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Vollständiger Abdruck der von der Fakultät für Physik

der Technischen Universität München
zur Erlangung des akademischen Grades eines
Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzender: Prof. Dr. Christian Back
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Abstract

The number of constituents that compose macroscopic systems makes condensed
matter a very diverse area of physics. Therefore, it is of extreme importance to
discover common themes and properties that permit the description of distinct sys-
tems similarly. One of these themes is to identify and study gapless excitations at
long wavelengths and small energies. Crystals are the most familiar systems that
exhibit gapless degrees of freedom, called phonons. This thesis applies field the-
ory methods to study long-wavelength excitations of topological solitons that ar-
range themselves into crystal structures and emerge as ground states of superfluids
and chiral magnets. First, using boson-vortex duality, we formulate a low-energy
effective theory of a two-dimensional vortex lattice in a bosonic Galilean-invariant
compressible superfluid by describing vortices as two-dimensional point charges
moving in a magnetic background. We extract the excitation spectrum, which
contains a gapped Kohn mode and an elliptically polarized Tkachenko mode that
has quadratic dispersion relation at low momenta. We couple the theory to an ex-
ternal U(1) gauge field and extract the particle number current transport. Second,
we study edge waves travelling along the lattice’s boundary in two-dimensional
skyrmion lattices which appear in thin-film chiral magnets. In elastic systems,
these excitations are known as Rayleigh waves. We find that the direction of prop-
agation of the Rayleigh modes is determined not only by the thin film’s chirality
but also by the Poisson ratio of the crystal. Furthermore, we discover three quali-
tatively different regions distinguished by the low-frequency edge waves’ chirality
and inspect their properties.



Zusammenfassung

Die Anzahl der Bestandteile, aus denen sich makroskopische Systeme zusam-
mensetzen, macht die kondensierte Materie zu einem sehr vielfältigen Bereich der
Physik. Daher ist es von äußerster Wichtigkeit, gemeinsame Themen und Eigen-
schaften zu entdecken, die es erlauben, unterschiedliche Systeme auf ähnliche
Weise zu beschreiben. Eines dieser Themen ist die Identifizierung und Unter-
suchung von lückenlosen Anregungen bei langen Wellenlängen und kleinen En-
ergien. Kristalle sind die bekanntesten Systeme mit lückenlosen Freiheitsgraden,
den sogenannten Phononen. In dieser Arbeit werden feldtheoretische Metho-
den angewandt, um langwellige Anregungen topologischer Solitonen zu unter-
suchen, die sich in Kristallstrukturen anordnen und als Grundzustände von Super-
fluiden und chiralen Magneten auftreten. Zunächst formulieren wir unter Verwen-
dung der Boson-Vortex-Dualität eine niederenergetische effektive Theorie eines
zweidimensionalen Wirbelgitters in einem bosonischen, Galilei-invarianten kom-
pressiblen Suprafluid, indem wir die Wirbel als zweidimensionale Punktladungen
beschreiben, die sich in einem magnetischen Hintergrund bewegen. Wir arbeiten
das Anregungsspektrum aus, das eine lückenhafte Kohn-Mode und eine elliptisch
polarisierte Tkachenko-Mode enthält, wobei letztere bei niedrigen Impulsen eine
quadratische Dispersionsbeziehung aufweist. Wir koppeln die Theorie an ein ex-
ternes U(1)-Eichfeld und extrahieren den Teilchenzahl-Stromtransport. Zweitens
untersuchen wir Randwellen, die sich entlang der Gittergrenze in zweidimension-
alen Skyrmionengittern bewegen, die in chiralen magnetischen Dünnschichten
auftreten. In elastischen Systemen sind diese Erregungen als Rayleigh-Wellen
bekannt. Wir stellen fest, dass die Ausbreitungsrichtung der Rayleigh-Moden
nicht nur von der Chiralität des Dünnfilms, sondern auch von der Poissonzahl des
Kristalls bestimmt wird. Außerdem entdecken wir drei qualitativ unterschiedliche
Regionen, die sich durch die Chiralität der niederfrequenten Randwellen unter-
scheiden, und untersuchen ihre Eigenschaften.
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Introduction

Our currently accepted understanding of elementary particles is the Standard Model,
which predicts that fermions and the Higgs boson compose matter, and four vector
bosons mediate the three fundamental forces: electromagnetic, weak and strong.
However, much more is going on when we investigate matter assembled in large
ensembles. When we consider systems composed of a macroscopic number of
particles, it seems as there is no remembrance of the underlying microscopic
structure. In fact, condensed matter and many-body physics is the science of
emergence [1]. As large crowds of people behave surprisingly differently from
what we expect their individuals to act, also matter does similarly. This problem
is not just an issue related to the microscopic theories’ lack of predictivity due to
our limited computational resources. At every scale of size and complexity, new
fundamental laws might appear, making irrelevant or less relevant the old-scale’s
laws. Topological phases, crystals, Bose–Einstein condensates and superfluids,
superconductors, supersolids, Fermi and non-Fermi liquids, and many more are
all phenomena that arise from the same constitutive elements, but are indeed be-
wilderingly different. We urge a broad classification, to get some sense of this
astonishing variety in which condensed matter unravel. To that end, it is useful to
count how many ways a system has to be excited above its ground state at long
wavelengths, and with small energies [2]. According to this approach, physical
systems divide into those that possess a finite excitation gap, the ones with few
soft modes, and those which enjoy many ways to realise gapless quasi-particle
excitations.
In this thesis, we focus on systems that fall into the second category. Symmetries
characterise this class. A system obeys a symmetry if, under a transformation,
its properties do not change. Symmetries can also be approximate, when they
arise at large distances. For instance, a football is not a perfect sphere, but we
would assure its rotational invariance if we watch it from far enough. The appear-
ance of few gapless modes is a consequence of spontaneous symmetry breaking.
This far-reaching concept is a novel feature steming from having to deal with
a macroscopic number of particles and infinite volumes. Taken a microscopic
theory which has a continuous symmetry, thus a whole manifold of degenerate
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ground states, the environment chooses one in particular, and the symmetry is
lost. Something similar also happens in the biological world. Flat fishes live on
the bottom of the sea, and have both eyes on one side. While the halibut put them
on the left side, the flounder put them on the opposite side. To put in another way,
evolution broke parity symmetry [3].
The consequence of the ground state’s degeneracy and spontaneous symmetry
breaking are the gapless excitations, namely the Nambu–Goldstone bosons. Pions
in heavy-ion collisions manifest the spontaneous breaking of chiral symmetry, Bo-
goliubov phonons in superfluids, of U(1) phase symmetry, phonons in crystals, of
translational symmetry. For all of these systems, effective actions can be written
based only on symmetry considerations, keeping in mind that every term which is
not prohibited should be included [4].
Crystals constitute the central theme of this thesis. Faithful to the long-wavelength
viewpoint, we rely on the elasticity theory, a field of continuum mechanics that
assigns a displacement from a preferred equilibrium configuration at every point
in space. The original translational symmetry’s remainder (a subset) imposes con-
ditions on the elastic tensor structure. While, historically, elasticity was developed
to describe crystals and solid bodies made of particles, our research concentrated
on elastic solids composed of topological solitons. These are localised solutions
of field theories that possess conservation laws that do not follow from continuous
symmetries and from Noether’s theorem. Due to their topological charge conser-
vation, topological solitons can not be smoothly deformed into topological trivial
field configurations. Consequently, we can divide a theory’s solutions space into
separated topological sectors.
The first crystal of topological solitons we considered emerges in superfluids.
From standard arguments, a superfluid is necessarily irrotational. However, if
it is put under external rotation, the ground state of a superfluid can carry angular
momentum by nucleation of quantised vortices. The density of vortices scales
with the angular velocity [5]. For moderate rotations, and until the vortex den-
sity reaches a critical value of the order of magnitude of the density of particles,
vortices arrange themselves in a regular crystal which is known as the Abrikosov
lattice, and that found its experimental incarnations both in superfluid Helium [6]
and cold atomic Bose–Einstein condensates [7]. Using the boson-vortex duality
[8, 9], we provided an effective field theory description of the vortex crystal phase
[10].
The other crystal we considered emerges in magnetic systems. For a long time, a
mysterious small pocket of the phase space presented anomalous magnetic prop-
erties, and was called ’A-phase’. Experiments in transition metal compounds with
cubic symmetry [11] provided incontestable proof that this phase consists of a lat-
tice of topological solitons called skyrmions. Such name comes from pioneering
works of the nuclear physicist Tony Skyrme [12]. Exploring waves that remain
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confined to the boundary of a semi-infinite domain, we found the skyrmion lattice
exhibits quadratically dispersing surface Rayleigh waves whose direction of prop-
agation can be tuned and classified by changing a dimensionless ratio between the
elastic parameters [13] .

We organised this thesis as follows:
In Chapter 1, we review linear elasticity. This is the coarse-grained frame-

work we used to describe crystals as homogenous systems. Displacement from
equilibrium positions is the degree of freedom that describes elastic solids most
properly. From displacement, two tensor quantities called strain and stress are
constructed. We show how we can decompose them into elementary pieces, each
understandable in simple physical terms, and provide some examples. The crystal
symmetry puts constraints on the elastic energy. We then study how waves prop-
agate in an infinite elastic system and how their nature change when we apply
sensible boundary conditions.

In Chapter 2, we introduce topological solitons in a model-independent fash-
ion. However, first, we start from a historic excursus into developments that even-
tually led to introducing topological conservation laws in physics. Then, we il-
lustrate the concept of topological charge, homotopy class, topological soliton in
increasing levels of complexity. For this reason, we start with topological solitons
in one spatial dimension (kinks) and then discuss vortices and skyrmions in two
dimensions.

In Chapter 3, we develop an effective field theory to describe vortex crystals
in rotating compressible bosonic superfluids. We discuss how quantum field the-
ory can be used for the non-relativistic limit of interacting bosons. We lay out
the basics of effective actions for a superfluid in the absence of vortices and the
modifications needed when there are topological defects. We derive boson-vortex
duality, which incorporates the superfluid as a gauge degree of freedom and vor-
tices as point charges moving in a uniform dual magnetic field. We use it to
provide a low-energy description of the vortex lattice, and extract transport.

We finally devote Chapter 4 to investigate surface waves in skyrmion crystals
in thin-film chiral magnets. We fully map their dispersion relation in terms of a
ratio between the crystal parameters and find exciting consequences regarding the
direction of propagation.

We summarise and foresee the possible outlook of our work in the conclusions.
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Chapter 1

Elasticity theory

In this initial chapter, we introduce the foundations and the tools to describe elastic
solids that we will use throughout this thesis. This approach goes under the name
of elasticity theory. It is based on the assumption that we can describe solids as
continuous distributions of their constituents, at least at a coarse-grained level.
First, we illustrate the generic description of small displacements in deformable
bodies and specialise it to elastic media, whose main characteristic is the ability to
retain their shape after they have been deformed. Then, we illustrate elasticity’s
essential building blocks. These are strain and stress, tensor quantities that are
built from displacements. Symmetry poses constraints on the tensor structure of
observables. In the last part, we study how waves propagate in elastic bodies, both
in the bulk of the system and -more interesting for us- at its boundaries. Every-
where, we assume Einstein’s convention on summation over repeated indices.

1.1 Continuous description of elastic solids

Conventionally, the study of mechanical systems starts by introducing the con-
cept of point particle, an idealisation of material bodies in which the latter are
represented as zero-dimensional objects. By definition, such representation pro-
vides neither a shape nor a volume. The discussion usually proceeds with the
study of particles’ kinematics and dynamics in the three-dimensional Euclidean
space, first by using Newton’s laws and then developing the Lagrangian formal-
ism ([14, 15]).
The point particle working hypothesis holds whenever the bodies’ size is much
smaller than the space where their motion occurs. In this case, the positions fully
determine the state of bodies at rest. For example, the only relevant information
about grains of sand that make up a sandcastle is to stay on top of each other ap-
propriately.
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If we want to describe an extended object, we also require the knowledge of its
orientation, in other words, the angles that put in relation the body-fixed coordi-
nate system with an external reference frame. Therefore, we need a more general
working concept to replace the point particle. This new paradigm is the solid
body, defined as a collection of point particles whose motion or forces do not alter
their mutual distance.
Lastly, we might even relax the assumption concerning the rigidity of bodies. If
the mutual distance between point particles can change, bodies alter both in their
shape and in volume. The study of the configuration of a deformable body re-
quires another ingredient, on top of its position and its orientation. This new
degree of freedom that describes deformations is called strain, and it is crucial to
investigate elastic solids. Elastic solids are continuous distributions of masses that
oppose deformation and return to their original configuration when the forces that
cause the deformation cease. A theory that can describe such a setting is neces-
sarily a continuum theory, in which the number of degrees of freedom is infinite
and, in general, no microscopic lengthscales are involved. It must be kept in mind
that, as every effective description, elasticity theory is not fundamental, and it may
only be valid within a regime of length scales and energies.

1.1.1 Helmholtz’s theorem and partial motions

We present a very illustrative decomposition of the most general motion that hap-
pens for a generic deformable body in three dimensions, which might be a fluid
or a solid. This result is one of the many contributions by Helmholtz ([16], as
cited in [17]). It separates the displacement of a continuous deformable body into
the sum of three independent partial motions. One of these is constructed using
strain, which is the key element to describe elastic bodies.
We start this discussion by considering two points belonging to a body, P and O,
whose coordinates are (x, y, z) and (0, 0, 0), respectively. If some rearrangement
of the body takes place, the point P gets infinitesimally displaced to P = (ξ, υ, ζ)
with

ξ = ξ0 + x (∂xξ) + y
(
∂yξ
)

+ z (∂zξ) + · · ·
υ = υ0 + x (∂xυ) + y

(
∂yυ
)

+ z (∂zυ) + · · ·
ζ = ζ0 + x (∂xζ) + y

(
∂yζ
)

+ z (∂zζ) + · · · ,
(1.1)

where dotted terms are of higher order in derivatives.
The three partial derivatives of the three components of the displacement field can
be labelled as a11 = ∂xξ, a12 = ∂yξ and so on. Namely, they compose an object
aij with nine components and two indices. If we introduce its antisymmetric
a[i,j] ≡ 1

2

(
aij − aji

)
and symmetric a(i,j) ≡ 1

2

(
aij + aji

)
parts, equation (1.1)
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automatically splits into three peculiar components

ξ = ξ0 + y a[1,2] + z a[1,3] + x a11 + y a(1,2) + z a(1,3)

υ = υ0 + x a[2,1] + z a[2,3] + x a(2,1) + y a22 + z a(2,3)

ζ = ζ0 + x a[3,1] + y a[3,2] + x a(3,1) + y a(3,2) + z a33.

With no surprise, we identify in the above expression two families of terms that
are present also for the rigid body, giving rise to motion of all the body’s con-
stituents as a whole.
While the first partial motion s0 ≡ (ξ0, υ0, ζ0) represents a uniform translation,
the second type of terms, which stem from antisymmetrisation, constitute a rota-
tion. We arrange the latter as the second partial motion s1, that is a cross product
between the position r and the rotation Φ ≡ (a[2,3], a[3,1], a[1,2]),

s1 ≡ r ∧Φ. (1.2)

Rotations, by definition, do not change the mutual distance between points. In-
deed, after the displacement, the distance between the two points |r + s1|2 =
|r|2 + 2r · s1 + . . . coincides with their original distance |r|2, because the orig-
inal position and s1 are orthogonal to each other by construction.
The last partial motion s2 ≡ (ξ2, υ2, ζ2) originates from the symmetrised parts,
and it takes into account the local change of the mutual distance between the con-
stituents of the body

ξ2 = x a(1,1) + y a(1,2) + z a(1,3)

υ2 = x a(2,1) + y a(2,2) + z a(2,3)

ζ2 = x a(3,1) + y a(3,2) + z a(3,3).

It is natural to introduce a second-rank tensor uij ≡ a(i,j) to incorporate the partial
derivatives of the displacement components, such that s2 = u r.
Elastic solids are insensitive to where they are in space or how they are oriented.
Therefore, they do not react to the first s0 and the second s1 partial motions, but
they react to s2. The tensor uij is the peculiar feature of elastic bodies, it is the
strain we were looking for, and it deserves a discussion on its own, without both-
ering about the translations and rotations. The following part concerns the de-
scription of strain for elastic bodies in dimension d ≥ 2.

1.2 Displacement and strain
We characterise every point of an elastic solid [18] by a vector x that describes
its position before the deformation, and by one vector after, x′. The main degree
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of freedom in elasticity is thus the difference between the two previous quantities,
the so-called displacement field

u(x) ≡ x′ − x. (1.3)

Transformations in which the displacement vector is a constant correspond to
translations of the body as a whole. Therefore they do not produce deformations.
In light of this, we consider only displacements that change locally in space. The
appropriate quantity we examine is the gradient of the displacement field ∂iuj .
The knowledge of the dependence of the displacement regarding the original po-
sitions completely determines and solves the problem.

Deformation

Figure 1.1: Two points x and x̃, that originally are at a distance dl, get displaced
non-homogeneously by a field u, ending up having distance dl′.

If we take two points x, x̃ (see figure (1.1)) that are initially infinitesimally close
x̃− x ≡ dx at a distance dl =

√
dx2, when the deformation of the body happens,

their mutual distance changes according to

(dl′)2 = dl2 + 2dxjdxi

[
1

2
(∂jui + ∂iuj) +

1

2
(∂iul)(∂jul)

]
. (1.4)

We encode the information about the changes of the displacement vector in space
by introducing a symmetric second-rank tensor called the strain tensor

uij ≡
1

2

[
(∂jui + ∂iuj) + (∂iul)(∂jul)

]
. (1.5)

As with every real symmetric tensor, we can reduce it to a diagonal form after
finding its eigenvalues and eigenvectors. In the context of continuum mechan-
ics, eigenvalues {u(i)} are referred to as principal values, and eigenvectors as
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principal axis because they are the local basis in which the tensor is diagonal. As-
suming we diagonalised the tensor, we decompose a generic length element along
the principal axis (1, 2, 3) into the sum of three independent contributions

(dl)2 → (dl′)2 = dx2
1[1 + 2u(1)] + dx2

2[1 + 2u(2)] + dx2
3[1 + 2u(3)]. (1.6)

The above equation shows that deformation affects the mutual distance between
points dl′ by modifying the length elements along the three principal axis dx1, dx2,
dx3. Depending if the principal values are positive or negative, local dilations dx′i
of the original length elements dxi are either expansions or compressions

dxi → dx′i = dxi
√

1 + 2u(i). (1.7)

If we consider stable bodies, the distance between two points is always larger than
its relative variation (dx′− dx)/dx =

√
1 + 2u(i)− 1 ≈ u(i), and the deformation

is small. However, small deformation does not imply small displacement. As a
matter of fact, objects in which one dimension is tiny with respect to the others can
undergo small deformations, but they are still described by a large displacement1.
Nonetheless, for extended objects, the displacement vector is always very small,
and we approximate the equation (1.5) for the strain tensor by keeping only the
linear terms

uij ≈
1

2

(
∂jui + ∂iuj

)
≡ ∂(iu j). (1.8)

To conclude this discussion, let us see how the deformation of an elastic body re-
flects on a physical quantity that can be easily measured, for example, an infinites-
imal volume element dV . In general, the determination of the principal values
{u(i)} and the principal axis of a generic tensor is a pretty demanding approach.
However, we want to convey that the eigensystem analysis is unnecessary because
we can express sensible physical quantities using tensor invariants instead. Ac-
cording to (1.7), a deformation transforms a volume element dV = dx1dx2dx3

into
dV ′ = dV (1 + u(1) + u(2) + u(3)). (1.9)

The trace of a Cartesian tensor is an invariant. Hence, we can use the expression
for the trace of the strain tensor in the original coordinate systems instead of going
through diagonalisation procedures. The new volume element is

dV ′ = dV (1 + uii). (1.10)

The relative volume change in a deformed body associated with a given displace-
ment field u is the sum of the diagonal components of the strain tensor, hence

1As an example, think about lifting a heavy boot with a fishing rod: the rod will be drastically
bent.
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(dV ′ − dV )/dV = uii.
In the following sections, we will come back to a general decomposition of strain
into two parts, dilations and shears.

1.3 Stress
A spring is the most straightforward system that shares with elastic solids the
fundamental property of reacting to deformation. Thus, we can understand elas-
ticity theory as an infinite collection of springs at every point in space, that oppose
forces to stretches. We have already clarified that in elastic systems strain plays
the role of stretch. Now, we will see how the role of forces is embedded into a
quantity known as stress.
As in the case of a spring, all the parts of an undeformed elastic body are in me-
chanical equilibrium. Thus, we assume that the net force which acts on them from
the surrounding environment vanishes. Under strain, the elementary constituents
(atoms, molecules, grains) try to get the body back to its equilibrium position,
giving rise to internal forces.
One of the assumptions of elasticity theory is that the scale at which the con-
stituents’ interactions happen is microscopic, while the scales of phenomena that
it describes are macroscopic. There is a clear separation of scales: the effect of
short-range forces on a given element of the body can be considered at large scales
as contact interactions through its enclosing surfaces.
We examine the sum of all force densities fi that act on an infinitesimal volume
element dV . We want to rewrite

´
dV fi only in terms of forces that act through

the surface of dV . We employ Stokes theorem2, at the price of introducing a
second-rank tensor Tij whose divergence is the force

∂jTij = fi. (1.11)

The sum of forces acting on a volume element of an elastic body can thus be
expressed using Tij , as

ˆ
dV fi =

ˆ
dV ∂kTij →

˛
∂V

dSk Tik. (1.12)

We arrived at the second local quantity that describes elastic solids, the stress
tensor3 Tij . If the surrounding medium exerts a force along the outer surface

2Stokes theorem is usually presented in basic electromagnetism and permits to transform vol-
ume integrals of the divergence of the electric field (a scalar) into integrals of the vector field
through the enclosing surface,

´
dV (∂kEk) =

¸
∂V

dSk Ek.
3Some authors use a different sign convention, where they define the stress tensor as the net

force per unit area that the body exerts on its surroundings, rather than the opposite.
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normal, Tij is positive. If the surrounding medium exerts a force inward, Tij is
negative [19].

Force balance conditions

For a body at equilibrium, internal stresses should not give rise to any forces, so
∂jTij = 0 holds. However, in the case of a body of density ρ immersed in a force
field, as the gravitational field, the equilibrium condition that must be fulfilled is
∂jTij + ρgi = 0.
If the body is subject to forces (fext)i applied to its external surface with nor-
mal nj , we must solve the equilibrium condition by also including the boundary
condition Tijnj = (fext)i.

1.3.1 Considerations around the stress tensor
For elastic systems in d spatial dimensions, the number of components of the
stress tensor Tij is d2. However, on general grounds, we argue that the number of
independent components is reduced to d (d+ 1) /2 because Tij is symmetric. In
three dimensions, we infer this property by imposing that torque mi = εijkfjrk
which acts on the infinitesimal volume element should act only through its bound-
aries, analogously to what we did for

´
dV fi. By using (1.11), we obtain as total

torque
´
dV εijk(∂pTjp)rk =

´
dV εijk∂p[Tjprk] −

´
dV εijkTjk. While we can

work out the first integral using the divergence theorem, the second term in
˛
dSpεijkTjprk −

ˆ
dV εijkTjk (1.13)

must vanish. Otherwise, we face the inconsistency of having volume forces. Be-
cause the integral that has to vanish contains the contraction of Tjk with the anti-
symmetric symbol, the stress tensor has to be symmetric, Tik = Tki.
Despite being irrelevant for our work, it is still interesting to point out that non-
symmetric stress tensors arise in Cosserat or micropolar theories [20, 21]. In these
theories, the constituents of the system have internal orientational properties [22].

1.3.2 Examples of stress
Apart from the symmetric condition, stress can be arbitrarily complicated. As a
result of this, we want to illustrate and explicitly compute three simple examples.
Then we provide a general understanding, by using the properties of Cartesian
tensors in three dimensions.

11



(a) (b)

(c)

Figure 1.2: Three types of stress: uniform compression (a), tension (b) and shear
(c). For simplicity, the images depict two-dimensional objects.
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• The simplest example of stress that we can imagine is uniform compression,
analogous to hydrostatic pressure. We can think of the effect a fluid exerts
on a solid body immersed in it: pressure will isotropically push every body’s
surface inwards. In such a situation, the force is fi = −PdSi or, in terms of
the stress tensor,

Tik = −Pδik, (1.14)

i.e. all the elements of Tik are equal and belong to the diagonal. Pressure is
the only stress force that normal fluids at rest can sustain.

• Tension is a type of uniaxial stress in which forces are oriented along only
one direction of the solid, outwards with respect to its enclosing surfaces.
In this respect, they act in the opposite sense compared to pressure. For in-
stance, tension applied in the horizontal direction, is described by the stress

Tij = Tδixδjx. (1.15)

In the isotropic body, tension leads to the concepts of Young modulus and
Poisson ratio, whose role will be fundamental, later on, in this dissertation.

• Shear forces are tangential forces that act perpendicularly with respect to the
surface they are applied to. In Fig. 1.2 we introduce a shear deformation that
makes parts of the body at equal height glide with respect to each others.
Since the volume is preserved, the trace of the corresponding stress tensor
vanishes.

1.3.3 Intermezzo: irreducible representations of a tensor in
Euclidean space

The number of components N of a tensor can become unbearable, increasing the
rank and the dimension of the space. It is usually very convenient to decompose a
tensor into the sum of parts that are ”as small as possible” [23], so that they realise
irreducible representations of the rotation group, built by acting linearly with the
metric gij = δij on the original tensor. For example, a second-rank tensor Cij
in d dimensions has N = d2 independent components, which can be arranged in
smaller tensors as:

1. The simplest object we can realise is a contraction with the metric, the trace
Cii ≡ δijCij . The trace is a scalar, so the number of independent compo-
nents is Nt = 1.

2. The antisymmetric part Rij ≡ C[i,j]. In three dimensions, the number of
independent components is Na = 3.
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3. The symmetric, traceless, deviatoric part C̃ij ≡ C(i,j)− 1
d
Ciiδij [24]. In three

dimensions, the fact that the deviatoric part comes from a symmetrisation
procedure reduces the number of independent components to 6, and the
vanishing of the trace reduces it furthermore, down to Nd = 5.

There are no smaller parts that we can obtain by combining linearly Cij , δij and
the Levi–Civita symbol εij .
We rewrite the original tensor as the combination of its irreducible representations

Cij =
Cii
d
δij + C̃ij +Rij (1.16)

where, naturally, N = Nt +Na +Nd.
The dimension of the irreducible representations of SO(3) is always odd, and it
is labeled by Nirr = 2l + 1. Therefore, the three irreducible tensorial parts of
a second rank tensor in three dimensions are l = 0 (the trace part, a spherical
tensor), l = 1 (the antisymmetric part), l = 2 (the deviatoric part).

Irreducible parts of strain

At the beginning of this chapter, we have conveyed that the gradient of the dis-
placement field ∂iuj is the main actor of elastic systems. In this case, its irre-
ducible parts have a straightforward physical interpretation:

1. The trace uii expresses changes in volume of the body, expansions and com-
pressions. It already appeared in (1.10).

2. The antisymmetric part Rij expresses rotations that do not deform the orig-
inal body but only change its global orientation. Elastic materials do not
change shape under rotations, so there is no point in considering this part
of ∂iuj . Instead, it is more thoughtful to remove the antisymmetric part by
working directly with symmetrised strain tensor, which we introduced in
(1.5).

3. The deviatoric part expresses deformations that transform an object’s shape
but preserve its volume. For example, the pure shear deformation repre-
sented in Fig. 1.3 is given by the displacement u = ε (y, x) and corresponds
to the traceless strain tensor uij = ( 0 ε

ε 0 )

The decomposition of the symmetrised strain tensor into a sum of its irreducible
parts, which are compressions and shears, is

uij =
1

d
u2
kkδij +

(
uij −

1

d
u2
kkδij

)
≡ 1

d
u2
kkδij + ũij. (1.17)

14



Figure 1.3: A pure shear deformation applied to the dotted square transforms it
into a parallelogram with the same area.

1.4 Elastic energies
We have understood that we can think of elastic materials as continuous, higher
dimensional versions of the simple spring. Hence, it is also natural to assume a
linear relationship between stress and strain analogous to Hooke’s law4. There-
fore, we encode the cost of deforming a body that otherwise is at equilibrium into
an elastic energy quadratic in strain

Eel =
1

2
Kijkluijukl. (1.18)

Instead of a single spring constant k, we have introduced a fourth rank tensor
Kijkl, called elastic modulus tensor. The number of components of a fourth rank
tensor scales rapidly with the dimension d of space, as d4. Fortunately, many of
the elements of Kijkl are equal to each others by construction. Given that the
strain tensor uij is constructed as a symmetric object, also Kijkl is invariant under
permutations i ↔ j and k ↔ l. Furthermore, since the elastic energy (1.18) is
quadratic in strains, also Kijkl should be invariant under swaps ij ↔ kl. Already

4Although we only consider situations where the proportionality between stress and strain is
linear (Hookean), we can easily imagine that materials exhibit upper bounds where this relation-
ship is no longer valid. If this were not the case, springs in cars’ shock absorbers would fulfil their
purpose forever. Unfortunately, this is not the case. After having passed the direct proportionality
between stress and strain, there is a regime in which the material is still elastic (when unstressed, it
goes back to its original shape), but the behaviour is not anymore just linear. After having passed
the elastic limit, the material gets permanently bend. Increasing further the stress, arrived at the
yield limit, the material begins to show plasticity: very little stress causes enormous strains to the
system. At last, at the rupture point, the material cracks. To give some numbers: for most solids,
the elastic and yield points are small numbers, with the notable exception of rubber, that is elas-
tic until stretches that are approximately eight times its original size, and that it is seldom in the
Hookean regime.
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these symmetries

Kijkl = Kjikl = Kijlk = Kjilk = Kklij (1.19)

considerably reduce the number of independent components. In three dimensions
the reduction is from 34 = 81 to 21, and in two dimensions from 24 = 16 to
6. Apart from the above trivial symmetries, the solid under investigation’s point
symmetries decrease even more the number of independent components of Kijkl.
The more symmetric the solid, the less the number of independent elastic moduli.

1.4.1 Two-dimensional elastic energies
For research’s purposes which we reported in this thesis, we limit ourselves to the
two-dimensional case. There is one element per direction with four equal indices
(Kxxxx, and Kyyyy), two elements with two equal indices (Kxxyy = Kyyxx), four
elements with two couples of mixed indices (Kxyxy = Kyxxy = Kxyyx = Kyxyx),
and twice four with three same indices (Kxxxy = Kxxyx = Kxyxx = Kyxxx and
Kyyyx = Kyyxy = Kxyyy = Kyxyy). Putting all the pieces of information together,
the density of the free energy (1.18) in two dimensions is proportional to

Kijkluijukl = Kxxxxu
2
xx +Kyyyyu

2
yy + 2Kxxyyuxxuyy+ (1.20)

+ 4Kxxxyuxxuxy + 4Kyyxyuyyuxy + 4Kxyxyu
2
xy. (1.21)

1.4.2 Isotropic body
In elastic media, the concept that realises the highest possible symmetry is called
the isotropic body. In such a medium, all physical properties do not on a specific
direction: none is special. Thus, the isotropic body sounds like a very tempting
but irrealistic concept to describe real systems. Still, surprisingly, most of the
materials fall into this description if we use the concept of scale separation.

• It is usually the situation that real materials, such as polycrystalline metals,
have a microscopic structure that is ordered and periodic, but is arranged in
randomly oriented grains. On scales that are much larger than the micro-
scopic ordered one, the orientation of individual grains is averaged out by
all the others [25], and the material behaves isotropically [26]. Glasses lack
long-range order, so we can consider them isotropic as well. Furthermore,
for crystalline solids, the continuum approximation holds on scales that are
larger than 10−8 m [27].

• Even our current comprehension of the Universe relies on the assumption
that the Universe, seen on sufficiently large scales, is isotropic and homo-
geneous: these are the essential ingredients of the cosmological principle.
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Figure 1.4: Kepler in [29] depicted the position of Earth (’M’, for Latin
”Mundus”) as just one of many other celestial bodies. Interestingly enough, Ke-
pler represented the isotropic Sky as a triangular lattice.

The principle fulfils the Copernican requirement that neither the Sun nor the
Earth should be privileged points of observation of our Universe (see Fig.
1.4). We notice stellar systems, galaxies and clusters in preferred directions
only because we do not look distant enough. It took until the end of the
twentieth-century [28] to experimentally prove -through redshift surveys-
that the Universe, coarse-grained over distances of 100 Mpc, is isotropic
until the largest distance observable, 3000 Mpc.

To describe the isotropic body, we have to construct a sensible elastic moduli
tensor Kijkl composed of smaller tensors that are themselves isotropic. If the aim
is to realise fourth rank tensors, there is no other possible choice than to combine
two Kronecker deltas

Kijkl = λ δijδkl + a δikδjl + b δilδjk. (1.22)

The requirement that the permutation symmetries (1.19) should be satisfied im-
poses the condition a = b ≡ µ,

Kijkl = λ δijδkl + µ(δikδjl + δilδjk). (1.23)

The coefficients λ, µ are characteristic of the system under investigation, and they
are called Lamé coefficients.
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The elastic energy density (1.18) for the isotropic body is

Eel =
1

2

[
λu2

ii + 2µ(uil)
2
]
. (1.24)

Following the spirit of previous discussions, it often is more convenient to split
strain into its irreducible parts, that have a neat physical interpretation. Using the
decomposition of the strain tensor (1.17) we arrive5 at the elastic energy of the
isotropic body being

Eel =
1

2

[(
λ+

2µ

d

)
u2
ii + 2µ (ũil)

2

]
(1.25)

=
1

2

[
Bu2

ii + 2µ(ũil)
2
]
. (1.26)

The coefficient in front of the trace part is called the bulk modulus B ≡ λ+ 2µ/d.
It depends on dimensionality and expresses the body’s resistance to altering its
volume. The parameter µ is called the shear modulus and measures the solid’s
resistance to shearing. Since every strain introduced in a system at equilibrium
should increase the internal energy, Eel is minimum for zero strain uij = 0. Hence,
in the isotropic body, both B and µ are positive.

Order of magnitude of elastic constants for various materials To evaluate the
value of the elastic constants that compose the elastic moduli tensorKijkl requires
a microscopic understanding of the given substance that, in general, is difficult to
obtain. However, we can understand the order of magnitude using a fly by night
approach [30]. Strain is a dimensionless quantity. Therefore, elastic constants
should have the dimension of energy densities. In ordinary solids, a reasonable
choice is

[K] =
[binding energy]

[interparticle spacing]3
. (1.27)

In an ionic solid (NaCl, for example), the binding energy is of the order of a few
eV, while the separation between particles is of the order of a couple of Ångstroms.
Thus we can estimate the values of the elastic moduli to be about 20 GPa6. In the
following table, we report a comparison of the measured values of elastic moduli
for cubic7 and isotropic solids that elucidates why certain materials appear more
rigid than others.

5The deviatoric tensor ũij is traceless, (uij)2 = u2ii/d+ (ũij)
2.

61 GPa = 1010 Dyn/cm2, 1 Dyn = 10−5N, 1 eV = 1.6× 10−19J.
7In a cubic crystal, the bulk modulus is given by B = (K11 + 2K12)/3.
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Elastic Moduli (GPa)
Air B = 10−4, µ = 0

Water B = 2, µ = 0

NaCl [31] K11 = 48.70, K12 = 13.11, K44 = 12.66 (B = 24.97)
Copper B = 130, µ = 45

4340 Steel [32] B = 210, µ = 83

Diamond [27] K11 = 1760, K12 = 125, K44 = 576 (B = 670)

Table 1.1: Bulk modulus B for various ordinary materials.

1.4.3 Relation between stress, strain and free energy

We derive the relation between strain, stress and free energy by considering the
work done W by a force in displacing a volume element by the infinitesimal
amount δui. Assuming that the stress tensor Tik is symmetric and integrating
by parts, we get W = −

´
dx Tikδuik. At a constant temperature, the change

in free energy given by internal forces is minus the work done, consequently we
obtain

Tij =
δEel

δuij
. (1.28)

For the isotropic body in d dimensions, then it must hold that the relation between
stress and strain is

Tij =

(
λ+

2µ

d

)
ullδij + 2µũij = Bullδij + 2µũij, (1.29)

or the dimension-independent equivalent form in terms of Lamé parameters,

Tij = λullδij + 2µuij. (1.30)

If, instead, we want the inverse form, namely strain in terms of stress, its expres-
sion is

uij =

(
1

Bd2

)
Tllδij +

1

2µ
T̃ij =

(
1

Bd2
− 1

2µd

)
Tllδij +

1

2µ
Tij. (1.31)

As we already encountered various types of stresses earlier on (see (1.14) and
(1.15)), now we want to understand how the isotropic body deforms -how it pro-
duces strains- as a reaction to those particular kinds of stress.
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Uniform compression

The isotropic body reacts to compression by producing strains that are uij =
−[P/(Bd)]δij . According to (1.10), the relative volume change is the strain ten-
sor’s trace, ∆V = ull = −P/B. For positive pressure, the isotropic body reacts
by reducing its volume with proportionality that is inverse to the compressional
modulus B. The bulk modulus is related to the isothermal compressibility as
B = 1/κ = V dP/dV .

Uniaxial stress

A couple of forces that pulls only one set of opposite faces of a solid is an example
of uniaxial stress (see again Fig. 1.2). If we orient both forces along the surfaces’
normals (outwards), the corresponding stress is called tension, and we denote its
magnitude as T . If pulling happens in the horizontal direction, the produced stress
is Tij = Tδixδjx, and, by using (1.31), we obtain the corresponding strain

uij = δij

[
T

(
1

Bd2
− 1

2µd

)]
+ δixδjx

(
T

2µ

)
. (1.32)

There are two inequivalent classes of strain, the one that arises in the direction of
elongation (ue ≡ uxx)

ue =
T

d

[
d− 1

2µ
+

1

Bd

]
, (1.33)

and the strain produced in the orthogonal directions, uo ≡ uyy (in two dimensions)
or uo ≡ uyy = uzz (in three dimensions)

uo =
T

d

[
− 1

2µ
+

1

Bd

]
. (1.34)

Quite intuitively, ue possesses the same sign of tension: pulling (T > 0) implies
elongation, while pushing (T < 0) implies contraction.
The sign’s dependence of uo on the combination [−(2µ)−1 +(Bd)−1] is less trivial
and suggests there might be situations in which normal intuition fails (that an
object will necessarily contract in the directions orthogonal to stretching). Tension
produces a volume variation (1.10) which is ∆V = TB/d.
The ratio between the applied tension T and strain in the stressed direction defines
the tensile or Young’s modulus

Y ≡ T

ue

=
2µBd2

Bd(d− 1) + 2µ
=


9Bµ

3B + µ
, (3D)

4Bµ

B + µ
, (2D)

. (1.35)
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A material with large Young’s modulus is stiff and tries to oppose to elongation
when subject to tension.
The ratio between the two different strains in the isotropic body defines (minus) a
dimensionless constant known as the Poisson ratio

σ ≡ −uo

ue
=

Bd− 2µ

Bd (d− 1) + 2µ
=



1

2

(
3B − 2µ

3B + µ

)
, (3D)

(
B − µ
B + µ

)
, (2D).

(1.36)

In contrast to elastic moduli, which are necessarily positive to ensure the system’s
stability, the Poisson ratio can have a negative sign. However, while bulk B and
shear µ moduli can have arbitrary magnitude, the Poisson ratio can take values
only within the numerical intervals

−1 ≤ σ ≤ 1/2 , (3D) (1.37)
−1 ≤ σ ≤ 1 , (2D). (1.38)

Very incompressible 3D materials, such as rubbers and liquids, discourage
volume changes while favouring shape changes (B � µ). Hence, they saturate
the Poisson ratio’s upper bound, σ → 1/2. Most engineering materials, both
the very stiff (metals), but also the very complaint (polymers) lie in the range
0.25 < σ < 0.42. Despite their elastic moduli have several orders of magnitude
of difference, the ratio B/µ is roughly the same. Gases exhibit σ → 0. Mate-
rials that possess very rigid links and struts in the directional orthogonal to load
oppose transverse deformations when stretched [33]. A notable example is cork,
used to seal wine bottles, among other historical and biological reasons, because
it exhibits σ = 0 thanks to its microscopic honeycomb structure.
Until the late eighties, it was believed that stable isotropic materials with negative
Poisson ratio σ ∈ (−1, 0) would not exist8. These materials would have enjoyed
the counter-intuitive property to expand in the orthogonal direction when stretched
and to contract when compressed. These materials, now known as auxetic, were
first proven to exist in re-entrant foams [35] and in mechanical models of hinged
polygons that are free to rotate [36]. Applications of this peculiar quality were
envisaged already in [37] and, in the last years, have found practical applications
even in day-to-day objects. For instance, auxetic metamaterials are used to con-
struct soles for running shoes [38].

8However, certain brilliant people were not excluding the existence of auxetic materials already
during the sixties [34].
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1.5 Elastodynamics

Up to this point, we have considered how non-homogeneous displacements u(x)
give rise to strain and how an elastic system responds to it by producing stress,
and therefore, internal forces f stress

i . So far, we have not considered situations in
which displacements u(x, t) depend on time as well. For this reason, here we in-
vestigate disturbances that propagate through a solid in the form of elastic waves.
Newton’s second law prescribes that the evolution of momentum under the effects
of both internal and external forces follows ∂t (ρu̇i) = f stress

i + f ext
i . In prin-

ciple, this is a complicated equation, where the whole triplet ρ, u, u̇ should be
determined. We can linearise it by remembering that we always consider small
displacements in the case of extended bodies and linear elasticity. If we also as-
sume that density variations around a static equilibrium distribution are minor or
that density is constant throughout the system, we arrive at the linearised equation

ρüi = ∂jTij. (1.39)

The expression of the stress tensor Tij that we use depends on the physical system
we investigate.
As our prime example, we consider the isotropic body and its expression of Tij
(1.30). Apart from the apparent structural engineering case, the propagation of
elastic waves in isotropic bodies is also fundamental in geophysical sciences. In
fact, Earth can be considered an isotropic body, to a first approximation. We
will see less traditional systems that behave as isotropic bodies in Chapter 3 and
Chapter 4.
In the previous sections, we constructed Tij using symmetry arguments and found
that it contains two material Lamé parameters, λ and µ (1.30). We also noticed
that the irreducible parts of Tij are directly related to the bulk B and shear µ
moduli, see (1.29). We further remark that only B inherits the dependence of the
solid’s dimensionality from λ.
If the typical scale of variations of the material parameters (λ, µ or B, µ) is much
larger than the scale of variations introduced by disturbances, the elastic moduli
can be considered constant, and the dynamical equation (1.39) leads to

ρüi = (λ+ µ)∂i(∂juj) + µ∂2ui. (1.40)

We consider the bulk of the system, where the system is translationally invariant.
Assuming plane waves as solutions u(x, t) ∼ exp[i(k · x − ω(k)t)], and k ≡ |k|,
the above equation becomes algebraic

ρ ω2ui = (λ+ µ)ki(kjuj) + µk2ui, (1.41)
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where the solution of frequency ω (k) with respect to wavevector determines the
dispersion relation. We decouple the previous equations into orthogonal sub-
spaces, by using the transverse P t

im ≡ δim − (kikm) /k2 and longitudinal P l
im ≡

(kikm) /k2 projectors. The displacement field splits into the sum ui = ut
i + ul

i of
its transverse ut

i ≡ P t
imum and longitudinal ul

i ≡ P l
imum components

ρω2ui = (λ+ 2µ) k2ul
i + µk2ut

i. (1.42)

By taking in one case the curl of (1.42), and in the other case the divergence, we
obtain two set of equations that depend exclusively on either ut

i or ul
i. Solutions for

ω in term of k = |k| results in two modes that disperse linearly with wavenumber.
The respective group velocity vg ≡ dω/dk and phase velocity vph = ω/k of
the two modes coincide: if we construct a wavepacket, all its components will
progress at the same speed. Therefore, the wave equation (1.42) is non-dispersive.

1.5.1 Transverse mode

The transverse mode ut
i is an excitation in which the displacement field vibrates

in the direction orthogonal to the advance of the wave, as it happens for vibrations
of musical instruments’ strings. In other words, the vector field is incompressible
kiu

t
i = 0 and does not produce any volume variations in the sample9. In three

dimensions ut
i has two polarization, while, in two dimensions, it has only one.

The transverse’s mode dispersion relation is linear ωt = ct|k| with speed

ct ≡
√
µ

ρ
(1.43)

which depends only by the shear modulus in any dimension.

1.5.2 Longitudinal mode

The longitudinal mode ul
i is an excitation in which the displacement field oscil-

lates in the direction parallel to the direction of propagation of the wave. The
vector field is irrotational εmikmul

i = 0 and produces volume variations ul
ii 6= 0.

The longitudinal mode’s dispersion is linear ωl = cl|k| hence it is analogous to
pressure waves and sound modes in fluids. However, the solid’s ability to sustain

9Volume variations are given by the trace of the correspondent strain tensor, see the discussion
around (1.10).
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shear enhances the longitudinal speed

cl ≡

√
λ+ 2µ

ρ
=

(
B + 2µ (d− 1) /d

ρ

)1/2

=



(
B + 4µ/3

ρ

)1/2

, (3D)

(
B + µ

ρ

)1/2

, (2D)

(1.44)
due to the term 2µ (d− 1) /d.
In any isotropic material that has non-zero compressibility modulus B, the longi-
tudinal mode always travels faster than the transverse ones. In the case of two-
dimensions and for B = 0, the two sound speeds coincide cs = ct.

1.6 Surface waves in elastic media
When an elastic medium has boundaries, we must supplement equations of mo-
tion with the boundary conditions regarding how the system behaves at its free
surfaces.
Fascinating surface excitations already emerge if we consider a system that is
bounded along one direction by vacuum. The investigation of waves that prop-
agate along the free surface of an elastic solid and whose disturbance remains
confined to the vicinity of the boundary is an old topic that goes back to the re-
markable classic paper by Lord Rayleigh. In [39], Rayleigh numerically obtained
a solution for the dispersion relation of such waves, known today as Rayleigh
waves. He even suggested that those surface waves might play a crucial role in
seismology [40].
Therefore, we restrict our discussion to an infinite solid in x and z directions,
whereas it extends semi-indefinitely for y < 0, and possesses a free surface at
y = 0. In three dimensions, we are not interested in the dependence in the z-
direction.
There should be no force or transfer of momentum between the medium and vac-
uum, so we impose zero stress in the direction defined by the normal to the bound-
ing surface, in this case, n̂ ≡ (0, 1, 0) and

Tijnj
!

= 0. (1.45)

The above condition requires three strain tensor components to vanish, Txy =

Tyy = Tzy
!

= 0.
In elastodynamics contexts, we usually have access to displacements u and want

24



to evaluate stress. Therefore, we express Tij in terms of the Lamé parameters
(1.30)

Txy = 2µuxy (1.46)
Tyy = λuxx + (λ+ 2µ)uyy + λuzz (1.47)
Tzy = 2µuzy. (1.48)

While, in the previous section, we studied plane waves in the bulk of a transla-
tionally invariant system, here we want to focus on solutions that travel along the
horizontal direction, but that remain close to the free surface, i.e. solutions that
are exponentially suppressed in the negative y direction. This motivates the ansatz
u (x, y, t) ∼ u exp

[
i (kx− ωt)

]
exp

[
κ (k, ω) y

]
. We obtain the dependence of κ

on k and ω by replacing kx → k and kz → −iκ in the solutions obtained for the
bulk of the system

κt(k, ω) =
√
k2 − ω/c2

l , κt(k, ω) =
√
k2 − ω/c2

l . (1.49)

We are interested only in stable surface excitations. Hence, we restrict our atten-
tion to the case in which κ, the inverse of penetration length, is real and positive.
To achieve this requirement, we impose the square root’s argument in the ex-
pression for (1.49) to be positive or, equivalently, that the frequency of surface
excitations ω must live outside of the light-cones defined by the transverse and
longitudinal speeds, ω < ωt ≤ ωl.
The third boundary condition (1.48) on Tzy and the above ansatz implies that the
z component of u identically vanishes

Tzy = 2µuzy = ∂zuy + ∂yuz = ∂yuz
!

= 0 −→ uz = 0. (1.50)

For the reason that speeds of sound can be directly measured in a material, it
is common [18] to substitute the Lamé parameters in favour of ct and cs and to
rewrite the other two boundary conditions (1.46) and (1.47) as

(c2
l − 2c2

t )uxx + c2
l uyy = 0

uxy = 0.
(1.51)

Within the exponential ansatz, polarizations of the transverse and longitudinal
modes are ut,x/ut,y = iκt/k and ul,x/ul,y = ik/κl. As displacement u we use a
linear combination of the transverse and longitudinal modes

u = eikx
[
a (κt,−ik)T eκty + b (k,−iκl)T eκly

]
. (1.52)
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Inserting (1.52) into (1.51) and after manipulation, we obtain a matrix equation
for the unknowns a and b2k

√
k2 − ω2/c2

t 2k2 − ω2/c2
t

2k2 − ω2/c2
t 2k

√
k2 − ω2/c2

l


a
b

 = 0. (1.53)

We get the dispersion relation of surface waves ω (k) by setting the determinant
of the above matrix to be zero. Since we expect to find a linear mode, we use the
ansatz ω (k) = χctk in the determinant equation, which becomes

χ6 − 8χ4 − 8χ2

2

(
c2
t

c2
l

)
− 3

+ 16

(c2
t

c2
l

− 1

) = 0. (1.54)

Solutions for χ express the speed of propagation of the surface wave cR ≡ χct
and, for this reason, acceptable solutions for χ must be real, positive, and smaller
than one. Until this point, we have considered the three-dimensional case. How-
ever, the identical considerations and procedures also hold for two dimensions,
apart from those regarding uz (1.50), that are not necessary. The only dimension-
ality dependence hides in the longitudinal sound speed (1.44).
Instead of looking for solutions for χ in terms of the ratio ct/cs, it is more practical
to express χ in terms of the Poisson ratio σ (1.36). In fact, assuming the thermo-
dynamic stability of the system, σ has narrow bounds, see (1.37) and (1.38). In
addition, σ is a static property of the system, so that it is easier to measure than
sound speeds. Notice that

c2
t

c2
l

=
1 + σ − dσ

2 + 4σ − 2dσ
=


1− 2σ

2− 2σ
, (3D)

1− σ
2

, (2D)

. (1.55)

In general, we resign to solve equation (1.54) numerically. Solutions in three and
two dimensions are plotted in Fig. 1.5. In both cases, extremely stiff materials
with B → +∞ (λ → +∞) realise the upper bound for the Poisson ratio, the
ratio ct/cl vanishes because cl is much larger than ct and χ ≈ 0.955312. Cork-
like materials which neither contract nor expand (σ = 0) under uniaxial tension
possess in both dimensions the same solution χ ≈ 0.874. In extremely loose
materials with vanishing bulk modulus B = 0, χ3D remains finite, whereas in two
dimensions χ2d = 0: the system exhibits time-independent surface waves, named
in this context floppy modes.
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Figure 1.5: Rayleigh surface waves in isotropic elastic media are linear modes
with dispersion ω = χctk. To ensure the stability of excitations, χ must be less
than one. The figure shows how χ evolves depending on the Poisson ratio σ, on
the top in three dimensions, while on the bottom for two-dimensions. Asymptotic
values for extremely-stiff materials B → +∞ (σ → 1) are the same for both
dimensionalities. For σ2D = −1, the system exhibits floppy surface modes with
ω = 0. Usual materials lie between 0 < σ3D < 1/2.
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Chapter 2

Topological solitons

In this chapter, we introduce the notion of topological solitons and some spe-
cific examples that are particularly relevant for the rest of the thesis. Loosely
speaking, solitons are solutions of non-linear partial differential equations, in our
case, that stem from field theories. Field configurations are topological if they can
be smoothly deformed while retaining specific properties invariant. Such robust
properties allow classifying the solutions of the theories of our interest into dif-
ferent topological sectors. First, we provide a short historical presentation of the
seminal works that initiated investigating topological solitons in physics. Then,
we focus on examples in one dimension, named kinks, and in two dimensions,
called vortices and skyrmions. We will see that topological solitons can be dis-
tinguished not only by their dimensionality but also by their homotopy class. We
made an effort to keep this chapter as independent as possible from the particular-
ities of the physical systems in which such interesting configurations appear.

2.1 Historical interlude: an ambitious idea about
constructing fermions out of bosons

The concepts of topological solitons and topological conservation laws that will
appear in this dissertation trace their origins back to a visionary project under-
taken by the British physicist Tony Skyrme during 1958-1962. At that time, the
development of Quantum Chromodynamics still had a long way to go, and the
community was trying to describe strong interactions in terms of long-distances
degrees of freedom. Skyrme’s aim was extremely ambitious: to describe baryons
(fermions) as emergent features of mesons (bosons) [41–46].
Skyrme’s influences and personal beliefs [12, 47] lead the following themes to
form the basis of his approach:
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1. Although the elementary constituents of matter in (3+1) dimensions appear
to be either fermions or bosons, it would be desirable to arrive at a de-
scription in which only interacting bosonic fields are present. Within this
description, baryons might arise as singularities of the underlying mesonic
field rather than being independent degrees of freedom.

2. Both at a classical, but also at a quantum level, the concept of point particle
leads to diverging quantities and renormalization is necessary to get rid of
these infinities.
Skyrme was very impressed by an earlier opinion of Lord Kelvin, who
thought that the concept of indestructible particles was introduced by New-
ton only for convenience1. This strong belief found its incarnation in the
vortex atom theory. Mesmerised by the smoke rings’ ability to collide each
others without distortions, Kelvin developed an approach in which the ele-
mentary constituents of matter were extended and stable objects moving in
the aether.

3. Fermions do not possess a classical limit, and they are represented by Grass-
mann variables, both concepts that Skyrme thought to be too counterintu-
itive and unnatural.

4. The conservation of baryon number should be a property tied to the field
configurations’ structure, rather than originating from a Noether current,
derived from the invariance of a theory’s action under symmetry transfor-
mations (and its quantum extension known as Ward identities).
The archetype of such a mechanism related to field configurations is the
conservation of circulation in perfect fluids. Helmholtz gave the first proof
of this invariance. Indeed, in [16] (as cited in [49]), he demonstrated that
the product of vorticity into a vortex’s cross-section is an invariant along the
fluid motion.

Even though Skyrme never concluded the project, particular insights still live on
today, and topological objects found their incarnations in systems that Skyrme
probably never imagined. We begin by introducing the concepts of winding num-
ber, topological current and smooth non-trivial maps, in the most straightforward
setting.

1In his 1869 work, Kelvin even got to the point where he defined Newton’s point particle as a
”monstrous assumption” [48].
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2.2 Constrained O(N) models
We start by considering the paradigmatic class of O(N) models: at each point
in spacetime xµ, we define N real scalar fields. We can conveniently accom-
modate these fields in an array ni ≡ (n1, n2, . . . , nN). By definition, the ac-
tion does not change its values under internal orthogonal rotations of the fields,
ni → Rijnj. Consequently, it should be constructed only by using the invariant
terms (∂µni)(∂µni), (nini), and their higher powers:

S =
1

2

ˆ
dt dx[(∂tni)

2 − (∂jni)
2 −m2(nini)] + · · · (2.1)

To lowest order, each component of the field satisfies a Klein–Gordon equation
(−∂2

t + ∂2
j −m2)ni = 0, a linear partial differential equation whose solutions are

well-known. We could increase the complexity of the problem and the richness of
its solutions by including higher-order non-linear terms in the action (2.1). If we
do so, equations of motion become non-linear partial differential equations, and
there might be the chance that some of their solutions are interesting topological
solitons.
However, instead of writing more terms in the action, an alternative and equiva-
lent possibility is introducing constraints on the fields. A simple, yet non-linear,
constraint is to impose that the admittable field configurations must satisfy the
relation

nini = n2
1 + n2

2 + · · ·+ n2
N

!
= 1. (2.2)

This constrained route allows us to think of fields as geometrical vectors that live
on the unit hypersphere SN . Throughout this chapter, we will elucidate this unde-
manding mental picture’s extreme elegance and utility. Constrained O(N) models
are also called non-linear sigma models [50].

2.3 O(2) models
For the sake of simplicity, we first restrict the discussion to the case with only two
real fields. We will comment on the importance of O(2) at the end of the section.
For N = 2, the condition (2.2) simplifies to having only field configurations that
live on a unit circle S1

n2
1 + n2

2
!

= 1. (2.3)

It is evident that we fulfill the above constraint by introducing an angle variable
θ(xµ). Therefore, we solve the constraint with the parametrization

(n1, n2) = (cos θ, sin θ). (2.4)
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2.3.1 One spatial dimension: kinks
In general, field theories in lower dimensions are easier to solve. Therefore,
we start our discussion with a field theory in one spatial and one temporal di-
mension. In this case, spacetime coordinates are xµ = {t, x}. The Lagrangian
that corresponds to the action (2.1), and that obeys the constraint (2.3) acquires
an uncomplicated form in terms of the angular parametrization (2.4), namely
L = 1

2
[(∂tθ)

2 − (∂xθ)
2].

First in [41] and, later on in [43], systematically, Skyrme guessed that actions
that satisfy a constraint like (2.3) possess a current density whose conservation
depends neither on equations of motion, symmetries and Noether theorem, nor on
local properties. Consequently, such current must be topological,

jαtop ≡
1

2π
εαβεijni∂βnj, (2.5)

where Greek letters label spacetime coordinate, and Gothic letters label the inter-
nal indices of the field2. Specifically for the O(2) model, Gothic letters run from
1 to 2.
We can prove the conservation law ∂µj

µ
top = 0 in at least two complementary

ways [51]. One ’geometrical’ approach is noticing that the divergence of the cur-
rent (2.5) is the Jacobian determinant [43] of the map from spacetime coordinates
xµ to the fields nm

∂αj
α
top ∝ εαβεij∂αni∂βnj = det(∂γnm). (2.6)

A map’s Jacobian determinant expresses the ratio between the area spanned in the
target space (n1, n2), as an arbitrary area in the base space is covered, ∆t ∆x.
However, due to the constraint (2.3), any area gets mapped into a circumference,
that by definition has zero area. Hence, the above expression vanishes.
The other route is using the explicit parametrization (2.4) and computing the cur-
rent in terms of the angular variable,

jαtop =
1

2π
εαβ[n1∂βn2 − n2∂βn1] =

1

2π
εαβ∂βθ. (2.7)

On account of the presence of the antisymmetric symbol and by assuming the
smoothness of θ, if we contract the current with a gradient, we automatically
prove the conservation law ∂αj

α
top = 0.

The first entry of the topological current density (2.5) is a density of the topo-
logical charge. The total topological charge is obtained by integration over space

Qtop ≡ 1

2π

ˆ
R
dx ∂xθ =

1

2π
[θ(+∞)− θ(−∞)]. (2.8)

2We have introduced the factor 1/2π for later convenience.
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Evidently, only field configurations that take on different values at infinity can
have non-zero topological charge. Usual particle solutions do not enjoy this prop-
erty, because they are well-localised in space.
We impose periodic boundary conditions, both on the original fields ni and on the
one-dimensional space. These conditions allow us to relate Qtop with the winding
number, which is the number of times the target space is covered while sweeping
once the base space circuit. Since the angular variable is a parameterization of
the unit circle, the asymptotic identification ni(+∞)

!
= ni(−∞) results in a con-

dition θ(+∞) − θ(−∞) = 2πN , where N is an integer. Moreover, because we
glued together the one-dimensional strip’s endpoints, the topological charge (2.8)
is computed as Qtop = (2π)−1

¸
dx ∂xθ = N . Which is, precisely, the winding

number.
Having wrapped both the base space (the physical coordinate) and the target space
(the field configurations), the angle variable θ is now a map from a ring to a ring
θ : S1 → S1. It enjoys the so-called topological protection3, and it can not be
smoothly deformed into a map with a different winding number. For this reason,
we can arrange the solutions of such constrained models into different topolog-
ical sectors, each characterised by the value of Qtop. This property’s robustness
inspired Skyrme’s idea to classify particles as emergent properties of field config-
urations with a well-defined topological charge, rather than their symmetry prop-
erties. In mathematical jargon, the homotopy class characterising the mapping is
the first homotopy or fundamental group π1(S1) = Z.
Let us investigate topologically a specific constrained model, where we also allow
higher-order terms in (2.1). Following the footsteps of [41], a possible choice is
to include terms that respect square rotational (R : θ → θ + π/2, R : (n1, n2) →
(n2,−n1)) and time-reversal (T : ni → −ni) invariance. The simplest non-
linear term in powers of ni which satisfy the symmetry requirements is n4

1 + n4
2,

analogous to the cubic-symmetry term in three-dimensions [53]. If we plug in
the parametric representation (2.4), use the trigonometric identities sin4

cos4 (θ) =
1
8

(
3∓ 4 cos(2θ) + cos(4θ)

)
, and drop unnecessary constants, we obtain the fol-

lowing:

L =
1

2
[(∂tni)

2 − (∂xni)
2] +

κ2

4
(n4

1 + n4
2)

=
1

2
[(∂tθ)

2 − (∂xθ)
2] +

κ2

16
cos(4θ).

(2.9)

Variations with respect to θ lead to the sine–Gordon–Skyrme equation (∂2
t−∂2

x)θ+
κ2

4
sin(4θ) = 0. It is a non-linear partial differential equation and its solutions

can be constructed using the Inverse Scattering Method [54], which was later

3Tony Zee in [52] provides a very vivid analogy of topological protection: ”Think of wrapping
a loop of string around a ring”.
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Figure 2.1: One-soliton solutions θκ (x− x0) of the sine–Gordon–Skyrme equa-
tion are represented. Solutions divide into kinks (blue, κ > 0) and antikinks
(orange, κ < 0). These solutions can be thought as smoothed step functions at
x0 = 0, with the smoothing’s rate that increases with|κ|.

developed. It is conventional to rescale the variable as 4θ → θ, obtaining

(∂2
t − ∂2

x)θ + κ2 sin(θ) = 0. (2.10)

Skyrme found few non-trivial solutions of the above equation, and it is not an
understatement to say he was one of the first investigators of the branch of math-
ematical physics dubbed nowadays as integrable models [55]. In particular, an
interesting class of static solutions is

θκ(x− x0) ≡ 4 arctan(exp(κ(x− x0))). (2.11)

As we can see in Fig. 2.1, solutions (2.11) represent field’s disturbances that are
concentrated around a specific point in space x0 and, in a small region of space
centred around it, they rapidly change from 0 to 2π. As a consequence, their
associated energy is finite.
Furthermore, they naturally come in two ’flavours’, depending on the sign of κ.
As Skyrme did [41], we might as well be tempted to identify them as ’particle’
and ’antiparticles’ pairs. Due to this analogy, solutions with positive κ are called
kinks while, those with negative κ, are called antikinks4.
Solutions (2.11) possess topological charge (2.8) which depends on the sign of
κ. Because the difference between the solution at infinite distances is ±2π, they
either have charge Qtop = 1 (for positive κ) or Qtop = −1 (for negative κ).
Accordingly, kinks and antikinks furnish our first examples of topologically non-
trivial field configurations. Without the angle variable’s rescaling, (2.11) would

4In early literature on the subject [56, 57], the names ’kinks’ and ’antikinks’ were reserved for
solitary wave solutions of ϕ4 theory in two dimensions.
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still be topologically non-trivial, but quarterly charged.
The theory we started with (2.9) was Lorentz invariant, so we find time-dependent
solutions that travel uniformly with speed±v by doing boosts. The transformation
consists in replacing the solution’s argument as x−x0 → (x−x0±vt)/(1−v2)1/2.

2.3.2 Two spatial dimensions: vortices
The Skyrme toy model in two-dimensional spacetime was rich enough to intro-
duce the concepts of topological current, topological number, and the π1(S1) ho-
motopy. On that account, it is natural to wonder if we can extend these ideas for
studying topological solitons of the constrained O(2) model in higher dimensions.
The question then arises: how can we characterise solutions in two spatial dimen-
sions with the ring-to-ring homotopy?
While the unit field constraint (2.3) guarantees the target space to be S1, the plane
can not be compactified to be S1. We avoid this problem, and use the topological
characterisation we employed for kinks, with the following device. We consider
as base space the plane’s boundary, the asymptotic circle S1

∞, namely every point
at infinite distance. In a plane, topological solitons are called vortices. Their
winding number is defined as the number of times N they cover the target space
by running once along S1

∞. Maps with a negative winding number are called an-
tivortices.
We hereby work out an explicit example. A single-charged vortex located at the
origin, is given by the configuration nv(x, y) = (x/ρ, y/ρ) = (cos θ, sin θ) = êρ,
where θ ≡ atan(y/x) and ρ ≡ (x2 + y2)1/2 . We obtain configurations with
winding number N by taking the parametrization nv = (cos(Nθ), sin(Nθ)). The
associated topological current [51] can be found using (2.5) or (2.7) with Greek
indices running over the spatial dimensions, i.e.

jitop =
N

2π

(
x

ρ2
,
y

ρ2

)
. (2.12)

At the origin, something fishy is going on, and the vector field possesses a singu-
larity. This is a novel feature the solitons of sine–Gordon–Skyrme model (2.11)
did not posses, and bring forth interesting properties.
The divergence of (2.12) reflects the vector field’s singular nature: it vanishes al-
most everywhere, except at the origin, where it contains a two-dimensional Delta
distribution ∂ijitop = N δ(2)(x). We perform its integration over a closed two-
dimensional surface which encloses the position of the vortex by using the polar
form jitop = [N/(2π)]εip∂pθ and Stokes’ theorem,

‹
S
∂ij

i
top = N =

˛
C
dθ. (2.13)
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The result is topological: as long as we choose a closed path C which encloses the
vortex, the integral’s value does not change.
There are two features of (2.13) that are remarkable. Fist, we can interpret the
above equation in hydrodynamic terms, as the quantisation of a vortex velocity
field’s circulation. Introducing the velocity field as viv ≡ ∂iθ [58], its circulation
is an integer multiple of 2π, εij∂ivj = 2πNδ (x). Furthermore, (2.13) is very
reminiscent of Gauss law in two dimensions, in the presence of a point particle
with charge N . We might and, in Chapter 3, we will, make good use of this
intuition. In the case of vortices, we will consider the topological current density
as a two-dimensional electric field generated by point charges with charge qv given
by their winding number N . There, the compressibility of superfluids will also
give rise to a dual magnetic field.
The energy of a vortex is a logarithmic-divergent extensive quantity

E =

ˆ
R2

d2x j2
top ∝ N2 log

(
L/ξ

)
(2.14)

which scales with the system size L. Alas, vortices are the first solitons whose en-
ergy fall victim to Hobart–Derrick’s theorem [59, 60]. When dealing with scale-
invariant theories of scalar fields (for example L = ∂µψ∂

µψ − U(ψ)), or multi-
component scalar fields, and in spatial dimensions D ≥ 2, there are no localised,
time-independent solitonic solutions with finite energy [61]. The issue appears
because there is no term in the action which is able to fix the solitons’ size. A
possible solution is to add more derivatives or to add mixed terms. Another way
to circumvent the theorem is to introduce an additional degree of freedom, for ex-
ample spinors or gauge fields. In the latter case, it is sufficient to couple the theory
to an external field through a minimal coupling procedure ∂i → Di = ∂i + iAi,
and to require that the two terms in the covariant derivative Diθ make the inte-
grand die faster than 1/ρ, at spatial infinity. Also, in (2.14), we had to introduce
an ultraviolet cutoff ξ, which is the lengthscale where the model’s validity breaks
down. In weakly interacting Bose gases, ξ is denoted as healing length and is the
typical lengthscale of density variations [62].
If we stress the dual gauge analogy we mentioned earlier, the associated electro-
static energy is ∝

´
R2 d

2x e2.
We now introduce a complex representation for O(2) models which is less cum-

bersome than dealing with a doublet (n1, n2). We combine the two components
of ni into a complex field ϕ ≡ n1 + in2. The original rotations are realised
as U(1) phase transformations ϕ → eiαϕ, and the Lagrangian (2.1) becomes
L = 1

2
(|∂tϕ|2−

∣∣∂jϕ∣∣2−m2|ϕ|2)−g|ϕ|4 + · · · . This representation is a more stan-
dard approach [63] to illustrate some topological statements that we have made
and used, that even hold for more generic scalar theories. As a matter of fact,
we can weakly relax the assumption of ϕ having fixed amplitude (alternatively,
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Figure 2.2: Topological current jitop associated with a single vortex configuration
placed in the origin. The red oriented path (forming the base space S1) can not be
shrunk to a point without encountering the singularity at the centre of the vortex
core.

fixed nini). The non-linear sigma model is the limit of the above theory in its
symmetry-broken phase, provided density fluctations are infinitely-massive [64].
In two dimensions and in the complex ϕ language, the smooth maps UN that map
a ring into a ring, while covering the target space N times, are complex exponen-
tials UN ≡ exp(iNθ), where θ is, as usual, the polar angle.
In the first place, we prove the winding number’s invariance under smooth de-
formations of the map. Given a map UN , we compute its winding number N
as the integral (i/2π)

´
dθ UN(∂θU

†
N). The requirement of deformations to be

smooth is crucial because we can realise them as sums of infinitesimal ones,
UN → UN + δUN . We demonstrate that the consequent variation δN does vanish.
We start from the unitarity condition U †NUN = 1, and notice that δ[UN∂θU

†
N ] =

−∂θ[U †NδUN ]. Therefore

δN =
i

2π

ˆ 2π

0

−dθ ∂θ[U †NδUN ] =
−i
2π

U †NδUN

]2π

0
= 0, (2.15)

because the map UN is a continuous function of θ, and the points 2π and 0 are
identified.
Next, we prove Derrick’s theorem in the specific case of vortices: without addi-
tional degrees of freedom, non-trivial maps always end up creating a 1/ρ singular-
ity, thus giving rise to a divergent energy E =

´
d2x |∂iϕ|2. Earlier on, we had to

impose boundary conditions on the field at infinity which, indeed for vortices, was
pointing radially. In complex representation, the asymptotic condition takes the
shape ϕ(ρ → +∞, θ) = U(θ). Hereby we guess some aspects of the solution by
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extending it to the whole plane. We make the ansatz ϕ (ρ, θ) = f (ρ)U (θ), where
f (ρ) is a regular function that is well behaved at the origin and approaches unity
at infinity, f(0) = 0 and f(+∞) → 1. By computing its gradient square in polar
coordinates, and keeping track of the Jacobian determinant for polar coordinates
in the integral, the energy associated to the ansatz is

E = 2π

ˆ +∞
dρ [

∣∣f ′(ρ)
∣∣2 +

N2

ρ

∣∣f(ρ)
∣∣2]. (2.16)

Due to the assumptions on the function f(ρ), the first term in the above expres-
sion can be neglected at infinity, whereas the second one gives rise to a logarithmic
divergence. We ended up with the desired result: no finite-energy topological soli-
tons solutions can be obtained in simple scalar theories, and an additional mecha-
nism must be added to require the stability of finite-energy topological solitons.

Vortices as topological defects

Even though we never mentioned it, O(N) models are good descriptions of sys-
tems with continuous phase transitions. In two spatial dimensions, the O(N=2)
model describes both planar magnets and superfluids [65].
According to the Landau paradigm of phase transitions, we can classify the dis-
ordered and ordered phases of a system by their symmetries. In the former case,
the ground state enjoys all the symmetries of the original action. In the latter one,
the symmetry group is reduced. In this broken symmetry phase, field configura-
tions that encode small fluctuations of the order parameter are Nambu–Goldstone
bosons.
When they represent an order parameter, vortex configurations are peculiar ob-
jects. At their core, the original symmetry group is restored [66]. Therefore, in
this context, vortices are usually referred to as topological defects.

2.4 O(3) models, two dimensions: skyrmions
Despite possessing topological properties, we have seen that vortices are not quite
the direct two-dimensional equivalent of kinks. Rather than being smooth con-
figurations, vortices possess a singularity in their origin and a diverging extensive
energy. In contrast, topological textures are finite-energy field configurations that
continuously vary over space, with interesting topological features. Structures that
fullfill the above properties in (2+1) dimensional spacetime are called skyrmions
or baby skyrmions5, but they also go by the name of continuous Anderson–Toulouse–

5The terminology is introduced to distinguish them from the ones Skyrme introduced in (3+1)
dimensions.
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Chechetkin vortices in the He-3 literature [67].
The extension of finite-energy topological solitons into the plane demands an en-
largement of the target space. Instead of living on the ring S1 (2.3) like the kinks,
the degrees of freedom are a triplet of fields np (p = 1, 2, 3) that obey the unit
constraint npnp

!
= 1, consequently living on a two-sphere S2. The requirement

for static solutions to have finite energy E =
´
R2 d

2x (∂γnm)2 imposes that the
field in polar coordinates satisfies ρ|∇n| → 0 as ρ → +∞. Equivalently, n must
point in the same direction at infinite distance, however it is reached in the base
space,

n(ρ→ +∞) = n∞ = const. (2.17)

The above condition allows for a compactification of the base space: the Carte-
sian plane R2 is mapped into the two-sphere S2. Pictorially, the procedure can
be imagined by merging together the margins of an infinite paper sheet, ending
up with a paper ball. Since, now, both the base space and the target space are
compact, we can classify field configurations into different topological sectors.
The required topological invariant is the amount of times (by definition, an inte-
ger) the target sphere is covered by traversing once the base sphere. In this case,
the homotopy class is π2(S2) = Z. Consequently, we extend the line of reasoning
that we introduced in two spacetime dimensions and two real fields, to the case
of three spacetime dimensions and three fields. The topological conserved current
density associated to the O(3) non-linear model is the natural generalisation of
(2.5), i.e.

J top
α =

1

8π
εαβγεijmni∂βnj∂γnm, (2.18)

with Greek letters that run over t, x, y and Gothic letters that run over 1, 2 and 3.
The first entry (α = t) of J top

α represents the density of topological charge. In this
case, it goes by the name of Pontryagin density [58]

ρtop =
1

8π
εβγniεijm∂βnj∂γnm =

1

4π
niεijm∂xnj∂ynm =

1

4π
n
[
∂xn ∧ ∂yn

]
. (2.19)

Its integration over the (base) space permits to identify non-trivial topological
configurations as the ones having

Qtop =
1

4π

ˆ
dx dy

[
niεijm∂xnj∂ynm

]
6= 0. (2.20)

Driven by the conformal properties of the non-linear O(3) model, Belavin and
Polyakov [68] had a brilliant idea to check whether the stereographical mapping,
in which a unit sphere is projected into a plane6 (while angles are preserved) would

6We use here the equatorial convention.
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represent a one-skyrmion configuration:

n (x, y) =

(
2x

x2 + y2 + 1
,

2y

x2 + y2 + 1
,
x2 + y2 − 1

x2 + y2 + 1

)
(2.21)

On the one hand, at infinity the vector field points from the South to the North
Pole n (ρ→∞) = (0, 0, 1), hence satisfying (2.17). On the other hand, at the
origin of the plane, n points in the opposite direction, from the North to the South
pole, n (0) = (0, 0,−1). In between those two extrema, the behaviour is smooth:
it is indeed a texture.
Moreover, by sweeping the whole plane, the above solution covers the sphere
once, therefore it must possess a non-zero winding number. The associated topo-
logical charge density is rotationally invariant in the plane ρtop(x, y) = −(π(1 +
x2 + y2)2)−1 and its integration in the base space7 yields indeed non-zero topo-
logical charge. However, for (2.21) one finds Qtop = −1 so (2.21) should be
classified as an antiskyrmion, not as a skyrmion.
In contrast to vortices (2.14), the energy associated to the above solution is finite,
and does not contain any lengthscale, E = 4π. While not being extensive is sort
of a relief, the fact that it does not depend on the size of the topological texture
might be highly puzzling and disappointing. If this was the case, skyrmions that
are solutions would be energetically favourable regardless of their size. This might
have been a glitch, hidden in the fact that the projection used (2.21) was that of a
sphere with unit radius R = 1; but, it is not. It is, again, a manifestation of the
theory’s scale-invariance. The size of the soliton can be fixed only by including
higher-order terms in the action. The choice of the terms to include depends on
the physical system under consideration. For example, in chiral magnets, the term
that does the trick is the Dzyaloshinskii–Moriya interaction [69].

7
´ +∞
0

dρ −ρ
π(1+ρ2)2

= −1/ (2π)
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Chapter 3

Effective field theory of a vortex
lattice in a bosonic superfluid

In this chapter, we provide an effective field theory description of the vortex lattice
phase of rotating bosonic superfluids. We start with a relativistic description of
interacting bosons and elucidate how its non-relativistic limit emerges. Assuming
that, below a critical temperature, bosons occupy the lowest state, we provide a
semi-classical description of the Bose–Einstein condensate in terms of a scalar
field. In the symmetry-broken phase, the bosonic field describes a superfluid.
If the system is put under rotation, it nucleates quantised vortices that arrange
themselves in a regular triangular crystal, which we describe using the methods we
presented in Chapter 1. We illustrate an effective theory of this regime, which also
includes the emergent vortices. Then we show how we incorporated the superfluid
part in terms of a more convenient dual electromagnetic gauge field. We also
extract transport of the system in the dual language, where the coupling to an
external source is natural.

3.1 ϕ4 theory

At the beginning of the XX century, quantum mechanics and special relativity
shook the grounds of physics with their novel concepts and predictions. While the
first introduced the concept of state, the second required that space and time had to
be treated on the same footing [63]. It took the genius of P.A.M. Dirac to construct
one of the first successful marriages between quantum mechanics and relativity,
despite certain drawbacks (see more in [70]). Quantum field theory (QFT) was
born. Dirac paid a high price to make his theory consistent: he had to deal with
an infinite number of degrees of freedom.
Later on, this peculiarity of QFTs turned out to be helpful also in non-relativistic
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contexts, where the creation (emission) or annihilation (absorption) of photons
comes as no surprise. Also, the formalism comes in handy when the number
of particles is conserved. For example, the many-body problem often involves
solving the multiparticle Schrödinger equation, and states should undergo either
anti-symmetrisation (fermions) or symmetrisation (bosons). By using the tools
developed in QFT, the tedious procedures related to particles’ statistics are already
taken care of.

3.1.1 Lorentz-invariant ϕ4 theory

Everything we discuss in this thesis concerns non-relativistic phenomena, i.e. phe-
nomena happening at velocity scales that are much smaller than the speed of light.
We expect that a theory that enjoys a larger symmetry group should also contain
its counterpart which enjoys a smaller subgroup. Therefore, we start the discus-
sion with a Lorentz-invariant theory and work out its non-relativistic limit [52].
Self-interacting massive bosons are described by a complex ϕ4 theory, which,
upon quantisation, gives rise to bosonic particles. The theory is described by the
action

S =

ˆ
dx
[
−∂µΦ†∂µΦ−m2c2Φ†Φ− λ(Φ†Φ)2

]
. (3.1)

We restrict to a positive interaction term with λ > 0 because only one-species
systems of repulsive bosons can undergo a stable Bose–Einstein condensation.
One of the first steps to analyse a field theory is to find which transformation laws
leave the action invariant. These symmetries are connected to currents that are
conserved at a classical level, named Noether currents1. In the above case, the
theory (3.1) enjoys the U(1) global phase symmetry

Φ→ eiαΦ ≈ Φ + iαΦ , Φ† → e−iαΦ ≈ Φ† − iαΦ†. (3.2)

We obtain the conserved 4-current Jµ by promoting the infinitesimal transforma-
tion parameter to be local α → α (x), and by arranging the consequent action’s
variation in the form δS =

´
dxJµ∂µα. In this instance, the Noether current of

(3.1) is2

Jµ = iΦ†
↔
∂µΦ. (3.3)

1Usually, authors do not agree on how to evaluate conserved currents connected to symmetry
transformations. A comprehensive way to find and classify all equivalent conserved currents can
be found in [71].

2We introduce here the notation
↔
∂ ≡

→
∂ −

←
∂ .
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3.1.2 Non-relativistic limit of the free theory
The theory defined by (3.1) is an interacting theory. To unfold some understand-
ing, for the moment, we turn off the interaction and develop the non-relativistic
limit of the free theory. In this case, the equation of motion for (3.1) is the Klein–
Gordon equation (

� +m2c2
)

Φ = 0, (3.4)

where � ≡ −ηµν∂µ∂ν = (1/c2)∂2
t − ∂2

i
3. Upon canonical quantisation, solu-

tions of (3.4) for the field Φ are expressed in terms of bosonic particles (a) and
antiparticles (b)

Φ (x, t) =

ˆ
dDp

(2π)D/2
(
2Ep

)1/2

[
ape
−i(Ept−p·x) + b†pe

i(Ept−p·x)
]

(3.5)

with particle and antiparticle excitations4 that oscillate as a function of the energy
±iEpt. In the non-relativistic limit c → +∞, we expand the modes’ energy in
inverse powers of the speed of lightEp =

√
m2c4 + p2c2 ≈ mc2+p2/ (2m)+. . . ,

where we notice the rest energy as the dominant contribution. Hence, it gives rise
to a fast oscillatory phase which makes it natural to factorise the field Φ as

Φ (x, t) =
[
e−imc

2t
]

fast

non−relat.

ϕ (x, t) . (3.6)

Introducing this expression in (3.5), we obtain a modal decomposition for the
non-relativistic part ϕ,

ϕ (x, t) =

ˆ
dDp

(2π)D/2
(
2Ep

)1/2

[
ape
−i
(
p2t
2m
−p·x

)
+ e2imc2tb†pe

i

(
p2t
2m
−p·x

)]

≈
ˆ

dDp

(2π)D/2

[
ape
−i
(
p2t
2m
−p·x

)]
.

In analogy with the rotating wave approximation, we safely dropped the antipar-
ticle (b†p) contribution because it wildly oscillates in time, twice as much as the
already ”fast” phase mc2t. Therefore, its contribution to any slow process is neg-
ligible.

3We use the ”East-Coast” convention ηij = diag (−1, 1, 1, 1), where the signature of the spa-
tial part of the metric is +1. Four-gradients are ∂µ ≡ ∂/∂xµ =

(
∂t/c, ∂i

)
and ∂µ ≡ ∂/∂xµ =(

−∂t/c, ∂i
)
. With this metric, there is no distinction between the covariant and contravariant

spatial components. Other reasons to prefer this convention can be found at [72].
4Particles and antiparticles satisfy their own canonical commutation relations.
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Instead of (3.4), the remaining slow field ϕ obeys the linear equation

− 1

2mc2
∂2
t ϕ

subleading

+ i (∂tϕ) = − 1

2m
∂2ϕ (3.7)

which, in the limit (2mc2)−1 → 0, is formally equivalent to a Schrödinger equa-
tion for particles of mass m. The dynamics of ϕ is linear in time. Accordingly,
it is easy to guess that it comes from a Lagrangian which has first order time-
derivatives

L =
i

2
ϕ†
↔
∂tϕ−

1

2m
(∂iϕ†)(∂iϕ). (3.8)

The conserved current (3.3) for the above theory expresses the particle-number
conservation, and it formally matches the probability current in quantum mechan-
ics, with

J0 = ϕ†ϕ ≡ n , J i = − i

2m
(ϕ†

↔
∂iϕ). (3.9)

3.1.3 Non-relativistic limit of the interacting theory

By using the wisdom that we developed in the previous subsection, now we
aim to obtain the non-relativistic version of the action for interacting repulsive
bosons (3.1). We decouple the two terms into the fast and slow components
Φ = e−imc

2tϕ/
√

2mc, and we obtain the low-energy action

S =

ˆ
dt dDx

[
i

2
ϕ†
↔
∂tϕ−

1

2m
(∂iϕ†) (∂iϕ)− g

2
(ϕ†ϕ)2 + µϕ†ϕ

]
, (3.10)

with the new coupling constant defined as g/2 ≡ λ/(4m2). In contrast to relativis-
tic theories, that usually describe zero-density states, condensed matter describes
physics with a finite number of particles. We achieved the latter by having intro-
duced the chemical potential µ. It is worth to recognise the chemical potential’s
appearance as a negative mass squared term. Also the interacting theory obeys the
conservation of U (1) particle number N ≡

´
dDx n.

We started this chapter by introducing an action (3.1) which was invariant under
Lorentz transformations. After we found its low-velocity limit (3.10), we might
ask ourselves what is left over of that symmetry. What remains is Galilean in-
variance, an often underappreciated symmetry [30]. The Italian scientist taught us
two things: time is absolute and physics should be the same either we stay still or
in uniform motion with velocity βi. Therefore, transformations t → t′ = t and
xi → (x′)i = xi + βit should not modify physical predictions. This is indeed the
case, as one can verify that the action (3.10) is invariant in the boosted reference
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frame, where derivatives act as ∂i → ∂i′ = ∂i , ∂t → ∂t′ = ∂t − βi∂i while fields
pick up a phase

ϕ (x)→ ϕ′
(
x′
)

= ϕ (x) exp(imΛ) , Λ ≡ βixi + β2t/2. (3.11)

The Noether current associated with Galilean invariance implies that the system’s
centre of mass X carries conserved momentum pi = mN dXi

dt
[66].

At the level of (3.10), the theory is still classical, and its quantisation requires
the functional integral’s evaluation along all the possible field configurations Z =´
Dϕ exp(iS). If we wanted to obtain observables for finite-temperature states,

we should evaluate the partition sum of the Euclidean action SE by switching to
imaginary time (the Gian Carlo Wick’s rotation). Since it is out of the scope of
this thesis, we will focus only on the case with T = 0.
As Richard Feynman showed in his PhD thesis [73] for path integrals in quantum
mechanics, the most important trajectory in the limit ~→ 0 is the one that solves
the classical equations of motion, obtained by minimizing the action δS = 0 with
respect to variations δϕ. In the context of functional integrals, this is known as
semi-classical or saddle-point solution5, and assumes that the largest contribution
to an oscillatory integral (due to the presence of the imaginary i) is the one that
oscillates the slowest.

3.2 Bosonic superfluids

3.2.1 Classical theory
The saddle-point equation for the action (3.10) is the Gross–Pitaevskii equation
(which was derived indipendently in [75] and [62]), i.e.[

i∂t +
1

2m
∂2
i − g|ϕ|

2 + µ

]
ϕ = 0. (3.12)

In the absence of an external trapping potential, the classical ground state is time-
independent and uniform, ϕ = const. We distinguish two very different families
of solutions, depending on the sign of the chemical potential [76]. Above a certain
critical temperature, the chemical potential is negative, and the solution is the
trivial ϕ = 0. For a positive chemical potential, equation (3.12) specifies only
the boson density ϕ†ϕ ≡ n0 = µ/g, while leaving the field to pick an arbitrary
phase, hence ϕ = eiθ

√
µ/g. The sudden development of an order parameter ϕ by

crossing a critical temperature is a characteristic of continuous phase transitions à

5In Hamiltonian approaches to superfluids, the procedure equivalent to the saddle-point is com-
monly called ’mean-field’ [74].
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la Landau, here of the Bose–Einstein/superfluid transition. Therefore, for positive
chemical potential, the systems possess long-range order. At saddle-point level,
knowing ϕ in a specific point of space, enables us to know it everywhere.

Trapped BECs Since the first experimental realisation of Bose–Einstein con-
densation in 1995 ([77] and [78]), ultracold atomic gases provided a formidably
tunable platform to study quantum matter and collective dynamics.
In typical settings, these systems exhibit a critical temperature of order 102 to 103

nanokelvins [79]. To prevent touching the chamber’s walls (which are at room
temperatures), the atoms have to be confined by external potentials. Hence, in
the description of the order parameter (3.12), we have to add Vext(x). Neglect-
ing gradient terms, the solution assumes the Thomas–Fermi profile ϕ†ϕ (x) =(
µ− Vext(x)

)
/g. If we approximate the trapping potential as harmonic, the con-

densate density takes the form of an inverted parabola.

3.2.2 Effective theory

Having elucidated the ground state for the system, here we show an effective
action for its elementary excitations, which will turn out to be linearly-dispersing
and gapless. This does not happen by chance: the excitations are the Nambu–
Goldstone bosons associated with the particle number symmetry breaking due to
the system spontaneously choosing a phase.
First, for convenience, we introduce a polar representation of the complex field
ϕ =
√
neiθ in terms of a density n and a phase θ. We assume that both are smooth

and differentiable functions. In these variables, the action (3.10) is

L =
i

2
(∂tn)− (∂in)2

8mn
+ n

[
µ− (∂tθ)−

1

2m
(∂iθ)

2

]
− gn

2

2
. (3.13)

Then, we look at small fluctuations h around its saddle point6 configuration n0 =
µ/g,

n = n0 + h. (3.14)

The obtained Lagrangian contains two terms that we drop: one because it is a total
derivative, and∼ (∂ih)2 /n0 because it is subleading to h2 in the long-wavelength

6This saddle-point approximation is nothing else than the minimization of the infamous ’wine
bottle potential’ [80]. While going around the rim of the bottom of the bottle (phase fluctuations)
does not cost anything, density fluctuations cost a lot. In the wine bottle potential analogy, they
correspond to climb the concave bottom up to where the person who pours the wine put the thumb.
Therefore, h are necessarily small, if the perturbative approach is justified.
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limit7. We obtain a particularly simple action for h and θ,

L = h [X− gn0] + n0X−
g

2
h2, (3.15)

where we used the notation X ≡ gn0 − ∂tθ − 1
2m

(∂iθ)
2 introduced in [81].

Since the density fluctuations enter only quadratically, they can be integrated out
exactly. If we introduce the speed of sound c2

s = gn/m, we obtain the following
effective Lagrangian

Leff = −n0

[
(∂tθ) +

1

2m
(∂iθ)

2

]
+

n0

2mc2
s

[
(∂tθ) +

1

2m
(∂iθ)

2

]2

. (3.16)

The Lagrangian contains only derivative terms ∂µθ because it should be invariant
under U (1) particle number symmetry, for which the phase variable transforms
inhomogeneously as θ → θ + α. As a consequence, non-uniform configurations
are penalised, and the system manifests rigidity.
Apart from the compactness8 of θ, (3.16) is exactly the same Lagrangian as the one
for a hydrodynamic, ideal classical fluid with homentropic flow9 [66]. Therefore,
(3.16) suggests to identify the superfluid velocity as vis ≡ (∂iθ)/m.
The appearance of the combination

(∂tθ)− 1/2m(∂iθ)
2 (3.17)

is not a mere coincidence. It is consistent with general considerations regard-
ing Galilean symmetry in single-species systems of condensed bosons [82]. As a
matter of fact, it is easy to check that the combination is invariant under Galilean
boosts (3.11), that act on the phase variable as θ → θ +mΛ.
We obtain the conserved charge and current associated to particle number symme-
try with the method reviewed in [71]. The variation of the action with respect to lo-
cal transformations θ → θ+α(xµ) is arranged in the form δS =

´
(ρ∂tα+J i∂iα),

with

ρ ≡ n0 −
n0

mc2
s

[
∂tθ +

1

2m
(∂iθ)

2

]
, Ji ≡ ρ

(
∂iθ

m

)
. (3.18)

Derivative expansion Since we assumed only slowly-varying θ, we can per-
form a derivative expansion neglecting cubic terms. The nonlinear Lagrangian

7There might be situations in which this devil-may-care attitude is not tolerable, because large
density fluctuations happen on a short lengthscale.

8However, in Chapter 2 we have seen that a variable being compact allows for deep implica-
tions.

9In homentropic flows, the entropy per unit mass is constant, so pressure is a function only of
the density.
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(3.16) expanded to quadratic order in fluctuations is

L(2)
eff = −n0∂tθ +

n0

2mc2
s

[(∂tθ)
2 − c2

s(∂iθ)
2], (3.19)

and physically describes propagating density waves on top of a constant back-
ground. These excitations are gapless, linearly dispersing as ω(k) = csk, and are
called Bogoliubov phonons10.

3.2.3 Vortices

In the previous subsection, we derived an effective action assuming that both the
scalar field’s density n and the phase θ were smooth, differentiable functions. We
relax the latter assumption, because the superfluid phase might contain a singular
part, on top of the regular one, θ = θreg + θsing. Vortices in two-dimensional
superfluids precisely belong to this class of field configurations. The phase θsing ≡
θv of a vortex located at the position xi = X i winds up a number qv of times, i.e.

εij∂i∂jθv = 2πqvδ
(2)(xi −X i), (3.20)

where qv is the vortex charge and it is an integer number11.

3.2.4 Two-dimensional boson-vortex duality

Boson-vortex duality [8, 9] opened an interesting perspective on the physics of
two-dimensional superfluids and quantum vortices. In the dual formulation, a
U(1) superfluid is identified with the Coulomb phase of a two-dimensional com-
pact u(1) gauge theory without instantons [83, 84]. The dual photon has only one
polarization and corresponds to the Goldstone boson of the spontaneously broken
particle number symmetry. In this language, vortices are point-like charges cou-
pled minimally to the dual u(1) gauge field aµ. The latter has a finite background
magnetic field fixed by the superfluid density that gives rise to the transverse Mag-
nus force acting on vortices.
To derive the duality between two-dimensional vortices and point charges, we
have to keep track of potential dangerous terms coming from the derivatives act-
ing on the singular part. Following the notation of [51, 85] we represent the field ϕ
in a polar form which involves three ingredients ϕ =

√
n eiθregeiθv ≡

√
n eiθregχ.

10Sometimes, people refer to ’relativistic’ dispersion, considering the phonon as a ’slow’ photon.
In two dimensions, this statement is far from trivial, as we will realise in the next section.

11Take a look at our discussion of vortices in O(2) models, which we developed in Chapter 2.
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We obtain the hydrodynamic form of ϕ4 in the presence of vortices by the substi-
tution ∂µθ → ∂µθ − iχ†∂µχ in (3.13)

L = −n
(
∂tθ − iχ†∂tχ

)
− (∂in)2

8mn
− n

2m

(
∂iθ − iχ†∂iχ

)2

+ nµ− g

2
n2. (3.21)

We remove the quartic term in χ by using a Hubbard–Stranovich transformation12,
at the expense of introducing an additional auxiliary three-current jµ ≡

(
n, σi

)
L =

m

2n
σ2 − (∂in)2

8mn
− jµ

(
∂µθ − iχ†∂µχ

)
+ nµ− g

2
n2. (3.22)

In the third term of the above Lagrangian, the regular part of the superfluid appears
only once, hence its integration in the functional integral generates an effective
action ˆ

DjµDχ eiS[χ,jµ]

ˆ
Dθ eiS[θ] →

ˆ
DjµDχ eiSeff [χ,jµ], (3.23)

where jµ obeys the constraint ∂µjµ = 0. In other words, we chose the notation jµ

because we are dealing with a conserved three-current.
The constraint is automatically satisfied by expressing the current jµ in terms of a
gauge field aµ which lives in three-dimensional space-time,

jµ = εµαβ∂αaβ. (3.24)

In two spatial dimensions, the dual gauge field defines a magnetic field b =
εij∂iaj , and an electric field ei = ∂tai − ∂iat which possess only one polariza-
tion. Therefore, the components of the current in terms of physical degrees of
freedom are

n = b

σi = −εijej.
(3.25)

The next step is to express Seff in terms of the gauge field. By massaging the
third term in (3.22) and using the regular part smoothness εµνρ∂ν∂ρθreg = 0, we
recognise a coupling between the gauge field and a vortex current−aµjvort

µ , where
we define

jµvort ≡ εµνρ∂ν∂ρθv. (3.26)

Furthermore, the above coupling is the standard coupling of matter and three-
dimensional electromagnetism. The full dual action is

L =
me2

2b
− (∂ib)

2

8mb
+ bµ− g

2
b2 − aµjµvort. (3.27)

12−U/2 [ô(θ, χ)]2 → σ2/(2U)− σ [ô(θ, χ)] using the conventions of [52, 86].
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As we mentioned above, within this description, vortices are charged point parti-
cles that move in an emergent electromagnetic field. Hence, they feel an orthog-
onal Lorentz force from a magnetic field related to the original superfluid density
(3.25). In the superfluid variables, the idea that the superfluid density acts on
quantised vortices as a magnetic field acts on point charges was first intuited in
[87] and the first derivation of the transverse force was obtained in [88].

3.3 Vortex lattices in bosonic superfluids
Since the discovery of superfluidity in 4He, superfluids provide a never-ending
source of inspiration for experimental and theoretical research in low-temperature
physics. Although a regular superfluid flow is necessarily irrotational, superfluids
can carry finite angular momentum in the form of topological defects known as
quantum vortices, which nucleate naturally in response to external rotation. Un-
der slow rotation, the density of bosons is much larger than that of the topological
defects and the quantum vortices form a regular vortex lattice, which has been
observed in superfluid He [6] and more recently also in cold atomic BECs [7]. At
larger rotation frequencies, the vortex cores start to overlap, and at a certain point
the vortex lattice is expected to undergo a melting transition into an incompress-
ible bosonic quantum Hall regime [89].

The physics of a quantum vortex lattice in bosonic superfluids attracted con-
siderable interest in the past (for reviews see [90–93]). In a series of beautiful
papers, Tkachenko laid the theoretical foundations of this field. In the incompress-
ible limit, he analytically demonstrated that the triangular arrangement of vortices
has the lowest energy [94] and determined low-energy linearly-dispersing collec-
tive excitations [95, 96], known today as Tkachenko waves. In later years, the
hydrodynamics of Tkachenko waves in incompressible superfluids was developed
in [97–99]. With the advent of cold atom experiments, the main interest in this
field shifted towards vortex lattices in compressible superfluids. These support a
soft Tkachenko mode with a low-energy quadratic dispersion [100, 101], whose
signatures were experimentally observed in [102]. The discrete time-reversal T
and parity P symmetries of a two-dimensional bosonic superfluid are broken by
external rotation (while its product PT is preserved).
In this section, using the boson-vortex duality [8, 9, 103], we write down a low-
energy effective theory of an infinite vortex lattice in a bosonic superfluid. It
will be argued below that this dual formulation, where the superfluid degrees of
freedom are parametrized by a gauge field, has certain advantages compared to
an effective theory previously introduced in [104]. After discussing the symme-
tries of the theory, we compute the U(1) particle number and stress tensor linear
responses to external sources. In addition to P and T -invariant responses, we
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extract the Hall conductivity.
We concentrate on the bulk properties of two-dimensional vortex lattices, and

thus consider infinite uniform systems, where momentum is a good quantum
number. We expect that our results should be relevant to cold atom experiments
with large vortex lattices (where the angular frequency of rotation Ω approaches
the transverse trapping frequency ω⊥) and numerical simulations, where periodic
boundary conditions are used. The effective field theory developed is not applica-
ble in the quantum Hall regime.

3.3.1 Effective field theory of a vortex lattice
In [104] Watanabe and Murayama started from the microscopic Lagrangian of a
two-dimensional weakly-coupled repulsive Bose gas that rotates with the angular
frequency Ω and is trapped in a harmonic potential of frequency ω⊥ which is larger
but very close to Ω. In a series of steps they arrived to a low-energy non-linear
effective theory of an (essentially) infinite vortex lattice

LWM = X2/g − Eel(u
ij), (3.28)

where

X ≡ µ− ϕ̇−mΩεiju
iu̇j − 1

2m

[
∂iϕ+ 2mΩεiju

j + mΩεklu
k∂iu

l
]2
, (3.29)

µ is the chemical potential, ϕ is the regular part of the superfluid phase, and ui

is the vortex lattice’s displacement from its equilibrium position. The Lagrangian
also contains the elastic energy density Eel(u

ij) of the vortex lattice which depends
on the strain tensor13 uij = (∂iuj + ∂jui − ∂kui∂kuj)/2. Its functional form is
fixed only by the geometry of the lattice, whatever its constituents are.
For a triangular vortex lattice, the elastic energy density, up to quadratic order in
deformations, is [98, 101, 105]

E (2)
el (∂u) = 2C1(∂iu

i)2 + C2

[
(∂xu

x − ∂yuy)2 + (∂yu
x + ∂xu

y)2
]
, (3.30)

where C1 and C2 denote the compressional and shear modulus, respectively. The
elastic properties of a two-dimensional triangular lattice are characterised by only
two elastic moduli C1 and C2 and thus, in this respect, the lattice is indistinguish-
able from an isotropic medium [105]. As a result, although continuous rotation
symmetry is broken spontaneously to a discrete subgroup, the theory and all ob-
servables respect continuous rotation symmetry14. In contrast to ordinary solids

13The sign discrepancy with (1.5) originates from a convention introduced in [109]. In the limit
of small displacements and Cartesian coordinates, this difference is negligible.

14The violation of this symmetry is expected to arise from higher-derivative terms not included
here.
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we considered in Chapter 1, the vortex lattice’s bulk modulus C1 does not have to
be non-negative to insure the system’s stability [98, 101].
We obtain the superfluid density ns and current jis by coupling (3.28) to an external
U(1) source via the minimal coupling ∂µ → ∂µ +Aµ and computing

ns = −δSWM

δAt
=

2

g

(
µ− ϕ̇−At −mΩεiju

iu̇j − 1

2m

[
∂iϕ+Ai+

+ 2mΩεiju
j +mΩεklu

k∂iu
l
]2)

,

(3.31)

jis = −δSWM

δAi
=
ns
m
δij
(
∂jϕ+Aj + 2mΩεjku

k +mΩεklu
k∂ju

l
)
. (3.32)

3.3.2 Dual effective field theory of a vortex crystal
We now use the vortex-boson duality we introduced in Subsection 3.2.4 and for-
mulate the low-energy effective theory of an infinite two-dimensional vortex lat-
tice in a bosonic superfluid rotating with an angular frequency Ω. In this formu-
lation, the vortex lattice is a two-dimensional triangular lattice of point charges
embedded into a static u(1)-charged background that neutralises the system, see
Fig. 3.1. The theory is defined by the following Lagrangian

L(ei, b, u
i;Aµ) =

me2

2b
− ε(b)−mΩbεiju

iDtu
j + 2mΩeiu

i+

− Eel(u
ij)− εµνρAµ∂νaρ.

(3.33)

Here m denotes the mass of the elementary Bose particle, Dt = ∂t + vks∂k is
the convective derivative, and we have introduced the dual electric and magnetic
fields (3.25) that are related to the coarse-grained superfluid number density ns
and coarse-grained superfluid velocity vis,

ns = b, vis = −ε
ijej
b
. (3.34)

The first two terms in the Lagrangian (3.33) represent the Galilean-invariant
coarse-grained superfluid characterised by the internal energy density ε(ns) (see,
for example, [106]). The fields ui represent the Cartesian components of the
coarse-grained displacements of the vortices from their equilibrium lattice po-
sitions. As will become explicit later, these fields are the Goldstone bosons of the
translations which are spontaneously broken by the vortex lattice ground state.
The third term in the Lagrangian (3.33) is the Magnus term that produces a force
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Figure 3.1: Dual crystal: point charges (red dots) form a triangular lattice in a ho-
mogenous neutralising background (cyan). Microscopic displacements and pho-
tons of the dual gauge field are represented by green springs and violet wavy lines,
respectively. The degrees of freedom ui and aµ of the effective theory (3.33) are
coarse-grained averages over large number of unit cells.

acting in the direction perpendicular to the velocity of vortices relative to the su-
perfluid. Since the vortices are charged with respect to the dual field aµ, the term
∼ eiu

i in (3.33) represents the dipole energy density of displaced lattice charges
in the presence of a static neutralising background. Finally, the last term in the La-
grangian (3.33) takes into account the coupling of the global U(1) coarse-grained
current

jµs = − δS

δAµ
= εµνρ∂νaρ = (ns, nsv

i
s) (3.35)

to an external U(1) source field Aµ. Here the source is defined to vanish (up to a
gauge transformation) in the ground state and thus is associated with the deviation
of the external rotation frequency from its ground state value Ω. For an infinite
vortex lattice, the ground state is a state with ui = 0, b = n0 = const, ei = 0,
where the ground state particle density n0 is fixed by the condition dε/db = 0.

53



3.3.3 Theory (3.28) is equivalent to the dual theory (3.33)

We emphasize that the form of the effective theory (3.33) is not merely a guess, but
is closely related to the Lagrangian (3.28). As we demonstrate here, for a special
choice of the energy density ε(b), the Lagrangian (3.33) is dual to the Lagrangian
LWM. Moreover, the dual electric and magnetic fields are related to the regular
part of the superfluid phase and displacement vectors via Eqs. (3.34) and (3.31),
(3.32). The two theories are related by a Legendre transformation [107] between
the gauge variables and the superfluid ones

L(b, ei) = LWM(ϕ̇, ∂iϕ) + ϕ̇b− (∂iϕ) εijej. (3.36)

Using now ns = b and jis = −εijej in Eq. (3.31), (3.32) we find

∂iϕ = −mεije
j

b
−Ai − 2mΩεiju

j −mΩεklu
k∂iu

l,

ϕ̇ = µ− gb

2
−At −mΩεiju

iu̇j − me2

2b2
.

(3.37)

With the help of these expressions we can eliminate the derivatives of the phase
ϕ from the right-hand-side of Eq. (3.36). As a result, we arrive at the Lagrangian
(3.33) with the energy density ε(b) = gb2/2− µb.
Despite being equivalent to the original theory of [104], the dual formulation
(3.33) has an important conceptual advantage. In contrast to the effective the-
ory of [104], the linearised form of the dual theory naturally fits into a derivative
expansion. This allows us to order different terms in the dual Lagrangian accord-
ing to their relevance at low energies and long wavelengths and systematically
construct corrections to the leading-order theory. Later in this chapter, we will
also construct the diffeomorphism-invariant version of the theory (3.33).

Symmetries

Now we turn to the discussion of symmetries of the theory (3.33). Generically, the
action of a low-energy effective theory should inherit all symmetries (irrespective
of whether they are spontaneously broken and not) of the microscopic model.

First, under discrete parity and time reversal, the fields and sources transform
as follows:

P x↔ y, at → −at, ax ↔ −ay ux ↔ uy, Ax ↔ Ay ,
T : t→ −t, at → −at, Ai → −Ai .

(3.38)

We find that the Lagrangian (3.33) is not invariant separately under P and T since
the terms proportional to Ω change sign under these transformations. However,
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the Lagrangian is invariant under the combined PT symmetry. Note that if one
flips the sign of the rotation frequency Ω → −Ω under parity and time-reversal,
then the theory is separately invariant under P and T .

Second, we consider spatial translations. In a microscopic theory of a rotat-
ing Bose superfluid, the angular frequency Ω is equivalent to an effective constant
magnetic field Beff = −2mΩ, and thus the action should be invariant under mag-
netic translations [104]. In an infinite vortex lattice, the ground state breaks this
symmetry spontaneously. Since in the dual formulation, the fields b, ei and ui

transform trivially under particle number U(1) global symmetry, magnetic trans-
lations of the vortex lattice are implemented as usual translations on these fields.
Under an infinitesimal constant spatial translation xi → xi + li, the fields trans-
form as δlΦ = −lk∂kΦ, where Φ = (ei, b,Aµ), but δlui = −lk∂kui + 2li. As
expected for a Goldstone boson of broken translations, the field ui transforms in-
homogeneously. Using the Bianchi identity εµνρ∂µ∂νaρ = 0, it is straightforward
to check that the action S =

´
dt d2xL is invariant under spatial translations.

Finally, we investigate Galilean boosts. Once again, we use the fact that b,
ei and ui are neutral under the particle number U(1) symmetry, and thus an in-
finitesimal Galilean boost with the velocity βi is realised on these fields as a time-
dependent spatial diffeomorphism xi → xi + βit:

δβb = −βkt∂kb,
δβei = −βkt∂kei + bεikβ

k,

δβu
i = −βkt∂kui + 2βit.

(3.39)

On the other hand, the electric and magnetic fields constructed from the U(1)
source should transform as

δβEi = −βkt∂kEi + εijβ
i(B − 2mΩ),

δβB = −βkt∂kB,
(3.40)

where we have defined Ei = ∂tAi − ∂iAt and B = εij∂iAj . The action built from
the Lagrangian (3.33) is invariant under Galilean transformations. As we will see
in the following, Galilean invariance has important consequences for the spectrum
of excitations and transport properties.

Excitations and particle number transport

In this section, we work out some physical properties of the effective theory (3.33).
In particular, we analyse its excitations and extract the U(1) particle number trans-
port coefficients such as longitudinal and Hall conductivities. To this end, it is
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sufficient to expand the Lagrangian (3.33) around the ground state b = n0 + δb
and keep only terms quadratic in fields and sources,

L(2) =
m

2n0

e2︸ ︷︷ ︸
NLO

−mc
2
s

2n0

δb2 − n0mΩεiju
iu̇j + 2mΩeiu

i − E (2)
el (∂u)− εµνρAµ∂νaρ︸ ︷︷ ︸

LO

,

(3.41)
where overdot denotes the time derivative and cs =

√
n0ε′′/m is the speed of

sound. This Lagrangian naturally fits into a derivative expansion within the fol-
lowing power-counting scheme

ai, u
i, Ai ∼ O(ε0), at, ∂i, At ∼ O(ε1), ∂t ∼ O(ε2), (3.42)

where ε � 1. In particular, one finds that all terms in Eq. (3.41), except the
first one, scale as O(ε2); these terms will be referred to as leading-order (LO)
terms in the following. On the other hand, the electric term ∼ e2 scales as O(ε4)
and thus contributes to the next-to-leading order (NLO) in this power-counting
scheme. In the following, we will first work with the leading order Lagrangian
and subsequently analyse the next-to-leading order corrections produced by the
electric term.

Leading order

We first extract the excitations above the ground state from the LO part of the
Lagrangian (3.41) in the absence of the source Aµ. In the LO theory, the Galilean
symmetry is broken and the dual gauge field is not dynamical. The Gauss law
δSLO/δat = 0 implies ∂iui = 0 and thus displacements are transverse. In other
words, the vortex lattice is incompressible and the vortex density nv is constant in
position space. The remaining four field equations are

c2
sε
ij∂jδb+ 2n0Ωu̇i = 0,

2mΩei − 2n0mΩεiju̇
j + ∂j

∂E (2)
el

∂∂jui
= 0.

(3.43)

From now on, we work in the temporal gauge at = 0, where ei = ȧi and, without
loss of generality, look for plane-wave solutions that propagate along the x direc-
tion, i.e., where δb, ei and ui do not depend on y. As a result, the Gauss law now
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implies ux = 0. In Fourier space, the field equations, written in matrix form, are
0 c2

sk
2 −2in0Ωω

−iω 0 iωn0

0 −iω − C2

mΩ
k2




ax

ay

uy


= 0. (3.44)

The linear system has a nontrivial solution only if the determinant vanishes, which
fixes the dispersion relation

ω(k) =

√
C2c2

s

2mn0Ω2
k2. (3.45)

It is known that a vortex lattice in a compressible superfluid (c−1
s 6= 0) supports

the Tkachenko mode which has the dispersion (3.45) at small momenta [100,
101]. Moreover, since the vortex lattice is incompressible in the LO theory, the
dispersion depends only on the shear elastic modulus C2, but not on the bulk
modulus C1. In one of the next subsections we will find that the inclusion of the
NLO electric term gives rise to quartic corrections to the Tkachenko dispersion
relation.

Integrating the dual photon

We can extract the Tkatchenko excitation (3.45) at leading-order in an alternative
and equivalent way. We can straightforwardly integrate the gauge field in the
LO part of the quadratic Lagrangian (3.41) L(2)

LO = −mc2
s/(2n0)δb2 + 2mΩeiu

i +
Lel(u

i), whereas the elastic partLel(u
i) only contains the displacement ui, through

the Magnus term and the triangular lattice’s energy. We move our description
from physical to redundant vector potential aµ degrees of freedom. In terms of
the gauge field fluctuations of the magnetic field δb = εij∂iaj and electric field
ei = ȧi − ∂iat we have the Lagrangian

L(2)
LO(aµ, u

i) = −mc
2
s

2n0

(εij∂iaj)
2 + 2mΩ(∂tai − ∂iat)ui + Lel(u

i). (3.46)

The theory is quadratic, therefore we progressively integrate over the field config-
urations aµ. In our case, only the spatial part of the gauge field enters quadrati-
cally15 in the action, i.e. we deal with some kind of magnetostatic:

S[ai, at] =

ˆ
dt d2x

[
−1

2
apK

pjaj + aij
i
1

]
+ S[at, u

i] + Sel[u
i] (3.47)

15Hereby we report the Gaussian integral
´
Dϕ ei

´
ddx[− 1

2ϕKϕ+Jϕ] = ei
´
ddx[ 12JK

−1J].
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with Kpj ≡ mc2
s/n0

(
∂j∂p − ∂2gpj

)
and ji1 ≡ −2mΩu̇i. The kernel of the oper-

ator Kpj contains the zero element and every smooth vector of the form ∂jΛ (x).
Therefore, the operator is singular, and we have to fix this issue to find its inverse
hence perform the integration. The procedure is due to Fadeev and Popov, and it is
a standard trick in electromagnetism and other more complicated gauge theories.
It consists of replacing the original action with an effective action that depends on
an external parameter ξ

S[ai]→ Seff [ai] = S[ai]− 1/(2ξ)

ˆ
dt d2x (∂pap)(∂jaj). (3.48)

We can choose the parameter ξ to simplify the calculation as much as possible.
Physical predictions should be independent of the choice of ξ. With this mathe-
matical trick, we replace the singular operator with the invertible one [Keff ]pj ≡
mc2

s/n0[−gpj∂2+(1−1/ξ)∂p∂j] or, in momentum space, [Keff ]pj = mc2
s/n0[gpjk

2−
(1− 1/ξ)kpkj]. Its inverse is

[K−1
eff ]pj =

n0

mc2
s

[
gpj

1

k2
− (1− ξ) kpkj

k4

]
. (3.49)

At this point, we integrate out the spatial part of the gauge potential. Due to the
instantaneous photon, we obtain a non-local action

S[ai, u
i]→ SNL[ui] =

ˆ
dt d2k

2n0mΩ2

c2
s

[
(u̇i)2

k2
− (1− ξ)

k4
(kiu̇

i)2

]
, (3.50)

and the full action is S[ui] = SNL[ui] + 2mΩat(∂iu
i) + Sel

[
ui
]
. Integration with

respect to the spatial part of the gauge potential at fixes the divergenceless of the
crystal displacement field ∂iui = 0 and cancels the second term in (3.50),

S[ui] =

ˆ
dt d2k

2n0mΩ2

c2
s

(u̇i)2

k2
+ Sel[u

i]. (3.51)

Being a transverse field, we can introduce a scalar field ϕ such that ui = εij∂jϕ.
With this procedure the ”propagator” of the photon disappears k−2(u̇i)2 → −ϕ̇2.
In terms of ϕ, the elastic part of the action contains spatial derivatives of the
fourth-order

Lel(ϕ) = −(n0mΩεij∂iϕ∂jϕ̇+C2[4(∂2
xyϕ)2 + (∂2

xϕ)2 + (∂2
yϕ)2− 2(∂2

xϕ)(∂2
yϕ)])

(3.52)
Integrating by parts and, as usual, dropping boundary terms, we obtain the unin-
volving quadratic Lagrangian

L = ϕ[∂2
t + c2

s/(2Ω)εij∂i∂j∂t −
C2c

2
s

2n0mΩ2
∂4]ϕ, (3.53)
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where we introduced the two-dimensional biharmonic (or bilaplacian) operator
∂4 ≡ (∂4

x + 2∂4
xxyy + ∂4

y). The second term vanishes for all smooth configurations
ϕ due to the antisymmetric symbol. If we look at the excitation spectrum of the
theory by taking plane waves ∂4 → k4 the dispersion is

ω(k) =

√
C2c2

s

2mn0Ω2
k2. (3.54)

The above result exactly matches what we obtained in (3.45).

Transport at leading order

We now turn to the computation of the U(1) particle number linear response. To
this end one has to determine how the particle number current jµs = εµνρ∂νaρ
responds to variations of the U(1) source Aµ. In particular, the density suscepti-
bility χ, the longitudinal conductivity σ and the Hall conductivity σH are defined
in Fourier space as

χ(ω, k) =
δns
δAt

∣∣∣
ω,k
,

σ(ω, k) = σxx(ω, k) =
i

ω

δjxs
δAx

∣∣∣
ω,k

=
i

k

δjxs
δAt

∣∣∣
ω,k
,

σH(ω, k) = σxy(ω, k) = − i
ω

δjys
δAx

∣∣∣
ω,k

= − i
k

δjys
δAt

∣∣∣
ω,k
.

(3.55)

In order to extract these functions from the LO effective theory, we first solve
the linearised field equations in the presence of the U(1) source, substitute the
solutions into the particle number current (3.35), and finally apply the definitions
(3.55). As a result, we get

χ(ω, k) =
C2k

4

2m2Ω2

1

ω2 − C2c2s
2mn0Ω2k4

,

σ(ω, k) =
iC2k

2ω

2m2Ω2

1

ω2 − C2c2s
2mn0Ω2k4

,

σH(ω, k) =
n0ω

2

2mΩ

1

ω2 − C2c2s
2mn0Ω2k4

.

(3.56)

In the static regime ω = 0, we find χ(k) = −n0/(mc
2
s), which satisfies the

compressibility sum rule χ(k = 0) = −∂n/∂µ = −n0/(mc
2
s). We observe that

the gapless Tkachenko excitation saturates the transport of particle number at low
energies and long wavelengths.
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Beyond the leading order

We now go beyond the LO. We will not try to construct the most general NLO
Lagrangian, but only include the NLO electric term, which has important physical
consequences. First, it will become manifest later that the Galilean symmetry, lost
at leading order, is now restored. Second, the Gauss law now reads

∂i
(
ui +

1

2n0Ω
ei
)

= 0, (3.57)

and thus the vortex lattice becomes compressible and the displacement field ui is
not transverse any more.

The calculation of the dispersion of excitations is straightforward, but tedious;
here we present only the main results, see also Fig. 3.2. In the presence of the
electric term one finds two physical modes. The first mode is the Tkachenko
mode, which is now elliptically polarized16

ux

uy
= i

√
C2c2

s

8mn0Ω4
k2 +O(k4), (3.58)

and has the dispersion

ω(k) =

√
C2c2

s

2mn0Ω2

[
k2 − 2C2 +mn0c

2
s

8mn0Ω2
k4 +O(k6)

]
. (3.59)

In addition, one finds the gapped Kohn mode with the dispersion

ω(k) = 2|Ω|

[
1 +

4 (C1 + C2) +mn0c
2
s

8mn0Ω2
k2 +O

(
k4
)]
. (3.60)

At zero momentum this mode is circularly polarized. We observe that the Galilean
symmetry of the problem is restored by the NLO electric term and ensures that the
high-energy Kohn mode is properly captured by the low-energy effective theory.

The computation of the particle number linear response follows the same steps
as described in the previous calculation. The analytical expressions for χ, σ and
σH are cumbersome. For this reason, here we limit our discussion of the U(1)
response functions to a few special regimes.

We start with the density susceptibility χ which vanishes in the homogeneous
case k = 0, ω 6= 0. This makes sense since particle density should not change
under variations of a uniform time-dependent electrostatic potential. In the static

16As before, in this subsection we consider a plane-wave ansatz with momentum k = (k, 0).

60



Figure 3.2: Sketch of dispersions and polarizations of Tkachenko and Kohn exci-
tations.

regime, the compressibility sum rule χ(k → 0) = −∂n/∂µ = −n0/(mc
2
s) is

satisfied.
Now we turn to the conductivities. In the static regime ω = 0, we find that the

vortex lattice behaves as an insulator, i.e., σ(k) = σH(k) = 0. Consider now the
regime of finite ω, but small k. Expanding conductivities in momentum around
k = 0, one finds17

σ(ω, k) = i
n0ω

m(ω2 − 4Ω2)
+ i

mn0ω
2c2
s + 2C2

(
ω2 + 4Ω2

)
+ 4C1ω

2

m2ω (ω2 − 4Ω2)2 k2 +O
(
k4
)
,

σH(ω, k) = − 2n0Ω

m(ω2 − 4Ω2)
−

2Ω
(
mn0c

2
s + 4 (C1 + C2)

)
m2 (ω2 − 4Ω2)2 k2 +O

(
k4
)
.

(3.61)

The first terms in the Taylor expansion are exact conductivities in the homoge-
neous k = 0 regime and their form is fully fixed by the Kohn theorem. We put
together the longitudinal and Hall conductivities into the leading order conductiv-
ity tensor

σ
(0)
ij (ω) =

n0

m(ω2 − 4Ω2)

(
iωδij − 2Ωεij

)
. (3.62)

Formally, it is possible to extract the leading order result (3.56) from the response
functions discussed here. To this end, we introduce a small parameter δ and re-
place ω → δ2ω and k → δk in response functions. The leading order of the

17 In general, the conductivities depend on the frequency ω and the momentum vector k. In the
light of our ansatz, the expressions (3.61) are only valid for momenta k = (k, 0).
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Taylor expansion in δ of the functions χ, σ and σH gives exactly (3.56). Finally,
it is important to remark again that we did not attempted to construct the most
general theory that includes all NLO terms that are consistent with symmetries.
As a result, the subleading corrections to observables, such as the quartic term in
the Tkachenko dispersion (3.59) and the quadratic terms in conductivities (3.61),
might be modified by the omitted NLO terms.

3.3.4 Dual effective field theory - Lagrange formulation
One might be not fully satisfied with the effective theory (3.33) for the follow-
ing reason. Although the displacement field ui carries a spatial index, it does not
transform as a vector field under spatial general coordinate transformations (dif-
feomorphisms) because it is the Goldstone mode of spontaneously broken mag-
netic translations. Hence, the generalization of the theory (3.33) to a form valid
in general curvelinear coordinate is not straightforward. In order to circumvent
this problem, we introduce here an alternative formalism used previously to de-
scribe solids [108–110]. Instead of displacements, we introduce a set of scalar
fields Xa(t,x), with a = 1, 2, that represent the Lagrange coordinates frozen
into the vortex lattice. In other words, any vortex has a constant coordinate Xa

along its worldline. Imagine now a two-dimensional curved surface parametrized
by a general set of spatial coordinates xi with a geometry given by a metric ten-
sor gij . In these coordinates, the effective action of the vortex lattice is given by
S =
´
dtd2x

√
gL, with the scalar Lagrangian

L =
mgijeiej

2b
−ε(b)−πnvεµνρεabaµ∂νXa∂ρX

b−Eel(U
ab)−εµνρAµ∂νaρ, (3.63)

where g = det gij , b = εij∂iaj/
√
g, εµνρ = εµνρ/

√
g and Uab = gij∂iX

a∂jX
b.

The vortex number current jµv ∼ εµνρεab∂νX
a∂ρX

b couples to the dual gauge field
aµ. In contrast to the theory introduced in Sec. 3.3.2, in this formulation, the U(1)
sourceAµ has a finite background magnetic fieldB = εij∂iAj = −2mΩ. There is
no unique way how the Lagrange coordinates are defined in a solid, which leads
to global symmetries that act in internal space. In particular, the action must be
invariant under constant internal shifts Xa → Xa + la. In addition, the theory
is also invariant under discrete internal rotations that map the triangular lattice
to itself. This symmetry constraints the form of the elastic term Eel(U

ab). With
nv transforming as a scalar, the action is invariant under spatial general coordi-
nate transformations. The non-linear theory (3.63) fits naturally into a derivative
expansion with the following power-counting scheme (ε� 1)

ai, X
a, Ai ∼ O(ε−1), at, At ∼ O(ε0), ∂i ∼ O(ε1), ∂t ∼ O(ε2).

(3.64)
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The difference in the scaling of space and time originates from the quadratic dis-
persion of the soft Tkachenko mode. In this power counting, the first term in the
Lagrangian (3.63) is of orderO(ε2) and becomes the next-to-leading order correc-
tion to the remaining terms in Eq. (3.63) that all scale as O(ε0) and thus constitute
the leading-order part. The Maxwell equations that follow from the Lagrangian
(3.63) are

B̃ + πnvε
ijεab∂iX

a∂jX
b = 0, (3.65)

Ẽj + 2πnvεabẊ
a∂jX

b − ε′′(b)∂jb = 0, (3.66)

where we have introduced B̃ = B−mεij∂ivjs and Ẽj = Ej−m
(
v̇s j+gmnv

m
s ∂jv

n
s

)
.

By taking the variation of the action with respect to Xa we find

πnvε
µνρεab∂µaν∂ρX

b − 1
√
g
∂j
(√

g
∂Eel

∂Uab
gij∂jX

b
)

= 0. (3.67)

3.3.5 Theory (3.33) is equivalent to theory (3.63) in Cartesian
coordinates

Here we demonstrate that the diffeomorphism-invariant theory defined by the La-
grangian (3.63) reduces in Cartesian coordinates of flat space to (3.33). In this
case, gij = δij and Eq. (3.63) simplifies to

L =
mδijeiej

2b
−ε(b)−πnvεµνρεabaµ∂νXa∂ρX

b−Eel(U
ab)−εµνρAµ∂νaρ. (3.68)

In addition, in these coordinates we can choose Xa = δai (x
i − ui) which implies

−πnvεµνρεabaµ∂νXa∂ρX
b → −mΩbεiju

iDtu
j + 2mΩeiu

i − 2mΩat, (3.69)

where we dropped surface terms and used nv = mΩ/π. Now the last term in Eq.
(3.69) is compensated by the contribution from the last term in Eq. (3.68) since
the source Aµ has a finite background magnetic field B = −2mΩ. This results in
a simple shift of the source Aµ → Aµ which now has zero background magnetic
field. Finally, in Cartesian coordinates

Uab = δij∂iX
a∂jX

b = δab −
(
∂aub + ∂bua − ∂cua∂cub

)︸ ︷︷ ︸
2uab

(3.70)

and thus Uab is fully determined by the deformation tensor uab.
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3.4 Conclusions and outlook
In this chapter we constructed an effective theory of a quantum vortex lattice in a
bosonic Galilean-invariant compressible superfluid. We note that our NLO theory
does not have the most general form consistent with symmetries. Despite these
shortcomings, we believe that our theory captures properly the excitations and
linear response of the quantum vortex lattice. In the future it would be important
to perform a systematic construction of the effective theory in its most general
form. Regular vortex lattices were also observed in cold atom experiments with
rotating fermionic s-wave superfluids [111]. It would be interesting to apply the
effective theory we developed to these systems. Moreover, vortex lattices should
also be formed in rotating chiral superfluids and it would be interesting to con-
struct effective theories of these states and apply these theories to rotating 3He-A
superfluids. The physics of vortices on curved surfaces is fascinating, for review
see e.g. [112]. It would be very interesting to apply our effective theory to vortex
lattices that live on curved substrates. Finally, one may wonder if the effective
theory developed here can be directly applied to a thin superconducting film in
an external perpendicular magnetic field. It is known that in this systems in the
absence of disorder the triangular vortex lattice is stable under perturbations [113]
and is a good candidate for the ground state. In addition, due to inefficient screen-
ing the vortices interact logarithmically [114] up to the Pearl length Λ = 2λ2

L/d,
where λL is the London penetration length and d is the width of the film. For thin
films (λL � d) the Pearl length can be very large. Nevertheless, it was shown
in [113] that the dispersion relation of lattice vibrations scale at low momenta as
ω ∼ k3/2 which differs from the quadratic Tkachenko dispersion. Fractional dis-
persion at low momenta originates from the coupling to the electromagnetic field
that propagates in three spatial dimensions. We thus expect that our effective the-
ory of the vortex lattice can be employed also in clean thin superconducting films
after dynamical electromagnetism is included.
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Chapter 4

Rayleigh edge waves in
two-dimensional crystals with
Lorentz forces. From skyrmion
crystals to gyroscopic media

In this chapter, we extend the investigation of Rayleigh waves, that we encoun-
tered in Chapter 1, to the context of two-dimensional elastic solid that are com-
posed of topological textures introduced in the last section of Chapter 2. Similarly
to the vortices studied in Chapter 3, also skyrmions obey a transverse dynamics
which originates from a Berry term. The term breaks time-reversal and parity
symmetries, so it is natural to ask whether this reflects on the excitations the
solid exhibits at its boundaries. Therefore, we investigate if a generalisation of
Rayleigh waves exists in the two-dimensional skyrmion lattice which is hosted
inside a thin-film chiral magnet. We find that the direction of propagation of the
Rayleigh modes is determined not only by the chirality of the thin-film, but also
by the Poisson ratio of the crystal. We discover three qualitatively different re-
gions distinguished by the chirality of the low-frequency edge waves, and study
their properties. Apart from skyrmion crystals, our results are also applicable to
edge waves of gyroelastic media and screened Wigner crystals in magnetic fields.

4.1 Introduction
Recent years have seen a new surge of excitement around chiral surface waves
in hydrodynamics [115–122]. The role of bulk topology for the existence and ro-
bustness of such waves has been vigorously investigated [115, 116, 119, 121, 122].
Chiral surface modes have been also recently used as a tool to measure the bulk
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(A) (B) (C)

 
chiral left chiral right left + right

Figure 4.1: Sketched dispersion relations of Rayleigh surface excitations ω(k)
(red) as a function of the Poisson ratio σ. In cases (A) and (C) the low-frequency
spectrum is chiral, while in the intermediate regime 0 ≤ σ ≤ ϕ−1 edge waves of
both chiralities are present. Here ϕ ≡ (1 +

√
5)/2 is the golden ratio. The green

square denotes the point σ = 1/3 where the edge wave spectrum is symmetric.
Plotted in blue are cross sections of the gapless bulk excitation.

Hall viscosity of an active fluid [123].
Here we study surface waves in two-dimensional crystals which break parity P
(spatial reflection) and time-reversal T symmetry, but preserve the combined PT
symmetry. In the quantum realm, well-known examples of such systems are two-
dimensional thin-film chiral magnets, which host lattices formed out of skyrmions
[51, 124–126], Wigner crystals in a magnetic field [127] and Abrikosov vortex lat-
tices in superconductors and rotating superfluids [128]. In the last few years such
crystals were also designed in gyroscopic metamaterials [129, 130] and mass-
spring networks subject to Coriolis forces [131].
The general focus of this chapter is the investigation of a long-wavelength ef-
fective field theory of a two-dimensional skyrmion lattice, where the Cartesian
components of the displacement from equilibrium positions ux and uy are cou-
pled by a Berry term [132, 133]. The displacements are assumed to be small,
which allows the framework of linear elasticity to be employed. We find that the
behaviour of the edge-waves can be tuned by changing the Poisson ratio σ [19].
In fact, we show that there exist three qualitatively distinct phases, captured by
the diagram in Fig. 4.1. The phases are distinguished by the propagation direction
of their low-frequency surface waves. In the long-wavelength and low-frequency
limit we develop an analytic treatment of these edge waves.
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4.2 Skyrmion crystal elasticity in thin-film chiral mag-
nets

It is well-known that an elementary skyrmion texture in a ferromagnet experiences
an effective magnetic field B and the associated Lorentz force because it picks up
a Berry phase of 2π whenever encircling a spin 1/2 [134]. Moreover, a skyrmion
can be characterised by a finite inertial mass m, which was derived in [135] by
integrating out fluctuations of its spatial profile. Hereby we study the surface
waves of two-dimensional skyrmion lattices present in thin-film chiral magnets
such as Fe0.5Co0.5Si [125] and FeGe [126]. Starting from the continuum theory of
[132, 133], the skyrmion dynamics is described by a field theory of coarse-grained
elastic variables ui (x) with i = x, y, denoting the displacements of skyrmions
from their equilibrium positions, see [51] for a pedagogical exposition. The action
of the skyrmion displacement field is given by

S[ui] =

ˆ
dt d2x

[
ρ

2
u̇2 − ρΩ

2
εiju

iu̇j − Eel(uij)

]
, (4.1)

where the overdot denotes the time derivative, ρ is the mass density of the skyrmions,
Ω = B/m is the cyclotron frequency associated with the effective magnetic field
B, uij ≡ ∂(iu j) is the symmetric linearised strain tensor, and Eel(uij) the elas-
tic energy density, dictated by the geometry of the crystal. The convention for
the completely antisymmetric Levi-Civita symbol is εxy = −εyx = 1 and sum-
mation over repeated indices is understood. At low frequencies, the Berry term
in Eq. (4.1), which gives rise to an effective Lorentz force, dominates the first
term that encodes the Newtonian dynamics. As a result, ux and uy form a canon-
ically conjugate pair of variables in the limit m → 0. The Berry term breaks the
time-reversal T (t → −t) and parity P (x → −x, ux → −ux) symmetries, but
preserves their combination.
We assume that skyrmions form a triangular lattice, whose symmetry class, C6,
limits Eel(uij) in two dimensions to the isotropic form [18, 19]

Eel

(
uij
)

= 2C1u
2
kk + 2C2ũ

2
ij, (4.2)

where ũij ≡ uij − (ukkδij)/2 is the traceless symmetric part of the strain tensor.
The compressional elastic modulus 2C1 quantifies the change of energy due to
deformations that preserve the shape of the system but change its volume, while
the shear modulus C2 fixes the energy cost of volume-preserving deformations.
In the context of effective field theories, C1 and C2 are just parameters of the
derivative expansion and can take arbitrary non-negative values.

While the action in (4.1) is the effective theory governing skyrmion lattice
dynamics, at long wavelengths it also describes elastic gyroscopic systems in the
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limit of small nutation angle [136]. Moreover, it can also be used to describe
certain screened Wigner crystals in magnetic fields [137].

The action (4.1) is quadratic and the resulting equations of motion are linear

üi + Ωεiju̇
j = 2v1∂i

(
∂pu

p
)

+ v2∂
2ui, (4.3)

where we introduced v1 ≡ 2C1/ρ, v2 ≡ 2C2/ρ. Assuming an infinite system that
respects magnetic translational invariance in both directions, the equations of mo-
tion (4.3) are algebraic in frequency/wavevector space. Contrary to the situation
where the Berry term is absent, the modes do not decouple into the longitudinal
and transverse components. The set of equations (4.3) can be solved with ele-
mentary methods, and the two solutions for the dispersion relations are given by

ω2
∓ =

Ω2

2
+ (v1 + v2)k2 ∓ k2

√
v2

1 + (v1 + v2)
Ω2

k2
+

Ω4

4k4
. (4.4)

Due to their cumbersome form, the polarizations ε± ≡ ux±/u
y
± are not presented

in the general case here. In this problem we can identify two distinct physical
regimes: (i) for small wavevectors/large magnetic fields the negative branch of Eq.
(4.4) gives rise to a gapless magnetophonon mode with the quadratic dispersion

ω− (k) =

√
v2 (2v1 + v2)

Ω
k2

1 +O

(
k2

Ω2

) , (4.5)

while the positive branch represents a gapped magnetoplasmon mode, dispersing
as

ω+ (k) = Ω

1 +

(
v1 + v2

Ω2

)
k2 +O

(
k4

Ω4

) . (4.6)

The latter mode is guaranteed to have the gap ω = Ω at k = 0 by the Kohn
theorem [138]; the system is analogous to a collection of single-species charged
particles in a uniform magnetic field that interact through a potential which de-
pends only on their relative distances. In the zero wavevector limit, the polar-
ization of the Kohn mode is circular and its chirality is fixed by the sign of the
effective magnetic field B. (ii) In the limit of large wavevectors, the Newtonian
term dominates over the Berry term in Eq. (4.3) and we asymptotically recover
two linearly dispersing sound modes of a time-reversal invariant two-dimensional
solid1 similar to the ones from Chapter 1. In particular, at large momenta, the
magnetophonon (4.5) merges into the transverse (kiui− = 0) mode dispersing as

1In the absence of the Berry term the system supports a transverse and a longitudinal sound
modes with respective group velocities c2t ≡ 2C2/ρ and c2l ≡ (4C1 + 2C2)/ρ.
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ω− = ctk[1 + O(Ω2/k2)], while the magnetoplasmon (4.6) becomes the longitu-
dinally polarized (εijkiu

j
+ = 0) mode with ω+ = clk[1 +O(Ω2/k2)].

The Lagrangian naturally fits into a derivative expansion within the power-counting
scheme ui ∼ O(1), ∂i ∼ O(ε) , ∂t ∼ O(ε2) where we introduced a small pa-
rameter ε � 1. The difference in the power-counting of temporal and spatial
derivatives originates from the soft quadratic dispersion of the magnetophonon.
All terms in the Lagrangian (4.1), except for the Newtonian term ρu̇2/2, are of
order O(ε2), defining the leading-order (LO) Lagrangian. On the other hand, the
Newtonian term scales as ε4 and is less relevant at low frequencies, and thus is
of the next-to-leading order (NLO). The inclusion of this term allows us to es-
tablish the crossover of edge waves that exist in the chiral system to the ordinary
Rayleigh waves in the absence of a Berry term. We notice here that other NLO
terms such as second-order elasticity λ̃ijklmn∂i∂juk∂k∂mun or the dissipationless
phonon Hall viscosity ηijkl∂iuj∂ku̇l [139] are not included.
We recall that in elastic media internal stresses and forces are encoded in the stress
tensor Tij = δEel/δuij (1.28). For a two-dimensional triangular crystal with the
elastic energy density (4.2) the stress tensor is

Tij = 4C1ukkδij + 4C2ũij. (4.7)

4.3 Rayleigh edge modes
Next, we turn to the study of exponentially localised Rayleigh waves that propa-
gate on the edge of the skyrmion lattice. The breaking of time-reversal and parity
symmetries in (4.1) due to the Berry term suggests that such modes might be chi-
ral, i.e., propagating only in one direction, see e.g. [137] and [140].
For the sake of simplicity, we consider the skyrmion crystal to fill the lower half-
space with y < 0. Without loss of generality we also choose Ω > 0. The trans-
lational invariance in time and along the horizontal direction motivates the ansatz
u(x, y, t) = u ei(kx−ωt)eκy for a solution of (4.3). The wavevector along the bound-
ary k and the frequency ω are assumed to be real; confinement near the edge of
the system requires the real part of κ to be positive.
First, in order to make the following calculation more transparent, we shall focus
on the low-frequency limit and drop the NLO Newtonian term ∼ u̇2 in the model
(4.1). The edge ansatz inserted into Eq. (4.3) results in a characteristic equation
for κ with two solutions

κ1,2(k, ω) =

√
k2 ± Ω√

v2(2v1 + v2)
ω +O(k2). (4.8)

The corresponding eigenvectors u1,2 (k, ω) are functions of the wavevector k and
frequency ω. Interestingly, here, in contrast to the ordinary Rayleigh construction,
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both solutions κ1,2 originate from the single magnetophonon branch.
The general solution with given k and ω is obtained by forming a linear super-

position of u1,2 (k, ω) with two complex constants a, b

u (x, y, t) = ei(kx−ωt)(a u1e
κ1y + b u2e

κ2y). (4.9)

Due to the PT symmetry of the model, the dispersion satisfies ω(k) = −ω(−k),
hence it is sufficient to study only the interval ω ≥ 0. Here we will assume that the
crystal is free at the boundary y = 0. In this case there are no macroscopic forces
acting on it from the outside. Thus, there is no flux of linear momentum across
the boundary surface, resulting in the so-called stress-free boundary conditions

Txy(x, y = 0) = Tyy(x, y = 0)
!

= 0. (4.10)

Substituting the ansatz (4.9) into the boundary conditions (4.10) results in the
linear system of equations for a and b ikσε1 + κ1 ikσε2 + κ2

ik + κ1ε1 ik + κ2ε2


 a

b

 = 0, (4.11)

where we have introduced the two-dimensional Poisson ratio

σ ≡ (2C1 − C2)/(2C1 + C2) (4.12)

and the shorthand ε1,2 ≡ ux1,2/u
y
1,2.

The dispersion relation ω(k) for the edge waves is obtained from the characteristic
equation for the matrix in Eq. (4.11). In the following we investigate the interval
−1 ≤ σ ≤ 1, where the elastic system is stable.
Substitution of the two edge modes into (4.11) yields a dispersion relation ω(k)
of the form

ω(k) = α

√
v2(2v1 + v2)

Ω
k2, (4.13)

with α being a non-negative and real solution of an unwieldy algebraic equation,
which we investigate in detail in Section 4.4. This equation does not depend on
the magnitude of k, but only on its sign. As a consequence, the equations for
positive and negative k are in general different, resulting in different solutions
α(sign(k), σ), which we will denote by α±(σ). We show the numerical solution
of α±(σ) in Fig. 4.2. As the value of σ is varied, one finds three qualitatively
different regimes. For σ < 0 only the α− branch exists: edge waves can only
propagate towards left, while propagation to the right is forbidden. We analyti-
cally find that for σ > ϕ−1 = (

√
5 − 1)/2, i.e. the inverse golden ratio, the edge
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Figure 4.2: For small momenta the dispersion relation has the quadratic form
ω = α

√
v2(2v1 + v2)/Ω k2. When only one of the branches α± exists, the edge

wave propagates unidirectionally. This happens for σ < 0 and σ > ϕ−1, see
Section 4.4.

waves are once again chiral, but with propagation in the opposite direction. In the
interval 0 ≤ σ ≤ ϕ−1 both branches of α± exist and consequently edge waves
can propagate in both directions. The dispersion of the surface waves usually is
asymmetric, since in general α+ 6= α−. However, it is clear from Fig. 4.2, that at
the point σ = 1/3 2 the spectrum is symmetric, see more in the next Section for
the analytical justification, where we also determine the value α± = 2

√
2/3.

In the presence of the sub-leading Newtonian term we solved the edge problem
numerically. The resulting spectrum is sketched in Fig. 4.1. The inclusion of the
Newtonian term results in propagation in a forbidden direction for momentum
and frequency larger than a critical value kcrit and ωg ≡ ω(kcrit). We checked that
ordinary Rayleigh waves are recovered for ω � ωg.

In order to illustrate our findings, we have carried out finite-difference simula-
tions of the dynamics encoded by (4.3) subject to the boundary conditions (4.10)
on a 500 × 500 spatial grid. Fig. 4.3 shows simulation snapshots for different
values of the Poisson ratio. The initial condition for the displacement field is
identical in all three simulations: the elastic medium has zero displacement ev-
erywhere, except for a small central region near the lower horizontal boundary,
where it is deformed. Starting with this condition, we let the system evolve over
time (in [141] we provide a simulation video). We observe that while the exci-
tation decays partially into the bulk of the medium, some part remains localised
near the edge and travels along the boundary. For σ = −0.8 and σ = +0.8, one

2A microscopic model that realises the value σ = 1/3 is the triangular lattice of equal masses
connected through nearest neighbours identical springs.
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Figure 4.3: Edge excitations as seen in finite-difference simulations [141]. In
all three plots, the system was displaced in a small region near the boundary at
x = 0 and evolved over time. The three values of σ are representative of the three
regimes shown in Fig. 4.1. To guide the eye, we coloured in magenta the grid
points that have large amplitude defined by a threshold value.

clearly sees how the edge excitations travel unidirectionally and in opposite direc-
tions for the two Poisson ratios. For σ = 1/3, we observe two edge excitations
that travel symmetrically in both directions.

To investigate the transition between the three regimes, we studied the mag-
nitude of the frequency gap ωg as a function of the Poisson ratio σ. The result is
displayed in Fig. 4.4. The figure demonstrates that the non-chiral regime (ωg = 0)
exists inside a finite interval σ1 < σ < σ2. This implies that the gap vanishes in a
non-analytic way, reminiscent of the behaviour of an order parameter near a con-
tinuous phase-transition. Indeed, we find that the gap ωg vanishes linearly near
the critical ratios σ1 = 0 and σ2 = ϕ−1, see the insets of Fig. 4.4.

A particularly simple case of surface modes is found in the limit where the
compressional modulus C1 vanishes, i.e. for σ = −1. In the time-reversal invari-
ant setting, this maximally auxetic problem emerges in the twisted Kagome lattice
[142]. For our system, we find that at σ = −1 edge modes exist and the frequency
spectrum is a flat band. This implies that once a deformation is introduced at the
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Figure 4.4: Frequency gap ωg of the edge waves as a function of the Poisson ratio
σ. The gap is zero in the interval [σ1, σ2]. The insets show that the gap vanishes
linearly near the critical points σ1 and σ2.
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edge of the system, it does not propagate but remains there forever frozen. Such
excitations have been studied in the literature [142–144] and are known as floppy
modes. It is interesting to note that these solutions have a hidden holomorphicity
property related to the fact that, when σ = −1, the boundary conditions (4.10)
become the Cauchy-Riemann equations for the field ux + iuy.

4.4 Analytic values of σ1 and σ2, edge-wave disper-
sions at σ = 1/3, σ = σ1,2 and floppy modes

Insertion of the edge-wave ansatz into the stress-free boundary condition (4.11)
results in an equation for α±:

2(σ−1)

(
α2

+

(
σ
(
−
√

1
1−σ

√
2−2α2

++2
√

1−α+−2
√
α++1

)
+
√

1
1−σ

√
2−2α2

+−2
√

2
√

1
1−σσ

2

)
+(σ+1)2(

√
1−α+−

√
α++1)+(σ+1)2α+(

√
1−α++

√
α++1)

)
(σ−1)2α2

+−(σ+1)2 = 0 (4.14)
2(σ−1)

(
α2
−

(
σ
(√

1
1−σ

√
2−2α2

−+2
√

1−α−−2
√
α−+1

)
−
√

1
1−σ

√
2−2α2

−+2
√

2
√

1
1−σσ

2

)
+(σ+1)2(

√
1−α−−

√
α−+1)+(σ+1)2α−(

√
1−α−+

√
α−+1)

)
(σ−1)2α2

−−(σ+1)2 = 0 (4.15)

We are considering non-negative values of ω, thus α± ≥ 0. The form of the
spectrum (4.13) yields for κ given by (4.8) the values κ1,2 =

√
1± α|k|. In

order to have both κ1,2 real, the condition α ≤ 1 must be satisfied. The analytic
values of σ1 and σ2 can be found by imposing these limits. We first note that for
α+ → 1 one finds σ → 0 using Eq. (4.14), and thus σ1 = 0. The value σ2 is
obtained by letting α− → 1 in Eq. (4.15). In this limit that equation reduces to
σ2

√
1− σ2 − 1 + σ2 = 0 with solution σ2 =

√
5−1
2
≡ ϕ−1, which is the inverse of

the golden ratio ϕ.

4.4.1 Symmetric point σ = 1/3

When σ = 1/3, both equations (4.14) and (4.15) reduce to the same form, thus
α+ = α−. The equation that is satisfied by α± is(
−3
√

3− 3α2 + 3
√

1− α− 3
√
α + 1 +

√
3
)
α2 + 8

(√
1− α +

√
α + 1

)
α+

+ 8
(√

1− α−
√
α + 1

)
= 0.

It is straightforward to verify that the only admissible solution is α± = 2
√

2/3.
Thus the long-wavelength edge-wave dispersion at σ = 1/3 takes on the particu-

larly simple form ω = 2
√

2
3
v2

Ω
k2.
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Asymptotic behaviour of α± at σ = ±1

When σ → 1− the value of the corresponding α+ tends to 0. By setting

σ = 1− ε (4.16)
α = δ (4.17)

in equation (4.14) and expanding in small δ, ε, we arrive at the equation 2δε −√
2δ2
√
ε = 0 which has the solution δ =

√
2
√
ε. This yields the asymptotic

α+ ∼
√

2
√

1− σ as σ → 1− and as a consequence ω ∼ (2v2/Ω)k2 as σ → 1−.
When σ → −1+, the value of α− tends to 0. Here we set

σ = −1 + ε (4.18)
α = δ (4.19)

and upon expanding (4.15) we find δ = 3ε/2 and thus

α− ∼
3

2
(1 + σ) as σ → −1+ (4.20)

and therefore

ω ∼ 3v2

2Ω
(1 + σ)k2 as σ → −1+. (4.21)

Since σ → −1+ is equivalent to v1 → 0, we can also write this asymptotic relation
as

ω ∼ 6v1

Ω
k2 as v1 → 0. (4.22)

In both limits, σ → −1+ and σ → 1−, the spectra become flat. Such flat spectra
are associated with excitations called floppy modes.

4.4.2 Floppy modes at σ = −1

As discussed above, for σ = −1 the system supports floppy modes. Setting σ =
−1 and inserting the edge-wave ansatz (4.9) into the equations of motion (4.3)
produces two modes with κ∓ =

√
k2 − (ω2 ± ωΩ) /v2 and circular polarizations

ε∓ = ±i. The boundary conditions (4.10) enforce either ω = 0 or ω = Ω and
κ∓ = |k|. The latter is automatically satisfied for the ω = 0 bulk mode. But, for
ω = Ω, the κ+-mode violates this condition. For ω = 0 we find the floppy mode

u =
(
−i sign(k), 1

)T
eikx+|k|y, (4.23)
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Figure 4.5: Numerical solution of the edge wave dispersion (red) for equal elastic
moduli C1 = C2. For comparison, also the dispersions relations of the bulk modes
ω− (blue) and ω+ (yellow) are plotted.

while the time-dependent solution with ω = Ω only exists for k > 0 and has the
form

u = (−i, 1)T ei(kx−Ωt)+ky. (4.24)

We assumed above that Ω > 0. If, instead, Ω < 0, then the time-dependent
solution has the frequency ω = −Ω. This change of sign modifies the sign of
the allowed k values in Eq. (4.24) and thereby reverses the wave’s propagation
direction.

Symmetric edge spectrum

In Subsection 4.4.1, we have shown that a symmetric spectrum of edge excitations
emerges for the value of Poisson ratio σ = 1/3, i.e. for equal elastic moduli,
C1 = C2 ≡ C. Hereby we show that this property holds even at NLO, see Figure
4.5. The proof is based on the characteristic equation d(k, ω) = 0 of the matrix
appearing in the boundary conditions (4.11).

The expressions are cumbersome and it turns out to be more convenient to
study the parity property of the auxiliary function

d̃ (k, ω) ≡ d (k, ω) /
[
ε+ (k, ω)− ε− (k, ω)

]
(4.25)

instead of the characteristic polynomial d (k, ω). In terms of the inverse decay
lengths κ∓ (k, ω) and the polarizations ε∓ (k, ω) the auxiliary function takes the
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following form

d̃ (k, ω) =
(
k2 + 3κ−κ+

)
+ (κ+ − κ−)

ε−ε+ − 3

ε+ − ε−
(ik)︸ ︷︷ ︸

≡g(k,ω)

 . (4.26)

We will argue that the auxiliary function d̃ is an even function of the wavevector
k. First, after introducing 2C/ρ ≡ v, we notice that

κ∓ (k, ω) =

√
k2 −

(
2ω2 ± ω

√
3Ω2 + ω2

)
/3v (4.27)

are even functions of k. As a result, all the functions outside the square brackets
in (4.26) are even. Polarization functions have no parity symmetry

ε∓ (k, ω) = −i
3Ω2ω + 2k

√
3v
(
−2ω2 ∓

√
3Ω2ω2 + ω4 + 3vk4

)
ω2 −

√
3Ω2ω2 + ω4 − 6vk2

,

however, together with (ik), they lead to a function inside the square brackets

g (k, ω) =
−k2√

ω2Ω2 + ω4/3

[√
−v
(

2ω2 +
√

3ω2Ω2 + ω4 − 3vk2
)

+

√
−v
(

2ω2 −
√

3ω2Ω2 + ω4 − 3vk2
)]

which is manifestly even under the change of sign of the wavevector. This proves
that d̃ (k, ω) = d̃ (−k, ω) therefore the edge-wave spectrum at σ = 1/3 is indeed
symmetric, ω(k) = ω(−k).

Complex formulation of elasticity and holomorphic-
ity at σ = −1
When the Poisson ratio takes on the value σ = −1, the edge-wave solutions
have a hidden property. To see this we reformulate the elasticity equations in
complex form by combining the real components ux and uy into one complex
field ψ ≡ ux + iuy. The equations of motion (4.3) are

üx + Ωu̇y − 2v1∂x(∂xux + ∂yuy)− v2(∂2
x + ∂2

y)ux = 0

üy − Ωu̇x − 2v1∂y(∂xux + ∂yuy)− v2(∂2
x + ∂2

y)uy = 0.
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By multiplying the second equation by i and adding it to the first, we obtain

ψ̈ − iΩψ̇ − 4v1(∂2
z̄ ψ̄ + ∂z∂z̄ψ)− 4v2∂z∂z̄ψ = 0, (4.28)

where we introduced the complex derivatives ∂z ≡
(
∂x − i∂y

)
/2 and ∂z̄ ≡(

∂x + i∂y
)
/2. The boundary conditions (4.10) in real space read

∂xuy + ∂yux = 0 (4.29)
σ∂xux + ∂yuy = 0 (4.30)

Multiplying the second equation by i and adding it to the first, we obtain the
boundary conditions in complex form

(3− σ)∂z̄ψ = (1 + σ)(∂z̄ψ̄ + ∂zψ̄ + ∂zψ). (4.31)

At σ = −1 the boundary conditions (4.29) and (4.30) are the Cauchy-Riemann
equations for the real and imaginary parts of ψ at y = 0. In addition, the real
parts of the modes (4.23) and (4.24) give rise to ψ’s that are holomorphic func-
tions of the complex variable z ≡ x + iy in the bulk. In particular, the time-
independent mode yields ψ = i exp(−i|k|z), while the time-dependent mode is
ψ = i exp(−ikz + iΩt). Using a conformal transformation we can map these
edge-modes, which are localised near the boundary of the complex half-plane,
onto edge-waves that propagate along the boundary of an arbitrarily shaped re-
gion. In other words, the transformed solutions will satisfy the boundary condi-
tions on the new edge and solve the bulk (Laplace) equations of motion [145].

4.5 Conclusions and outlook
We analysed Rayleigh edge waves that travel on the edge of two-dimensional crys-
tals in the presence of Lorentz forces and mapped out how their propagation di-
rection depends on the Poisson ratio, see Fig. 4.1. The existence of these waves is
not protected by topology, but rather originates from spontaneously broken trans-
lational symmetry. In addition to skyrmion crystals, we expect our findings to
be directly applicable to boundary excitations of screened Wigner crystals in an
external magnetic field [137]. Moreover, our results shed new light on elastic gy-
roscopic systems [146], where edge modes are currently under active investigation
[147, 148]. Our work indicates that in all these systems the chirality of Rayleigh
edge waves can be controlled by changing the elastic properties of the medium.

Extensions of this study to Abrikosov vortex crystals in superconductors and
superfluids [128] are non-trivial exciting frontiers. It would be also intriguing to
generalize this work and investigate edge excitations in two-dimensional crystals,
where time-reversal breaking originates from a different mechanism, such as for
example the odd elasticity discovered in [149, 150].
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Conclusions

In this thesis, we studied effective theories for crystals made of topological soli-
tons. The approach we used allows describing these crystalline states in terms
of coarse-grained collective variables, irrespectively from the microscopic details
that lead to the crystal formation. As a matter of fact, from the elasticity view-
point, the vortex lattice that appears in superfluids, and the skyrmion lattice in
chiral magnets share several common characteristics. Furthermore, the dynamics
of both systems obeys similar transverse forces which originate from Lorentz-like
terms.
We devoted Chapter 1 to review the theory of elasticity, introducing its main con-
cepts and tools we used throughout our work. In simple terms, we can think about
linear elasticity as a continuum distribution of a collection of Hookean springs, in
which strain plays the role of the spring’s deformation and stress the role of the
force.
In Chapter 2 we introduced topological solitons and the concept of topological
conservation laws in field theories. We gave specific examples of topologically
non-trivial configurations. As a warm-up example, we discussed topological prop-
erties of kinks in one spatial dimension. Then we examined quantised vortices and
two-dimensional skyrmions.
Our result in Chapter 3 for the quantum vortex lattice in a bosonic Galilean-
invariant compressible superfluid showed how to construct an effective theory
systematically in the derivative expansion. We argued that our description is more
natural than a previous approach [104]. Our theory encodes the correct excitation
spectrum, and we extracted the linear response and transport, which can be deter-
mined in experiments. While our theory directly applies to bosonic superfluids,
fermionic s-wave superfluids form regular vortex lattices observed in experiments
with cold atoms [111]. Thus, it would be interesting to use the effective theory
we developed for these systems. Rotating chiral p+ip superfluids should as well
form vortex lattices, and it would be fascinating to construct effective theories of
these states. Vortices exhibit peculiar features when put on curved surfaces [112].
For this reason, it would be exciting to apply our effective theory to vortex lattices
that live on curved substrates and in microgravity situations [151]. Moreover, we
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expect we can describe vortex lattice low-energy dynamics in thin films of clean
superconductors if we include the effects of three-dimensional dynamical electro-
magnetism in our theory.
In Chapter 4 we focused on the edge physics of skyrmion crystals that emerge in
certain chiral magnets. Our goal was to determine whether the boundary of the
crystal supports exponentially-confined, propagating waves analogous to those
found by Rayleigh in [39]. Indeed, we showed they exist, and they possess a
chiral nature. The Poisson ratio of the crystal determines the edge-waves propa-
gation directions. Our results were obtained both from a numerical approach and
an analytic one. Additionally, we used finite-difference simulations to confirm our
findings.
The natural question is to ask if the vortex lattice in compressible superfluids sup-
ports a chiral edge wave, and if we can give complete mappings of its propagation
direction in terms of crystal parameters. We have conducted preliminary inves-
tigations and did not find any evidence of them, even though we do not exclude
they might appear from our theory at higher-order in the derivative expansion.
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