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Abstract II 
 

Scan-to-BIM is a process of creating Building Information Model of existing buildings 

and sights. The semantic information must be extracted from the scan, which is gen-

erally represented as a 3D point cloud. 

The presented work evaluates the data preparation for point cloud segmentation by 

deep learning. In the preparation process, a point cloud is segmented and classified 

in order to create different data sets that serve as input for a neural network. The 

neural network KPConv is then used to evaluate the performance on these data sets.  

The goal of this thesis is to evaluate the effects of different segmentation and classi-

fication approaches on the performance of the neural network. Varying the data set 

and the parameters of the neural network, multiple experiments are conducted to 

compare the results and thus draw conclusions on how to best prepare a point cloud 

for the training of a neural network for point cloud segmentation.  
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Zusammenfassung III 
 

Scan-to-BIM ist ein Prozess, bei dem ein Building Information Model für Bestandbau-

ten erstellt wird. Dabei werden die semantischen Informationen aus den gescannten 

Daten extrahiert, die meist als Punktwolke vorliegen.  

Die hier präsentierte Arbeit untersucht die Datenaufbereitung für die Punktwolken-

Segmentierung durch Deep Learning. Bei der Datenaufbereitung wird eine Punktwol-

ke segmentiert und klassifiziert, um daraus verschiedene Datensätze zu erstellen, 

die daraufhin als Eingangsdaten für ein neuronales Netz dienen. Im Anschluss wurde 

das neuronale Netz KPConv verwendet, um die verschiedenen Datensätze auszu-

werten. 

Das Ziel dieser These ist es, die Auswirkungen verschiedener Herangehensweisen 

für die Segmentierung und Klassifizierung auf die Leistung des neuronalen Netzes zu 

untersuchen. Dafür wurden die verschiedenen Datensätze und Parameter in mehre-

ren Experimenten getestet und die Ergebnisse verglichen, um daraus stichhaltige 

Rückschlüsse zu ziehen, wie die Datenaufbereitung für das Trainieren eines neuro-

nalen Netzwerkes für die Punktwolken-Segmentierung am besten durchzuführen ist. 
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1  Introduction and Motivation 1 
 

There are two major technological, innovative trends that, combined, create a great 

benefit to all stages of the construction industry. The first trend is the usage of Build-

ing Information Models (BIM) that enables architects, engineers, interior designers, 

manufacturers, and project managers to collaborate on the most complex projects in 

real-time and with unprecedented precision (Borrmann, König, Koch, & Beetz, 2015, 

p.V). The second trend is the handling of big datasets by using machine learning al-

gorithms and deep learning to gather and create digital models of real-world objects 

and processes. This revolution of data processing finds its way into all areas of in-

dustry and helps to automate various decision tasks (Chollet, 2018, sec.1.1). One of 

these tasks combines the two trends mentioned above: the segmentation and classi-

fication of point clouds by deep learning. By mastering this task, Building Information 

Models can be created more rapidly and more cost-efficient (Johnson, 2017).  

This thesis presents a project in which Kernel Point Convolution (KPConv), a convo-

lutional neural network for point clouds, is tested on a data set that was created by 

segmenting and classifying a point cloud collected by the Chair of Computational 

Modeling and Simulation at the Technical University of Munich. By conducting vari-

ous experiments, it is tried to analyse the results and make suggestions on how to 

improve the data preparation process.  

In the first part of this thesis, the author explains the scan-to-BIM process in order to 

illustrate the problem at hand. Afterwards, the author attempts to cover the funda-

mentals of deep learning and introduces various neural networks for point clouds.  

In the second part of this thesis, the author presents his own project, which includes 

an extensive data preparation process in which a point cloud is segmented and clas-

sified in order to train the neural network. Subsequently, the experiments are pre-

sented, and the results are discussed.  

In the end, some problems are raised, and suggestions are made on how to conduct 

further research on the topic. 

1 Introduction and Motivation 
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This chapter presents the process of scan-to-BIM, explains the fundamentals of ma-

chine learning and neural networks, and gives an overview of current neural net-

works that can process point clouds and gather valuable information from this kind of 

data.  

2.1 Scan-To-BIM 

According to the US National Building Information Modeling Standard Committee, 

Building Information Modeling (BIM) can be understood as a “digital representation of 

physical and functional characteristics of a facility” (National Institute of Building 

Sciences (ed.), 2007, p.21). This digital model of the facility not only helps in the col-

laboration of many companies but also eases the consistent use of the digital infor-

mation, which makes error-prone work redundant and increases productivity and 

quality of the building process (Borrmann, König, Koch, & Beetz, 2015, p.3).  

Application 

An increasingly important aspect of BIM is the design and construction in existing 

contexts (Borrmann, König, Koch, & Beetz, 2015, p.371, 372). The application in this 

field can be divided into several categories such as demolition, redevelopment, mod-

ernization, maintenance, and repair (Borrmann, König, Koch, & Beetz, 2015, p.371, 

372). These applications incorporate existing components as well as new ones, and 

both must be modelled in order to use BIM for planning, constructing, and managing 

the build (Borrmann, König, Koch, & Beetz, 2015, p.371, 372).  

For the purpose of financial and legal certainty, detailed information about the exist-

ing building must be available (Borrmann, König, Koch, & Beetz, 2015, p.373, 375). It 

is not an uncommon practice, though, to hand in the instructions handwritten on an 

as-completed drawing, which presents many challenges to the company under con-

tract (Borrmann, König, Koch, & Beetz, 2015, p.373, 375). To create a BIM of the 

existing building on which construction is to be done, the 2D-drawing is scanned, and 

2 Theoretical Background 
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software is used to reconstruct the building as a 3D digital representation (Borrmann, 

König, Koch, & Beetz, 2015, p.373, 375). An example of this is shown below. 

 

Figure 1: Creating a BIM from a 2D-Blueprint (Borrmann, König, Koch, & Beetz, 2015, p.376) 

Another area in which scan-to-BIM methods are used is in the surveying and digital 

representation of 3D city models (Borrmann, König, Koch, & Beetz, 2015, p.177). 

These can not only be used for visualization and augmented reality applications but 

also for systems like telematics, navigation, and other complex simulations 

(Borrmann, König, Koch, & Beetz, 2015, p.177).  

Furthermore, scan-to-BIM is not only needed to create the initial digital model but, as 

part of the facility management, can be used to update the data within the BIM 

(Borrmann, König, Koch, & Beetz, 2015, p.385).  

During construction, the scan-to-BIM process can be of great benefit (Maalek, 2021, 

p.2). If it is done more frequently, it can not only be useful for the initial creation of the 

3D representation but also for progress monitoring, dimensional quality checking, 3D 

BIM updating, and digital twin generation (Maalek, 2021, p.2).   

Scan-to-BIM Process 

To gather the spatial data, a 3D laser scanner is set up on a tripod (B1M, 2017). The 

laser scanner then rotates, and the points at which the laser beam is reflected are 

recorded as coordinates relative to the scanner or other objects (B1M, 2017). A rea-

sonable number of points can be called a point cloud (B1M, 2017). The surface of the 

objects within the scanned area can now be found in the point cloud, consisting of 

many individual points (B1M, 2017). At the same time as the scan, the 3D laser 



2  Theoretical Background 4 
 

scanner captures images of the scanned area (B1M, 2017). This allows the point 

cloud to be colourized by assigning a colour value to each point (B1M, 2017).   

 

Figure 2: The Trimble TX8 in its portable case and on the tripod (B1M, 2017) 

 

Figure 3: Render of a colorized point cloud with the software CloudCompare (point cloud collected by the Chair of 
Computational Modeling and Simulation) 

Depending on the application purpose, the parameters for the scan can be set before 

scanning (B1M, 2017). One of these parameters is the Resolution of the scan, which 

determines the number of points recorded each second (B1M, 2017). This can re-

duce or increase the number of pints in total and can affect the accuracy of the scan 

(B1M, 2017). Another parameter is the rotation radius, which can be set to a full cir-

culation of 360 degrees or less (B1M, 2017). Thel later eases the process of only 

scanning a certain area that was not fully captured in a previous scan (B1M, 2017).  

The scanning process can be done by one person; thus, compared to conventional 

surveying, the scanning part is not very laborious (B1M, 2017). Furthermore, the 

scanning process is less time-consuming and therefore has a monetary advantage 

over other surveying methods (B1M, 2017). After the data is collected, it is calibrated 

by software and is then ready to be shared into the project’s data environment (B1M, 

2017).  



2  Theoretical Background 5 
 

The challenge is to convert the point cloud into semantic information (Maalek, 2021, 

p.2). This process is very time-consuming if it is done manually (Macher, Landes, & 

Grussenmeyer, 2017, p.3). Therefore, the automation of this process is one of great 

interest and a prominent field of study. To further explain the details of this study, the 

next two sections explain the machine learning process and the use of neural net-

works to solve the challenge of point cloud segmentation and object classification.  

2.2 Machine Learning 

In general, one can say that machine learning is one of the building blocks that make 

up modern artificial intelligence research, and deep learning is a part of machine 

learning (Chollet, 2018, chap.1.1). With that said, the author first gives an overview of 

machine learning before explaining deep learning and neural networks in the subse-

quent section.  

Introduction to Machine Learning 

“Machine Learning is about extracting knowledge from data” (Müller & Guido, 2016, 

chap.1). Prior to machine learning, the task of classification was accomplished more 

or less efficiently by using “handcoded rules of ‘if’ and ‘else’ decisions” (Müller & 

Guido, 2016, chap.1.1) in order to make the software more intelligent. This way of 

programming might be useful for domains for which the following prerequisites are 

true:  

1. Humans have a good understanding of the problem at hand and  

2. The problem to solve or the task to perform does not change over time (Müller 

& Guido, 2016, chap.1.1).  

If one of these prerequisites does not apply, the problem becomes unsolvable, or the 

attempts of solving it become unsustainable because “[c]hanging the task even 

slightly might require a rewrite of the whole system” (Müller & Guido, 2016, chap.1.1). 

Instead of having to understand the process and then develop the software that 

encompasses all the known rules, software engineers can focus on the machine 

learning algorithm and then let the computer assess the data and find the rules 

behind it (Chollet, 2018, chap.1.1). The downside for this process is that instead of 

knowledge about the problem, now, software engineers need large amounts of data 

to feed to the algorithm (Chollet, 2018, chap.1.1).  



2  Theoretical Background 6 
 

 

Figure 4: Classical way of programming vs. machine learning (own representation, in context of Chollet, 2018, 

chap.1.1) 

Machine Learning Categories 

Machine Learning algorithms can be divided into two categories: 

1. Supervised learning and  

2. Unsupervised learning (Joshi, 2020, p.33). 

Supervised learning requires a set of labelled data or samples (Joshi, 2020, p.33). 

This is feasible if the output is predefined (Joshi, 2020, p.33). In classification, this 

would include a list of examples and the corresponding classes (Joshi, 2020, p.33). 

Unlike unsupervised learning, the number of classes of this classification process is 

known beforehand (Joshi, 2020, p.33). After the learning process is completed, the 

model is then fed with a new dataset and can make a prediction into which class 

each element should be categorized (Joshi, 2020, p.33).  

Unsupervised learning does not require a labelled dataset (Joshi, 2020, p.33). This 

kind of algorithm is often used to find some form of structure in the training data. An 

example of this kind of algorithm would be clustering (Joshi, 2020, p.33).  

There are other machine learning algorithms, like semi-supervised learning, which 

uses a partially labelled dataset to complete the clustering with the corresponding 

names for each cluster, and reinforcement learning which is specifically designed for 

an ever-changing environment (Rebala et al., 2019, p.22). Since this thesis will focus 

on supervised learning models, the other models mentioned above will not be 

discussed.  

There are numerous models used to solve classification and regression problems; 

some of them are linear regression, logistic regression, and random forest using 

decision trees (Rebala et al., 2019, p.25, 77). 
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To outline the general idea of these algorithms, the following presents an overview of 

the linear regression model.   

Linear Regression 

The data generally consists of input data and some distinctive output (Rebala, Ravi, 

& Churiwala, 2019, p.26). The kind of input data for each record can be called fea-

ture, and the output is the value to be predicted (Rebala, Ravi, & Churiwala, 2019, 

p.26). The goal of the learning process is to find the relationship between the input 

data and the output, which is expressed by the coefficient for each type of input data 

(Rebala, Ravi, & Churiwala, 2019, p.26). A multi-dimensional linear model would 

therefore look like the following (Rebala, Ravi, & Churiwala, 2019, p.26):  

 𝑦 = 𝜃𝑦 = 𝜃0 + 𝜃1∗𝑥1 + 𝜃2∗𝑥2 + 𝜃3 ∗ 𝑥3 + ⋯ (2.2.1) 

𝑦 =  𝑣𝑎𝑙𝑢𝑒 𝑡𝑜 𝑏𝑒 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 

𝑥𝑖  =  𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑓𝑜𝑟 𝑖𝑡ℎ 𝑓𝑒𝑎𝑡𝑢𝑟𝑒 𝑡ℎ𝑎𝑡 𝑖𝑚𝑝𝑎𝑐𝑡𝑠 𝑡ℎ𝑒 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑦 

𝜃𝑖 = 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝑡ℎ𝑎𝑡 𝑑𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑒𝑠 𝑡ℎ𝑒 𝑐𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 𝑜𝑓 𝑥𝑖  𝑡𝑜 𝑡ℎ𝑒 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑦 

Choosing the linear regression model, one assumes that the relationship between 

the data can be represented by a linear function (Rebala, Ravi, & Churiwala, 2019, 

p.28). To solve the problem of finding the coefficients that result in the closest ap-

proximation of the data representation, there are two methods available: the Normal 

Method and the Gradient Descent Method (Rebala et al., 2019, p.28).  

Normal Method 

Using the Normal Method, the hypothesis can be represented by a matrix equation 

(Rebala, Ravi, & Churiwala, 2019, p.28): 

 𝑋 ∗ 𝜃 = 𝑌 (2.2.2) 

𝑋 = 𝑚𝑎𝑡𝑟𝑖𝑥 𝑜𝑓 𝑑𝑖𝑚𝑒𝑛𝑡𝑖𝑜𝑛𝑠 (𝑚, 𝑛 + 1);  𝑚 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑎𝑡𝑎 𝑝𝑜𝑖𝑛𝑡𝑠;  𝑛 + 1 =

 𝑓𝑖𝑟𝑠𝑡 𝑐𝑜𝑙𝑢𝑚𝑛 𝑤𝑖𝑡ℎ 𝑒𝑥𝑝𝑙𝑖𝑐𝑖𝑡 𝑓𝑒𝑎𝑡𝑢𝑟𝑒 𝑎𝑛𝑑 𝑛 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠  

𝜃 = 𝑐𝑜𝑙𝑢𝑚𝑛 𝑚𝑎𝑡𝑟𝑖𝑥 𝑜𝑓 𝑑𝑖𝑚𝑒𝑛𝑡𝑖𝑜𝑛 (𝑛 + 1, 1), ℎ𝑎𝑣𝑖𝑛𝑔 𝑣𝑎𝑙𝑢𝑒𝑠 𝜃0 𝑡ℎ𝑟𝑜𝑢𝑔ℎ 𝜃𝑛 

𝑌 = 𝑐𝑜𝑙𝑢𝑚𝑛 𝑚𝑎𝑡𝑟𝑖𝑥 𝑜𝑓 𝑑𝑖𝑚𝑒𝑛𝑡𝑖𝑜𝑛 (𝑚, 1);  ℎ𝑎𝑣𝑖𝑛𝑔 𝑣𝑎𝑙𝑢𝑒𝑠 𝑌1 𝑡ℎ𝑟𝑜𝑢𝑔ℎ 𝑌𝑚 

It is going to be very rare, in most cases even impossible, to find an exact solution for 

every coefficient 𝜃𝑖, hence it is aimed for values so that 𝑋 ∗ 𝜃 is as close to 𝑌 as pos-
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sible (Rebala, Ravi, & Churiwala, 2019, p.29). To accomplish that, the value of 𝑌𝑝 is 

introduced, which represents the predicted value 𝑋 ∗ 𝜃 = 𝑌𝑝 (Rebala, Ravi, & 

Churiwala, 2019, p.29). The error (𝑌 − 𝑌𝑝) over all data entries is to be minimized, 

and since it is unknown if the error is going to be positive or negative over all the data 

entries, the loss function is defined as follows (Rebala, Ravi, & Churiwala, 2019, 

p.29): 

 𝐽(𝜃) = (𝑌 − 𝑋𝜃)𝑇(𝑌 − 𝑋𝜃) (2.2.3) 

Note that by multiplying the transposed column matrix with itself, the error is squared, 

and therefore it does not matter if the error is positive or negative (Rebala, Ravi, & 

Churiwala, 2019, p.29). In the next step, one uses differential calculus to minimize 

the loss function (Rebala, Ravi, & Churiwala, 2019, p.29). For that, one needs to find 

the value at which the slope of the curve is 0 (Rebala, Ravi, & Churiwala, 2019, 

p.29). If one derives the loss function and equates it to 0, the result is the following 

(Rebala, Ravi, & Churiwala, 2019, p.26): 

 2𝑋𝑇𝑋𝜃 − 2𝑋𝑇𝑌 = 0 (2.2.4) 

 𝑋𝑇𝑋𝜃 = 𝑋𝑇𝑌 (2.2.5) 

 𝜃 = (𝑋𝑇𝑋)−1𝑋𝑇𝑌 (2.2.6) 

With these equations, it is possible to determine the values for the column matrix 𝜃 

and therefore enables the program to predict a new outcome 𝑌 for a new data entry 

(Rebala, Ravi, & Churiwala, 2019, p.29). The problem with this method is that not 

every matrix is invertible, and even if it is, the computation of the matrix inversion 

𝑋𝑇𝑋 might be very computationally intense (Rebala, Ravi, & Churiwala, 2019, p.29). 

To avoid that, one can also use the Gradient Descent Method (Rebala, Ravi, & 

Churiwala, 2019, p.29).  

Gradient Descent Method 

When using the Gradient Descent Method, one calculates the error over all the data 

entries as follows (Rebala, Ravi, & Churiwala, 2019, p.30):  

 𝐽(𝜃) =
1

2𝑚
∑ (ℎ(𝑥𝑖) − 𝑦𝑖)2𝑚

𝑖=1  (2.2.7) 

ℎ(𝑥𝑖) = 𝑡ℎ𝑒 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑣𝑎𝑙𝑢𝑒 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑖𝑡ℎ 𝑑𝑎𝑡𝑎𝑠𝑒𝑡 

𝑚 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑎𝑡𝑎 𝑝𝑜𝑖𝑛𝑡𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑑𝑎𝑡𝑎𝑠𝑒𝑡 
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𝐽(𝜃) = 𝑖𝑠 𝑡ℎ𝑒 𝑡𝑜𝑡𝑎𝑙 𝑒𝑟𝑟𝑜𝑟 𝑡𝑒𝑟𝑚 𝑜𝑓 𝑡ℎ𝑒 𝑚𝑜𝑑𝑒𝑙 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡ℎ𝑒 𝑑𝑎𝑡𝑎𝑠𝑒𝑡𝑠 

The squaring of the error for each dataset not only ensures that the term of the sum 

is positive at all times, but it also gives the loss function some important properties 

that one can take advantage of (Rebala, Ravi, & Churiwala, 2019, p.31). The curve 

has only one minimum value and the slope of the curve increases, the further one is 

from the local minima (Rebala, Ravi, & Churiwala, 2019, p.31). Moreover, the value 

of the slope gives the direction in which the minimum is to be found (Rebala, Ravi, & 

Churiwala, 2019, p.31). This means that for any given coefficient, one might find a 

better fitting one if one determines the slope of the loss function for that coefficient 

(Rebala, Ravi, & Churiwala, 2019, p.31). Since the loss function depends on multiple 

variables, the partial derivative is set to (Rebala, Ravi, & Churiwala, 2019, p.31): 

 
𝜕𝐽

𝜕𝜃𝑖
=

1

𝑚
∑ (ℎ(𝑥𝑖) − 𝑦𝑖) ∗ 𝑥𝑗

𝑖𝑚
𝑖=1      (𝑓𝑜𝑟 𝑗 = 0, 1, 2, … , 𝑛)  (2.2.8) 

𝑆𝑢𝑏𝑠𝑐𝑖𝑝𝑡 𝑗 𝑟𝑒𝑓𝑒𝑟𝑠 𝑡𝑜 𝑡ℎ𝑒 𝑣𝑎𝑙𝑢𝑒𝑠 𝑐𝑜𝑟𝑟𝑒𝑛𝑠𝑝𝑜𝑛𝑑𝑖𝑛𝑔 𝑡𝑜 𝑗𝑡ℎ 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 

𝑆𝑢𝑏𝑠𝑐𝑖𝑝𝑡 𝑖 𝑟𝑒𝑓𝑒𝑟𝑟𝑠 𝑡𝑜 𝑡ℎ𝑒 𝑣𝑎𝑙𝑢𝑒𝑠 𝑐𝑜𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑖𝑛𝑔 𝑡𝑜 𝑖𝑡ℎ 𝑑𝑎𝑡𝑎𝑠𝑒𝑡 

𝑥𝑗
𝑖  𝑟𝑒𝑓𝑒𝑟𝑠 𝑡𝑜 𝑡ℎ𝑒 𝑣𝑎𝑙𝑢𝑒 𝑐𝑜𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑖𝑛𝑔 𝑡𝑜 𝑗𝑡ℎ 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 𝑖𝑛 𝑖𝑡ℎ 𝑑𝑎𝑡𝑎𝑠𝑒𝑡 

After setting an initial value for each coefficient 𝜃𝑗 and determining the slope of the 

loss function, the coefficient can be updated by the following correction (Rebala, 

Ravi, & Churiwala, 2019, p.32): 

 𝜃𝑗 = 𝜃𝑗 − 𝛼 ∗
𝜕𝐽

𝜕𝜃𝑖
 (2.2.9) 

The 𝛼 in this correction is also called the learning rate and determines how fast the 

correction is undertaken (Rebala, Ravi, & Churiwala, 2019, p.33). With that said, it 

should also be mentioned that 𝛼 is not to be chosen too large; otherwise, it could 

lead to overshooting, which results in a divergence instead of converging to the opti-

mal value (Rebala, Ravi, & Churiwala, 2019, p.33).  
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Figure 5: Divergence vs. convergence, depending on learning rate (own representation, in context of Rebala, 
Ravi, & Churiwala, 2019, p.33) 

There are no algorithms that can determine the best value for the learning rate; trial 

and error is still the most used heuristic to accomplish that (Rebala, Ravi, & 

Churiwala, 2019, p.33). 

Having explained machine learning, the next section introduces neural networks, 

which are a part of machine learning and use the same basic principles.  

2.3 Neural Network 

Even though it is often claimed that Neural Networks (NNs) mimic the human brain, it 

is important to mention that NNs are merely inspired by how the human brain works 

(Chollet, 2018, chap. 1.1). They are rather mathematical frameworks on how to rep-

resent data (Chollet, 2018, chap. 1.1). 

NNs are used for complex applications for which machine learning does not provide 

a good enough accuracy (Rebala, Ravi, & Churiwala, 2019, p.103). Moreover, with a 

large amount of data, NNs can perform better than classical machine learning mod-

els, as seen in Figure 6 (Jha & Pillai, 2021, chap.1). Another reason for the recently 

gained attention of NNs is the increased computing power, following Moore’s law 

which states that the processing power of computers is doubling every two years 

(Jha & Pillai, 2021, chap.1). Furthermore, machine learning is heavily dependent on 

feature engineering, while NNs perform well on complex problems without any hand-

engineered features and thus outperform conventional machine learning algorithms 

(Jha & Pillai, 2021, chap.1). 
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Figure 6: Performance of deep learning models vs. classical machine learning models (Jha & Pillai, 2021, chap.1) 

Every NN is made up of a combination of different layers, which then makes up the 

architecture of this NN (Jha & Pillai, 2021, chap.1). If a NN has more than two of 

these layers, it is a deep learning network, also called a deep learning model (Jha & 

Pillai, 2021, chap.1).  

Neurons and Activation Functions 

The building blocks which make up a layer is also called a neuron (Rebala, Ravi, & 

Churiwala, 2019, p.106, 107). These neurons can also be represented as a graph 

with nodes and edges (Rebala, Ravi, & Churiwala, 2019, p.106, 107). The mathemat-

ical expression 𝑦 = 𝑚1𝑥1 ∗ 𝑚2𝑥2 can be described as shown in Figure 7, 𝑚𝑖 being the 

weights and 𝑥𝑖 being the input data values (Rebala, Ravi, & Churiwala, 2019, p.106, 

107). 𝑦 represents the predicted value of the model (Rebala, Ravi, & Churiwala, 

2019, p.106, 107). This kind of neuron usually makes up the first layer of the NN 

(Rebala, Ravi, & Churiwala, 2019, p.106, 107). 

 

Figure 7: Input layer neuron (own representation, in context of Rebala, Ravi, & Churiwala, 2019, p.106) 



2  Theoretical Background 12 
 

To introduce a non-linearity into the model, the perceptron not only adds up the 

product of the input data values and the weights of the edges, but instead, a function 

is implemented to produces a new value (Rebala, Ravi, & Churiwala, 2019, p.107). 

This function is also called the activation function, and there are several types of non-

linear activation functions commonly used (Rebala, Ravi, & Churiwala, 2019, p.107). 

Some of them are listed in the table below.  

Table 1: Common activation functions (own assembly of Jha et al., 2021, chap.1, graphs directly from Jha & Pillai, 
2021, chap.1) 

Activation Function Graph 

Sigmoid 

 

𝒚 = 𝒇(𝒙) =
𝟏

𝟏 + 𝒆−𝒙
 

 

TanH 

 

𝒚 = 𝒇(𝒙) =
𝒆𝒙 − 𝒆−𝒙

𝒆𝒙 + 𝒆−𝒙
 

 

Rectified Linear Units (ReLUs) 

 

𝒚 = 𝒇(𝒙) = 𝐦𝐚𝐱 (𝟎, 𝒙) 

 

Leaky ReLU 

 

𝒚 = 𝒇(𝒙) = 𝒎𝒂𝒙(𝒌𝒙, 𝒙) 
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The next layer and the following ones consist of neurons that calculate the output 

corresponding to their activation function (Rebala, Ravi, & Churiwala, 2019, p.106, 

107). The argument for the activation function is the sum of all the outputs of the pre-

vious neurons 𝑥𝑖, multiplied with their corresponding weight 𝑤𝑖, and the bias 𝑏 

(Vasilev, 2019, sec.1).  One of these neurons is illustrated in the figure below. In this 

case, the Sigmoid function is chosen as the activation function.  

 

Figure 8: Neuron with activation function (own representation, in context of Vasilev, 2019, sec.1, graph directly 
from Jha & Pillai, 2021, chap.1) 

Layers 

A layer is a module that handles data in the form of a tensor. It takes one tensor as 

an input and outputs another tensor (Chollet, 2018, chap.3.1). The weights of each 

layer are learned by using gradient descent (Chollet, 2018, chap.3.1). These weights 

hold therefore the knowledge of the NN (Chollet, 2018, chap.3.1).  

The architecture of a NN is determined by the kind of layers and the combination of 

such layers (Chollet, 2018, chap.3.1). The layers can be combined into useful data 

transformation pipelines (Chollet, 2018, chap.3.1). It is important to note that these 

layers must be compatible, which means that the output of one layer must be a ten-

sor in a shape that is accepted as input by the next layer (Chollet, 2018, chap.3.1). 

This part gives an overview of the commonly used layers.  

Within Fully Connected Layers, all neurons that make up that layer are connected to 

all the neurons within the next layer (Jha & Pillai, 2021, chap.1). Fully connected lay-

ers are part of most deep learning classifiers (Jha & Pillai, 2021, chap.1). 
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Figure 9: A multi-layer fully connected network (Ramsundar & Zadeh, 2018, chap.4) 

Convolutional Neural Networks (CNN) are successfully applied for most computer 

vision problems (Jha & Pillai, 2021, chap.1). CNNs use Convolutional Layers to con-

volve a filter over the input (Jha & Pillai, 2021, chap.1). The following figure shows a 

simple example of a convolutional computation:  

 

Figure 10: Convolutional layer (Jha & Pillai, 2021, chap.1) 

Deconvolutional Layers constitute the opposite of Convolutional Layers in that they 

reverse the convolutional process (Jha & Pillai, 2021, chap.1). These kinds of layers 

enhance the input data and are used for networks that generate or reconstruct imag-

es (Jha & Pillai, 2021, chap.1). An example can be seen in the following diagram: 

 

Figure 11: Deconvolutional layer (Jha & Pillai, 2021, chap.1) 
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When remembering past inputs while dealing with present ones is important, Recur-

rent Layers can be of great value (Jha & Pillai, 2021, chap.1). This is usually the case 

when the data is sequential (Jha & Pillai, 2021, chap.1). A Recurrent Layer imparts 

memorizing capabilities to the network (Jha & Pillai, 2021, chap.1).  

A Pooling Layer is similar to the convolutional layer in that it downsizes the input da-

ta. E.g., the Max-Pooling operation takes the highest value from an array (usually 

2x2) and that way, reduces the size of the input by a factor of 2 (Chollet, 2018, 

chap.5.1). There are other kinds of Pooling Layer such as Min-Pooling and the Mean-

Pooling, but the most used Pooling Layer is the Max-Pooling (Chollet, 2018, 

chap.5.1). An example can be seen below: 

 

Figure 12: Max-Pooling layer (Jha & Pillai, 2021, chap.1) 

Dropout Layers play an important role in the training process because they prevent 

co-adaption (Ramsundar & Zadeh, 2018, chap.4). Co-adaption appears when a neu-

ron has learned a useful representation and other neurons deeper in the network rely 

on this particular neuron for information (Ramsundar & Zadeh, 2018, chap.4). This 

often results in poor predictions on new data because instead of learning a general 

rule, it relies on the feature learned by the neuron, which could also come from a 

quirk in the dataset (Ramsundar & Zadeh, 2018, chap.4). Looking at the learning 

process, co-adaption is comparable to memorizing the dataset, which is an inefficient 

way of training the network and results in mediocre performance on new data (Jha & 

Pillai, 2021, chap.1).  

Within the Dropout Layer some neurons are randomly dropped out, which means that 

the corresponding weight and therefore the contribution to the corresponding activa-

tion function is dropped to zero (Ramsundar & Zadeh, 2018, chap.4). The two graphs 

below show a fully connected layer (a) and a dropout layer (b) (Ramsundar & Zadeh, 

2018, chap.4). It is important to note that the Dropout Layer is only applied in the 
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training process and should not be activated when making a prediction (Ramsundar 

& Zadeh, 2018, chap.4).  

 

Figure 13: Dropout layer (Ramsundar & Zadeh, 2018, chap.4) 

Structure of NN 

The general structure of a NN can be seen in the following diagram:  

 

Figure 14: Structure of a NN (Own representation, in context of Chollet, 2018, chap.3.1) 

The different layers can be combined as necessary (Chollet, 2018, chap.3.1). There 

are no set rules, and often this is done by trial and error, but the combination of the 

layers highly depends on the kind of NN that is to be built (Chollet, 2018, chap.3.1). 

With the input data, a prediction can be calculated and compared with the target val-

ue (Chollet, 2018, chap.3.1). These two values are fed into the loss function, which 

computes the loss score, which is an indicator of how good the prediction is (Chollet, 
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2018, chap.3.1). The optimizer then updates the weights of the layers and the NN 

moves on to the next dataset (Chollet, 2018, chap.3.1).  

The choice of the loss function is a very important aspect of the training process and 

depends on the problem being solved by the NN (Chollet, 2018, chap.3.1). The fol-

lowing shows some commonly used loss functions: 

 

Figure 15: Loss functions (Peltarion, 2021) 

Binary cross-entropy is a loss function that is used for classification with only two 

classes (Chollet, 2018, chap.3.1). For multivariant classification, categorical cross-

entropy is used (Chollet, 2018, chap.3.1). The mean squared error is mainly used for 

regression tasks (Chollet, 2018, chap.3.1). There are more loss functions being de-

veloped for very specific deep learning problems (Chollet, 2018, chap.3.1). There 

also has been an attempt to make the loss function adaptive by including another 

parameter called ‘robustness’ to the loss function. It has been shown that this can 

increase the results for computer vision problems (Barron & Google Research, 

2019).  
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2.4 Neural Networks for Point Clouds 

After covering the theory of machine learning and NNs, the following explains the 

uniqueness of point cloud segmentation and some of the NNs recently developed for 

that task. 

Properties of Point Sets 

Point Clouds have specific properties that need to be addressed before discussing 

the architecture of the NNs further.  

The point cloud is a type of geometric data structure that inhabits certain properties. 

For one, point clouds are unordered, which means that the network consuming point 

clouds must be invariant to permutations of the input data (Qi, Su, Mo, & Guibas, 

2017). Secondly, points within a point cloud cannot be processed individually be-

cause they are not single items but only part of certain objects (Qi, Su, Mo, & Guibas, 

2017). These objects can only be detected by capturing local structures, which 

means that neighbouring points must be taken into consideration (Qi, Su, Mo, & 

Guibas, 2017). Finally, transformations like rotation and translation of points should 

not have any impact on the category or the segmentation of the point cloud (Qi, Su, 

Mo, & Guibas, 2017).  

PointNet 

PointNet is a CNN that solves the problem of the increasingly large footprint in case 

one chooses to represent the geometric data as voxels (Vasilev, 2019, sec.4). This 

idea stems from the image recognition and classification problem, in which the image 

is represented by a 2D tensor with three slices, one for each channel (Vasilev, 2019, 

sec.4). Before PointNet, researchers tried to represent a point cloud the same way by 

using voxel representation (Vasilev, 2019, sec.4). The following picture shows an 

example of how a point cloud could be represented as voxels within a grid: 

 

Figure 16: Point cloud, voxel representation (Vasilev, 2019, sec.4) 
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The problem with this representation comes into effect if the point cloud is sparse, 

which means that the footprint of the representation is much larger than the infor-

mation that needs to be represented, which in the case shown above only consists of 

eight points (Vasilev, 2019, sec.4). To avoid this, PointNet represents the input data 

as vectors, which eliminates the representation of ‘empty space’ and only represents 

the points that were recorded (Vasilev, 2019, sec.4). The input data is represented as 

a n*3 tensor with an arbitrary number of points (Vasilev, 2019, sec.4). This is possi-

ble because all the weights of the network are shared among all points (Vasilev, 

2019, sec.4).  

The following diagram shows the architecture of the PointNet network:  

 

Figure 17: PointNet architecture (Qi, Su, Mo, & Guibas, 2017) 

PointNet is a multi-layer perceptron (MLP), a feed-forward network that consists of 

fully connected layers and max-pooling layers (Vasilev, 2019, sec.4). The input 

passes through the input transform T-Net, where the input is unsampled to n*1,024 

with 64-, then 128-, then 1024-unit fully connected layers (Vasilev, 2019, sec.4). After 

that, a max-pooling operation is applied, which outputs a 1*1,024 vector, which is 

then fed to another MLP with a 512- and a 256-unit fully connected layer (Vasilev, 

2019, sec.4). By these, the data is downsampled to a 1*256 vector and then multi-

plied by the 256*9 matrix of the global shared learnable weights (Vasilev, 2019, 

sec.4). This results in a 3*3 matrix which is multiplied with the original input point to 

produce the final output of a n*3 tensor (Vasilev, 2019, sec.4). The feature transform 

uses a very similar T-Net, only that the input and output of this transformation is a 

n*64 tensor, which results in a 64*64 matrix (Vasilev, 2019, sec.4). the following dia-

gram shows the T-Net-pipeline: 
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Figure 18: T-Net-pipeline (Vasilev, 2019, sec.4) 

After the feature transform, the data is then gradually upsampled with 64, then 128, 

and finally 1,024 fully connected layers (Qi, Su, Mo, & Guibas, 2017). This output has 

the form of a n*1,064 tensor and is then fed to a max-pooling layer, which results in a 

1,024-dimensional output vector that represents the aggregated information among 

all n points (Qi, Su, Mo, & Guibas, 2017). The max-pooling is a symmetric operation 

and makes sure that permutation has no effect on the output, and compared to other 

symmetric functions, like average pooling and sum, the max-pooling showed the 

highest accuracy (Qi, Su, Mo, & Guibas, 2017).  

 

Figure 19: Accuracy of different pooling layers (Qi, Su, Mo, & Guibas, 2017) 

PointNet then differentiates between two tasks: segmentation and classification (Qi, 

Su, Mo, & Guibas, 2017). The overall goal is to assign each point of the point cloud 

to a class (e.g., chair, lamp, table) (Qi, Su, Mo, & Guibas, 2017).  

For the classification, the output vector of the max-pooling serves as an input of mul-

tiple fully connected layers resulting in a k-dimensional vector (Vasilev, 2019, sec.4). 

A k-way softmax function calculates the values for each class (Vasilev, 2019, sec.4). 

To test the accuracy of the classification of PointNet, Qi et al. (2017) used the Mod-

elNet40, a dataset that represents 12,311 CAD models that are divided into 40 object 

categories (Qi, Su, Mo, & Guibas, 2017). The training dataset includes 9,843 models 

and the accuracy can be tested against a test set of 2,468 models (Qi, Su, Mo, & 

Guibas, 2017). PointNet performs well in classification tasks, reaching higher mIoU 

on points than two traditional models (Qi, Su, Mo, & Guibas, 2017). 

The segmentation, on the other hand, requires local and global knowledge of the 

point cloud (Vasilev, 2019, sec.4). As can be seen in the diagram (Figure 17), this 
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knowledge comes from the intermediate n*64 tensor and the global feature, which is 

then concatenated into a n*1,088 tensor (Vasilev, 2019, sec.4). By a series of fully 

connected layers, the vector of each point is downsampled to a n*128 tensor 

(Vasilev, 2019, sec.4). Finally, the last fully connected layer has m units, one for each 

class and a softmax activation (Vasilev, 2019, sec.4). In order to test the accuracy of 

the segmentation of PointNet, Qu et al. (2017) used the ShapeNet part data set, 

which includes 16,881 shapes of 16 categories (Qi, Su, Mo, & Guibas, 2017). The 

accuracy of the segmentation also proved to be above average (2.3% mean IoU im-

provement) (Qi, Su, Mo, & Guibas, 2017).  

Another advantage that must be considered is the fact that PointNet performs well 

even if the density of the points (mentioned in chap. 2.1 as resolution) decreases (Qi, 

Su, Mo, & Guibas, 2017). Tested against two data sets, the accuracy only drops by 

2.4% and 3.8% when the number of points is reduced by 50% (Qi, Su, Mo, & Guibas, 

2017). The same robustness has been found considering outliers: The accuracy re-

mains over 80% even if 20% of the points are outliers (Qi, Su, Mo, & Guibas, 2017). 

Qi et al. (2017) also proved that PointNet is very efficient considering the computa-

tional cost, which makes it scalable and therefore applicable for larger data sets (Qi, 

Su, Mo, & Guibas, 2017). 

PointNet++ 

The problem with PointNet is that local structures induced by the metric are not cap-

tured by the network (Qi, Yi, Su, & Guibas, 2017). To solve this problem, the authors 

of PointNet introduced PointNet++, which is a hierarchical neural network that ex-

tracts local features that are then grouped into higher-level features (Qi, Yi, Su, & 

Guibas, 2017). By repeating this process, the features of the whole point cloud are 

captured (Qi, Yi, Su, & Guibas, 2017).  
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Figure 20: Hierarchical feature learning architecture of PointNet++ (Qi, Yi, Su, & Guibas, 2017) 

The diagram above shows the hierarchical feature learning architecture of the Point-

Net++ network (Qi, Yi, Su, & Guibas, 2017). On the left, it can be seen that the pro-

cess consists of a number of set abstractions. Each abstraction reduces the number 

of elements and is made of three key layers: Sampling Layer, Grouping Layer, 

PointNet Layer (Qi, Yi, Su, & Guibas, 2017).  

The Sampling Layer selects a subset of points from the input data using iterative far-

thest point sampling (FPS) (Qi, Yi, Su, & Guibas, 2017). Given the same number of 

centroids, FPS has better coverage of the entire point set than random sampling (Qi, 

Yi, Su, & Guibas, 2017).  

The Grouping Layer takes a point set of the size 𝑁 × (𝑑 + 𝑁) together with the coor-

dinates of a set of centroids of size 𝑁 ×  𝑑 and the output, which are groups of point 

sets, which is of the size 𝑁′ × 𝐾 × (𝑑 + 𝐶)(Qi, Yi, Su, & Guibas, 2017). 𝐾 represents 

the number of points in the neighbourhood of centroid points (Qi, Yi, Su, & Guibas, 

2017). There are two methods that can find the points within a neighbourhood:  

1. The ball query selects all the points that are within a certain radius of the que-

ry point (Qi, Yi, Su, & Guibas, 2017).  

2. The 𝐾 nearest neighbour (kNN) is a range query that selects a certain num-

ber of points (Qi, Yi, Su, & Guibas, 2017).  

Since the ball query is more generalizable than the kNN, it is the preferred method of 

selecting the neighbouring points (Qi, Yi, Su, & Guibas, 2017).  

The PointNet Layer is applied to learn local patterns (Qi, Yi, Su, & Guibas, 2017). 

These relationships between points can be learned using relative coordinates and 
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point features (Qi, Yi, Su, & Guibas, 2017). The layer takes in 𝑁′ local regions of 

points with the data size 𝑁′ × 𝐾 ×  (𝑑 + 𝐶) and the output data has the size 𝑁′  ×

(𝑑 + 𝐶′) (Qi et al., 2017). 

The specialty of PointNet++ is the density adaptive PointNet layers that can learn to 

combine features from regions of different scales (Qi, Yi, Su, & Guibas, 2017). This is 

done by two types of adaptive layers:  

1. Multi-Scale Grouping (MSG) applies grouping layers of different scales, fol-

lowed by PointNets, to extract the features of each scale (Qi, Yi, Su, & 

Guibas, 2017). Afterwards, these features are combined into multiscale fea-

tures (Qi, Yi, Su, & Guibas, 2017). By using random input dropout, a portion 

of the input data is not submitted to the learning process, and that way, the 

network is presented with input data of various sparsity and varying uniformity 

(Qi, Yi, Su, & Guibas, 2017).  

2. Multi-resolution Grouping (MRG) is a computationally expensive and time-

consuming operation because PointNet is applied at large-scale neighbour-

hoods for every centroid point (Qi, Yi, Su, & Guibas, 2017). The authors of 

PointNet++ suggest that the features of a region of some level are a concate-

nation of two vectors (Qi, Yi, Su, & Guibas, 2017). The first vector aggregates 

features of a subregion from the lower level; the other is obtained by pro-

cessing all raw points in a local region by a single PointNet (Qi, Yi, Su, & 

Guibas, 2017). That way, the first layer provides more information if the densi-

ty is high (Qi, Yi, Su, & Guibas, 2017). If the density is low and the point cloud 

is sparse, the second vector is weighted higher (Qi, Yi, Su, & Guibas, 2017). 

The PointNet++ network shows even higher accuracies than the PointNet network 

(Qi, Yi, Su, & Guibas, 2017). Moreover, it is very robust even if the point cloud is 

sparse or incorporates sampling deficiencies (Qi, Yi, Su, & Guibas, 2017).   

KPConv 

Another NN that operates directly on point clouds is the Kernel Point Convolution 

(KPConv), and it does so without any intermediate representation (Hugues, et al., 

2019). The general idea is that a set of customizable 3D filters is defined by convolu-

tion and these filters are applied on a local level of the point cloud (Hugues, et al., 

2019). Inspired by image-based convolution, KPConv uses a set of kernel points to 

define the area where each kernel weigh is applied (Hugues, et al., 2019). There is 
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no constrain on the number of kernels which makes the design more flexible 

(Hugues, et al., 2019). The illustration below shows the operation on 2D points. The 

input points (grey) are convolved by a set of kernel points (black) with the help of the 

filter weights on each point (Hugues, et al., 2019). 

 

Figure 21: KPConv operating on a 2D input (Hugues, et al., 2019) 

When dealing with image convolution, the kernel is aligned with the image, which 

leads to a weight matrix 𝑊𝑘 that is then multiplied with each pixel feature vector 

(Hugues, et al., 2019). Due to its unstructured form and variance in density and point 

number, the points in the point cloud are not aligned with the kernel used by KPConv 

(Hugues, et al., 2019). Therefore, the relative position of each point and the kernel 

points allows for a correlation coefficient, which forms the weight matrices that are 

multiplied with the point features (Hugues, et al., 2019). The two different practices 

can be seen below (Hugues, et al., 2019). 

 

Figure 22: Comparison: image convolution (left) and KPConv (right) (Hugues, et al., 2019) 

An important part of the KPConv design is the subsampling strategy which ensures a 

consistent density of the input points for each layer by using the grid subsampling 

(Hugues, et al., 2019). With this strategy, all the empty grid cells can be neglected, 

which not only alleviates the computational cost but establishes robustness against 

varying densities of the point cloud (Hugues, et al., 2019). 
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After the subsampling, the number of points is progressively reduced by using either 

a max-pooling layer or a convolution layer (Hugues, et al., 2019). By doubling the cell 

size for every layer, the receptive field of the KPConv increases (Hugues, et al., 

2019). The inputs for the following KPConv layer are the points and their features 

and the matrix with the neighbourhood indices (Hugues, et al., 2019). The size of the 

neighbourhood matrix is defined by the largest number of neighbours in the point 

cloud (Hugues, et al., 2019). This creates so-called shadow neighbours, which are 

unused elements that are overlooked by the convolution computation (Hugues, et al., 

2019). 

The network architecture differs depending on the task at hand (Hugues, et al., 

2019). The classification network (KP-CNN) consists of five layers, each with two 

convolutional blocks (Hugues, et al., 2019). Similar to an image convolution, the last 

layer aggregates the features by using global average pooling and fully connected 

and softmax layers (Hugues, et al., 2019). The segmentation network is called KP-

FCNN and is a fully convolutional network (Hugues, et al., 2019). KP-FCNN uses the 

same encoder as KP-CNN (Hugues, et al., 2019). The decoder uses nearest upsam-

pling to aggregate the final features (Hugues, et al., 2019). These features are 

passed between intermediate layers of the encoder and the decoder by using skip 

links (Hugues, et al., 2019). 

Hugues et al. (2019) also propose a deformable version of the convolution operator 

in order to learn local shifts by deforming the convolution kernels (Hugues, et al., 

2019). This makes the convolution kernels fit the point cloud geometry better and can 

lead to higher performance (Hugues, et al., 2019). An example of this can be seen 

below. 

 

Figure 23: Deformable kernels (Hugues, KPConv Method) 

The convolutional kernels can also vary in number (Hugues, et al., 2019). An exam-

ple of how this might look can be seen below, K being the number of kernels 
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(Hugues, et al., 2019). Although it might be assumed that a higher number of kernels 

allows the spatial structures to be more complex, Hugues et al. (2019) have shown 

that the improvement of the mIoU eventually reaches a limit (Hugues, et al., 2019).  

 

Figure 24: Different number of kernels in a stable position (left), mIoU and number of kernel points (right) 

(Hugues, et al., 2019) 
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This chapter explains the methodology chosen for this project. It covers the methods 

behind the data preparation and the metric by which the neural network and the data 

preparation was evaluated. At the end of this chapter, the workflow of the project is 

illustrated.  

Neural networks for point cloud segmentation are assessed by training and testing 

them with common datasets (Hugues, et al., 2019). There are many datasets availa-

ble that can be used, not only to gain feedback on the overall performance but also to 

compare the accuracy of the model with different networks that operated on the 

same data set (Hugues, et al., 2019). Some of the experiments that have been done 

use different data sets to evaluate the segmentation and the classification part of 

their network (Hugues, et al., 2019).  

For this project, the author used a point cloud that was collected by the Chair of 

Computational Modeling and Simulation at the Technical University of Munich.  

Data Preparation 

To train and test the neural network, the point cloud had to be dissected and labelled. 

This process of data preparation can be very time-consuming, but it is an important 

step to validate the effectiveness of neural networks. For this project, the holdout-

method is used, which splits the labelled data set into two categories, the training set 

and the test set (Chollet, 2018, chap.4.1).  

 

Figure 25: Holdout-Method, training data set and test data set (own representation, in context of Chollet, 2018, 
chap.4.1) 

3 Methodology 
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After the data preparation is completed, the training set is used to train the neural 

network. In this phase of the process, part of the training set becomes the validation 

data set which helps to find a suitable configuration within the given parameters 

(Chollet, 2018, chap.4.1). After validation, the validation data can be used for training 

purposes (Chollet, 2018, chap.4.1). When the training is done, the test set is then 

used to evaluate the neural network (Chollet, 2018, chap.4.1). It is important to note 

that the test set cannot take any part in the training process (Chollet, 2018, chap.4.1). 

Any adjustments to the model caused by the performance of the test data set can 

impair the assessment of the generalization ability of the neural network (Chollet, 

2018, chap.4.1). 

The disadvantage of the holdout-method comes to effect when the data set is small, 

and the training and validation data set does not contain enough samples for each 

class to be representative (Chollet, 2018, chap.4.1). If this is the case, a cross-

validation would deliver different results (Chollet, 2018, chap.4.1).  

Evaluation Metric 

To evaluate the results of segmentation and classification of the neural network, it is 

common to use the metric of the Intersection-Over-Union (IoU), which is superior to 

the regular accuracy (like pixel accuracy in image classification) for it evades the 

problem of class imbalance (Tiu, 2019). This problem occurs if the number of points 

is subject to fluctuation among the classes, which leads to an overemphasis on larger 

classes (Tiu, 2019). The accuracy of smaller classes is largely overlooked (Tiu, 

2019). In comparison, the IoU weights each class by the number of points in the 

ground truth (Tiu, 2019). The IoU is the overlap of the predicted segmentation and 

the ground truth divided by the union between the predicted segmentation and the 

ground truth (Tiu, 2019). 



3  Methodology 29 
 

 

Figure 26: IoU, intersection over union (Tiu, 2019) 

Workflow 

The chart below shows the workflow of this project. The segmentation and classifica-

tion of the point cloud was comparatively time-consuming and made up a big part of 

the work. After this part was completed, the data set could then be tested. After the 

first results, a few changes were made. In order to draw sound conclusions, these 

changes had to be done one at a time. After comparison with the previous results, 

one could determine how to conduct the next experiment. The following diagram 

shows the overall workflow: 

 

Figure 27:Workflow of the project (own representation) 

Due to limited computational power, the experiments had to be carefully chosen. To 

accurately assess the work done by segmenting and classifying the point cloud, the 

work on the data set continued after the first experiments had been conducted. By 

changing either the parameter or the data set, it could be determined why the per-

formance had changed.  



4  Implementation and Experiments 30 
 

In this chapter, the author outlines the implementation of the project. The first part 

explains how the data was prepared. Afterwards, the variations of each data set and 

the parameters are discussed, and the results are presented. 

4.1 Segmentation: Data Preparation 

As mentioned before, the point cloud needed to be segmented and labelled manual-

ly, which requires a software that can visualize the point cloud and allows for various 

operations. Additionally, it must be decided into how many classes of objects the 

point cloud is to be divided. This is only possible by looking at the point cloud in de-

tail.  

For the data preparation, the author used version 2.12 of the software CloudCom-

pare, which is a 3D point cloud (and triangular mesh) processing software 

(CloudCompare, n.d.). The point cloud can be visualized and operated on by using 

various tools and standard plugins (CloudCompare, n.d.).  

The Point Cloud 

The point cloud used for this project derives from a scan of a part of the building of 

the Technical University at the main campus in Munich. The point cloud resembles 

part of the 3rd level of that building and includes offices, hallways, and a part of the 

staircase. Below one can see a satellite image of the Technical University (left) and 

the point cloud top-down (right).  

4 Implementation and Experiments 
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Figure 28: Point Cloud (right) as part of the building at the main campus of the Technical University (satellite im-
age from google.de/maps) 

The point cloud consists of 57,355,397 individual points, each with the XYZ-

coordinates of the Euclidean space, the RGB colour values, the original cloud index, 

and the surface normals. An example of values of points can be seen below: 

 

Figure 29: Raw data of the point cloud (own representation) 

In order to segment the point cloud, a general division of the whole was made to 

handle the large amount of data more efficiently. For that, the point cloud was divided 

into smaller parts, generally office blocks and hallways. There were some points that 

could be regarded as ‘noise’ because they were outside the building and therefore 

not within the space of interest. With a few exceptions, each room was then separat-

ed from another, and hallways were divided into several parts. The individual parts 

can be seen below:  
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Figure 30: Dividing the point cloud (left), zoom in on the subdivision (top right), subdivision without the outside 

'noise' (bottom right) 

The office blocks and the hallways each had a different size and were therefore di-

vided into different numbers of rooms and parts. The division by rooms was chosen 

to make it easier to cut the least number of objects so that when bringing the point 

cloud together, the objects that were cut in two could be brought together more easi-

ly. That way, all the objects could still be considered as whole and submitted to the 

network for training or testing purposes. The table below shows the divisions and 

subdivisions.  

Table 2: Division and subdivisions of the point cloud 

1st Division 2nd Division Folders 

Noise Noise Noise 

Office Blocks Office_Block1 Office1.1 
Office1.2 
Office1.3 
Office1.4 
Office1.5 
Office1.6 
Office1.7 



4  Implementation and Experiments 33 
 

Office_Block2 Office2.1 
Office2.2 
Office2.3 
Office2.4 

Office_Block3 Office3.1 
Office3.2 
Office3.3 
Office3.4 

Office_Block4 Office4.1 
Office4.2 
Office4.3 

Office_Block5 Office5.1 
Office5.2 
Office5.3 

Hallways Hallway1 Hallway1.1 
Hallway1.2 
Hallway1.3 
Hallway1.4 

Hallway2 Hallway2.1 
Hallway2.2 
Hallway2.3 

Hallway3 Hallway3.1 
Hallway3.2 

After dividing the point cloud into smaller parts, the segmentation process was under-

taken.  

Point Cloud Segmentation with CloudCompare 

To dissect the point cloud into its elementary parts and objects that could then be 

classified, the segmentation tool was used. The view of the point cloud could be ad-

justed so that the screen serves as a 2D projection on which the segmentation tool 

could be applied. The segmented part could then be singled out, or points that did 

not belong to a specific object could be cut off from the point cloud representing an 

object. An example of the process can be seen below.  



4  Implementation and Experiments 34 
 

Table 3: Segmentation process (own representation using the software CloudCompare) 

Top view of an office without 

ceiling and overhead lights 

 

Zoom in on an object which is 

to be segmented; here it is an 

office chair; first segmentation 

is done 

  

After segmentation from the 

top view, points that do not 

belong to this object are seg-

mented out from another an-

gle. 

  

Finally, a third angle is used to 

separate parts of the desk 

from the object. 
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The result is the office chair, 

represented by all the points 

belonging to this object.  

 

This process is repeated until all the points are segmented and can be identified as 

belonging to a certain class. As mentioned before, the objects that were cut by divi-

sion can be merged and assigned to one of the offices or hallways.  

Classification 

By singling out certain objects, the points can then be assigned to a class. It is im-

portant to know what kind of classes there are, and the following gives an overview of 

all of the classes that have been chosen for this point cloud: 
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Table 4: Overview of classes 

Building parts Furniture Items Other 

Ceiling 

Door1 

Frame2 

Elevator 

Exit Sign 

Floor 

Hallway Door 

Overhead Light 

Smoke Detector 

Wall 

Window 

Heating 

Beam 

Wall Lamp 

Fixed Light 

Handrail 

Steps 

Skylight 

Hallway Window 

Air System 

Bookshelf 

Cabinet 

Closet 

Desk Area3 

Floor Unit 

Showcase 

Standing Lamp 

Table 

Bench 

Couch 

Chair 

Office chair4 

 

Dustbin 

Fan 

Monitor 

Plant 

Fire Extinguisher 

Printer 

Overhead Projector 

Partition 

Sign 

Desk Lamp 

 

Noise 

Clutter 

Testing the hypothesis that the data preparation has an impact on the performance of 

the neural network, the data has been split into two separate data sets, Data Set I 

and Data Set II. Details will be explained and shown in section 4.2. 

Training Set and Test Set 

It is imperative that, in order to draw any conclusions from the results, the data must 

be looked at very carefully. In doing so, one finds various irregularities within the 

point cloud. To work around this issue, the training and test data was carefully cho-

sen to avoid the testing on parts of the point cloud that are unique and were therefore 

not subject to training. One example of this is the staircase, which appears only once 

 

1 Includes frame for Data Set I 
2 Used in Data Set II to specify the class door 
3 Used for Data Set I to differentiate between tables and desks 
4 Used in Data Set II to differentiate between normal chairs and office chairs 
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in the point cloud. This was intentionally chosen for training purposes only. It was 

ensured that the test sets were of regular size and not overly large or small. This 

would change the proportion of the test set and training set unnecessarily.  

 

Figure 31: View of the staircase, which is unique in the point cloud, therefore chosen for training purposes only 

(own representation with CloudCompare) 

The test set contains Office1.4, Office3.4, Office5.3, Hallway1.2, and Hallway2.2. 

This gives the test data enough diversity over all different kinds of offices and hall-

ways without using unique parts of the point cloud for testing purposes.  

Due to the limited number of parts within the point clouds, the test set chosen for the 

first five experiments does not contain objects of all the classes. The following clas-

ses are not included in the first test set: elevator, hallway door, plant, bench, fixed 

light, handrail, couch, overhead projector, partition, sign, desk lamp, hallway window, 

air system. If these classes are not predicted in the test set, the mIoU is set to the 

overall mIoU to not distort the overall performance.  

4.2 Variations in Data Sets and Parameters 

For the evaluation, this project used the neural network KPConv, which was de-

scribed in section 2.4. An example of the various parameters chosen for the experi-

ments can be seen in Appendix C. 

In seeking to establish general rules on what makes the neural network perform bet-

ter, multiple experiments have been conducted; each consisted of the training and 

testing of the full data set. The variations can be categorized into variation within the 

data set and variation of parameters of the point cloud. Following each experiment 

was a thorough examination of the results. The following diagram shows the detailed 

path the author took to evaluate the data sets and the various parameters: 
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Figure 32: Path to evaluate the effects of different data sets and parameters, the numbers represent the number 
of the experiment 

Data Sets 

Data Set I and Data Set II share many of the classes, as can be seen in Table 4, but 

there are some minor changes that were applied to Data Set II in order to test various 

hypotheses. These changes contain the following: 

1. The class ‘chair’ was divided into a class ‘chair’ and ‘office chair’. The purpose 

of this split is to analyse the performance after differentiating between two sim-

ilar but also quite distinctive objects. With more attention to these details, the 

overall performance of the classes could be different from the performance of 

only one class. The following figure shows the distinction between the class 

‘chair’ and the class ‘office chair’: 

 

Figure 33: Split of the class 'chair' (Data Set I) into the classes 'chair' and 'office chair' (Data Set II) 

2. Another change was splitting an object into two different objects; in this case, 

the author chose to split the object ‘door’ into the objects ‘door’ and ‘frame’ 

and classified them accordingly. This can be distinguished from the above be-

cause, unlike the chairs, the objects of this class were not only classified dif-

ferently but each object was again segmented. The aim of this change is to 

reduce the complexity of the object itself and analyse the results to see if this 
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path should be pursued further. The segmentation can be seen in the follow-

ing: 

 

Figure 34: Segmentation of the object 'door' (Data Set I) into the objects 'door' and 'frame' (Data Set II) 

3. The third change was similar to the first one, only reversed. In order to see if 

two very similar classes could be more easily recognized by the neural net-

work if the classes are to be combined, the class ‘table’ and the class ‘desk 

area’ were merged into the class ‘table’. This was done because the distinc-

tion between the two was not always clear, and combining them might reduce 

the wrongful classification of one as the other. This might lead to an increase 

in performance within the class and helps to understand the results behind 

change number one.  

4. Other changes result from a previously inconsistent classification within the 

Data Set I. To differentiate the class ‘monitor’ even more, two objects were re-

sorted into the class ‘clutter’ because they were of a different kind (bigger size, 

mounted to the wall). Also, there were some objects of the class ‘skylight’ 

which were wrongly classified as ‘window’, which might have led to an incon-

sistency in the training and testing process. By making these amends, using 

the Data Set II should lead to better performance for these particular classes.   

Parameters 

The first change that distinguishes the first experiment from the second consists of a 

difference in the training strategy. While the first experiments weighted the classes 

considering the number of points, the second experiment considered them equal, 

disregarding the number of points in each class. 

The second change in parameter was the reduction of the subsampling size (dl), 

which is one of the key parameters of the KPConv.  The subsampling size was re-

duced from 0.05 m to first 0.03 m and then to 0.02 m. The following picture shows 
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the points chosen for the subsampling in one part of the point cloud. These are the 

subsampling points for the experiment 12-16-37, and the distance between the points 

is 0.05 m.  

 

Figure 35:Subsampling size (own representation, created with CloudCompare) 

After having explained the variations on the data set and the parameters, the next 

section will show the results of each of the experiments. 

4.3 Results 

Value Figure 

The results of each experiment are the IoUs computed for each class after every 

epoch. The number of epochs was set to 500 for each of the experiments. The num-

ber of classes was 42 for Data Set I and 43 for Data Set II. The performance over all 

classes can be expressed by calculating the mean over all classes. The classes that 

do not appear in the Test Set are automatically set to the mean value so that these 

do not have any negative impact on the result. In the following Figure one can see 

the performance of the first experiment over all 500 epochs:  

 

Figure 36: mIoU of experiment 15-26-01 
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The performance increases the most during the first 100 epochs and moves asymp-

totically towards a value close to 60%. It must be noted that even though the change 

in performance is not very great with an increasing number of epochs, the variance of 

each performance is still substantial. In order to evaluate the variations in data sets 

and parameters, the author chose the mean value over the last 100 epochs, which is 

called mIoU_100. That way, the performance chosen to evaluate the variations is not 

coincidentally smaller or larger than the one just before. The max_IoU is considered 

the maximum performance over all epochs and classes.  

The following Table shows the experiments that were done in chronological order 

and the data sets and parameters that were used. It also shows the mIoU_100, the 

max_IoU, and computing time for the experiment.  

Table 5: Results of all experiments 

Experiment Data Set dl (m) mIoU_100 max_IoU Comp. Time (h) 

15-26-01 Data Set I 0.05 59% 62% 12.4 

08-08-43 Data Set I 0.05 62% 66% 10.5 

12-16-37 Data Set I 0.03 64% 66% 21.4 

15-31-06 Data Set II 0.03 69% 72% 21.3 

11-41-59 Data Set II 0.02 72% 74% 45.1 

08-52-41 Data Set II 0.05 65% 68% 10.6 

Even though the performance of each experiment seems to improve progressively, 

one must distinguish between the performance of the various classes to draw any 

conclusion on what might have caused the improvement. The performance of clas-

ses was also measured by taking the mIoU_100 for each class.  

Results for different Data Sets 

Below one can see the results for the classes that have been undergone various 

changes while making Data Set I and Data Set II. The other parameter stayed the 

same over the two experiments. 
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Table 6: Results for different data sets (in percent) 

Class 12-16-37 15-31-06 

Chair 89 78 

Office chair - 91 

Door 77 66 

Frame - 67 

Desk area 74 - 

Table 26 80 

Monitor 90 92 

Window 29 90 

Skylight 13 84 

The different changes discussed in the previous section has led to the following re-

sults:  

1. The separation of the class ‘chair’ into the class ‘chair’ and ‘office chair’ had 

only minor impact on the results. It also appears not to be very conclusive. 

Having a mIoU_100 of 89% using Data Set I, the performance increased 

slightly for the class ‘office chair’ (91%). For the other chairs though, the per-

formance decreased to 78%.  

2. Segmenting the doors and the frames seems to have a negative impact on the 

result. By doing so, the performance decreased from a mIoU_100 of 77% to 

66% for the class ‘door’ and 67% for the class ‘frame’.  

3. Similar findings can be done comparing the performance of the class ‘table’ 

which was combining the class ‘desk area’ and ‘table’ from Data Set I. Merg-

ing the two classes into one increased performance for both classes from 74% 

for desk areas and only 26% for tables to 80% for the combined class.  

4. The most substantial difference in performance can be seen for the classes 

‘window’ and ‘skylight’. The performance went from under 30% to over 80%. 

Also, the class ‘monitor’ appears to be recognized even better if the objects 

are more uniform. The performance increased slightly to 92%.  
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Results for different Parameters 

The first two experiments compare two different training strategies. In the first exper-

iment, all classes are trained on regarding their size, which is the number of points. In 

the second experiment, all classes are considered equally, no matter the number of 

points within the class.  

Treating all classes equally seems to have a positive impact on the performance, es-

pecially for classes of smaller objects like exit signs and smoke detectors. The per-

formance went from almost 1% to 62% for exit signs and from 1% to 23% for smoke 

detectors. Moreover, objects of classes like ‘fan’, ‘monitor’, and ‘wall lamp’ were rec-

ognized much better due to the change. All of these can be described as smaller ob-

jects. A direct comparison between the results can be seen in Table 7. 

By considering all classes equally, the learning curve appears to be steeper. This can 

be seen in the following figure: 

 

Figure 37: Comparison of the mIoU_100 for experiment 15-26-01 (left) and 08-08-43 (right) 
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Table 7:Comparison of mIoU_100 of some classes of the experiments 15-26-01 and 08-08-43 (in percent) 

Class 15-26-01 08-08-43 

Chair 88 91 

Door 75 64 

Exit sign 1 62 

Fan 55 64 

Monitor 85 88 

Smoke detector 1 23 

Standing Lamp 69 75 

Heating  55 57 

Wall lamp 74 83 

Fire extinguisher 77 80 

Experiment 12-16-37 is similar to experiment 08-08-43; the only difference is that the 

subsampling size was set to 0.03 m instead of 0.05 m. Even though the overall per-

formance increased slightly from 62% to 64%, the computation time more than dou-

bled. The same is true when comparing the experiments 15-31-06 and 11-41-59: The 

performance increases by 3%, from 69% to 72%, but the computational time doubled 

yet again, from 21.3 hours to 45.1 hours (see Table 8).  

A direct comparison of some classes of four experiments can be seen in the following 

table:   
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Table 8: Comparison of different subsampling sizes (results in percent) 

 Data Set I Data Set II 

Class 08-08-43 12-16-37 15-31-06 11-41-59 

Subsampling 
size (m) 

0.05 0.03 0.03 0.02 

Comp. Time (h) 10.5 21.4 21.3 45.1 

Cabinet 48 49 48 58 

Dustbin 62 55 67 55 

Exit sign 62 76 48 83 

Fan 64 62 57 46 

Floor 98 97 98 98 

Floor unit 16 18 23 47 

Monitor 88 90 92 93 

Smoke detector 23 26 29 37 

Standing Lamp 75 78 74 76 

Heating 57 67 69 71 

Wall lamp 83 85 86 88 

Fire extinguisher 80 87 90 90 

Printer 10 10 22 12 

It appears that for some classes, e.g., ‘exit sign’, the reduction of the subsampling 

size increased performance on that class dramatically, while other classes, e.g., 

‘floor’, an improvement cannot be observed. For some classes, the performance 

even decreased by lowering the subsampling size. This is the case for the classes 

‘dustbin’ and ‘printer’.  
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This chapter outlines the author’s assessment of the results. Comparing the results 

and looking at the point cloud more closely, the author tries to explain the results.  

5.1 Test Set Limitation 

One of the phenomena that needed to be explained was that with a specification of 

the class ‘chair’, the performance of the new class ‘chair’ decreased by more than 

10%. This is particularly surprising because the performance of the new class ‘office 

chair’ increased by 2%. After a careful analysis, this seemed to be caused by a low 

number of objects in the test data.  

In the test set of Data Set I, there were 13 chairs that needed to be segmented and 

classified. These included office chairs and regular chairs. The network reached a 

mIoU_100 of nearly 90%. After splitting the class into the two classes mentioned 

above, there were only three regular chairs in the test set of Data Set II, but ten office 

chairs. The class with a higher number of objects within the test set appears to have 

a higher performance.   

Table 9: Results of the class 'chair', before and after the split (in percent) 

 12-16-37 (Data Set I) 15-31-06 (Data Set II) 

Class Number of objects mIoU (%) Number of objects mIoU (%) 

Chair 13 89 3 78 

Office chair - - 10 91 

This is not a coincidence. It can be observed that several classes that have a low 

number of objects within the test data also have a low performance. Simultaneously, 

classes that have a higher number of objects within the test data are more often 

classified correctly and inherit a higher mIoU_100. The following graphs show some 

classes to emphasise the correlation between the number of objects and the overall 

performance of that class. Larger objects are not included in these graphs; instead, 

all the classes depict objects of smaller size: chair (office chair), dustbin, fan, monitor, 

overhead lights, showcase, smoke detector, standing lamp, table, heating, beam, 

and wall lamp. 

5 Discussion 
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Figure 38: IoU and number of objects of classes 

On the left, one can see the results for the above-mentioned classes for the experi-

ment 12-16-37, which was done with the Data Set I, and on the right, one can see 

the results for the same classes for experiment 15-31-06, which was done using the 

Data Set II. The orange data points represent the class ‘chair’ (on the left) and the 

classes ‘chair’ and ‘office chair’ (on the right). 

The reason behind this correlation is that wrongfully classified points carry greater 

weight if the overall number of objects is small. This can be shown not only by the 

high performance of classes with a low number of objects in the test set (e.g., fire 

extinguisher) but also by looking at the predictions more closely. For example, in the 

figure below, one can see that the lower part of a chair is classified as ‘table’ or 

‘floor’. The difference is that before the split, this chair represents only one out of 13 

other chairs, and after the split, it accounts for one out of three. Therefore, the per-

formance of chairs decreases from 89% to 78%. On the other hand, if an object oc-

curs only once but is segmented and classified correctly, the performance can still be 

fairly high: The class ‘fire extinguisher’ appears in the test set only once, but since it 

is well segmented and classified, the performance reaches 90%.  

 

Figure 39: Prediction of a chair, wrongfully classified as floor (preds=12) and table (preds=22), experiment 12-16-
37 (Data Set I) in the middle, experiment 15-31-06 (Data Set II) on the right (own creation with CloudCompare) 
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This assumption is also validated by the experiment 08-52-41, for which the test set 

was expanded, and the number of normal chairs increased from three to nine. Even 

with an increased subsampling size, the performance of the class ‘chair’ improved to 

90%.  

The number of objects of one class within the test set should be above six, preferably 

even higher, for the class to be properly represented. If this is not the case, a small 

number of points that were wrongfully classified could carry greater weight and there-

fore misrepresent the performance on that class.  

The point cloud was divided into 31 subdivisions, and for the first five experiments, 

five of them were assigned as the test set. For the last experiment, six of the subdivi-

sions were assigned as test set, which accounts for about 20% of the data set. With 

every assignment of test set and training set, one should be aware of the count of 

objects for each class to ensure sufficient representation. 

5.2 Specialization vs. Generalization 

Unlike the author's prediction, a specialization of classes did not necessarily lead to 

increased performance. As mentioned before, splitting the class ‘chair’ into the clas-

ses ‘office chair’ and ‘chair’ increased the performance of the one (office chair) but 

decreased the performance of the other (chair). In this case, the results indicate that 

the count of objects in the test set is too small. In other instances, it appears to be not 

that easily explained.   

The general idea is that the more uniform the objects of a class are, the better the 

performance on that class. An indication for that would be the class ‘monitor’ in which 

a slight improvement could be observed after taking some objects out of this class 

that did not fit a narrower description. In the process of creating Data Set II, some 

monitors were taken out of the class ‘monitor’ that did not exhibit the standard size 

and were mounted to the wall instead of resting on a desk or cabinet. By making 

these changes, the performance of the class ‘monitor’ could be improved from 90% 

to 92%.  

In the case of furniture, however, specialization proved to be more complicated. In 

Data Set I, the class ‘table’ and the class ‘desk area’ were used to differentiate be-

tween desks and tables. In Data Set II, these two classes were combined to the class 

‘table’, and the performance improved.  



5  Discussion 49 
 

Table 10: mIoU_100 (in percent), comparison of class in Data Set I and Data Set II 

 

Pointing to the same conclusion, the split of the class ‘door’ into ‘frame’ and ‘door’ led 

to a decrease in performance. This cannot be explained by a lower count of objects 

within the test set because each former door was segmented into one frame and one 

door. That way, the number of objects in the test set is the same in Data Set I and 

Data Set II. 

The performance of classes of storage areas like ‘bookshelf’, ‘closet’, ‘cabinet’ and 

‘floor unit’ seems to be consistently mediocre, ranging between 16% and 61%, as 

can be seen in the following table: 

Table 11: mIoU_100 (in percent) of storage areas 

Class 08-08-43 12-16-37 15-31-06 

Bookshelf 61 56 53 

Closet 29 37 35 

Cabinet 48 49 48 

Floor unit 16 18 23 

While closets were frequently classified as wall5, some of the floor units were classi-

fied as cabinets. The following figure shows an example of this:  

 

5 See Appendix B 
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Figure 40: Floor unit wrongfully classified as cabinet (preds=1) 

These observations raise the question if it is necessary to differentiate between a 

cabinet and a floor unit. Might it just be enough to know that these points belong to a 

small piece of furniture that can be used as storage? The same question can be 

asked for the differentiation of frame and door.  

In the author's view, the answer to this question highly depends on the application. 

The degree of specialization of classes must be chosen with the end goal in mind, 

which is to capture all relevant information of the building. If the differentiation of cab-

inets and floor units is important, the rules to differentiate must be clearly defined. If 

this is not the case, it might be more sensible to combine the classes. In some cases, 

this differentiation might not be relevant.  

One could also argue that all relevant information about size and dimensions can be 

done in the post-processing of the segmentation and classification process or even 

within the BIM itself. In that case, it might be more cost-efficient to generalize some 

of the classes and differentiate between objects afterwards. This does not apply to 

the wrongful classification of closets as walls, which would present a challenge if it 

were to be segmented again within the BIM. 

5.3 Subsampling Size and ‘Clutter’ 

By decreasing the subsampling size from 0.05 m to 0.03 m and then again to 0.02 m, 

it can be shown that each reduction improves the performance of the neural network. 

It can be argued, though, that the computational time increases so dramatically that 
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the further reduction is questionable. The following table shows the increase in per-

formance and the increase in computation time.  

 

Figure 41: Subsampling size, computational time (orange, in hours), performance (blue, in percent) 

While the increase of the performance is merely linear, the time it takes to compute 

the weights of the neural network increases exponentially. This becomes unsustain-

able for very small subsampling sizes.  

Another interesting fact is that for some classes, the performance decreases with a 

reduction of the subsampling size. This can be seen in Table 8 for the classes ‘dust-

bin’ and ‘printer’. This cannot be simply explained by the size of the objects, because 

the increased performance of other small classes, namely ‘exit sign’, ‘smoke detec-

tor’ and ‘wall lamp’ show, that the performance of classes of smaller objects can also 

increase by lowering the subsampling size.  

One explanation might be that both, dustbin and printer, are more likely to be classi-

fied as clutter. The following picture shows the prediction of the neural network on 

some points that are supposed to constitute a printer (left). Instead, a large portion of 

the points that belong to the class ‘printer’ are wrongfully classified as ‘clutter’ 

(preds=5.0). This portion increases when the subsampling size is smaller. The pic-

ture at the top shows the prediction after 500 epochs of the experiment 15-31-06 

(dl=0.03 m), the picture at the bottom depicts the prediction after 500 epochs of the 

experiment 11-41-59 (dl=0.02 m).  
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Figure 42: Predictions for printer (left) and dustbin (right) with different subsampling sizes 

The same can be observed comparing the predictions for the class ‘dustbin’. In the 

figure above, on the right, the predictions on the same section can be seen. The one 

at the top is from an experiment using the subsampling size 0.05 m (08-08-43), and 

the one at the bottom was subsampled using the subsampling size 0.03 m (12-16-

37). 

With a decreasing subsampling size, the portion of points classified as ‘clutter’ 

(preds=5.0) increases, which in turn lowers the performance of the class ‘dustbin’ 

because more points of that class are wrongfully classified.  

The question is, how are small items, like dustbins and printers, wrongfully classified 

as ‘clutter’, but other small items, like smoke detectors, wall lamps, and exit signs, 

are not?  
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In the author’s opinion, the reason is that the latter is mounted to the wall (e.g., wall 

lamps) or hanging from the ceiling (e.g., exit signs). Dustbins and printers, on the 

other hand, rest on a cabinet, table, or lay on the floor, which is also true for all ob-

jects classified as ‘clutter’. With that said, the class ‘clutter’ poses an issue that is not 

easily eliminated, namely, that the class ‘clutter’ is a class for all items that either 

cannot be classified in the data preparation process or the occurrence of the item is 

so rare, that the class could not be sufficiently represented.   

The first problem might be eliminated in the future by taking detailed pictures of the 

area in which the point cloud is collected. One could also increase the resolution of 

the point cloud so that objects become more recognizable. This, however, would also 

increase the number of classes within the point cloud.  

The second problem, the rare occurrence of items, could be eliminated by simply in-

creasing the size of the point cloud. One could also argue that most data sets will 

eventually be a collection of various smaller data sets that were all segmented and 

classified using the same convention of classes. But this still does not rule out the 

possibility of having items that are so rare that they only occur once, even in a large 

number of data set.  

In the author’s opinion, it will take a long time and a lot of data until the class ‘clutter’ 

can be eliminated. Instead, the author would suggest creating multiple classes like 

clutter that are an abstraction of a specific shape. These various kinds of clutter 

would each share some properties and features but would include different objects 

that might be rare within the point cloud. That way, the classes ‘clutter’ would be 

more specific, and other classes might not be wrongfully classified as much.  
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In conclusion, it can be said that it is imperative to classify objects consistently. Only 

a small number of wrongfully classified objects can have a severe impact on the per-

formance of the classes involved.  

It is also important to ensure a sufficient number of objects in the test set to receive a 

representative IoU of that class. It has been shown that it is favourable to aim for six 

or more items of the class for classes with individual objects. Compared to other data 

sets, the data set used for this project is still relatively small (e.g., ModelNet40)(Qi, 

Su, Mo, & Guibas, 2017). 

The balance between specialization and generalization of classes must be carefully 

chosen because it might have a great impact on the performance of each class. If the 

distinction between two classes is not properly defined, the neural network performs 

poorly on the classification task. It must be decided if the distinction between objects 

is necessary. In some cases, it might be better to delay this task to post-processing.  

The class ‘clutter’ poses the problem of having a variety of objects which leads to a 

lower performance of related classes. Especially when the subsampling size is de-

creased, the classes that are related to the class ‘clutter’ in object size and location 

are more often wrongfully classified as clutter.  

Recommendation for Action 

In order to receive accurate mIoUs, further research should aim for larger data sets. 

It could also be considered to use a common standard for the data preparation in 

order to share data sets among multiple research teams. The premise is that the 

names of classes are predefined, and the classification and segmentation process 

follows the same guidelines.  

According to the application, it is beneficial for some classes to be generalized and 

merged into one class, while the class ‘clutter’ could increase the performance of 

other classes if it is split into multiple classes with different properties. Only then can 

parameters be adjusted, and investment in computational cost becomes viable.  

 

6 Conclusion 
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Appendix A: Experiment Results 

experiments_no 
15-26-
01 08-08-43 12-16-37  15-31-06 11-41-59 08-52-41 

DataSet 1 1 1  2 2 
2 (larger 
test set) 

Run_time, sec 
44588,1
9 

37643,18
3 

77052,85
4  76657,221 

162422,99
4 38298,511 

Run_time, h 12,4 10,5 21,4  21,3 45,1 10,6 

dl subsampling 0,05 0,05 0,03  0,03 0,02 0,05 

Max_IoU 0,6203 0,6612 0,6608  0,7248 0,7413 0,6821 

Mean_100_IoU 0,5889 0,6211 0,6366  0,6937 0,7223 0,6519 

0: 'bookshelf', 0,5829 0,6143 0,5618 0: 'bookshelf', 0,5252 0,6082 0,6344 

1: 'cabinett', 0,4667 0,4786 0,4899 1: 'cabinett', 0,4760 0,5848 0,6029 

2: 'ceiling', 0,9625 0,9562 0,9612 2: 'ceiling', 0,9649 0,9683 0,9621 

3: 'chair', 0,8782 0,9123 0,8949 3: 'chair', 0,7788 0,8680 0,9050 

4: 'closet', 0,3345 0,2915 0,3660 4: 'closet', 0,3519 0,3091 0,2864 

5: 'clutter', 0,3660 0,3602 0,4073 5: 'clutter', 0,3891 0,3921 0,4162 

6: 'deskarea', 0,7469 0,7289 0,7394 6: 'frame', 0,6686 0,6919 0,5080 

7: 'door', 0,7513 0,6437 0,7723 7: 'door', 0,6647 0,6553 0,6054 

8: 'dustbin', 0,6650 0,6218 0,5546 8: 'dustbin', 0,6693 0,5508 0,6629 

9: 'elevator', 0,5889 0,6210 0,6366 9: 'elevator', 0,6938 0,7223 0,6518 

10: 'exitsign', 0,0060 0,6206 0,7555 10: 'exitsign', 0,4822 0,8341 0,2540 

11: 'fan', 0,5544 0,6386 0,6225 11: 'fan', 0,5652 0,4612 0,5599 

12: 'floor', 0,9838 0,9791 0,9730 12: 'floor', 0,9763 0,9798 0,9780 

13: 'floorunit', 0,1643 0,1607 0,1764 13: 'floorunit', 0,2340 0,4650 0,0836 

14: 'hallwaydoor', 0,7666 0,7638 0,6858 14: 'hallwaydoor', 0,6829 0,7195 0,7095 

15: 'monitor', 0,8481 0,8755 0,9011 15: 'monitor', 0,9184 0,9262 0,8926 

16: 'noise', 0,4853 0,4374 0,5032 16: 'noise', 0,4653 0,5486 0,5389 
17: 'overhead-
light', 0,9021 0,8885 0,9020 

17: 'overhead-
light', 0,8997 0,8993 0,9485 

18: 'plant', 0,5889 0,6210 0,6366 18: 'plant', 0,6938 0,7223 0,6518 

19: 'showcase', 0,9029 0,9023 0,8786 19: 'showcase', 0,9115 0,9087 0,8707 
20: 'smokedetec-
tor', 0,0061 0,2346 0,2644 

20: 'smokedetec-
tor', 0,2913 0,3735 0,1856 

21: 
'standinglamp', 0,6898 0,7489 0,7828 

21: 
'standinglamp', 0,7409 0,7577 0,7336 

22: 'table', 0,3242 0,2846 0,2638 22: 'table', 0,7964 0,8345 0,8072 

23: 'wall', 0,8848 0,8680 0,8936 23: 'wall', 0,8895 0,8911 0,8824 

24: 'window', 0,3180 0,3442 0,2916 24: 'window', 0,8956 0,8832 0,8883 

25: 'heating', 0,5458 0,5672 0,6723 25: 'heating', 0,6861 0,7101 0,5832 

26: 'beam', 0,9520 0,9615 0,9669 26: 'beam', 0,9666 0,9735 0,9630 

27: 'walllamp', 0,7425 0,8284 0,8497 27: 'walllamp', 0,8575 0,8846 0,8355 

28: 'bench', 0,5889 0,6210 0,6366 28: 'bench', 0,6938 0,7223 0,6518 
29: 'fireextinguis-
her', 0,7707 0,7992 0,8679 

29: 'fireextinguis-
her', 0,9032 0,9043 0,8448 

30: 'fixedlight', 0,5889 0,6210 0,6366 30: 'fixedlight', 0,6938 0,7223 0,6518 

31: 'handrail', 0,5889 0,6210 0,6366 31: 'handrail', 0,6938 0,7223 0,6518 

32: 'steps', 0,8717 0,8878 0,8737 32: 'steps', 0,8821 0,8717 0,8852 

33: 'skylight', 0,1249 0,1383 0,1254 33: 'skylight', 0,8380 0,8784 0,8540 
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34: 'couch', 0,5889 0,6210 0,6366 34: 'couch', 0,6938 0,7223 0,6518 

35: 'printer', 0,0688 0,0950 0,0993 35: 'printer', 0,2249 0,1234 0,0545 
36: 'overheadpro-
jector', 0,5889 0,6210 0,6366 

36: 'overheadpro-
jector', 0,6938 0,7223 0,6518 

37: 'partition', 0,5889 0,6210 0,6366 37: 'partition', 0,6938 0,7223 0,6518 

38: 'sign', 0,5889 0,6210 0,6366 38: 'sign', 0,6938 0,7223 0,6518 

39: 'desklamp', 0,5889 0,6210 0,6366 39: 'desklamp', 0,6938 0,7223 0,0016 
40: 'hall-
waywindow', 0,5889 0,6210 0,6366 

40: 'hall-
waywindow', 0,6938 0,7223 0,6518 

41: 'airsystem' 0,5889 0,6210 0,6366 41: 'airsystem', 0,6938 0,7223 0,6518 

    42: 'Ochair', 0,9093 0,9345 0,9224 
 

Appendix B: Closet wrongfully classified as wall 

 

Appendix C: Parameters Experiment 08-53-14 

# -----------------------------------# 

# Parameters of the training session # 

# -----------------------------------# 

 

# Input parameters 

# **************** 

 

dataset = S3DIS 

dataset_task = cloud_segmentation 

num_classes = 44 

in_points_dim = 3 

in_features_dim = 4 

in_radius = 1.500000 

input_threads = 10 

 

# Model parameters 

# **************** 

 

architecture = simple resnetb resnetb_strided resnetb resnetb res-

netb_strided resnetb resnetb resnetb_strided resnetb_deformable res-

netb_deformable resnetb_deformable_strided resnetb_deformable res-

netb_deformable nearest_upsample unary nearest_upsample unary near-

est_upsample unary nearest_upsample unary 

equivar_mode =  

invar_mode =  

num_layers = 5 

first_features_dim = 128 

use_batch_norm = 1 

batch_norm_momentum = 0.020000 

 

segmentation_ratio = 1.000000 
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# KPConv parameters 

# ***************** 

 

first_subsampling_dl = 0.030000 

num_kernel_points = 15 

conv_radius = 2.500000 

deform_radius = 5.000000 

fixed_kernel_points = center 

KP_extent = 1.200000 

KP_influence = linear 

aggregation_mode = sum 

modulated = 0 

n_frames = 1 

max_in_points = 0 

 

max_val_points = 50000 

 

val_radius = 51.000000 

 

# Training parameters 

# ******************* 

 

learning_rate = 0.010000 

momentum = 0.980000 

grad_clip_norm = 100.000000 

 

augment_symmetries = 1 0 0 

augment_rotation = vertical 

augment_noise = 0.001000 

augment_occlusion = none 

augment_occlusion_ratio = 0.200000 

augment_occlusion_num = 1 

augment_scale_anisotropic = 1 

augment_scale_min = 0.900000 

augment_scale_max = 1.100000 

augment_color = 0.800000 

 

weight_decay = 0.001000 

segloss_balance = none 

class_w = 

deform_fitting_mode = point2point 

deform_fitting_power = 1.000000 

deform_lr_factor = 0.100000 

repulse_extent = 1.200000 

batch_num = 6 

val_batch_num = 10 

max_epoch = 500 

epoch_steps = 500 

validation_size = 50 

checkpoint_gap = 50 

 


