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Fusion-Based Feature Attention Gate
Component for Vehicle Detection

Based on Event Camera
Hu Cao , Guang Chen , Member, IEEE, Jiahao Xia, Genghang Zhuang ,

and Alois Knoll , Senior Member, IEEE

Abstract—In the field of autonomous vehicles, various
heterogeneous sensors, such as LiDAR, Radar, camera, etc,
are combined to improve the vehicle ability of sensing accu-
racy and robustness. Multi-modal perception and learning
has been proved to be an effective method to help vehicle
understand the nature of complex environments. Event cam-
era is a bio-inspired vision sensor that captures dynamic
changes in the scene and filters out redundant information
with high temporal resolution and high dynamic range. These
characteristics of the event camera make it have a certain
application potential in the field of autonomous vehicles.
In this paper, we introduce a fully convolutionalneural network
with feature attention gate component (FAGC) for vehicle
detection by combining frame-based and event-based vision.
Both grayscale features and event features are fed into the
feature attention gate component (FAGC) to generate the
pixel-level attention feature coefficients to improve the feature
discrimination ability of the network. Moreover, we explore
the influence of different fusion strategies on the detection
capability of the network. Experimental results demonstrate that our fusion method achieves the best detection accuracy
and exceeds the accuracy of the method that only takes single-mode signal as input.

Index Terms— Vehicle detection, multi-modal fusion, feature attention gate component (FAGC), event camera.

I. INTRODUCTION

RELIABLE perception system can provide the state and
pose of the objects for autonomous vehicles. Vehicle

detection plays an important role in the field of autonomous
driving. For autonomous vehicle, it is equipped with vari-
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ous sensors, such as camera, lidar and radar, to sense the
environment. By combining a variety of heterogeneous sen-
sors, autonomous vehicles can sense obstacles and avoid
accidents [1]–[4]. The frame-based camera acquires the visual
data as a sequence of frames at a fixed frequency. Cur-
rently, thanks to the breakthrough of deep learning technology,
the frame-based object detection methods, such as [5]–[7],
have achieved excellent performance. However, frame-based
cameras still suffer from the challenges of overexposure and
motion blur in the high light and fast motion [8]. In this
work, we try to introduce event camera for vehicle detection
task. Event camera captures the pixel-level changes caused by
motion and brightness changing. Different from frame-based
camera, the event camera outputs high temporal resolution
and high dynamic range (120dB) event streams [9], [10]. The
comparison of the output between frame-based camera and
event camera is presented in Fig 1.

Some works have been proposed to investigate the appli-
cation potential of event cameras. In [11], the authors use
event camera to predict optical flow by using the data from
the MVSEC [12] dataset collected by themselves. The first
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Fig. 1. Comparison of the output between standard frame-based camera
and event camera [15]. (a) The frame-based camera captures images at
a fixed frame rate. (b) The event camera emits events caused by the
moving objects asynchronously.

Event-based semantic segmentation is introduced in [13].
Xception-based convolutional neural network (CNN) is trained
on Ev-Seg dataset to learn segmentation from events. The
researchers also apply the event camera to perform the end-
to-end steering angle prediction [14]. Recently, neuromorphic
vision based safe driving system is built in [15] and [16].
In [15], the driver drowsiness detection is completed through
facial motion analysis by using event camera. And, a new data-
base and baseline evaluation method is proposed in [16]. For
event-based object detection, several works, such as [17]–[19],
have been done for vehicle or pedestrian detection. However,
these methods focus on how to improve the detection accu-
racy of event-based detector. Since the event streams lack
appearance features such as texture and color information,
it is difficult to achieve high object detection accuracy only
by using event streams as input. Now, there is still a lack of
research on how to fuse frame-based and event-based multi-
modal features. Hence, it is necessary to study the fusion of
event information and other input signal.

In this work, we introduce a fusion-based feature atten-
tion gate component (FAGC) for vehicle detection based
on event camera. To take advantages of grayscale frames
with texture features and events with high dynamic range,
both grayscale frames and event streams are fed into the
network to fuse together and complement each other. Based
on this mechanism, the experimental results on the labeled
DDD17 dataset [20], [21] indicate that the detection accu-
racy of vehicle detection network with FGAC is significantly
improved, which is better than the method that only takes
grayscale frames as input or only takes event streams as input.
Our detailed contributions are as follows:

• A vehicle detection method based on event camera
is introduced in this work for autonomous vehicle
perception.

• We develop a feature attention gate component (FAGC)
to fuse grayscale-based features and event-based features
to improve the performance of the vehicle detector. The
impact of different fusion strategies and event represen-
tations are discussed.

• The experimental results on the labeled DDD17 dataset
show that the detection accuracy of vehicle detector can

be significantly improved by combining the frame-based
vision and event-based vision.

II. RELATED WORK

A. Methods of Frame-Based Object Detection
Early frame-based object detection methods are based on

handcrafted features, such as Histogram of oriented gradients
(HOG) [22] and aggregate channel features (ACF) [23]. How-
ever, with the rise of deep learning, a large number of object
detection algorithms based on deep learning have emerged.
Current deep learning-based object detection algorithms are
mainly divided into one-stage [5], [6], [24]–[26] and two-
stage detectors [7], [27], which have been applied in many
fields [28]–[30]. For two-stage detectors, Faster-RCNN [7]
and Mask-RCNN [27] achieve high detection accuracy based
on region proposal network (RPN). Compare with two-stage
methods, the one-stage detectors achieve a better balance
between accuracy and speed, such as YOLO [6], SSD [5]
and Retinanet [24]. However, YOLO [6], SSD [5] and Reti-
naNet [24] are all Anchor-based object detectors. Recently,
anchor-free methods have been developed rapidly and achieved
excellent performance, such as Centernet [25] and FCOS [26].
Compared with the frame-based object detection method,
the event-based method is still in its preliminary stage.

B. Methods of Event-Based Object Detection
For event-based vision, several works attempt to apply

the event camera in various fields, such as intelligent trans-
portation system [31] and robotic grasping [30]. Com-
pared with frame-based object detection, a small amount
of research works has been done on event-based object
detection [17]–[19], [21], [32]–[34]. More event-based related
works can be found in [2] and [8]. In [17], the authors use
grayscale frames to pass through the state-of-the-art object
detector to generate the pseudo-labels which are used for
training the detector model taking the events as input. And,
a joint detection framework is introduced in [21] to com-
bine the frame-based and event-based vision for autonomous
driving. Different from focusing the vehicle detection under
ego-motion in the work [17], [21], the study in [19] concen-
trates on the pedestrian detection in the field of intelligent
transportation system. The fusion method based on confidence
map is proposed in [19] to improve the pedestrian detection
accuracy. Moreover, in order to take full advantage of the
event information, multi-cue event information fusion are
developed in [18] for pedestrian detection. Recently, [32]
and [33] attempted to use rgb-based detector to improve the
performance of the event-based detector. And, the event-based
detection method and a high-resolution large-scale dataset are
introduced in [34]. The experiment results demonstrate the
effectiveness of their method.

III. METHOD

A. Event Camera
Event camera is a bio-inspired vision sensor, also known

as neuromorphic vision sensor and dynamic vision sensor,
that works in ways that mimic the perception paradigm of
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Fig. 2. Event representation: the spatial-temporal events are processed
by encoding method to generate the event frame.

the biological retina [2]. Conventional frame-based cameras
output a series of frames at a fixed frequency. Unlike frame-
based cameras, event cameras output data in microseconds and
asynchronously, as shown in Fig. 1. An event is triggered only
if the brightness change at the same pixel position exceeds a
certain threshold. A sparse spatial-temporal event stream can
be mathematically represented as:

E = {ei }i∈[1,N] , ei = [xi , yi , ti , pi ]T (1)

where, N represents the number of ei contained in the event
stream E . (x, y) is the coordinates of the triggered pixel posi-
tion. t and p denote the corresponding triggering timestamp
and event polarity, respectively. And, p ∈ {+1,−1} represents
the brightness change, +1 denotes increase and −1 denotes
decrease.

In this work, Dynamic and Active Pixel Vision Sen-
sor (DAVIS) is used for sensing object. DAVIS consists
of a grayscale frame-based camera and an event camera,
so that it can simutaneously output grayscale images and
event streams. To take full advantage of the grayscale frames
with texture features and event data with high dynamic range,
we combine the two data to improve the accuracy of vehicle
detection. Since the asynchronous event stream cannot be
directly processed by convolutional neural network, we use
the frequency-based [17], [18] encoding method to preprocess
it into event frames before feeding it into the network.
Frequency-based encoding method can be formulated as:

P(n) = 255 · 2 · (
1

1 + e−n
− 0.5) (2)

where, n represents the total number of the triggered events
(positive or negative) at location (x, y), and P(n) denotes
the corresponding transformed pixel value. As presented in
Fig. 2, the triggered spatial-temporal events are processed by
frequency-based encoding method to generate the event frame.
Specifically, each pixel value in the event frame is obtained
by using Eq. 2 to calculate the events generated within 20ms.

B. Fusion Strategy
In this work, we explore the impact of different fusion

strategies on the detection accuracy of the network. In Fig. 3,
two fusion strategies are presented: soft fusion (Fig. 3(a)) and
hard fusion (Fig. 3(a)). Instead of merging grayscale frames

Fig. 3. Comparison of fusion strategy between soft fusion and hard
fusion. (a) Soft fusion, (b) Hard fusion.

and events directly, we let the network learn which features
need to be fused. Therefore, both the grayscale frames and
the event frames are fed into the C1 block to automatically
learning to extract features, Fgray and Fevent . C1 block
consists of a convolutional filter with kernel size of 7 × 7
and a max pooling layer with kernel size of 3 × 3.

1) Hard Fusion: for hard fusion, it denotes the element-
wise sum of extracted feature maps, which can be defined
as follows:

Fhard = fadd(Fgray, Fevent ) (3)

where, fadd represents the function of element-wise addition.
2) Soft Fusion: For soft fusion, it represents feature fusion

by using learned parameters. In particular, both Fgray and
Fevent are concatenated together, then, the convolutional filter
with kernel size of 1 × 1 is applied to learn the weight
parameters for feature fusion and unify dimension. The process
can be expressed as follows:

Fsof t = fconcat (Fgray, Fevent ) ⊗ conv1×1 (4)

where, fconcat and ⊗ denote concatenate and convolution
operation, respectively. Different from hard fusion and soft
fusion, feature attention gate component (FAGC) combines
hard fusion and attention mechanism to fuse grayscale-
based features and event-based features, so as to significantly
improve the vehicle detection accuracy.

3) Feature Attention Gate Component (FAGC): Attention
mechanism has been applied in computer vision and worked
very well, such as [35]–[39]. In this work, the extracted
grayscale-based features Fgray and event-based features Fevent

are fed into feature attention gate component (FAGC) to
extract valuable features. The block diagram of the feature
attention gate component (FAGC) is presented in Fig. 4. Both
the grayscale-based features and the event-based features pass
through a convolutional filter with kernel size of 3 × 3 and
a ReLU activation function to get transformed contextual
information. Then, the transformed features are fused by
element-wise addition:

F f use = fadd((Fgray, Fevent ) ⊗ conv3×3) (5)

Furthermore, in order to identify salient feature regions and
suppress unrelated background regions, event-based features
are used as gate signals, and 5 × 5 convolution followed by

Authorized licensed use limited to: Technische Universitaet Muenchen. Downloaded on November 27,2021 at 22:12:24 UTC from IEEE Xplore.  Restrictions apply. 
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Fig. 4. Feature attention gate component (FAGC): both grayscale-based features and event-based features are fed into FAGC to generate the
pixel-level attention coefficients.

a Sigmoid activation function is used to generate pixel-level
attention coefficients from the fused features. The output of
the feature attention gate component (FAGC) is the element-
wise multiplication of the input grayscale-based features and
the pixel-level attention coefficients:

Foutput = σ(F f use ⊗ conv5×5) · Fgray (6)

Based on this mechanism, the object features will be
enhanced to further improve the detection accuracy of the
network. The impact of different fusion methods will be
discussed in detail in section IV-D.

C. Network Architecture
The vehicle detection framework used in this work is built

on the basis of [24], as shown in Fig. 5. The image size
of 532 × 400 grayscale frames and event frames are fed
into Resnet [40] to extract meaningful features. Both event-
based features and grayscale-based features are fused by
feature attention gate component (FAGC). The fused features
are collected to pass through the feature pyramid network
(FPN) [29] to obtain deep features for detecting vehicles of
different scales. The vehicle detection network is composed
of resnet, feature attention gate component (FAGC), feature
pyramid network (FPN) and detection head subnets. It can be
formulated as follows:

Lk
c = fResnet (xgray, xevent )

Fk = fF AGC (Lk
c)

Pn = fF P N (Fk)

Y n = fHead (Pn) (7)

where, xgray and xevent represent the grayscale frame input and
event frame input, respectively.

{
Lk

c

}4
k=1,c∈[gray,event ] denotes

the extracted grayscale-based features and event-based fea-
tures. {Fk}4

k=1 is the fused features generated by feature atten-
tion gate component (FAGC). {Pn}5

n=1, and {Yn}5
n=1 denote

the fused multi-resolution features and prediction outputs,
respectively. And, the functions of feature attention gate com-
ponent (FAGC), Resnet, feature pyramid network (FPN) and
detection head subnets are represented by fF AGC , fResnet ,
fF P N , and fHead .

1) Resnet: In this work, we use Resnet-50 [40] as the
backbone network. Resnet-50 is composed of four layers, rep-
resented as {L1, L2, L3, L4}, where, the feature map resolution
is continuously down-sampled from L1 to L4 layer, and the
feature resolution remains the same in each layer. Feature
attention gate component (FAGC) mentioned above is inserted
between two layers. By combining the residual learning and
feature attention gate component (FAGC), the more strong
semantic and valuable features can be extracted.

2) Feature Pyramid Network (FPN): Similar to the previous
works [24], [29], feature pyramid network (FPN) is used
to fuse the features generated from {Ck}4

k=1 to improve the
detection robustness of vehicles of different sizes. The out-
puts {Pn}4

n=1 are produced by top-down pathway and lateral
connections. And, the last level feature map P5 is produced by
applying a 3 × 3 convolutional layer with stride 2 on the P4.
Multi-level feature maps {Pn}5

n=1 will be fed into the detection
head subnets for prediction.

3) Detection Head Subnets: After processing by feature
pyramid network (FPN), two separate subnets are applied for
classification and box regression. Refer to [24], each subnet
consists of four 3×3 convolutional layers with 256 filters. For
classification subnet, followed by a 3 × 3 convolutional layers
with K A filters, followed by sigmoid activations, it outputs
K A binary predictions. For box regression subnet, followed
by a 3 × 3 convolutional layers with 4A filters, it outputs 4A
offset predictions. A is set as 9 in this work. Specific offset
parameters of the bounding box can be represented as follows:

t �x = (x � − xa)

wa
,

t �y = (y � − ya)

ha
,

t �w = log(
w�

wa
),

t �h = log(
h�

ha
), (8)

where, x, y, w, h represent the center coordinates, width and
height of the bounding box. Variables t �, x �, xa denote the
prediction regression offsets, predicted bounding box and
anchor box, respectively.

Authorized licensed use limited to: Technische Universitaet Muenchen. Downloaded on November 27,2021 at 22:12:24 UTC from IEEE Xplore.  Restrictions apply. 

lenovo
高亮



24544 IEEE SENSORS JOURNAL, VOL. 21, NO. 21, NOVEMBER 1, 2021

Fig. 5. The architecture of our vehicle detection network. The network consists of resnet, feature attention gate component (FAGC), feature pyramid
network (FPN) and detection head subnets.

D. Loss Function
The loss function of our vehicle detection network consists

of classification and regression loss function. The total loss
function L can be represented as follows:

L = λ1

N

N∑

i=1

lcls (pi , ti )+ λ2

N

N∑

i=1

t �i
∑

j∈{x,y,w,h}
lreg(v �

i j , vi j ) (9)

where N denotes the number of anchors. Specifically, focal
loss lcls and giou loss lreg are used in this work. The hyper-
parameter λ1 and λ2 control the trade-off of classification and
regression losses. λ1=λ2=1 are used in our experiments.

IV. EXPERIMENT

The experiments of our vehicle detection network are
performed on the labeled DDD-17 dataset [20], [21]. The
results indicate that the fusion-based feature attention gate
component (FAGC) can improve the detection accuracy of
vehicle detector. And, we also discuss the influence of different
fusion strategies and event representations on the detection
performance of the network.

A. Dataset
In order to verify the effectiveness of our fusion method,

the experiments are conducted on the DDD17 dataset.
DDD17 [20] uses DAVIS to record both grayscale frames and
event streams. The comparison of grayscale frame and the
corresponding event frame is presented in Fig. 6. The dataset
is collected on highway and city scenes from Switzerland to
Germany. Since DDD17 is established for end-to-end learning,
it does not contain the labels of object detection, while the
authors of [21] manually labeled the vehicles of the dataset
based on the original raw data. The detailed description are
summarized in Tab. I. On account of our model requires
both event-based and frame-based data, and DDD17 is a
challenging data set, we use the labeled DDD17 as the
benchmark to compare the performance of the different fusion
strategies on vehicle detection. The labeled DDD17 dataset

Fig. 6. Comparison of grayscale frame and event frame. (a) grayscale
frame, (b) event frame.

TABLE I
DETAILED DESCRIPTION OF THE RECORDED DATA

IN THE LABELED DDD17 DATASET

contains 3154 frames. We used 2241 frames as the training
set and 913 frames as the test set. In order to train more
robust models, data augmentation methods such as flipping and
color enhancement are used to increase the diversity of data
samples.

B. Evaluation Metrics
We use the common metric, AP, to evaluate the performance

of the different vehicle detectors. The value of AP denotes the
area under the Precision-Recall curve. Recall, Precision and
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Fig. 7. The selected detection results of vehicle detection model on the labeled DDD17 dataset. The first, second and third rows display the detection
results of grayscale, events and FAGC, respectively.

TABLE II
THE DETECTION RESULTS OF DIFFERENT EVENT REPRESENTATIONS

ON THE LABELED DDD17 DATASET

IOU (Intersection over Union) are expressed as the following:

Recall = t p

tp + f n
,

Precision = t p

tp + f p

I OU = detections ∩ groundtruth

detections ∪ groundtruth

= t p

tp + f p + f n
(10)

where, t p represents the true positive samples, meaning the
correctly predicted vehicles. Similarly, f p and f n denote the
false positive samples and false negative samples, respectively.
After Recall, Precision, and IOU are calculated, we can use
the area under the Precision-Recall cure (AP) to summarize
the performance of the detector. In particular, the AP at
I OU = 0.5 [41] is used as our evaluation metric.

C. Implement Details
In training period, we train the vehicle detection network

end to end for 30 epochs on a Nvidia Tesla V100 GPU with
32GB memory. We define the initial learning rate as 0.01.
Weight decay and momentum are set to 0.0001 and 0.9, respec-
tively. The network is implemented using pytorch-1.7.0 with
cudnn-7.5 and cuda-10.0 pacakges.

D. Quantitative Analysis
1) Effect of Event Representation: Our vehicle detection

network can take different image-like event representations

TABLE III
THE DETECTION RESULTS OF DIFFERENT FUSION STRATEGIES

ON THE LABELED DDD17 DATASET

as input. We compare the performance of three more rep-
resentative event encoding methods, Frequency [17], LIF
((Leaky Integrate-and-Fire) [42] and SAE (Surface of Active
Events) [43]. The results on the labeled DDD17 dataset are
presented in Tab. II. Compared with other two encoding meth-
ods, Frequency-based event representation achieve the best
performance with the accuracy of 52.3%. Therefore, we use
Frequency as our event preprocess method in the subsequent
experiments.

2) Impact of Different Fusion Strategies: We explore the
impact of MTC (Merged-Three-Channel) [18], hard fusion,
soft fusion and FAGC. MTC is a channel-level fusion strat-
egy. In this work, the three channels of MTC frames are
consists of [Frequency, S AE, L I F]. The Retinanet based
on resnet-50 with the grayscale frames and frequency-based
event representation as input are the baselines. Specifically,
we use the pre-trained weight of Resenet-50 on ImageNet to
initialize the model parameters and train the vehicle detector
with MTC, hard fusion, soft fusion and FAGC respectively on
the labeled DDD17 dataset. The experiment results are given
in Tab. III. As can be seen from the Tab III, the network gets
79.6% vehicle detection accuracy by taking grayscale frames
as input. In order to enable the event streams to be processed
by CNN, the frequency-based [17] encoding method is used
to regularize the events into event frames to pass through the
network. Using only event data as input, the network achieves
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TABLE IV
THE DETECTION RESULTS OF DIFFERENT METHODS

ON THE LABELED DDD17 DATASET

a detection accuracy of 52.3%. Compared with grayscale-
based vehicle detector, the accuracy of event-based vehicle
detector is significantly lower than that of grayscale-based
because of the lack of appearance information such as texture
in the event data. However, due to the advantages of high
dynamic range and high temporal resolution of event data,
it can alleviate the motion blur of grayscale frames under high
illumination and high speed motion. Therefore, the feature
attention gate component (FAGC) is developed to fuse event
data with grayscale frames. The test results indicate that the
performance of the vehicle detection network based on MTC,
hard fusion and soft fusion is basically not improved. However,
based on FAGC, the network achieves the best detection
accuracy of 81.6%, which outperforms the method that only
takes grayscale frames or events as input.

3) Comparision With Grayscale-Based Detectors: We com-
pare our model with several selected frame-based object
detectors [5]–[7], [24]. All experiments are conducted on the
labeled DDD17 dataset and the tested results are summarized
in Tab. IV. Specifically, the results of [5]–[7] are referred
from [21]. Compared with one-stage object detectors [5],
[6], [24], the vehicle detection network with FAGC achieves
a significant improvement in detection accuracy, while the
running speed is reduced. Moreover, FAGC also has better
performance over the two-stage object detector [7], which
demonstrates the effectiveness of our method.

E. Qualitative Analysis
The selected detection results are visualized in Fig. 7. The

detection results of grayscale, events and FAGC are presented
in the first, second and third rows respectively.

1) Normal Detections: It can be seen from the Fig. 7,
the vehicle detection results of the first two columns demon-
strate that the detection performance of the detector based
on grayscale is stronger than that based on event under the
normal light condition. And the detection accuracy is similar
between the grayscale-based vehicle detector and the fusion-
based (FAGC) vehicle detector.

2) Overexposure Detections: In Fig. 7, the vehicle detection
results in the third column show that the grayscale-based
detector is weaker than the event-based detector under high
illumination conditions. Moreover, the vehicle detection results
of the last column indicate that the FAGC-based fusion method
can achieve better performance when the detection perfor-
mance of the detector is not good either grayscale-based or
event-based.

3) Evaluation on Day and Night-Fall Condition: In order
to further explore the effectiveness of vehicle detectors,

TABLE V
EVALUATION ON DAY AND NIGHT-FALL CONDITION

Fig. 8. Failed detection cases: the first two cases are false detection
results based on grayscale frames and the last two cases are false
detection resultss based on event frames.

Frequency-based, grayscale-based (Retinanet-Gray) and
FAGC-based vehicle detectors are tested respectively on
day, night-fall, and all (day and night-fall) conditions.
The test results are summarised in the Table V. Both
event-based and grayscale-based detectors achieve stable
detection performance under day and night-fall conditions.
And, the proposed FAGC-based detector can achieve more
robust generalized ability through fusion of events and
grayscale frames. The main reason for this result is that
the high temporal resolution and high dynamic range of
events can alleviate the challenge of grayscale frames due to
overexposure, low light and high speed motion.

4) Failure Cases Analysis: Some failed detection cases are
displayed in the Fig. 8. For graycale-based vehicle detector,
the model incorrectly detects traffic sign as vehicle and per-
forms poorly under high light conditions. Although the event
data filtered most of the background, a large number of events
were generated by some roadside obstacles in the process
of perceiving the environment, leading to incorrect detection
results output by the model. In addition, when passing a scene
such as a bridge, a large number of events will be generated
by the outline of the bridge, resulting in little information
of the vehicle. Compared with traditional vision, event-based
vision research is still in the preliminary stage, so further
development of this technology is needed to make it mature
gradually.

V. CONCLUSION

In this work, we introduce a fully convolutional neural
network with feature attention gate component (FAGC) to
perform vehicle detection. Both grayscale frames and event
streams are fused together to improve the detection accuracy
of the network. To better fuse the frame-based and event-based
vision, hard fusion and soft fusion are discussed. Based on
hard fusion and attention mechanism, FAGC is developed to
combine the grayscale frames with texture and events with
high dynamic range to improve the discrimination ability
of the model. By integrating the FAGC into the model,
the vehicle detector achieves better performance compared
with the method that only takes grayscale frames or events as
input. The experimental results on the labeled DDD17 dataset
indicate that our fusion method is effective. Compared with the
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traditional framed-based vision, the dataset of event camera
is scarce. In the following work, we will collect a multil-
modal dataset to promote the research on the fusion of the
event signal and other modal information. Since event-based
research is still in its infancy, we will try to explore the
application of event camera in more fields, such as object
tracking, segmentation, etc.
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