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Pole-Curb Fusion Based Robust and Efficient
Autonomous Vehicle Localization System With

Branch-and-Bound Global Optimization
and Local Grid Map Method

Guang Chen , Fan Lu , Zhijun Li , Yinlong Liu , Jinhu Dong, Junqiao Zhao , Junwei Yu, and Alois Knoll

Abstract—The localization system is one of the key components
of autonomous vehicles. Widely-used GNSS (low-cost) alone can
not meet the centimeter accuracy and is unstable in urban environ-
ment. Typically LiDAR-based localization system is very computa-
tionally demanding due to the usage of the dense point cloud map.
In this paper, we propose a novel lightweight LiDAR-based local-
ization system for autonomous vehicle in this paper. The proposed
system only relies on lightweight poles and curbs landmark map,
which is highly robust and efficient compared to other localization
systems. Poles and curbs are selected as landmarks because of
their commonality and stability. We novelly propose a Branch-
and-Bound (BnB)-based global optimization method to tackle the
data association problem of poles. Motion decoupling is adopted
to decouple translation and rotation to improve the efficiency of
the BnB-based algorithm. Besides, we propose a new local grid
map-based representation for curbs to make better use of curb in-
formation. Cost functions for pole and curb are defined respectively
and then fused for the subsequent non-linear optimization method
to obtain the vehicle location. Experiments on KITTI dataset and
our self-collected dataset demonstrate the efficiency and accuracy
of our system.

Index Terms—Autonomous driving, map-based localization,
Branch-and-Bound, landmark-based localization, pole landmark,
road curb, grid map.
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I. INTRODUCTION

ACCURATE and robust localization is one of the key com-
ponents of intelligent vehicles [1]. The most common

way to perform vehicle localization is using Global navigation
satellite system (GNSS) with Inertial navigation system (INS).
However, the cost of a high-accurate GNSS/INS system is ex-
tremely high and low-cost GNSS/INS systems can only achieve
meter-level accuracy [2], which is insufficient for intelligent
vehicles. Moreover, GNSS/INS systems suffer from signal block
in urban scenarios [3], which makes the localization result
unreliable.

Map-based method is an alternative to tackle the problem
of localization for intelligent vehicles [4]–[22]. The most com-
monly used map for vehicle localization is LiDAR intensity
map [4]–[6]. Although these methods can provide reliable and
accurate localization, the memory storage consumption of the
dense map will be unacceptable in large scale environments.
Comparatively, lightweight landmark maps [8]–[22] are more
compact and require less memory. Poles (e.g., trees and street
lamps) and curbs are common and stable in traffic scenarios.
Hence, poles and curbs are applicable as landmarks for vehicle
localization in urban scenarios.

However, the two kinds of landmarks have their inherent
drawbacks. The data association problem of poles is intractable
due to the lack of distinguishing features. Most of the current lit-
erature utilizes nearest neighbor search to perform pole-to-pole
matching. The prerequisite of the method is that the detected
poles are closest to the corresponding poles in the pre-built
map after the transformation, which will be unsatisfied when
the initial vehicle pose is inaccurate. The difficulty of curb is
how to choose a proper representation. Generally, the detected
curb is represented as a curve, which is not easy to utilize for
localization. Most of the works only use the relative distance
and angle between curb and the vehicle for the localization task
while semantic information such as the curvature is ignored. Fur-
thermore, almost all of the landmark-based localization methods
use local optimization methods which can easily get stuck into
local optima without careful initialization. The local optimum
can be far from the true value and greatly reduces the robustness
of the localization system.
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To address the problem mentioned above, we propose a pole-
curb fusion vehicle localization system. To tackle the data associ-
ation problem of poles, we represent the detected poles and poles
in the map as two 2D point sets and a Branch-and-Bound (BnB)-
based method is utilized to generate the correct correspondences
of poles. BnB is one of the most successful algorithms for global
optimization problem [23]–[25]. However, it has not been widely
used for localization problem in autonomous driving due to its
high complexity and poor real time performance. The algorithm
will take a considerable time for the convergence if the dimen-
sion of search space is 3 for the 3-DoF of vehicle localization.
In the field of dense point cloud registration, motion decoupling
is a common way to reduce the search dimension and improve
the efficiency of algorithm although the real-time performance
is still not guaranteed. [26], [27] proposed rotation-invariant
features and transformation-invariant features for 3D point set
registration, respectively. Similarly, [28] decouples scale, trans-
lation and rotation. Inspired by the above works, we propose a
robust and efficient autonomous vehicle localization system with
BnB-based global optimization and local grid map method. We
utilize a motion decoupling method to solve the data association
problem while achieve the real-time performance due to the us-
age of lightweight pole landmark map. The BnB-based rotation
search method solves the data association problem of poles well
and can also provide a rough pose estimation for the subsequent
pose optimization. With the known correspondence, the pole
cost function can be easily constructed. Grid map-based methods
are widely used in 2D-SLAM [29], [30], however, few works
leverage grid map in landmark-based localization problem. In
this paper, we introduce a novel grid map-based representation
for curbs, which is more complete and precise than general
curve-based representation. The map of curb is represented as a
set of local grid maps rather than a curve or several points. The
values in each cell of the local grid map are defined using an
inverse distance function. In localization process, several points
are sampled from the detected curb points and projected onto the
corresponding local grid map based on the rough pose estimation
from the previous BnB-based rotation search method. The curb
cost function is then defined based on the projection values. At
last, the pole cost function and the curb cost function are fused
and the subsequent non-linear optimization is utilized to refine
the previous rough vehicle pose estimation.

To evaluate the accuracy and efficiency of our proposed
pole-curb fusion localization system, we performed several
experiments on our self-collected TJ-TiEV dataset and also
KITTI dataset and the experiment results demonstrate the good
performance of the proposed system.

Our main contributions are as follows:
� We propose a novel pole-curb fusion based autonomous

vehicle localization system. Compared with dense map-
based localization system, the lightweight pole-curb map
requires much less memory and poles and curbs are com-
mon and stable in structured environments. Consequently,
our system is robust and efficient without requirements for
dense point cloud registration.

� We novelly utilize a BnB-based method to solve the data
association problem of poles well. In comparison with

commonly used local optimization methods, our proposed
method avoids falling into local minima. Moreover, the
introduction of motion decoupling significantly reduces
the complexity of the algorithm and results in a real-time
performance.

� We provide a novel map representation for curbs, which
represents the curb map as a set of local grid maps, where
the value in each cell represents the existence of curbs.
Compared with the common curve-based method of rep-
resenting curb as distance and angle, our representation is
more complete and precise. The introduction of curbs im-
proves the position accuracy of localization system based
on only poles, especially the lateral accuracy.

II. RELATED WORKS

We briefly review related works about the map-based and
landmark-based vehicle localization system from four aspects:
dense map-based localization, pole-like landmark-based local-
ization, curb/road marks-based localization and fusion method-
based localization system.

A. Dense Map-Based Localization

Dense map-based localization system typically perform
matching between current scans with point cloud map. [4]
utilizes the LiDAR intensity of the environment to build a
global point cloud map. [31] matches the point cloud with a
self-adaptive multi-layer matching. [6] leverages deep learning-
based method to perform point cloud matching. However, dense
map-based localization system has its inherent drawback, i.e.,
the poor efficiency. Dense map-based method relies on dense
point cloud matching and can take a considerable time for
large-scale outdoor scenes.

B. Pole-Like Landmark-Based Localization

Currently, most of the pole-like landmark-based methods
utilize filter-based methods (particle filter or kalman filter)
to perform localization with fusion with GNSS/INS system.
[9]–[11] all extract poles from point cloud and use particle
filter to perform localization. [12] has the similar idea and the
difference is that [12] detects pole from stereo camera system.
All of the works above tackle the data association problem
of poles via nearest neighbor search, which requires that the
detected poles are closest to their corresponding poles in the
map. When GPS signal is blocked and the vehicle motion is large
in a frame or the poles are extremely dense, this prerequisite can
not be satisfied and the wrong correspondence will lead to an
incorrect localization result.

C. Curb/road Marking-Based Localization

Curb and road markings are common landmarks in urban
scenarios which are generally used to improve the localization
accuracy in lateral direction. [13] uses two cameras to detect road
markings and then aids the vehicle localization using extended
kalman filter (EKF). [14] uses a front camera to detected lane
markings and perform localization via unscented kalman filter
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Fig. 1. The overview architecture of the proposed pole-curb fusion vehicle localization system, which consists of three blocks: BnB-based pole localization
block, local grid map-based curb localization block and pole-curb fusion block.

(UKF). Although the measurement model of [14] and [13] is
different, both of them treat the road marking as a point which
can lead to a large information loss. [15] detects curbs from point
cloud and the detection results work as an input to the Monte
Carlo localization algorithm. [18] uses curb and intersection as
the landmark of the Monte Carlo Localization and the curb is
represented as virtual LiDARs in this paper. [17] detects lanes
using around view monitoring camera and matches the lanes via
ICP-based method. Nevertheless, none of the above methods
provide a complete representation of curbs or lanes.

D. Fusion Method-Based Localization

Fusion method-based localization methods are the most rel-
evant to our work. [19] fuses 3 landmarks: poles, facades and
road markings. [19] accumulates detections over time to gen-
erate local map and matched the local map to the global map
to find the best match to solve the data association problem.
The whole framework is also based on non-linear optimiza-
tion like us. Lanes and traffic signs are fused in [20] via a
Bayesian filtering framework. Deep learning-based methods are
utilized here to detect the landmarks and the detection results
are represented as overview images. The detected image and the
map are matched using a cross-correlation operation. [21] uses
around view monitoring system to detect road boundaries and
road markings. Road boundaries are used to obtain rough pose
estimation and then the rough pose is refined by road markings
matching. However, almost all of the above methods utilize local
optimization methods to perform localization, which is easy to
get stuck into local optimum.

III. METHOD

A. System Overview

The overview architecture of the proposed pole-curb fusion
vehicle localization system is shown in Fig. 1. The system

consists of 3 blocks: Branch-and-Bound (BnB)-based pole lo-
calization block, local grid map-based curb localization block
and pole-curb fusion block.

The input of the system are two dense point clouds: point
cloud for pole detection Xp and point cloud for curb detection
Xc. Xp is firstly fed into the BnB-based pole localization block
and output a pole cost function with a rough estimation of the
current vehicle pose. Similarly, the local grid map-based curb
localization block receives Xc and output a curb cost function.
The pole cost function and curb cost function are fused in
the pole-curb fusion block to refine the rough vehicle pose.
Several exceptions are also well handled in our system. The
BnB-based pole localization is the dominant block and the local
grid map-based curb localization block is only for refinement
because poles provide both lateral and longitudinal constraints
and curbs provide more lateral information. The detail process
of the localization system is described in Algorithm 1. Noting
that the initial vehicle pose Pi is rough and known by default
(from GNSS or the vehicle pose of last frame).

B. BnB-Based Pole Localization Block

The process of the BnB-based pole localization block is
shown in top row of the middle column of Fig. 1. Previous
pole-based vehicle localization methods commonly adopt local
optimization methods due to the complexity of global optimiza-
tion method. However, the local optimization method can easily
get stuck into local optimum without a careful initialization.
Furthermore, most of the current methods do not well handle
the correspondence problem of poles. Our proposed method
tackles the above problems efficiently and effectively. First, a
global pole map is built using the ground-truth vehicle pose.
In the localization thread, the detected poles and the poles in
the local map are represented as two 2D point sets. To reduce
the complexity of the BnB algorithm, we propose a motion
decoupling method to decouple rotation and translation and
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Algorithm 1: Pole-Curb Fusion Vehicle Localization Sys-
tem.

Input Point cloud for pole detection Xp, point cloud for
curb detection Xc, global pole map, global curb map.

Output: Vehicle pose Po.
1: Initialize vehicle pose Pi.
2: Pole detection.
3: Search local pole map.
4: if Number of poles Np > εn then
5: Calculate rough vehicle pose Pr using BnB-based

rotation search and generate pole cost function Lp.
6: Curb detection.
7: if Curb detected then
8: Search local curb map.
9: Curb points sampling.

10: Generate curb cost function Lc.
11: L = Lp + βLc.
12: else
13: L = Lp.
14: end if
15: Refine Pr to Po using L.
16: else if Np �= 0 then
17: Generate Lp using local grid map-based method.
18: if Curb detected then
19: Generate Lc.
20: L = Lp + βLc.
21: else
22: L = Lp.
23: end if
24: Refine Pi to Po using L.
25: else
26: Calculate Po using uniform motion model.
27: end if
28: return Vehicle pose Po.

generate several translation-invariant features (TIFs). Then the
BnB-based rotation search method is utilized to search the
rotation angle (i.e., the yaw angle) and concurrently generate
a rough estimation of vehicle pose. Based on the search result,
pole-to-pole correspondences are straightway constructed, with
which the pole cost function is defined based on the distance
of the matching pole pairs. The details of this block will be
discussed below and the exception handling module will be
described at the end of this section.

1) Pole Detection: The LiDAR for pole detection is mounted
on the roof of the vehicle in our system (see the left part
of Fig. 1). Our pole detection method is based on [32] and
the process consists of three steps: point cloud voxelization,
horizontal cluster and vertical cluster.

Point cloud voxelization: The ground plane is firstly removed
from the input point cloud using RANSAC-based method. For
more convenient processing of point cloud, the point cloud is
voxelized to a voxel grid. The resolution of the voxel grid is
denoted as (xres, yres, zres) and a cell is marked as valid if the
number of points in the cell is greater than a threshold tv .

TABLE I
PARAMETERS OF POLE DETECTION

Horizontal cluster: The voxel grid is segmented into horizon-
tal layers along the vertical direction. Based on the geometric
characteristic of poles, the horizontal segment of the pole should
satisfy two characteristics: a small dimension and isolation. All
of the valid cells in the horizontal layer are clustered into a
single segment based on the connectivity between cells. Then the
spatial dimensions of the segments (i.e., the number of cells in
the clustered segment) are checked to be smaller than a threshold
ts1. After that, we define two boxes (a smaller one and a bigger
one) centered on the center of the segment and count the valid
cells between two boxes to verify the isolation. The segment
will be considered as unsatisfying the isolation if the number
is larger than a threshold ts2. The segments that pass the above
two checks (i.e., a small dimension and isolation) are marked as
valid.

Vertical cluster: Similarly, the valid horizontal segments will
be further aggregated along the vertical direction based on their
vertical connectivity. Due to the discontinuity of the point cloud
in its vertical direction, we expand the vertical search range to
two layers above and below. Then the height and the height
to width ratio of the candidate vertical clusters are checked. A
cluster is considered as a detected pole if the height H ≥ Hmin

and the ratio r ≥ tr.
The 2D vehicle localization only requires the 2D location of

poles on the ground plane. Fitting the point cloud to a cylinder
model is a common way to estimate the center of the pole, which
is found to be unstable in our implementation. Therefore, we
directly calculate the average location of the points belonging
to a pole as the center of the pole.

The parameters of pole detection are presented in Table I.
We also display several samples of pole detection results on
point clouds of Velodyne HDL-64E and Velodyne VLP-16 in
the first and second row of Fig. 2. Several detected poles are
zoomed in to show the details and N , H and r denote the
number of points, the height and the height to width ratio of
the pole, respectively. The results demonstrate that the pole
detection algorithm can successfully detect poles with various
point densities and geometric sizes..

2) Motion Decoupling: BnB-based method has not been
widely applied on vehicle localization problems due to the high
time complexity, which increases exponentially with the search
dimension. The search dimension of the 2D vehicle pose is
3 (i.e., (x, y, θ)), which results in a considerable time for the
BnB-based method to get convergence to global optima. Motion
decoupling is an efficient and effective way to decrease the
search dimension.

The currently detected poles and the poles in the local map
are represented as two point sets, denoted as M = {mi}Mi=1
and N = {nj}Nj=1.M can be transformed to N using rotation
matrix R and translation vector t, the 3-dimensional vehicle
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Fig. 2. Several examples of pole detection results. The first and second row display the detection results on point clouds of Velodyne HDL-64E and Velodyne
VLP-16. We zoom in several detection results to show the details of detected poles, where N , H and r denote the number of points, the height and the height to
width ratio of the pole, respectively.

pose (x, y, θ) can be recovered from R and t. Given two points
m1,m2 inM and the corresponding points n1,n2 in N ,

n1 = Rm1 + t (1)

n2 = Rm1 + t (2)

Subtracting Eq. 1 from Eq. 2, then,

n1 − n2 = R(m1 −m2) (3)

Obviously, the transformation from m1 −m2 to n1 − n2 is
only related to the rotation matrix R rather than translation t.
The features like m1 −m2 and n1 − n2 are called translation-
invariant features (TIFs). TIFs can be constructed by subtracting
every two points in the point set. BnB-based algorithm can be
performed to search R on TIFs rather than R and t on the two
point sets. Consequently, the search dimension decreases from
3 to 1, which significantly improves the efficiency of the BnB-
based search method.

3) BnB-Based Rotation Search: Two TIF sets P = {pi}Pi=1,
Q = {qj}Qj=1

can be constructed from the forementioned two
point sets of detected poles and the poles in the local pole map.

The BnB-based rotation search aims to find the best rotation
matrix R∗ to match the two TIF sets. We seek for the rotation
matrix R that maximises the quality function

Q(R) =
P∑
i

max
j
�∥∥Rpi − qj

∥∥ ≤ ε� (4)

where �·� is a function that returns 1 if the condition · is true
and 0 otherwise, ‖ · ‖ is the Euclidean norm in R2, ε is the inlier
threshold, which will be further discussed in the experiments.

From a point set with n points we can generate n(n− 1)/2
TIFs. Consequently, searching will be time consuming due to
the large scale of TIF sets. Noting that the norm of a TIF should
be constant after a rotation, so a rough matching can be firstly
established based on the norm of the TIFs.

Generally the number of the detected poles is smaller than
the number of the poles in local map, and almost all of the
detected poles should have a corresponding pole in the local
map. Therefore, we choose the TIF set of the detected poles P
to construct several equal norm TIF sets {Pk}Kk=1. TIFs with a
difference in norm less than a threshold εs will be grouped into a
single equal norm TIF set. And the average value of the norm in
a single equal norm TIF set will be calculated and stored in the
norm set which is denoted as {Ek}Kk=1. The norm of each TIF
inQ will be compared to the norm in {Ek}Kk=1, if the difference
is less than a threshold εs, the TIF will be assigned intoQk. As
the result, a rough matching between Pk andQk is established.
Hence, Eq. 4 can be rewrited as

Q(R) =

K∑
k=1

∑
pi∈Pk

max
qj∈Qk

�∥∥Rpi − qj

∥∥ ≤ ε� (5)

Algorithm 2 summarizes the BnB-based search algorithm.
The rotation search space is represented as a 1D line L with
range [−π, π]. The BnB-based algorithm iteratively explores
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Algorithm 2: BnB-Based Search Algorithm.
Input the equal norm TIF sets, threshold ε
Output: Optimal rotation R∗ with quality Q∗

1: Initialize priority queue q, Q∗ ← 0, R∗ ← I ,
L← [−π, π]

2: Insert L with priority Q̂(L) into q.
3: while q is not empty do
4: Obtain highest priority subset L from q
5: if Q̂(L) = Q∗ then Terminate
6: end if
7: Rc ← center rotation of L.
8: if Q(Rc) > Q∗ then
9: Q∗ ← Q(Rc),R

∗ ← Rc

10: end if
11: Divide L into to two subsets {Li}2

i=1 at the center of
L.

12: for each Li do
13: if Q̂(Li) ≥ Q∗ then
14: Insert Li with priority Q̂(Li) into q
15: end if
16: end for
17: end while
18: return Optimal rotation R∗ with quality Q∗.

the branches of a rooted tree, each branch represents a subset
of the search space and the root is the full search space. For
each branch, the priority (e.g., the upper bound of the quality
Q in this branch) is calculated. The search algorithm selects the
branch with the highest priority, calculates the quality of the
center of the branch, and updates the best rotation with the best
quality. The branch is then divided into two sub-branches and
the sub-branch will be cut if the priority is smaller than the best
quality.

In Algorithm 2, the upper bound Q̂(L) (i.e., the priority of a
branch L) should satisfies

Q̂(L) ≥ max
R∈L

Q(R) (6)

In our algorithm, the upper bound can be calculated as,

Q̂(L) =

K∑
k=1

∑
pi∈Pk

max
qj∈Qk

�∥∥Rcpi − qj

∥∥ ≤ ε+ δr� (7)

where δr = 2‖pi‖ sin(Lr/4), Lr is the length of L, Rc is the
center rotation of L.

The proof of the upper bound is given below. First, given two
vector a,b, it is obviously that ‖a‖ − ‖b‖ ≤ ‖a+ b‖. Thus,
given ‖Rpi − qj‖ ≤ ε, we have,

∥∥Rpi − qj

∥∥ =
∥∥Rpi −Rcpi +Rcpi − qj

∥∥
≥ ∥∥Rcpi − qj

∥∥− ‖(R−Rc)pi‖
=

∥∥Rcpi − qj

∥∥− 2 ‖pi‖ sin∠(R,Rc)/2 (8)

where ∠(R,Rc) is the relative angle between R and Rc, and
∠(R,Rc) ≤ Lr/2, thus,∥∥Rcpi − qj

∥∥ ≤ ∥∥Rpi − qj

∥∥+ 2 ‖pi‖ sin(Lr/4)

≤ ε+ δr (9)

According to Eq. 9, if ‖Rpi − qj‖ ≤ ε, then ‖Rcpi − qj‖ ≤
ε+ δr. Consequently, Eq. 7 is the upper bound of Eq. 5.

4) Rough Pose Estimation: After BnB-based rotation search,
several matched pairs of are naturally constructed. However,
the search result may differ from the real value by π. Suppose
the true rotation angle is θ, given two points m1,m2 in M
and the corresponding points n1,n2 in N , m1 −m2 can be
aligned with n1 − n2 with rotation angle θ, m1 −m2 can also
be aligned with n2 − n1 with rotation angle θ − π or π − θ.

Nevertheless, the midpoints of two matched TIFs should be
matched regardless of the direction of the TIFs. Therefore, we
calculate the translations of the matched midpoints and the
average value of the translations is considered as the rough
translation estimation (xr, yr). For each possible rotation angle,
we can get a set of corresponding points pairs. Translations can
also be calculated with these pairs. Apparently, the rotation angle
θr with the translation most close to (xr, yr) is selected as the
correct value. Consequently, the rough estimation of the pose
should be (xr, yr, θr).

5) Pole Cost Function: When the correct value of the rotation
angle is obtained, the correct correspondence of the poles is
established concurrently. Suppose corresponding pairs set is
{mk,nk}Kk=1, the cost function is shown as,

Lp =

K∑
k=1

‖mk − nk‖ (10)

Until now, the proposed BnB-based pole localization method
solves the data association problem of poles well. Because
the BnB-based rotation search seeks best rotation in the entire
search space, our method ensures global optimization so that
does not require careful initialization. With the help of motion
decoupling, the method achieves real-time performance while
promising robustness.

C. Local Grid Map-Based Curb Localization Block

The process of the local grid map-based curb localization
block is shown in lower row of the middle column in Fig. 1.
Unlike the pole localization block, the curb map is represented
as a set of local grid maps. When curb is detected, several curb
points are sampled to reduce the scale of the raw detected curb
point set. Then the corresponding local grid map is searched
based on the rough vehicle pose from pole localization block.
After that the sampled points are projected onto the local grid
map and a curb cost function is defined for the subsequent pole-
curb fusion block.

1) Curb Detection: In our method, the LiDAR for curb de-
tection is mounted on the right lower corner of the vehicle (see
left column of Fig. 1) which reduces the complexity of the
detection algorithm. We firstly filter the points out of the region
of interest of the curbs and project the input LiDAR point cloud
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Fig. 3. Two samples of curb detection results. The blue points are the raw
point clouds and the red points denote the detected curb points. We zoom in the
region of interest in the right part for better visualization.

onto to horizontal 2D Cartesian grid. Each of the cells in the
grid contains two parameters: the number of points in the cell
(i.e., the density D) and the height of the cell (denoted as H).
The cell that may contain curbs should meet two requirements:
the density should larger than a certain threshold Dmin and the
heightH should be within a certain range [Hmin, Hmax]. Several
candidate cell is selected based on the requirements above. Then
the candidate cells are clustered based on the connectivity and
the cluster with the maximum size is selected as the candidate
curb cluster. The candidate curb cluster is considered as a curb if
the size is larger than a threshold Smin. We display two samples
of curb detection results in Fig. 3.

2) Curb Point Sampling: Different from poles, a curb can
not be represented as a single point directly. And the common
curve-based representation is not structured, thus is difficult to
perform matching or define cost function. To retain complete
information, a simple way is using all of the detected points to
represent a curb. However, the scale of the point set is too large
which consumes considerable memory resources. Therefore we
calculate the average position of all points in a cell and represent
the cell using this single average point. This process reduces
the number of points from hundreds to tens and preserves the
majority of information.

3) Local Grid Map: How to represent curb in the map is
a remained problem to be solved. A better map representation
can significantly improve the utilization of curb information.
Currently, most of the works utilize only the relative distance
and angle between the vehicle and the curb while most of the
information is lost. To address the above problems, we propose a
novel map representation for curbs. In the mapping thread, after
curb detection and curb point sampling, several curb points are
generated and further transformed onto the global curb map (see
the black lines in Fig. 6). However, these raw curb points can
not be directly used for localization and how to use the points
is the key problem. Unlike other intelligent robotics, vehicles
always move on the road. Thus, most of the regions in the global

Fig. 4. An example of local grid map. The left column of is the original curb
map and the right column is the local grid map. The larger the gray value, the
larger the value in the cell.

map are useless. Based on the above consideration, the global
map is broken into a set of local grid maps along the road and
each local grid map has its local coordinate frame and a global
location (xM , yM , θM ). The spacial size of the local grid map
is chosen to be the receptive field of LiDAR. The resolution of
the local grid map should be the same as the resolution of the
grid for curb detection. As shown in Eq. 11, the value in each
cell is calculated using a inverse distance function.

value = max

{
1

1 + αd1
, . . . ,

1
1 + αdn

}
(11)

where di represent the distance of the cell to the closest curb
point,n is the number of curb points andα is a control coefficient
(α = 4 in our implementation).

Two examples of local grid maps can be seen in Fig. 4. The
further the cell away from the curve, the smaller the value in it
and maximum value in the grid map is 1.

4) Curb Cost Function: As mentioned before, the global map
is broken into a set of local grid maps. Given the rough pose
estimation from pole localization, nearest neighbor search is
performed to get the corresponding local grid map. In order to
further improve the efficiency of the algorithm, we randomly
sample N points from the pre-sampled curb points and N
should strike a balance between accuracy and efficiency. In our
implementation, N is set to 10 according to the localization
result. Then the sampled curb points are projected onto the local
grid map frame based on the rough pose estimation from pole lo-
calization block. The next step is to get the value of the local grid
map at the projected location. We adopt a bicubic interpolation
method like [30] instead of simply rounding the position to get
the corresponding value. The interpolation method is convenient
to implement with the help of Ceres-solver [33].

Suppose there are N sampled curb points and the projected
location of the i− th curb point is Yi, f(Y ) represents the
interpolation function, the curb cost function can be calculated
as Eq. 12. Note that f(Yi) ≤ 1 according to the definition of the
value in the local grid map.

Lc = N −
N∑
i=1

f(Yi) (12)

Compared to the methods using only the relative distance and
angle between the vehicle and the curb, our map representation
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Fig. 5. The ground-truth vehicle trajectories and the localization results on 3
sequences in KITTI dataset. The blue points represent the poles in the global map.
The red lines are the localization results and the green lines are the ground-truth
vehicle trajectories. We also perform a partial zoom to better visualize the results.
(a) Sequence:0009 (b) Sequence:0011 (c) Sequence:0096.

is more complete and precise. Our representation works with
curbs of various shapes, straight or curved curb does not affect
the process of our method while the method based on the relative
distance and angle can only be applied to straight curbs. Almost
all of the geometric features of curbs (e.g., distance, curvature
and angle) can be presented in our local grid map.

D. Pole-Curb Fusion Block

The process of the pole-curb fusion block is presented on
the right column of Fig. 1. We utilize a non-linear optimiza-
tion method which significantly simplifies the fusion. Pole cost
function (Lp) and curb cost function (Lc) are obtained from pole
localization block and curb localization block, respectively. The
final cost function L is a combination of Lp and Lc,

L = Lp + βLc (13)

where β is a coefficient that controls the weight of pole cost
function and curb cost function, which will be further discussed
in the experiments.

The non-linear optimization method receives L as cost func-
tion with the rough vehicle pose estimation as initialization and
then generates the refined vehicle pose. As mentioned before,
the whole system is based on the pole localization block and the
system can work without curb and L = Lp in this case.

E. Exception Handling

The above situation is the normal situation of the localization
system, however, there are several exceptions to be handled
to improve the robustness of the system. The first is that the
stability of the BnB-based pole localization is unsatisfied when
the number of detected poles is small. The BnB-based search
algorithm is based on the generated TIFs and the matching
result is unreliable when the number of TIFs is not sufficient. An
extreme case is that there is only one pole detected, then there is
no TIF generated and the algorithm will not work. To solve this
problem, we utilize a similar local grid map-based method like
curb-based localization when the number of detected poles is
less than a threshold εn. We just replace the curb points with the
pole points, others else are the same as curb-based localization.
And the vehicle pose for projection and local grid map search is
set to the vehicle pose of last frame. The second exception is that
there will be short areas without poles. In this case, we simply
adopt uniform motion model to estimate the current vehicle pose
based on the pose of historical frame.

IV. EXPERIMENTS

To demonstrate the performance of the proposed pole-curb
fusion vehicle localization system, we performed several exper-
iments. Our experiments can be divided into two parts: pole-
based localization and pole-curb fusion-based localization. For
pole-based localization, we performed experiments on KITTI
dataset [34] and our self-collected TJ-TiEV dataset. For pole-
curb fusion localization, we performed experiments only on
TJ-TiEV dataset. All the experiments are implemented using
ROS (Robot Operating System). PCL toolkit [35] and Ceres-
solver [33] are utilized to perform point cloud processing and
non-linear optimization, respectively. The computing platform
is a PC with Intel Core i7-9750H CPU at the clock speed of
2.60 Hz.
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Fig. 6. The ground-truth vehicle trajectories and the localization results on 4 sequences of TJ-TiEV dataset. The blue points represent the poles and the black
line represents curb in the global map. The red lines are the localization results of our pole-curb fusion localization system and the green lines are the ground-truth
vehicle trajectories. (a) Sequence1: Straight (b) Sequence2: Small angle turn (c) Sequence3: Right-angle turn (d) Sequence4: Continuous turn.

A. Datasets

1) KITTI Dataset: KITTI dataset is one of the most im-
portant datasets in the field of autonomous driving. The
LiDAR sensor used in KITTI dataset is Velodyne HDL-
64E, which is mounted on the roof of the vehicle. Here
we selected 3 sequences in the City scene of raw data
in KITTI dataset, namely: 2011_09_26_drive_0009 (0009),
2011_09_26_drive_0011 (0011) and 2011_09_26_drive_0096
(0096). All of the selected sequences are recorded in typical
city highways with street trees on both sides and the vehicle
trajectories can be seen in Fig. 5.

2) TJ-TiEV Dataset: To evaluate the proposed pole-curb fu-
sion vehicle localization system, we collected our own TJ-TiEV
dataset [36]. The platform for data collection is TiEV from
Tongji University and the data collection scenario is located in
the Jiading campus of Tongji University. Two Velodyne VLP-16
LiDAR sensors are used here, one of which is mounted on the
roof for pole detection and the other is mounted on the lower right
front side of the vehicle for curb detection. The data collection
platform and the mounting location can be seen in the left column
of Fig. 1. Here we selected 4 sequences in TJ-TiEV dataset to
evaluate the proposed localization system. As shown in Fig. 6,

the 4 sequences cover 4 different shaped trajectories: straight,
small-angle turn, right-angle turn and continuous turn, which
cover most situations during normal vehicle driving.

B. Evaluation

The accuracy of our localization system is evaluated using root
mean square error (RMSE) in position (RMSEpos), yaw angle
(RMSEyaw), longitudinal (RMSElon) and lateral (RMSElat)
direction. Mean absolute errors (Δpos,Δyaw,Δlon andΔlat) are
also provided for reference. The efficiency is evaluated using
average runtime of one frame. In order to concentrate on the
vehicle position estimation process, we exclude the runtime for
pole detection and curb detection from the final runtime for
evaluation.

C. Experiments Settings

As we mentioned before, the localization system can work
well without curbs. To evaluate the performance of the proposed
method using only poles as landmark, we performed experi-
ments on the 3 sequences on KITTI dataset and 4 sequences of
TJ-TiEV dataset. The qualitative results on KITTI dataset can
be seen in Fig. 5 and the red lines (localization results) and the
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TABLE II
THE LOCALIZATION PERFORMANCE OF POLE-BASED LOCALIZATION ON KITTI DATASET

TABLE III
THE LOCALIZATION PERFORMANCE OF POLE-BASED AND POLE-CURB FUSION LOCALIZATION ON TJ-TIEV DATASET

green lines (ground-truth vehicle trajectories) roughly coincide.
The detailed performance on the two datasets are displayed in
Table II and III, respectively.

To demonstrate the performance of the whole pole-curb fusion
system, we also performed experiments on TJ-TiEV dataset with
both poles and curbs as landmark. The qualitative and detailed
results are shown in Fig. 6 and Table III. The initial pose of
vehicle is known by default in all experiments.

D. Performance Analysis

1) Accuracy: As shown in Table II, the maximum RMSE in
position and yaw angle of the 3 sequences in KITTI dataset are
0.262 m and 0.688 ◦, respectively. The RMSE in longitudinal
direction and lateral direction are controlled within 0.20 m and
0.22 m. On TJ-TiEV dataset, when poles are the only landmark,
the maximum RMSE in position is 0.211 m and in yaw angle is
0.453 ◦. When curbs are introduced, the accuracy for position,
longitudinal and lateral direction are basically all improved.
The maximum RMSE in position and yaw angle are reduced to
0.199 m and 0.400 ◦, respectively. The most obvious sequence is
sequence 3, the RMSE in position, longitudinal and lateral direc-
tion are decreased by 0.02 m, 0.014 m and 0.014 m respectively.
For the other 3 sequences, the accuracy improvement in the
lateral direction is apparently more than that in the longitudinal
direction. This also matches our intuition: curbs mainly provide
lateral constraint for vehicle localization.

2) Efficiency: The average runtime (without pole and curb
detection) is displayed in Table IV. When only poles are used
as landmark, the average runtime is controlled within 7 ms.
When curbs are fused in the localization system, the runtime
reached about 15 ms. Thanks to the motion decoupling method,
our localization system achieves high efficiency even with the
BnB-based global optimization algorithm. Although the intro-
duction of curbs decreases the efficiency, the average runtime
is also acceptable compared to the typical 10 Hz frame rate of
LiDAR.

3) Comparison With Point Cloud Matching-Based Method:
To compare the proposed pole-curb fusion based localization

TABLE IV
THE RUNTIME OF OUR LOCALIZATION SYSTEM (WITHOUT POLE

DETECTION AND CURB DETECTION)

TABLE V
LOCALIZATION PERFORMANCE OF THE PROPOSED METHOD AND POINT

CLOUD MATCHING-BASED METHOD

system with typical point cloud matching-based method, we
generate a global dense point cloud map using the ground truth
vehicle pose and then perform point cloud registration in the
local point cloud map to obtain the vehicle pose. To improve
the robustness of the registration, we extract FPFH features [37]
from point clouds and adopt RANSAC [38] to calculate relative
transformation. The experiments are performed on 4 sequences
of TJ-TiEV dataset and we calculate the average value for better
comparison. The results are shown in Table V and we denote the
point cloud matching-based method as PCM. According to the
results, the proposed method achieves comparable localization
accuracy to point cloud matching-based method. However, since
the proposed method only requires lightweight landmark map
rather than dense point cloud map, the map storage of our method
requires only about 1/90 memory of point cloud matching-based
method.
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Fig. 7. Localization performance with different coefficients β.

Fig. 8. Localization performance with different thresholds ε.

4) Hyperparameters Analysis: There are two import hyper-
paramters in the proposed localization system, namely the co-
efficient β in Eq. 13 and the threshold ε in Eq. 4. We perform
experiments with different hyperparameters on Sequence 1 of
Tj-TiEV dataset to analyze the effects. (a) Coefficient β: The
coefficient β controls the contribution of the pole and curb
cost function on the final localization results. The localization
performance with differentβ is shown in Fig. 7. According to the
results, the lateral localization error decreases with increasing β,
which is consistent with our intuition that curbs mainly provide
lateral constraints. However, due to possible detection errors,
large β may cause some interference in the final optimization,
thus reducing the overall localization accuracy. (b) Threshold
ε: The threshold ε should be determined by the error of the
pole detection algorithm. If ε is much smaller than the detection
error, the number of selected matched pairs will be small or
even zero, which can result in large localization errors and even
cause failure results. However, a large ε will make the corre-
spondence set contain inaccurate matching pairs, thus reducing
the localization accuracy. Based on the above consideration,
we perform experiments with different thresholds ε to compare
the performance and experiment results are displayed in Fig. 8.
According to the results, ε = 0.1m is a proper choice to achieve
better performance.

5) Robustness: Due to the global optimal property of the
BnB-based algorithm, the localization system avoids falling

TABLE VI
LOCALIZATION PERFORMANCE WITH PERTURBATIONS

into local optima, which leads to better robustness. We perform
experiments on Sequence 1 by adding random perturbations to
the pole detection results to demonstrate the robustness. We
introduce 3 perturbations here: (a) Random noise (RN): random
Gaussian noise with mean 0 and variance 0.1 is added to the pole
detection results. (b) Random discard (RD): 20% pole detec-
tion results are randomly discarded. (c) Random add (RA):
we randomly add 20% error detection results for interference.
Besides, we also perform experiments with the combination of
the 3 perturbations: RN+RD, RN+RA, RA+RD, RN+RA+RD.
The experiment results are shown in Table VI. According to
the results, the introduced perturbations will degrade the perfor-
mance to some extent, but none of them will cause failure results,
which demonstrates the robustness of the proposed algorithm.

V. CONCLUSION AND FUTURE WORK

In this paper we proposed a pole-curb fusion vehicle local-
ization system. The BnB-based pole localization tackles the
intractable data association problem of pole well where global
optimization method brings better robustness and motion decou-
pling greatly improves the efficiency. The proposed local grid
map-based curb localization provides a novel representation of
curbs which is more complete and precise. The experiments on
KITTI dataset and TJ-TiEV dataset demonstrates the perfor-
mance of the proposed method. The pole-curb fusion system
achieves a RMSE in position of less than 0.20 m and in yaw
angle of less than 0.40 ◦ in TJ-TiEV dataset.

The BnB-based pole localization is convenient to be extended
to various landmarks that can be represented as 2D points and
the local grid map-based representation can be used on other
landmarks which can be formed as a curve or an area. The two
methods covers almost all of the 2D landmarks for vehicle local-
ization. Moreover, explicit correspondences of these landmarks
are not required for the two methods. Thus, our future work is to
extend the proposed system to a more complete system which
contains more landmarks such as road markings, traffic sign or
just a segment of point cloud.
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