output is the Rol’s probability p
to the vehicle category, and correspondingly 1 — p is prob-
ability to background. The second output encodes the target’s
pose estimation, i.e. localization offsets and heading angle,
[tx, 1y, O

3) Implementation Details:

a) Point Data encoding: The original ranging points
collected by 2D-LiDAR are represented in Cartesian coor-
dinates, each ranging point only encodes 2 numbers, which
makes it difficult for the network to extract general and
effective features among vehicles in different positions. Thus,
we manage to reduce that difficulty by encoding each point
with 6 parameters, [x, v, p, Ax, Ay, Ap]. x, y are the original
ranging points coordinates, and p is the distance from the

ranging point to the coordinate origin. For points belonged to
a specific proposal region, Ax, Ay are the relative coordinates
to the proposal region’s center, and Ap is the corresponding
relative distance to the proposal region’s center. For points that
do not belong to any proposal region, Ax, Ay, Ap are all set
to zeros.

b) Multi-task Loss: To simultaneously estimate the vehi-
cle’s position and heading, each Rol during training is labeled
with a ground-truth class, position offsets and a heading
angle. We use a multi-task loss L on each labeled Rol’s
back-propagation to jointly train up classification and pose
regression:

L= j«chls + j«2Lloc (7)

t in which L. is binary cross entropy loss and L, is mean
squared error loss. During the training phase, if an Rol is
labeled with negative ground truth class, the Lj,. loss will
be ignored. The heading angle was encode by two correlated
values cos(0), sin(f) to enhance the angle range regression
robustness. The two hyper-parameters 1; and A in Eq. 7
maintain the balance between two task losses.

V. EXPERIMENTS AND EVALUATIONS

Our experiments over the dataset are carried out with the
following evaluation metrics: the predictions are evaluated
by their center points and heading directions, the different
criterion of distance to targets center points and angular
errors from targets heading directions are tested respectively.
A prediction is considered accurate only when it’s center
point offset and heading direction error are both below certain
thresholds. Result summary is shown in Table II.

Authorized licensed use limited to: Technische Universitaet Muenchen. Downloaded on May 19,2022 at 06:36:42 UTC from IEEE Xplore. Restrictions apply.

CHEN et al.: PSEUDO-IMAGE AND SPARSE POINTS: VEHICLE DETECTION WITH 2D LIDAR REVISITED BY DEEP LEARNING 7707
TABLE II
SUMMARY OF EXPERIMENT AND ABLATION STUDIES

Model Pseudo Image Feature Extractor Detection Head Heading Proposal AP* (%) Speed (ms)
Cascade Pyramid RCNN Encoded Pyramid Pyramid head Vectorized Square 88.2 (89.8) 48.2
Pyramid RCNN Encoded Pyramid Non-Pyramid head Vectorized Square 75.5 46.4
Pyramid RCNN Encoded Non-Pyramid Pyramid head Vectorized Square -1 -
Pyramid CNN Encoded Pyramid -2 Vectorized Square 69.5 36.3
Cascade Pyramid RCNN Encoded Pyramid Pyramid head Vectorized Direct 76.6 48.1
Cascade Pyramid RCNN Encoded Pyramid Pyramid head Radian Square 65.4 48.2
Cascade Pyramid RCNN Whitened Pyramid Pyramid head Vectorized Square 82.5 48.2
Hybrid Resnet Lite - - - - - 76.3 (78.9) 9.1
Faster RCNN* [5] Encoded Non-Pyramid Non-Pyramid head Radian Direct -3 -
Faster RCNN(with angle loss)® Encoded Pyramid Non-Pyramid head Radian Direct 44.7 (68.8) 45.3

* Evaluated under 30cm positioning error and 15° heading error criterion. Values in bracket follow the criteria of positioning error only
1.3 Without the Ist pyramid, network does not converge, thus unable to complete the task.

2 The detection head is removed entirely.

4.5 To fairly compare, angle loss is added in the same way as Cascade Pyramid RCNN.

Fig. 10.

Detection results demonstrated in bird’s-eye view. Upper row: 3d point clouds for visualization purpose; Middle row: Ground truth boxes of the

vehicles in 2D point clouds in yellow; Lower row: Predicted boxes of the vehicles in 2D point clouds in green. Best viewed in color.

A. Quantitative Analysis

The Cascade Pyramid RCNN achieves around an Aver-
age Precision (AP) of 88.19% with a positive criterion of
within 30 cm in radius and a heading angle error less than
15°. Grid resolution is 600 x 600 (Later experiments follow
this same criteria if not otherwise specified). Comparisons
with different criterion thresholds (distance radius and heading
deviation) prove the robustness of the network. With various
distance and heading criterion, the amplitude of variation is
largely steady.

As for the inference time, Cascade Pyramid RCNN takes
about 48 ms per frame, i.e., above 20Hz fresh rate, which is
pretty competent for real-time detection. Note that the network
is not factorized or squeezed [51], [52] [53] specifically
for faster speed, thus it still remains much potential in
exploiting that.

From the experiment results, intuitively, as the projected
grid’s resolution goes higher, the average precision is giving
a significant rise. This is most likely because a finer grid

preserves more accurate location information from raw point
clouds as fewer points would be encoded into same grids.
However, when the resolution reaches an inflection point,
the average precision turns into negative correlation with
resolution changes, probably due to the increased sparsity that
can no longer be fully compensated. Therefore, a sweet spot
of most suitable grid resolution can be concluded according
to the network structure used.

Different detecting ranges result shows that 2D LiDAR
detection performance gradually increases as point clouds
become closer to the sensor’s view point. The reason could
be the increasing density of information. We tested square
ranges of (16.672, 152, 102, 7*)m in front of the ego-vehicle.
The results re-confirm that it is more suitable for detection
tasks in relatively near distance such as blind spot detection
and parking lots scenarios.

Different encoding results are also without a surprise. The
encoding method that consists of the coordinates x, y, and
distance to observing point as the three channel values (x,y,d)

Authorized licensed use limited to: Technische Universitaet Muenchen. Downloaded on May 19,2022 at 06:36:42 UTC from IEEE Xplore. Restrictions apply.

7708

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 22, NO. 12, DECEMBER 2021

Fig. 11.

Detection failure cases demonstrated in bird’s-eye view. (a) Missing detection: a vehicle at the lower-right corner is missed. (b) False positive: road

side fence is detected as a vehicle. (c) False positive: road side bushes is detected as a vehicle. (d) False positive: a corner is detected as a vehicle.

TABLE IIT
COMPARISONS WITH OTHER METHODS

Model AP* (%) AP with orientation (%)
Cascade Pyramid RCNN 89.8 88.2

Hybrid Resnet Lite 78.9 76.3

Faster RCNN(with angle loss) 68.8 44.7

Faster RCNN 89.4 -

SSD 81.6 -

Retinanet 90.9 -

*Evaluated under 30cm positioning error criteria. Any angle error of
predicted boxes is not taking into account since all original baseline
models like Faster RCNN, SSD and Retinanet are not capable of regressing
box orientations.

of a pseudo image tensor, exceeds the performance from a uni-
formed whitened encoding method by some margin. Encoded
grids seem to preserve more information from the original
data. So an effective encoding could do some contribution to
the final performance, although not much can be exploited
from 2d point cloud.

The Hybrid Resnet Lite also achieves much higher per-
formance than Faster RCNN when evaluate with a positive
criterion of within 30 cm in radius and a heading angle error
less than 15°, the average performance gain of AP is 31.6%.
Moreover, the inference speed of Hybrid Resnet Lite is also
much faster than the Faster RCNN, with an average gain
of 400%, from 45.3 ms(22fps) to 9.1ms(110fps). Though
the overall performance can be less accurate than the Cascade
Pyramid RCNN, the significant reduction in time consumption
could be very useful.

B. Qualitative Analysis

We present our detection results as shown in Fig. 10, with
oriented 2D bounding boxes. The light blue points represent
the encoded pixels from point clouds, yellow boxes with
pointing lines are hand labeled ground truth while green boxes

TABLE IV

CASCADE PYRAMID RCNN AND HYBRID RESNET
LITE COMPARISON

AAP* (%)
0.30m_15° 0.30m_25° 0.45m_15° 0.45m_25°

0~3 11.33 14.37 2.62 5.32

Xe(m) 3~6 8.04 6.18 0.43 0.69
¢ 6~9 6.28 422 2.74 0.95
9~ o0 20.0 20.1 15.0 15.0

0~ 45 6.22 7.52 2.46 3.76

0(°) 45 ~ 90 16.59 14.57 10.56 797
90 ~ 135 5.54 6.14 4.13 4.63

135 ~ 180 -0.48 0.42 0.30 0.51

0~5 4.95 8.35 2.34 2.44

R(m) 5~ 10 9.94 10.9 4.88 3.0
10 ~ oo 18.78 18.78 11.74 11.74

*Cascade Pyramid RCNN and Hybrid ResNet Lite comparison from three
aspects: target distance r, its projection z. on x axis, and target relative
angle 6 = v — o, where v = tan(zc,yc), « is target heading angle
with respect to x axis. AAP(%) equals to Cascade Pyramid RCNN AP
performance minus Hybrid Resnet Lite AP performance.

stand for model predictions. The predictions for surrounding
vehicles seem largely accurate. The networks are well capable
of distinguish vehicle contours from noise, background and
other categories of objects. On the top of that, the regression
of a distinguished targets’ position and orientation is only with
minimal errors.

Although in some minor cases, as in Fig. 11 prediction fail-
ures do occur sometimes in forms of false positives on obscure
obstacles, false negative on difficult samples. In Fig. 11 (a),
cars with too few points or limited view can be sometimes
missed by the model, probably due to occlusions or unsuitable
viewpoint. While in (b), (c) and (d), roadside bushes and
corners may resemble the shape of a car and thus occasionally
produce confusing outputs.

Though in most cases, targets are correctly recognized and
located with heading angles, it is uneasy to determine the
actual feature that the network has learned. To get a hint of
what was learned, we extract the feature maps as in Fig. 8 and

Authorized licensed use limited to: Technische Universitaet Muenchen. Downloaded on May 19,2022 at 06:36:42 UTC from IEEE Xplore. Restrictions apply.

CHEN et al.: PSEUDO-IMAGE AND SPARSE POINTS: VEHICLE DETECTION WITH 2D LIDAR REVISITED BY DEEP LEARNING

1.0

0.9+

Precision
° o o o o
S w o ~ -]
A) H N)

o
w
s

0.2+

T T T

0.0 0.1 0.2 0.3 0T4 0?5 0?6 0.7 0.8 0.9 1.0
Recall

AP:70.56% pos:0.15m 6:5°

AP:76.44% pos:0.30m 6:5°

AP:88.19% pos:0.30m 6: 15°

AP:89.07% po0s:0.30m 6:25°

—— AP:90.51% pos:0.45m 6: 25°

=== AP:76.34% pos:0.30m 6:15°
AP:87.14% pos:0.45m 6: 25°

® CMU_LShape pos:0.30m 6:15°

Fig. 12. Precision-Recall curves for different positioning and heading error
criterion. Performance is given in average precision (AP). Solid lines for
Cascade Pyramid RCNN and dash lines for Hybrid Resnet Lite.

the feature maps show that the network has learned to infer the
densified point cloud clusters out of the original corner-and-
edges. These inferred maps are reasonable and understandable
because they conforms with the loss constraints we mentioned
in section IV, including positioning constraints, longitudinal
and widthwise size constraints, and orientation constraint.

C. Methods Comparisons

As presented in Fig. 12, 13, 14, and 15, the Cascade
Pyramid RCNN outperforms current existing methods with
a large margin, both when compared with the non-learning
based method [22] and learning-based one [5] as in Table III.
The Hybrid Resnet Lite method also achieves competitive
result considering it is an ultra light weighted model at just
SMB and can inference at a much higher speed of ~9ms
per frame, while it still holds state of the art target position-
ing capability. Since both proposed methods are capable of
performing accurate detection tasks, they can be applied for
different uses. Generally, Cascade Pyramid RCNN is more
suitable for scenarios that require higher detection accuracy
and more robustness. While thanks for the lightweight design,
Hybrid ResNet Lite can be deployed on embedded systems
with limited computing resources.

D. Methods Discussion

To further combine the best of each method, more detailed
discussion about which method should be taken in different
scenarios is listed in Table IV. We evaluate and compare the
two method from multiple aspects, including target distance r,
its projection x. on x axis, and target relative angle § = y —a,
where y = tan(x., y.), o is target heading angle with respect
to x axis. The chart shows that the two methods provide
similar performance when detecting targets from mid and
remote distance. For targets of very close or very remote

7709

1.0

Precision
o o o o o 3
S w o ~ -] ©o
) ! ? N) .

o
w
s

0.2+

0.14

0.0 - T T T T T T T T T
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Recall

—— AP:81.20% pos:0.15m
——— AP:89.80% pos:0.30m
—— AP:91.25% pos:0.45m

—==- AP:78.85% p0s:0.30m
=== AP:89.26% po0s:0.45m
® CMU_LShape pos:0.30m

Fig. 13. Precision-Recall curves for different positioning error criterion
only, without considering heading. Performance is given in average precision
(AP). Solid lines for Cascade Pyramid RCNN and dash lines for Hybrid
Resnet Lite.

100 4

0] 4
—e—
c
)
& 80
g
&
1)
o
& 704
w
=
<
60
50 T T T T
7.0 10.0 15.0 16.7
Detecting Range to the Side(m)
—— Cascade Pyramid RCNN ~ —— Hybrid Resnet Lite
Fig. 14. Impact of different detecting range on average precision. Evaluating

with detecting areas of different sized squares in front of the car body, i.e.
16.7%; 1525 10%; 72m.

distance, Cascade Pryramid RCNN produces substantially
more accurate output. But if the application scenario allows
for a little more relaxed evaluate criteria, the two can still
achieve very similar performance, which also means that we
could switch to Hybrid ResNet to save computation resources.
In other words, a system can be further optimized by switching
the two methods in different distance ranges, using Hybrid
Resnet Lite for mid and remote range detection for better
efficiency, and using Cascade Pyramid RCNN for very close
and very remote areas or certain focused areas that require
both better location and heading angle accuracy.

VI. ABLATION STUDY

To figure out the key factors that enable the performance of
our proposed Cascade Pyramid RCNN, we conduct ablation
studies shown in Table. II and explain why they make sense
for our design choices.

c) Cascade Pyramid Structure: Due to the limitation
of 2D field of view and occlusions, point clusters that belong
to the target objects like cars may be very sparse or different

Authorized licensed use limited to: Technische Universitaet Muenchen. Downloaded on May 19,2022 at 06:36:42 UTC from IEEE Xplore. Restrictions apply.

7710

Average Precision

T T T T T T T T T
0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
Inference Speed (S)

® Cascade Pyramid RCNN ® Hybrid Resnet Lite

Fig. 15. Inference time vs. average precision. Different operating
points of Cascade Pyramid RCNN are achieved by using grid sizes
of 3.33%;5.552;16.66%cm which are resolutions of 200%; 600%; 1000
respectively.

in sizes and scales. The introduction of the cascade pyramid is
just about easing these difficulties. To assess the real impact,
we implemented Cascade Pyramid RCNN with different fea-
ture map pyramids removed. Performance in average precision
shows that cascade pyramid does gain a large margin over
the rest models. Notably, if the first feature map pyramid is
removed, the model does not even converge. Our hypothesis is
that combining different spatial information in different levels
and at different stages of a network’s pipeline plays a crucial
role in detecting targets with features that are hard to capture
due to various sparsity, scales and field of view limitations.

d) Vectorized Angle Representaion: To determine the
effect that vectorized angle representation brings about,
another model of Cascade Pyramid RCNN is trained with
exactly the same hyper-parameters and structures, with only
different angle value encode and decode rules. Instead of
encoding angles into the vectorized coordinates, the compared
model uses the same two values to predict one target angle
in radian and then average them. Result shows without the
vectorized angle representation, performance drops dramati-
cally, since vehicle heading directions can be rather arbitrary,
it comes with more frequent singularity in certain circum-
stances to overcome.

e) Two-Stage Region Proposal: Although the two-stage
pipeline of Cascade Pyramid RCNN is relatively slow com-
pared with one stage methods like YOLO [54] or SSD
[55], the two-stage methods seem to often outperform the
single stage methods, as it does in our experiment where we
remove the Rol detection head entirely and receives poorer
performance. It is mainly because the offsets are regressed
twice hierarchically, which gives finer estimation one based
on another.

f) Square Proposal Matching: Lastly, to cut out oriented
proposal feature maps during training, we implemented the
axis-aligned cut-out for each proposal box, for it is faster and
simpler than the oriented process and still be accurate enough.
To keep coherence with that, during the box matching process,
each oriented box is treated as its axis-aligned minimum
bounding square. Ablation experiment shows that without
square matching in proposing stage, the axis-aligned matching
performance is reduced. Because proposed feature maps are
possibly cut out in a way that they do not have a full perceptive
field of targets.

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 22, NO. 12, DECEMBER 2021

VII. CONCLUSION

In this work, we revisit the LiDAR based approach for
vehicle detection with a less expensive 2D LiDAR by uti-
lizing modern deep learning approaches. We propose our
first learning based method with the input of pseudo-images,
named Cascade Pyramid Region Proposal Convolution Neural
Network (Cascade Pyramid RCNN). Our second approach is a
hybrid learning method with the input of sparse points, named
Hybrid Resnet Lite. Our experimental results demonstrate
that the Cascade Pyramid RCNN outperforms state-of-the-art
methods in accuracy while the proposed Hybrid Resnet Lite
provides superior performance of the speed and lightweight
model by hybridizing learning based and non-learning based
modules.

Our work successfully addresses the challenges of 3D
LiDAR based and vision based methods, and offers an alterna-
tive for robust and efficient vehicle detection method based on
less expensive 2D LiDAR. As few previous works conclude an
efficient and robust vehicle detection solution with 2D LiDAR,
our research fills in this gap and illustrates that even with
limited sensing source from a 2D LiDAR, detecting obstacles
like vehicles efficiently and robustly is still achievable.

Considering future work, networks can be specifically
squeezed or factorized like in [51], [52] [53] to slim the
kernel and speed up without major performance loss. Also,
sparse convolution [56] can be introduced to further minimize
computation and reduce inference time. Such enhancements
could help make better trade off between models performance
and speed. Since this research focuses on demonstrating and
improving the feasibility of deep learning architectures in
detecting surrounding cars from a single frame and a single
2d lidar, supplementary information or techniques would also
be helpful in future works.

ACKNOWLEDGMENT

The authors would like to thank Jungiao Zhao for his
autonomous driving platform TiEV.

REFERENCES

[1]1 A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Proc. Adv. Neural Inf.
Process. Syst., 2012, pp. 1097-1105.

[2] P. Perconti and A. Plebe, “Deep learning and cognitive science,”
Cognition, vol. 203, Oct. 2020, Art. no. 104365.

[3]1 Y. Liu et al., “Motor-Imagery-Based teleoperation of a dual-arm robot
performing manipulation tasks,” IEEE Trans. Cognit. Develop. Syst.,
vol. 11, no. 3, pp. 414424, Sep. 2019.

[4] R. Girshick, “Fast R-CNN,” in Proc. IEEE Int. Conf. Comput. Vis.
(ICCV), Dec. 2015, pp. 1440-1448.

[5] S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: Towards real-
time object detection with region proposal networks,” in Proc. Adv.
Neural Inf. Process. Syst., 2015, pp. 91-99.

[6] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.
(CVPR), Jun. 2016, pp. 770-778.

[7]1 K. He, G. Gkioxari, P. Dollar, and R. Girshick, “Mask R-CNN,” in Proc.
IEEE Int. Conf. Comput. Vis., Oct. 2017, pp. 2961-2969.

[8] T.Pohlen, A. Hermans, M. Mathias, and B. Leibe, “Full-resolution resid-
ual networks for semantic segmentation in street scenes,” in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit. (CVPR), Jul. 2017, pp. 4151-4160.

[9]1 A. Geiger, P. Lenz, and R. Urtasun, “Are we ready for autonomous
driving? The KITTI vision benchmark suite,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit., Jun. 2012, pp. 3354-3361.

Authorized licensed use limited to: Technische Universitaet Muenchen. Downloaded on May 19,2022 at 06:36:42 UTC from IEEE Xplore. Restrictions apply.

CHEN et al.: PSEUDO-IMAGE AND SPARSE POINTS: VEHICLE DETECTION WITH 2D LIDAR REVISITED BY DEEP LEARNING

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

G. Chen, H. Cao, J. Conradt, H. Tang, F. Rohrbein, and A. Knoll, “Event-
based neuromorphic vision for autonomous driving: A paradigm shift for
bio-inspired visual sensing and perception,” IEEE Signal Process. Mag.,
vol. 37, no. 4, pp. 3449, Jul. 2020.

G. Chen, L. Hong, J. Dong, P. Liu, J. Conradt, and A. Knoll, “EDDD:
Event-based drowsiness driving detection through facial motion analysis
with neuromorphic vision sensor,” IEEE Sensors J., vol. 20, no. 11,
pp. 6170-6181, Jun. 2020.

G. Chen et al., “A survey of the four pillars for small object detection:
Multi-scale representation, contextual information, super-resolution, and
region proposal,” IEEE Trans. Syst, Man Cybern., Syst., 2020, doi:
10.1109/TSMC.2020.3005231.

K. O. Arras, O. M. Mozos, and W. Burgard, “Using boosted features
for the detection of people in 2D range data,” in Proc. IEEE Int. Conf.
Robot. Autom., Apr. 2007, pp. 3402-3407.

L. Spinello and R. Siegwart, “Human detection using multimodal and
multidimensional features,” in Proc. IEEE Int. Conf. Robot. Autom.,
May 2008, pp. 3264-3269.

C. Weinrich, T. Wengefeld, C. Schroeter, and H.-M. Gross, “Peo-
ple detection and distinction of their walking aids in 2D laser
range data based on generic distance-invariant features,” in Proc.
23rd IEEE Int. Symp. Robot Human Interact. Commun., Aug. 2014,
pp. 767-773.

A. Leigh, J. Pineau, N. Olmedo, and H. Zhang, “Person tracking and
following with 2D laser scanners,” in Proc. IEEE Int. Conf. Robot.
Autom. (ICRA), May 2015, pp. 726-733.

J. Schlichenmaier, F. Roos, M. Kunert, and C. Waldschmidt, “Adap-
tive clustering for contour estimation of vehicles for high-resolution
radar,” in [EEE MTT-S Int. Microw. Symp. Dig., May 2016,
pp. 1-4.

J. Schlichenmaier, N. Selvaraj, M. Stolz, and C. Waldschmidt, “Template
matching for radar-based orientation and position estimation in automo-
tive scenarios,” in IEEE MTT-S Int. Microw. Symp. Dig., Mar. 2017,
pp. 95-98.

X. Shen, S. Pendleton, and M. H. Ang, “Efficient L-shape fitting of laser
scanner data for vehicle pose estimation,” in Proc. IEEE 7th Int. Conf.
Cybern. Intell. Syst. (CIS) IEEE Conf. Robot., Autom. Mechatronics
(RAM), Jul. 2015, pp. 173-178.

R. MacLachlan and C. Mertz, “Tracking of moving objects from a
moving vehicle using a scanning laser rangefinder,” in Proc. IEEE Intell.
Transp. Syst. Conf., Sep. 2006, pp. 301-306.

A. Petrovskaya and S. Thrun, “Model based vehicle detection and
tracking for autonomous urban driving,” Auto. Robots, vol. 26, nos. 2-3,
pp. 123-139, Apr. 2009.

X. Zhang, W. Xu, C. Dong, and J. M. Dolan, “Efficient L-shape fitting
for vehicle detection using laser scanners,” in Proc. IEEE Intell. Vehicles
Symp. (1V), Jun. 2017, pp. 54-59.

S. Qu et al., “An efficient L-Shape fitting method for vehicle pose
detection with 2D LiDAR,” in Proc. IEEE Int. Conf. Robot. Biomimetics
(ROBIO), Dec. 2018, pp. 1159-1164.

L. Beyer, A. Hermans, and B. Leibe, “DROW: Real-time deep learning-
based wheelchair detection in 2-D range data,” IEEE Robot. Autom.
Lett., vol. 2, no. 2, pp. 585-592, Apr. 2017.

L. Beyer, A. Hermans, T. Linder, K. O. Arras, and B. Leibe, “Deep
person detection in 2D range data,” 2018, arXiv:1804.02463. [Online].
Available: http://arxiv.org/abs/1804.02463

A. M. Guerrero-Higueras et al., “Tracking people in a mobile robot
from 2D LIDAR scans using full convolutional neural networks for
security in cluttered environments,” Frontiers Neurorobotics, vol. 12,
p. 85, Jan. 2019.

W. Lin et al., “Group reidentification with multigrained matching and
integration,” IEEE Trans. Cybern., early access, Jun. 11, 2019. [Online].
Available: http://europepmc.org/abstract/med/31199281

W. Lin et al, “Learning correspondence structures
re-identification,” [EEE Trans. Image Process., vol.
pp. 2438-2453, May 2017.

D. Maturana and S. Scherer, “VoxNet: A 3D convolutional neural
network for real-time object recognition,” in Proc. IEEE/RSJ Int. Conf.
Intell. Robots Syst. (IROS), Sep. 2015, pp. 922-928.

M. Engelcke, D. Rao, D. Z. Wang, C. H. Tong, and I. Posner,
“Vote3Deep: Fast object detection in 3D point clouds using efficient
convolutional neural networks,” in Proc. IEEE Int. Conf. Robot. Autom.
(ICRA), May 2017, pp. 1355-1361.

B. Li, “3D fully convolutional network for vehicle detection in point
cloud,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS),
Sep. 2017, pp. 1513-1518.

for person
26, no. 5,

(32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[471

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

7711

S. Wirges, T. Fischer, J. Balado Frias, and C. Stiller, “Object detec-
tion and classification in occupancy grid maps using deep con-
volutional networks,” 2018, arXiv:1805.08689. [Online]. Available:
http://arxiv.org/abs/1805.08689

M. Ren, A. Pokrovsky, B. Yang, and R. Urtasun, “SBNet: Sparse
blocks network for fast inference,” 2018, arXiv:1801.02108. [Online].
Available: http://arxiv.org/abs/1801.02108

B. Yang, M. Liang, and R. Urtasun, “HDNET: Exploiting HD maps
for 3D object detection,” in Proc. Conf. Robot Learn., Oct. 2018,
pp. 146-155.

B. Yang, W. Luo, and R. Urtasun, “PIXOR: Real-time 3D object
detection from point clouds,” in Proc. IEEE/CVF Conf. Comput. Vis.
Pattern Recognit., Jun. 2018, pp. 7652-7660.

B. Li, T. Zhang, and T. Xia, “Vehicle detection from 3D lidar using fully
convolutional network,” 2016, arXiv:1608.07916. [Online]. Available:
http://arxiv.org/abs/1608.07916

X. Chen, H. Ma, J. Wan, B. Li, and T. Xia, “Multi-view 3D object detec-
tion network for autonomous driving,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit. (CVPR), Jul. 2017, pp. 1907-1915.

J. Ku, M. Mozifian, J. Lee, A. Harakeh, and S. L. Waslander, “Joint
3D proposal generation and object detection from view aggregation,”
in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS), Oct. 2018,
pp. 1-8.

K. Shin, Y. Paul Kwon, and M. Tomizuka, “RoarNet: A robust 3D
object detection based on RegiOn approximation refinement,” 2018,
arXiv:1811.03818. [Online]. Available: http://arxiv.org/abs/1811.03818
C. R. Qi, H. Su, K. Mo, and L. J. Guibas, “PointNet: Deep learn-
ing on point sets for 3D classification and segmentation,” 2016,
arXiv:1612.00593. [Online]. Available: http://arxiv.org/abs/1612.00593
C. R. Qi, L. Yi, H. Su, and L. J. Guibas, “PointNet++: Deep
hierarchical feature learning on point sets in a metric space,” 2017,
arXiv:1706.02413. [Online]. Available: http://arxiv.org/abs/1706.02413
Y. Zhou and O. Tuzel, “VoxelNet: End-to-End learning for point cloud
based 3D object detection,” in Proc. IEEE/CVF Conf. Comput. Vis.
Pattern Recognit., Jun. 2018, pp. 4490-4499.

S. Shi, X. Wang, and H. Li, “PointRCNN: 3D object proposal generation
and detection from point cloud,” 2018, arXiv:1812.04244. [Online].
Available: http://arxiv.org/abs/1812.04244

Z. Wang and K. Jia, “Frustum ConvNet: Sliding frustums to aggre-
gate local point-wise features for amodal 3D object detection,” 2019,
arXiv:1903.01864. [Online]. Available: http://arxiv.org/abs/1903.01864
Y. Yan, Y. Mao, and B. Li, “SECOND: Sparsely embedded convolutional
detection,” Sensors, vol. 18, no. 10, p. 3337, Oct. 2018.

A. H. Lang, S. Vora, H. Caesar, L. Zhou, J. Yang, and
O. Beijbom, “PointPillars: Fast encoders for object detection
from point clouds,” 2018, arXiv:1812.05784. [Online]. Available:
http://arxiv.org/abs/1812.05784

J. Zhao et al., “TiEV: The tongji intelligent electric vehicle in the
intelligent vehicle future challenge of China,” in Proc. 21st Int. Conf.
Intell. Transp. Syst. (ITSC), Nov. 2018, pp. 1303-1309.

R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature hierar-
chies for accurate object detection and semantic segmentation,” in Proc.
IEEE Conf. Comput. Vis. Pattern Recognit., Jun. 2014, pp. 580-587.
T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollar, “Focal loss for
dense object detection,” in Proc. IEEE Int. Conf. Comput. Vis. (ICCV),
Oct. 2017, pp. 2980-2988.

M. Ester et al., “A density-based algorithm for discovering clusters in
large spatial databases with noise,” in Proc. KDD, 1996, vol. 96, no. 34,
pp. 226-231.

N. L Forrest, H. Song, W. Matthew, A. Khalid, and J. W. Dally,
“SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and
<0.5 MB model size,” in Proc. Conf. (ICLR), 2017, pp. 207-212.

A. G. Howard et al., “MobileNets: Efficient convolutional neural
networks for mobile vision applications,” 2017, arXiv:1704.04861.
[Online]. Available: http://arxiv.org/abs/1704.04861

X. Zhang, X. Zhou, M. Lin, and J. Sun, “ShuffleNet: An
extremely efficient convolutional neural network for mobile devices,”
in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., Jun. 2018,
pp. 6848-6856.

J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look
once: Unified, real-time object detection,” in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit. (CVPR), Jun. 2016, pp. 779-788.

W. Liu et al., “SSD: Single shot multibox detector,” in Proc. Eur. Conf.
Comput. Vis. Cham, Switzerland: Springer, 2016, pp. 21-37.

B. Graham and L. van der Maaten, “Submanifold sparse con-
volutional networks,” 2017, arXiv:1706.01307. [Online]. Available:
http://arxiv.org/abs/1706.01307

Authorized licensed use limited to: Technische Universitaet Muenchen. Downloaded on May 19,2022 at 06:36:42 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1109/TSMC.2020.3005231

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Black & White)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /ArborText
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /ComicSansMS
 /ComicSansMS-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /EstrangeloEdessa
 /EuroSig
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Impact
 /KozGoPr6N-Medium
 /KozGoProVI-Medium
 /KozMinPr6N-Regular
 /KozMinProVI-Regular
 /Latha
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LucidaConsole
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /MVBoli
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Webdings
 /Wingdings-Regular
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 300
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 900
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

