Polar Codes: Basics and Recent Advances

Mustafa Cemil Coşkun, mustafa.coskun@tum.de Technical University of Munich (TUM) German Aerospace Center (DLR)

INCOMING School on Massive IoT, Distributed and Decentralized Information Processing November 5, 2020

Polar Codes

Channel Polarization: A Method for Constructing Capacity-Achieving Codes for Symmetric Binary-Input Memoryless Channels
 Erdal Arıkan, Senior Member, IEEE

Abstract-A method is proposed, called channel polarization, to construct code sequences that achieve the symmetric capacity $I(W)$ of any given binary-input discrete memoryless channel (B-DMC) W. The symmetric capacity is the highest rate achievable subject to using the input letters of the channel with equal probability. Channel polarization refers to the fact that it is pos-
A. Preliminaries

We write $W: \mathcal{X} \rightarrow \mathcal{Y}$ to denote a generic B-DMC with input alphabet \mathcal{X}, output alphabet \mathcal{Y}, and transition probabilities $W(y \mid x), x \in \mathcal{X}, y \in \mathcal{Y}$. The input alphabet \mathcal{X} will always be $\{0,1\}$, the output alphabet and the transition probabilities may

- They are capacity-achieving on binary memoryless symmetric (BMS) channels with low encoding/decoding complexity [Arı09].

Polar Codes

Channel Polarization: A Method for Constructing Capacity-Achieving Codes for Symmetric Binary-Input Memoryless Channels
 Erdal Arıkan, Senior Member, IEEE

Abstract-A method is proposed, called channel polarization, to construct code sequences that achieve the symmetric capacity $I(W)$ of any given binary-input discrete memoryless channel (B-DMC) W. The symmetric capacity is the highest rate achievable subject to using the input letters of the channel with equal probability. Channel polarization refers to the fact that it is pos-
A. Preliminaries

We write $W: \mathcal{X} \rightarrow \mathcal{Y}$ to denote a generic B-DMC with input alphabet \mathcal{X}, output alphabet \mathcal{Y}, and transition probabilities $W(y \mid x), x \in \mathcal{X}, y \in \mathcal{Y}$. The input alphabet \mathcal{X} will always be $\{0,1\}$, the output alphabet and the transition probabilities may

- They are capacity-achieving on binary memoryless symmetric (BMS) channels with low encoding/decoding complexity [Arı09].
- But successive cancellation (SC) decoding performs poorly for small blocks.

Successive List Cancellation Decoding

List Decoding of Polar Codes

Ido Tal, Member, IEEE and Alexander Vardy, Fellow, IEEE

Abstract-We describe a successive-cancellation list decoder for polar codes, which is a generalization of the classic successive cancellation decoder of Arikan. In the proposed list decoder L decoding paths are considered concurrently at each decoding stage, where L is an integer parameter. At the end of the decoding process, the most likely among the L paths is selected as the single codeword at the decoder output. Simulations show that the resulting performance is very close to that of maximumlikelihood decoding, even for moderate values of L. Alternatively, if a genie is allowed to pick the transmitted codeword from the if a genie is allowed to pick the trinsmited codeword fom the
list, the results are comparable with the performance of current state-of-the-art LDPC codes. We show that such a genie can be easily implemented using simple CRC precoding. The specific list-decoding algorithm that achieves this performance doubles the number of decoding paths for each information bit, and then uses a pruning procedure to discard all but the L most likely paths. However, straightforward implementation of this

Fig. 1. List-decoding performance for a polar code of length $n=2048$ and rate $R=0.5$ on the BPSK-modulated Gaussian channel. The code wa

- SC list (SCL) decoding with CRC and large list-size performs very well and matches maximum-likelihood (ML) [TV15].

Successive List Cancellation Decoding

List Decoding of Polar Codes

Ido Tal, Member, IEEE and Alexander Vardy, Fellow, IEEE

Abstract-We describe a successive-cancellation list decoder for polar codes, which is a generalization of the classic successive cancellation decoder of Arkan. In the proposed list decoder L decoding paths are considered concurrently at each decoding stage, where L is an integer parameter. At the end of the decoding process, the most likely among the L paths is selected as the single codeword at the decoder output. Simulations show that the resulting performance is very close to that of maximumlikelihood decoding, even for moderate values of L. Alternatively, if a genie is allowed to pick the transmitted codeword from the if a genie is allowed to pick the transmitted codeword from the state-of-the-art LDPC codes. We show that such a genie can be state-of-the-art LDPC codes. We shat a genie can be easily implemented using simple CRC precoding. The specific list-decoding algorithm that achieves this performance doubles the number of decoding paths for each information bit, and likely paths. However, straightforward implementation of this

Fig. 1. List-decoding performance for a polar code of length $n=2048$ and rate $R=0.5$ on the BPSK-modulated Gaussian channel. The code wa

- SC list (SCL) decoding with CRC and large list-size performs very well and matches maximum-likelihood (ML) [TV15].
- It can also be used to decode other codes (e.g., Reed-Muller codes).

Polar Codes with Dynamic Frozen Bits

Polar Subcodes

Peter Trifonov, Member, IEEE, and Vera Miloslavskaya, Member, IEEE

Abstract-An extension of polar codes is proposed, which allows some of the frozen symbols, called dynamic frozen symbols, to be data-dependent. A construction of polar codes with dynami frozen symbols, being subcodes of extended BCH codes, is pro posed. The proposed codes have higher minimum distance than classical polar codes, but still can be efficiently decoded using the successive cancellation algorithm and its extensions. The codes with Arikan, extended BCH and Reed-Solomon kernel are considered. The proposed codes are shown to outperform LDPC and turbo codes, as well as polar codes with CRC.

RM codes, and are therefore likely to provide better finite length performance. However, there are still no efficient MAP decoding algorithms for these codes.

It was suggested in [17] to construct subcodes of RM codes, which can be efficiently decoded by a recursive list decoding algorithm. In this paper we generalize this approach, and propose a code construction "in between" polar codes and EBCH codes. The proposed codes can be efficiently decoded using the technianes develoned in the area of nolar codina hut nrovide

- Later, polar codes were extended with the concept of dynamic frozen bits, which enabled state-of-art designs.

Polar Codes with Dynamic Frozen Bits

Polar Subcodes

Peter Trifonov, Member, IEEE, and Vera Miloslavskaya, Member, IEEE

Abstract-An extension of polar codes is proposed, which allows some of the frozen symbols, called dynamic frozen symbols, to be data-dependent. A construction of polar codes with dynami frozen symbols, being subcodes of extended BCH codes, is pro posed. The proposed codes have higher minimum distance than classical polar codes, but still can be efficiently decoded using the successive cancellation algorithm and its extensions. The codes with Arikan, extended BCH and Reed-Solomon kernel are con sidered. The proposed codes are shown to outperform LDPC and turbo codes, as well as polar codes with CRC.

RM codes, and are therefore likely to provide better finite length performance. However, there are still no efficient MAP decoding algorithms for these codes.

It was suggested in [17] to construct subcodes of RM codes, which can be efficiently decoded by a recursive list decoding algorithm. In this paper we generalize this approach, and propose a code construction "in between" polar codes and EBCH codes. The proposed codes can be efficiently decoded using the technianes develoned in the aren of nolar codina hut nrovide

- Later, polar codes were extended with the concept of dynamic frozen bits, which enabled state-of-art designs.
- It is also shown that any code can be decoded using SCL decoding, but some require very large complexity for a good performance.

$$
n=128, k=64
$$

$$
n=128, k=64
$$

$$
n=128, k=64
$$

$$
n=128, k=64
$$

Most of the curves can be obtained on pretty-good-codes.org. For the rest, send an e-mail.

Outline

(1) Overview of Polar Codes

2 Recent Advances in Polar Codes

- Binary Erasure Channel
(3) Conclusions

Outline

(1) Overview of Polar Codes

2) Recent Advances in Polar Codes

- Binary Erasure Channel

Conclusions

Easy Channels

Among all, there are channels for which it is easy to communicate optimally:

Easy Channels

Among all, there are channels for which it is easy to communicate optimally:

- Noiseless channels: The output Y determines the input X (i.e., $H(X \mid Y) \approx 0$).
- Useless channels: The output Y is independent from the input X (i.e., $H(X \mid Y) \approx 1$).

Easy Channels

Among all, there are channels for which it is easy to communicate optimally:

- Noiseless channels: The output Y determines the input X (i.e., $H(X \mid Y) \approx 0$).
- Useless channels: The output Y is independent from the input X (i.e., $H(X \mid Y) \approx 1$).

Channel polarization is a technique to convert any BMS channel to a mixture of easy channels, asymptotically in the block length.

Easy Channels

Among all, there are channels for which it is easy to communicate optimally:

- Noiseless channels: The output Y determines the input X (i.e., $H(X \mid Y) \approx 0$).
- Useless channels: The output Y is independent from the input X (i.e., $H(X \mid Y) \approx 1$).

Channel polarization is a technique to convert any BMS channel to a mixture of easy channels, asymptotically in the block length.

- The technique is lossless in terms of mutual information (required to achieve the capacity).

Easy Channels

Among all, there are channels for which it is easy to communicate optimally:

- Noiseless channels: The output Y determines the input X (i.e., $H(X \mid Y) \approx 0$).
- Useless channels: The output Y is independent from the input X (i.e., $H(X \mid Y) \approx 1$).

Channel polarization is a technique to convert any BMS channel to a mixture of easy channels, asymptotically in the block length.

- The technique is lossless in terms of mutual information (required to achieve the capacity).
- The technique is of low complexity (there exists an encoder-decoder pair, realizing the technique with $\mathcal{O}(N \log N)$ complexity, where N is the block length).

Example: Binary Erasure Channel

Given two independent copies of $\operatorname{BEC}(\epsilon) W:\{0,1\} \rightarrow\{0,1, ?\}$, i.e.,

$$
Y= \begin{cases}X & \text { w.p. } 1-\epsilon \\ ? & \text { w.p. } \epsilon\end{cases}
$$

Example: Binary Erasure Channel

Given two independent copies of $\operatorname{BEC}(\epsilon) W:\{0,1\} \rightarrow\{0,1$, ?\}, i.e.,

$$
Y= \begin{cases}X & \text { w.p. } 1-\epsilon \\ ? & \text { w.p. } \epsilon\end{cases}
$$

we set

$$
\begin{aligned}
& X_{1}=U_{1} \oplus U_{2} \\
& X_{2}=U_{2}
\end{aligned}
$$

Example: Binary Erasure Channel

Given two independent copies of $\operatorname{BEC}(\epsilon) W:\{0,1\} \rightarrow\{0,1$, ?\}, i.e.,

$$
Y= \begin{cases}X & \text { w.p. } 1-\epsilon \\ ? & \text { w.p. } \epsilon\end{cases}
$$

we set

$$
\begin{aligned}
& X_{1}=U_{1} \oplus U_{2} \\
& X_{2}=U_{2}
\end{aligned}
$$

$$
\begin{gathered}
X_{1}^{2}=U_{1}^{2} \mathbf{G}_{2} \\
\mathbf{G}_{2} \triangleq\left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right)
\end{gathered}
$$

- Estimate U_{1} by observing the output $\left(Y_{1}, Y_{2}\right)$:

$$
\left(Y_{1}, Y_{2}\right)=\{
$$

Example: Binary Erasure Channel

Given two independent copies of $\operatorname{BEC}(\epsilon) W:\{0,1\} \rightarrow\{0,1, ?\}$, i.e.,

$$
Y= \begin{cases}X & \text { w.p. } 1-\epsilon \\ ? & \text { w.p. } \epsilon\end{cases}
$$

we set

$$
\begin{aligned}
& X_{1}=U_{1} \oplus U_{2} \\
& X_{2}=U_{2}
\end{aligned}
$$

$$
\begin{gathered}
X_{1}^{2}=U_{1}^{2} \mathbf{G}_{2} \\
\mathbf{G}_{2} \triangleq\left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right)
\end{gathered}
$$

- Estimate U_{1} by observing the output $\left(Y_{1}, Y_{2}\right)$:

$$
\left(Y_{1}, Y_{2}\right)=\left\{\begin{array}{l}
\left(U_{1} \oplus U_{2}, U_{2}\right) \text { w.p. }(1-\epsilon)^{2} \\
\end{array}\right.
$$

Example: Binary Erasure Channel

Given two independent copies of $\operatorname{BEC}(\epsilon) W:\{0,1\} \rightarrow\{0,1, ?\}$, i.e.,

$$
Y= \begin{cases}X & \text { w.p. } 1-\epsilon \\ ? & \text { w.p. } \epsilon\end{cases}
$$

we set

$$
\begin{aligned}
& X_{1}=U_{1} \oplus U_{2} \\
& X_{2}=U_{2}
\end{aligned}
$$

$$
\begin{gathered}
X_{1}^{2}=U_{1}^{2} \mathbf{G}_{2} \\
\mathbf{G}_{2} \triangleq\left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right)
\end{gathered}
$$

- Estimate U_{1} by observing the output $\left(Y_{1}, Y_{2}\right)$:

$$
\left(Y_{1}, Y_{2}\right)=\left\{\begin{array}{l}
\left(U_{1} \oplus U_{2}, U_{2}\right) \text { w.p. }(1-\epsilon)^{2} \\
\end{array}\right.
$$

Example: Binary Erasure Channel

Given two independent copies of a $\operatorname{BEC}(\epsilon) W:\{0,1\} \rightarrow\{0,1$, ? $\}$, i.e.,

$$
Y= \begin{cases}X & \text { w.p. } 1-\epsilon \\ ? & \text { w.p. } \epsilon\end{cases}
$$

we set

$$
\begin{aligned}
& X_{1}=U_{1} \oplus U_{2} \\
& X_{2}=U_{2}
\end{aligned}
$$

$$
\begin{gathered}
X_{1}^{2}=U_{1}^{2} \mathbf{G}_{2} \\
\mathbf{G}_{2} \triangleq\left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right)
\end{gathered}
$$

- Estimate U_{1} by observing the output $\left(Y_{1}, Y_{2}\right)$:

$$
\left(Y_{1}, Y_{2}\right)= \begin{cases}\left(U_{1} \oplus U_{2}, U_{2}\right) & \text { w.p. }(1-\epsilon)^{2} \\ \left(?, U_{2}\right) & \text { w.p. } \epsilon(1-\epsilon) \\ & \end{cases}
$$

Example: Binary Erasure Channel

Given two independent copies of a $\operatorname{BEC}(\epsilon) W:\{0,1\} \rightarrow\{0,1$, ? $\}$, i.e.,

$$
Y= \begin{cases}X & \text { w.p. } 1-\epsilon \\ ? & \text { w.p. } \epsilon\end{cases}
$$

we set

$$
\begin{aligned}
& X_{1}=U_{1} \oplus U_{2} \\
& X_{2}=U_{2}
\end{aligned}
$$

$$
\begin{gathered}
X_{1}^{2}=U_{1}^{2} \mathbf{G}_{2} \\
\mathbf{G}_{2} \triangleq\left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right)
\end{gathered}
$$

- Estimate U_{1} by observing the output $\left(Y_{1}, Y_{2}\right)$:

$$
\left(Y_{1}, Y_{2}\right)= \begin{cases}\left(U_{1} \oplus U_{2}, U_{2}\right) & \text { w.p. }(1-\epsilon)^{2} \\ \left(?, U_{2}\right) & \text { w.p. } \epsilon(1-\epsilon) \times \\ & \end{cases}
$$

Example: Binary Erasure Channel

Given two independent copies of a $\operatorname{BEC}(\epsilon) W:\{0,1\} \rightarrow\{0,1$, ? $\}$, i.e.,

$$
Y= \begin{cases}X & \text { w.p. } 1-\epsilon \\ ? & \text { w.p. } \epsilon\end{cases}
$$

we set

$$
\begin{aligned}
& X_{1}=U_{1} \oplus U_{2} \\
& X_{2}=U_{2}
\end{aligned}
$$

$$
\begin{gathered}
X_{1}^{2}=U_{1}^{2} \mathbf{G}_{2} \\
\mathbf{G}_{2} \triangleq\left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right)
\end{gathered}
$$

- Estimate U_{1} by observing the output $\left(Y_{1}, Y_{2}\right)$:

$$
\left(Y_{1}, Y_{2}\right)= \begin{cases}\left(U_{1} \oplus U_{2}, U_{2}\right) & \text { w.p. }(1-\epsilon)^{2} \\ \left(?, U_{2}\right) & \text { w.p. } \epsilon(1-\epsilon) \times \\ \left(U_{1} \oplus U_{2}, ?\right) & \text { w.p. }(1-\epsilon) \epsilon\end{cases}
$$

Example: Binary Erasure Channel

Given two independent copies of a $\operatorname{BEC}(\epsilon) W:\{0,1\} \rightarrow\{0,1$, ? $\}$, i.e.,

$$
Y= \begin{cases}X & \text { w.p. } 1-\epsilon \\ ? & \text { w.p. } \epsilon\end{cases}
$$

we set

$$
\begin{aligned}
& X_{1}=U_{1} \oplus U_{2} \\
& X_{2}=U_{2}
\end{aligned}
$$

$$
\begin{gathered}
X_{1}^{2}=U_{1}^{2} \mathbf{G}_{2} \\
\mathbf{G}_{2} \triangleq\left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right)
\end{gathered}
$$

- Estimate U_{1} by observing the output $\left(Y_{1}, Y_{2}\right)$:

$$
\left(Y_{1}, Y_{2}\right)= \begin{cases}\left(U_{1} \oplus U_{2}, U_{2}\right) & \text { w.p. }(1-\epsilon)^{2} \\ \left(?, U_{2}\right) & \text { w.p. } \epsilon(1-\epsilon) \times \\ \left(U_{1} \oplus U_{2}, ?\right) & \text { w.p. }(1-\epsilon) \epsilon \times\end{cases}
$$

Example: Binary Erasure Channel

Given two independent copies of a $\operatorname{BEC}(\epsilon) W:\{0,1\} \rightarrow\{0,1$, ? $\}$, i.e.,

$$
Y= \begin{cases}X & \text { w.p. } 1-\epsilon \\ ? & \text { w.p. } \epsilon\end{cases}
$$

we set

$$
\begin{aligned}
& X_{1}=U_{1} \oplus U_{2} \\
& X_{2}=U_{2}
\end{aligned}
$$

$$
\begin{gathered}
X_{1}^{2}=U_{1}^{2} \mathbf{G}_{2} \\
\mathbf{G}_{2} \triangleq\left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right)
\end{gathered}
$$

- Estimate U_{1} by observing the output $\left(Y_{1}, Y_{2}\right)$:

$$
\left(Y_{1}, Y_{2}\right)= \begin{cases}\left(U_{1} \oplus U_{2}, U_{2}\right) & \text { w.p. }(1-\epsilon)^{2} \\ \left(?, U_{2}\right) & \text { w.p. } \epsilon(1-\epsilon) \times \\ \left(U_{1} \oplus U_{2}, ?\right) & \text { w.p. }(1-\epsilon) \epsilon \times \\ (?, ?) & \text { w.p. } \epsilon^{2}\end{cases}
$$

Example: Binary Erasure Channel

Given two independent copies of a $\operatorname{BEC}(\epsilon) W:\{0,1\} \rightarrow\{0,1$, ? $\}$, i.e.,

$$
Y= \begin{cases}X & \text { w.p. } 1-\epsilon \\ ? & \text { w.p. } \epsilon\end{cases}
$$

we set

$$
\begin{aligned}
& X_{1}=U_{1} \oplus U_{2} \\
& X_{2}=U_{2}
\end{aligned}
$$

$$
\begin{gathered}
X_{1}^{2}=U_{1}^{2} \mathbf{G}_{2} \\
\mathbf{G}_{2} \triangleq\left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right)
\end{gathered}
$$

- Estimate U_{1} by observing the output $\left(Y_{1}, Y_{2}\right)$:

$$
\left(Y_{1}, Y_{2}\right)=\left\{\begin{array}{lll}
\left(U_{1} \oplus U_{2}, U_{2}\right) & \text { w.p. }(1-\epsilon)^{2} & \\
\left(?, U_{2}\right) & \text { w.p. } \epsilon(1-\epsilon) \times \\
\left(U_{1} \oplus U_{2}, ?\right) & \text { w.p. }(1-\epsilon) \epsilon \times \\
(?, ?) & \text { w.p. } \epsilon^{2} & \times
\end{array}\right.
$$

Example: Binary Erasure Channel

Given two independent copies of a $\operatorname{BEC}(\epsilon) W:\{0,1\} \rightarrow\{0,1$, ?\}, i.e.,

$$
Y= \begin{cases}X & \text { w.p. } 1-\epsilon \\ ? & \text { w.p. } \epsilon\end{cases}
$$

we set

$$
\begin{aligned}
& X_{1}=U_{1} \oplus U_{2} \\
& X_{2}=U_{2}
\end{aligned}
$$

$$
\begin{gathered}
X_{1}^{2}=U_{1}^{2} \mathbf{G}_{2} \\
\mathbf{G}_{2} \triangleq\left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right)
\end{gathered}
$$

- U_{1} is erased w.p. $\left(1-(1-\epsilon)^{2}\right)$.

Example: Binary Erasure Channel

Given two independent copies of a $\operatorname{BEC}(\epsilon) W:\{0,1\} \rightarrow\{0,1, ?\}$, i.e.,

$$
Y= \begin{cases}X & \text { w.p. } 1-\epsilon \\ ? & \text { w.p. } \epsilon\end{cases}
$$

we set

$$
\begin{aligned}
& X_{1}=U_{1} \oplus U_{2} \\
& X_{2}=U_{2}
\end{aligned}
$$

- U_{1} is erased w.p. $\left(1-(1-\epsilon)^{2}\right)$.
- Assume now that U_{1} is given. Estimate U_{2} by observing $\left(Y_{1}, Y_{2}, U_{1}\right)$:

$$
\left(Y_{1}, Y_{2}, U_{1}\right)=\{
$$

$$
\begin{gathered}
X_{1}^{2}=U_{1}^{2} \mathbf{G}_{2} \\
\mathbf{G}_{2} \triangleq\left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right)
\end{gathered}
$$

Example: Binary Erasure Channel

Given two independent copies of a $\operatorname{BEC}(\epsilon) W:\{0,1\} \rightarrow\{0,1, ?\}$, i.e.,

$$
Y= \begin{cases}X & \text { w.p. } 1-\epsilon \\ ? & \text { w.p. } \epsilon\end{cases}
$$

we set

$$
\begin{aligned}
& X_{1}=U_{1} \oplus U_{2} \\
& X_{2}=U_{2}
\end{aligned}
$$

$$
\begin{gathered}
X_{1}^{2}=U_{1}^{2} \mathbf{G}_{2} \\
\mathbf{G}_{2} \triangleq\left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right)
\end{gathered}
$$

- U_{1} is erased w.p. $\left(1-(1-\epsilon)^{2}\right)$.
- Assume now that U_{1} is given. Estimate U_{2} by observing $\left(Y_{1}, Y_{2}, U_{1}\right)$:

$$
\left(Y_{1}, Y_{2}, U_{1}\right)=\left\{\begin{array}{l}
\left(U_{1} \oplus U_{2}, U_{2}, U_{1}\right) \text { w.p. }(1-\epsilon)^{2} \\
\end{array}\right.
$$

Example: Binary Erasure Channel

Given two independent copies of a $\operatorname{BEC}(\epsilon) W:\{0,1\} \rightarrow\{0,1, ?\}$, i.e.,

$$
Y= \begin{cases}X & \text { w.p. } 1-\epsilon \\ ? & \text { w.p. } \epsilon\end{cases}
$$

we set

$$
\begin{aligned}
& X_{1}=U_{1} \oplus U_{2} \\
& X_{2}=U_{2}
\end{aligned}
$$

$$
\begin{gathered}
X_{1}^{2}=U_{1}^{2} \mathbf{G}_{2} \\
\mathbf{G}_{2} \triangleq\left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right)
\end{gathered}
$$

- U_{1} is erased w.p. $\left(1-(1-\epsilon)^{2}\right)$.
- Assume now that U_{1} is given. Estimate U_{2} by observing $\left(Y_{1}, Y_{2}, U_{1}\right)$:

$$
\left(Y_{1}, Y_{2}, U_{1}\right)=\left\{\begin{array}{l}
\left(U_{1} \oplus U_{2}, U_{2}, U_{1}\right) \text { w.p. }(1-\epsilon)^{2} \\
\end{array}\right.
$$

Example: Binary Erasure Channel

Given two independent copies of a $\operatorname{BEC}(\epsilon) W:\{0,1\} \rightarrow\{0,1, ?\}$, i.e.,

$$
Y= \begin{cases}X & \text { w.p. } 1-\epsilon \\ ? & \text { w.p. } \epsilon\end{cases}
$$

we set

$$
\begin{aligned}
& X_{1}=U_{1} \oplus U_{2} \\
& X_{2}=U_{2}
\end{aligned}
$$

$$
\begin{gathered}
X_{1}^{2}=U_{1}^{2} \mathbf{G}_{2} \\
\mathbf{G}_{2} \triangleq\left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right)
\end{gathered}
$$

- U_{1} is erased w.p. $\left(1-(1-\epsilon)^{2}\right)$.
- Assume now that U_{1} is given. Estimate U_{2} by observing $\left(Y_{1}, Y_{2}, U_{1}\right)$:

$$
\left(Y_{1}, Y_{2}, U_{1}\right)= \begin{cases}\left(U_{1} \oplus U_{2}, U_{2}, U_{1}\right) & \text { w.p. }(1-\epsilon)^{2} \\ \left(?, U_{2}, U_{1}\right) & \text { w.p. } \epsilon(1-\epsilon) \\ & \end{cases}
$$

Example: Binary Erasure Channel

Given two independent copies of a $\operatorname{BEC}(\epsilon) W:\{0,1\} \rightarrow\{0,1, ?\}$, i.e.,

$$
Y= \begin{cases}X & \text { w.p. } 1-\epsilon \\ ? & \text { w.p. } \epsilon\end{cases}
$$

we set

$$
\begin{aligned}
& X_{1}=U_{1} \oplus U_{2} \\
& X_{2}=U_{2}
\end{aligned}
$$

$$
\begin{gathered}
X_{1}^{2}=U_{1}^{2} \mathbf{G}_{2} \\
\mathbf{G}_{2} \triangleq\left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right)
\end{gathered}
$$

- U_{1} is erased w.p. $\left(1-(1-\epsilon)^{2}\right)$.
- Assume now that U_{1} is given. Estimate U_{2} by observing $\left(Y_{1}, Y_{2}, U_{1}\right)$:

$$
\left(Y_{1}, Y_{2}, U_{1}\right)= \begin{cases}\left(U_{1} \oplus U_{2}, U_{2}, U_{1}\right) & \text { w.p. }(1-\epsilon)^{2} \\ \left(?, U_{2}, U_{1}\right) & \text { w.p. } \epsilon(1-\epsilon)^{2} \\ & \end{cases}
$$

Example: Binary Erasure Channel

Given two independent copies of a $\operatorname{BEC}(\epsilon) W:\{0,1\} \rightarrow\{0,1, ?\}$, i.e.,

$$
Y= \begin{cases}X & \text { w.p. } 1-\epsilon \\ ? & \text { w.p. } \epsilon\end{cases}
$$

we set

$$
\begin{aligned}
& X_{1}=U_{1} \oplus U_{2} \\
& X_{2}=U_{2}
\end{aligned}
$$

$$
\begin{gathered}
X_{1}^{2}=U_{1}^{2} \mathbf{G}_{2} \\
\mathbf{G}_{2} \triangleq\left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right)
\end{gathered}
$$

- U_{1} is erased w.p. $\left(1-(1-\epsilon)^{2}\right)$.
- Assume now that U_{1} is given. Estimate U_{2} by observing $\left(Y_{1}, Y_{2}, U_{1}\right)$:

$$
\left(Y_{1}, Y_{2}, U_{1}\right)= \begin{cases}\left(U_{1} \oplus U_{2}, U_{2}, U_{1}\right) & \text { w.p. }(1-\epsilon)^{2} \\ \left(?, U_{2}, U_{1}\right) & \text { w.p. } \epsilon(1-\epsilon) \\ \left(U_{1} \oplus U_{2}, ?, U_{1}\right) & \text { w.p. }(1-\epsilon) \epsilon\end{cases}
$$

Example: Binary Erasure Channel

Given two independent copies of a $\operatorname{BEC}(\epsilon) W:\{0,1\} \rightarrow\{0,1, ?\}$, i.e.,

$$
Y= \begin{cases}X & \text { w.p. } 1-\epsilon \\ ? & \text { w.p. } \epsilon\end{cases}
$$

we set

$$
\begin{aligned}
& X_{1}=U_{1} \oplus U_{2} \\
& X_{2}=U_{2}
\end{aligned}
$$

$$
\begin{gathered}
X_{1}^{2}=U_{1}^{2} \mathbf{G}_{2} \\
\mathbf{G}_{2} \triangleq\left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right)
\end{gathered}
$$

- U_{1} is erased w.p. $\left(1-(1-\epsilon)^{2}\right)$.
- Assume now that U_{1} is given. Estimate U_{2} by observing $\left(Y_{1}, Y_{2}, U_{1}\right)$:

$$
\left(Y_{1}, Y_{2}, U_{1}\right)= \begin{cases}\left(U_{1} \oplus U_{2}, U_{2}, U_{1}\right) & \text { w.p. }(1-\epsilon)^{2} \\ \left(?, U_{2}, U_{1}\right) & \text { w.p. } \epsilon(1-\epsilon) \\ \left(U_{1} \oplus U_{2}, ?, U_{1}\right) & \text { w.p. }(1-\epsilon) \epsilon\end{cases}
$$

Example: Binary Erasure Channel

Given two independent copies of a $\operatorname{BEC}(\epsilon) W:\{0,1\} \rightarrow\{0,1, ?\}$, i.e.,

$$
Y= \begin{cases}X & \text { w.p. } 1-\epsilon \\ ? & \text { w.p. } \epsilon\end{cases}
$$

we set

$$
\begin{aligned}
& X_{1}=U_{1} \oplus U_{2} \\
& X_{2}=U_{2}
\end{aligned}
$$

$$
\begin{gathered}
X_{1}^{2}=U_{1}^{2} \mathbf{G}_{2} \\
\mathbf{G}_{2} \triangleq\left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right)
\end{gathered}
$$

- U_{1} is erased w.p. $\left(1-(1-\epsilon)^{2}\right)$.
- Assume now that U_{1} is given. Estimate U_{2} by observing $\left(Y_{1}, Y_{2}, U_{1}\right)$:

$$
\left(Y_{1}, Y_{2}, U_{1}\right)= \begin{cases}\left(U_{1} \oplus U_{2}, U_{2}, U_{1}\right) & \text { w.p. }(1-\epsilon)^{2} \\ \left(?, U_{2}, U_{1}\right) & \text { w.p. } \epsilon(1-\epsilon) \\ \left(U_{1} \oplus U_{2}, ?, U_{1}\right) & \text { w.p. }(1-\epsilon) \epsilon \\ \left(?, ?, U_{1}\right) & \text { w.p. } \epsilon^{2}\end{cases}
$$

Example: Binary Erasure Channel

Given two independent copies of a $\operatorname{BEC}(\epsilon) W:\{0,1\} \rightarrow\{0,1, ?\}$, i.e.,

$$
Y= \begin{cases}X & \text { w.p. } 1-\epsilon \\ ? & \text { w.p. } \epsilon\end{cases}
$$

we set

$$
\begin{aligned}
& X_{1}=U_{1} \oplus U_{2} \\
& X_{2}=U_{2}
\end{aligned}
$$

$$
\begin{gathered}
X_{1}^{2}=U_{1}^{2} \mathbf{G}_{2} \\
\mathbf{G}_{2} \triangleq\left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right)
\end{gathered}
$$

- U_{1} is erased w.p. $\left(1-(1-\epsilon)^{2}\right)$.
- Assume now that U_{1} is given. Estimate U_{2} by observing $\left(Y_{1}, Y_{2}, U_{1}\right)$:

$$
\left(Y_{1}, Y_{2}, U_{1}\right)=\left\{\begin{array}{lll}
\left(U_{1} \oplus U_{2}, U_{2}, U_{1}\right) & \text { w.p. }(1-\epsilon)^{2} & \\
\left(?, U_{2}, U_{1}\right) & \text { w.p. } \epsilon(1-\epsilon) & \\
\left(U_{1} \oplus U_{2}, ?, U_{1}\right) & \text { w.p. }(1-\epsilon) \epsilon \\
\left(?, ?, U_{1}\right) & \text { w.p. } \epsilon^{2}
\end{array}\right.
$$

Example: Binary Erasure Channel

Given two independent copies of a $\operatorname{BEC}(\epsilon) W:\{0,1\} \rightarrow\{0,1$, ?\}, i.e.,

$$
Y= \begin{cases}X & \text { w.p. } 1-\epsilon \\ ? & \text { w.p. } \epsilon\end{cases}
$$

we set

$$
\begin{aligned}
& X_{1}=U_{1} \oplus U_{2} \\
& X_{2}=U_{2}
\end{aligned}
$$

- The input U_{1} is erased w.p. $\left(1-(1-\epsilon)^{2}\right)$.
- Given U_{1}, the input U_{2} is erased w.p. ϵ^{2}.

Example: Binary Erasure Channel

Given two independent copies of a $\operatorname{BEC}(\epsilon) W:\{0,1\} \rightarrow\{0,1$, ?\}, i.e.,

$$
Y= \begin{cases}X & \text { w.p. } 1-\epsilon \\ ? & \text { w.p. } \epsilon\end{cases}
$$

we set

$$
\begin{aligned}
& X_{1}=U_{1} \oplus U_{2} \\
& X_{2}=U_{2}
\end{aligned}
$$

- The input U_{1} is erased w.p. $\left(2 \epsilon-\epsilon^{2}\right)$.
- Given U_{1}, the input U_{2} is erased w.p. ϵ^{2}.

Example: Binary Erasure Channel

Given two independent copies of a $\operatorname{BEC}(\epsilon) W:\{0,1\} \rightarrow\{0,1, ?\}$, i.e.,

$$
Y= \begin{cases}X & \text { w.p. } 1-\epsilon \\ ? & \text { w.p. } \epsilon\end{cases}
$$

we set

$$
\begin{aligned}
& X_{1}=U_{1} \oplus U_{2} \\
& X_{2}=U_{2}
\end{aligned}
$$

- The input U_{1} is erased w.p. $\left(2 \epsilon-\epsilon^{2}\right)$, i.e., $H\left(U_{1} \mid Y_{1}^{2}\right)=2 \epsilon-\epsilon^{2}$.
- Given U_{1}, the input U_{2} is erased w.p. ϵ^{2}, i.e., $H\left(U_{2} \mid Y_{1}^{2} U_{1}\right)=\epsilon^{2}$.

Example: Binary Erasure Channel

Given two independent copies of $\operatorname{BEC}(\epsilon) W:\{0,1\} \rightarrow\{0,1, ?\}$, i.e.,

$$
Y= \begin{cases}X & \text { w.p. } 1-\epsilon \\ ? & \text { w.p. } \epsilon\end{cases}
$$

we set

$$
\begin{aligned}
& X_{1}=U_{1} \oplus U_{2} \\
& X_{2}=U_{2}
\end{aligned}
$$

$$
\begin{gathered}
X_{1}^{2}=U_{1}^{2} \mathbf{G}_{2} \\
\mathbf{G}_{2} \triangleq\left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right)
\end{gathered}
$$

- The input U_{1} is erased w.p. $\left(2 \epsilon-\epsilon^{2}\right)$, i.e., $H\left(U_{1} \mid Y_{1}^{2}\right)=2 \epsilon-\epsilon^{2}$.
- Given U_{1}, the input U_{2} is erased w.p. ϵ^{2}, i.e., $H\left(U_{2} \mid Y_{1}^{2} U_{1}\right)=\epsilon^{2}$.

Hence, we have

$$
2 \epsilon-\epsilon^{2} \geq H\left(X_{1} \mid Y_{1}\right)=\epsilon \geq \epsilon^{2} \quad \text { with equality if and only if } \epsilon \in\{0,1\}
$$

A Basic Transform: General BMS Channels

Given two independent copies of a BMS channel $W:\{0,1\} \rightarrow \mathcal{Y}$,

A Basic Transform: General BMS Channels

Given two independent copies of a BMS channel $W:\{0,1\} \rightarrow \mathcal{Y}$, set

$$
\begin{aligned}
& X_{1}=U_{1} \oplus U_{2} \\
& X_{2}=U_{2}
\end{aligned}
$$

A Basic Transform: General BMS Channels

Given two independent copies of a BMS channel $W:\{0,1\} \rightarrow \mathcal{Y}$, set

$$
\begin{aligned}
& X_{1}=U_{1} \oplus U_{2} \\
& X_{2}=U_{2}
\end{aligned}
$$

Let $H(W) \triangleq H\left(X_{1} \mid Y_{1}\right)$. As $\left(X_{1}, Y_{1}\right)$ is independent from $\left(X_{2}, Y_{2}\right)$, we write

$$
H\left(X_{1} \mid Y_{1}\right)+H\left(X_{2} \mid Y_{2}\right)=2 H(W)
$$

$$
\begin{gathered}
X_{1}^{2}=U_{1}^{2} \mathbf{G}_{2} \\
\mathbf{G}_{2} \triangleq\left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right)
\end{gathered}
$$

A Basic Transform: General BMS Channels

Given two independent copies of a BMS channel $W:\{0,1\} \rightarrow \mathcal{Y}$, set

$$
\begin{aligned}
& X_{1}=U_{1} \oplus U_{2} \\
& X_{2}=U_{2}
\end{aligned}
$$

Let $H(W) \triangleq H\left(X_{1} \mid Y_{1}\right)$. As $\left(X_{1}, Y_{1}\right)$ is independent from $\left(X_{2}, Y_{2}\right)$, we write

$$
H\left(X_{1} \mid Y_{1}\right)+H\left(X_{2} \mid Y_{2}\right)=2 H(W)=H\left(U_{1}^{2} \mid Y_{1}^{2}\right)
$$

$$
\begin{gathered}
X_{1}^{2}=U_{1}^{2} \mathbf{G}_{2} \\
\mathbf{G}_{2} \triangleq\left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right)
\end{gathered}
$$

A Basic Transform: General BMS Channels

Given two independent copies of a BMS channel $W:\{0,1\} \rightarrow \mathcal{Y}$, set

$$
\begin{aligned}
& X_{1}=U_{1} \oplus U_{2} \\
& X_{2}=U_{2}
\end{aligned}
$$

Let $H(W) \triangleq H\left(X_{1} \mid Y_{1}\right)$. As $\left(X_{1}, Y_{1}\right)$ is independent from $\left(X_{2}, Y_{2}\right)$, we write

$$
\begin{aligned}
H\left(X_{1} \mid Y_{1}\right)+H\left(X_{2} \mid Y_{2}\right)=2 H(W) & =H\left(U_{1}^{2} \mid Y_{1}^{2}\right) \\
& =H\left(U_{1} \mid Y_{1}^{2}\right)+H\left(U_{2} \mid Y_{1}^{2} U_{1}\right)
\end{aligned}
$$

$$
\begin{gathered}
X_{1}^{2}=U_{1}^{2} \mathbf{G}_{2} \\
\mathbf{G}_{2} \triangleq\left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right)
\end{gathered}
$$

A Basic Transform: General BMS Channels

Given two independent copies of a BMS channel $W:\{0,1\} \rightarrow \mathcal{Y}$, set

$$
\begin{aligned}
& X_{1}=U_{1} \oplus U_{2} \\
& X_{2}=U_{2}
\end{aligned}
$$

Let $H(W) \triangleq H\left(X_{1} \mid Y_{1}\right)$. As $\left(X_{1}, Y_{1}\right)$ is independent from $\left(X_{2}, Y_{2}\right)$, we write

$$
\begin{aligned}
H\left(X_{1} \mid Y_{1}\right)+H\left(X_{2} \mid Y_{2}\right)=2 H(W) & =H\left(U_{1}^{2} \mid Y_{1}^{2}\right) \\
& =H\left(U_{1} \mid Y_{1}^{2}\right)+H\left(U_{2} \mid Y_{1}^{2} U_{1}\right)
\end{aligned}
$$

$$
\begin{gathered}
X_{1}^{2}=U_{1}^{2} \mathbf{G}_{2} \\
\mathbf{G}_{2} \triangleq\left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right)
\end{gathered}
$$

Now consider the second term at the RHS:

$$
H\left(U_{2} \mid Y_{1} Y_{2} U_{1}\right) \leq H\left(U_{2} \mid Y_{2}\right)
$$

A Basic Transform: General BMS Channels

Given two independent copies of a BMS channel $W:\{0,1\} \rightarrow \mathcal{Y}$, set

$$
\begin{aligned}
& X_{1}=U_{1} \oplus U_{2} \\
& X_{2}=U_{2}
\end{aligned}
$$

Let $H(W) \triangleq H\left(X_{1} \mid Y_{1}\right)$. As $\left(X_{1}, Y_{1}\right)$ is independent from $\left(X_{2}, Y_{2}\right)$, we write

$$
\begin{aligned}
H\left(X_{1} \mid Y_{1}\right)+H\left(X_{2} \mid Y_{2}\right)=2 H(W) & =H\left(U_{1}^{2} \mid Y_{1}^{2}\right) \\
& =H\left(U_{1} \mid Y_{1}^{2}\right)+H\left(U_{2} \mid Y_{1}^{2} U_{1}\right)
\end{aligned}
$$

$$
\begin{gathered}
X_{1}^{2}=U_{1}^{2} \mathbf{G}_{2} \\
\mathbf{G}_{2} \triangleq\left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right)
\end{gathered}
$$

Now consider the second term at the RHS:

$$
H\left(U_{2} \mid Y_{1} Y_{2} U_{1}\right) \leq H\left(U_{2} \mid Y_{2}\right)
$$

A Basic Transform: General BMS Channels

Given two independent copies of a BMS channel $W:\{0,1\} \rightarrow \mathcal{Y}$, set

$$
\begin{aligned}
& X_{1}=U_{1} \oplus U_{2} \\
& X_{2}=U_{2}
\end{aligned}
$$

Let $H(W) \triangleq H\left(X_{1} \mid Y_{1}\right)$. As $\left(X_{1}, Y_{1}\right)$ is independent from $\left(X_{2}, Y_{2}\right)$, we write

$$
\begin{aligned}
H\left(X_{1} \mid Y_{1}\right)+H\left(X_{2} \mid Y_{2}\right)=2 H(W) & =H\left(U_{1}^{2} \mid Y_{1}^{2}\right) \\
& =H\left(U_{1} \mid Y_{1}^{2}\right)+H\left(U_{2} \mid Y_{1}^{2} U_{1}\right)
\end{aligned}
$$

$$
\begin{gathered}
X_{1}^{2}=U_{1}^{2} \mathbf{G}_{2} \\
\mathbf{G}_{2} \triangleq\left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right)
\end{gathered}
$$

Now consider the second term at the RHS:

$$
H\left(U_{2} \mid Y_{1} Y_{2} U_{1}\right) \leq H\left(U_{2} \mid Y_{2}\right)=H\left(X_{2} \mid Y_{2}\right)=H(W)
$$

Combining these, we conclude $H\left(U_{2} \mid Y_{1}^{2} U_{1}\right) \leq H(W) \leq H\left(U_{1} \mid Y_{1}^{2}\right)$.

A Basic Transform: General BMS Channels

Given two independent copies of a BMS channel $W:\{0,1\} \rightarrow \mathcal{Y}$, set

$$
\begin{aligned}
& X_{1}=U_{1} \oplus U_{2} \\
& X_{2}=U_{2}
\end{aligned}
$$

Let $H(W) \triangleq H\left(X_{1} \mid Y_{1}\right)$. As $\left(X_{1}, Y_{1}\right)$ is independent from $\left(X_{2}, Y_{2}\right)$, we write

$$
\begin{aligned}
H\left(X_{1} \mid Y_{1}\right)+H\left(X_{2} \mid Y_{2}\right)=2 H(W) & =H\left(U_{1}^{2} \mid Y_{1}^{2}\right) \\
& =H\left(U_{1} \mid Y_{1}^{2}\right)+H\left(U_{2} \mid Y_{1}^{2} U_{1}\right)
\end{aligned}
$$

$$
\begin{gathered}
X_{1}^{2}=U_{1}^{2} \mathbf{G}_{2} \\
\mathbf{G}_{2} \triangleq\left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right)
\end{gathered}
$$

Now consider the second term at the RHS:

$$
H\left(U_{2} \mid Y_{1} Y_{2} U_{1}\right) \leq H\left(U_{2} \mid Y_{2}\right)=H\left(X_{2} \mid Y_{2}\right)=H(W)
$$

Combining these, we conclude $H\left(U_{2} \mid Y_{1}^{2} U_{1}\right) \leq H(W) \leq H\left(U_{1} \mid Y_{1}^{2}\right)$. Indeed, the polarization is strict [Arı09], i.e., if $H(W) \notin\{0,1\}$, then

$$
H\left(U_{2} \mid Y_{1}^{2} U_{1}\right)<H(W)<H\left(U_{1} \mid Y_{1}^{2}\right)
$$

Polarized Synthetic Channels

Given two independent copies of $W:\{0,1\} \rightarrow \mathcal{Y}$ with a capacity of $C(W)$, we obtain two synthetic channels:

Polarized Synthetic Channels

Given two independent copies of $W:\{0,1\} \rightarrow \mathcal{Y}$ with a capacity of $C(W)$, we obtain two synthetic channels:

- A downgraded channel $W_{2}^{(1)}:\{0,1\} \rightarrow \mathcal{Y}^{2}$ having input U_{1} and output Y_{1}^{2} with $C\left(W_{2}^{(1)}\right)<C(W)$

Polarized Synthetic Channels

Given two independent copies of $W:\{0,1\} \rightarrow \mathcal{Y}$ with a capacity of $C(W)$, we obtain two synthetic channels:

- A downgraded channel $W_{2}^{(1)}:\{0,1\} \rightarrow \mathcal{Y}^{2}$ having input U_{1} and output Y_{1}^{2} with $C\left(W_{2}^{(1)}\right)<C(W)$
- An upgraded channel $W_{2}^{(2)}:\{0,1\} \rightarrow \mathcal{Y}^{2} \times\{0,1\}$ having input U_{2} and
output $\left(Y_{1}^{2}, U_{1}\right)$ with $C\left(W_{2}^{(2)}\right)>C(W)$

Polarized Synthetic Channels

Given two independent copies of $W:\{0,1\} \rightarrow \mathcal{Y}$ with a capacity of $C(W)$, we obtain two synthetic channels:

- A downgraded channel $W_{2}^{(1)}:\{0,1\} \rightarrow \mathcal{Y}^{2}$ having input U_{1} and output Y_{1}^{2} with $C\left(W_{2}^{(1)}\right)<C(W)$
- An upgraded channel $W_{2}^{(2)}:\{0,1\} \rightarrow \mathcal{Y}^{2} \times\{0,1\}$ having input U_{2} and
 output $\left(Y_{1}^{2}, U_{1}\right)$ with $C\left(W_{2}^{(2)}\right)>C(W)$

This suggests that a successive decoding can be employed to achieve $C(W)$ [Arı09]:

Polarized Synthetic Channels

Given two independent copies of $W:\{0,1\} \rightarrow \mathcal{Y}$ with a capacity of $C(W)$, we obtain two synthetic channels:

- A downgraded channel $W_{2}^{(1)}:\{0,1\} \rightarrow \mathcal{Y}^{2}$ having input U_{1} and output Y_{1}^{2} with $C\left(W_{2}^{(1)}\right)<C(W)$
- An upgraded channel $W_{2}^{(2)}:\{0,1\} \rightarrow \mathcal{Y}^{2} \times\{0,1\}$ having input U_{2} and
 output $\left(Y_{1}^{2}, U_{1}\right)$ with $C\left(W_{2}^{(2)}\right)>C(W)$

This suggests that a successive decoding can be employed to achieve $C(W)$ [Arı09]:

- Transmit at a rate $C\left(W_{2}^{(1)}\right)$, where the decoder takes Y_{1}^{2} as input and outputs \hat{U}_{1}.

Polarized Synthetic Channels

Given two independent copies of $W:\{0,1\} \rightarrow \mathcal{Y}$ with a capacity of $C(W)$, we obtain two synthetic channels:

- A downgraded channel $W_{2}^{(1)}:\{0,1\} \rightarrow \mathcal{Y}^{2}$ having input U_{1} and output Y_{1}^{2} with $C\left(W_{2}^{(1)}\right)<C(W)$
- An upgraded channel $W_{2}^{(2)}:\{0,1\} \rightarrow \mathcal{Y}^{2} \times\{0,1\}$ having input U_{2} and
 output $\left(Y_{1}^{2}, U_{1}\right)$ with $C\left(W_{2}^{(2)}\right)>C(W)$

This suggests that a successive decoding can be employed to achieve $C(W)$ [Arı09]:

- Transmit at a rate $C\left(W_{2}^{(1)}\right)$, where the decoder takes Y_{1}^{2} as input and outputs \hat{U}_{1}.
- Then, transmit at a rate $C\left(W_{2}^{(2)}\right)$, where the decoder uses $\left(Y_{1}^{2}, \hat{U}_{1}\right)$ to output \hat{U}_{2}.

Genie-Aided vs. Real Successive Decoder

- The channel $W_{2}^{(1)}$ has the input U_{1} and output $Y_{1}^{2} \checkmark$

Genie-Aided vs. Real Successive Decoder

- The channel $W_{2}^{(1)}$ has the input U_{1} and output $Y_{1}^{2} \checkmark$
- The channel $W_{2}^{(2)}$ has the input U_{2} and output $\left(Y_{1}^{2}, U_{1}\right)$!

Genie-Aided vs. Real Successive Decoder

- The channel $W_{2}^{(1)}$ has the input U_{1} and output $Y_{1}^{2} \checkmark$
- The channel $W_{2}^{(2)}$ has the input U_{2} and output $\left(Y_{1}^{2}, U_{1}\right)$!

It is possible to obtain \hat{U}_{1} by first decoding $W_{2}^{(1)}$. What is the effect of using \hat{U}_{1} instead of U_{1} on the block error events?

Genie-Aided vs. Real Successive Decoder

- The channel $W_{2}^{(1)}$ has the input U_{1} and output $Y_{1}^{2} \checkmark$
- The channel $W_{2}^{(2)}$ has the input U_{2} and output $\left(Y_{1}^{2}, U_{1}\right)$!

It is possible to obtain \hat{U}_{1} by first decoding $W_{2}^{(1)}$. What is the effect of using \hat{U}_{1} instead of U_{1} on the block error events?

Genie-aided successive decoding:
Real successive decoding:

Genie-Aided vs. Real Successive Decoder

- The channel $W_{2}^{(1)}$ has the input U_{1} and output $Y_{1}^{2} \checkmark$
- The channel $W_{2}^{(2)}$ has the input U_{2} and output $\left(Y_{1}^{2}, U_{1}\right)$!

It is possible to obtain \hat{U}_{1} by first decoding $W_{2}^{(1)}$. What is the effect of using \hat{U}_{1} instead of U_{1} on the block error events?

Genie-aided successive decoding:

$$
\tilde{U}_{1}=f_{1}\left(Y_{1}^{2}\right)
$$

Real successive decoding:

$$
\hat{U}_{1}=f_{1}\left(Y_{1}^{2}\right)
$$

Genie-Aided vs. Real Successive Decoder

- The channel $W_{2}^{(1)}$ has the input U_{1} and output $Y_{1}^{2} \checkmark$
- The channel $W_{2}^{(2)}$ has the input U_{2} and output $\left(Y_{1}^{2}, U_{1}\right)$!

It is possible to obtain \hat{U}_{1} by first decoding $W_{2}^{(1)}$. What is the effect of using \hat{U}_{1} instead of U_{1} on the block error events?

Genie-aided successive decoding:

$$
\begin{aligned}
& \tilde{U}_{1}=f_{1}\left(Y_{1}^{2}\right) \\
& \tilde{U}_{2}=f_{2}\left(Y_{1}^{2} U_{1}\right)
\end{aligned}
$$

Real successive decoding:

$$
\begin{aligned}
& \hat{U}_{1}=f_{1}\left(Y_{1}^{2}\right) \\
& \hat{U}_{2}=f_{2}\left(Y_{1}^{2} \hat{U}_{1}\right)
\end{aligned}
$$

Genie-Aided vs. Real Successive Decoder

- The channel $W_{2}^{(1)}$ has the input U_{1} and output $Y_{1}^{2} \checkmark$
- The channel $W_{2}^{(2)}$ has the input U_{2} and output $\left(Y_{1}^{2}, U_{1}\right)$!

$$
\left\{\hat{U}_{1}^{2} \neq U_{1}^{2}\right\}=\left\{\tilde{U}_{1}^{2} \neq U_{1}^{2}\right\}
$$

It is possible to obtain \hat{U}_{1} by first decoding $W_{2}^{(1)}$. What is the effect of using \hat{U}_{1} instead of U_{1} on the block error events?

Genie-aided successive decoding:

$$
\begin{aligned}
& \tilde{U}_{1}=f_{1}\left(Y_{1}^{2}\right) \\
& \tilde{U}_{2}=f_{2}\left(Y_{1}^{2} U_{1}\right)
\end{aligned}
$$

Real successive decoding:

$$
\begin{aligned}
& \hat{U}_{1}=f_{1}\left(Y_{1}^{2}\right) \\
& \hat{U}_{2}=f_{2}\left(Y_{1}^{2} \hat{U}_{1}\right)
\end{aligned}
$$

The real decoder makes an error IF AND ONLY IF the genie-aided decoder makes an error!

Polar Transform

We can apply the basic transform recursively to the independent copies of $(W),\left(W_{2}^{(1)}, W_{2}^{(2)}\right)$, $\left(W_{4}^{(1)}, W_{4}^{(2)}, W_{4}^{(3)}, W_{4}^{(4)}\right)$, etc., as many times as needed.

Polar Transform

We can apply the basic transform recursively to the independent copies of $(W),\left(W_{2}^{(1)}, W_{2}^{(2)}\right)$, $\left(W_{4}^{(1)}, W_{4}^{(2)}, W_{4}^{(3)}, W_{4}^{(4)}\right)$, etc., as many times as needed.

Definition

The Kronecker product of two matrices \mathbf{X} and \mathbf{Y} is

$$
\mathbf{X} \otimes \mathbf{Y} \triangleq\left[\begin{array}{ccc}
x_{1,1} \mathbf{Y} & x_{1,2} \mathbf{Y} & \ldots \\
x_{2,1} \mathbf{Y} & x_{2,2} \mathbf{Y} & \ldots \\
\vdots & \vdots & \ddots
\end{array}\right] .
$$

Then, a Kronecker power of a matrix is written as $\mathbf{X}^{\otimes n}=\mathbf{X}^{\otimes(n-1)} \otimes \mathbf{X}, \mathbf{X}^{\otimes 0} \triangleq 1$.

Polar Transform

We can apply the basic transform recursively to the independent copies of $(W),\left(W_{2}^{(1)}, W_{2}^{(2)}\right)$, $\left(W_{4}^{(1)}, W_{4}^{(2)}, W_{4}^{(3)}, W_{4}^{(4)}\right)$, etc., as many times as needed.

Definition

The Kronecker product of two matrices \mathbf{X} and \mathbf{Y} is

$$
\mathbf{X} \otimes \mathbf{Y} \triangleq\left[\begin{array}{ccc}
x_{1,1} \mathbf{Y} & x_{1,2} \mathbf{Y} & \ldots \\
x_{2,1} \mathbf{Y} & x_{2,2} \mathbf{Y} & \ldots \\
\vdots & \vdots & \ddots
\end{array}\right] .
$$

Then, a Kronecker power of a matrix is written as $\mathbf{X}^{\otimes n}=\mathbf{X}^{\otimes(n-1)} \otimes \mathbf{X}, \mathbf{X}^{\otimes 0} \triangleq 1$.

Example

Recall the matrix representing the basic transform $\mathbf{G}_{2} \triangleq\left[\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right]$. Then, we write

$$
\mathbf{G}_{2}^{\otimes 2}=\mathbf{G}_{2} \otimes \mathbf{G}_{2}=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 \\
1 & 1 & 1 & 1
\end{array}\right]
$$

$$
U_{1}^{8} \mathbf{G}_{2}^{\otimes \log _{2} 8}=X_{1}^{8}
$$

Polar Transform (N=32)

心్ర

Channel Polarization

For any fixed $\delta>0$, the fraction of the mediocre channels vanishes as $N \rightarrow \infty$, i.e., we have

$$
\lim _{N \rightarrow \infty} \frac{1}{N}\left|\left\{i \in\{1, \ldots, N\}: \delta<H\left(W_{N}^{(i)}\right)<1-\delta\right\}\right|=0
$$

Channel Polarization

For any fixed $\delta>0$, the fraction of the mediocre channels vanishes as $N \rightarrow \infty$, i.e., we have

$$
\lim _{N \rightarrow \infty} \frac{1}{N}\left|\left\{i \in\{1, \ldots, N\}: \delta<H\left(W_{N}^{(i)}\right)<1-\delta\right\}\right|=0
$$

Since the transform is information-lossless, we can write

$$
\begin{aligned}
& \lim _{N \rightarrow \infty} \frac{1}{N}\left|\left\{i \in\{1, \ldots, N\}: H\left(W_{N}^{(i)}\right) \leq \delta\right\}\right|=C(W) \\
& \lim _{N \rightarrow \infty} \frac{1}{N}\left|\left\{i \in\{1, \ldots, N\}: H\left(W_{N}^{(i)}\right) \geq 1-\delta\right\}\right|=1-C(W)
\end{aligned}
$$

Channel Polarization

For any fixed $\delta>0$, the fraction of the mediocre channels vanishes as $N \rightarrow \infty$, i.e., we have

$$
\lim _{N \rightarrow \infty} \frac{1}{N}\left|\left\{i \in\{1, \ldots, N\}: \delta<H\left(W_{N}^{(i)}\right)<1-\delta\right\}\right|=0
$$

Since the transform is information-lossless, we can write

$$
\begin{aligned}
& \lim _{N \rightarrow \infty} \frac{1}{N}\left|\left\{i \in\{1, \ldots, N\}: H\left(W_{N}^{(i)}\right) \leq \delta\right\}\right|=C(W) \\
& \lim _{N \rightarrow \infty} \frac{1}{N}\left|\left\{i \in\{1, \ldots, N\}: H\left(W_{N}^{(i)}\right) \geq 1-\delta\right\}\right|=1-C(W)
\end{aligned}
$$

A capacity-achieving scheme:

Channel Polarization

For any fixed $\delta>0$, the fraction of the mediocre channels vanishes as $N \rightarrow \infty$, i.e., we have

$$
\lim _{N \rightarrow \infty} \frac{1}{N}\left|\left\{i \in\{1, \ldots, N\}: \delta<H\left(W_{N}^{(i)}\right)<1-\delta\right\}\right|=0
$$

Since the transform is information-lossless, we can write

$$
\begin{aligned}
& \lim _{N \rightarrow \infty} \frac{1}{N}\left|\left\{i \in\{1, \ldots, N\}: H\left(W_{N}^{(i)}\right) \leq \delta\right\}\right|=C(W) \\
& \lim _{N \rightarrow \infty} \frac{1}{N}\left|\left\{i \in\{1, \ldots, N\}: H\left(W_{N}^{(i)}\right) \geq 1-\delta\right\}\right|=1-C(W)
\end{aligned}
$$

A capacity-achieving scheme:

- Transmit uniformly distributed information bits over the good synthesized channels $(k \rightarrow N \cdot C(W))$.

Channel Polarization

For any fixed $\delta>0$, the fraction of the mediocre channels vanishes as $N \rightarrow \infty$, i.e., we have

$$
\lim _{N \rightarrow \infty} \frac{1}{N}\left|\left\{i \in\{1, \ldots, N\}: \delta<H\left(W_{N}^{(i)}\right)<1-\delta\right\}\right|=0
$$

Since the transform is information-lossless, we can write

$$
\begin{aligned}
& \lim _{N \rightarrow \infty} \frac{1}{N}\left|\left\{i \in\{1, \ldots, N\}: H\left(W_{N}^{(i)}\right) \leq \delta\right\}\right|=C(W) \\
& \lim _{N \rightarrow \infty} \frac{1}{N}\left|\left\{i \in\{1, \ldots, N\}: H\left(W_{N}^{(i)}\right) \geq 1-\delta\right\}\right|=1-C(W)
\end{aligned}
$$

A capacity-achieving scheme:

- Transmit uniformly distributed information bits over the good synthesized channels $(k \rightarrow N \cdot C(W))$.
- Set the inputs of the bad synthesized channels to the constant values known to the decoder.

Channel Polarization

For any fixed $\delta>0$, the fraction of the mediocre channels vanishes as $N \rightarrow \infty$, i.e., we have

$$
\lim _{N \rightarrow \infty} \frac{1}{N}\left|\left\{i \in\{1, \ldots, N\}: \delta<H\left(W_{N}^{(i)}\right)<1-\delta\right\}\right|=0
$$

Since the transform is information-lossless, we can write

$$
\begin{aligned}
& \lim _{N \rightarrow \infty} \frac{1}{N}\left|\left\{i \in\{1, \ldots, N\}: H\left(W_{N}^{(i)}\right) \leq \delta\right\}\right|=C(W) \\
& \lim _{N \rightarrow \infty} \frac{1}{N}\left|\left\{i \in\{1, \ldots, N\}: H\left(W_{N}^{(i)}\right) \geq 1-\delta\right\}\right|=1-C(W)
\end{aligned}
$$

A capacity-achieving scheme:

- Transmit uniformly distributed information bits over the good synthesized channels $(k \rightarrow N \cdot C(W))$.
- Set the inputs of the bad synthesized channels to the constant values known to the decoder.
- Decode the bits from U_{1} to U_{N} successively.

Channel Polarization

For any fixed $\delta>0$, the fraction of the mediocre channels vanishes as $N \rightarrow \infty$, i.e., we have

$$
\lim _{N \rightarrow \infty} \frac{1}{N}\left|\left\{i \in\{1, \ldots, N\}: \delta<H\left(W_{N}^{(i)}\right)<1-\delta\right\}\right|=0
$$

Since the transform is information-lossless, we can write

$$
\begin{aligned}
& \lim _{N \rightarrow \infty} \frac{1}{N}\left|\left\{i \in\{1, \ldots, N\}: H\left(W_{N}^{(i)}\right) \leq \delta\right\}\right|=C(W) \\
& \lim _{N \rightarrow \infty} \frac{1}{N}\left|\left\{i \in\{1, \ldots, N\}: H\left(W_{N}^{(i)}\right) \geq 1-\delta\right\}\right|=1-C(W)
\end{aligned}
$$

A capacity-achieving scheme:

- Transmit uniformly distributed information bits over the good synthesized channels $(k \rightarrow N \cdot C(W))$.
- Set the inputs of the bad synthesized channels to the constant values known to the decoder.
- Decode the bits from U_{1} to U_{N} successively.
- $P_{B} \leq \sum_{i \in A} \delta$

Channel Polarization

For any fixed $\delta>0$, the fraction of the mediocre channels vanishes as $N \rightarrow \infty$, i.e., we have

$$
\lim _{N \rightarrow \infty} \frac{1}{N}\left|\left\{i \in\{1, \ldots, N\}: \delta<H\left(W_{N}^{(i)}\right)<1-\delta\right\}\right|=0
$$

Since the transform is information-lossless, we can write

$$
\begin{aligned}
& \lim _{N \rightarrow \infty} \frac{1}{N}\left|\left\{i \in\{1, \ldots, N\}: H\left(W_{N}^{(i)}\right) \leq \delta\right\}\right|=C(W) \\
& \lim _{N \rightarrow \infty} \frac{1}{N}\left|\left\{i \in\{1, \ldots, N\}: H\left(W_{N}^{(i)}\right) \geq 1-\delta\right\}\right|=1-C(W)
\end{aligned}
$$

A capacity-achieving scheme:

- Transmit uniformly distributed information bits over the good synthesized channels $(k \rightarrow N \cdot C(W))$.
- Set the inputs of the bad synthesized channels to the constant values known to the decoder.
- Decode the bits from U_{1} to U_{N} successively.
- $P_{B} \leq \sum_{i \in A} \delta=N \cdot C(W) \cdot \delta$

Channel Polarization

For any fixed $\delta>0$, the fraction of the mediocre channels vanishes as $N \rightarrow \infty$, i.e., we have

$$
\lim _{N \rightarrow \infty} \frac{1}{N}\left|\left\{i \in\{1, \ldots, N\}: \delta<H\left(W_{N}^{(i)}\right)<1-\delta\right\}\right|=0
$$

Since the transform is information-lossless, we can write

$$
\begin{aligned}
& \lim _{N \rightarrow \infty} \frac{1}{N}\left|\left\{i \in\{1, \ldots, N\}: H\left(W_{N}^{(i)}\right) \leq \delta\right\}\right|=C(W) \\
& \lim _{N \rightarrow \infty} \frac{1}{N}\left|\left\{i \in\{1, \ldots, N\}: H\left(W_{N}^{(i)}\right) \geq 1-\delta\right\}\right|=1-C(W)
\end{aligned}
$$

A capacity-achieving scheme:

- Transmit uniformly distributed information bits over the good synthesized channels $(k \rightarrow N \cdot C(W))$.
- Set the inputs of the bad synthesized channels to the constant values known to the decoder.
- Decode the bits from U_{1} to U_{N} successively.
- $P_{B} \leq \sum_{i \in A} \delta=N \cdot C(W) \cdot \delta$
- Indeed, polarization holds for $\delta=\mathcal{O}\left(2^{-\sqrt{N}}\right)$ [AT09] (i.e., faster than $\left.1 / N\right)$.

Channel Polarization

For any fixed $\delta>0$, the fraction of the mediocre channels vanishes as $N \rightarrow \infty$, i.e., we have

$$
\lim _{N \rightarrow \infty} \frac{1}{N}\left|\left\{i \in\{1, \ldots, N\}: \delta<H\left(W_{N}^{(i)}\right)<1-\delta\right\}\right|=0
$$

Since the transform is information-lossless, we can write

$$
\begin{aligned}
& \lim _{N \rightarrow \infty} \frac{1}{N}\left|\left\{i \in\{1, \ldots, N\}: H\left(W_{N}^{(i)}\right) \leq \delta\right\}\right|=C(W) \\
& \lim _{N \rightarrow \infty} \frac{1}{N}\left|\left\{i \in\{1, \ldots, N\}: H\left(W_{N}^{(i)}\right) \geq 1-\delta\right\}\right|=1-C(W)
\end{aligned}
$$

A capacity-achieving scheme:

- Transmit uniformly distributed information bits over the good synthesized channels $(k \rightarrow N \cdot C(W))$.
- Set the inputs of the bad synthesized channels to the constant values known to the decoder.
- Decode the bits from U_{1} to U_{N} successively.
- $P_{B} \leq \sum_{i \in A} \delta=N \cdot C(W) \cdot \delta \leq N \cdot C(W) \cdot 2^{-\sqrt{N}}$, resulting in $P_{B} \rightarrow 0$.
- Indeed, polarization holds for $\delta=\mathcal{O}\left(2^{-\sqrt{N}}\right)$ [AT09] (i.e., faster than $1 / N$).

Channel Polarization - Numerical ($N=2^{3}, \operatorname{BEC}(0.5)$)

Channel Polarization - Numerical ($N=2^{7}, \operatorname{BEC}(0.5)$)

Channel Polarization - Numerical ($N=2^{10}$, BEC(0.5))

Channel Polarization - Numerical ($N=2^{15}, \operatorname{BEC}(0.5)$)

Channel Polarization - Numerical (Sorted, $N=2^{3}$, $\operatorname{BEC}(0.5)$)

Channel Polarization - Numerical (Sorted, $N=2^{7}$, BEC(0.5))

Channel Polarization - Numerical (Sorted, $N=2^{10}$, BEC(0.5))

Channel Polarization - Numerical (Sorted, $N=2^{15}$, BEC(0.5))

Code Design

We want to design an (N, k) code, where $N=2^{n}$ with $n \geq 1$.

Code Design

We want to design an (N, k) code, where $N=2^{n}$ with $n \geq 1$. Equivalently, find a set $\mathcal{A} \in[N]$ of size k (information set).
(1) Polar rule: For a target channel parameter, find the most reliable k positions for SC decoding.

Code Design

We want to design an (N, k) code, where $N=2^{n}$ with $n \geq 1$. Equivalently, find a set $\mathcal{A} \in[N]$ of size k (information set).
(1) Polar rule: For a target channel parameter, find the most reliable k positions for SC decoding.
(2) Reed-Muller (RM) rule: Find the indices of the k positions with the largest Hamming weight in $\mathbf{G}_{2}^{\otimes n}$.

Code Design

We want to design an (N, k) code, where $N=2^{n}$ with $n \geq 1$. Equivalently, find a set $\mathcal{A} \in[N]$ of size k (information set).
(1) Polar rule: For a target channel parameter, find the most reliable k positions for SC decoding.
(2) Reed-Muller (RM) rule: Find the indices of the k positions with the largest Hamming weight in $\mathbf{G}_{2}^{\otimes n}$. Note that there is not an RM code for every k.

Code Design

We want to design an (N, k) code, where $N=2^{n}$ with $n \geq 1$. Equivalently, find a set $\mathcal{A} \in[N]$ of size k (information set).
(1) Polar rule: For a target channel parameter, find the most reliable k positions for SC decoding.
(2) Reed-Muller (RM) rule: Find the indices of the k positions with the largest Hamming weight in $\mathbf{G}_{2}^{\otimes n}$. Note that there is not an RM code for every k.

The polar rule minimizes a tight upper bound on the error probability under SC decoding while the RM rule maximizes the
 minimum Hamming distance.

A Historical Remark

Rekursive Codes mit der Plotkin-Konstruktion und ihre
 Decodierung

Vom Fachbereich
Elektrotechnik und Informationstechnik
der Technischen Universität Darmstadt
zur Erlangung des Grades
Doktor-Ingenieur genehmigte
Dissertation
von
Dipl.-Ing. Norbert Stolte
Groß-Umstadt

A Historical Remark

Rekursive Codes mit der Plotkin-Konstruktion und ihre
 Decodierung

Vom Fachbereich
Elektrotechnik und Informationstechnik
der Technischen Universität Darmstadt
zur Erlangung des Grades
Doktor-Ingenieur genehmigte
Dissertation
von
Dipl.-Ing. Norbert Stolte
Groß-Umstadt

- Observation: Reed-Muller (RM) codes perform poorly under low-complexity SC decoding.
- Codes having Plotkin structure were optimized for SC decoding [Sto02].

A Historical Remark

Rekursive Codes mit der Plotkin-Konstruktion und ihre
 Decodierung

Vom Fachbereich
Elektrotechnik und Informationstechnik
der Technischen Universität Darmstadt
zur Erlangung des Grades
Doktor-Ingenieur genehmigte

Dissertation
von

Dipl.-Ing. Norbert Stolte
Groß-Umstadt

- Observation: Reed-Muller (RM) codes perform poorly under low-complexity SC decoding.
- Codes having Plotkin structure were optimized for SC decoding [Sto02].
- They were shown to outperform RM codes under SC decoding.

Generator Matrix

After defining a set \mathcal{A}, the generator matrix of the code is obtained by removing the rows in $\mathcal{F} \triangleq\{1, \ldots, N\} \backslash \mathcal{A}$ (frozen set) from $\mathbf{G}_{2}^{\otimes n}$:

Generator Matrix

After defining a set \mathcal{A}, the generator matrix of the code is obtained by removing the rows in $\mathcal{F} \triangleq\{1, \ldots, N\} \backslash \mathcal{A}$ (frozen set) from $\mathbf{G}_{2}^{\otimes n}$:

- $(8,4)$ polar code: $\mathcal{A} \triangleq\{4,6,7,8\}$ and $\mathcal{F} \triangleq\{1,2,3,5\}$

$$
\mathbf{G}_{2}^{\otimes 3}=\left[\begin{array}{llllllll}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1
\end{array}\right]
$$

Generator Matrix

After defining a set \mathcal{A}, the generator matrix of the code is obtained by removing the rows in $\mathcal{F} \triangleq\{1, \ldots, N\} \backslash \mathcal{A}$ (frozen set) from $\mathbf{G}_{2}^{\otimes n}$:

- $(8,4)$ polar code: $\mathcal{A} \triangleq\{4,6,7,8\}$ and $\mathcal{F} \triangleq\{1,2,3,5\}$

$$
\mathbf{G}_{2}^{\otimes 3}=\left[\begin{array}{llllllll}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1
\end{array}\right]
$$

$$
\mathbf{G}=\left[\begin{array}{llllllll}
1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1
\end{array}\right]
$$

Generator Matrix

After defining a set \mathcal{A}, the generator matrix of the code is obtained by removing the rows in $\mathcal{F} \triangleq\{1, \ldots, N\} \backslash \mathcal{A}$ (frozen set) from $\mathbf{G}_{2}^{\otimes n}$:

- $(8,4)$ polar code: $\mathcal{A} \triangleq\{4,6,7,8\}$ and $\mathcal{F} \triangleq\{1,2,3,5\}$

$$
\mathbf{G}_{2}^{\otimes 3}=\left[\begin{array}{llllllll}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1
\end{array}\right]
$$

$$
\mathbf{G}=\left[\begin{array}{llllllll}
1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1
\end{array}\right]
$$

$X_{1}^{8}=V_{1}^{4} \mathbf{G}$ for random information bits V_{1}^{4}

Encoding

Let V_{1}^{k} denote the random information bits to be encoded:

Encoding

Let V_{1}^{k} denote the random information bits to be encoded:
(1) For a given set \mathcal{A}, map V_{1}^{k} onto $U_{\mathcal{A}}$.

Encoding

Let V_{1}^{k} denote the random information bits to be encoded:
(1) For a given set \mathcal{A}, map V_{1}^{k} onto $U_{\mathcal{A}}$.
(2) Set the remaining elements of U_{1}^{N} to 0 (frozen bits), i.e., $U_{\mathcal{F}}=0^{n-k}$.

Encoding

Let V_{1}^{k} denote the random information bits to be encoded:
(1) For a given set \mathcal{A}, map V_{1}^{k} onto $U_{\mathcal{A}}$.
(2) Set the remaining elements of U_{1}^{N} to 0 (frozen bits), i.e., $U_{\mathcal{F}}=0^{n-k}$.
(3) Apply polar transform of length $-N$, i.e., $X_{1}^{N}=U_{1}^{N} \mathbf{G}_{2}^{\otimes n}$.

Encoding

Let V_{1}^{k} denote the random information bits to be encoded:
(1) For a given set \mathcal{A}, map V_{1}^{k} onto $U_{\mathcal{A}}$.
(2) Set the remaining elements of U_{1}^{N} to 0 (frozen bits), i.e., $U_{\mathcal{F}}=0^{n-k}$.
(3) Apply polar transform of length $-N$, i.e., $X_{1}^{N}=U_{1}^{N} \mathbf{G}_{2}^{\otimes n}$.
(4) This can be done with a complexity of $\mathcal{O}(N \log N)$ instead of $\mathcal{O}\left(N^{2}\right)$.

SC Decoding: BEC Example

$$
n=128, k=64
$$

Successive Cancellation List Decoding

Key idea: Each time a decision is needed on \hat{u}_{i}, both options, i.e., $\hat{u}_{i}=0$ and $\hat{u}_{i}=1$, are stored. This doubles the number of partial input sequences (paths) at each decoding stage.

Successive Cancellation List Decoding

Key idea: Each time a decision is needed on \hat{u}_{i}, both options, i.e., $\hat{u}_{i}=0$ and $\hat{u}_{i}=1$, are stored. This doubles the number of partial input sequences (paths) at each decoding stage.

- When the number of paths exceeds a predefined list size L, discard the least likely paths.

Successive Cancellation List Decoding

Key idea: Each time a decision is needed on \hat{u}_{i}, both options, i.e., $\hat{u}_{i}=0$ and $\hat{u}_{i}=1$, are stored. This doubles the number of partial input sequences (paths) at each decoding stage.

- When the number of paths exceeds a predefined list size L, discard the least likely paths.

Successive Cancellation List Decoding

Key idea: Each time a decision is needed on \hat{u}_{i}, both options, i.e., $\hat{u}_{i}=0$ and $\hat{u}_{i}=1$, are stored. This doubles the number of partial input sequences (paths) at each decoding stage.

- When the number of paths exceeds a predefined list size L, discard the least likely paths.

Successive Cancellation List Decoding

Key idea: Each time a decision is needed on \hat{u}_{i}, both options, i.e., $\hat{u}_{i}=0$ and $\hat{u}_{i}=1$, are stored. This doubles the number of partial input sequences (paths) at each decoding stage.

- When the number of paths exceeds a predefined list size L, discard the least likely paths.

Successive Cancellation List Decoding

Key idea: Each time a decision is needed on \hat{u}_{i}, both options, i.e., $\hat{u}_{i}=0$ and $\hat{u}_{i}=1$, are stored. This doubles the number of partial input sequences (paths) at each decoding stage.

- When the number of paths exceeds a predefined list size L, discard the least likely paths.

Successive Cancellation List Decoding

Key idea: Each time a decision is needed on \hat{u}_{i}, both options, i.e., $\hat{u}_{i}=0$ and $\hat{u}_{i}=1$, are stored. This doubles the number of partial input sequences (paths) at each decoding stage.

- When the number of paths exceeds a predefined list size L, discard the least likely paths.

Successive Cancellation List Decoding

Key idea: Each time a decision is needed on \hat{u}_{i}, both options, i.e., $\hat{u}_{i}=0$ and $\hat{u}_{i}=1$, are stored. This doubles the number of partial input sequences (paths) at each decoding stage.

- When the number of paths exceeds a predefined list size L, discard the least likely paths.
- After N-th stage, estimate \hat{u}_{1}^{N} chosen as $\hat{u}_{1}^{N}=\arg \max _{u_{1}^{N} \in \mathcal{L}} \mathbb{P}\left(u_{1}^{N} \mid y_{1}^{N}\right)$.

Successive Cancellation List Decoding

Key idea: Each time a decision is needed on \hat{u}_{i}, both options, i.e., $\hat{u}_{i}=0$ and $\hat{u}_{i}=1$, are stored. This doubles the number of partial input sequences (paths) at each decoding stage.

- When the number of paths exceeds a predefined list size L, discard the least likely paths.
- After N-th stage, estimate \hat{u}_{1}^{N} chosen as $\hat{u}_{1}^{N}=\arg _{\max _{u_{1}^{N} \in \mathcal{L}}} \mathbb{P}\left(u_{1}^{N} \mid y_{1}^{N}\right)$.
- The decoder has been applied to RM codes previously (see, e.g., [Sto02, DS06]).

$$
N=128, k=64
$$

- Gets close to ML for relatively small $L \odot$

$$
N=128, k=64
$$

- Gets close to ML for relatively small $L \odot$
- Not competitive for short blocks ${ }^{-}$

$$
N=128, k=64
$$

- Gets close to ML for relatively small $L \odot$
- Not competitive for short blocks ©
- When error happens, the transmitted codeword, very often, is still a member of the final list.

$$
N=128, k=64
$$

- Gets close to ML for relatively small $L \odot$
- Not competitive for short blocks ©
- When error happens, the transmitted codeword, very often, is still a member of the final list.
- We need a to find a way to pick the correct word.

$$
N=128, k=64
$$

- Gets close to ML for relatively small $L \odot$
- Not competitive for short blocks ©
- When error happens, the transmitted codeword, very often, is still a member of the final list.
- We need a to find a way to pick the correct word.
- Easy to fix by concatenating an outer CRC code. ©

Polar Codes with Outer Code

Concatenate an ($N, k+\ell$) inner polar code, with an outer CRC- ℓ code to improve distance spectrum, where at the transmitter:

Polar Codes with Outer Code

Concatenate an ($N, k+\ell$) inner polar code, with an outer CRC- ℓ code to improve distance spectrum, where at the transmitter:

- The first k positions in \mathcal{A} of the inner polar code is used to encode the information bits.

Polar Codes with Outer Code

Concatenate an ($N, k+\ell$) inner polar code, with an outer CRC- ℓ code to improve distance spectrum, where at the transmitter:

- The first k positions in \mathcal{A} of the inner polar code is used to encode the information bits.
- Other ℓ positions in \mathcal{A} to encode the CRC bits generated by k information bits.

Polar Codes with Outer Code

Concatenate an ($N, k+\ell$) inner polar code, with an outer CRC- ℓ code to improve distance spectrum, where at the transmitter:

- The first k positions in \mathcal{A} of the inner polar code is used to encode the information bits.
- Other ℓ positions in \mathcal{A} to encode the CRC bits generated by k information bits.
- Any systematic $(k+\ell, k)$ code would work!

Polar Codes with Outer Code

Concatenate an ($N, k+\ell$) inner polar code, with an outer CRC- ℓ code to improve distance spectrum, where at the transmitter:

- The first k positions in \mathcal{A} of the inner polar code is used to encode the information bits.
- Other ℓ positions in \mathcal{A} to encode the CRC bits generated by k information bits.
- Any systematic $(k+\ell, k)$ code would work!

At the receiver:

- SCL decoding (inner code), followed by syndrome check with outer code: pick the most probably codeword on the list fulfilling the CRC.

$$
N=128, k=64
$$

Dynamic Frozen Bits

- The value of a frozen bit can also be set to a linear combination of previous information bits (rather than a fixed 0 or 1 value) [TM16]

Dynamic Frozen Bits

- The value of a frozen bit can also be set to a linear combination of previous information bits (rather than a fixed 0 or 1 value) [TM16]
- A frozen bit whose value depends on past inputs is called dynamic.

Dynamic Frozen Bits

- The value of a frozen bit can also be set to a linear combination of previous information bits (rather than a fixed 0 or 1 value) [TM16]
- A frozen bit whose value depends on past inputs is called dynamic.
- SC/SCL decoding easily modified for polar codes with dynamic frozen bits.

Dynamic Frozen Bits

- The value of a frozen bit can also be set to a linear combination of previous information bits (rather than a fixed 0 or 1 value) [TM16]
- A frozen bit whose value depends on past inputs is called dynamic.
- SC/SCL decoding easily modified for polar codes with dynamic frozen bits.

- Any binary linear block code can be represented as a polar code with dynamic frozen bits!

Outline

2 Recent Advances in Polar Codes

- Binary Erasure Channel

Conclusions

Motivating Question

- What list size is sufficient to approach ML decoding performance for a given polar code and channel?

Motivating Question

- What list size is sufficient to approach ML decoding performance for a given polar code and channel?
- To avoid losing true codeword, its rank must not be larger than list size.

Motivating Question

- What list size is sufficient to approach ML decoding performance for a given polar code and channel?
- To avoid losing true codeword, its rank must not be larger than list size.
- The expected log-rank of correct codeword is upper bounded by an entropy.

Motivating Question

- What list size is sufficient to approach ML decoding performance for a given polar code and channel?
- To avoid losing true codeword, its rank must not be larger than list size.
- The expected log-rank of correct codeword is upper bounded by an entropy.
- For the BEC,
- This entropy equals the dimension of an affine subspace.

Motivating Question

- What list size is sufficient to approach ML decoding performance for a given polar code and channel?
- To avoid losing true codeword, its rank must not be larger than list size.
- The expected log-rank of correct codeword is upper bounded by an entropy.
- For the BEC,
- This entropy equals the dimension of an affine subspace.

Based on joint works with Henry D. Pfister [CP20, CP21]

An Information-Theoretic Perspective (1)

Basic Idea: After m steps, consider the conditional entropy $H\left(U_{1}^{m} \mid Y_{1}^{N}\right)$.

An Information-Theoretic Perspective (1)

Basic Idea: After m steps, consider the conditional entropy $H\left(U_{1}^{m} \mid Y_{1}^{N}\right)$.

The chain rule of entropy implies:

$$
\begin{aligned}
H\left(U_{1}^{m} \mid Y_{1}^{N}\right) & =\sum_{i=1}^{m} H\left(U_{i} \mid U_{1}^{i-1}, Y_{1}^{N}\right) \\
& =\sum_{i=1}^{m} H\left(W_{N}^{(i)}\right)
\end{aligned}
$$

An Information-Theoretic Perspective (1)

Basic Idea: After m steps, consider the conditional entropy $H\left(U_{1}^{m} \mid Y_{1}^{N}\right)$.

The chain rule of entropy implies:

$$
\begin{aligned}
H\left(U_{1}^{m} \mid Y_{1}^{N}\right) & =\sum_{i=1}^{m} H\left(U_{i} \mid U_{1}^{i-1}, Y_{1}^{N}\right) \\
& =\sum_{i=1}^{m} H\left(W_{N}^{(i)}\right)
\end{aligned}
$$

Note: this ignores frozen bits and will be modified soon!

An Information-Theoretic Perspective (2)

- For the first m input bits, the information/frozen sets are denoted as

$$
\mathcal{A}^{(m)} \triangleq \mathcal{A} \cap[m] \text { and } \mathcal{F}^{(m)} \triangleq \mathcal{F} \cap[m]
$$

An Information-Theoretic Perspective (2)

- For the first m input bits, the information/frozen sets are denoted as

$$
\mathcal{A}^{(m)} \triangleq \mathcal{A} \cap[m] \text { and } \mathcal{F}^{(m)} \triangleq \mathcal{F} \cap[m]
$$

- Key Idea: information entropy given frozen bits and difference sequence

$$
\bar{D}_{m} \triangleq H\left(U_{\mathcal{A}(m)} \mid Y_{1}^{N}, U_{\mathcal{F}(m)}\right) \quad \text { and } \quad \Delta_{m} \triangleq \bar{D}_{m}-\bar{D}_{m-1}
$$

An Information-Theoretic Perspective (2)

- For the first m input bits, the information/frozen sets are denoted as

$$
\mathcal{A}^{(m)} \triangleq \mathcal{A} \cap[m] \text { and } \mathcal{F}^{(m)} \triangleq \mathcal{F} \cap[m]
$$

- Key Idea: information entropy given frozen bits and difference sequence

$$
\bar{D}_{m} \triangleq H\left(U_{\mathcal{A}(m)} \mid Y_{1}^{N}, U_{\mathcal{F}(m)}\right) \quad \text { and } \quad \Delta_{m} \triangleq \bar{D}_{m}-\bar{D}_{m-1}
$$

- Experiment: assume U_{1}^{N} is uniform and Rx learns frozen bits causally.

An Information-Theoretic Perspective (2)

- For the first m input bits, the information/frozen sets are denoted as

$$
\mathcal{A}^{(m)} \triangleq \mathcal{A} \cap[m] \text { and } \mathcal{F}^{(m)} \triangleq \mathcal{F} \cap[m]
$$

- Key Idea: information entropy given frozen bits and difference sequence

$$
\bar{D}_{m} \triangleq H\left(U_{\mathcal{A}(m)} \mid Y_{1}^{N}, U_{\mathcal{F}(m)}\right) \quad \text { and } \quad \Delta_{m} \triangleq \bar{D}_{m}-\bar{D}_{m-1}
$$

- Experiment: assume U_{1}^{N} is uniform and Rx learns frozen bits causally.
- If U_{m} is an information bit, then

$$
\Delta_{m}=H\left(U_{m}, Y_{1}^{N} \mid U_{1}^{m-1}\right)
$$

An Information-Theoretic Perspective (2)

- For the first m input bits, the information/frozen sets are denoted as

$$
\mathcal{A}^{(m)} \triangleq \mathcal{A} \cap[m] \text { and } \mathcal{F}^{(m)} \triangleq \mathcal{F} \cap[m]
$$

- Key Idea: information entropy given frozen bits and difference sequence

$$
\bar{D}_{m} \triangleq H\left(U_{\mathcal{A}(m)} \mid Y_{1}^{N}, U_{\mathcal{F}(m)}\right) \quad \text { and } \quad \Delta_{m} \triangleq \bar{D}_{m}-\bar{D}_{m-1}
$$

- Experiment: assume U_{1}^{N} is uniform and Rx learns frozen bits causally.
- If U_{m} is an information bit, then

$$
\Delta_{m}=H\left(U_{m}, Y_{1}^{N} \mid U_{1}^{m-1}\right)
$$

- If U_{m} is a frozen bit, then

$$
0 \geq \Delta_{m} \geq H\left(U_{m} \mid Y_{1}^{N}, U_{1}^{m-1}\right)-1
$$

An Information-Theoretic Perspective (2)

- For the first m input bits, the information/frozen sets are denoted as

$$
\mathcal{A}^{(m)} \triangleq \mathcal{A} \cap[m] \text { and } \mathcal{F}^{(m)} \triangleq \mathcal{F} \cap[m]
$$

- Key Idea: information entropy given frozen bits and difference sequence

$$
\bar{D}_{m} \triangleq H\left(U_{\mathcal{A}(m)} \mid Y_{1}^{N}, U_{\mathcal{F}(m)}\right) \quad \text { and } \quad \Delta_{m} \triangleq \bar{D}_{m}-\bar{D}_{m-1}
$$

- Experiment: assume U_{1}^{N} is uniform and Rx learns frozen bits causally.
- If U_{m} is an information bit, then

$$
\Delta_{m}=H\left(U_{m}, Y_{1}^{N} \mid U_{1}^{m-1}\right)
$$

$$
\sum_{i \in \mathcal{A}^{(m)}} H\left(U_{i} \mid Y_{1}^{N}, U_{1}^{i-1}\right)-\sum_{i \in \mathcal{F}^{(m)}}\left(1-H\left(U_{i} \mid Y_{1}^{N}, U_{1}^{i-1}\right)\right) \leq \bar{D}_{m} \leq \sum_{i \in \mathcal{A}^{(m)}} H\left(U_{i} \mid Y_{1}^{N}, U_{1}^{i-1}\right)
$$

Bounding the List Size

Theorem

Upon observing y_{1}^{N} when u_{1}^{N} is sent, we define the set (for $\alpha \in(0,1]$) $\mathcal{S}_{\alpha}^{(m)}\left(u_{1}^{m}, y_{1}^{N}\right) \triangleq\left\{\tilde{u}_{1}^{m}: \mathbb{P}\left(\tilde{u}_{\mathcal{A}(m)} \mid y_{1}^{N}, \tilde{u}_{\mathcal{F}(m)}\right) \geq \alpha \mathbb{P}\left(u_{\mathcal{A}^{(m)}} \mid y_{1}^{N}, u_{\mathcal{F}(m)}\right)\right\}$. Then,

$$
\mathrm{E}\left[\log _{2}\left|\mathcal{S}_{\alpha}^{(m)}\right|\right] \leq \bar{D}_{m}+\log _{2} \frac{1}{\alpha}=H\left(U_{\mathcal{A}^{(m)}} \mid Y_{1}^{N}, U_{\mathcal{F}^{(m)}}\right)+\log _{2} \frac{1}{\alpha}
$$

Bounding the List Size

Theorem

Upon observing y_{1}^{N} when u_{1}^{N} is sent, we define the set (for $\alpha \in(0,1]$) $\mathcal{S}_{\alpha}^{(m)}\left(u_{1}^{m}, y_{1}^{N}\right) \triangleq\left\{\tilde{u}_{1}^{m}: \mathbb{P}\left(\tilde{u}_{\mathcal{A}(m)} \mid y_{1}^{N}, \tilde{u}_{\mathcal{F}(m)}\right) \geq \alpha \mathbb{P}\left(u_{\mathcal{A}^{(m)}} \mid y_{1}^{N}, u_{\mathcal{F}(m)}\right)\right\}$. Then,

$$
\mathrm{E}\left[\log _{2}\left|\mathcal{S}_{\alpha}^{(m)}\right|\right] \leq \bar{D}_{m}+\log _{2} \frac{1}{\alpha}=H\left(U_{\mathcal{A}^{(m)}} \mid Y_{1}^{N}, U_{\mathcal{F}(m)}\right)+\log _{2} \frac{1}{\alpha}
$$

Proof.

$$
\begin{aligned}
\log _{2}\left|\mathcal{S}_{\alpha}^{(m)}\right| & =\log _{2} \sum_{\tilde{u}_{1}^{m}} \mathbb{1}_{\left\{\mathbb{P}\left(\tilde{u}_{\mathcal{A}}(m) \mid y_{1}^{N}, \tilde{u}_{\mathcal{F}(m)}\right)\right.} \geq \underbrace{}_{q} \underset{\mathbb{P}\left(u_{\mathcal{A}(m)} \mid y_{1}^{N}, u_{\mathcal{F}(m)}\right)}{ }\} \\
& \leq \log _{2} 1 /\left(\alpha \mathbb{P}\left(u_{\mathcal{A}(m)} \mid y_{1}^{N}, u_{\mathcal{F}(m)}\right)\right)
\end{aligned}
$$

Valid for all u_{1}^{N} and y_{1}^{N}; thus, we take expectation over all u_{1}^{m} and y_{1}^{N}

Bounding the List Size

Theorem

Upon observing y_{1}^{N} when u_{1}^{N} is sent, we define the set (for $\alpha \in(0,1]$)

$$
\begin{aligned}
& \mathcal{S}_{\alpha}^{(m)}\left(u_{1}^{m}, y_{1}^{N}\right) \triangleq\left\{\tilde{u}_{1}^{m}: \mathbb{P}\left(\tilde{u}_{\mathcal{A}^{(m)}} \mid y_{1}^{N}, \tilde{u}_{\mathcal{F}(m)}\right) \geq \alpha \mathbb{P}\left(u_{\mathcal{A}^{(m)}} \mid y_{1}^{N}, u_{\mathcal{F}(m)}\right)\right\} . \text { Then, } \\
& \mathrm{E}\left[\log _{2}\left|\mathcal{S}_{\alpha}^{(m)}\right|\right] \leq \bar{D}_{m}+\log _{2} \frac{1}{\alpha}=H\left(U_{\mathcal{A}^{(m)}} \mid Y_{1}^{N}, U_{\mathcal{F}^{(m)}}\right)+\log _{2} \frac{1}{\alpha}
\end{aligned}
$$

- For an SCL decoder with max list size L_{m} during the m-th decoding step,
- the decoder needs $L_{m} \geq\left|\mathcal{S}_{1}^{(m)}\right|$ for the true u_{1}^{m} to stay on the list
- Choosing $\alpha<1$ (say 0.94) captures near misses and matches entropy better.

A Few Remarks

- Our approach currently has two weaknesses:

A Few Remarks

- Our approach currently has two weaknesses:
- Entropy mainly characterizes typical events but we care about rare events.

A Few Remarks

- Our approach currently has two weaknesses:
- Entropy mainly characterizes typical events but we care about rare events.
- The sequence \bar{D}_{m} is averaged over Y_{1}^{N}, i.e., $\bar{D}_{m}=\sum_{y_{1}^{N}} \mathbb{P}\left(y_{1}^{N}\right) H\left(U_{\mathcal{A}^{(m)}} \mid Y_{1}^{N}=y_{1}^{N}, U_{\mathcal{F}^{(m)}}\right)$.

A Few Remarks

- Our approach currently has two weaknesses:
- Entropy mainly characterizes typical events but we care about rare events.
- The sequence \bar{D}_{m} is averaged over Y_{1}^{N}, i.e., $\bar{D}_{m}=\sum_{y_{1}^{N}} \mathbb{P}\left(y_{1}^{N}\right) H\left(U_{\mathcal{A}^{(m)}} \mid Y_{1}^{N}=y_{1}^{N}, U_{\mathcal{F}^{(m)}}\right)$.

But the actual decoder sees a realization $d_{m}\left(y_{1}^{N}\right) \triangleq H\left(U_{\mathcal{A}^{(m)}} \mid Y_{1}^{N}=y_{1}^{N}, U_{\mathcal{F}^{(m)}}\right)$

A Few Remarks

- Our approach currently has two weaknesses:
- Entropy mainly characterizes typical events but we care about rare events.
- The sequence \bar{D}_{m} is averaged over Y_{1}^{N}, i.e., $\bar{D}_{m}=\sum_{y_{1}^{N}} \mathbb{P}\left(y_{1}^{N}\right) H\left(U_{\mathcal{A}^{(m)}} \mid Y_{1}^{N}=y_{1}^{N}, U_{\mathcal{F}^{(m)}}\right)$.

But the actual decoder sees a realization $d_{m}\left(y_{1}^{N}\right) \triangleq H\left(U_{\mathcal{A}^{(m)}} \mid Y_{1}^{N}=y_{1}^{N}, U_{\mathcal{F}^{(m)}}\right)$

- Significance for code design:

A Few Remarks

- Our approach currently has two weaknesses:
- Entropy mainly characterizes typical events but we care about rare events.
- The sequence \bar{D}_{m} is averaged over Y_{1}^{N}, i.e., $\bar{D}_{m}=\sum_{y_{1}^{N}} \mathbb{P}\left(y_{1}^{N}\right) H\left(U_{\mathcal{A}^{(m)}} \mid Y_{1}^{N}=y_{1}^{N}, U_{\mathcal{F}^{(m)}}\right)$.

But the actual decoder sees a realization $d_{m}\left(y_{1}^{N}\right) \triangleq H\left(U_{\mathcal{A}^{(m)}} \mid Y_{1}^{N}=y_{1}^{N}, U_{\mathcal{F}^{(m)}}\right)$

- Significance for code design:
- A first-order code design criterion can be seen as $\log _{2} L_{m} \geq d_{m}$.

A Few Remarks

- Our approach currently has two weaknesses:
- Entropy mainly characterizes typical events but we care about rare events.
- The sequence \bar{D}_{m} is averaged over Y_{1}^{N}, i.e., $\bar{D}_{m}=\sum_{y_{1}^{N}} \mathbb{P}\left(y_{1}^{N}\right) H\left(U_{\mathcal{A}^{(m)}} \mid Y_{1}^{N}=y_{1}^{N}, U_{\mathcal{F}^{(m)}}\right)$.

But the actual decoder sees a realization $d_{m}\left(y_{1}^{N}\right) \triangleq H\left(U_{\mathcal{A}^{(m)}} \mid Y_{1}^{N}=y_{1}^{N}, U_{\mathcal{F}^{(m)}}\right)$

- Significance for code design:
- A first-order code design criterion can be seen as $\log _{2} L_{m} \geq d_{m}$.
- Based on this, a small code improvement will be introduced.

Dynamic Reed-Muller Codes

- d-RM code ensemble [CNP20]:
- Let \mathcal{A} be the information indices of an RM code.
- u_{i} is an information bit if $i \in \mathcal{A}$.
- $u_{i}=\sum_{j \in \mathcal{A}^{(1)}} A_{i j} u_{j}$ if $i \in \mathcal{F}$ where $A_{i j}$ iid \sim Bernoulli(0.5)

Dynamic Reed-Muller Codes

- d-RM code ensemble [CNP20]:
- Let \mathcal{A} be the information indices of an RM code.
- u_{i} is an information bit if $i \in \mathcal{A}$.
- $u_{i}=\sum_{j \in \mathcal{A}^{(n)}} A_{i j} u_{j}$ if $i \in \mathcal{F}$ where $A_{i j}$ iid $\sim \operatorname{Bernoulli}(0.5)$
- Closely related to polarization-adjusted convolutional (PAC) codes [Arı19].

Dynamic Reed-Muller Codes

- d-RM code ensemble [CNP20]:
- Let \mathcal{A} be the information indices of an RM code.
- u_{i} is an information bit if $i \in \mathcal{A}$.
- $u_{i}=\sum_{j \in \mathcal{A}^{(n)}} A_{i j} u_{j}$ if $i \in \mathcal{F}$ where $A_{i j}$ iid $\sim \operatorname{Bernoulli}(0.5)$
- Closely related to polarization-adjusted convolutional (PAC) codes [Arı19].
- PAC and (random instances of) d-RM code perform very similar under SCL decoding with the same list sizes.

$$
n=128, k=64
$$

$$
n=128, k=64
$$

$(128,64)$ d-RM Code over the AWGN Channel

$(128,64)$ d-RM Code over the AWGN Channel

$(128,64)$ d-RM Code over the AWGN Channel

$(128,64)$ Proposed vs d-RM Code over the AWGN Channel

Proposed Code

- $u_{\{30,40\}}$ dynamic frozen bits
- $u_{\{1,57\}}$ info. bits
$E_{b} / N_{0}=0.5 \mathrm{~dB}$

$(128,64)$ Codes over the AWGN Channel

$(128,64)$ Codes over the AWGN Channel

$(128,64)$ Codes over the AWGN Channel

$(128,64)$ Codes over the AWGN Channel

Recent Related Works

- Among many others, there are some recent works to be checked:
- Works by E. Viterbo and his group: [RV19, RBV20]
- A paper by A. Vardy and his group: [YFV20]
- A paper by S. ten Brink and his group: [GEE $\left.{ }^{+} 20\right]$

Outline

(1) Overview of Polar Codes

2 Recent Advances in Polar Codes

- Binary Erasure Channel
(3) Conclusions

Successive Cancellation Inactivation Decoding

- The SC inactivation decoder has the same message passing schedule as the SC decoder.

Successive Cancellation Inactivation Decoding

- The SC inactivation decoder has the same message passing schedule as the SC decoder.
- Whenever an information bit is decoded as erased, it is replaced by indeterminate variable (i.e., inactivated).

Successive Cancellation Inactivation Decoding

- The SC inactivation decoder has the same message passing schedule as the SC decoder.
- Whenever an information bit is decoded as erased, it is replaced by indeterminate variable (i.e., inactivated).
- It continues decoding using SC decoding for the BEC, where the message values are allowed to be functions of all inactivated variables.

Successive Cancellation Inactivation Decoding

- The SC inactivation decoder has the same message passing schedule as the SC decoder.
- Whenever an information bit is decoded as erased, it is replaced by indeterminate variable (i.e., inactivated).
- It continues decoding using SC decoding for the BEC, where the message values are allowed to be functions of all inactivated variables.
- Previously inactivated bits may be resolved using linear equations derived from decoding frozen bits.

Example: SC Inactivation Decoding

Example: SC Inactivation Decoding

$(512,256)$ Codes over the BEC

The Subspace Dimension

- For a fixed y_{1}^{N}, the subspace dimension is

$$
d_{m}\left(y_{1}^{N}\right)=H\left(U_{\mathcal{A}^{(m)}} \mid Y_{1}^{N}=y_{1}^{N}, U_{\mathcal{F}^{(m)}}\right)
$$

The Subspace Dimension

- For a fixed y_{1}^{N}, the subspace dimension is

$$
d_{m}\left(y_{1}^{N}\right)=H\left(U_{\mathcal{A}^{(m)}} \mid Y_{1}^{N}=y_{1}^{N}, U_{\mathcal{F}^{(m)}}\right)
$$

- Let $D_{m}=d_{m}\left(Y_{1}^{N}\right)$ denote corresponding random value at step m.

The Subspace Dimension

- For a fixed y_{1}^{N}, the subspace dimension is

$$
d_{m}\left(y_{1}^{N}\right)=H\left(U_{\mathcal{A}^{(m)}} \mid Y_{1}^{N}=y_{1}^{N}, U_{\mathcal{F}^{(m)}}\right)
$$

- Let $D_{m}=d_{m}\left(Y_{1}^{N}\right)$ denote corresponding random value at step m.

Evolution of the Subspace Dimension

- If U_{m} is an information bit, then
- If decoder outputs an erasure, then
$d_{m}\left(y_{1}^{N}\right)=d_{m-1}\left(y_{1}^{N}\right)+1$
- Else, it outputs affine function and
$d_{m}\left(y_{1}^{N}\right)=d_{m-1}\left(y_{1}^{N}\right)$

Evolution of the Subspace Dimension

- If U_{m} is an information bit, then
- If decoder outputs an erasure, then $d_{m}\left(y_{1}^{N}\right)=d_{m-1}\left(y_{1}^{N}\right)+1$
- Else, it outputs affine function and $d_{m}\left(y_{1}^{N}\right)=d_{m-1}\left(y_{1}^{N}\right)$
- If U_{m} is a frozen bit, then
- If decoder outputs an erasure, then $d_{m}\left(y_{1}^{N}\right)=d_{m-1}\left(y_{1}^{N}\right)$
- Else, it outputs affine function:

Evolution of the Subspace Dimension

- If U_{m} is an information bit, then
- If decoder outputs an erasure, then $d_{m}\left(y_{1}^{N}\right)=d_{m-1}\left(y_{1}^{N}\right)+1$
- Else, it outputs affine function and $d_{m}\left(y_{1}^{N}\right)=d_{m-1}\left(y_{1}^{N}\right)$
- If U_{m} is a frozen bit, then
- If decoder outputs an erasure, then $d_{m}\left(y_{1}^{N}\right)=d_{m-1}\left(y_{1}^{N}\right)$
- Else, it outputs affine function:
i) If consolidation: $d_{m}\left(y_{1}^{N}\right)=d_{m-1}\left(y_{1}^{N}\right)-1$
ii) Else, no consolidation: $\boldsymbol{d}_{m}\left(y_{1}^{N}\right)=d_{m-1}\left(y_{1}^{N}\right)$

Evolution of the Subspace Dimension

- If U_{m} is an information bit, then
- If decoder outputs an erasure, then $d_{m}\left(y_{1}^{N}\right)=d_{m-1}\left(y_{1}^{N}\right)+1$
- Else, it outputs affine function and

$$
d_{m}\left(y_{1}^{N}\right)=d_{m-1}\left(y_{1}^{N}\right)
$$

- If U_{m} is a frozen bit, then
- If decoder outputs an erasure, then $d_{m}\left(y_{1}^{N}\right)=d_{m-1}\left(y_{1}^{N}\right)$
- Else, it outputs affine function:
i) If consolidation: $d_{m}\left(y_{1}^{N}\right)=d_{m-1}\left(y_{1}^{N}\right)-1$
ii) Else, no consolidation: $d_{m}\left(y_{1}^{N}\right)=d_{m-1}\left(y_{1}^{N}\right)$

$$
\text { Averaged over all } y_{1}^{N} \text {, the erasure probabilities are obtained via density evolution. }
$$ Must approximate consolidation probabilities.

The Markov Chain Approximation

- The random sequence D_{1}, \ldots, D_{N} can be approximated by an inhomogeneous Markov chain with transition probabilities $P_{i, j}^{(m)} \approx \mathbb{P}\left(D_{m}=j \mid D_{m-1}=i\right)$ where

$$
P_{i, j}^{(m)}= \begin{cases}\epsilon_{N}^{(m)} & \text { if } m \in \mathcal{A}, j=i+1 \\ 1-\epsilon_{N}^{(m)} & \text { if } m \in \mathcal{A}, j=i \\ \epsilon_{N}^{(m)}+\left(1-\epsilon_{N}^{(m)}\right) 2^{-D_{m-1}} & \text { if } m \in \mathcal{F}, j=i \\ \left(1-\epsilon_{N}^{(m)}\right)\left(1-2^{\left.-D_{m-1}\right)}\right. & \text { if } m \in \mathcal{F}, j=i-1\end{cases}
$$

The Markov Chain Approximation

- The random sequence D_{1}, \ldots, D_{N} can be approximated by an inhomogeneous Markov chain with transition probabilities $P_{i, j}^{(m)} \approx \mathbb{P}\left(D_{m}=j \mid D_{m-1}=i\right)$ where

$$
P_{i, j}^{(m)}= \begin{cases}\epsilon_{N}^{(m)} & \text { if } m \in \mathcal{A}, j=i+1 \\ 1-\epsilon_{N}^{(m)} & \text { if } m \in \mathcal{A}, j=i \\ \epsilon_{N}^{(m)}+\left(1-\epsilon_{N}^{(m)}\right) 2^{-D_{m-1}} & \text { if } m \in \mathcal{F}, j=i \\ \left(1-\epsilon_{N}^{(m)}\right)\left(1-2^{\left.-D_{m-1}\right)}\right. & \text { if } m \in \mathcal{F}, j=i-1\end{cases}
$$

- $\epsilon_{N}^{(m)}$ is the DE erasure probability of m-th effective channel

The Markov Chain Approximation

- The random sequence D_{1}, \ldots, D_{N} can be approximated by an inhomogeneous Markov chain with transition probabilities $P_{i, j}^{(m)} \approx \mathbb{P}\left(D_{m}=j \mid D_{m-1}=i\right)$ where

$$
P_{i, j}^{(m)}= \begin{cases}\epsilon_{N}^{(m)} & \text { if } m \in \mathcal{A}, j=i+1 \\ 1-\epsilon_{N}^{(m)} & \text { if } m \in \mathcal{A}, j=i \\ \epsilon_{N}^{(m)}+\left(1-\epsilon_{N}^{(m)}\right) 2^{-D_{m-1}} & \text { if } m \in \mathcal{F}, j=i \\ \left(1-\epsilon_{N}^{(m)}\right)\left(1-2^{\left.-D_{m-1}\right)}\right. & \text { if } m \in \mathcal{F}, j=i-1\end{cases}
$$

- $\epsilon_{N}^{(m)}$ is the DE erasure probability of m-th effective channel
- 2^{-D} is probability a random D-variable equation has all zero coefficients
$(512,256)$ d-RM Code
A fixed-weight BEC with exactly round $(512 \times 0.48)=246$ erasures

$(512,256)$ d-RM Code
A fixed-weight BEC with exactly round $(512 \times 0.48)=246$ erasures

$(512,256)$ d-RM Code
A fixed-weight BEC with exactly round $(512 \times 0.48)=246$ erasures

Concentration of the Subspace Dimension

Theorem

The subspace dimension D_{m} for a particular random realization Y_{1}^{N} concentrates around the mean \bar{D}_{m} for sufficiently large block lengths [CP21], i.e., for any $\beta>0$, we have

$$
\begin{equation*}
\mathbb{P}\left\{\frac{1}{N}\left|D_{m}-\bar{D}_{m}\right|>\beta\right\} \leq 2 \exp \left(-\frac{\beta^{2}}{2} N\right) \tag{1}
\end{equation*}
$$

Concentration of the Subspace Dimension

Theorem

The subspace dimension D_{m} for a particular random realization Y_{1}^{N} concentrates around the mean \bar{D}_{m} for sufficiently large block lengths [CP21], i.e., for any $\beta>0$, we have

$$
\begin{equation*}
\mathbb{P}\left\{\frac{1}{N}\left|D_{m}-\bar{D}_{m}\right|>\beta\right\} \leq 2 \exp \left(-\frac{\beta^{2}}{2} N\right) \tag{1}
\end{equation*}
$$

Proof.

Key observation: at any decoding stage, the subspace dimension satisfies Lipschitz-1 condition:
For all $i \in[N]$ and all values y_{1}^{N} and \tilde{y}_{i}, we have

$$
\left|d_{m}\left(y_{1}^{N}\right)-d_{m}\left(y_{1}^{i-1}, \tilde{y}_{i}, y_{i+1}^{N}\right)\right| \leq 1
$$

Then, use Azuma-Hoeffding inequality by forming a Doob's Martingale.

Concentration of the Subspace Dimension

Theorem

The subspace dimension D_{m} for a particular random realization Y_{1}^{N} concentrates around the mean \bar{D}_{m} for sufficiently large block lengths [CP21], i.e., for any $\beta>0$, we have

$$
\begin{equation*}
\mathbb{P}\left\{\frac{1}{N}\left|D_{m}-\bar{D}_{m}\right|>\beta\right\} \leq 2 \exp \left(-\frac{\beta^{2}}{2} N\right) \tag{1}
\end{equation*}
$$

- We use the theorem above to give bounds on the average complexity of ML decoding of a given code implemented via SCI decoding.
- Extension to general BMS channels is possible (the case of continuous output channels should be tackled with more care).

Outline

(1) Overview of Polar Codes

2 Recent Advances in Polar Codes

- Binary Erasure Channel
(3) Conclusions

Summary

- Recent advances (dynamic frozen bits + SCL) in polar codes allow performance near random coding union bound for $(128,64)$ with moderate complexity.

Summary

- Recent advances (dynamic frozen bits +SCL) in polar codes allow performance near random coding union bound for $(128,64)$ with moderate complexity.
- "What list size is sufficient to approach maximum-likelihood (ML) decoding performance under an SCL decoder?"
- Information theory provides some useful measures.

Summary

- Recent advances (dynamic frozen bits + SCL) in polar codes allow performance near random coding union bound for $(128,64)$ with moderate complexity.
- "What list size is sufficient to approach maximum-likelihood (ML) decoding performance under an SCL decoder?"
- Information theory provides some useful measures.
- The analysis leads to an improved code design (in comparison with the PAC code [Arı19]) under SCL decoding with list size 32.

Summary

- Recent advances (dynamic frozen bits + SCL) in polar codes allow performance near random coding union bound for $(128,64)$ with moderate complexity.
- "What list size is sufficient to approach maximum-likelihood (ML) decoding performance under an SCL decoder?"
- Information theory provides some useful measures.
- The analysis leads to an improved code design (in comparison with the PAC code [Arı19]) under SCL decoding with list size 32.
- An efficient ML decoding of polar (and RM codes) are introduced and d-RM codes were shown to perform very close to BRCB even for small lengths (e.g., 512 bits)

Summary

- Recent advances (dynamic frozen bits + SCL) in polar codes allow performance near random coding union bound for $(128,64)$ with moderate complexity.
- "What list size is sufficient to approach maximum-likelihood (ML) decoding performance under an SCL decoder?"
- Information theory provides some useful measures.
- The analysis leads to an improved code design (in comparison with the PAC code [Arı19]) under SCL decoding with list size 32.
- An efficient ML decoding of polar (and RM codes) are introduced and d-RM codes were shown to perform very close to BRCB even for small lengths (e.g., 512 bits)
- The concentration of the random subspace dimension makes the average analysis meaningful; hence, we can upper bound the average complexity of SC inactivation decoding.

Summary

- Recent advances (dynamic frozen bits + SCL) in polar codes allow performance near random coding union bound for $(128,64)$ with moderate complexity.
- "What list size is sufficient to approach maximum-likelihood (ML) decoding performance under an SCL decoder?"
- Information theory provides some useful measures.
- The analysis leads to an improved code design (in comparison with the PAC code [Arı19]) under SCL decoding with list size 32.
- An efficient ML decoding of polar (and RM codes) are introduced and d-RM codes were shown to perform very close to BRCB even for small lengths (e.g., 512 bits)
- The concentration of the random subspace dimension makes the average analysis meaningful; hence, we can upper bound the average complexity of SC inactivation decoding.
- Outlook and Future Work
- Apply this technique to design longer codes with good SCL performance

Thanks

References I

[Arı09] E. Arıkan.
Channel polarization: A method for constructing capacity-achieving codes for symmetric binary-input memoryless channels. IEEE Trans. Inf. Theory, 55(7):3051-3073, July 2009.
[Arı19] E. Arıkan.
From sequential decoding to channel polarization and back again.
CoRR, abs/1908.09594, 2019.
[AT09] E. Arıkan and E. Telatar.
On the rate of channel polarization.
In IEEE Int. Symp. Inf. Theory, pages 1493-1495, 2009.
[CNP20] M. C. Coşkun, J. Neu, and H. D. Pfister.
Successive cancellation inactivation decoding for modified Reed-Muller and eBCH codes.
In IEEE Int. Symp. Inf. Theory, 2020.
[CP20] M. C. Coşkun and H. D. Pfister.
Bounds on the list size of successive cancellation list decoding. In 2020 Int. Conf. on Signal Process. and Commun. (SPCOM), pages 1-5, 2020.
[CP21] M. C. Coşkun and H. D. Pfister.
An information-theoretic perspective on successive cancellation list decoding and polar code design (in prep.).
2021.
[DS06] I. Dumer and K. Shabunov.
Soft-decision decoding of reed-muller codes: recursive lists.
IEEE Trans. Inf. Theory, 52(3):1260-1266, 2006.

References II

[GEE ${ }^{+}$20] M. Geiselhart, A. Elkelesh, M. Ebada, S. Cammerer, and S. ten Brink. Crc-aided belief propagation list decoding of polar codes.
In IEEE Int. Symp. Inf. Theory, pages 395-400, 2020.
[RBV20] Mohammad Rowshan, Andreas Burg, and Emanuele Viterbo. Polarization-adjusted convolutional (PAC) codes: Fano decoding vs list decoding. CoRR, abs/2002.06805, 2020.
[RV19] Mohammad Rowshan and Emanuele Viterbo.
How to modify polar codes for list decoding.
In IEEE International Symposium on Information Theory, pages 1772-1776, 2019.
[Sto02] Norbert Stolte.
Rekursive Codes mit der Plotkin-Konstruktion und ihre Decodierung.
PhD thesis, TU Darmstadt, 2002.
[TM16] P. Trifonov and V. Miloslavskaya.
Polar subcodes.
IEEE J. Sel. Areas Commun., 34(2):254-266, Feb. 2016.
[TV15] I. Tal and A. Vardy.
List decoding of polar codes.
IEEE Trans. Inf. Theory, 61(5):2213-2226, May 2015.
[YFV20] Hanwen Yao, Arman Fazeli, and Alexander Vardy.
List decoding of arıkan's PAC codes.
CoRR, abs/2005.13711, 2020.

