
TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS 1

A Multi-Vehicle Control Framework with
Application to Automated Valet Parking

Maximilian Kneissl, Anil K. Madhusudhanan, Adam Molin, Hasan Esen, and Sandra Hirche, Fellow, IEEE

Abstract—We introduce a distributed control method for coor-
dinating multiple vehicles in the framework of an automated valet
parking (AVP) system. The control functionality is distributed be-
tween an infrastructure server, called parking area management
(PAM) system, and local autonomous vehicle control units. Via
a vehicle-to-infrastructure (V2I) communication interface, model
predictive control (MPC) decisions of the vehicles are shared with
the coordination unit in the PAM. This unit in turn computes a
coupling feedback which is shared with the vehicles. The control
system is integrated in an automated test-system to cope with the
high test requirements and short development cycles of highly
automated systems. Evaluations conducted with the test-system
show the functionality of the proposed distributed control method
for multi-vehicle coordination. Results indicate safe coordination,
and an efficiency increase compared to an uncoordinated method
in an AVP simulation environment.

I. INTRODUCTION

An automated valet parking (AVP) scenario describes the
use case where a driver drops off his/her car in front of
a parking area, or drop-off zone, and authorizes a parking
area management (PAM) system to take control in order to
autonomously guide the vehicle through the parking area and
into a designated parking bay [1]. AVP is expected to be
one of the first scenarios of automated driving satisfying the
SAE (Society of Automotive Engineers) Level 4 requirements
[2]. Level 4 autonomous driving defines cases where vehicles
are able to move without any driver interaction in specific
scenarios. Such systems will be available at airports, shopping
malls, and at large parking areas next to places of interest.

Related works on AVP have covered the field of parking
space optimization based on k-stacks [3], [4], and the security
of user information [5]. Another important problem is the
localization and mapping task in GPS-denied parking envi-
ronments [6], and the motion planning problem. The survey
in [7] presents an overview of motion planning for AVP
systems considering global and local planning tasks, whereby
important contributions are provided by the V-CHARGE re-
search project [8]. However, to the best of our knowledge,
none of the approaches in the literature discusses motion
planning for several vehicles moving simultaneously in an
AVP environment.

In order to guarantee safe and efficient movements for AVP,
we developed a distributed control method for multi-vehicle

This work has been conducted within the ENABLE-S3 project that has
received funding from the ECSEL Joint Undertaking under grant agreement
No 692455. This joint undertaking received support from the European
Union’s HORIZON 2020 research and innovation program and from the
states of Austria, Denmark, Germany, Finland, Czech Republic, Italy, Spain,
Portugal, Poland, Ireland, Belgium, France, Netherlands, United Kingdom,
Slovakia, Norway.

Fig. 1: Automated valet parking scenario with a parking
area management (PAM) server and multiple coordinated
autonomous vehicles with V2I communication capabilities.

coordination on predefined routes. This article focuses on the
coordination phase after a target parking slot [3], [4], and
a respective path [7] have been computed. The coordination
task is decomposed into a local vehicle control and a global
coordination task. Both units - the local vehicle control and
the control coordination in the PAM infrastructure - are con-
nected via vehicle-to-infrastructure (V2I) communication. The
coordination unit determines dependencies for the exchange
of control data between vehicles by constructing appropriate
safety constraints for local vehicle problems, whereas the local
vehicle control is responsible for efficient movements, path
tracking, and the fulfillment of the safety constraints. For
longitudinal and lateral control, we apply distributed model
predictive control (MPC) and gain-scheduled linear-quadratic-
regulators (LQR), respectively. Longitudinal predictions, re-
sulting from each vehicle’s local MPC problem, are shared
with the coordination unit. The latter collects the predictions,
and a data set is forwarded to the respective neighboring
vehicles which will process it in the next planning step.
Fig. 1 shows an exemplary AVP scenario for multi-vehicle
coordination.

Due to its environmental setup, the problem of coordinating
several vehicles within parking areas is strongly related to
the multi-intersection coordination scenario. The challenge
of guiding vehicles autonomously through intersections has
been investigated in [9] by using a reservation scheme, and
an extension to the multi-intersection problem is proposed in
[10]. A focus on finding optimal or quasi-optimal solutions
for intersection crossing from a control perspective is, for
example, proposed in [11]–[13]. Therein, vehicles negotiate
a solution while approaching the intersection, and consec-
utively cross the intersection-zone safely and efficiently. A
drawback, however, is that only a single vehicle at a time

TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS 2

can be in the intersection zone. The studies described in [14],
[15] suggest distinguishing between several geometric regions
within a single intersection, thus reducing the conservatism.
It focuses on the verification of a deadlock-free intersection
management algorithm. Similarly, the authors of [16] define
points in the intersection area where vehicles’ paths intersect
and compute an MPC-based control solution. We extended the
distinction of such geometrical regions to a multi-intersection
formulation. In [17] trajectories are computed for crossing
two consecutive intersections using optimal control with a
varying finite time of the local vehicle optimization problems.
However, to guarantee a feasible solving time for embedded
implementations, it is beneficial to know the optimization
effort (horizon length) prior to the problem implementation.
MPC is a widely used method for vehicle coordination prob-
lems, as the finite optimization problem finds close-to-optimal
solutions, and constraints can be considered in the problem
formulation [13], [16], [18]–[23]. However, a bottleneck of
some intersection coordination problems is the requirement
that the MPC horizon length has to cover the intersection
area, when negotiating the solution [16], [24]. Thus, such
approaches are not scalable for a multi-intersection scenario.

To overcome these challenges, we propose a distance-
based formulation of the coordination problem that enables
a smooth extension from a single intersection coordination
problem to a complete network of intersections. Therefore, in
our distributed formulation, the concept of virtual platooning
[25]–[27] is adapted to the MPC problem, which combines
inter-vehicle distance keeping with the intersection crossing
scenario. Another distinct feature of the proposed approach is
that the coordination procedure is not limited to the prediction
horizon of the local MPC controllers, while it automatically
reduces the number of coupling constraints between vehicles
to a minimal set of safety conditions for the local MPC
problem.

Guaranteeing a safe operation of highly automated vehicles
is one of the major challenges, and is thus subject of projects
such as PEGASUS [28] and ENABLE-S3 [29]. An unfeasible
amount of test kilometers is required to ensure the safety of
such systems. To overcome this challenge, one trend is to move
a large portion of the required testing into high-fidelity virtual
simulation environments. This not only enables testing specifi-
cally challenging corner cases, but also provides the possibility
of automating the testing process. Therefore, it is essential to
provide a framework for distributed control applications that
is suitable for being embedded in an automated test-system.
We propose such an implementation, which can be seamlessly
integration into an automated test-system, where agents can be
added to or removed from the distributed system the in a plug-
and-play manner. Furthermore, changes in the environmental
setup can be considered in a flexible way.

The remainder of the paper is organized as follows. Section
II introduces the three layers of the complete automated test-
system for validating AVP. The system under test (SUT) in
the lowest layer of the test-system is the focus of this paper.
The control design within the SUT is discussed in detail in
Section III, where the infrastructure and autonomous vehicle
functions are explained. The implementation of the control

Vehicle Dynamics

Mission Planning

Path Planning

Control Coordination

EnvironmentMap

High-fidelity Simulation Parking Area Management
(PAM)

Vehicle Control Vehicle Control Vehicle Control

Distributed Vehicle Control

SUT

Test
Automation

Te
st

Pl
at

fo
rm

Requirements Real-world ScenesTest Scenarios
V&V

Databases

Scenario Generation Observation/Evaluation

Fig. 2: Architecture of automated test-system.

system into the automated test-system is discussed in Section
IV and an evaluation is conducted in an automotive simulation
environment in Section V. The paper is concluded in Section
VI.

II. VALET PARKING TEST SYSTEM FRAMEWORK

This section presents a simplified overview of the test
architecture used in the ENABLE-S3 project, illustrated in
Fig. 2.

The top level verification and validation (V&V) databases
contain scenarios to be tested, requirements which should be
fulfilled during the trials, and a real-world scenes database.

The test automation layer is responsible for running the tests
in an automated manner. It generates synthetic scenarios by
using the scenario database, then it passes the scenarios one
by one to the test platform and triggers its start. During the
tests an observer records the scenario, and after completion
the traces are evaluated in the scenario evaluation module.
This evaluation checks the fulfillment of defined safety re-
quirements, and the test is passed if all the requirements were
met by the SUT. A final evaluation classifies the conducted
test run according to its degree of reality by comparing it
with real-world scenes.

The bottom layer defines the test platform, which is re-
sponsible for simulating the parking processes for the provided
scenarios. It consists of a high-fidelity simulation environment
and the SUT, which is a combination of the PAM system
and the distributed autonomous vehicle control systems. The
high-fidelity virtual environment simulates the behavior of all
vehicles and possibly other moving objects based on their re-
spective dynamic models. The simulation uses an environment
model, which is provided by the scenario generation tool, and
consists of map data as well as a visual database. Furthermore,
the virtual simulator provides a visualization of the tested
scenario, and the option of modeling sensor behaviors, e.g.
LiDAR sensors, in the environment. This paper focuses on the

TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS 3

Mission Planning

vNV

Path Planning

Conflict Zone Detection and Graph Construction:

Parking Area Management (PAM)

Adjacency Definition:

Coupling Constraint Construction:

conflict zones based on map and path data;
graph representing vehicles’ routes in current scenario

seq. of vehicles in each critical zone; dependencies
between vehicles based on the crossing sequence

closest dependent vehicles from adjacency matrix in
distance-based coupling constraint

map, start, goal

map; path ∀i ∈ V

graph Groute; pose ∀i ∈ V

adjacency matrix Aadj ; pose ∀i ∈ V

Control Coordination: continuous update

Planning: event-triggered update

Vehicle
Control

v1 v2
...

Uplink:
distance predictions to end of own path:
di(: |t) = (di(t+ 1|t), ..., di(t+M |t))

Downlink:
coupling constraint for local distance state:
ci(di(t+k|t))

Vehicle
Control

Vehicle
Control

Fig. 3: Distributed control system architecture and signal flow
of the automated valet parking system.

test platform layer and especially on the control components
in the SUT, which is described in the following section.

III. DISTRIBUTED CONTROL SYSTEM DESIGN

This section describes the distributed control system of the
AVP system. Fig. 3 summarizes the functionality of the sub-
components and illustrates the signal flow between them. A
detailed description of the PAM functions is given in Section
III-A, whilst the autonomous vehicle control functions as well
as their couplings are presented in Section III-B.

A. PAM Infrastructure Functions

Similar to [30], we assume separation of the planning phase
into mission planning, path planning, and trajectory planning.
The outputs of the Mission Planning and Path Planning are
assumed to be predefined. The former organizes the parking
lot situation in the parking environment and determines the
destination positions for each vehicle, while the latter com-
putes a path, i.e. geometric waypoints, provided with the map
data, and each vehicles’ start and target position. The path and
map data are then shared with the control coordination unit.
This unit cooperatively determines longitudinal trajectories,
which will be tracked by the respective vehicle’s low level

CZ4

CZ3CZ2

CZ5

CZ1

Fig. 4: Intersection area with all possible paths and conflict
zones {CZ1, ..., CZ5}.

controller. A crucial property is the feasibility of a vehicle’s
trajectory because safety of a scenario can only be ensured if
a vehicle is able to track its computed trajectory. To achieve
this requirement, we propose a decomposition of the trajectory
generation process between the PAM infrastructure and the
local vehicle controller. This subsection describes the control
coordination procedure computed in the PAM. Based on
predefined vehicle paths and trajectory predictions from local
vehicle control units a vehicle adjacency will be determined
with the help of a route graph. This information is used to
construct distance constraints for vehicles which will result in
a safe overall coordination procedure. It is achieved by the
following steps:

1) Conflict Zone Detection: Intersections, i.e. points where
vehicle paths cross, are a bottleneck in coordinating vehicles
within the given parking environment. This is because not only
a control decision has to be computed between consecutive
vehicles, but also a combinatorial decision on the vehicle order.
By making use of a central coordination unit, we separate the
combinatorial decision, which we refer to as scheduling, from
the MPC problem in the vehicles.

Fig. 4 shows possible paths in an exemplary intersection
area. It is divided into five areas by grouping nearby points,
where the vehicle paths either cross, merge, or diverge, thus
forming potential collision points. These areas are named
conflict zones CZi where i ∈ I1:5. Notation Ia:b describes
a set of integers a, b ∈ N such that the integers in the set
{a, a+1, a+2, ..., b} are obtained. The conflict zones of all in-
tersections are gathered in the set Iinter = {CZj , ..., CZ5NI

},
where NI is the total number of intersections in the parking
environment, and j ∈ N a unique ID label for each conflict
zone. In addition to the intersection areas, we define a set of
conflict zones Iend at the end of each vehicle’s path, where
|Iend| = NV and NV indicates the total number of moving
vehicles in a coordinated parking scenario. Note that |Iend|
means the cardinality of its argument set Iend. Finally, we
gather all these conflict zones in the set

I = Iinter ∪ Iend. (1)

The previous steps are carried out before the start of the
coordination procedure and the locations of the conflict zones
in the set Iinter depend on the geometry of the parking
environment. Furthermore, we assume that paths are tracked
accurately such that a vehicle’s bounding box does not laterally

TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS 4

pass a conflict zone other than its allocated path. The elements
in I will serve as reference zones for coordinating the vehicles
passing through a zone. This enables coordinating the vehi-
cles approaching from different sides (intersection scenario)
and vehicles coming from the same lane (vehicle following
scenario) towards a critical zone CZi ∈ I.

Remark 1 (Conflict zones): The set in (1) can be extended
by further zones, CZis, at arbitrary positions where collisions
between vehicles can occur. This is for example the case if
a vehicle crosses an accommodating lane to navigate into a
parking bay. The coordination procedure is not affected by
this action. Therefore, we refrain from explaining this part,
for the sake of simplicity of presentation.

2) Graph Representation: The set

V = {v1, v2, . . . , vNV
} (2)

contains all vehicles that are coordinated by the PAM, where
each vehicle vi ∈ V is labeled with a unique ID. Now, we
can define a multigraph Groute = (Vroute, Eroute) with
vertices Vroute ∈ I and edges Eroute = Vroute × Vroute,
labeled with vi. An edge-vertices pair in Groute indicates
that a vehicle’s path connects two conflict zones, while the
edge direction represents the driving direction of vehicle vi
between those zones. Every time a vehicle has passed a conflict
zone CZj ∈ I the corresponding edge is removed from
Groute. During execution time, the sets I, V , and Groute are
continuously updated to cope with changes, such as vehicle
poses and picked-up or newly dropped-off vehicles.

3) Adjacency Definition: The resulting Groute is used to
determine a set of crossing orders

O = {oi = (vj , vk, ...) | ∀i ∈ I1:|I|; j, k ∈ I1:NV
}. (3)

It represents the logical sequence in which vehicles must
cross the respective conflict zone, while the actual timing, i.e.
the resulting trajectory, will be determined by the distributed
longitudinal control laws (Subsection III-B). The scheduling
orders in (3) are determined on a first-come-first-served basis,
where the sequences through the conflict zones in an intersec-
tion area are sorted according the vehicles’ distances to the
respective intersection. Alternative heuristics to generate such
scheduling orders on road networks are discussed in [31].

Finally, we determine the adjacency matrix
Aadj = (aij)

NV ×NV , with aij ∈ T , and

T = {(m1, ...,mp, ...,mq) ∪ ∅ | (4)
q ∈ N,∀p ∈ {1, ..., k} : mp ∈ I}.

This implies, aij defines a dependency between two vehicles
vi and vj if vi is a successor of vj in any scheduling order
ok, where i, j ∈ I1:NV

, and k ∈ I1:|I|. Thus, an element
aij = CZk of Aadj is labeled with the conflict zone both
vehicles will pass through. In those cases where vehicle vi is
a successor of vj for several conflict zones, for example if
vi’s route partially overlaps with that of vj , aij becomes an
n-tuple, i.e. aij = (CZk, CZ l, ...) with k, l ∈ I1:|I|. In the
following we refer to the first element of a non-empty n-tuple
by using the notation aij , which is the closest conflict zone
vi and vj have in common.

5
1

2

4

3

10
6

7

9

8

15
11

12

14

13

20

16

17

19

18

v6

v1

v3

v4

v5

v2

o17 = (v1, v4, v6, v5)

o19 = (v3, v1)

o15 = (v3, v1)

o8 = (v2, v1)

o20 = (v3, v4, v5)

Fig. 5: Example scenario with six vehicles and pre-computed
paths. Labels at circles are the conflict zone IDs. Scheduling
orders for affected conflict zones are shown on the right.

2

v5

3

5

17v1,v4 o17

16

20

v3

o2019

o19

18

15

o15

11

13

14

12v6

9

8

v2

o8 7
v2 v2

v5

v5

v5 v4

v1

v1
v1

v1

v1

v1

v1

v3
v3v3

v6
v6

Fig. 6: Graph representation (Groute) of the multi-vehicle
scenario in Fig. 5.

Illustrative Example 1: In Fig. 5 we present an example
coordination scenario with the vehicle set

V = {v1, v2, . . . , v6} (5)

and four intersections leading to the conflict zones

I = {CZ1, CZ2, . . . , CZ20}. (6)

The example illustrates the states of the coordination process at
a certain time instant. The paths, provided by the path planning
unit, are marked with black lines and the resulting route graph
Groute is shown in Fig. 6. Each conflict zone CZi ∈ I that a
vehicle will pass is represented by a vertex and the vehicles’
paths are represented by labeled edges. The scheduling unit
determines an order oi for each vertex. The resulting ordering
is shown in Fig. 5 and finally, the scenario’s adjacency matrix
is given as follows:

Aadj =

v1 v2 v3 v4 v5 v6


− CZ8 CZ19,15 v1

− v2
− v3

CZ17 CZ20 − v4
CZ20 − CZ17 v5
CZ17 − v6

.

TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS 5

aij = CZ �

vi

vj

dj(t+ k|t− 1)−
T (aij , j)

T (aij , i)

di(t+ k|t)

Fig. 7: Illustration of the coupling constraint formulation using
an example with one conflict zone CZi, and two vehicles
approaching form different directions (dotted lines).

4) Coupling Constraint: Given the adjacency definition
Aadj , coupling constraints for each vehicle’s MPC problem
are determined by the PAM. During the coordination, each
vehicle, vi ∈ V , shares the prediction vector of its distance
state,

di(: |t) = (di(t+ 1|t), di(t+ 2|t), ..., di(t+M |t)) ∈ RM ,
(7)

with the PAM. The state di is the vehicle’s distance to the end
of its path, and M is the prediction length. The notation di(t+
k|t) means the predicted value of state di for time step t+ k,
with 0 ≤ k ≤ M , at the discrete time step t. Transformation
T (CZj , i) defines the distance from the position where vi’s
path enters a conflict zone CZj to the end of its path. Now,
the coupling constraint ci for each vehicle vi ∈ V is calculated
by determining the most critical predecessor vehicle with

j∗k = argmin
j∈I1:NV

{di(t+ k|t− 1)− (8)

[T (aij , i) + dj(t+ k|t− 1)− T (aij , j)]},

where k ∈ I1:M−1, and aij refers to the conflict zone at row
i and column j of Aadj . Given Equation (8), the coupling
constraint is given by

ci(di(t+k|t)) = (9)
di(t+ k|t)− [T (aij∗k , i) + dj∗k (t+ k|t− 1)− T (aij∗k , j

∗
k)],

with k ∈ I1:M−1.
For each predicted time step t + k, ci(di(t+k|t)) is the

closest distance of all predecessor vehicles of vi with respect
to their common conflict zone and information from the
previous time step, t − 1. Fig. 7 illustrates the coupling
constraint formulation in Equation (8) and (9) for a determined
predecessor vj of vehicle vi with respect to the conflict zone
aij at one prediction time step t+ k. Note that the procedure
is the same if vehicles approach the conflict zone from the
same lane.

B. Autonomous Vehicle Functions

The local vehicle controller is decomposed into a longitudi-
nal control and lateral control. In this subsection, we describe
the implementation of the high-level control, whose output will

be passed to the low-level control units to ensure the hardware
actuation, i.e. acceleration (throttle and brake), and steering.

1) Longitudinal Motion Model and Control Design: A ve-
hicle vi is modeled using the states di, vi, and ai. States vi and
ai are the velocity and acceleration of vehicle vi, respectively.
The continuous linear-time-invariant (LTI) dynamics of the
longitudinal vehicle motion is summarized as:ḋiv̇i

ȧi


︸ ︷︷ ︸
ẋlg
c,i

=

0 −1 0
0 0 1
0 0 − 1

τi


︸ ︷︷ ︸

Alg
c,i

divi
ai


︸ ︷︷ ︸
xlg
c,i

+

 0
0
1
τi


︸ ︷︷ ︸
Blg

c,i

ui, (10)

where τi is a time constant for throttle and brake actuation,
and ui is an exogenous control input, which represents the
desired acceleration [32]–[34].

The longitudinal MPC law is computed solving the follow-
ing optimization problem

L∗i

(
xlgi (t), ui(t)

)
= (11a)

min
Ui

M∑
k=1

‖∆rx
lg
i (t+ k|t)‖2Qi

+

M−1∑
k=0

‖ui(t+ k|t)‖2Ri

s.t.

xlgi (t+ k + 1|t) = Algi x
lg
i (t+ k|t) +Blgi ui(t+ k)

k ∈ I0:M−1 (11b)
xi(t|t) = xi(t) (11c)
vmin ≤ vi(t+ k|t) ≤ vmax k ∈ I1:M (11d)
ai,min ≤ ai(t+ k|t) ≤ ai,max k ∈ I1:M (11e)
ci (di(t+ k|t)) ≥ ds k ∈ I1:M . (11f)

Here, xi(t + k|t) is the state prediction for time t + k
at the current discrete time step t. The model (11b) is
attained by discretizing (10) using a sampling time T lgs .
The optimized variables vector is of the form Ui =
(ui(t), ui(t+ 1), ..., ui(t+M − 1)) ∈ RM with the horizon
length M . After optimizing (11) in each time step t, the control
law Ui(1) = ui(t) determines the desired acceleration input to
the vehicle, and the procedure is repeated in consecutive time
steps in a receding horizon fashion. The objective function
in (11a) consists of a state error cost and a control input
cost. The longitudinal reference vector in the state error vector,
∆rx

lg
i (t+ k|t) = xlgi (t+ k|t)− xlgi,ref , is of form

xlgi,ref = (di,ref , vref , 0)
T
, (12)

with the reference velocity vref and the reference distance

di,ref =

{
0 if vi has no predecessor
ds + dslack if vi has a predecessor.

(13)

If the reference distance in (13) becomes active, we add an
additional slack value dslack to the inter-vehicle safety distance
ds in order to avoid a reference at the constraint bound. In
(11a), we use the notation ‖α‖2P , αTPα with a vector α ∈

TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS 6

Fyr Fyf

δ

αf

αr

vy

vx

V
βCoG

lflr

_

Path reference

dle
θhe

Fig. 8: Single track vehicle model, showing the vehicle model
variables [36] and the lateral distance and heading angle errors
with respect to the path reference [35].

Rn and a matrix P ∈ Rn×n. The weighting matrices in (11a)
are

Qi = diag(qi,11, qi,22, qi,33) ∈ R3×3 and Ri ∈ R. (14)

Here Qi � 0 and Ri � 0 are positive semi-definite and
positive definite matrices, respectively.

Among the model-based equality constraint (11b) problem
(11) considers inequality box constraints to limit the vehicle’s
velocity (11d) and acceleration (11e). Finally, (11f) represents
the coupling constraint, which ensures that vehicle i keeps a
minimum safety distance ds to its predecessor vehicles. It thus
forms the interface between the local vehicle control and the
global PAM coordination decisions.

2) Lateral Motion Model and Control Design: We use the
following continuous time matrix equation to model the lateral
dynamics [35], [36]:

ẋltc = Altc x
lt
c +Blt1,cδ +Blt2,cκ+Blt3,cβ, (15)

where

xltc =
(
dle, θhe, ψ̇

)T
, (16)

Altc =

0 vx 0
0 0 1

0 0
−(l2fCf+l

2
rCr)

Jzvx

 , (17)

Bltc =

 0 0 vx
0 −vx 0

lfCf

Jz
0

lrCr−lfCf

Jz

 . (18)

Here, Blt1,c, B
lt
2,c, and Blt3,c are the first, second, and third

column of Bltc , respectively, dle is the lateral distance error,
θhe is the heading angle error, ψ̇ is the yaw rate, vx is the
longitudinal velocity, Cf and Cr are the cornering stiffness
of the front and rear axle, respectively, Jz is the moment
of inertia around the yaw axis, lf and lr are the distances
between the center of gravity (CoG) and the front and rear
axle, respectively. Fig. 8 illustrates the model parameters of
the bicycle model. κ is the path reference curvature, β the
vehicle sideslip angle, and δ the steering angle control input.
Therefore, the pair

(
Altc , B

lt
1,c

)
is used to design the controller.

The vehicle sideslip angle is not used as a system state as its
estimation results in considerable error.

The simplified lateral model ẋltc = Altc x
lt
c + Blt1,cδ is

discretized using the sampling time T lts and the MATLAB
command DLQR is used to design the Discrete-time Linear
Quadratic Regulator (DLQR) gains. The weighting matrices

Qlt = diag(qlg11, q
lg
22, q

lg
33) ∈ R3×3 and Rlt ∈ R (19)

are used to calculate the DLQR gains, which are positive semi-
definite and positive definite, i.e. Qlt � 0 and Rlt � 0.

The model linearization, discretization, and DLQR gain
calculations are done at three vehicle speeds: v1, v2, and vmax.
Using these DLQR gains a speed-dependent gain scheduling
is used so that the controller is robust to variations in the
vehicle speed. The gain scheduling uses convex summation of
the DLQR gains, as shown below:

Gdlqr =


G1 if vmin ≤ vx ≤ v1
(vx − 1)G1 + (2− vx)G2 if v1 < vx ≤ v2
(vx − 2)G2 + (3− vx)G3 if v2 < vx ≤ vmax
G3 if vx > vmax

.

(20)
The lateral control input δ is generated using the following
equation:

δ̂ = Gdlqrx
lt
c (21)

δ =

{
δ̂(t) if −δmax ≤ δ̂ ≤ δmax
±δmax if ±δ̂ > δmax.

(22)

In (22), −δmax and δmax are the lower and upper limits of the
vehicle steering angle. The vehicle yaw rate and speed, which
are required to calculate the control input, are measured by
vehicle sensors.

IV. INTEGRATION OF THE DISTRIBUTED CONTROL
SYSTEM INTO THE TEST PLATFORM

In order to test the growing complexity of distributed
systems, it is crucial to use a systematic way of integrating the
system functions. It should be possible to seamlessly test any
changes in the distributed system. Changes may for example
occur in the test environment or in the system components.
To account for this, we propose the implementation method
described below, utilizing emerging standards for road network
topology descriptions, and a variable amount and type of sub-
systems.

The test-system components in Fig. 2 are embedded in a
Robotic Operating System (ROS) [37] network. The parking
area management (PAM) unit and each vehicle controller
are realized as separate ROS-nodes. We use the commercial
virtual environment VTD1 to simulate the parking scenario,
and implemented a VTD-to-ROS unit to read data from and
a ROS-to-VTD unit to send data to the virtual environment.
The scenario generation unit in Fig. 2 provides a map in
the de facto standard format openDRIVE [38], populated
with a certain number of vehicles, as well as a scenario
file, which contains initial scenario conditions. The generated
openDRIVE map is interpreted by the VTD environment,
and is at the same time used by the PAM ROS-node. The
scenario file specifies the IDs of the vehicles and distinguishes
between each vehicle’s status, i.e. dropped-off, parked, or
pick-up-requested. If a vehicle has the status parked, it is
not handled by the PAM, whereas dropped-off and pick-up-
requested vehicles will be controlled by the SUT during the
test scenario. The PAM ROS-node is programmed in C++ such

1https://vires.com/vtd-vires-virtual-test-drive/

TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS 7

. . .

cpp::PAM

cpp::Veh1 cpp::Veh2 cpp::VehN

VTD

cp
p:

:
V

T
D

-t
o-

R
O

S
cp

p:
:

R
O

S-
to

-V
T

D
openDRIVE::
populated map

XML::
scenario file

XML::
ROS-launch file

ROS network

to Observer from Scenario
Generator

poses

po
se

s,
m

ea
su

re
m

en
ts

dr
iv

in
g

co
m

m
an

ds

coordination, path

V
T

D
bu

s

Fig. 9: Simplified overview of the ROS network integration
with connection to the simulation environment VTD, and the
scenario generator output.

that it can handle an arbitrary number of vehicles according to
the scenario file. We used MATLAB and Simulink to design
and develop the vehicle control unit, i.e. the lateral control
and the longitudinal MPC. The MPC law is converted into
a quadratic programmin (QP) formulation and passed to the
integrated qpOASES solver [39]. The controller setup is then
exported as a standalone C++ ROS-package using MATLAB’s
Robotics System Toolbox and Embedded Coder. In order to
achieve the simulation of several vehicles, we use the ROS-
launch concept. Thereby, several ROS-nodes with varying
names and parameters can be launched using the same ROS-
package. The necessary extensible markup language (XML)
based launch-file is automatically generated based on the
information included in the scenario-file. This method enables
the simulation of a varying number of vehicles in different
simulation scenarios. Fig. 9 illustrates the described setup and
presents a simplified structure of the ROS network. Table I
lists the used message types and explains details for the most
important messages transferred within the test platform. The
first four messages in the table are defined using standard
ROS-message types, whereas the coordination message is a
user-defined ROS message tailored to our MPC problem. For
communication with VTD (VTD bus), internal runtime data
bus (RDB) messages are used. Note that all ROS messages in
the table are published separately in the namespace of each
vehicle.

V. NUMERICAL EVALUATION

To run the tests, we distribute the test architecture of Fig.
9 on two PCs, as shown in Fig. 10. The Simulation PC runs
the test management system (see Fig. 2), the VTD simulation
environment, and the PAM ROS-node. It is equipped with an
Intel Core i7− 6700K 4 core processor and 32 GiB of RAM
memory. The vehicle control ROS-nodes are launched on a
separate Control PC with an Intel Core i7 − 4790K 4 core

TABLE I: Explanation of the most important ROS messages
in the multi-vehicle control framework.

Signal name in Fig. 9 Message type Explanation

pose geometry msgs/Pose position and heading

measurements std msgs/Float64
std msgs/Float64

velocity
heading rate

path nav msgs/Path waypoints computed by
pathplanner in PAM

driving command ackermann msgs/
AckermannDrive

steering and
acceleration input

coordination ctrl/Ctrl msg

distance predictions
of predecessor,

reference values and
constraints for MPC

VTD bus Runtime Data Bus
(RDB)

VTD internal user
interaction at run-time

Veh1
Veh2 Veh3

Veh4 . . .

Control PCSimulation PC

Ethernet

Fig. 10: Distributed implementation of the test-system in our
lab.

processor and 32 GiB of RAM memory. We allocate each
control process (ROS-node) to a designated core of the CPU,
such that two processes share one core. This guarantees the
real-time computation of the MPC optimization problem, with
an average solving time of 5ms. The two PCs are connected
via an Ethernet connection.

In Fig. 11, we give insights into the test platform visu-
alization during a trial. Figure 11a shows the visualization
of the VTD environment. The plot in Fig. 11b visualizes all
objects (moving and parked vehicles) in the scenario using the
ROS-rviz tool, and displays the paths provided by the PAM
pathplanning unit. The bottom plot in Fig. 11c illustrates a
randomly generated openDRIVE map of the trial from the
scenario generation tool.

Now, we illustrate the functionality of the coordination
and control method, and highlight the benefits compared
to an uncoordinated scenario by evaluating the simulation
results. Table II introduces the control parameters used for
the evaluations.

Note that the actual maneuvering into/out of the parking
bay may also require backward driving and thus the velocity
constraint should also allow vmin < 0. However, as this paper
focuses on the coordination procedure within the parking area,
we avoid backward driving.

First, the longitudinal coordination control is investigated.
We thus illustrate the step-response of a single vehicle in Fig.
12. The vehicle starts from standstill and receives a reference

TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS 8

(a) VTD scenario visualization (b) ROS-rviz visualization

∗

∗∗

v 1
→

v 2
→

v 3
→

v 4

v1 → v2 → v4

v3

(c) openDRIVE excerpt of randomly generated map.

Fig. 11: A randomly generated test scenario.

TABLE II: Control parameters.

Name Parameter Value

long. sampling time T lg
s 0.1s

long. time constant τi 0.1s
MPC horizon length M 50
reference velocity vref 1.8m/s
slack distance dslack 1m
safety distance ds 3m
velocity constraints (vmin, vmax) (0m/s, 3m/s)
acceleration constraints (amin, amax) (−4m/s2, 1m/s2)
long. state weights (qi,11, qi,22, qi,33) (1, 60, 30)
long. input weight Ri 30
lat. sampling time T lt

s 0.01s
lat. state weights (qlt11, q

lt
22, q

lt
33) (100, 10, 1)

lat. input weight Rlt 20
velocity intervals (v1, v2) (1m/s, 2m/s)
steering constraint δmax 0.48rad

ac
ce

le
ra

tio
n
(m

/
s2
)

ve
lo

ci
ty

(m
/
s)

time (s)

acceleration
velocity
ref. velocity

0

1

2

3

−1
0 5 10 15

Fig. 12: Step-response of velocity and acceleration from a
single vehicle.

A

B C
D

E

ref. path
vehicle position

gl
ob

al
y-

co
or

di
na

te
(m

)

global x-coordinate (m)
20 30 40 50 60 70

−30

−35

−40

−45

Fig. 13: Measured vehicle position for tracking a given path
and the resulting tracking error.

velocity of 1.1m/s, which increases to 2.9m/s and then steps
back to 1.1m/s. The weights Qi and Ri of the MPC problem
in (11) are chosen such that we avoid an overshoot in the
vehicle’s velocity, enabling a safe inter-vehicular distance from
possible successor vehicles.

In the next step, we evaluate the lateral tracking control.
Fig. 13 shows a reference path in the global coordinate system
and the measured positions of a vehicle, while tracking this
path. We find good tracking performance for kinematically
feasible curves (segments A and E in Fig. 13) and accurate
path following for straight segments (segment C). As the
path is computed globally in the PAM, there is no kinematic
feasibility guarantee for local vehicle tracking. The evaluation,
however, shows a stable and adequate tracking behavior for
infeasible references (segments B and D).

In order to illustrate the coordinated behavior of several
vehicles in the distributed control framework, we simulate a
platoon of homogeneous vehicles in the scenario introduced
in Fig. 11. Four vehicles (v1, v2, v3, v4) start from standstill
in the area marked with a single ∗ in Fig. 11c. The resulting
acceleration and velocity profiles of vehicles v2 and v4 are
plotted in Fig. 14. At the intersection, marked with ∗∗, vehicle
v3 leaves the platoon by turning right (t = 27s) to possibly
park at a different location. In the further course, the vehicle
adjacencies change in the PAM algorithm and thus vehicle
v4 has the incentive to reduce the distance to vehicle v2.
The bottom plot of Fig. 14 shows an approximately constant
inter-vehicle distance of ≈ 4m between vehicles v1 and v2.
The upper line in the same plot illustrates the inter-vehicle
distance between vehicles v2 and v4, which is ≈ 9m (chassis
dimensions excluded), when vehicle v3 is in between them,
and reduces after v3 leaves the platoon.

Now, we evaluate the performance of the proposed dis-
tributed coordination control by simulating the coordinated
parking processes. Vehicles V = {v1, v2, ..., v7} are randomly
placed in the map as illustrated in Fig. 11c, and the PAM
algorithm allocates a free parking spot to each vehicle, as
well as a respective path. We simulate a set of five trials with
different initial positions. Each trial runs with three different
control methods. First, a solo-driving method is tested, where
only one vehicle moves at a time. Second, an uncoordinated
scenario is simulated. Each vehicle moves in an uncoordinated
manner, and if a collision at an intersection would occur,
the right of way is granted to the vehicle that arrives first.
All other vehicles involved in the conflict have to stop. This

TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS 9

acceleration
(
m/s2

)
velocity (m/s)

dist. v1, v2

dist. v2, v4

20 40 60 20 40 60

0

1

2

v2 v4

2010 30 40 50 60
0

5

10

15

di
st

an
ce

(m
)

time (s)

Fig. 14: Coordinated driving in a platoon, where vehicle v3

leaves the platoon around t = 27s.

TABLE III: Number of required vehicle stops during simula-
tion with the uncoordinated control method.

trial 1 trial 2 trial 3 trial 4 trial 5

stops 11 9 10 6 3

method is supposed to simulate the behavior of human-driven
cars in parking environments. The third method represents
the coordinated control method proposed in this paper. As
performance measures, we evaluate the required acceleration
for each vehicle in a trial. To do so, we integrate the positive
acceleration values of each vehicle over time (Σtai(t) > 0).
Furthermore, we analyze the duration of the parking process,
referred to as time to park (ttp). Fig. 15 shows five trials
and compares the acceleration effort of the three methods
described above. Vehicles start from standstill at the beginning
of each trial. The left bar of a set of three shows the solo-
driving results, the middle bar is the uncoordinated scenario,
and the right bar is the coordinated method. As the solo-driving
method does not require any interaction, it has the lowest
acceleration effort for each trial. We find that the coordinated
method outperforms the uncoordinated method in most cases.
In some cases, the coordinated algorithm is outperformed
by the uncoordinated one if vehicles are granted the right
of way (e.g. v1 in trial 2 and v7 in trial 5). However, the
overall performance of all vehicles in the respective trial shows
better results using the coordinated method. In trial 5, the
performance of the coordinated and uncoordinated methods
is similar. This is due to the vehicles’ initial positions, which
only require a small amount of vehicle interaction. To evaluate
the amount of interaction, Table III lists the number of vehicle
stops during a simulation scenario. A higher number of stops
using the uncoordinated control method requires a higher
interaction amount using the coordinated control method.

Table IV presents an overall evaluation for each trial,
considering both the acceleration effort and the parking du-
ration. Rows labeled Σ sum the acceleration integrals of all

v1 v2 v3 v4 v5 v6 v7

0

500

1000

t a
i(t

)>
0

trial 1 solo-driving
uncoordinated
coordinated

v1 v2 v3 v4 v5 v6 v7

0

500

1000

t a
i(t

)>
0

trial 2

v1 v2 v3 v4 v5 v6 v7

0

500

1000

t a
i(t

)>
0

trial 3

v1 v2 v3 v4 v5 v6 v7

0

500

1000

t a
i(t

)>
0

trial 4

v1 v2 v3 v4 v5 v6 v7

0

500

1000

t a
i(t

)>
0

trial 5

Fig. 15: Performance comparison of different control coordi-
nation methods for 7 vehicles and 5 trials with different initial
conditions.

TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS 10

TABLE IV: Overall performance evaluation of the parking
process with different control methods.

control method
solo-driving uncoordinated coordinated

ttp(s) Σacc ttp(s) Σacc ttp(s) Σacc

trial 1
Σ 334.33 1166.1 68.47 4257.5 52.82 2155.5

avg. 41.791 145.76 51.386 532.19 43.656 269.44

trial 2
Σ 366.08 1118 61.97 3782.7 61.4 2694.6

avg. 45.76 139.75 47.404 472.84 47.991 336.83

trial 3
Σ 385.67 1041.9 66.15 4318.1 62.91 2506.4

avg. 48.209 130.24 52.455 539.76 51.465 313.29

trial 4
Σ 391.27 1179.3 70.69 3134.7 62.64 2033.7

avg. 48.909 147.41 48.587 391.84 45.748 254.21

trial 5
Σ 280.86 1127.5 57.07 2482.9 51.88 2481

avg. 35.108 140.94 36.48 310.36 35.566 310.12

vehicles in columns with Σacc, and list the total time of
the parking maneuvers in columns with ttp. The total time
is the summation of the parking duration of all vehicles in
the solo-driving method, as the vehicles are driven one by
one. On the contrary, it is the maximum value of the parking
process duration among all simulated vehicles for the unco-
ordinated and coordinated methods, as the vehicles are driven
simultaneously. Rows with avg. list the average values of all
vehicles in the respective scenario. Due to its extensive total
time to park, the solo-driving method is unrealistic for real-
world application. Furthermore, we find that the uncoordinated
method is outperformed by the coordinated method in terms
of parking duration and acceleration effort. This underlines the
strength of the coordinated method, resulting in an optimized
acceleration effort as well as a low time consumption.

VI. CONCLUSIONS

This paper presents a control framework for coordinating
autonomous vehicles in parking areas by distributing the
trajectory generation between vehicles and an infrastructure.
Potential collision areas, called conflict zones, are used for
the coordination procedure. We integrate this system into
an automated test-system. The integration allows seamless
variations of the system under test, such as changing agents or
environments - factors which play an important role for testing
highly automated systems.

Simulations illustrate the functionality and behavior of
the integrated distributed control system. Furthermore, the
increase in efficiency of the distributed coordination control
is shown and compared with an uncoordinated method.

Future work includes the integration of uncertain behavior
into the distributed setup. Uncertainty can result for example
from an environmental perspective such as pedestrians in the
parking area. Furthermore, among the control coordination,
higher layer planning levels, i.e. mission planning and path
planning, have a significant impact on the performance of the
coordination procedure. Therefore, investigating appropriate
algorithms for those layers shall be considered in future work.

REFERENCES

[1] K.-W. Min and J.-D. Choi, “Design and implementation of autonomous
vehicle valet parking system,” in 16th Int. IEEE Conf. Intelligent
Transportation Systems (ITSC), pp. 2082–2087, 2013.

[2] T. SAE, “Definitions for terms related to driving automation systems for
on-road motor vehicles,” SAE Standard J3016, 2016.

[3] J. Timpner, S. Friedrichs, J. van Balen, and L. Wolf, “k-stacks: high-
density valet parking for automated vehicles,” in Proc. IEEE Intelligent
Vehicles Symposium (IV), pp. 895–900, 2015.

[4] H. Banzhaf, F. Quedenfeld, D. Nienhüser, S. Knoop, and J. M. Zöllner,
“High density valet parking using k-deques in driveways,” in Proc. IEEE
Intelligent Vehicles Symposium (IV), pp. 1413–1420, 2017.

[5] C. Huang, R. Lu, X. Lin, and X. Shen, “Secure automated valet parking:
a privacy-preserving reservation scheme for autonomous vehicles,” IEEE
Trans. Veh. Technol., vol. 67, no. 11, pp. 11169–11180, 2018.

[6] S. Klemm et al., “Autonomous multi-story navigation for valet parking,”
in 19th Int. IEEE Conf. Intelligent Transportation Systems (ITSC),
pp. 1126–1133, 2016.

[7] H. Banzhaf, D. Nienhüser, S. Knoop, and J. M. Zöllner, “The future of
parking: a survey on automated valet parking with an outlook on high
density parking,” in Proc. IEEE Intelligent Vehicles Symposium (IV),
pp. 1827–1834, 2017.

[8] U. Schwesinger et al., “Automated valet parking and charging for e-
mobility,” in Proc. IEEE Intelligent Vehicles Symposium (IV), pp. 157–
164, 2016.

[9] K. Dresner and P. Stone, “A multiagent approach to autonomous inter-
section management,” Journal of artificial intelligence research (JAIR),
vol. 31, pp. 591–656, 2008.

[10] M. Hausknecht, T.-C. Au, and P. Stone, “Autonomous intersection
management: multi-intersection optimization,” in IEEE/RSJ Int. Conf.
Intelligent Robots and Systems (IROS), pp. 4581–4586, 2011.

[11] G. R. Campos, P. Falcone, H. Wymeersch, R. Hult, and J. Sjöberg,
“Cooperative receding horizon conflict resolution at traffic intersections,”
in 53rd IEEE Conf. Decision and Control (CDC), pp. 2932–2937, 2014.

[12] L. Makarem and D. Gillet, “Fluent coordination of autonomous vehicles
at intersections,” in IEEE Int. Conf. Systems, Man, and Cybernetics
(SMC), pp. 2557–2562, 2012.

[13] M. Zanon, S. Gros, H. Wymeersch, and P. Falcone, “An asynchronous
algorithm for optimal vehicle coordination at traffic intersections,” IFAC-
PapersOnLine, vol. 50, no. 1, pp. 12008–12014, 2017.

[14] R. Naumann, R. Rasche, J. Tacken, and C. Tahedi, “Validation and
simulation of a decentralized intersection collision avoidance algorithm,”
in IEEE Conf. Intelligent Transportation System (ITSC), pp. 818–823,
1997.

[15] R. Naumann, R. Rasche, and J. Tacken, “Managing autonomous vehi-
cles at intersections,” IEEE Intelligent Systems and their Applications,
vol. 13, no. 3, pp. 82–86, 1998.

[16] A. Katriniok, P. Kleibaum, and M. Joševski, “Distributed model predic-
tive control for intersection automation using a parallelized optimization
approach,” IFAC-PapersOnLine, vol. 50, no. 1, pp. 5940–5946, 2017.

[17] Y. J. Zhang, A. A. Malikopoulos, and C. G. Cassandras, “Optimal control
and coordination of connected and automated vehicles at urban traffic
intersections,” in 2016 American Control Conference (ACC), pp. 6227–
6232, 2016.

[18] R. Kianfar et al., “Design and experimental validation of a cooperative
driving system in the grand cooperative driving challenge,” IEEE Trans.
Intell. Transp. Syst., vol. 13, no. 3, pp. 994–1007, 2012.

[19] R. Hult et al., “Design and experimental validation of a cooperative
driving control architecture for the grand cooperative driving challenge
2016,” IEEE Trans. Intell. Transp. Syst., vol. 19, no. 4, pp. 1290–1301,
2018.

[20] W. B. Dunbar and D. S. Caveney, “Distributed receding horizon control
of vehicle platoons: Stability and string stability,” IEEE Trans. Autom.
Control, vol. 57, no. 3, pp. 620–633, 2012.

[21] Y. Zheng, S. E. Li, K. Li, F. Borrelli, and J. K. Hedrick, “Distributed
model predictive control for heterogeneous vehicle platoons under
unidirectional topologies,” IEEE Trans. Control Syst. Technol., vol. 25,
no. 3, pp. 899–910, 2017.

[22] K.-D. Kim and P. R. Kumar, “An mpc-based approach to provable
system-wide safety and liveness of autonomous ground traffic,” IEEE
Trans. Automat. Contr., vol. 59, no. 12, pp. 3341–3356, 2014.

[23] X. Qian, J. Gregoire, A. De La Fortelle, and F. Moutarde, “Decentralized
model predictive control for smooth coordination of automated vehicles
at intersection,” in European Control Conference (ECC), pp. 3452–3458,
2015.

TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS 11

[24] R. Hult, M. Zanon, S. Gros, and P. Falcone, “Primal decomposition
of the optimal coordination of vehicles at traffic intersections,” in 55th
IEEE Conference on Decision and Control (CDC), pp. 2567–2573, 2016.

[25] A. Uno, T. Sakaguchi, and S. Tsugawa, “A merging control algorithm
based on inter-vehicle communication,” in Proc. Int. IEEE/IEEJ/JSAI
Conf. Intelligent Transportation Systems (ITSC), pp. 783–787, 1999.

[26] X.-Y. Lu and J. K. Hedrick, “Longitudinal control algorithm for auto-
mated vehicle merging,” International Journal of Control, vol. 76, no. 2,
pp. 193–202, 2003.

[27] X.-Y. Lu, H.-S. Tan, S. E. Shladover, and J. K. Hedrick, “Automated
vehicle merging maneuver implementation for ahs,” Vehicle System
Dynamics, vol. 41, no. 2, pp. 85–107, 2004.

[28] “Pegasus project.” https://www.pegasusprojekt.de/en/home. Accessed:
2018-10-22.

[29] “Enable-s3 project.” https://www.enable-s3.eu/. Accessed: 2018-10-22.
[30] C. Katrakazas, M. Quddus, W.-H. Chen, and L. Deka, “Real-time motion

planning methods for autonomous on-road driving: State-of-the-art and
future research directions,” Transportation Research Part C: Emerging
Technologies, vol. 60, pp. 416–442, 2015.

[31] J. Gregoire, S. Bonnabel, and A. De La Fortelle, “Priority-based coor-
dination of robots,” 2014.

[32] S. Sheikholeslam and C. A. Desoer, “Longitudinal control of a platoon of
vehicles with no communication of lead vehicle information: A system
level study,” IEEE Trans. Veh. Technol., vol. 42, no. 4, pp. 546–554,
1993.

[33] R. Rajamani, Vehicle dynamics and control. Springer Science &
Business Media, 2011.

[34] S. S. Stankovic, M. J. Stanojevic, and D. D. Siljak, “Decentralized
overlapping control of a platoon of vehicles,” IEEE Trans. Control Syst.
Technol., vol. 8, no. 5, pp. 816–832, 2000.

[35] N. R. Kapania and J. C. Gerdes, “Design of a feedback-feedforward
steering controller for accurate path tracking and stability at the limits
of handling,” Vehicle System Dynamics, vol. 53, no. 12, pp. 1687–1704,
2015.

[36] H. Pacejka, Tire and vehicle dynamics. Elsevier, 2005.
[37] M. Quigley et al., “Ros: an open-source robot operating system,” in

ICRA workshop on open source software, vol. 3, p. 5, 2009.
[38] M. Dupuis and H. Grezlikowski, “Opendrive R©-an open standard for the

description of roads in driving simulations,” in Proc. Driving Simulation
Conference, pp. 25–36, 2006.

[39] H. Ferreau, C. Kirches, A. Potschka, H. Bock, and M. Diehl, “qpOASES:
A parametric active-set algorithm for quadratic programming,” Mathe-
matical Programming Computation, vol. 6, no. 4, pp. 327–363, 2014.

Maximilian Kneissl received his Bachelor of Sci-
ence and Master of Science degree in Electrical and
Computer Engineering from the Technical Univer-
sity of Munich, Germany, in 2013 and 2016, respec-
tively. He is currently working towards a Doctor of
Engineering degree in Electrical and Computer En-
gineering at DENSO AUTOMOTIVE Deutschland
GmbH (Eching, Germany) in cooperation with the
chair of Information-Oriented control, Department
of Electrical and Computer Engineering, Technical
University of Munich, Germany. His research inter-

ests include distributed control and planning for cooperative vehicles in the
field of autonomous driving, model-based system engineering, and simulation
methods for distributed control systems.

Anil Kunnappillil Madhusudhanan is a Research
Associate at the Department of Engineering, Univer-
sity of Cambridge. He received Bachelor of Technol-
ogy in Electronics and Communication Engineering
from National Institute of Technology Allahabad,
India, in 2006. During the years 2006 to 2009,
he worked at STMicroelectronics (Greater Noida,
India), Indian Institute of Science (Bangalore, India)
and Cranes Software (Bangalore, India) for one year
each. He received Master of Science Cum Laude in
Systems and Control, and PhD from Delft University

of Technology, The Netherlands, in 2011 and 2016 respectively. Before
relocating to Cambridge, he worked for about two years at TNO Automotive,
The Netherlands.

Adam Molin is currently a research engineer at
DENSO AUTOMOTIVE Deutschland GmbH in
Eching, Germany. Prior to that, he was a post-
doctoral researcher at the Department of Auto-
matic Control, Royal Institute of Technology (KTH),
Stockholm, Sweden, from 2014 to 2016. He received
his Diplom degree in electrical engineering in 2007
and his Doctor of Engineering degree in 2014,
both from the Department of Electrical Engineering
and Information Technology, Technical University
of Munich (TUM), Germany. His Ph.D. thesis was

awarded with the Kurt-Fischer-Prize by the Department of Electrical Engineer-
ing and Information Technology, TUM, in 2014. His main research interests
include the development of testing and design methods for networked control
and cyberphysical systems with applications to automotive systems.

Hasan Esen is a Technical Manager in the Cor-
porate R&D Department at DENSO AUTOMO-
TIVE Deutschland GmbH. He is responsible for
the advanced control and system engineering R&D
activities in Europe. He received his PhD in Control
Engineering from Technical University of Munich,
Germany, M.Sc in Mechatronics from Technical
University of Hamburg-Harburg, Germany, and B.Sc
in Mechanical Engineering from Technical Univer-
stiy of Istanbul, Turkey.

Sandra Hirche (M03-SM11) received the Diplom-
Ingenieur degree in aeronautical engineering from
Technical University Berlin, Germany, in 2002 and
the Doktor-Ingenieur degree in electrical engineer-
ing from Technical University Munich, Germany,
in 2005. From 2005 to 2007 she was awarded a
Postdoc scholarship from the Japanese Society for
the Promotion of Science at the Fujita Laboratory,
Tokyo Institute of Technology, Tokyo, Japan. From
2008 to 2012 she has been an associate professor
at Technical University Munich. Since 2013 she

is TUM Liesel Beckmann Distinguished Professor and heads the Chair of
Information-oriented Control in the Department of Electrical and Computer
Engineering at Technical University Munich. Her main research interests
include cooperative, distributed and networked control with applications in
human-robot interaction, multi-robot systems, and general robotics. She has
published more than 150 papers in international journals, books and refereed
conferences. Dr. Hirche has served on the Editorial Boards of the IEEE
Transactions on Control of Network Systems, IEEE Transactions on Control
Systems Technology, and the IEEE Transactions on Haptics.

