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Abstract: We introduce a new control synthesis approach to solve reach-avoid problems
occurring in many fields, such as autonomous driving or robot motion planning. Our control
approach steers a set of initial states as close as possible to a given target state while provably
satisfying constraints on both inputs and states. We compute a control law consisting of a state-
dependent, piecewise constant feedforward controller and a continuous feedback controller. The
feedforward controller can be polynomial in the state and steers the initial set of states as
close as possible to the target state for an undisturbed system, while the feedback controller
minimizes the effect of disturbances and abstraction errors. Compared to other formal synthesis
approaches, our approach can be verified in polynomial time and generates nonlinear feedforward
control laws. The achievable control performance is demonstrated by two use cases.
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1. INTRODUCTION

Emerging systems – such as autonomous systems – are
increasingly complex and safety-critical, making it increas-
ingly difficult to design them only with expert knowledge.
In this work, we propose a formal synthesis approach for
nonlinear systems to solve reach-avoid problems so that
human error in the controller design can be excluded.
An example of such a problem is the task of steering an
autonomous vehicle to a given target state while avoiding
other traffic participants and staying within acceleration
limits. To solve this task during online operation, we focus
on synthesizing controllers for motion primitives offline,
which reduces the online task to suitably concatenating
these motion primitives (see e.g. Schürmann and Althoff
(2021)).

Related Work One popular approach to solving reach-
avoid problems is model predictive control (MPC), which
solves constrained optimization problems in a moving-
horizon control scheme (Alessio and Bemporad, 2009).
Since the original MPC problem cannot provably ensure
constraints in the presence of disturbances, tube-based
MPC keeps the disturbed system within a tube around
a reference trajectory (Limon et al., 2010; Mayne et al.,
2011). Instead of computing a (possibly) nonlinear opti-
mization problem online, explicit MPC solves the opti-
mization problem up-front (de la Pena et al., 2004; Liu
et al., 2012), allowing for much faster computation times
compared to implicit MPC; however, the computational
effort of getting such an explicit solution with respect to
the number of continuous state variables often becomes
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exponential (Alessio and Bemporad, 2009), and further
does not allow one to integrate uncertain initial states.

Another approach to solving reach-avoid problems makes
use of linear quadratic regulator (LQR) trees, which are
computed using LQR controllers along candidate trajecto-
ries, where the region of attraction is conservatively esti-
mated (Tedrake, 2009; Reist and Tedrake, 2010). However,
this approach is based on sum-of-squares programming,
which – while being a convex programming problem –
does not scale well with the system dimension. Controller
synthesis using abstraction-based methods (Kloetzer and
Belta, 2008; Girard and Martin, 2008; Girard, 2012) is an-
other approach that is able to deal with nonlinear systems
as well as input and state constraints. Popular amongst
those is symbolic model abstraction, where a smooth con-
tinuous system is abstracted to a symbolic model, which
greatly simplifies the controller synthesis (Tabuada, 2009;
Zamani et al., 2011; Pola and Tabuada, 2009; Pola et al.,
2008). However, all these methods require partitioning
of the state space, making them intractable for higher-
dimensional systems.

Recently, the verification of systems using reachability
analysis, which computes a set of states reachable from
a given initial set (Althoff, 2010), has gained attention. In
Schürmann and Althoff (2017b), the authors synthesize a
continuous tracking controller that steers all initial states
of a disturbed linear system as close as possible to a
target state by incorporating reachability analysis into an
optimization problem. In Schürmann and Althoff (2017a),
the authors compute parameterized reachable sets to syn-
thesize controllers by solving only a single linear program.
While this is computationally efficient, the controller per-
formance is impaired when disturbances dominate. Thus,
the approaches from Schürmann and Althoff (2017a,b) are
combined in Schürmann and Althoff (2021) to compute a
control law with a state-dependent feedforward controller



as well as continuous feedback controller. Another ap-
proach that uses reachability analysis to synthesize a con-
troller combining feedforward and feedback control is de-
scribed in Verdier et al. (2020), where a controller meeting
signal temporal logic specifications is synthesized. While
the computed feedforward control is not able to provide
a state-dependent feedforward control as in Schürmann
and Althoff (2021), it has the benefit that the number of
controllers is independent of the sampling time.

Contributions The approach described in Schürmann
and Althoff (2021) enables robust control synthesis for
nonlinear systems. However, since only a linear feedfor-
ward controller based on a linear abstraction of the system
is computed, it might be far from optimal if the set of
initial states is large or the system has a larger degree of
nonlinearity. Therefore, we present a novel approach that,
to the best of our knowledge, synthesizes for the first time a
polynomial state-dependent feedforward control law based
on higher-order system abstractions that is combined with
a continuous feedback law analogous to Schürmann and
Althoff (2021) for solving reach-avoid problems.

Organization First, we introduce necessary notation and
preliminaries in Sec. 2, followed by an introduction of
the problem in Sec. 3. In Sec. 4, we introduce our new
approach for computing the polynomial feedforward con-
trol. A comparison to the approach from Schürmann and
Althoff (2021) as well as a complexity analysis is done in
Sec. 5. Lastly, in Sec. 6 we evaluate our new approach.

2. NOTATION AND PRELIMINARIES

We introduce required notation and define the concepts of
(polynomial) zonotopes, which are subsequently used for
reachability analysis as well as controller synthesis.

2.1 Notation

For two vectors w, v ∈ Ro, we define wvT

= wv =∏o
i=1 w

vi
i . Given two sets X1, X2, their Minkowski addition

is denoted by X1 ⊕ X2. A zonotope over-approximation
of a given set M is denoted by Z (M). We denote the
absolute value of each component of a given vector x ∈ Rp

by |x| ∈ Rp. The set of natural numbers N in this paper
includes zero, while N+ denotes the set of strictly positive,
natural numbers. For a given matrix M , we denote with
[M ](:) the vector that results from collapsing M column-

first, i.e., vertically concatenating its column vectors. For
a vector v ∈ Ro, we use diag (v) to construct a matrix with
v as its diagonal elements.

2.2 Definitions

A common set representation for reachability analysis are
zonotopes.

Definition 1. (Zonotope). A zonotope Z = ⟨c,G⟩ with
generator matrix G ∈ Rn×m and center c ∈ Rn is given by

Z = {x ∈ Rn | x = c+Gν, ∥ν∥∞ ≤ 1} . (1)

For convenience, the center and generator matrices of a
given zonotope Z are referred to by cZ and GZ , respec-
tively.

In this paper, we compute reachability analysis using
polynomial zonotopes (Althoff, 2013; Kochdumper and
Althoff, 2019), which are a generalization of zonotopes.
To that end, we first introduce the concept of a generating
function.

Definition 2. (Set Generation). We define

{r (ν)}ν = {r (ν) | ∥ν∥∞ ≤ 1} = S,
where r (ν) is the generating function of S. We say that
S = {r (ν)}ν is generated by r (ν) over ν.

Next, we define polynomial zonotopes (Kochdumper and
Althoff, 2019).

Definition 3. (Polynomial Zonotope). Let c ∈ Rn be the
center, G =

[
g(1) · · · g(m)

]
∈ Rn×m the generator matrix

with generators g(i) ∈ Rn, i ∈ {1, ...,m}, and E =[
e(1) · · · e(m)

]
∈ Rd×m the exponent matrix of a poly-

nomial zonotope PZ. We define the generating function
(see Def. 2) of a polynomial zonotope as

PZ (ν) = c+

m∑
i=1

g(i)νe
(i)

.

The polynomial zonotope is then given by PZ =
{PZ (ν)}ν .

3. PROBLEM STATEMENT

We are given the system ẋ = f (x, u, w), where x ∈ X ⊆
Rn is the state, u ∈ U ⊆ Rq is the controllable input,
and w ∈ W ⊆ Rv is some unknown disturbance; here,
X , U , and W are bounded by zonotopes. We make no
assumptions about the statistical nature of W.

Our goal is to steer the set of initial states as close as
possible to the target state while satisfying constraints (see
Schürmann and Althoff (2021)):

uctrl (x, t) = argmin
u(x,t)∈U

max
x

∥x− xf∥1 ,

s.t. x ∈ RX (0),u(x,t),W (tf) ,

RX (0),u(x,t),W ([0; tf ]) ⊆ X ,

(2)

where xf is a given target state, tf denotes the final time,
and RX (0),u(x,t),W (τ) is the set of states that are reachable

within a given time frame τ for a control law u (x, t) ∈ U
and any disturbance w ∈ W, starting from the initial set
X (0). Throughout this paper, we assume that constraints
are chosen such that the feasible set of (2) is not empty.

Analogously to Schürmann and Althoff (2021), we use
feedforward and feedback control, i.e.

uctrl (x, t) = uff (x (0) , t) + ufb (x, t) , (3)

where uff (x (0) , t) is the state-dependent feedforward con-
trol; ufb (x, t) = K (t) (x (t)− xff (t)) is the continuous
state feedback with gain matrix K (t) ∈ Rq×n and ref-
erence trajectory xff (t). Since the continuous feedback in
this paper is analogous to Schürmann and Althoff (2021),
we focus on our novel feedforward synthesis approach,
where, analogously to Schürmann and Althoff (2021), we
use Uff ⊆ U to reserve input capacity for the feedback
controller, and Xff ⊆ X to account for bloating not present



in the undisturbed system. Due to space limitations and
to improve readability, we assume that Uff and X (0) are
given as parallelotopes.

4. SYNTHESIS USING REACHABLE SETS

In this section, we compute the feedforward control
uff (x (0) , t). We first describe the controller template and
then choose its constant offset such that the center of
our initial set is steered to the target state. Using this
template, we then compute an approximate reachable set
parameterized by our control parameters, which are then
obtained by minimizing its size.

4.1 Controller Template

Similarly to Schürmann and Althoff (2021), we assume
that uff (x (0) , t) consists of N ∈ N+ piecewise con-
stant control laws. Thus, ∀t ∈ τ (i) = [i; i+ 1] tf

N , i ∈
{0, ..., N − 1}, we have to make sure that u

(i)
ff (x (0)) ∈ Uff ,

or equivalently,
∣∣α(i) (x (0))

∣∣ ≤ 1, since

Uff = {u ∈ Rq | u = GUff
α+ cUff

, ∥α∥∞ ≤ 1} .
For the remainder of this section, we drop the index i when
convenient.

As will be seen subsequently, it is advantageous to parame-
terize uff (x (0)) not in x (0) but in the factors β ∈ [−1; 1]

n

of X (0) to ensure that u ∈ Uff . After introducing a user-
specified matrix of exponents O =

[
o(1) · · · o(M)

]
∈ Nn×M

and the controller parameters P =
[
p(1) · · · p(M)

]
∈

[−1; 1]
q×M

, we parameterize α as

α (β, P ) =

M∑
k=1

p(k)βo(k)

. (4)

One possible choice for O are all monomial exponents up
to the maximum desired order π ∈ N. Without loss of
generality, we assume that O always contains the all-zero
exponent vector to model offsets.

In general, computing the exact range of α (β, P ) for
a fixed P with varying β is NP-hard (Gaganov, 1985).
That said, we are able to find a feasible parameter set
that guarantees constraint satisfaction, albeit with some
conservatism when α (β, P ) is not linear in β.

Lemma 4. (Feasible Parameter Set). Denote by A (P ) =
{α (β, P )}β the polynomial zonotope with α (β, P ) as in

(4). Then, with

P = {P | Z (A (P )) ⊆ [−1; 1]
q} ,

which is expressible as a set of linear inequalities, con-
straint satisfaction is guaranteed, i.e.

∀P ∈ P A (P ) ⊆ [−1; 1]
q
.

Further, for α (β, P ) linear in β, P parameterizes the
available space completely, i.e.⋃

P∈P
A (P ) = [−1; 1]

q
.

Proof. P guarantees constraint satisfaction because ∀P ∈
P {α (β, P )}β ⊆ Z (A (P )) ⊆ [−1; 1]

q
. Further, let

Z (A (P )) =
〈
c (P ) ,

[
g(1) (P ) ... g(L) (P )

]〉
. Then it is true

that Z (A (P )) ⊆ [−1; 1]
q ⇐⇒ |c (P )|+

∑L
j=1

∣∣g(j) (P )
∣∣ ≤

1; by introducing auxiliary variables, P is thus repre-
sentable by a system of linear inequalities.

Lastly, let α (β, P ) be linear in β. Then Z (A (P )) = A (P )
and hence ∀a ∈ [−1; 1]

q ∃P ∈ P ∃β ∈ [−1; 1]
n

α (β, P ) =
a, which concludes the proof.

While the parameterization of the controller template in β
(see (4)) is advantageous for computing its set of feasible
parameters in Lemma 4, we need our controller dependent
on x (0) (see (3)) in order to apply it in practice. Since
X (0) = ⟨cX (0) , GX (0)⟩ is a parallelotope, G−1

X (0) exists and

β = G−1
X (0) (x (0)− cX (0)), so that we can write

uff (x (0)) = cUff
+GUff

α
(
G−1

X (0) (x (0)− cX (0)) , P
)
. (5)

As described in Schürmann and Althoff (2021), we can

compute reference inputs u
(0:N−1)
c = cUff

+ GUff
α
(0:N−1)
c

that steer cX (0) to xf . By setting p(k) = α
(i)
c and o(k) = 0,

where k ∈ {1, ...,M}, u
(i)
ff (cX (0)) = u

(i)
c (see (4)) after

inserting cX (0) into (5). Next, we compute the closed-loop
reachable set at t = tf to tune these control parameters.

4.2 Parameterized Closed-Loop Reachable Set

For efficient synthesis, we introduce an approximation of
the undisturbed closed-loop reachable set

R(N)
(
P (0:N−1)

)
=
{
R(N)

(
β, P (0:N−1)

)}
β
, (6)

at time t = tf , where R(N)
(
β, P (0:N−1)

)
is the generating

function according to Def. 2, for the controller parame-
terization P (0:N−1) =

[
P (0) ... P (N−1)

]
for all N piece-

wise constant controllers. This approximate reachable set
is computed by truncating the Taylor expansion of our
undisturbed system dynamics f (x, u) at a desired order
κ ∈ N+ (Althoff, 2013, Sec. 3.1, Eq. 2). The difference
between the approximationR(N)

(
P (0:N−1)

)
and the exact

reachable set becomes small (Althoff, 2013, Sec. 4.2) for
smaller time steps and a higher order κ.

4.3 Controller Computation

To arrive at a tractable problem, we adapt the feedfor-
ward controller optimization from Schürmann and Althoff
(2021) by first computing a zonotope over-approximation
of the parameterized reachable set in (6) for t = tf
in β, i.e., Z

(
R(N) (P )

)
= ⟨cR(N) (P ) , GR(N) (P )⟩. With

P (i) =
[
α
(i)
c , p(i,2), ... p(i,M)

]
from Sec. 4.1, we choose the

optimal matrix of control parameters as

P̂ = argmin
P

∥∥∥[GR(N) (P )](:)

∥∥∥
1
+ µ

∥∥∥[P ](:)

∥∥∥
1
,

s.t. P = P (0:N−1),

P (i) ∈ P, ∀i ∈ {0, ..., N − 1} ,
R(N) (P ) ⊆ Xff ,

(7)

where R(N) (P ) ⊆ Xff can, for example, be checked using
Schürmann and Althoff, 2021, Lemma 2, and µ ≥ 0 is a
user-specified penalty for large inputs. While R(N) (P ) ⊆
Xff checks the tightened state constraints only at a discrete



point in time, we verify that state constraints X are met
at all times during feedback control optimization (see (2)).

The feedforward control for each step i ∈ {0, ..., N − 1} is

then obtained by substituting P̂ = P̂ (0:N−1) into (5), i.e.

u
(i)
ff (x (0)) = cUff

+GUff
α
(
G−1

X (0) (x (0)− cX (0)) , P̂ (i)
)
.

Subsequently, we discuss the properties of our approach.

5. DISCUSSION OF THE ALGORITHM

In this section, we discuss two noteworthy aspects of our
approach: First, we show in Sec. 5.1 that our approach is
a generalization of Schürmann and Althoff (2021) under
the parallelotope assumption of Uff , X (0) made in Sec. 3.
In Sec. 5.2 and Sec. 5.3, we analyze our algorithm with
respect to its online and offline complexity, respectively.

5.1 Generalization of Combined Control

We only have to show the generalization of the feedforward
controller, since the feedback controller is identical. In the
following, we explicitly consider the index i for the control
parameters.

We start by proving that for κ = 1 and a control template
linear in β with o(1) = 0, i.e.

uff

(
β, P (0)

)
= cUff

+GUff

(
p(0,1) +

n∑
k=1

p(0,k+1)βk

)
, (8)

we arrive at the same cost function as in Schürmann and
Althoff, 2021, Theorem 1.

To compute the parameterized reachable set at time t =

tf , we formulate a new state z =
[
xT uT

]T
with a

new initial set Z(0)
(
P (0)

)
=

{[
cX (0) +GX (0)β
uff

(
β, P (0)

) ]}
β

. The

corresponding dynamics are ż = f̂ (z) =
[
f (x, u)

T
0T
]T

.

Let Â = df̂(z)
dz

∣∣∣
z = z̄

=

[
A B
0 0

]
, where z̄ =

[
x̄T ūT

]T
is the linearization point of the extended system f̂ (z),

A = ∂f(x,u)
∂x

∣∣∣
x=x̄
u=ū

, and B (z̄) = ∂f(x,u)
∂u

∣∣∣
x=x̄
u=ū

. The reachable

set at time t = r with r = tf
N is then given by

R̂(1)
(
P (0)

)
= eÂrZ(0)

(
P (0)

)
. (9)

By using

eÂr =

[∑∞
k=0

(Ar)k

k! ,
∑∞

k=1
Ak−1rk

k! B
0, I

]
=

[
eAr,

∫ r

0
eAτdτB

0, I

]
,

(9) becomes

R(1)
(
P (0)

)
= eArX (0) ⊕

∫ r

0

eAτdτB
{
uff

(
β, P (0)

)}
β
,

(10)
which is identical to what is given in Schürmann and
Althoff, 2021, Lemma 1 (proof) for the first step.

By iterative application of the above, the parameter-
ized reachable set R(N)

(
P (0:N−1)

)
is thus identical to

Schürmann and Althoff (2021). Because κ = 1, this reach-
able set is represented by a zonotope and thus (7) is
identical to the optimization problem in Schürmann and
Althoff, 2021, Theorem 1, resulting in the same controller.

5.2 Offline Complexity

While we cannot provide the overall complexity due to
the usage of nonlinear programming, we subsequently
discuss the offline complexity of different components of
our approach.

Reachability Analysis For a fixed κ, reachability analysis
using Althoff (2013) is polynomial in the number of state
variables n when appropriate reduction methods are used.

Center Trajectory Since the center trajectory is com-
puted analogously to Schürmann and Althoff (2017a), no
general complexity bound is available. However, efficient
methods exist (Betts, 2010).

Feedforward Controller Optimization Since (7) is a non-
linear programming problem, there is no general bound
for its complexity. In practice however, it can be efficiently
solved to a local optimum, since both the objective func-
tion as well as all constraints can be expressed as polyno-
mials, and thus Jacobians and Hessians can be computed
in polynomial time.

Feedforward Control Parameters and Polynomial Compo-
sition The complexity of evaluating the feedforward con-
troller in (5) is dominated by the complexity of polynomial
composition. For a fixed controller order, the number of
monomials of the result is polynomially upper bounded
for each input dimension, and each monomial requires a
multiplication of at most n polynomials of fixed degree,
raised to a power of at most π. Thus, the computational
complexity is polynomial in the number of state variables.

5.3 Online Complexity

In contrast to the computational complexity for the offline
computations, we can show that the online complexity is
polynomial in the number of state variables.

Feedforward Control Computing the control feedforward
input at t ∈ τ (i) requires evaluating (5), which is of
polynomial complexity in the number of state variables.

Feedback Control Denote the abstraction of our undis-
turbed system in Sec. 4.2 by ẋ = h (x, u). The feedfor-
ward trajectory is then obtained as the solution to ẋff =
h (xff , uff (x (0) , t)). Thus, online application of the con-
troller requires simulation of xff (t), which can be achieved
in polynomial time by, for example, using MATLAB’s
Runge-Kutta-based solver ode45 1 . Further, we need to
execute one matrix-vector multiplication as well as one
vector-vector addition in (3), which are also of polynomial
complexity.

1 https://mathworks.com/help/matlab/ref/ode45.html

https://mathworks.com/help/matlab/ref/ode45.html
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Fig. 1. Reachable sets of our novel approach with κ = 2,
π = 2 (red) and the feedforward reachable set from
Schürmann and Althoff (2021) using zonotopes (blue)
and polynomial zonotopes (cyan) for the van-der-Pol
system.

6. RESULTS

We use the CORA toolbox (Althoff, 2015) for reachability
analysis and the AROC toolbox 2 for controller synthesis.
All simulations are run on an Intel i7-9700k with 16GB
of RAM and MATLAB 2020b with parallel computing.
We denote the final, closed-loop reachable set by Rcl (·),
which is attained by applying the synthesized controller.
We first synthesize a controller for a variant of the van-der-
Pol system in Sec. 6.1, and then synthesize a controller for
a high-fidelity single-track model in Sec. 6.2.

6.1 Van-der-Pol Oscillator

A controlled van-der-Pol system can be described by

ẋ1 = x2,

ẋ2 =
(
1− x2

1

)
x2 − x1 + u+ w,

where x ∈ R2 is the state, u ∈ R denotes the control
input, and w ∈ R is the disturbance to the system. The

initial set is given by X (0) =
〈
[1.4 2.4]

T
,diag ([0.6 0.4])

〉
,

the input set by U = Uff = ⟨0, 2⟩, and the disturbance
is given by W = ⟨0, 0.1⟩. The target state is xf =

[1.9336 −0.4665]
T

and the final time is tf = 1. In this
example, we compare our novel feedforward control law
with that from Schürmann and Althoff (2021), where both
consist of N = 4 piecewise constant control laws.

Synthesizing a quadratic feedforward controller using our
new approach with abstraction order κ = 2 takes around 7
seconds, while computing the linear feedforward controller
from Schürmann and Althoff (2021) as implemented in
AROC takes around 4 seconds. Fig. 1 depicts the achieved
final reachable sets of the new approach (in red) and
the feedforward approach from Schürmann and Althoff
(2021), for which we computed the reachable set using
both zonotopes (blue) and polynomial zonotopes (cyan).
This comparison clearly shows the superiority of our novel
approach.

2 https://tumcps.github.io/AROC/

6.2 High-Fidelity Single-Track Model

By modeling vehicles using simplified dynamics, e.g. the
kinematic single-track vehicle model (Schürmann and Al-
thoff, 2021), important effects, such as understeering or
oversteering, are not considered. Therefore, we use the
six-dimensional benchmark example described in Althoff
et al., 2017, Sec. 3. Due to large nonlinearities in this
system, the approach from Schürmann and Althoff, 2021
in AROC is not able to produce a feasible solution.

The state of this system is given by x =
[
β Ψ Ψ̇ v sx sy

]T
,

where β is the slip angle, Ψ and Ψ̇ are the yaw angle and
yaw angle rate, respectively, v is the longitudinal velocity,
and sx, sy denote the two spatial coordinates of the vehicle.

Further, the input to the system is given by u = [δ v̇]
T
,

where δ is the steering angle of the front wheel and v̇ is
the longitudinal acceleration.

We set X (0) = ⟨cX (0) , GX (0)⟩ with cX (0) = [0 0 0 20 0 0]
T

and GX (0) = diag ([0.2 0.02 0.2 0.2 0.2 0.2]). The final

target state is xf = [0 0 0 20 20 0]
T
, the available input

set is U = ⟨0,diag ([0.4 9.81])⟩, and the disturbance set is
W = ⟨0,diag ([0.004 0.1])⟩. Lastly, let tf = 1, N = 5, and
X = ⟨xf , GX (0)⟩.
Choosing a linear controller based on a second-order ab-
straction, we compute a feasible solution to (2) in around
4.5 minutes (12.5 seconds for feedforward computation).
Fig. 2 shows projections of the closed-loop reachable set
that is obtained by applying the synthesized controller to
our system. Thanks to the constrained set of states X , the
final reachable set is contained in the shifted initial set.

7. CONCLUSION

We introduced a new approach to solving reach-avoid
problems while provably satisfying input and state con-
straints. To the best of our knowledge, we synthesize
polynomial control laws using reachability analysis for the
first time. By not limiting the order of abstraction, the
parameterized reachable set more accurately reflects the
exact reachable set. This leads to a better control perfor-
mance, which was validated by our experimental results,
albeit at the cost of increased computational effort.

Possible future work should focus on improving the perfor-
mance for larger input sets, and computing tighter feasible
parameter sets for higher-degree control templates. Fur-
ther, reducing computational effort for the feedback syn-
thesis should be a focus of future research, as it currently
accounts for the majority of total computation time.
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