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Kurzfassung

Diese Dissertation leistet einen Forschungsbeitrag zur Energiedissipation durch Schallabstrahlung
dynamisch belasteter Strukturen. Das Phänomen wird oftmals als Dämpfung durch Schallabstrah-
lung bezeichnet und hat bisher nur wenig wissenschaftliche Beachtung erhalten, obwohl es vor
allem bei Leichtbaustrukturen einen beträchtlichen Beitrag zur Gesamtdämpfung leistet. In dieser
Arbeit werden neuartige Ansätze zur Bestimmung der Dämpfung durch Schallabstrahlung erar-
beitet, welche tiefgreifende Einblicke in dieses Phänomen ermöglichen.

Die Schallabstrahlung ins Fernfeld wird mittels der akustischen Randelementemethode (BEM)
modelliert, wodurch lediglich die Oberfläche der Struktur diskretisiert werden muss. Verglichen mit
experimentellen Verfahren zur Bestimmung der abgestrahlten Schallleistung, welche eine spezielle
Infrastruktur mit begrenztem Anwendungsbereich erfordern, kann BEM in breiteren Frequenzbe-
reichen und für komplexe Geometrien verwendet werden. Die Kombination der BEM mit einem
Finite Elemente Modell der Struktur bildet die methodische Grundlage für eine rein numerische
Quantifizierung der Dämpfung durch Schallabstrahlung. Zusätzlich wird ein hybrides, auf Simula-
tionen und Experimenten beruhendes Verfahren entwickelt, in welchem die Struktur durch gemes-
sene Übertragungsfunktionen charakterisiert wird. Beide Ansätze - sowohl der rein numerische
als auch der hybride - ermöglichen die Berechnung von frequenz- und anregungsabhängigen Ver-
lustfaktoren. Außerdem werden numerische Modalanalyen durchgeführt, um sturktur-akustische
Moden und die dazugehörigen modalen Verlustfaktoren zu bestimmen. Diese modalen Verlustfak-
toren bieten eine alternative Weise, das Ausmaß der Dämpfung zu quantifizieren, und sind unab-
hängig von der Frequenz und der Art der Anregung.

Während BEM einerseits eine vielseitig einsetzbare Methode zur Simulation von Schallabstrah-
lung ist, so birgt sie andererseits den entscheidenden Nachteil frequenzabhängiger Koeffizienten-
matrizen, was besondere Herausforderungen bei Modal- und Frequenzgangsanalysen impliziert.
Die vorliegende Arbeit widmet sich auch dieser Problematik. So wird ein auf dem Greedy-Al-
gorithmus basierendes Reduktionsverfahren entwickelt, um Frequenzgangsanalysen zu beschleu-
nigen. Die Besonderheit dieses Greedy-Verfahrens liegt in der Auswahl von Frequenzabtastpunk-
ten, welche auf Grundlage eines Optimalitätskriteriums getroffen wird. Des Weiteren wird ein
neuartiger Löser für nichtlineare struktur-akustische Eigenwertprobleme entwickelt. Dieser Eigen-
wertlöser ermöglicht selbst bei schwach ausgeprägter Struktur-Akustik-Interaktion eine akkurate
Berechnung modaler Verlustfaktoren und somit eine genaue Quantifizierung der Dämpfung durch
Schallabstrahlung.
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Abstract

This thesis contributes to the research on the energy dissipation by sound radiation - a phenomenon
commonly denoted as acoustic radiation damping. Although radiation damping accounts for a
significant share in the overall damping of lightweight structures, it has yet received only little
attention. Novel methods are developed in this work for quantifying the extent of radiation damping
and provide deep insights into this phenomenon.

The far field sound radiation is evaluated using the acoustic boundary element method (BEM),
which results in a discretization that is restricted to the submerged surface of the vibrating struc-
ture. Compared to an experimental assessment of sound radiation, which requires special facilities
with limited scope of application, BEM allows to cover a large frequency intervals and geometrical
configurations. The combination of acoustic BEM with the structural finite element model is the
methodological basis in this work for a numerical assessment of radiation damping. In addition, a
hybrid numerical-experimental method is developed by combining acoustic BEM with structural
mobility measurements. Both frameworks - the numerical and the numerical-experimental one -
are derived in a unified manner and facilitate computation of frequency and excitation dependent
radiation loss factors. Moreover, numerical modal analysis is applied to compute loss factors as-
sociated with acoustically loaded structural modes. These modal loss factors are an alternative
measure for radiation damping and independent of frequency and excitation.

While BEM is a versatile method for evaluating sound radiation, its advantages come at the cost of
frequency dependent coefficient matrices, which impose a significant computational burden when
conducting modal analyses or harmonic response analyses. This issue is addressed in this thesis as
well. In particular, a novel greedy reduced basis method is developed for accelerating frequency
sweeps. Its main feature is the optimal choice of frequency samples so that a small number of
snapshots is sufficient to calculate vibroacoustic responses in large frequency ranges. Moreover, a
novel strategy for solving nonlinear vibroacoustic eigenvalue problems involving BEM is developed
in this thesis. It facilitates accurate computation of modal radiation loss factors even in the case of
weak structural acoustic interaction.
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1 Introduction

During the last decades, the use of lightweight materials and structures has constantly increased
in many technical applications. Pioneered by the aerospace industry, lightweight design has soon
become an essential concept in automotive, naval and civil engineering with the view to reduce
environmental impact and operational costs. While these structures demand for high stiffness and
strength relative to their mass in order to retain functionality, exactly these properties make them
prone to unwanted vibrations. In this regard, engineers exploit various energy dissipating me-
chanisms in order to mitigate unwanted vibrations and associated implications. The different ap-
proaches range from the application of materials with high inherent damping [1] to the use of special
devices such as particle dampers [2] and electrorheological valves [3].

This thesis focuses on another, often overlooked damping phenomenon, commonly referred to as
acoustic radiation damping. That is the dissipation of vibrational energy by far field sound radia-
tion, which often accounts for a significant share in the overall damping of lightweight structures.
While radiation damping in most cases is rather understood as a side effect than a deliberately in-
troduced damping mechanism, it nevertheless requires accurate quantification. In fact, attempts
to deliberately mitigate vibrations by means of damping devices are only effective, if the extent
of added damping is at least within the same order of magnitude as radiation damping [4]. Con-
sidering the effect of radiation damping is crucial in order to accurately reflect the vibroacoustic
behavior in simulations.

Early theoretical methods for assessing radiation damping of rectangular plates date back to the
1960s [5, 6]. These methods either apply to certain resonant modes of the plate [5, 7], or they
determine frequency-averaged damping values based on principles of power flow [6, 8], assuming
a sufficiently high modal density of the plate. A couple of decades later, those theoretical expres-
sions have been extended to plates with arbitrary boundary conditions [9], and to configurations
in which air flow occurs between the two sides of the plate [10]. Analytical expressions for modal
radiation damping of cylindrical shells have been derived as well [11]. Although many structures
can be treated as plates or cylinders as first approximation, the increasing complexity of lightweight
design also demands more versatile approaches for assessing radiation damping. This is particu-
larly important in the low frequency range, where frequency-averaged, energy-based expressions
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1 Introduction

[8, 12] fail due to well-separated modes, where idealized assumptions such as baffled or unbaffled
are insufficient, and where sound radiation is strongly dependent on the actual mounting condition
of the structure at hand. The applicability of the above-mentioned theoretical expressions to more
complicated geometries and to inhomogeneous materials is also difficult to judge.

Besides, a few experimental approaches for assessing radiation damping have been reported in
the last decades. The earliest and perhaps most intuitive experimental method is based on reference
measurements inside a vacuum chamber [13, 14]. Clarkson and Brown obtained damping values
of a satellite structure by relating the input power of a shaker to the spatially averaged velocity
[13]. By performing the same measurements at ambient pressure and in-vacuo, they were able to
differentiate between acoustic radiation damping and other sources of dissipation.

Zhou and Crocker followed a different experimental approach and determined radiation damping
of sandwich panels based on the principles of power flow [15]. Their analysis covered panels that
were mounted in a window between two reverberation chambers as well as freely hanging panels.
The radiation loss factors were obtained by measuring both the surface velocity and the sound
pressure in the receiving room.

Compared to theoretical expressions for radiation damping, both of these experimental methods
allow to consider geometries that are more complex and also to accurately reflect elastic properties.
If the measurements are conducted in the actual mounting condition, even the effect of the boundary
conditions is realistically included. However, in many cases the experimental set-up represents a
vast approximation of the practical application. For example, the fitting of a specimen into the
window cut-out of a sound transmission facility hardly resembles the actual mounting condition
[16]. Moreover, both a vacuum chamber and a window test rig restrict the size and dimension of
the specimen. Even if a vacuum chamber can accommodate the specimen, it might be cumbersome
to capture the motion of all surfaces by scanning laser Doppler vibrometry (LDV). Another major
limitation of experimental assessment of radiation damping concerns excitation by diffuse incident
acoustic fields: Vacuum chamber measurements naturally prohibit acoustic excitation and even in
reverberation rooms, the diffuseness of a sound field is impaired by modal behavior in the low
frequency range [17, 18].

The main purpose of this thesis is to extend the currently available techniques for assessment of
radiation damping. To this end, existent and newly developed numerical methods are introduced to
accompany the above-mentioned experimental methods as well as to replace experiments altogether.
Most of the theoretical content of this thesis revolves around the acoustic boundary element method
(BEM) - a powerful tool for analyzing sound radiation [19]. Combining BEM with a structural
simulation model [20] or with an experimental characterization of structural mobility [21, 22] sheds
a new light on the phenomenon of acoustic radiation damping.
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1 Introduction

The use of BEM in the context of this thesis offers some advantages compared to other approaches
for evaluating sound radiation. Where domain-based numerical methods such as the finite element
method (FEM) [23] necessitate special treatments for truncating the far field sound radiation [24,
25], BEM results in a discretization that is restricted to the submerged surface of the structure.
Moreover, compared to experimental approaches, which require special facilities with limited scope
of application, application of BEM allows to cover a large range of frequencies and geometrical
configurations. However, those advantages come at the cost of frequency dependent coefficient
matrices, which impose a significant computational burden when conducting modal analyses or
harmonic response analyses [26].

Modal analyses are widely used for acquiring the dynamical behavior of structures as they provide
structure-inherent properties such as vibration modes and eigenfrequencies [27]. When conside-
ring the structure as vibrating in-vacuo, modal analysis only requires solving a linear eigenvalue
problem (EVP). However, the study of acoustic radiation damping requires including the effect of
acoustic loading in the modal analysis of the structure. In this way, modal damping values asso-
ciated with the radiation damping of each vibration mode can be obtained [20]. Moreover, the
resulting (wet) eigenfrequencies can be significantly shifted compared to the in-vacuo eigenfre-
quencies. The downside of modal analyses including acoustic loading is that they require solution
of the underlying nonlinear EVP, since the boundary element matrices implicitly depend on the
eigenfrequency parameter.

Besides the aforementioned modal values for radiation damping, harmonic radiation loss factors
represent an alternative measure for radiation damping and are obtained by frequency-wise response
analyses [20]. The frequency-wise evaluation of loss factors is particularly important for structures
that exhibit significant radiation damping in the low frequency range, where the modes are well
separated. In those cases, the extent of radiation damping is strongly dependent on the given ex-
citation, which may stem from structural forces or incident acoustic fields. Harmonic response
analyses in vibroacoustic simulations are associated with a significant computational burden, since
they require a solution of a linear system at each frequency point of interest.

Although acoustic radiation damping can significantly influence structural vibrations, it is pre-
sently not taken into account in vibroacoustic simulations by most engineers. Furthermore, even
when there is awareness of the phenomenon of radiation damping, it is still either neglected al-
together or addressed by general damping models without physical basis. This hesitation may be
attributed to the above-mentioned computational challenges that go along with modal analyses and
harmonic response analyses. In this thesis, latest developments in the field of numerical linear al-
gebra are employed to mitigate these issues and thereby pave the way to a computationally efficient
assessment of radiation damping. In particular, this thesis contributes to the research on radiation
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1 Introduction

damping in the following aspects:

• First, a numerical framework based on FEM and BEM is applied for the quantification of
radiation damping by means of harmonic response analyses as well as modal analyses [20].

• Second, a hybrid numerical-experimental framework is developed for an in-situ assessment
of radiation damping. It is based on mobility measurements and acoustic BEM [22].

• Third, frequency sweeps in vibroacoustic simulations are accelerated by a greedy reduced
basis scheme [28].

• Last, a subspace iteration method based on rational Cauchy approximation is developed for
an efficient numerical modal analysis of vibroacoustic systems. The method facilitates an
accurate computation of modal radiation loss factors [29].
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2 Assessment of acoustic radiation damping
in free and forced vibrations

2.1 Numerical formulation of structural acoustic interaction

This section describes a fully coupled numerical formulation for modeling the vibrations of solid
structures interacting with the surrounding acoustic field. It represents the methodological basis
for three of the main achievements accumulating to this thesis - namely the numerical investigation
of radiation damping (Sec. 3.1), the greedy algorithm (Sec. 3.2) and the vibroacoustic eigensolver
(Sec. 3.3). The mesh coupling procedure presented below is also part of the newly developed
numerical-experimental framework (Sec. 3.4).

In the upcoming derivations, a harmonic time dependency of e−iωt is assumed, where i =
√
−1,

the angular frequency is ω = 2πf and t denotes the time. The vibrations of solid structures are
described by the equations of linear elasticity. After discretization by FEM, the resulting system of
equations reads [30] (

K− iωD− ω2M
)
u = fs + ff , (2.1)

in which the unknown vector u contains the displacement degrees of freedom (DOF) at the nodes.
The stiffness, damping and mass matrices are denoted by K, D and M, respectively. Structural
damping can be included by a hysteretic damping model with [27, 31]

D =
ηs
ω
K, (2.2)

which would result in a frequency independent damping force. The hysteretic loss factor is denoted
by ηs. Note that other damping models such as viscous damping [31] could be used as well. The
structure is excited by a combination of structural forces fs and fluid forces ff . The latter act by virtue
of the sound pressure field, which is characterized by the inhomogeneous Helmholtz equation [32]

∆p(x) +
ω2

c2
p(x) = −q, (2.3)

5



2 Assessment of acoustic radiation damping in free and forced vibrations

in which q is the source and c refers to the speed of sound. The (complete) sound pressure solution
is the sum of the scattered solution ps and the incident solution pi. The same applies to the fluid
particle velocity vf , i.e.

p(x) = ps(x) + pi(x) (2.4)

vf(x) = vsf (x) + vif(x). (2.5)

Reformulation of Eq. (2.3) by the Kirchoff integral theorem and collocation discretization using
boundary elements yields the linear system of equations [32]

H(ω)p = G(ω)
(
vf − vi

f

)
+H(ω)pi (2.6)

for the description of the acoustic field. Therein, p is the unknown vector containing the complete
sound pressure solution at the nodes. The frequency dependent coefficient matricesH(ω) andG(ω)

relate the fluid particle velocity vf to the sound pressure. Acoustically rigid baffles can be taken
into account by evaluating H(ω) and G(ω) using a half-space formulation with a modified Green’s
function [33]. The incident sound pressure field is denoted by pi and the corresponding incident
particle velocity is vi

f .

Equation (2.6) is the most general formulation for considering acoustic sources when using BEM.
Besides, an alternative formulation can be derived for full-space problems based on consideration
of the integral equation in the complementary (interior) acoustic domain yielding [32]

H(ω)p = G(ω)vf + pi. (2.7)

This thesis particularly focuses on problems that involve a strong mutual interaction between the
vibrating structure and the surrounding acoustic field. In such cases, it is insufficient to compute
the in-vacuo response of the structure by solving Eq. (2.1) and to subsequently determine the sound
pressure field via Eq. (2.6) (Eq. (2.7) respectively). Instead, normal tractions due to the acoustic
sound pressure need to be considered as well besides the continuity condition. The two coupling
conditions on the sound radiating surface are expressed as

ff = Csfp, and vf = −iωCfsu, (2.8)

in which the matrices Csf and Cfs establish the coupling between the structural and the acoustic
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2.1 Numerical formulation of structural acoustic interaction

subdomains. They are obtained by a Galerkin projection and defined as [34]

Csf =

∫
Γ

NT
s nΓNfdΓ , (2.9)

Cfs = Θ−1CT
sf . (2.10)

The interpolation functions Nf and Ns are defined for boundary element (BE) and finite element
(FE) nodes and approximate the sound pressure and displacement on the coupling interface Γ .
Nodal normal vectors nΓ are defined for each BE node and point inside the structural subdomain.
Moreover, Θ is the boundary mass matrix of the acoustic subdomain and given by

Θ =

∫
Γ

NT
f NfdΓ . (2.11)

Discontinuous boundary elements are employed, and hence, the acoustic and the structural nodes
do not coincide. Moreover, for the sake of computational efficiency, different mesh sizes may be
used for each of the subdomains. In the latter case, it is not possible to evaluate the integral in
Eq. (2.9) element-wise, since the interpolation functions Nf are not continuously defined across
the structural finite elements. The same holds for Ns and the acoustic boundary elements. To
overcome this issue, a Mortar coupling for non-conforming meshes is applied [34, 35], in which
the structural elements are defined as the slave elements, and the boundary elements are defined
as the master elements. A search algorithm based on the advancing front method [36] identifies
pairs of overlapping elements. The master element is then projected onto an auxiliary plane that is
defined based on the slave element. The resulting intersection polygon is found by a simplex search
method and then subdivided into triangular elements, over which integration in Eq. (2.9) can be
performed. The coupling procedure is illustrated in Fig. 1.

Structural acoustic interaction is a particularly relevant aspect in thin-walled structures, which are
usually discretized by shell finite elements. Some applications, such as sandwich structures with
a thick core, however require discretization by solid finite elements in order to capture thickness
deformations. Since a direct BE formulation is used in this thesis, the acoustic mesh has to cover a
closed surface, regardless of whether shell or solid finite elements are employed.

The above-described coupling procedure is derived with the purpose of coupling an FE to a
BE model. But actually, its applicability is more versatile and it can also be used to exchange
experimentally obtained quantities with a numerical model. In the hybrid numerical-experimental
framework described in Sec. 3.4, coupling matrices similar to the ones in Eqs. (2.9) and (2.10) are
set up in order to couple an experimentally obtained structural transfer matrix to an acoustic BE
model [22].
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2 Assessment of acoustic radiation damping in free and forced vibrations

n⃗

Figure 1: Schematic of the mortar projection of a master fluid element (solid) onto the auxiliary
plane (dotted) defined by an overlapping slave structural element (dashed) and subsequent
definition of triangular integration cells (filled in grey). This figure is adopted from [22].

Combining Eqs. (2.1), (2.7) and (2.8) yields the fully coupled linear systemK− iωD− ω2M −Csf

iωG(ω)Cfs H(ω)


u
p

 =

fs
pi

 . (2.12)

Note that a similar system of equations can be derived using the alternative formulation of acous-
tic sources given by Eq. (2.6). When the structure interacts with two independent acoustic fields
separated by an acoustically rigid baffle, the coupled linear system reads

K− iωD− ω2M −C
(I)
sf −C

(II)
sf

iωG(I)C
(I)
fs H(I) 0

iωG(II)C
(II)
fs 0 H(II)





u

p(I)

p(II)


=



fs

pi

0


, (2.13)

where (·)(I) and (·)(II) denote the respective sides of the baffle. Equation (2.13) only considers an
incident sound field on one side of the structure, which actually resembles the situation in many
practical applications, in which the second side is considered as the receiving side. If the geometry
of the structure is symmetric about the plane of the baffle, the BE matrices are identical, i.e. H(I) =

H(II) and G(I) = G(II) hold.

Forming the Schur complement ofH(ω) and thereby eliminating the pressure DOFs from Eq. (2.12)
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2.2 Evaluation of harmonic and modal radiation loss factors

yields [37]

[
K− iωD− ω2M+ iωCsfH

−1(ω)G(ω)Cfs

]
u = fs +CsfH

−1(ω)pi︸ ︷︷ ︸
ft

, (2.14)

which can be interpreted as a structural equation with an additional term corresponding to the mass
and damping contributions of the fluid. The total force vector ft in Eq. (2.14) comprises both,
structural loading fs and acoustic loading due to the incident pressure field pi. Note that ft is of
slightly different form when using the alternative formulation of acoustic sources given by Eq. (2.6).
A similar structural equation can be derived from the 3 × 3 block linear system in Eq. (2.13) by
eliminating both p(I) and p(II).

As an alternative to Eq. (2.14), the displacement DOFs can be eliminated from the block linear
system in Eq. (2.12) by forming the Schur complement of K− iωD− ω2M, which yields[

iωG(ω)Cfs

(
K− iωD− ω2M

)−1
Csf +H(ω)

]
p =

−iωG(ω)Cfs

(
K− iωD− ω2M

)−1
fs + pi.

(2.15)

Equation (2.15) can be interpreted as an acoustic equation including the dynamic behavior of the
structure as admittance boundary condition [38, 39]. The proper choice between those two struc-
tural acoustic formulations depends on the specific problem at hand and has not yet been discussed
comprehensively in the literature. In the case of heavy fluid loading as occurring in underwater ap-
plications, many researchers use the acoustic Eq. (2.15) [39–41]. On the other hand, in the context
of acoustic radiation damping, it is more intuitive to use the structural Eq. (2.14) and handle the
acoustic field as additional mass and damping contributions [20, 37]. Efficient solution strategies
for both types of structural acoustic equations are reviewed in Sec. 2.3.2.

2.2 Evaluation of harmonic and modal radiation loss factors

This section reproduces the equations for quantifying acoustic radiation damping, which accounts
for one of the main contributions of this thesis. The numerical investigation of radiation damping
(Sec. 3.1) as well as the hybrid numerical-experimental framework (Sec. 3.4) are largely based on
what follows.

As already anticipated by the title of this section, radiation damping can be quantified by either
harmonic or by modal radiation loss factors. The former one is obtained by relating the time-
averaged radiated sound power P to the time-averaged total energy Etot of the vibration. The
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2 Assessment of acoustic radiation damping in free and forced vibrations

resulting harmonic loss factor is defined as [42]

ηr =
P

|ωEtot|
. (2.16)

For harmonic problems, the time-averaged radiated sound power in the continuous setting is defined
as

P =
1

2
Re

(∫
Γ

pv∗f dΓ

)
, (2.17)

where (·)∗ denotes the conjugate complex. Note that only the real part Re (·) of the complex sound
power is associated with radiation damping. The imaginary part of the sound power corresponds
to near field sound radiation, which has a mass-like effect on the structure and hence, does not
dissipate energy. When the acoustic field is discretized by BEM, the radiated sound power can be
obtained from

P =
1

2
Re
(
pTΘv∗

f

)
. (2.18)

The particle velocity vf can be derived from the structural displacement via the coupling condi-
tion (2.8) in a post-processing step. In harmonic problems, the time-averaged total vibrational
energy in Eq. (2.16) can be substituted by twice the time-averaged potential energy, which gives
[30]

Etot =
1

2
uTKu∗ − 1

2
fHt u. (2.19)

The first term in Eq. (2.19) is the potential energy due to the elastic deformation. The second
term corresponds to the work done by external forces and implicitly includes the dissipated energy.
Alternatively, the time-averaged total vibrational energy can be expressed as twice the sum of time-
averaged kinetic and dissipated energies of the structural acoustic system, i.e.

Etot =
1

2
uT
(
ω2M+ iωD− iωCsfH

−1(ω)G(ω)Cfs

)
u∗. (2.20)

Besides the inertial and damping terms corresponding to the structural matricesM andD, Eq. (2.20)
also includes energy contributions of the acoustic field. The imaginary part ofH−1(ω)G(ω) is asso-
ciated with the additional mass effect of the fluid, and its real part corresponds to energy dissipation
by sound radiation.

The energy expressions in Eqs. (2.19) and (2.20) are fully equivalent to each other, which becomes
obvious in view of the balance of forces in Eq. (2.14). Hence, in the context of a coupled FEM-
BEM analysis, the harmonic radiation loss factor in Eq. (2.16) can be evaluated using either of the
two expressions. In practice, the potential energy approach given by Eq. (2.19) is slightly more
favorable since it does not involve fully populated BE matrices. However, the situation is different
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2.2 Evaluation of harmonic and modal radiation loss factors

when characterizing the structural behavior experimentally as is done in the hybrid framework
developed in the context of this thesis [22]. In that case, neither the (static) stiffness matrix K nor
the damping matrix D are available, while the mass matrix M can be estimated with reasonable
accuracy. Assuming that the damping contributions are negligible compared to the inertial terms
and radiation damping, the total energy can be computed via Eq. (2.20) in the case that the structural
behavior is governed experimentally rather then by FEM [22].

The harmonic loss factor given by Eq. (2.16) is a result of a frequency-wise response analysis
and depends on the type of the excitation. Alternatively, excitation independent modal loss factors
can be derived for each acoustically loaded structural mode. Given a complex eigenfrequency ω̃j ,
the modal loss factor corresponding to the j-th mode is defined as [4, 43]

ηj = −2
Im (ω̃j)

Re (ω̃j)
, (2.21)

in which Im (ω̃j) is negative since the harmonic time dependency is defined as e−iωt. Details on
structural acoustic modal analyses and solution techniques for the underlying nonlinear EVP are
described in Sec. 2.4.

When structural damping is omitted, i.e.D = 0 holds, then the energy loss due to sound radiation
accounts for the only damping contribution. In that case, the modal loss factor in Eq. (2.21) quan-
tifies the extent of radiation damping for the corresponding acoustically loaded structural mode.
Furthermore, one can expect that the modal loss factor in Eq. (2.21) equals the harmonic loss factor
given by Eq. (2.16) at the respective eigenfrequency fj = Re (ω̃j) /2π, of course assuming that the
respective mode is actually excited in the harmonic response analysis. Otherwise, when that par-
ticular mode is not excited, the harmonic loss factor will deviate from the modal loss factor. This
is illustrated in Fig. 2, which compares harmonic and modal loss factors of a honeycomb sandwich
panel. The harmonic loss factors of the panel are shown for two load cases, i.e. point excitation
and excitation by a diffuse acoustic field. As expected, the respective loss factors differ signifi-
cantly apart from the resonances, while at the actual resonance frequencies, they consistently agree
with the modal loss factors. However, there is also an apparent exception at the eigenfrequency
f11 = 389Hz. The corresponding in-plane mode is not excited by point excitation, and hence, the
harmonic loss factor deviates significantly from the modal loss factor. In contrast, the diffuse acous-
tic field indeed excites the in-plane mode, which thus determines the extent of sound radiation at
the respective excitation frequency (note that the side edges of the panel are coupled with the fluid
domain as well). The resulting harmonic loss factor conforms with the modal loss factor. Details
on the properties of the sandwich panel and the numerical model can be found in [20].

Recently, the occurrence of spurious numerical damping in BEM has received scientific attention

11



2 Assessment of acoustic radiation damping in free and forced vibrations

0 50 100 150 200 250 300 350 400 450 500
10−5

10−4

10−3

10−2

10−1

Frequency in Hz

Ra
di

at
io

n
lo

ss
fa

ct
or

Point excitation
Diffuse field excitation
Modal

Figure 2: Harmonic radiation loss factors of a honeycomb sandwich panel subject to point and dif-
fuse field excitations. In addition, modal loss factors are potted at their respective eigen-
frequencies. This figure is adopted from [20].

[44–46], but this it does not seem to affect the results in exterior acoustics.

2.3 Review of methods for accelerating harmonic response
analyses

Harmonic response analyses in vibroacoustic simulations are associated with a significant compu-
tational effort, which is mainly attributed to the assembly of the BE matrices H(ω) and G(ω) at
each frequency point of interest as well as the solution of the resulting sequence of linear systems
of equations. This section reviews the main efforts reported in the literature to accelerate such fre-
quency sweeps - however without claiming that the list is exhaustive. It is the aim of this section to
provide a context for the development of the greedy algorithm (Sec. 3.2) - one of the main achieve-
ments of this thesis. Some of the concepts described below are also essential parts of the newly
developed vibroacoustic eigensolver (Sec. 3.3).

2.3.1 Remedies for frequency dependent boundary element matrices

Early approaches for accelerating harmonic response analyses with BEM are based on entry-wise
frequency interpolations of BE matrices [47, 48]. Kirkup and Henwood [48] proposed a truncated
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Figure 3: Real part of an exemplary entry of
H(ω) for a sphere. Additionally,
Taylor and Chebyshev approximations
with N = 6 terms each are plotted.
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Figure 4: Imaginary part of an exemplary entry
of H(ω) for a sphere. Additionally,
Taylor and Chebyshev approximations
with N = 6 terms each are plotted.

Taylor expansion of the BE matrices. The resulting polynomial approximations of degree N − 1

read

H(ω) ≈
N−1∑
j=0

H(j)(ω0)

j!
(ω − ω0)

j and G(ω) ≈
N−1∑
j=0

G(j)(ω0)

j!
(ω − ω0)

j , (2.22)

in which ω0 is the expansion frequency and (·)(j) denotes the j-th derivative with respect to ω.
Those matrix derivatives are either obtained numerically (e.g. by finite difference approximation)
or by analytical differentiation of the kernel functions. A Taylor expansion results in an exponen-
tially convergent approximation around the expansion frequency, but it requires subdividing the
frequency interval and computing a Taylor approximation in each sub-frequency interval in order
to mitigate large deviations at the edges of the frequency interval - an issue that is also known as
Runge’s phenomenon [49].

Runge’s phenomenon can also be overcome by using a Chebyshev interpolation [50, 51], i.e. a
polynomial approximation that satisfies interpolation conditions at Chebyshev nodes. The resulting
polynomials of degree N − 1 read

H(ω) ≈
N−1∑
j=0

ωjHj and G(ω) ≈
N−1∑
j=0

ωjGj. (2.23)

In order to compute the frequency independent coefficient matrices Hj and Gj , the original ma-
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Re

Im C

D

Figure 5: Elliptic contour C enclosing a complex domain D, in which the BE matrices are approxi-
mated. The contour is discretized using a few nodes. This figure is adopted from [29].

trices H(zj) and G(zj) are first assembled at N Chebyshev nodes of the first kind. Considering a
frequency interval [fmin, fmax], those Chebyshev nodes are given as

zj = γ + δ cos

(
2j − 1

2N
π

)
, j = 1, ..., N, (2.24)

where γ = (fmax + fmin) /2 and δ = (fmax − fmin) /2. With the BE matrices H(zj) and G(zj)

at hand, the unknown coefficient matrices Hj and Gj are determined by solving a sequence of
linear systems of dimension N . A Chebyshev interpolation guarantees exponential decay of the
interpolation error with increasing polynomial degree. Compared to the Taylor approximation, it
also results in a more uniformly distributed error over the considered frequency interval. This is
illustrated in Figs. 3 and 4, in which an exemplary entry of H(ω) for a sphere (r = 5m) is plotted in
the frequency interval from 10Hz to 130Hz. Additionally, Taylor and Chebyshev approximations
ofH(ω)withN = 6 terms each are plotted. The Taylor approximation is computed at an expansion
frequency of f0 = 70Hz considering derivatives up to 5-th order. The Chebyshev approximation
is computed using N = 6 samples frequencies as given in Eq. (2.24). As expected, the Taylor
approximation results in large deviations at the edges of the frequency interval, while the Chebyshev
approximation yields a uniformly distributed error over the whole frequency interval. Details on
the considered reference problem can be found in e.g. [28, 51].

As an alternative to the above-described polynomial approximations, Cauchy integral representa-
tions of BE matrices were recently proposed [52]. Compared to a Chebyshev approximation, which
is based on real-valued frequency samples, this method uses complex-valued frequency nodes that
are located on an elliptic contour C. The resulting rational approximation is exponentially conver-
gent within the domain D that is enclosed by C [53]. Figure 5 schematically depicts an elliptic
contour for a Cauchy integral representation and associated nodes for an N -point trapezoidal rule
discretization. The resulting approximate BE matrices read

H(ω) ≈
N∑
j=1

H(zj)vj(ω) and G(ω) ≈
N∑
j=1

G(zj)vj(ω), (2.25)
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where the scalar-valued rational functions vj are given by

vj(ω) =
wj

zj − ω

(
N∑
k=1

wk

zk − ω

)−1

. (2.26)

While in the context of Chebyshev approximations, zj was used to denote real-valued frequency
samples, here, zj denotes the complex frequency nodes. They can be chosen as e.g.

zj = γ + δ (cos (2πj/N) + iζ sin (2πj/N)) , j = 1, ..., N, (2.27)

where ζ defines the aspect ratio of the ellipse. The associated weights wj are given by

wj =
δ

N
(ζ cos (2πj/N) + i sin (2πj/N)) , j = 1, ..., N. (2.28)

As will be explained in Sec. 3.3, rational approximations of the form Eqs. (2.25) to (2.28) are a key
ingredient of the vibroacoustic eigensolver [29] developed in the framework of this thesis. A more
general overview of approximations inside complex regions can be found in [54].

The relative error in the BE matrix H(ω) that is introduced by the Chebyshev interpolation in
Eq. (2.23) can by assessed by

εp =
∥H(ω)−

∑N−1
j=0 ωjHj∥F

∥H(ω)∥F
, (2.29)

where ∥·∥F denotes the Frobenius norm. Similarly, the error introduced by the rational approxima-
tion in Eq. (2.25) is defined as

εr =
∥H(ω)−

∑N
j=1H(zj)vj(ω)∥F

∥H(ω)∥F
. (2.30)

Figures 6 and 7 display εp and εr when using N = 12 frequency nodes respectively for the above-
mentioned sphere problem. The plots are generated by 1779 uniformly distributed points in the
complex plane and linear interpolation in-between them. Both approximations methods achieve
errors of order O(10−10) in the considered complex frequency region. The common concern that
Chebyshev approximations inside a real frequency interval quickly deteriorate apart from the real
axis does not seem to be an issue here. The relevance of complex frequency approximations will
become clear in Sec. 2.4, which deals with nonlinearly frequency dependent EVPs.

While accelerating the matrix set-up at a reasonable accuracy, all of the above-discussed fre-
quency approximation techniques require storage of multiple (N ) fully populated coefficient ma-
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2 Assessment of acoustic radiation damping in free and forced vibrations

Figure 6: Relative error εp of the polynomial
Chebyshev approximation given by
Eq. (2.29) when using N = 12.

Figure 7: Relative error εr of the rational
Cauchy approximation given by
Eq. (2.30) when using N = 12.

trices. The associated memory requirements can be prohibitive for large-scale vibroacoustic prob-
lems. The memory issue of single frequency BEM has been addressed by several data sparse for-
mats such as hierarchical matrices [55, 56]. Recently, Dierckx et al. [57] combined an adaptive cross
approximation with a rational frequency approximation resulting in a data sparse representation of
BE matrices in a frequency range.

Besides frequency approximations, several other strategies are available to deal with frequency
dependent BE matrices. Wu et al. [58] proposed a spatial interpolation of the Green’s function,
which allows to eliminate the frequency dependent term from the integrands. Similar methods
that confine the numerical integration to a frequency independent kernel were developed thereafter
[59, 60]. Approximating the acoustic response itself can be more efficient when only a small part
of the solution is of interest. This may include the sound pressure at a small number of field points
or the evaluation of integrated quantities such as radiated sound power. A Padé technique allows to
construct an approximation in a frequency interval by using the derivatives of a response at a single
expansion frequency [61, 62]. The coefficients of a Padé approximation can be computed by e.g.
the Lanczos algorithm, which has been applied to multi-frequency calculations of radiated sound
power [63, 64].

2.3.2 Solution strategies for coupled linear system of equations

With increasing number of DOFs, the solution of the sequence of linear systems of equations

T(ωj)xj = bj, j = 1, ...,m (2.31)
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2.3 Review of methods for accelerating harmonic response analyses

becomes the computationally most expensive part of a harmonic response analysis. Depending on
whether the structural Eq. (2.14) or the acoustic Eq. (2.15) is employed, the system matrix T(ω)

reads

T(ω) = K− iωD− ω2M+ iωCsfH
−1(ω)G(ω)Cfs or (2.32)

T(ω) = iωG(ω)Cfs

(
K− iωD− ω2M

)−1
Csf +H(ω). (2.33)

The solution of both types of linear systems by iterative schemes as well as model order reduction
(MOR) is discussed in what follows.

Iterative solvers

Large-scale linear systems of equations are usually addressed by iterative solution schemes [65,
66], which are based on successive matrix vector multiplications. For example, application of an
iterative scheme to a (single) linear system in Eq. (2.31) requires multiplication of the matrix with
an intermediate solution vector x(k) in each iteration k. When rearranging the coupled system into
the form given by Eq. (2.33), this would necessitate solving an inner linear system in each iteration
in order to evaluate the term (K− iωD− ω2M)

−1
Csfx

(k). Such nested iterations can be avoided
by computing a factorization of the sparse and symmetric FE matrix K − iωD − ω2M, which
then facilitate efficient application of iterative solvers to the system in Eq. (2.33). In the case of
frequency sweep analyses, the successive solution of linear systems by an iterative scheme can be
further accelerated by subspace recycling [67, 68]. More recently, low-rank approximations have
been exploited to achieve an efficient frequency range solution of BE equations within a single
iteration scheme [51].

Close examination of Eq. (2.32) reveals that an application of an iterative solver to this system
would either require a factorization of the dense matrix H(ω) or two nested iterations. Both of
these approaches are rather inefficient so that structural acoustic systems of the form in Eq. (2.32)
are better addressed by MOR and subsequent direct solution of the reduced linear system.

Model order reduction

In the context of structural acoustic systems, MOR provides a powerful tool to reduce the dimension
of the linear system and is particularly appealing when one is interested in the responses at many
frequency points [69] or responses for different excitations [70]. The application of MOR to the
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2 Assessment of acoustic radiation damping in free and forced vibrations

sequence of linear systems in Eq. (2.31) yields

VTT(ωj)Vxr,j = VTbj, j = 1, ...,m, (2.34)

in which V is the reduction basis and should be chosen such that the approximation error is small
in the whole frequency range of interest. The actual solution of the reduced system is of negligi-
ble computational effort when V possesses only a few columns. The original solution vector is
recovered from xj = Vxr,j .

Essentially, all multi-frequency MOR techniques, including the greedy algorithm [28] developed
in this thesis (Sec. 3.2), exploit the fact that solutions at different frequency points are usually con-
tained in a small subspace. In other words, the spatial pattern of vibroacoustic responses usually
exhibit a certain degree of correlation among different frequency points. In the simplest case, the
basis vectors spanning V are solutions xj at some (less then m) suitably chosen frequency sam-
ples ωj . The newly developed greedy algorithm [28, 71] provides an optimal frequency sampling
strategy for this approach.

Alternative constructions of V are also possible, such as modal bases or Krylov subspaces. The
application of Krylov subspaces to coupled FEM-BEM systems was pioneered by the work of
Puri et al. [72] and is highly efficient in the case of light fluid loading (e.g. for assessing radia-
tion damping of lightweight structures in air). The authors of [72] propose a unilateral MOR for
the system in Eq. (2.32), in which the Krylov subspace is solely based on the structural subsystem
K− iωD− ω2M. After MOR, Eq. (2.14) becomes [72, 73]

VT
[
K− iωD− ω2M+ iωCsfH

−1(ω)G(ω)Cfs

]
Vur = VT

[
fs +CsfH

−1(ω)pi
]
. (2.35)

OnceV is computed, the reduced system matrix is explicitly formed by evaluating the termH−1(ω)

G(ω)CfsV. The latter requires solving a linear system with multiple right-hand sides for which
many efficient strategies are available [74, 75]. A unilateral MOR as described in [72] is applicable
as long as the coupled structural acoustic system admits accurate MOR solely based on the struc-
tural subsystem, which is generally the case for applications with light fluid loading. However, when
addressing heavy fluid loading by the acoustic Eq. (2.15), the application of MOR is much more
intricate. Modal reduction requires solving a nonlinear EVP in the first place (see Sec. 2.4), which
can outweigh the actual benefit of the subsequent dimension reduction. And while a small num-
ber of Krylov basis vectors is sufficient to match the first moments of FE matrices with quadratic
frequency dependence, implicitly frequency dependent BE matrices require a subdivision of the
frequency range. The most recent efforts in this field [76, 77] are based on frequency approxi-
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mation of the BE kernel function by truncated Taylor expansion (c.f. Sec. 2.3.1) and subsequent
reduction of the frequency independent coefficient matrices by Krylov subspaces. Although these
papers [76, 77] are limited to acoustic BEM, one can expect that the techniques therein will be
extended to coupled FEM-BEM systems such as the one in Eqs. (2.15) and (2.33) in the future.

2.4 Review of nonlinear eigensolvers for structural acoustic
modal analyses

Besides the harmonic response analyses discussed in the previous section, modal analyses account
for another fundamental tool for acquiring the dynamic properties of structural acoustic systems.
In this thesis in particular, they facilitate quantification of acoustic radiation damping by modal
loss factors. The purpose of this section is to briefly review the current research on structural
acoustic modal analysis with FEM and BEM. The contour integral method described below is the
algorithmic basis of the work on modal radiation damping in this thesis (Sec. 3.1). It is also the
aim of this section to provide a context for the development of a vibroacoustic eigensolver based on
subspace iteration (Sec. 3.3) - an accomplishment of this thesis that allows accurate and efficient
computation of modal radiation loss factors.

Modal analyses of interior acoustic problems such as closed cavities are well established. They are
best addressed by FEM [78] or BEM with frequency independent kernel functions [79, 80] resulting
in linear EVPs for which well-developed software packages exist [81]. In the context of this thesis
however, only exterior acoustic domains are of interest, since radiation damping is associated with
far field sound radiation. When using the coupled FEM-BEM formulation as described in Sec. 2.1,
the underlying EVP may be formulated based on Eq. (2.14) or (2.15). Setting the right-hand sides
of the respective equations to zero yields

[
K− iω̃D− ω̃2M+ iω̃CsfH

−1(ω̃)G(ω̃)Cfs

]
Ψ = 0 and (2.36)[

iω̃G(ω̃)Cfs

(
K− iω̃D− ω̃2M

)−1
Csf +H(ω̃)

]
Φ = 0, (2.37)

respectively. The displacement and pressure modes are denoted by the vectors Ψ and Φ, respec-
tively. The EVPs in Eqs. (2.36) and (2.37) are nonlinear, since the BE matrices H(ω̃) and G(ω̃)

implicitly depend on the (complex) eigenfrequency parameter ω̃. They are replaced by

T(ω̃)x = 0 (2.38)

in the following for the sake of readability.
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Newton methods

The solution of nonlinear EVPs emerging from frequency dependent BE formulations has been
pioneered nearly half a century ago [82], but it is still a computationally challenging topic today with
rather hesitant developments. Early algorithms for solving nonlinear acoustic EVPs were based on
Newton’s method [82], which often requires successive runs with a deflated matrix in order to find
different eigenpairs. Moreover, Newton methods necessitate the derivative of the system matrix,
which may be computed numerically (e.g. by finite difference approximation) or analytically. The
finite difference method requires - besides being ill-conditioned [83] - computing steps in both the
real and the imaginary directions. On the other hand, analytical differentiation requires intrusive
modification of the BEM code in order to compute complex frequency derivatives of the Helmholtz
integral equation.

Frequency approximation and linearization

A second family of structural acoustic eigensolvers may be summarized as methods based on fre-
quency approximation and subsequent linearization. While the initial intention behind frequency
approximations of BE matrices [48] was to avoid the numerical integration and assembly of BE
matrices at each frequency point (c.f. Sec. 2.3.1), in fact, the resulting polynomial frequency de-
pendency of the BE matrices also paved the way to modal analyses with BEM. The original nonli-
near EVP can be converted to a polynomial EVP, whereas both truncated Taylor expansion [37, 84]
and Chebyshev interpolation [50, 85] are possible. The polynomial EVP then admits solution by
linearization, which however increases the system dimension by the polynomial degree. Peters et
al. [73] have mitigated prohibitively large linearized EVPs by the unilateral Krylov subspace-based
MOR given in Eq. (2.35). More general MOR techniques are yet to be applied to linearized struc-
tural acoustic EVPs. Another drawback concerns numerical instabilities associated with lineariza-
tion of higher polynomial degrees, which in fact limits modal analysis to small (sub-) frequency
ranges.

Instead of polynomial approximations, rational approximations of nonlinear EVPs have recently
proven to be a promising alternative [85–87]. Rational approximations of the form in Eqs. (2.25) to
(2.28) are incorporated into the vibroacoustic eigensolver developed in the framework of this thesis
(Sec. 3.3).

Contour integral methods

Contour integral methods (CIM) [88–91] may be categorized as another family of eigensolvers.
They stand out from other methods due to their low memory requirements and the suitability for
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2.4 Review of nonlinear eigensolvers for structural acoustic modal analyses

parallel computation. They essentially convert the large, nonlinear EVP into a small linear one.
While many variants of CIM exist, the block Sakurai Sugiura method (block SS) [88] is reviewed
in the following as a representative version of CIM. Block SS has been extensively applied to vi-
broacoustic EVPs based on BEM [20, 40, 92–94] as well as quadratic EVPs emerging from an
acoustic infinite element discretization [95]. It is also the algorithmic basis of the work on modal
radiation damping in this thesis (Sec. 3.1). Moreover, block SS is chosen to benchmark the newly
developed vibroacoustic eigensolver (Sec. 3.3).

Block SS essentially transforms the nonlinear EVP in Eq. (2.38) to the generalized EVP

Aw = λMw, (2.39)

in which A and M are the block Hankel matrices

A =



M0 M1 . . . MK−1

M1
...

... M2K−3

MK−1 . . . M2K−3 M2K−2


,M =



M1 M2 . . . MK

M2
...

... M2K−2

MK . . . M2K−2 M2K−1


. (2.40)

They comprise the moments Ml of the resolvent of the system matrix. The moment matrices are
obtained by complex contour integration via

Ml =
1

2πi

∮
C
zlUHT−1(z)V dz, l = 0,...,2K − 1, (2.41)

in which the matrices U and V contain L randomly chosen source vectors as columns [96]. The
eigenvector of the original system is retrieved from x = Sw, where S = [S0,...,SK−1] and

Sl =
1

2πi

∮
C
zlT−1(z)V dz, l = 0,...,K − 1. (2.42)

The integrals in Eqs. (2.41) and (2.42) are evaluated along an elliptic contour C in the complex
plane, which should be chosen such that it encloses the eigenvalues of interest. The elliptic con-
tour is discretized via Eqs. (2.27) and (2.28), which admits evaluation of Eqs. (2.41) and (2.42)
by the trapezoidal rule. The computations for each of the contour points zj are independent of
each other and hence admit an efficient parallel execution. Along with its easy and non-intrusive
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implementation, this feature makes block SS an appealing method for solving nonlinear EVPs.
However, it is also well-known [97] that the higher order moments associated with a large K lead

to ill-conditioning of the Hankel matrices in Eq. (2.40), which results in inaccurate solutions as well
as non-physical eigenvalues, see e.g. the results in Sec. 4.2 of [29]. To overcome ill-conditioned
Hankel matrices, Yokota and Sakurai [97] proposed a CIM in which a subspace based on resolvent
moments is used in a Rayleigh Ritz procedure to extract the eigenvalues. Similar strategies have
been employed for solving vibroacoustic EVPs [41, 52], however with the difference that the authors
avoid higher order moments by sampling the resolvent matrix. Both, block SS and Rayleigh Ritz-
based CIM are used to benchmark the vibroacoustic eigensolver (Sec. 3.3) developed in this thesis.
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3 Summary of Achievements

This chapter summarizes the main scientific achievements that accumulate to the present thesis. The
achievements are reported in more detail in the respective research papers attached in Appendix A.
The papers summarized in Secs. 3.1 to 3.4 have undergone full peer-review and are published in
international journals.
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3.1 Investigation of radiation damping using finite and
boundary element methods

The corresponding paper [20] with the title “Investigation of radiation damping in sandwich struc-
tures using finite and boundary element methods and a nonlinear eigensolver” is enclosed in Ap-
pendix A.1.

Summary

Using the coupled structural acoustic formulation described in Sec. 2.1, this work [20] systema-
tically studies the acoustic radiation damping in sandwich structures. Harmonic and modal loss
factors are computed by Eqs. (2.16) and (2.21) to determine the extent of radiation damping. The
underlying nonlinear EVP is solved via the block SS contour integral method described in Sec. 2.4,
which yields the complex eigenfrequencies and air-loaded modes of the sandwich structure.

Application of the numerical framework to various sandwich panel configurations clearly demon-
strates the relevance of air loading. Eigenfrequency shifts of more than 2% compared to the in-
vacuo eigenfrequencies and radiation loss factors of up to 8% are reported. It is also observed that
radiation damping is strongly dependent on the type of the excitation and the boundary conditions
in the low frequency range, while at higher frequencies, this effect becomes insignificant. As ex-
plained in Sec. 2.2, modal radiation loss factors coincide with the harmonic radiation loss factors,
given that the respective mode is excited in the harmonic response analysis.

Furthermore, the numerically obtained radiation loss factors are compared to theoretical expres-
sions as well as to experimental results reported in the literature. Satisfactory agreement is observed
above the coincidence frequency range, while the commonly used theoretical expressions are found
to be inadequate in the low frequency range with low modal density. Similarly, the experimental and
numerical results differ from each other in the low frequency range due to the influences of boundary
conditions, excitation and the modal behavior of reverberation chambers. The paper concludes with
a discussion on possible errors occurring during an experimental assessment of radiation damping.

Contribution

I have extended the coupled FEM/BEM framework of the institute by implementing the nonlinear
eigensolver, the mesh coupling algorithm for solid finite elements and the algorithm for diffuse field
excitation. I have created the numerical models and designed all the studies. I have analyzed and
interpreted the results and have written the manuscript for publication. S. Marburg gave the impetus
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for my research on acoustic radiation damping by writing a successful funding proposal. He also
developed the BE code and contributed to the work by critically reviewing the results.
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3 Summary of Achievements

3.2 A greedy algorithm for structural acoustic systems

The corresponding paper [28] with the title “A greedy reduced basis scheme for multifrequency
solution of structural acoustic systems” is enclosed in Appendix A.2.

Summary

Harmonic response analyses of coupled structural acoustic systems require a significant compu-
tational effort when evaluating at a large number of frequency points. This is the main reason,
why acoustic loading and associated phenomena such as radiation damping are widely neglected
in vibroacoustic simulations. This work [28] contributes to the research on MOR of vibroacoustic
systems that was outlined in Sec. 2.3.2. A novel strategy for a multi-frequency solution is intro-
duced. It represents the first vibroacoustic MOR scheme that chooses the frequency samples based
on an optimality criterion.

More specifically, the proposed method constructs a reduced basis that is spanned by the solutions
at a few suitably chosen frequency samples within the frequency range of interest. Following a
greedy strategy, a new frequency sample is selected in each iteration of the algorithm based on the
solution that was worst approximated in the previous iteration. A least squares solver efficiently
computes the approximations at intermediate frequencies as well as the a posteriori estimates of
associated errors.

The efficiency of the proposed method is verified based on several vibroacoustic problems invol-
ving both interior and exterior acoustic domains. The most important observation is that the greedy
algorithm automatically selects frequency samples around resonances, although modal quantities
are not computed. This leads to a generally fast convergence of the method. Furthermore, refining
the frequency resolution in an interval between resonances barely affects the total number of itera-
tions, but it only increases the number of least squares solutions. The advantage of the proposed
greedy algorithm over conventional frequency-wise strategies increases with the chosen frequency
resolution.

Contribution

I have developed the code for the greedy reduced basis scheme, which represents an essential part
of this work. I have created the numerical models and designed all the studies. I have analyzed and
interpreted the results and have written major parts of the manuscript for publication. M. Voigt had
the initial idea for this method and contributed with his mathematical background. C. Jelich gave
valuable comments and helped to phrase the main results of the paper in a clear way. S. Marburg
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developed the BE code and reviewed the manuscript critically.
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3.3 A subspace iteration eigensolver for vibroacoustic problems

The corresponding paper [29] with the title “A subspace iteration eigensolver based on Cauchy
integrals for vibroacoustic problems in unbounded domains” is enclosed in Appendix A.3.

Summary

Modal analyses are widely employed to compute eigenfrequencies and associated modes of dy-
namically loaded structures. When the effect of acoustic loading is included in the modal analysis,
modal damping values associated with radiation damping of individual modes can also be com-
puted. However when using BEM for the representation of the acoustic field, a modal analysis
requires solution of an underlying nonlinear EVP. This work [29] presents a novel strategy for sol-
ving nonlinear structural acoustic EVPs. The strategy is based on FEAST [98, 99] and works by
iteratively updating a spectral projection.

When applied to vibroacoustic problems involving BEM, the data required for the spectral projec-
tion can be reused in order to construct a rational approximation of the reduced but still nonlinearly
frequency dependent EVP via Eq. (2.25). This facilitates iterative computation of eigenpairs at neg-
ligible recurring costs. Two tailored approaches are proposed to compute the spectral projection. In
the case of strong acoustic loading, the Schur complement is formed as given by Eq. (2.33), and the
resulting linear systems with multiple right-hand sides are addressed by a factorization of the finite
element matrices and an iterative block Krylov solver. In the case of light acoustic loading, MOR
is applied solely to the structural subsystem as stated in Eq. (2.35), which significantly alleviates
the memory requirements as well as the computational cost for updating the spectral projection.

In comparison to the contour integral method presented in Sec. 2.4, the proposed eigensolver
necessitates fewer BE matrices to be assembled and exhibits monotonic convergence. Moreover,
the application to a musical bell indicates that accurate modal radiation damping values can be
obtained despite the extremely weak air loading.

Contribution

B. Goderbauer developed an early version of the code while working on his Bachelor thesis, which
was supervised by me. He has also created the numerical model of the bell. After he had submitted
his thesis, I have revised major parts of the code including the rational approximation method and
the update routine for the spectral projector. I have also implemented the contour integral method,
which was used for benchmarking purposes. C. Jelich has developed the block Krylov solver, which
was essential for the performance of the method. Once the software framework was set up, I have
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carried out all the numerical studies and have written the manuscript for publication. M. Voigt had
the initial idea for applying the FEAST algorithm to nonlinear acoustic EVPs and contributed with
his mathematical background. S. Marburg once again reviewed the manuscript critically.
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3.4 Hybrid numerical-experimental assessment of radiation
damping

The corresponding paper [22] with the title “Hybrid assessment of acoustic radiation damping
combining in-situ mobility measurements and the boundary element method” is enclosed in Ap-
pendix A.4.

Summary

This work [22] combines experiments with numerical techniques to achieve an accurate assessment
of acoustic radiation damping. The dynamical behavior of the structure is determined by means
of hammer excitation and scanning LDV. The resulting mobility matrix contains transfer functions
relating the vibrational velocity to the excitation force. After characterization of the structural be-
havior, the sound radiation is evaluated by numerical simulation. For this purpose, the experimen-
tal mesh corresponding to the mobility matrix is coupled to an acoustic BE model by the Mortar
method described in Sec. 2.1. Harmonic radiation loss factors are computed based on Eqs. (2.16)
and (2.20).

The proposed hybrid approach does not require intricate constitutive modeling that goes along
with FE discretization of structures involving complex materials. Furthermore, the measured mo-
bility matrix reflects the actual (in-situ) mounting condition rather than idealized boundary con-
ditions typically used in FE models. On the other hand, using BEM for the representation of the
acoustic field avoids special measurement facilities and associated limitations. Perfectly diffuse
acoustic fields can modeled even at low frequencies and the influence of acoustic short-circuiting
at free edges and slits can be taken into account. Radiation loss factors for different types of excita-
tion and acoustic conditions can be determined without requiring repeated mobility measurements.

The proposed hybrid procedure is applied to evaluate radiation loss factors of flat and curved
honeycomb sandwich panels attached to a hollow concrete foundation. The results are compared
to those obtained by the coupled FEM-BEM approach described Secs. 2.1 and 2.2.

Contribution

The initial idea of this work originated from my discussions with B. Roozen during his research
stay at TUM in 2019. I designed the studies, built the specimens, carried out the measurements and
interpreted the results under remote assistance of B. Roozen. The code for coupling the mobility
matrices with BEM was developed by me, and I wrote the manuscript for publication. S. Marburg

30



3.4 Hybrid numerical-experimental assessment of radiation damping

developed the BE code. Both, B. Roozen and S. Marburg reviewed the manuscript critically.
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4 Conclusion

Summary and applicability of the thesis

It was the ambition of this thesis to advance the research on acoustic radiation damping - a phe-
nomenon that has yet received only little attention. Where engineers usually employ vast appro-
ximations or neglect radiation damping altogether, this thesis has delivered new techniques to as-
sess its extent. The boundary element method is used for representing the exterior acoustic field
and is combined either with a structural simulation model or with an experimental characteriza-
tion of structural mobility. Both developed frameworks - the numerical and the hybrid numerical-
experimental one - yield accurate radiation loss factors that are frequency and excitation dependent.
Both frameworks have been derived in this thesis in a unified manner. Moreover, numerical modal
analysis was applied to compute loss factors associated with acoustically loaded structural modes.
These modal loss factors are an alternative measure for radiation damping and independent of fre-
quency and excitation.

Furthermore, state-of-the-art tools in the field of numerical linear algebra have been implemented
into vibroacoustic simulations in order to alleviate challenges associated with frequency dependent
linear systems. The latter issue limits the efficiency of harmonic response analyses as well as modal
analyses and hence hampers the assessment of acoustic radiation damping with BEM. In particular,
a novel greedy reduced basis method has been developed for accelerating frequency sweeps. Its
main feature is the optimal choice of frequency samples so that a small number of snapshots is
sufficient to calculate vibroacoustic responses in large frequency ranges. Moreover, a novel strategy
for solving nonlinear vibroacoustic EVPs involving BEM and FEM has been developed in this
thesis. It facilitates accurate computation of modal radiation loss factors even in the case of weak
structural acoustic interaction.

Although the content of this thesis is mainly methodological, it opens up the possibility for various
applications. Computing radiation loss factors prior to an experimental campaign allows deducing
the extent of other damping phenomena. For example, material inherent damping can be evaluated
by subtracting numerically computed radiation loss factors from (combined material and radiation)
loss factors obtained by experimental decay curves [94]. Such an approach avoids vacuum cham-
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ber measurements for ruling out the influence of air [13, 14]. Moreover, including the effect of
air loading and associated phenomena such as radiation damping generally leads to more accu-
rate structural dynamics simulations, and is particularly important when designing weakly damped
lightweight structures.

The methods developed in this thesis may also used to study other phenomena than radiation
damping. For example, the hybrid numerical-experimental framework can be straight forwardly
extended for a low frequency assessment of sound transmission involving nonstandard geometries.
The newly developed vibroacoustic eigensolver is also suitable for determining dispersion curves
of infinitely periodic, air-loaded metamaterials.

Current limitations and future work

Already at the beginning of the work on this thesis, it was foreseeable that a widespread conside-
ration of radiation damping in the engineering community will be held back by the computational
effort of structural acoustic simulations. Although including the effect of acoustic loading certainly
yields a better reflection of the real multiphysics world, the additional numerical costs may actually
outweigh this benefit. Therefore, in order to lower the barriers for considering radiation damping,
the initial approach in this thesis project was to model the effect of acoustic loading in a purely
structural simulation. In fact, in the funding proposal for this thesis project, S. Marburg already
described spatially distributed devices such as local boundary conditions and damping elements
that are tuned to mimic the effect of acoustic loading.

As it happens, the thesis took another path and rather focused on modeling acoustic loading
directly by solving the underlying Helmholtz equation. A purely structural system of equations
can then be derived from the coupled system by forming the Schur complement (c.f. Eq. (2.14)).
However, at this point, it remains an open question whether alternative, more convenient approaches
are possible. Given that above the coincidence frequency, radiation damping is mainly determined
by bending stiffness and area density, it might be worth to investigate the applicability of global
structural damping models in this higher frequency range. For example, band-averaged radiation
loss factors could be precomputed by energy-based expressions [8, 12] and then used to define a
hysteretic damping model via Eq. (2.2). Indeed, the research in this thesis has shown that energy-
based expressions yield accurate estimates for radiation damping in the higher frequency range
[20]. Moreover, radiation damping exhibits a smooth behavior with respect to frequency above
coincidence, which facilitates the use of band-averaged loss factors.

In the lower frequency range however, such approximations are more difficult to realize due to
the pronounced frequency and excitation dependence of radiation damping [20]. Acoustic condi-
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tions such baffled or unbaffled and the associated effect of acoustic short circuiting also play a role
[22]. Therefore, one might conclude that actually modeling the wave propagation by the Helmholtz
equation is a more expedient measure to consider radiation damping in the low frequency range.
Consequently, the acceleration of such vibroacoustic simulations by MOR techniques shall be in
the focus of future research. First steps were taken in this thesis towards more efficient vibroa-
coustic simulations with BEM, covering both frequency sweeps and modal analyses [28, 29, 51].
In the near future, one can expect that combinations of frequency independent BE approximations
and Krylov-based MOR [76, 77] will further alleviate the computational effort of vibroacoustic
simulations involving BEM.

Apart from long CPU runtime, memory requirements are the main drawback of the coupled
FEM-BEM formulation used in this thesis. Although above-mentioned MOR techniques reduce
the dimension of the coefficient matrices, several matrices of original size still need to be assemb-
led beforehand in order to set up frequency approximations. For single frequency calculations
with BEM, data sparse formats are available to avoid explicit matrix assembly, requiring special
algorithms to perform algebraic operations [55, 56]. First steps were already taken to extend data
sparse BEM formats to a range of frequencies [57]. Further progress in this field will be beneficial
for vibroacoustic frequency sweeps in the future, also in combination with MOR.

Furthermore, one apparent question remains unanswered in this thesis: Is it possible to utilize
the phenomenon of radiation damping in order to deliberately mitigate vibrations in lightweight
structures? A possible approach for this endeavor are periodically arranged structural resonators.
When properly tuned, such an arrangement of resonators (also known as metamaterial) can increase
sound radiation in certain frequency ranges [100, 101], and even additional mode shapes with high
radiation efficiency can be created [102]. It might be worth to investigate whether they can be used
to maximize radiation damping in certain frequency ranges, ideally without violating other acoustic
requirements such as sound insulation. If successful, completely new and far-reaching possibilities
will be opened up for enhancing damping in lightweight structures.
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ABSTRACT:
The fully coupled vibroacoustic interaction of sandwich panels is studied using the finite and the boundary element

methods. The extent of radiation damping is quantified for various configurations based on both harmonic response

analyses and modal analyses. The underlying nonlinear eigenvalue problem is solved using a projection method

based on contour integration yielding the shifted (wet) eigenfrequencies, modal radiation loss factors, and air-loaded

structural modes. The numerical results clearly illustrate the relevance of air-loading when studying the vibration of

sandwich structures. Further, the numerically obtained estimates for radiation damping are compared to both theoret-

ical expressions and experimental results found in the literature. Although good agreement is observed in general,

the comparison indicates the limited applicability of commonly used theoretical expressions when coincidence

occurs in a frequency range where the modes are still well separated. Moreover, possible sources of error when

experimentally determining radiation damping are discussed in detail. The results presented in this paper provide

deep insights into the phenomenon of acoustic radiation damping and help to estimate its relevance in future

research. VC 2020 Author(s). All article content, except where otherwise noted, is licensed under a Creative
Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
https://doi.org/10.1121/10.0000947
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I. INTRODUCTION

The exposure of human beings to vibration and noise

can have implications ranging from annoyance to health

damage. Hence, researchers of various fields, such as mate-

rial scientists and control engineers, are concerned with the

development of passive and active damping devices as well

as the exploitation of material-inherent damping. This is

particularly important for lightweight structures, which—

generally speaking—are either stiff and weakly damped or

exhibit high damping but rather poor elastic properties.1–3

However, an often neglected contribution to the overall

damping of structures is the dissipation of vibrational energy

due to sound radiation. While acoustic radiation damping is

a rather insignificant aspect in many bulky engineering

applications, it is the primary energy dissipating mechanism

for stiff lightweight structures with large radiating surfaces.

It follows that attempts to reduce the vibrational response of

these lightweight structures by additional mechanical damp-

ing can only be successful if the extent of mechanical damp-

ing is comparable or larger than the extent of radiation

damping.4 Therefore, engineers are in need of reliable and

flexible methods for the quantification of radiation damping

in an early stage of the design process.

However, due to the coupled nature of the problem,

involving the behaviors of both structure and surrounding

fluid, radiation damping is not generally amenable to analyt-

ical quantifications. Early theoretical methods predict the

modal radiation damping of rectangular plates5,6 and cylin-

drical shells.7 Expressions for frequency averaged radiation

damping are also derived, assuming that a sufficiently large

number of modes contributes to the vibration of the plate.8

These methods are all based on theoretical expressions of

the radiation resistance9–11 or theoretical expressions of the

acoustic impedance of the plates.12 They are only valid for

homogeneous plates that are confined in an acoustically

rigid baffle prohibiting flow between the two sides of the

plate. Later, correction factors are proposed to account for

unbaffled plates13 with arbitrary boundary conditions.14

However, their applicability to more complex geometric and

material configurations can hardly be judged.

Sandwich structures, consisting of two thin and stiff

face sheets enclosing a thick, lightweight and often aniso-

tropic core, account for such complex configurations. While

sandwich structures excel at the ratio of bending stiffness to

mass, they exhibit relatively high flexural wave speeds com-

pared to those of solid plates with equivalent mechanical

properties. In consequence, coincidence between bending

and acoustic waves occurs at relatively low frequencies.

Moreover, due to the anisotropy, sandwich panels do not

only exhibit a single critical frequency, but rather a range of

frequencies in which coincidence occurs, thus giving rise to

efficient sound radiation and hence high acoustic radiation

damping in a wide frequency range.a)Electronic mail: suhaib.baydoun@tum.de, ORCID: 0000-0002-1184-065X.
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Analytical expressions for the flexural vibration of

sandwich panels can be derived from Hamilton’s princi-

ple.15 Experimental16,17 and numerical approaches18–20 have

been followed to investigate the vibroacoustic behavior of

sandwich panels with respect to different core and face

materials, lay-ups, and geometric configurations—see also

the review by D’Alessandro et al.21 Besides vibroacoustic

studies, many researchers have also made efforts to quantify

material-inherent damping of sandwich panels to enhance

damping by means of viscoelastic treatments.2 Most of the

experimental studies are conducted in air and hence the

thereby obtained loss factors include the effects of acoustic

radiation damping.

Clarkson and Brown deduced the radiation loss factors

of a honeycomb sandwich platform by means of reference

measurements inside a vacuum chamber.22 Zhou and

Crocker determined radiation damping of sandwich plates

clamped between two reverberation chambers based on

principles of energy flow.19 Apart from these two articles,

however, little published data on actual values for radiation

damping of sandwich structures exist, although radiation

damping can account for the major share in the overall

damping and therefore undermine the effectiveness of addi-

tional mechanical damping.

In this paper, we employ a numerical framework based

on the finite element method (FEM) and the boundary ele-

ment method (BEM) in order to better understand the phe-

nomenon of acoustic radiation damping. The structural and

acoustic responses are fully coupled to enable the modeling

of a mutual structural acoustic interaction as it occurs in

many sandwich structures. The cores are represented by

three-dimensional solid finite elements in order to capture

local bending deformations of the individual face sheets that

cause sound radiation in addition to the global bending

deformations. Using this framework, we contribute in the

following aspects to gain a deeper insight into the phenome-

non of acoustic radiation damping:

• First, we study the extent of radiation damping for three

sandwich panels subject to different boundary conditions

in both acoustic full- and halfspaces. The harmonic radia-

tion loss factors are obtained by relating the radiated

sound power to the vibrational energy of the structure.

The panels are excited by point forces as well as diffuse

acoustic fields. The results indicate a strong influence of

boundary conditions and excitations in the low frequency

range, where the responses are mainly determined by

modal behavior.
• Second, using a nonlinear eigensolver based on contour

integration, we perform modal analyses of the air-loaded

sandwich panels to deduce their modal radiation loss fac-

tors and eigenfrequencies. The latter are lowered com-

pared to the in vacuo eigenfrequencies due to the effect of

added mass and damping. The modal radiation loss fac-

tors, which are inherent properties of the structural acous-

tic system, agree well with the harmonic loss factors at

the respective eigenfrequencies. Furthermore, we propose

a more effective strategy for checking and filtering the

eigenvalues when using contour integration and also pro-

vide guidance in choosing the solver-specific parameters.
• Last, we compare our numerically obtained estimates for

radiation damping to theoretical expressions and experi-

mental results found in the literature, generally yielding a

good agreement. However, the comparison also indicates

the limited applicability of commonly used theoretical

expressions when coincidence occurs in a frequency range

where the modes are still well separated. Finally, we dis-

cuss experimental quantification of radiation damping and

associated sources of error such as the reinjection of

acoustic energy and the reliability of reverberation room

measurements in the low frequency range.

II. NUMERICAL QUANTIFICATION OF ACOUSTIC
RADIATION DAMPING

A. Coupled formulation for structural acoustic
interaction

We consider the fully coupled structural acoustic inter-

action in order to determine the vibratory response of sand-

wich structures. Under the assumption of a harmonic time

dependency e�ixt, the equations of linear elasticity and

acoustics are discretized using FEM23 and direct collocation

BEM.24 The resulting systems of equations read

K� x2Mð Þu ¼ fs þ f f ; (1)

and

Hp ¼ G vf � vi
f

� �
þHpi: (2)

Therein, u and p are the vectors of unknown displacement

and sound pressure values at the nodes, respectively. The

stiffness and mass matrices of the structure are denoted with

K and M, respectively. The structure is excited by external

forces fs as well as fluid forces f f . The latter act by virtue of

the acoustic field. Structure-inherent damping is not consid-

ered in this work and, hence, acoustic radiation damping is

the only dissipative mechanism occurring. Further, H and G

are the frequency dependent boundary element (BE) matri-

ces, relating the structural particle velocity vf to the sound

pressure. Acoustic excitation is taken into account by the

incident sound pressure field pi and the corresponding inci-

dent particle velocity vi
f . The angular frequency is defined

as x ¼ 2pf , and i denotes the imaginary unit.

Since we are particularly interested in applications that

exhibit considerable levels of radiation damping, the influ-

ence of the acoustic field on the structural response is not

generally negligible. Consequently, it is not sufficient to

determine the in vacuo response of the structure by solving

Eq. (1), and subsequently evaluate the acoustic field using

Eq. (2) in a post-processing step. Instead, Eqs. (1) and (2)

are mutually coupled on the sound radiating surface, i.e.,

f f ¼ Csfp and vf ¼ �ixCfsu: (3)
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The mesh coupling is established by the coupling matrices Csf

and Cfs, relating the displacement and pressure degrees of free-

dom (DOFs).25 Since structural acoustic interaction is mainly

relevant for thin-walled lightweight structures, most research-

ers rely on shell finite elements for modeling the structural

subdomain.18,20,25 While the sandwich panels considered

in this work can certainly be modeled using layered shell for-

mulations as well, nevertheless, we will follow a different

approach involving three-dimensional solid finite elements for

the representation of the thick core. Additionally, shell ele-

ments are employed for the thin face sheets. While this

approach leads to more DOFs compared to the use of layered

shell elements, it enables us to capture local bending deforma-

tions of the individual face sheets, which otherwise would not

be possible. These local bending deformations of the face

sheets—also known as symmetric motion—involve thickness

deformations of the core. They cause sound radiation in addi-

tion to the global bending deformations (anti-symmetric

motion). These two types of lamb waves,26 which are shown

in Fig. 1, coexist in sandwich panels.

Regarding the boundary conditions of the panel, both

the freely suspended and the simply supported cases are

considered in this work. The simply supported conditions

are modeled by constraining the displacement DOFs of the

face sheet edges, as is schematically shown in Fig. 2.

The approach for modeling the vibroacoustic behavior

of a sandwich panel using finite and boundary elements is

schematically depicted in Fig. 3. The shell finite elements

that represent the face sheets are defined with an offset of

half the shell thickness. In this way, their nodes coincide

with the outer nodes of the solid elements representing the

core. These nodes on the top and bottom surfaces are also

the ones that are coupled to the nodes of the boundary ele-

ment mesh. In the case of an unbaffled panel—i.e., a panel

with free edges where acoustic short-circuiting occurs—a

single boundary element mesh with a closed surface is used.

Otherwise, when the panel is confined in an acoustically rigid

baffle, the two independent acoustic subdomains on each side

of the panel are modeled using a halfspace formulation with

a modified Green’s function.27 In this way, the dissipation of

vibrational energy due to sound radiation is considered simul-

taneously on both sides of the baffled panel. The boundary

element meshes corresponding to a baffled panel are shown

in Fig. 4. Note that it is also possible to only model half of

the baffled panel along with a single acoustic halfspace.

However, this approach would require separate computations

and subsequent superpositions of the symmetric and antisym-

metric responses (cf. Fig. 1). While this would result in fewer

DOFs, nevertheless, we use a full model involving two

acoustic halfspaces for the sake of convenience.

In the case of a single acoustic subdomain, the global sys-

tem of equations containing the coupling conditions emerges as

K� x2M �Csf

ixGCfs H

" #
u

p

" #
¼

fs

�Gvi
f þHpi

" #
: (4)

If the panel is confined in a baffle, the global system com-

prises three subdomains. Assuming that just one side of the

panel is excited by an incident sound field (which actually

resembles the situation in a window test rig), the resulting

monolithic equation is given as

K� x2M �C
ðIÞ
sf �C

ðIIÞ
sf

ixGðIÞC
ðIÞ
fs HðIÞ 0

ixGðIIÞC
ðIIÞ
fs 0 HðIIÞ

2
6664

3
7775

u

pðIÞ

pðIIÞ

2
64

3
75

¼
fs

�GðIÞvi
f þHðIÞpi

0

2
64

3
75; (5)

FIG. 1. Symmetric motion involving thickness deformation of the core

(left) and antisymmetric motion corresponding to global bending deforma-

tion of the sandwich panel (right).

FIG. 2. Modeling of simply supported boundary conditions by constraining

the displacement DOFs of the face sheet edges.

FIG. 3. (Color online) Cross-sectional schematic illustrating the numerical modeling of a (non-baffled) sandwich panel and the surrounding acoustic field.

The structural FE mesh is coupled to the closed acoustic BE mesh via non-coincident nodes on the radiating surface.
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where ð�ÞðIÞ and ð�ÞðIIÞ denote the acoustic halfspaces on the

respective sides of the panel. In the case of geometrical sym-

metry with respect to the plane of the baffle, HðIÞ ¼ HðIIÞ

and GðIÞ ¼ GðIIÞ hold, and consequently, the numerical inte-

gration for assembling the BE matrices needs to be per-

formed only once.

The complex sound power P in linear time-harmonic

acoustics can be obtained from

P ¼ 1

2

ð
C

pv�f dC; (6)

where vf denotes the fluid particle velocity, and ð�Þ� is the

conjugate complex. In the discrete setting, the sound power

is evaluated as a post-processing step. The nodal values for

the sound pressure are related to the particle velocity via Eq.

(2), and the integration of their interpolation functions

results in the boundary mass matrix H. Finally, substitution

by the acoustic impedance matrix Z ¼ ðH�1GÞTH yields

the complex sound power in the discrete setting

P ¼ 1

2
vT

f Zv�f : (7)

Only the real part Reð�Þ of the above expression contributes

to the radiation to the far-field and hence to the structural

damping due to sound radiation. The latter is quantified

by relating the radiated sound power to the power corre-

sponding to the total energy of the vibrating structure.28

The time-averaged total vibrational energy equals twice the

time-averaged kinetic energy, or equivalently, twice the

time-averaged potential energy. For harmonic problems,

these energy quantities can be determined from the struc-

tural response via29

Ek ¼
1

2
x2uT MþMfð Þu�; (8)

and

Ep ¼
1

2
uTKu� � 1

2
fH

s u; (9)

where the first term in Eq. (9) corresponds to the energy due

to the elastic strain, and the second term is the work done by

external forces. The evaluation of the kinetic energy Ek

requires knowledge of the additional mass Mf due to acous-

tic loading. This frequency dependent mass contribution

could be approximated by the second order term of a Taylor

expansion of the acoustic impedance matrix Z.30 However,

for our purposes it is more convenient to simply use the

potential energy Ep to quantify the radiation loss factor.

Hence, the radiation loss factor is expressed by28

gr ¼
Re Pð Þ
jxEpj

: (10)

Note that the kinetic energy Ek could be equally used to

evaluate the radiation loss factor. Recent results31,32 show

that spurious numerical damping could lead to an overesti-

mation of damping phenomena when studying them with

BEM. However, the occurrence of numerical damping does

not seem to be an issue in exterior acoustics.

B. Modal analysis of structural acoustic interaction

Modal analyses provide useful information on the prop-

erties of the system, such as the eigenfrequencies of the

fluid-loaded structure. In this work, in particular, it serves as

an alternative way to quantify the extent of radiation damp-

ing. The modal radiation loss factors can be deduced from

the complex eigenvalues of the structural acoustic system.

At resonance, these modal loss factors are expected to agree

with the continuous radiation loss factor defined in Eq. (10).

The purely structural equation subject to acoustic load-

ing is obtained by forming the Schur complement of Eq. (4)

and thereby omitting the pressure DOFs,33 i.e.,

K� x2Mþ ixCsfH
�1GCfs

� �|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
BðxÞ

u

¼ fs þ Csf pi �H�1Gvi
f

� �
; (11)

in which ixCsfH
�1GCfs can be interpreted as the effect of

fluid loading. Note that the Schur complement of Eq. (5) can

be obtained in a similar manner. By setting the right-hand

side to zero, we arrive at the definition of the structural

acoustic eigenvalue problem (EVP)

Bð~xÞv ¼ 0; (12)

with the fluid-loaded structural mode v and the complex

eigenfrequency ~x. The EVP in Eq. (12) is nonlinear since the

BE matrices H and G implicitly depend on the frequency.

Several methods have been proposed for the solution of

Eq. (12) during the last years. Peters et al.30 employed a

truncated Taylor series to approximate the frequency depen-

dent matrices, and the resultant polynomial EVP is solved

using symmetric linearization. In a subsequent work, the

computational effort associated with the linearized EVP is

addressed by means of Krylov subspace model order reduc-

tion of the structural subproblem.34 However, the success of

this method strongly depends on the convergence radius of

FIG. 4. (Color online) Cross-sectional schematic of two halfspace BE

meshes representing the acoustic fields on either side of a baffled panel.
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the Taylor approximation and the decay of the coefficients of

the polynomial approximation. As a remedy, the frequency

range of interest needs to be subdivided, whereas proper

choices of these sub-frequency ranges can hardly be made a
priori.

Therefore, in recent years alternative approaches for the

solutions of nonlinear EVPs have been proposed, which can

be classified as contour integral methods.35–38 Using con-

tour integration, a nonlinear EVP is converted to a general-

ized EVP of reduced dimension that exhibits identical

eigenvalues inside a predefined region in the complex plane.

Contour integral methods are particularly appealing because

of their general applicability and suitability for the execu-

tion on distributed parallel computers.

While we assume that the other contour integral methods

would also fulfill our purpose of investigating air-loaded

modes and radiation damping of sandwich panels, we choose

to use the block Sakurai Sugiura method (block SS)36,39 in

this work. A comparison of different eigenvalue solvers is

beyond the scope of this work. Moreover, we note that the

focus of our contribution is not the further development of

existing methods but rather its application in the context of

air-loaded elastic structures. Most of following content on

block SS can be also found in the papers by Asakura et al.36

and Zheng et al.36,39 Since we nevertheless propose a more

effective strategy for checking and filtering the eigenval-

ues—which is crucial when using contour integral meth-

ods—the procedure is briefly outlined in what follows.

Block SS is a direct method, and it essentially works by

replacing the nonlinear EVP in Eq. (12) by the generalized

EVP

H1w ¼ kH2w; (13)

with the eigenpair ðw; kÞ. The block Hankel matrices

H1;H2 2 C
KL�KL

are defined as

H1 ¼

M0 M1 � � � MK�1

M1
..
.

..

.
M2K�3

MK�1 � � � M2K�3 M2K�2

2
66666664

3
77777775
;

H2 ¼

M1 M2 � � � MK

M2
..
.

..

.
M2K�2

MK � � � M2K�2 M2K�1

2
66666664

3
77777775
; (14)

where K and L are user-specified positive integers. The

proper choice of K and L will be discussed in detail later on.

The moments Ml 2 C
L�L are computed from

Ml ¼
1

2pi

þ
C

rlUHB�1ðrÞV dr; l ¼ 0;…; 2K � 1;

(15)

where U and V contain randomly chosen source vectors as

columns, and ð�ÞH denotes the Hermitian transpose. The

original system matrix B is evaluated at the complex fre-

quency parameter r. The latter is defined along C—a closed

non-self-intersecting continuous loop in the complex plane.

Once the reduced EVP in Eq. (13) is solved, the fluid-loaded

structural mode can be recovered from

v ¼ Sw: (16)

The corresponding eigenvalue k equals the complex eigen-

frequency ~x of the original system in Eq. (12). The block

matrix S ¼ ½S0;…; SK�1� is also obtained by contour inte-

gration via

Sl ¼
1

2pi

þ
C

rlB�1ðrÞV dr; l ¼ 0;…;K � 1: (17)

C. Algorithm and choice of parameters for modal
analysis of moderately coupled structural acoustic
interaction

The range of obtained eigenvalues is enclosed by the

contour C along which the integrals in Eqs. (15) and (17)

are evaluated. This contour needs to be predefined by the

user. In the context of fluid-loaded structures, a suitable

choice of the contour is an ellipse that has its major axis

aligned with the real axis. The two vertices on the real axis

correspond to the upper and lower limits (fmax; fmin) of the

frequency range of interest. A suitable ellipse is shown in

Fig. 5 and can be expressed by

rðhÞ ¼ cþ q cos hþ if sin hð Þ; h 2 0; 2p½ Þ; (18)

where c ¼ ðfmax þ fminÞ=2 and q ¼ ðfmax � fminÞ=2. The fac-

tor f defines the shape of the ellipse and should be chosen

according to the expected ratio of imaginary and real parts

of the eigenvalues. Generally, the ellipse should be wide

and short (f < 1)—especially in the case of weak to moder-

ately strong structural acoustic coupling. With the definition

of the contour at hand, the integrals in Eqs. (15) and (17) are

approximated using the N-point trapezoidal rule, i.e.,

Ŝl ¼
1

iN

XN

j¼1

rðhjÞ � c
q

� �l

r0ðhjÞB�1 rðhjÞ
	 


V; (19)

M̂l ¼ UHŜl; (20)

FIG. 5. (Color online) Elliptic contour in the complex plane enclosing the

eigenvalues of interest.
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where N denotes the number of integration points on the

contour, and hj ¼ 2pðj� 1Þ=N; j ¼ 1;…;N: Using the

approximated moments M̂l, the (approximated) Hankel

matrices Ĥ1 and Ĥ2 can be assembled according to Eq.

(14). Finally, the corresponding generalized EVP Ĥ1ŵj

¼ k̂jĤ2ŵj is solved and the complex eigenfrequencies ~xj,

as well as the fluid-loaded modes vj; j ¼ 1;…;KL, are

recovered from

~xj ¼ cþ qk̂j; vj ¼ Ŝŵj: (21)

The main challenge with the use of block SS lies in the

choice of the following parameters: the degree of moments

K, the number of source vectors L, and the number of inte-

gration points N. These parameters are related to the compu-

tational effort of the method, as well as to the completeness

of the determined eigenvalues, i.e., whether all eigenvalues

lying inside the contour are found.

Given a fixed number of integration points N, Sakurai

et al.40 suggest to set the degree of moments to K ¼ N=4 as

a good compromise between accuracy and numerical effi-

ciency of the algorithm. With L¼ 1, we have the original SS

method,35 while the choice L> 1 results in the block SS

method,36 which achieves higher accuracy at a similar

numerical cost.41 In this work, we found that the eigensolu-

tions improved with an increasing number of L up to

roughly L¼ 10. Higher values than that did not change the

results anymore as long as the product KL was large enough.

This product defines the dimension of the subspace and

hence corresponds to the number of eigenvalues that are

obtained from the reduced system. Therefore, KL should be

at least as large as the expected number of eigenvalues

inside the contour. This number can be estimated a priori by

an empirical formula.40 However, in our case of sandwich

structures interacting with air, we will rather rely on the

knowledge of the number of in vacuo eigenfrequencies

inside the given frequency range ½fmin; fmax�. More specifi-

cally, we solve the purely structural EVP

K� x2
dryM

� �
vdry ¼ 0; (22)

with the in vacuo modes vdry and eigenfrequencies xdry prior

to the solution of the structural acoustic EVP in Eq. (12).

Then, assuming that in a given frequency range, the number

of structural acoustic eigenvalues roughly equals the number

ndry of eigenfrequencies, we set the dimension of the

reduced EVP such that KL > ndry.

The number of integration points N determines the

number of linear systems of equations BðrÞX ¼ V that have

to be solved for evaluating Eq. (19), accounting for the main

computational effort. In cases where the algorithm is exe-

cuted in a parallel computing environment, N is chosen

according to the available computing nodes. Sakurai et al.40

note that a large N is not necessary for an accurate quadra-

ture and suggest, e.g., N¼ 16 or 32. Whereas the results of

Zheng et al.39 confirm this suggestion, they also show that

iteratively increasing N is a suitable way for checking

whether all eigenvalues inside the contour are found and

also for distinguishing them from spurious eigenvalues. The

latter mainly occur due to the projection.

However, in the context of weak to moderately strong

structural acoustic interaction, a more effective strategy for

checking and filtering the eigenvalues is available based on

the modal assurance criterion (MAC).42 Assuming that the

modes of a structure subject to light fluid-loading are similar

to the in vacuo modes, the validity of a complex eigenvalue

~xj can be simply tested by checking the occurrence of its

associated mode vj in the range of in vacuo modes, i.e.,

MAC vj; vdry;ið Þ ¼
jvH

j vdry;ij2

vH
j vdry;iv

H
j vdry;i

; i ¼ 1;…; ndry:

(23)

The values of MAC range from 0, indicating no correspon-

dence between the two modes, to 1, representing a consistent

correspondence. In the case of air-loaded sandwich panels,

we can expect to find an in vacuo mode vdry for each actual

fluid-loaded mode vj that satisfies MAC ¼ 0:95 … 1:00.

Otherwise, vj and the corresponding eigenvalue ~xj are identi-

fied as spurious. On the other hand, if we are interested in the

complex eigenfrequencies corresponding to particular modes,

a criterion based on Eq. (23) is useful to check if that eigen-

frequency has been found by block SS. If not, the accuracy of

the projection needs to be improved by increasing the number

of integration points N—of course given that the underlying

elliptic contour actually encloses that eigenvalue. Once all

desired modes are found, the accuracy of eigenpairs ð~x; vÞ
can be assessed by inserting them into Eq. (12) and comput-

ing the backward error

�EVP ¼
jjBð~xÞvjj
jjvjj : (24)

Furthermore, the accuracy of eigenpairs can be subsequently

improved by repeating the contour integration (19) with

additional integration points placed in between the previous

ones. In this way, the additional numerical effort is limited

to the computations required for the new integration points,

while the intermediate solutions corresponding to the previ-

ous integration points can be reused. Thus, a strategy with a

gradually increasing number of N is only marginally more

expensive than a single execution of the procedure with the

final (i.e., largest) number of N.

III. RADIATION DAMPING OF RECTANGULAR
HONEYCOMB SANDWICH PANELS

In the following, we will study the vibroacoustic behav-

ior of three honeycomb sandwich panels in air with particu-

lar focus on acoustic radiation damping. The results

obtained using the presented numerical framework are then

compared to theoretical expressions as well as to experimen-

tal results available in the literature.

Panel A consists of two plywood face sheets enclosing

a paper honeycomb core. The vibroacoustic behavior of a
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similar panel is experimentally investigated in the pioneering

work by Moore,16 which has also served as a benchmark for

other researchers in the past.21,43 Panels B and C are made of

plane weave fabric-reinforced graphite composite face sheets

and a polyurethane foam-filled honeycomb core.19 The dimen-

sions and the material properties of the panels A, B, and C are

presented in Table I. The freely suspended boundary condition

is denoted with “-free” and the simply supported case with

“-SS.” For example, panel A subject to simply supported

boundary conditions will be referred to as panel A-SS in what

follows. Unless otherwise stated, the freely suspended panels

are excited by a point force of Fz ¼ 1 N at the corner node

(x ¼ y ¼ 0; z ¼ h=2), and the simply supported panels like-

wise at the center node (x ¼ lx=2; y ¼ ly=2; z ¼ h=2).

Moreover, excitation by diffuse acoustic fields will also be

considered in Sec. III D. The definition of the coordinate sys-

tem is depicted in Fig. 6.

A. Mesh and discretization error

Eight-noded quadrilateral shell finite elements based on

the Reissner-Mindlin theory are employed for the modeling of

the face sheets. The cores of the panels are modeled using 20-

noded hexahedral solid finite elements. The respective stiff-

ness and mass matrices are extracted from ANSYS.44 For all

three panels, a uniform finite element mesh with 48 and 96

elements along the in-plane directions and 2 elements in the

thickness direction is used (recall that all 3 panels have an

aspect ratio of roughly 2:1). The finite element (FE) meshes

result in 240 000 displacement DOFs. This corresponds to

three quadratic elements per bending wave length of panel A

in the frequency range up to 2000 Hz. For panels B and C, this

mesh results in at least 6 and 13 elements per bending wave

length, respectively, in the considered frequency ranges.

Quadrilateral boundary elements with bilinear interpola-

tion functions are used for the discretization of the surround-

ing acoustic field. These elements have their DOF-carrying

nodes inside the element, rather than on the element edges,

resulting in a sound pressure interpolation that is discontinu-

ous across element boundaries.45 The corresponding BE

matrices H and G are extracted from the non-commercial soft-

ware AKUSTA.45 A treatment for the nonuniqueness problem

that occurs in exterior BE formulations is not required since

the respective first irregular frequencies of the panels are

beyond the frequency range of interest, e.g., the first spurious

mode of panel A occurs at approximately 27 kHz.

Regarding the size of the boundary element mesh, there

are no guidelines available in the literature for coupled

structural acoustic radiation problems. Therefore, in this

work, the adequate mesh size for the acoustic field is chosen

based on a convergence study. Figure 7 shows the relative

difference in radiated sound power of panel A-SS for differ-

ent BE mesh sizes. These meshes do not conform with the

above defined structural finite element mesh. Consequently,

the relative difference shown in Fig. 7 is related to the dis-

cretization error of the acoustic field, as well as to the error

introduced by the mesh coupling. It is calculated from

�rel;P ¼ jP� Pref j=Pref , where Pref denotes the reference

sound power for a mesh with 48 and 96 elements along the

in-plane directions corresponding to 19 584 pressure DOFs

for each acoustic halfspace. This reference BE mesh con-

forms with the above defined FE mesh. As we expected, the

relative difference displayed in Fig. 7 decreases monotoni-

cally as we refine the mesh. Moreover, the relative differ-

ence is of the same order of magnitude at four different

frequency points, although some of those frequencies lie

well above the coincidence frequency range of the panel

(see Sec. III E for discussion on coincidence).

TABLE I. Geometry and properties of the honeycomb sandwich panels

taken from the literature (Refs. 16 and 19). Values that are not explicitly

given in these references are assumed and marked with a star “*.”

Face sheets

Panel A

(Ref. 16)

Panel B

(Ref. 19)

Panel C

(Ref. 19)

Thickness t 6.35 mm 0.5 mm 0.5 mm

Density qf 657 kg=m3 1600 kg=m3 1600 kg=m3

Young’s modulus E 7 GPa 49 GPa 39 GPa

Poisson’s ratio �a 0.3 0.15 0.15

Core

Thickness h 76.2 mm 6.35 mm 12.7 mm

Density qc 28 kg=m3 160 kg=m3 120 kg=m3

Young’s modulus Ex,Ey 4 MPa 10 MPa� 10 MPa�
Young’s modulus Ez 370 MPa 100 MPa� 100 MPa�
Shear modulus Gxy 0:2 MPa 0:5 MPa� 0:5 MPa�
Shear modulus Gyz 50 MPa 140 MPa 60 MPa

Shear modulus Gxz 23 MPa 90 MPa 100 MPa

Poisson’s ratio �c 0.1 0.15 0.15

Dimensionsa lx � ly 1:22� 2:44 m2 1:12� 0:62 m2 1:12� 0:62 m2

aThe dimensions of panels B-SS and C-SS in the simulations are reduced to

0.88� 0.42 m2 in order to account for the dimension reduction due to the

clamping in the window test rig (Ref. 19) and thus ensure comparability

between the experimental and numerical results.

FIG. 6. (Color online) Coordinate system of the sandwich panels.

FIG. 7. (Color online) Relative difference in radiated sound power of panel

A-SS for different BE mesh sizes. The reference sound power is obtained

using a conforming BE mesh with 19 584 pressure DOFs for each acoustic

halfspace.
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Based on this convergence study, we choose the BE

mesh with 24 and 48 elements along the in-plane directions

for all upcoming simulations. This mesh has 5148 pressure

DOFs for each halfspace and, similarly, 10 296 DOFs for

the acoustic fullspace corresponding to the unbaffled panels.

Compared to the reference mesh that has four times more

DOFs, it results in a relative difference of less than 3.3%

(0.14 dB) at all considered frequency points. Finally, in

order to assess the influence of the discretization error on

the eigenfrequencies, the modal analysis that is presented in

Sec. III B was repeated with the reference mesh, resulting in

maximum relative differences of 0.17% in the imaginary

and 0.07% in the real part of the eigenvalues.

B. Modal analysis and eigenfrequencies

The modal analysis scheme presented in Sec. II is now

applied to panel A to obtain its air-loaded modes and associ-

ated eigenfrequecies. From a preceding in vacuo analysis,

we expect panel A-Free to have 15 eigenfrequencies in the

frequency range ½fmin ¼ 10 Hz; fmax ¼ 500 Hz�. Trivially,

panel A-Free also exhibits six rigid body modes which are

not affected by the acoustic loading. The in vacuo analysis

of panel A-SS yields 11 eigenfrequencies in the frequency

range ½fmin ¼ 100 Hz; fmax ¼ 600 Hz�. These bounds are also

chosen for the definition of the respective ellipses in Eq.

(18). The number of integration points N was gradually

increased until the accuracy of the eigenpairs stagnated,

resulting in N¼ 32. Moreover, K¼ 8 moments, L¼ 15

source vectors, and an aspect ratio of f ¼ 0:1 were chosen

for both panels. In the considered examples, we found that

the eigensolutions are relatively insensitive to the choice of

K and L as long as the resulting subspace was large enough

and L � 10. After solving the generalized EVP, the modes

corresponding to the eigenvalues lying inside the contour

are checked using MAC as given in Eq. (23).

The eigenfrequencies of the air-loaded panel corre-

spond to the real part of the eigenvalue, i.e.,

fj ¼ Reð~xjÞ=ð2pÞ. They are given in Tables II and III, along

with the in vacuo eigenfrequencies fdry;j and their relative

difference Dj ¼ jfdry;j � fjj=fdry;j. As we expect, the eigenfre-

quencies of the air-loaded panels are generally lowered due

to the effect of added mass and radiation damping. The

actual extent of the frequency shift depends on the shape of

the associated mode. For example, the eigenfrequency f1 of

panel A-SS associated with the fundamental bending mode

is significantly lowered (D1 ¼ �2:39 %), while the eigenfre-

quency f11 of panel A-Free that belongs to an in-plane mode

is almost unaffected by the air-loading (D11 ¼ �0:03 %).

Regarding the numerical accuracy of the frequency

shifts Dj, we distinguish between the discretization error and

the accuracy of the eigensolver. As mentioned in Sec. III A,

the discretization error of the wet eigenfrequencies of panel

A-SS is at most 0.07%. Although this might seem suffi-

ciently accurate at first sight, it nevertheless needs to be set

in relation to the frequency shifts. In the presented exam-

ples, the discretization error is mostly 1 order of magnitude

smaller than the computed frequency shifts Dj in both pan-

els. The accuracy of the eigensolver is assessed by comput-

ing the relative residuals of the air-loaded eigenpairs by

using Eq. (24). They are given in Tables II and III and show

that errors of order Oð10�5Þ are achieved. This verifies the

accuracy of the presented modal analysis scheme.

C. Radiated sound power

Expressing the sound radiation by means of modal con-

tributions is a popular procedure to accelerate active control

applications. For instance, a few (orthogonal) surface veloc-

ity patterns are usually sufficient to approximate the total

radiated sound power at a certain frequency. These patterns,

also known as acoustic radiation modes,46 are the eigenvec-

tors of the acoustic impedance matrix and computed using

BEM or analytical methods.47

Alternatively, we can express the radiated sound power

in terms of the fluid-loaded modes of the structure. This

requires orthonormalization48 of the modal basis obtained

from block SS such that

VTBðxÞV ¼ I (25)

TABLE II. Comparison between in vacuo and air-loaded eigenfrequencies

of panel A-SS.

j fdry;j fj Dj �EVP;j

1 160 Hz 157 Hz �2.39% 2:4� 10�6

2 222 Hz 218 Hz �1.83% 3:6� 10�6

3 316 Hz 314 Hz �0.67% 2:5� 10�6

4 322 Hz 317 Hz �1.38% 1:7� 10�6

5 370 Hz 366 Hz �0.96% 3:4� 10�6

6 431 Hz 430 Hz �0.13% 5:3� 10�6

7 444 Hz 442 Hz �0.44% 1:4� 10�6

8 507 Hz 503 Hz �0.65% 5:8� 10�6

9 538 Hz 538 Hz �0.14% 1:6� 10�6

10 544 Hz 541 Hz �0.43% 1:2� 10�6

11 558 Hz 557 Hz �0:10 % 2:9� 10�6

TABLE III. Comparison between in vacuo and air-loaded eigenfrequencies

of panel A-Free.

j fdry;j fj Dj �EVP;j

1 69:5 Hz 67:7 Hz �2.53% 4:4� 10�6

2 77:3 Hz 75:9 Hz �1.85% 4:7� 10�6

3 157 Hz 154 Hz �1.94% 6:0� 10�6

4 176 Hz 171 Hz �2.74% 1:8� 10�5

5 229 Hz 225 Hz �1.80% 1:3� 10�5

6 251 Hz 246 Hz �2.26% 1:5� 10�5

7 255 Hz 251 Hz �1.73% 4:1� 10�5

8 308 Hz 301 Hz �2.26% 5:3� 10�5

9 324 Hz 318 Hz �1.83% 1:9� 10�5

10 366 Hz 359 Hz �2.18% 4:1� 10�5

11 390 Hz 389 Hz �0:03 % 7:2� 10�5

12 403 Hz 394 Hz �2:04 % 1:0� 10�5

13 439 Hz 432 Hz �1:61 % 4:1� 10�6

14 453 Hz 446 Hz �1:64 % 5:3� 10�6

15 459 Hz 458 Hz �0:32 % 1:0� 10�5
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holds with the orthonormal modal matrix V containing the

fluid-loaded modes v̂j as columns. Due to orthonormalization

with respect to the frequency dependent matrix BðxÞ, these

modes are now also frequency dependent. Given a structural

force excitation fs, the structural displacement in Eq. (11)

can be expressed by exploiting the condition (25), i.e.,

u ¼ VVTfs: (26)

For an individual mode v̂j, the modal particle displacement

dj at the acoustic nodes can be written as30

dj ¼ Cfsv̂jv̂
T
j fs: (27)

Inserting Eq. (27) into Eq. (7) yields the complex modal

sound power contributions

Pjk ¼
1

2
x2dT

j ZdH
k : (28)

Figure 8 displays the real parts of the sound power resulting

from point force excitations of panels A-SS and A-Free.

Here, panel A-SS is not excited at the center but at the node

(x ¼ 0:61 m; y ¼ 1:754 m; z ¼ 0:038 m) to ensure that a

larger number of modes participate in the response.

As expected, several resonances occur in the considered

frequency ranges. In the case of panel A-SS, the peaks are

noticeably rounded. Given that structure-inherent damping

is not modeled here, this clearly indicates the effect of

energy dissipation by sound radiation. While the first couple

of resonances of A-Free exhibit sharp maxima, the effect of

acoustic radiation damping also comes into play in the

higher frequency range.

Besides the sound power that is obtained from a harmonic

analysis, Fig. 8 also displays the diagonal modal contributions

ReðPjjÞ, as well as the superposition of all (diagonal and off-

diagonal) contributions, i.e.,
P

j

P
kReðPjkÞ. The total modal

superposition agrees well with the harmonic sound power

except in the higher frequency range, where the modal basis is

obviously not sufficient. The relative differences between the

harmonic sound power and the total modal superposition are

given in Fig. 9.

At the resonances, the diagonal values almost exclusively

contribute to the radiated sound power. The rigid body modes

of panel A-Free are also included in the modal basis, and

determine the sound radiation up to around 50 Hz. At around

100 Hz, they even exceed the total radiated sound power,

which is an indication that off-diagonal sound power contribu-

tions with negative signs occur, i.e., ReðPjkÞ < 0; j 6¼ k.

The modal displacements dj are generally not orthogo-

nal with respect to the acoustic impedance matrix Z, and

cross-coupling between two modes can occur. Therefore,

the off-diagonal sound power contributions are not necessar-

ily zero. In fact, the occurrence of these off-diagonal contri-

butions can be interpreted in that the spatial distribution of

inertial forces of the structure is different from the spatial

distribution of the inertial forces due to the acoustic loading.

We notice that despite the relatively weak structural acous-

tic interaction between the sandwich panels and the air,

these off-diagonal values significantly contribute to the

overall sound power radiation.

D. Acoustic radiation damping

By relating the power loss due to far-field sound radia-

tion to the vibrational energy of the structure, the radiation

loss factor quantifies the extent of acoustic radiation damp-

ing. The harmonic radiation loss factor as given in Eq. (10)

is the result of a frequency-wise response analysis and gen-

erally depends on the excitation.

Figure 10 displays the radiation loss factor for the pan-

els A-SS and A-Free subject to point-force excitation. While

both panels show qualitatively similar behaviors with an

increase of radiation damping toward the coincidence region

and a subsequent plateauing, significant differences in the

FIG. 8. (Color online) Radiated sound power of panels A-SS and A-Free subject to point-excitation. Results were obtained from a harmonic analysis, the

total modal superposition, and the diagonal modal contributions.
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magnitudes are observed in the low frequency range. Panel

A-SS already exhibits considerable radiation damping in the

low frequency range by virtue of the fundamental bending

mode that exhibits a monopole radiation characteristic. In

contrast, the effect of acoustic short-circuiting in conjunc-

tion with freely moving edges of panel A-Free lead to much

lower radiation loss factors in the low frequency range. At

the higher frequency range, when the panels contain a few

bending waves, the effect of boundary conditions becomes

insignificant, and both panels exhibit similar radiation loss

factors. Values of gr > 0:01 across a wide frequency range

indicate the relevance of acoustic radiation damping in hon-

eycomb sandwich structures—particularly when considering

that material-inherent loss factors are typically of the same

order of magnitude.

Besides the boundary conditions, the excitation can have

a significant influence on radiation damping at low frequen-

cies as well. This is reflected in Fig. 11, which is a close-up

of Fig. 10 in the low frequency range. Additionally, it shows

averaged loss factors of the panels subject to 100 randomly

located point forces as well as loss factors for diffuse field

excitation. The responses to a diffuse incident field were

computed as the mean values of 50 simulations, where the

excitation in each simulation was given by the summation of

1145 random incident plane waves arriving from uniformly

distributed directions in space. For a detailed description of

this procedure, we refer to the appendix of a paper by

Rafaely.49 Regarding the extent of radiation damping, we

notice that the diffuse field excitation leads to higher loss fac-

tors in the low frequency range in both panels. This can be

explained by the spatially uniform distribution of the incident

pressure fields in the low frequency range that almost act like

a plane wave excitation. For panel A-Free around 125 Hz in

particular, this leads to monopole radiation characteristic

which is not achieved by point excitation.

In addition to the harmonic radiation loss factor, modal

loss factors can be obtained characterizing the radiation damp-

ing of each individual fluid-loaded structural mode. These

modal radiation loss factors are properties of the structural

acoustic system and hence independent of the excitation. At

the complex eigenfrequency ~xj, the modal radiation loss factor

is defined as4,50

gj ¼ �2
Im ~xjð Þ
Re ~xjð Þ

; (29)

in which Imð~xjÞ is negative due to the choice of the time

dependency e�ixt. The modal loss factors are given in Fig.

11 for panels A-SS and A-Free at their respective eigenfre-

quencies. In the case of point excitation, the harmonic loss

factors deviate from some of the modal loss factors, indicat-

ing that the respective modes are not (or not exclusively)

excited in the harmonic analysis. This is particularly obvi-

ous for the in-plane mode of panel A-Free that occurs at

f11 ¼ 389 Hz and exhibits only marginal radiation damping

FIG. 9. Relative difference between the radiated sound power of panels A-SS and A-Free, obtained from a harmonic analysis and the total modal

superposition.

FIG. 10. (Color online) Harmonic radiation loss factors of panels A-SS and

A-Free subject to point excitation. The dashed line indicates the estimated

critical frequency [cf. Eq. (31)].
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(g11 ¼ 2� 10�4). On the other hand, the harmonic loss fac-

tor corresponding to the diffuse field excitation coincides

with all modal loss factors for both panels without excep-

tion. Summing up, both the modal and the harmonic radia-

tion loss factors provide useful measures to characterize the

extent of radiation damping.

E. Comparison to theoretical and experimentally
obtained radiation loss factors

So far, we have placed our attention only on numerical

methods and how they can be employed to study the radia-

tion damping of sandwich structures. In the following, we

will compare our numerical results to commonly used theo-

retical expressions and experimental results available in the

literature.

Theoretical expressions for radiation damping rely on

approximations of the radiation resistance Rr,
8,11 i.e.,

gr ¼
Rr

xmpanel

; (30)

where mpanel denotes the mass of the panel. Several authors

have derived the radiation resistance of simply supported,

baffled plates based on the concept of power flow,8,9 and

correction factors have been proposed for taking the effect

of acoustic short-circuiting into account.13 All of these

expressions assume a multi-modal radiation of the panel and

thus are not applicable in the low frequency range. A sum-

mary and discussion of these expressions for radiation resis-

tance can be found in a publication by Renji and Nair11 in

which the authors also point out that some of the expressions

in the above-mentioned literature have inconsistent factors.

Here, we use the expression as given in Eq. (11) of the paper

by Renji and Nair.11

The accuracy of theoretical radiation resistance esti-

mates, in turn, depends on the prediction of the critical fre-

quency. For composite panels with symmetric cross-ply

laminates, the critical frequency fc under consideration of

transverse shear effects can be estimated from51

f 2
c ¼

c4qs

4p2D 3þ að Þ=4� c2qs=N
� � ; (31)

where qs denotes the surface density of the panel, c is the speed

of sound, and a ¼ ðD12 þ 2D66Þ=D with D ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D11D22

p
. The

flexural rigidity values D11, D22, D12, D66, and the shear rigidity

N can be obtained from the properties of the face sheets and the

core based on laminate theory.52 Using Eq. (31) yields critical

frequency estimates of 146 Hz for panel A, 122 Hz for panel B,

and 780 Hz for panel C.

The third-octave band-averaged theoretical estimates for

the radiation loss factor resulting from Eq. (30) are given in

Figs. 12 and 13, along with the numerically obtained results

for panels A-SS, B-SS, and C-SS. The critical frequencies

cannot be identified directly from the numerical results

becayse this would require determining the bending wave

content by means of a spatial Fourier transform. However,

from Figs. 12 and 13 we can observe that the radiation loss

factor exhibits a plateau in the higher frequency range. This

plateauing that generally occurs above the critical frequency

is in accordance with the theoretical results, while the actual

radiation loss factors at the critical frequencies are signifi-

cantly overestimated by the theoretical expressions. In the

higher frequency range, where the radiation loss factors level

out, the theoretical and numerical results of all three panels

are in good agreement. This indicates that enough modes

contribute to the radiation of the panel in this frequency

range so that the theoretical expressions are valid. At lower

FIG. 11. (Color online) Harmonic radiation loss factors of panels A-SS and A-Free subject to point and diffuse field excitations. Additionally, modal loss

factors are given at their respective eigenfrequencies.
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frequencies, however, the radiation damping of panels B-SS

and C-SS strongly depends on which modes are excited.

Moreover, the modes are still widely separated while signifi-

cant radiation damping already occurs. However, as already

mentioned above, the theoretical expressions assume a

multi-modal radiation of the panel. This leads to the conclu-

sion that they are not sufficient to comprehensively assess

the radiation damping of such sandwich structures, at least

when coincidence and, thus, efficient sound radiation already

occur at low frequencies.

Furthermore, experimentally determined loss factors of

similar panels are taken from the literature, and they are also

compared to our numerical results in what follows. Panel

A-SS was tested my Moore16 in a window between two

reverberation rooms. It was excited by a loudspeaker in the

sending room, and the sound pressure, as well as the space

averaged mean square accelerations of the panel, were mea-

sured in the receiving room. By relating the radiated sound

power to the vibrational level, Moore16 obtained third-

octave band-averaged radiation efficiencies of panel A-SS

(see Fig. 5.8 in Ref. 16). The associated radiation loss factor

can be obtained from the radiation efficiency r̂r via

gr ¼
qcr̂r

qsx
; (32)

where q denotes the density of air. Zhou and Crocker19 have

conducted similar measurements to obtain the third-octave

band-averaged radiation loss factors of the panels B-SS and

C-SS. The panels were clamped in a window between two

reverberation rooms and excited by a shaker. Since the loss

factors resulting from the above-mentioned experiments are

associated with the sound radiation of only one side of the

panel, they are multiplied by a factor of 2 in order to com-

pare them to our numerical results.

The experimentally determined radiation loss factors of

panels A-SS, B-SS, and C-SS are displayed in Figs. 12 and

13, along with the numerical results. In general, the experi-

mental and numerical results agree well for all three panels.

Above the critical frequency, the experimental loss factors

exhibit a similar leveling-off as the numerical results,

although in this frequency range the theoretical estimates

provide better agreements with the numerical results.

Conversely, around the critical frequency, where the theo-

retical expressions significantly overestimate radiation

damping, the experimental values provide better agreements

with the numerical results than the theoretical estimates do.

In the subcritical range, however, the experimentally

obtained loss factors fall significantly below the numerical

ones. Two explanations are possible for this discrepancy.

The first explanation is related to the boundary condi-

tions of the panels. When testing panels in a window test

rig, they are typically clamped between the two walls of

adjacent rooms. This clamping, however, is far from ideally

rigid and will, to a certain extent, always exhibit compli-

ance. It is clear that the boundary conditions of a particular

window test rig can hardly be reproduced in simulations,

and as a compromise, simply supported boundary conditions

were imposed on all face sheet edges, as shown in Fig. 2.

The difference to the actual boundary conditions in the test

FIG. 12. (Color online) Radiation loss factors of panel A-SS. Comparison

of numerical results with experimentally determined values taken from the

literature (Ref. 16) and theoretical expressions.

FIG. 13. (Color online) Radiation loss factors of panels B-SS and C-SS. Comparison of numerical results with experimentally determined values taken from

the literature (Ref. 19) and theoretical expressions.
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rig will certainly have an influence on the low frequency

results.

The second possible explanation for the discrepancy

between the experimentally and numerically obtained loss

factors is related to the reliability of reverberation room

measurements in the low frequency range, in general. The

low modal density of the room results in a nonuniform

sound pressure field, and therefore microphone-based mea-

surements are subject to high uncertainties. This issue could

be addressed by a recently proposed experimental procedure

in which mobility measurements are combined with a

numerically obtained acoustic impedance matrix to compute

the acoustic response.53 In this way, experimental estimates

of the radiation loss factor that only depend on the proper-

ties of the panel could be obtained.

In addition to the simply supported panels, the freely

suspended, non-baffled panels B-Free and C-Free are also

studied, and their respective numerical and experimental

radiation loss factors are displayed in Fig. 14. Zhou and

Crocker19 obtained the experimental values by exciting the

freely hanging panels with a shaker and measuring both the

sound pressure in the reverberation room and the mean

vibrational velocity of the panel. While the numerical and

experimental loss factors qualitatively show similar behav-

iors with an increase toward the coincidence region and a

subsequent plateau, the actual magnitudes differ signifi-

cantly in the higher frequency range. There, the numerically

determined loss factors are higher throughout than the

experimental ones.

This deviation could be related to the reinjection of

energy due to reflections in the reverberation rooms. While

the numerical models assume that all the radiated sound

energy disappears in the far-field, in fact, part of the acoustic

energy in a reverberant room is transferred back to the panel

and, hence, serves as an excitation in addition to the

mechanical excitation by the shaker. This line of reasoning

becomes clear when considering how Zhou and Crocker19

obtained the radiation loss factor estimates from their

experimental data. For this purpose, recall the power bal-

ance inside a reverberation room, i.e.,

x groom þ gcð ÞEroom ¼ xgrEpanel; (33)

where Eroom and Epanel denote the total mean energies of the

acoustic field and the panel, respectively. The dissipation loss

factor of the reverberation room groom includes the sound

power absorption of the walls due to air. The coupling loss fac-

tor gc reflects the transfer of acoustic energy from the room to

the panel—similar to the radiation loss factor gr that quantifies

the energy transfer from the panel to the acoustic field in the

room. The energy quantities are given as

Eroom ¼
�p2Vroom

qc2
; Epanel ¼ mpanel�v

2; (34)

where �p and �v are the experimentally obtained averaged val-

ues for the sound pressure and the vibrational velocity.

Further, Vroom denotes the volume of the reverberation

room. The coupling loss factor gc in Eq. (33) is defined

based on considerations of statistical energy analysis (SEA)

from the reciprocal relationship11

gc ¼ gr

npanel

nroom

; (35)

with the modal density of the panel npanel and the modal den-

sity of the room nroom. Combining Eqs. (30), (33), (34), and

(35), we arrive at an expression for the radiation resistance

that reads

Rr ¼
x�p2Vroomgroommpanel

qc2mpanel�v2 � �p2Vroom

npanel

nroom

: (36)

Indeed, Zhou and Crocker used another, simplified expres-

sion in order to deduce the radiation resistance from their

experimental data. Their expression [cf. Eq. (21) in Ref. 19]

reads

FIG. 14. (Color online) Radiation loss factors of panels B-Free and C-Free. Comparison of numerical results with experimentally determined values taken

from the literature (Ref. 19). The deviation in the high frequency range could be related to reinjection of acoustic energy in the reverberation room.
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Rr ¼
x�p2Vroomgroom

qc2�v2
: (37)

A comparison to Eq. (36) reveals that Eq. (37) misses the

second term in the denominator and as a consequence,

neglects the reinjection of acoustic energy into the panel.

This could lead to an underestimation of the radiation resis-

tance, which would explain the deviation between the

numerical and experimental estimates for radiation damping

that we observe in Fig. 14 in the higher frequency range. In

future experiments, the second term in the denominator of

Eq. (36) could be evaluated to assess its impact on the actual

radiation damping values.

Finally, we note that the above-mentioned paper19 is

not the only publication of experimental results where the

reinjection of acoustic energy is left unconsidered. In fact,

in the pioneering work22 on radiation damping of sandwich

panels, Clarkson and Brown deduce radiation damping by

means of reference measurements in a vacuum chamber.

However, the measurements in air are conducted inside the

(disabled) vacuum chamber as well, which clearly leads to

reflection at the inner walls of the chamber, and therefore to

unwanted reinjection of acoustic energy.

IV. SUMMARY AND CONCLUSION

Using a fully coupled FEM/BEM formulation, we have

systematically studied the acoustic radiation damping of

sandwich structures. The extent of radiation damping is

quantified by the harmonic radiation loss factor relating the

radiated sound power to the structure-inherent power.

Besides harmonic response analyses, modal analyses of

sandwich panels interacting with the surrounding air have

also been performed. The underlying nonlinear EVP has

been solved using a projection method based on contour

integration, resulting in the complex eigenfrequencies and

modes of the air-loaded structure. Spurious eigenvalues that

arise due to the contour integration are identified by check-

ing the occurrence of the associated air-loaded modes in the

range of in vacuo modes. This criterion is also used to check

the completeness of the eigenvalue solution. The final eigen-

values provide the shifted (wet) eigenfrequencies, as well as

the modal radiation loss factors, of the sandwich structure.

The numerical framework has been applied to three hon-

eycomb sandwich panels subject to various boundary condi-

tions and excitations. The reduction in eigenfrequencies of

more than 2% compared to the in vacuo eigenfrequencies

clearly indicates the relevance of air-loading when studying

the vibration of sandwich structures. Moreover, radiation

loss factors of 8% in the coincidence region and larger than

1% across wide frequency ranges demonstrate that the phe-

nomenon of acoustic radiation damping significantly contrib-

utes to the overall damping. Furthermore, it is observed that

the simply supported, baffled panels exhibit significantly

larger radiation damping than the freely suspended, unbaffled

panels in the lower frequency range. At higher frequencies,

the effects of boundary conditions and excitations are

insignificant. The modal radiation loss factors quantifying

the radiation damping of each individual structural mode

show excellent agreement with the harmonic radiation loss

factors corresponding to the diffuse field excitation.

The comparison of the numerical results to the theoreti-

cal expressions for radiation damping yields good agreement

above the critical frequency. However, commonly used theo-

retical expressions overestimate the radiation damping at the

critical frequency, and they are also inaccurate in the lower

frequency range, where the modes of the panel are widely

separated and the response of the panel depends on the exci-

tation. Given that sandwich structures exhibit high radiation

damping already in the low frequency range, this deficiency

of the theoretical expressions underlies the importance of

numerical quantification of radiation damping.

Furthermore, we have compared our numerical results

to experimentally obtained radiation loss factors found in

the literature. While they qualitatively show similar behav-

iors with an increase toward the coincidence region and sub-

sequent plateaus, we have also observed some significant

deviations. In the case of the baffled panels, the deviation in

the low frequency range could be explained by the effect of

boundary conditions and also by the low modal density of

reverberation rooms. A recently proposed procedure based

on mobility measurements could resolve the latter issue.53

The deviation in the loss factors of the unbaffled panels in

the high frequency range could have its origin in the reinjec-

tion of acoustic energy into the panel when testing them in

reverberation rooms. While the numerical models assume

that all the radiated acoustic energy disappears in the far-

field, in fact, part of the acoustic energy in a reverberant

room serves as an excitation in addition to the mechanical

excitation. The latter should be taken into consideration

when experimentally determining radiation damping.

Future research will address the choice of nonlinear

eigensolvers for computing air-loaded eigenfrequencies and

modes. While the block SS method used in this paper is com-

putationally efficient and achieved errors of order Oð10�5Þ in

the considered examples, it also has some disadvantages: Ill-

conditioning of the Hankel matrices could result in inaccurate

eigenpairs,54 and the choice of input parameters could repre-

sent a daunting task for the engineer. Other contour integral

methods37,54 or iterative eigensolvers,55 in conjunction with in
vacuo modes as initial guesses, could prove to be more suit-

able. Proper benchmarking with regard to nonlinear FEM-

BEM EVPs is certainly an issue for future research.
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Summary

The solution of frequency dependent linear systems arising from the discretiza-
tion of vibro-acoustic problems requires a significant computational effort in
the case of rapidly varying responses. In this paper, we review the use of a
greedy reduced basis scheme for the efficient solution in a frequency range. The
reduced basis is spanned by responses of the system at certain frequencies that
are chosen iteratively based on the response that is currently worst approximated
in each step. The approximations at intermediate frequencies as well as the a
posteriori estimations of associated errors are computed using a least squares
solver. The proposed scheme is applied to the solution of an interior acoustic
problem with boundary element method (BEM) and to the solution of coupled
structural acoustic problems with finite element method and BEM. The compu-
tational times are compared to those of a conventional frequencywise strategy.
The results illustrate the efficiency of the method.

KEYWORDS

boundary element method, greedy algorithm, multifrequency, reduced basis, structural acoustic
interaction

1 INTRODUCTION

Solving a sequence of linear systems of equations accounts for a significant computational effort that is required for the
simulation of time-harmonic vibro-acoustic problems, particularly in the case of rapidly varying responses. Modal super-
position is a popular numerical tool to address this issue and often used to avoid solutions for each individual frequency
of interest. The respective eigenvalue problem needs to be solved only once and the responses at certain frequencies
as well as the responses for different excitations are simply obtained by matrix vector multiplications. Especially in the
case of both interior acoustic problems1 and coupled structural acoustic problems in bounded domains,2 modal super-
position techniques based on the finite element method (FEM)3 are well established. The respective coefficient matrices
are independent of the frequency, and consequently, standard eigenvalue solvers4 can be applied in a straightforward
manner. However, in the case of exterior acoustic problems, the situation is different due to the representation of the
unbounded acoustic domain. Three families of methods are available for addressing this issue: FEM with special boun-
dary conditions,5 the infinite element method (IFEM),6 and the boundary element method (BEM).7,8 The use of

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the
original work is properly cited.
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conjugated Astley-Leis IFEM results in frequency independent coefficient matrices giving rise to the formulation of a gen-
eralized eigenvalue problem for determining acoustic radiation modes and normal modes.9,10 However, making informed
choice of the contributing modes for a superposition is still an active field of research.11

While BEM is particularly advantageous due to the implicit satisfaction of the far field radiation condition, its major
drawback stems from the frequency dependence of the coefficient matrices. Special considerations such as the multiple
reciprocity method12 and the contour integral method13,14 are usually employed to obtain acoustic modes with BEM.
In the case of weakly coupled structural acoustic interaction, the superposition of isolated structural modes is sufficient to
obtain a reduced model of the underlying vibro-acoustic problem. However, for lightweight structures submerged in heavy
fluids, the in-vacuo modes do no longer form the modal basis. Hence, the modal analysis has to be performed including
the effect of acoustic loading. When using BEM for the discretization of the fluid, this involves the solution of a nonlinear
eigenvalue problem. Peters et al have proposed a frequency approximation of the boundary element impedance matrix15,16

to overcome this issue, and more recently, the nonlinear structural acoustic eigenvalue problem has been solved using
contour integration.17,18

Despite the abovementioned advances in numerical modal analysis, a frequencywise response analysis is still the most
popular procedure for the calculation of vibro-acoustic responses in a frequency range. Moreover, implementations of
eigenvalue solvers such as the contour integral method nevertheless require system evaluations at a considerable number
of discrete frequency points. Therefore, in the following, we contribute to the acceleration of vibro-acoustic frequency
response analysis as an alternative approach to the abovementioned modal superposition techniques.

During the last decades, many researchers have made effort to accelerate the frequency sweep of acoustic as well as
structural acoustic problems. Moreover, efficient procedures for the assembly of boundary element matrices in a frequency
range have been developed.19-22 Approximating the acoustic response itself can also be efficient in cases where only a
small partition of the solution is of interest.23,24 Furthermore, the high numerical complexity associated to fully populated
boundary element matrices led to the development of several fast algorithms25,26 that have also been combined with
multifrequency strategies.27

In addition, a number of publications28-30 are concerned with efficient schemes for the actual solution of linear sys-
tems in a frequency range. In particular, projection-based model order reduction (MOR) techniques have been proposed
to reduce the computational effort. They have been extensively reviewed for vibro-acoustic analyses using FEM.28 In the
context of coupled FEM-BEM analyses, MOR has been pioneered by the work of Peters et al,31 in which the structural
finite element matrices are reduced by means of Krylov subspace MOR, whereas the frequency-dependent boundary ele-
ment matrices are left unchanged. More recently, resolvent sampling-based MOR has been proposed for the fully coupled
FEM-BEM system.30 In this method, the projection matrices are spanned by the response at some sampling points inside
a frequency interval. Typically, such frequency sampling is done based on the Chebyshev nodes in an interval15,30,32 with-
out a priori knowledge of the solution and the occurrence of resonances. To the best of our knowledge, there is no strategy
available allowing for an optimal choice of frequency samples that goes in hand with an estimation of the error introduced
by the projective MOR in the context of vibro-acoustic analyses.

In this paper, we contribute to this subject by proposing a greedy reduced basis scheme for the solution of purely acoustic
and coupled structural acoustic problems. In the context of a multifrequency analysis, a reduced basis method33 expresses
the (approximate) solution at each frequency point as a linear combination of a few basis vectors. In our case, these basis
vectors are simply the solutions at suitably chosen frequency points within the frequency range of interest. When these
basis vectors are chosen iteratively, based on the solution that is worst approximated by the current reduced basis in each
step, this procedure is known as a greedy algorithm.34,35

Section 2 proceeds with a brief review of the coupled FEM-BEM formulation followed by a detailed description of
the greedy reduced basis scheme and its implementation in Section 3. The method is then applied to the solution of
an interior acoustic problem and to the solution of two coupled structural acoustic problems in Section 4. In all three
examples, the greedy algorithm automatically constructs the basis vectors at or near resonances, thus leading to small
errors in a few iterations. Section 5 concludes with a discussion on the applicability as well as the current limitations of
the method. Generally speaking, the greedy reduced basis scheme proves to be particularly efficient, when the responses
at a large number of frequency points are contained in a small subspace. Consequently, the common practice among
engineers of oversampling the frequency range has less impact on the overall computational effort than when using a
conventional frequencywise strategy. On the other hand, when the responses at different frequencies are not or hardly
related to each other (eg, in the case of frequency dependent forcing vectors), conventional frequencywise strategies or
modal superposition techniques could be more efficient.
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2 COUPLED FEM-BEM FORMULATION FOR STRUCTURAL ACOUSTIC
INTERACTION

We consider fully coupled structural acoustic interaction problems using FEM36 and BEM8 for discretizing the equations
of linear time-harmonic elastodynamics and acoustics, respectively. The resulting linear systems of equations for the
structural and for the acoustic subdomain read

(K − 𝜔2M)u = fs + ff , (1)

H(𝜔)p = G(𝜔)vs. (2)

The column vectors u ∈ ℂns×1 and p ∈ ℂnf×1 contain the unknown displacement and sound pressure degrees of freedom
at the nodes. The stiffness and mass matrices of the structure are denoted as K ∈ ℝns×ns and M ∈ ℝns×ns . Structural
damping is not considered in this work. The boundary element matrices H(𝜔) ∈ ℂnf×nf and G(𝜔) ∈ ℂnf×nf are obtained
by a collocation discretization of the Kirchhoff-Helmholtz integral equation, relating the structural particle velocity vs ∈
ℂns×1 to the sound pressure. These matrices are implicitly dependent on the angular frequency 𝜔 = 2𝜋f, where f is the
frequency in Hz. The structure is excited by nodal forces fs ∈ ℂns×1. Equations (1) and (2) are coupled on the sound
radiating boundary. There, the structure is subject to normal tractions due to the acoustic sound pressure, and the particle
velocity in (2) is equal to the time derivative of the normal displacement on the boundary. The coupling conditions can be
expressed as

ff = Csfp and vs = −i𝜔Cfsu, (3)

where Csf ∈ ℝns×nf and Cfs ∈ ℝnf×ns are the mesh coupling matrices obtained by a Galerkin projection.37 The force vector
ff can be interpreted as the acoustic loading on the structural nodes and i denotes the imaginary unit. Finally, the global
system of equations containing the coupling conditions emerges as

[
K − 𝜔2M −Csf
−i𝜔G(𝜔)Cfs H(𝜔)

] [
u
p

]
=
[

fs
0

]
. (4)

When only the structural response is of interest, (4) can be reformulated by forming the Schur complement and thereby
omitting the pressure degrees of freedom,16 ie,

[
K − 𝜔2M + i𝜔CsfH(𝜔)−1G(𝜔)Cfs

]
u = fs. (5)

Note that, often, the dimension of the acoustic subproblem is at least an order of magnitude smaller than the structural
subproblem. Thus, when facing moderately large problems, the computation of H(𝜔)−1G(𝜔) is relatively inexpensive com-
pared to the solution of (5). However, the reformulation of (4) into (5) deteriorates the sparsity pattern of the structural
subsystem and hence precludes the solution of large-scale problems. In these cases, the solution of (4) using a precon-
ditioned iterative scheme is more practical. Alternatively, (5) could be solved using a direct method in conjunction with
MOR of the structural subsystem.31 In the numerical examples in Section 4, we will consider both types of structural
acoustic equation (4) and (5).

Many vibro-acoustic applications require a solution of (4) or (5) at a range of frequencies 𝜔1, … , 𝜔m. Usually, each
of the m linear systems are solved successively in an independent manner. In the proceeding sections, we propose an
alternative approach based on a greedy algorithm.

3 A GREEDY ALGORITHM FOR MULTIFREQUENCY ANALYSIS

First introduced in the context of combinatorial optimization problems, the general idea behind greedy algorithms is to
repeatedly make the choice that is currently optimal. A prominent example for which locally optimal choices (the greedy
choices) yield the globally optimal solution is the so-called minimum spanning tree problem. It is the task of connecting
a number of vertices such that there exist routes among all vertices while minimizing the total length of the connecting
edges. It can simply be proven that this problem can be solved by the following greedy strategy38: “In each step, add the
shortest edge between two vertices that does not form a closed cycle with the current set of edges.”
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Beside the field of combinatorial optimization, greedy algorithms have nowadays become a popular tool for the con-
struction of reduced bases in the context of parameterized partial differential equations.39 As such, they represent an
alternative to proper orthogonal decomposition (POD) methods, in which possibly large numbers of high-fidelity sys-
tems need to be evaluated in order to deduce adequate POD bases. Using greedy algorithms, the number of evaluations
of the high-fidelity system is minimized by iteratively adding new basis vectors to the reduced basis.40,41 However, they
rely on an a posteriori error estimation for the whole parameter space in each iteration in order to optimally choose the
next parameter sample. Consequently, their success is heavily dependent on the computational cost that is required for
the solution of this optimization problem and the associated error estimation. In the following, we propose to extend the
application of greedy algorithms to the solution of vibro-acoustic problems in a frequency range. A detailed description
of the algorithm is provided including a cheap a posteriori error estimation giving rise to fast frequency range solutions.

For the sake of readability, the frequency dependent linear systems (4) and (5) are replaced by A(𝜔)x(𝜔) = b(𝜔) with
the frequency points of interest 𝜔 ∈  = {𝜔1, … , 𝜔m}. Note that here, we consider the general case with a frequency
dependent right-hand side b(𝜔). In each iteration j of the greedy algorithm, a set of frequency samples 𝑗 ⊆  is given as

𝑗 = {𝜔(1), … , 𝜔( 𝑗)}. (6)

The corresponding reduced basis Xj is simply the concatenation of the solutions at these frequency samples, ie,

X𝑗 =
[
x(𝜔(1)), … , x(𝜔( 𝑗))

]
∈ ℂn×𝑗 . (7)

The current approximation at an arbitrary frequency point 𝜔 ∈  is then expressed by

x(𝜔) = x(𝜔(1))𝑦1(𝜔) + · · · + x(𝜔( 𝑗))𝑦𝑗(𝜔) = X𝑗y(𝜔), (8)

with y(𝜔) ∈ ℂ𝑗×1, where y(𝜔) is the solution of the least squares problem

min
y(𝜔)∈ℂ𝑗×1

||A(𝜔)X𝑗y(𝜔) − b(𝜔)||22. (9)

The main idea behind the greedy algorithm is to choose the next sample 𝜔(j+1) there, where the approximation (8) yields
the largest relative residual. Therefore,

𝜔( 𝑗+1) = argmax
𝜔∈

||A(𝜔)X𝑗y(𝜔) − b(𝜔)||2∕||b(𝜔)||2 (10)

holds and the next basis vector is calculated by solving the system

A(𝜔( 𝑗+1))x(𝜔( 𝑗+1)) = b(𝜔( 𝑗+1)). (11)

The procedure is repeated until a convergence criterion based on the relative residual is fulfilled for all 𝜔 ∈  .
Regarding the computational efficiency of the method, it is crucial that a sufficiently accurate approximation of the

solution in the whole frequency range is achievable by a linear combination of only a few q ≪ m solutions at sample
frequencies, ie, with a small number of iterations q. From an algebraic point of view, this means that the frequency range
solution X = [x(𝜔1), … , x(𝜔m)] ∈ ℂn×m admits a low rank approximation. More precisely, the singular values of X should
exhibit exponential decay, which has been proven for an analytical frequency dependency of A(𝜔) and b(𝜔)42 and thus
holds for the herein presented case. From a vibro-acoustic point of view, the admissibility of a low rank approximation
can be understood in that the spatial distribution of the response exhibits a certain degree of regularity with respect to
the frequency. Essentially, the well-known modal reduction technique is based on similar principles of superposition,
but instead of superposing modes of the system, here, we use a linear combination of certain responses. In the context
of modal superposition techniques, the contribution of the individual modes is expressed by the modal amplification
factors. Similarly, using the herein proposed greedy algorithm, the iteratively chosen responses of the system are weighted
by the scaling factors y. Although modal quantities are not determined in the present method, we will later see that the
frequencies close to resonances are intrinsically chosen as samples over the course of the iterations.
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Beside the solution of q linear systems (recall that q corresponds to the total number of iterations), the main compu-
tational effort of the greedy algorithm stems from the minimization of (9) using a least squares solver along with an a
posteriori error estimation. For both, the built-in MATLAB function lsqlin provides a straightforward implementation.
While an error estimation is performed in each iteration for all the yet unconverged solutions and hence necessitate(qm)
calls of the least squares solver, the evaluation of a single least squares problem is rather inexpensive since A(𝜔)Xj has
only a small number of columns. The numerical examples will show that the algorithm results in a significantly smaller
computational effort than solving m linear systems independently.

The repeated evaluation of the least squares problems, however, requires preassembly and storage of all m possibly fully
populated matrices in the main memory. The latter is the major drawback of the proposed method and currently limits
its application to small-sized problems. There are two remedies in this regard. For medium-sized problems, the use of
data sparse formats such as hierarchical matrices26 resolves the memory issues. For large-scale problems, the proposed
algorithm could be parallelized by solving the least squares problem (9) in a distributed memory environment and solving
(11) on a shared memory environment. Although we expect that only a moderate amount of communication is required,
systematic benchmarking is still needed to verify the applicability of the proposed scheme to large-scale multifrequency
problems. However, this is not within the scope of the present work but planned for future research.

The greedy reduced basis scheme is summarized in Algorithm 1. In order to avoid least squares minimizations at fre-
quency points with already converged solutions, a set of frequenciessol is defined containing the frequencies at which the
solution has been explicitly determined (line 23) as well the frequencies at which the least squares approximation already
yields sufficient accuracy (line 15). Furthermore, the matrix products A(𝜔i)Xj for setting up the least squares minimiza-
tions in line 13 are explicitly stored in the main memory to avoid recomputation in each iteration. Only the new column
A(𝜔i)x(𝜔(j)) is added in each iteration. Since this matrix vector product needs to be evaluated (qm) times, it accounts for
the main computational effort beside the explicit solutions of q linear systems and the actual solutions of the (qm) least
squares problems.



192 BAYDOUN ET AL.

4 NUMERICAL EXAMPLES

The proceeding sections verify the efficiency of Algorithm 1 in the context of multifrequency analysis.

4.1 Plane sound wave in a closed rigid duct
As a first numerical example, we consider a purely interior acoustic problem. This problem is well suited to demonstrate
the convergence behavior of the greedy algorithm in the context of multifrequency analysis. A plane sound wave is excited
by a harmonic particle velocity at the left end of a three-dimensional closed and air-filled duct of length l = 3.4 m and
square cross section w = 0.2 m. The wave is fully reflected at the acoustically rigid right end. The speed of sound is
c = 340 m∕s. The system is free of dissipation, and hence, resonances occur at the integer multiples of 50 Hz. This problem
is often used in the computational acoustics community for benchmarking purposes43 and extensive studies on associated
discretization errors with respect to mesh sizes and element types are available in the literature.44,45

The acoustic field is discretized using a uniform mesh of 1120 quadrilateral boundary elements with bilinear discon-
tinuous sound pressure interpolation yielding 4480 degrees of freedom. We are interested in solving the resultant linear
system (2) in the frequency range from 40 to 210 Hz with frequency steps of Δf = 1 Hz, ie, m = 171. Resonances are
expected at 50, 100, 150, and 200 Hz. This problem is relatively well conditioned, ie, condA(𝜔i) ≈ 102.

First, a standard generalized minimal residual (GMRes) algorithm46 without restarts is used for the purpose of a com-
parison in terms of the computational time. The tolerance for the relative residual is set to 𝜖gmres = 10−5. All m = 171
linear systems have been successively solved requiring a total of 4463 iterations and a wall clock time of 96.44 s. This
corresponds to an average of 0.564 s for the solution at each frequency point.

Using the greedy algorithm described in the previous section, a total of 10 iterations was required in order to meet the
tolerance for the relative residual of 𝜖tol = 10−5 for all frequency points. Accordingly, a GMRes scheme has been applied
for the solution at 10 out of 171 frequency points. These solutions correspond to the basis vectors used for the least squares
approximations in the inner loop of Algorithm 1. In order to ensure sufficient accuracy of the basis vectors, a tolerance
of 𝜖gmres = 10−8 was chosen for the GMRes scheme resulting in an elapsed time of 7.11 s. Moreover, 1562 matrix vector
products were evaluated for the setup of the least squares problems resulting in 27.28 s. The solution of the least squares
problems required a computational time of 2.84 s. In addition with the other parts of the algorithm that only marginally
contribute to the computational effort, the total wall clock time added up to 37.32 s. This corresponds to an average of 0.218 s
for the solution at each frequency point, and hence, a reduction by more than 60% compared to the conventional solution.

The convergence history of the greedy algorithm is given in Figure 1. The intermediate relative residuals after the first,
sixth, and ninth iteration as well as the residual after convergence are shown. An initial frequency of 125 Hz has been
chosen for the first iteration, which is the mid value of the considered frequency range. As expected, the solution at
125 Hz alone is not sufficient to approximate the solutions at other frequency points and hence only yields a decrease of
the residual in its immediate vicinity. The residual after the sixth iteration exhibits six sharp minima (40, 50, 60, 125, 188,
and 206 Hz), each corresponding to a GMRes solution in the outer loop and hence falling below the defined tolerance of
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FIGURE 1 Relative residual over frequency after iterations 1, 6, 9, and 10 for the solution of the duct problem using a greedy algorithm
[Colour figure can be viewed at wileyonlinelibrary.com]
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FIGURE 2 Comparison between conventional strategy and the greedy algorithm. Wall clock times for the solution of the duct problem in
the frequency range from 40 to 210 Hz using different resolutions (ie, frequency steps Δf ). The time required by the greedy algorithm is
divided into the time for actual solving with generalized minimal residual (GMRes) and the time for the rest of the algorithm that mainly
includes setup and solution of the least squares problems

𝜖gmres = 10−8. However, they are not yet sufficient for accurate least squares approximations at intermediate frequencies.
This is particularly true for the solutions at the resonance frequencies of 100, 150, and 200 Hz that exhibit maxima in
the residual. Consequently, the new basis vectors are calculated at those three frequencies in iterations seven to nine,
resulting in a significant decrease of the residual across the whole frequency range. At this point, the solutions at the
frequencies 40 to 87 Hz as well as 107 to 135 Hz and 184 to 191 Hz are already converged and thus not recomputed in the
10th (and last) iteration.

This example indicates the effectiveness of a greedy scheme in the context of a multifrequency analysis. Choosing the
frequency at which the approximation is worst as the next sample sooner or later leads to evaluation of the frequency
dependent system at (or near) its resonance frequencies. In the present example, convergence was achieved rather quickly
once the responses close to the resonances were added to the reduced basis. This may lead to the intuitive assumption
that including responses exactly at the eigenfrequencies of the system is essential for fast convergence of the algorithm.
However, excluding the frequencies 50, 100, 150, and 200 Hz leads to the choice of neighboring frequency points
(eg, 49 Hz instead of 50 Hz), and the algorithm requires the exact same number of iterations for this problem. Moreover,
choosing the frequency interval in a mid-frequency range, and thereby omitting the responses around the first couple
of eigenfrequencies of the system, does not deteriorate the convergence of the method. For example, the solution of this
problem in the frequency range from 240 to 410 Hz with frequency steps of Δf = 1 Hz required 12 iterations in order to
meet the tolerance of 𝜖tol = 10−5. The larger number of iterations compared to the low-frequency analysis (12 instead of 10)
could be associated with the reduced accuracy of the solutions due to larger discretization errors. Further mathematical
study is required in this regard.

Our preliminary numerical studies also indicate that the convergence behavior is rather insensitive to the choice of the
initial frequency 𝜔(1). Furthermore, refining the resolution of the frequency range of interest in this example does not
lead to an increase of the total number of iterations. In general, additional frequency points in a rather smooth region
only affect the number of least squares solutions and not the number of actual solutions of the system. This is also
reflected in Figure 2, where the solution time of the duct problem is shown for different frequency resolutions. The time
required for the actual solutions of the system is unchanged while the time required for the setup and solution of the least
squares problems increases linearly with the number of frequency points m; however, the rate of increase is smaller than
in the conventional solution strategy. Therefore, using the greedy algorithm, the common practice among engineers of
oversampling the frequency range has less impact on the overall computational effort.

4.2 Point-excited spherical shell in water
As a second example, we consider a structural acoustic interaction problem. A spherical shell made of steel is locally
excited by a point force of F = 1 N and sound is radiated into the surrounding water. The geometrical parameters of
the sphere and the material properties of steel and water are given in Table 1. Eight-noded quadrilateral shell finite
elements based on the Reissner-Mindlin theory are employed to model the structural subdomain. Discontinuous quadri-
lateral boundary elements are used for the discretization of the acoustic subdomain. These boundary elements are
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TABLE 1 Geometry of the sphere and properties of steel and water

Radius of sphere r 5 m
Shell thickness t 0.05 m
Density of steel 𝜌s 7860 kg∕m3

Young's modulus E 210 GPa
Poisson's ratio 𝜈 0.3
Density of water 𝜌f 1000 kg∕m3

Speed of sound c 1482 m∕s
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FIGURE 3 Absolute displacement at an angle of 𝜋 with respect to the point of excitation for the steel spherical shell submerged in water.
Comparison of analytical and numerical results. BEM, boundary element method; FEM, finite element method [Colour figure can be viewed
at wileyonlinelibrary.com]

superparametric, ie, they are characterized by a four-noded bilinear sound pressure interpolation and a nine-noded
biquadratic geometry approximation. Conforming meshes with 384 finite and boundary elements are employed corre-
sponding to eight elements on a 𝜋∕2 arc. After forming the Schur complement (5), the system has 6924 degrees of freedom.
The problem is studied at m = 138 nonuniformly spaced frequency points up to 100 Hz. A treatment for irregular fre-
quencies is not required in the considered frequency range since the first eigenfrequency of the corresponding interior
acoustic Dirichlet problem is approximately 148 Hz.47 The absolute displacement solution at a point located at an angle
of 𝜋 with respect to the point of excitation is shown in Figure 3 along with the analytical series solution.48 Five resonances
occur in the considered frequency range.

Due to the ill-conditioning of the Schur matrix (5), ie, condA(𝜔i) = 105 · · ·108, the use of an iterative solver would
require preconditioning. However, due to the lack of a suitable preconditioner, and given the relatively small number of
degrees of freedom, a direct solver has been employed for successively solving m = 138 linear systems requiring a wall
clock time of 693.14 s. This corresponds to an average of 5.02 s for the solution at each frequency point.

The greedy algorithm required a total of 20 iterations in order to meet the tolerance for the relative residual of 𝜖tol = 10−5

for all frequency points. Consequently, a direct solver was employed at 20 out of 138 frequencies resulting in an elapsed
time of 98.19 s. Moreover, 2241 matrix vector products were evaluated for the setup of the least squares problems resulting
in 93.63 s. The solution of the least squares problems required a computational time of 9.36 s. In total, the wall clock time
added up to 201.33 s corresponding to an average of 1.46 s for the solution at each frequency point. However, this number
is not comparable to the average time that was required by the conventional strategy due to the difference in achieved
accuracies.

The convergence history of the greedy algorithm is shown in Figure 4. Again, similar to the duct problem, distinct
maxima in the residual emerge at the five resonance frequencies after iteration j = 12. The predefined tolerance of 𝜖tol =
10−5 is met after iteration j = 20.

Furthermore, in order to assess the quality of the least squares approximations, the relative difference with respect to
the conventional solution is studied in what follows. It can be expressed by

𝛿(𝜔i) =
||x̃(𝜔i) − x(𝜔i)||2||x̃(𝜔i)||2 , 𝜔i = 𝜔1, … , 𝜔m, (12)
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FIGURE 4 Relative residual over frequency after iterations 1, 12, and 20 for the solution of the submerged spherical shell using a greedy
algorithm [Colour figure can be viewed at wileyonlinelibrary.com]
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FIGURE 5 Relative difference in the 2-norm of the solution obtained with the greedy algorithm with respect to the conventional solution
obtained using a direct solver. The relative difference is shown for different tolerances for the residual 𝜖tol in the greedy algorithm [Colour
figure can be viewed at wileyonlinelibrary.com]

TABLE 2 Total number of
iterations and wall clock times for
different tolerances for the residual
𝜖tol in the greedy algorithm

𝜖tol Iterations Wall clock time
10−5 20 201.33 s
10−6 21 221.31 s
10−7 23 262.73 s
10−8 38 386.65 s

where x̃(𝜔i) denotes the solution obtained using a direct solver and x(𝜔i) is the solution obtained by the greedy algorithm.
Trivially, 𝛿 = 0 at the frequencies that are chosen by the greedy algorithm for the calculation of the basis vectors. The
relative differences 𝛿 are shown in Figure 5 for different tolerances 𝜖tol of the relative residual. The respective numbers
of iterations and wall clock times of the greedy algorithm are provided in Table 2. For instance, a predefined tolerance of
𝜖tol = 10−5 yields a relative difference 𝛿(𝜔i) ≤ 10−4 in the whole frequency range 𝜔1, … , 𝜔m. However, for tolerances
smaller than 𝜖tol = 10−8 in this problem, the proposed scheme is less efficient than a conventional strategy using a direct
solver for each frequency point.
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These results lead to the conclusion that an a priori estimation of the condition numbers in the frequency range could
provide indication of suitable tolerances 𝜖tol and consequently facilitate the decision whether to use the greedy algorithm
or a conventional strategy. Relatively inexpensive algorithms for estimating 1-norm condition numbers exist49,50 and the
thereby gained knowledge could also be incorporated into the choice of the next sample (10). This is certainly an issue
requiring future research.

4.3 Honeycomb sandwich panel in air
Beside the case of structures submerged in water, structural acoustic interaction can also have a significant influence
on the vibration response of lightweight structures in air, particularly for sandwich panels with large radiating surfaces.
Clarkson and Brown were among the first to experimentally quantify the energy dissipation by virtue of sound radiation
for a sandwich panel with honeycomb core.51 They have shown that this phenomenon—commonly denoted as acoustic
radiation damping—can exceed the extent of material-inherent damping by an order of magnitude. In the following, we
apply the greedy algorithm for a vibro-acoustic analysis of a similar sandwich panel as the one tested by Clarkson and
Brown.51 However, we point out that the focus of the present analysis is set on the numerical analysis rather than on the
acoustic radiation damping of sandwich structures.

The geometry of the six-sided panel with a central cut-out is shown in Figure 6. It is composed of an aluminum honey-
comb core of 29 mm thickness and two 0.28 mm thick aluminum face sheets. The isotropic material properties of alu-
minum as well as the (assumed) equivalent orthotropic properties of the core are given in Table 3. In this example,
additional structural damping is neglected, and hence, sound radiation is the only source of energy dissipation. The panel
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FIGURE 6 Geometry of the six-sided honeycomb sandwich panel with central cut-out. The panel is freely suspended in air without an
acoustic baffle and excited by a harmonic point force at the tip (x = 0, y = 1.06 m)

TABLE 3 Properties of the face sheets
and the honeycomb core

Aluminum face sheet
Thickness t 0.28 mm
Density 𝜌a 2780 kg∕m3

Young's modulus E 73 GPa
Poisson's ratio 𝜈a 0.34

Aluminum honeycomb core
Thickness h 29 mm
Density 𝜌c 44.8 kg∕m3

Young's modulus Ex,Ey 18.9 MPa
Young's modulus Ez 1.89 GPa
Shear modulus Gxy 3 MPa
Shear modulus Gyz 137.3 MPa
Shear modulus Gxz 222.7 MPa
Poisson's ratio 𝜈c 0.1
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FIGURE 7 Total potential energy and radiated sound power of the point-excited sandwich panel

is freely suspended in air without an acoustic baffle and excited by a harmonic point force at the tip (x = 0, y = 1.06 m).
We are interested in the vibro-acoustic response of the panel in the frequency range from 20 Hz to 800 Hz in frequency
steps of Δf = 4 Hz, ie, m = 196.

Eight-noded quadrilateral shell finite elements and 20-noded hexahedral solid finite elements are employed for the
discretization of the core and face sheets, respectively, resulting in a total of 22 131 displacement degrees of freedom. To
model the acoustic subdomain, quadrilateral boundary elements with linear discontinuous sound pressure interpolation
and a total of 1504 pressure degrees of freedom are employed. The nonconforming structural and acoustic meshes are
coupled on the face sheets of the panel. In order to verify the accuracy of the discretization, the radiated sound power
has been compared to a model with 10 times more degrees of freedom, resulting in a relative difference of less than
2.6% (0.11 dB) in the considered frequency range. A treatment for irregular frequencies is not required since the first
eigenfrequency of the corresponding interior acoustic Dirichlet problem is approximately 6000 Hz.

The coupled system of Equations (4) is solved using a GMRes scheme with an incomplete LU factorization (ILU) for
preconditioning the structural system K −𝜔2M. Following the conventional frequencywise strategy, a total of 8623 itera-
tions were required for solving all the m = 196 systems individually subject to a relative tolerance of 𝜖tol = 10−5. The total
solution time including setup of the preconditioners added up to 105 minutes. The radiated sound power and the total
potential energy of the vibrating panel are shown in Figure 7. While the first couple of resonances exhibit sharp peaks,
the effect of acoustic radiation damping is clearly noticeable in the higher frequency range.

The greedy algorithm required a total of 43 outer iterations for the solution in the whole frequency range. The responses
at the sampling frequencies were computed using the same preconditioned GMRes scheme as above with 𝜖gmres = 10−8

accounting for a wall clock time of 26 minutes. The setup and the solution of the least squares problems resulted in an
elapsed time of 7 minutes. In total, the greedy algorithm required 33 minutes for the solution at all frequency points with
a relative residual of less then 𝜖tol = 10−5. This corresponds to a speedup of more than three times compared to the
conventional solution.

5 CONCLUSION AND FUTURE WORK

A greedy reduced basis scheme has been proposed for the frequency range solution of vibro-acoustic problems. It is based
on iteratively expanding the reduced basis by adding the frequency response that is currently worst approximated. The
method has been applied to an interior acoustic problem as well as to coupled structural exterior acoustic problems. In
all cases, convergence was reached relatively fast, and consequently, the actual solution of the system was only required
at a few frequency points. The solutions at the other intermediate frequencies could be accurately approximated by linear
combination using a least squares solver. Comparisons to conventional frequencywise strategies indicate the efficiency of
the proposed scheme.

Although in all examples, frequencies near resonances were chosen for calculating the basis vectors during the itera-
tions, preliminary studies have shown that explicit exclusion of eigenfrequencies from the frequency range of interest
does not deteriorate convergence. Moreover, the algorithm seems to be insensitive to the choice of the initial frequency.
Furthermore, refining the frequency resolution in a smooth region leads only to a marginal (if at all) increase in the
total number of iterations. In general, refining the frequency resolution over a certain threshold only increases the effort
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required for the setup and solutions of the least squares problems. Consequently, the common practice among engineers
of oversampling the frequency range has less impact on the overall computational effort than when using a conventional
frequencywise strategy.

The numerical examples were carried out using the same excitation for all frequency points. While the method allows
for a straightforward application of frequency-dependent right-hand sides, the success of the greedy algorithm will in
these cases depend on the regularity of the response with respect to the frequency. When the responses at different
frequencies are not or hardly related to each other, conventional frequencywise strategies could be more efficient. Fur-
thermore, when considering multiple forcing vectors, adding the responses for all excitations to the reduced basis at each
frequency sample could diminish the efficiency of the method. As a remedy, a truncated singular value decomposition
could be applied in order to reduce the number of algebraically independent right-hand sides. Detailed studies on the use
of MOR in the context of fast frequency sweeps with FEM and many forcing vectors are available in the literature.52,53

Similar studies are also planned for the herein presented greedy reduced basis scheme.
Moreover, in a future work, a priori estimation of the condition numbers could provide indication of suitable tolerances

along with an a priori error estimation and also improve the choice of basis vectors. Furthermore, the applicability of
the scheme will be extended to large-scale problems by incorporating data sparse formats26 as well as by parallelizing
the algorithm. The latter could be done by solving the least squares problems in a distributed memory environment and
solving the actual linear systems on a shared memory environment. Systematic benchmarking will be conducted to verify
the applicability of the proposed scheme to large-scale multifrequency problems.
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Abstract
Despite the potential and the increasing popularity of the boundary element
method (BEM), modal analyses based on BEM are not yet put into engineering
practice, mainly due to the lack of efficient solvers for the underlying nonlinear
eigenvalue problem (EVP). In this article, we review a subspace iteration method
based on FEAST for the solution of vibroacoustic EVPs involving the finite ele-
ment method (FEM) and BEM. The subspace is obtained by applying a spectral
projector and is computed by contour integration, whereas the contour is also
used to subsequently solve the projected EVP by rational approximation. The
computation of the projection matrices is addressed by two approaches. In the
case of heavy fluid loading, we solve the underlying coupled linear systems by an
iterative block Krylov method. In the case of light fluid loading, we exploit the
fact that the coupled system admits accurate model order reduction solely based
on the structural subsystem. Applications to a spherical shell and to a musical
bell indicate that only a few contour points are required for an accurate solution
without inducing spurious eigenvalues. The results are compared with those of a
contour integral method and illustrate the efficiency of the proposed eigensolver.

K E Y W O R D S

boundary element method, FEAST, modal analysis, rational approximation, vibroacoustics

1 INTRODUCTION

Vibroacoustics is a branch of physics dealing with oscillations of solid structures (vibrations) and mechanical waves in
gases or liquids (acoustics). The study of vibroacoustics spans over various engineering disciplines often aiming at improv-
ing insulation and radiation characteristics of structures. For example, the mutual interaction between acoustics and
elasticity is an essential aspect in the design process of phononic crystals1 that are used to attenuate wave propagation
in certain frequency bands. Our recent work has shown that acoustic loading can also have a significant effect on the
dynamic properties of lightweight sandwich structures.2 Moreover, it is crucial to consider these two physical phenom-
ena simultaneously in numerical analysis, in order to enable meaningful comparisons to experiments,3 which of course
are conducted in a real multiphysics world.

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the
original work is properly cited.
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Fully coupled numerical formulations describing the mutual interaction between structural vibrations and acoustic
wave propagation are well established in the scientific literature4,5 and appearing in commercial practice as well. The
elastodynamic equations underlying the vibrating structure are typically discretized by the finite element method (FEM),6
whereas several methods are available for addressing the surrounding, often unbounded acoustic domain. Here, we will
consider the direct boundary element method (BEM) with a collocation discretization.7 Compared with other strategies
for modeling the acoustic field, BEM is particularly convenient in the case of unbounded domains. The discretization is
restricted to the sound radiating surface and BEM does not require special boundary conditions for truncating the far-field
sound radiation. Those advantages however come at the cost of an implicitly frequency-dependent kernel, which poses
significant challenges when performing frequency sweep analyses or modal analyses.

In the case of frequency sweep analyses with BEM, the computational effort mainly stems from the assembly of coef-
ficient matrices at each frequency point of interest along with the solution of the resulting sequence of linear systems.
Early works on this topic focused on interpolating either the coefficient matrix,8 the underlying kernel function,9 or even
the resulting response itself.10 More recent work is concerned with efficient strategies for solving the sequence of linear
systems by means of model order reduction11-13 and greedy sampling.14

Along with frequency sweeps, modal analysis accounts for another fundamental tool to study the dynamical behav-
ior and provides system-inherent properties such as eigenfrequencies and modal damping values. In the case of bounded
acoustic domains, modal analyses based on FEM15 or BEM with frequency-independent coefficient matrices16,17 are
well established. However, in the context of coupled structural exterior acoustic systems involving BEM, modal analyses
require the solution of the underlying eigenvalue problem (EVP) that depends nonlinearly on the eigenvalue parameter.
The solution of such nonlinear EVPs arising from frequency-dependent boundary element (BE) matrices dates back to
the 1970s18 and has since then drawn the attention of researchers from both mathematical and engineering communities.
Despite the presence of this topic for nearly half a century and the growing number of boundary element software as well
as eigensolver packages,19 modal analyses based on BEM are not yet put into engineering practice. This hesitation may
be largely attributed to the complicated choice of the adequate solver for the specific application at hand. For example
in our case, an important distinction concerns the extent of fluid loading. Here, most papers focus on applications with
heavy fluid loading11,20,21 and address them by forming the Schur complement of the finite element (FE) submatrix with
respect to the coupled system.11,21 But in the case of light fluid loading, it may be more efficient and intuitive to form the
Schur complement of the BE submatrix and treat the acoustic field as additional mass and damping contributions. Fur-
thermore, most researchers rely on direct eigensolvers in order to avoid repeated assembly of frequency-dependent BE
matrices. In the case of light fluid loading, iterative eigensolvers may actually be beneficial, since the in vacuo modes of
such structures serve as a good initial guess and facilitate finding the wet (shifted) eigenfrequencies and modal damping
values. The in vacuo modes may even be used a posteriori to check the occurrence of spurious eigenfrequencies.

The different approaches for solving nonlinear EVPs can be categorized into algorithms based on Newton’s method,
those based on polynomial and rational approximation22 and methods based on contour integration.23 The use of
Newton’s method is typically accompanied by deflation and hence requires subsequent computation of individual eigen-
pairs. Polynomial approximations are typically based on frequency sampling at Chebychev nodes24 or truncated Taylor
series.20,25 When dealing with complex eigenvalues, the quality of these polynomial approximations quickly deteriorate
when the eigenvalue lies apart from the real axis. Moreover, linerization of higher order polynomials induces numer-
ical instabilities and thus precludes accurate computation of eigenpairs in large frequency ranges. Contour integral
methods21,26,27 account for another family of eigensolvers and are particularly appealing because of the low memory
requirements and since the main computations can be executed in parallel. They essentially work by projecting the
nonlinear EVP into a generalized EVP. However, the projection often leads to ill-conditioning28 and results in spurious
eigenvalues. Moreover, accurate projection via contour integration often requires a large number of integration points
at which the BE matrices have to be explicitly assembled. Finally more recently, resolvent sampling based model order
reduction has been employed for a Rayleigh–Ritz procedure.11,29

In this article, we extend two recent approaches—the nonlinear FEAST algorithm30 and the linearization of rational
approximations31,32—in order to solve structural acoustic EVPs with high accuracy and efficiency. The nonlinear FEAST
(NLFEAST) is a generalization of the popular FEAST algorithm,33 for which an open source library package34 exists, and
works by iteratively refining a projection matrix that is used for a Rayleigh–Ritz projection. However, the library pack-
age as well as the applications in the aforementioned paper30 are limited to polynomial EVPs, leaving problems out of
consideration that depend nonlinearly on the eigenvalue parameter. Structural acoustic EVPs fall into the latter category
and—after projection by NLFEAST—still require solution of a nonlinear EVP. We address this issue by employing a ratio-
nal approximation based on the Cauchy integral equation and subsequent linearization.32 This enables us to simply reuse
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the information for computing the projection matrix. Hence, the actual solution of the EVP comes at a negligible com-
putational cost. Moreover, the same rational approximation is also used to avoid explicit assembly of the original system
matrix at intermediate eigenvalues over the course of NLFEAST iterations. Finally, in order to enable fast computation
of the projection matrix, we present two tailored approaches for solving the underlying coupled linear systems: In the
case of heavy fluid loading, we form the Schur complement of the structural subsystem and employ an iterative block
Krylov solver. In the case of light fluid loading, we form the Schur complement of the acoustic subsystem and employ
an unilateral, frequency-independent model order reduction, which is computed solely based on the structural subsys-
tem. The presented numerical framework enables efficient and accurate modal analysis of structural acoustic interaction
without inducing spurious eigenfrequencies. Applications to an academic example of a spherical shell in water as well as
a musical bell in air illustrate the performance of the method.

2 COUPLED FINITE AND BOUNDARY ELEMENT METHODS FOR
VIBRATION ANALYSIS IN UNBOUNDED ACOUSTIC DOMAINS

We consider time-harmonic problems involving a mutual interaction between structural vibrations and the surrounding
acoustic field. The underlying equation of linear elasticity is addressed by FEM, resulting in the linear system(

K − 𝜔2M
)

u = fs + ff. (1)

Therein, u ∈ Cns is a vector containing the ns unknown displacement degrees of freedom (DOF). The angular frequency
is defined as 𝜔 = 2𝜋f , where f is the frequency. The stiffness and mass matrices of the structure are denoted with K,
M ∈ Rns×ns . Structure-inherent damping is not considered in this work, but a damping matrix can be added to Equation (1)
without affecting the further derivations. The structure is excited by external and fluid forces fs, ff ∈ Cns on the nodes.
The latter act by virtue of the acoustic field which can be described by the Helmholtz equation. After a collocation
discretization with BEM, the linear system of equations for the acoustic subdomain reads

H(𝜔)p = G(𝜔)vs + pi, (2)

where p ∈ Cnf is the vector containing the nf unknown sound pressure DOFs. The BE matrices H(𝜔), G(𝜔) ∈ Cnf×nf relate
the structural particle velocity vs ∈ Cnf to the sound pressure. Further, the acoustic field may be excited by a sound source
with an incident pressure field pi ∈ Cnf . Quadrilateral boundary elements with discontinuous bilinear sound pressure
interpolation are used in this work. Hence, neighboring boundary elements do not share their interpolation nodes.

Equations (1) and (2) are mutually coupled on the submerged surface of the structure. There, the structure is subject
to normal tractions due to the acoustic sound pressure, and the particle velocity vs equals the time derivative of the
normal displacement on the boundary. Due to the use of discontinuous boundary elements, the interpolation nodes of
the acoustic and structural subdomains do not coincide. Hence, the coupling conditions are reformulated in the weak
sense. After discretization by the Bubnov–Galerkin approach, the coupling conditions can be expressed as35

ff = Csfp and vs = −i𝜔Cfsu, (3)

where Csf ∈ Rns×nf and Cfs ∈ Rnf×ns are the mesh coupling matrices that relate the displacement and pressure DOFs, and
i denotes the imaginary unit. Combining Equations (1) to (3) yields the fully coupled linear system[

K − 𝜔2M −Csf

i𝜔G(𝜔)Cfs H(𝜔)

]
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

L(𝜔)

[
u
p

]
=

[
fs

pi

]
. (4)

By forming the Schur complement of H(𝜔) with respect to L(𝜔) and thereby eliminating the pressure DOFs from
Equation (4), we obtain a structural equation that includes the effect of acoustic loading,20 that is,[

K − 𝜔2M + i𝜔CsfH−1(𝜔)G(𝜔)Cfs
]

u = fs + CsfH−1(𝜔)pi, (5)
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in which i𝜔CsfH−1(𝜔)G(𝜔)Cfs can be interpreted as the additional mass and damping contributions due to the acoustic
field. The excitation on the right-hand side of Equation (5) comprises structural loading fs as well as acoustic loading
by virtue of the incident pressure field pi. Alternatively, the displacement DOFs can be eliminated from Equation (4) by
forming the Schur complement of K − 𝜔2M with respect to L(𝜔), which yields[

i𝜔G(𝜔)Cfs
(
K − 𝜔2M

)−1Csf + H(𝜔)
]

p = −i𝜔G(𝜔)Cfs
(
K − 𝜔2M

)−1fs + pi. (6)

Equation (6) can be interpreted as an acoustic equation incorporating the elasticity of the structure as admittance
boundary condition.36 By setting the right-hand sides of Equations (5) and (6) to zero, we obtain the structural acoustic
EVPs [

K − 𝜔̃2M + i𝜔̃CsfH−1(𝜔̃)G(𝜔̃)Cfs
]
𝝍 = 0 and (7)[

i𝜔̃G(𝜔̃)Cfs
(
K − 𝜔̃2M

)−1Csf + H(𝜔̃)
]
𝛟 = 0, (8)

respectively. The nonzero vectors 𝝍 and 𝛟 are the displacement and pressure modes, respectively. The EVPs in
Equations (7) and (8) are nonlinear, since the BE matrices H(𝜔̃) and G(𝜔̃) implicitly depend on the complex eigenvalue
parameter 𝜔̃. The real part of 𝜔̃ corresponds to the eigenfrequency and the imaginary part is associated with modal radi-
ation damping. It is well known that if the matrix H(𝜔̃) is invertible, then 𝜔̃ is an eigenvalue of L(𝜔̃) if and only if 𝜔̃ is
an eigenvalue of Equation (7). Similarly, if K − 𝜔̃2M is invertible, then 𝜔̃ is an eigenvalue of L(𝜔̃) if and only if 𝜔̃ is an
eigenvalue of Equation (8). Furthermore, the nonzero vectors 𝜽 with L(𝜔̃)𝜽 = 0 can be related with the eigenvectors 𝝍
and 𝛟, respectively.37

Both EVP formulations (7) and (8) have been considered in the literature,2,11,20,21 but the proper choice between them
has not yet been discussed in a comprehensive manner. Most researchers focus on applications with heavy fluid loading
and address them by Equation (8). The linear systems that arise over the course of solving Equation (8) can be addressed
by an iterative method once a factorization of the sparse and symmetric matrix K − 𝜔̃2M is computed. On the other
hand, in the case of light fluid loading, it is more intuitive to form the Schur complement of the BE submatrix and treat
the acoustic field as additional mass and damping contributions. Moreover, we will later see that the use of Equation (7)
admits efficient unilateral model order reduction in the case of light fluid loading. We will consider both formulations (7)
and (8) in the following and provide tailored solution schemes for both of them.

3 FEAST FOR NONLINEAR STRUCTURAL ACOUSTIC EIGENVALUE
PROBLEMS

Introduced in the context of linear EVPs, the original FEAST algorithm33,38 essentially is a subspace iteration method
which uses a Rayleigh–Ritz procedure in each iteration, that is,

Ar = QHAQ, (9)

where A is the matrix of interest, Q is the complex-valued projection matrix, and (⋅)H denotes the Hermitian transpose.
The reduced matrix Ar contains some approximate eigenvalues of A. Those eigenvalues are obtained by solving the EVP
ArXr = 𝚲Xr, and the approximate eigenvectors are retrieved from X=QXr. Different from, for example, the Arnoldi
algorithm which uses Krylov subspaces for Q, FEAST constructs a subspace of fixed dimension by applying a spectral
projector 𝜌 (A) to the desired eigenvectors. The spectral projection is accomplished by a Cauchy integral representation
of the resolvent of A, yielding the complex contour integration

Q = 𝜌 (A)X = 1
2𝜋i∮

(zI − A)−1dz X, (10)

where I is the identity matrix. The shift z is defined along the contour —a user-defined Jordan curve in the complex
plane. Hence, FEAST yields the eigenvalues and corresponding eigenvectors lying in the domain  that is enclosed by
, see Figure 1. The numerical effort of FEAST is determined by the accuracy of the integration in Equation (10), that is,
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the number of discrete integration points. The computation of the integrand at the individual integration points can be
executed in parallel.

Gavin et al.30 have recently provided another interpretation of the original FEAST algorithm by mentioning that it
is essentially a generalized shift-and-invert iteration. Standard shift-and-invert iteration uses a single shift z, whereas
the contour integration in Equation (10) corresponds to using multiple shifts simultaneously. Inspired by this, Gavin
et al.30 have proposed a nonlinear version of FEAST (NLFEAST) which in turn is a generalization of the residual inverse
iteration.39 Again, contour integration is used in NLFEAST to handle multiple shifts efficiently. However, the authors limit
their applications to quadratic EVPs leaving open the application to analytic matrix functions that depend nonlinearly on
the eigenvalue parameter. The next section briefly reviews the NLFEAST algorithm, whereafter Sections 3.2 to 3.4 present
our contribution toward an accurate and efficient application to structural acoustic problems that depend nonlinearly on
the eigenfrequency.

3.1 General outline of the nonlinear FEAST algorithm

The nonlinear EVPs (7) and (8) are replaced by T(𝜔̃)x = 0, T(𝜔̃) ∈ Cn×n, x ∈ Cn for the sake of readability. We are inter-
ested in a given number of eigenpairs (𝜔̃, x) whose eigenvalues 𝜔̃ lie in a predefined region  that is enclosed by a
contour  in the complex plane. Since the imaginary parts of the complex eigenvalues—which correspond to radiation
damping—are typically small, we use elliptic contours that have their major axis aligned with the real axis. The intersec-
tions of the ellipse with the real axis are the lower and upper bounds

[
fmin, fmax

]
of the frequency range of interest. An

exemplary ellipse is shown in Figure 1 and is expressed by

z (𝜃) = 𝛾 + 𝛿 (cos 𝜃 + i𝜁 sin 𝜃) , 𝜃 ∈ [0, 2𝜋) , (11)

where 𝛾 = (fmax + fmin) ∕2, 𝛿 = (fmax − fmin) ∕2 and 0 ≤ 𝜁 ≤ 1.
Similar to its linear counterpart in Equation (9), NLFEAST uses a Rayleigh–Ritz projection to reduce the system

dimension in each iteration. The resulting projected EVP

QHT(𝜔̃)Qy = 0, Q ∈ Cn×m, y ∈ Cm (12)

is still nonlinear but of significantly reduced dimension m≪n. The subspace dimension m is fixed throughout the itera-
tions and should be at least as large as the number of expected eigenvalues inside  to ensure that all desired eigenvalues
are captured. In our case, the number of eigenvalues can be either estimated a priori by an empirical formula,40 or by a
preceding in vacuo analysis—that is, by solving the linear EVP

(
K − 𝜔̃2

dryM
)
𝝍dry = 0.

Once Equation (12) is solved, the m eigenvalues lying closest to the center of  are determined by evaluating the
scaled distance

d = (Re (𝜔̃) − 𝛾)2 + (Im (𝜔̃) ∕𝜁)2. (13)

Those eigenvalues 𝜔̃1, … , 𝜔̃m and associated eigenvectors y1, … , ym are stored in 𝛀 = diag (𝜔̃1, … , 𝜔̃m), 𝛀 ∈ Cm×m

and X =
[
Qy1, … , Qym

]
, X ∈ Cn×m, respectively. They are used to update the search subspace Q via

Q ∶= 1
2𝜋i∮

(
X − T−1(z)B

)
(zIm −𝛀)−1dz, (14)

F I G U R E 1 Elliptic contour  enclosing a complex
domain , in which the desired eigenvalues lie
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in which the residual matrix B ∈ Cn×m is obtained by

B =
[
T(𝜔̃1)Qy1, … , T(𝜔̃m)Qym

]
. (15)

The integrand in Equation (14) corresponds to the update rule for eigenvectors in the residual inverse iteration method
with multiple shifts.30,39 Its Cauchy integral representation (14) then yields an approximate spectral projection onto the
eigenspace corresponding to the eigenvalues in .

With the definition of the contour (11) at hand, the integral can be evaluated using the trapezoidal rule, that is,

Q ∶=
N∑

j=1
wj

(
X − T−1(zj)B

) (
zjIm −𝛀

)−1
, (16)

where N denotes the number of integration points on the contour (cf. Figure 1). For an elliptic contour, the integration
points and weights can, for example, be chosen as

zj = 𝛾 + 𝛿 (cos (2𝜋j∕N) + i𝜁 sin (2𝜋j∕N)) , j = 1, … , N and (17)

wj =
𝛿

N
(𝜁 cos (2𝜋j∕N) + i sin (2𝜋j∕N)) , j = 1, … , N. (18)

The general procedure for solving structural acoustic EVPs with NLFEAST is summarized in Algorithm 1. Conver-
gence of the algorithm is monitored by evaluating the maximum residual among the eigenpairs whose eigenvalues lie
inside the contour, that is,

𝜀max = max
𝜔̃i∈

||T(𝜔̃i)Qyi||2||Qyi||2 . (19)

Alternatively, the accuracy of an eigenpair can be assessed by computing the relative residual by, for example,

𝜀rel,i =
||T(𝜔̃i)Qyi||2||T(𝜔̃i)||1||Qyi||2 , (20)

which requires estimating the 1-norm of the system matrix.41 Other matrix norms are also possible such as the ∞− or
Frobenius norm. Once the residual stagnates, the algorithm is terminated. If the accuracy is then deemed to be insuffi-
cient, the whole procedure can be repeated with the computed eigenvectors as new initial guess and by incorporating a
more accurate solution strategy for the projected EVP in Equation (12). The latter is discussed in Section 3.3, where we
will see that the accuracy can be increased while retaining information from the previous run.

The rate of convergence of the algorithm is mainly driven by the accuracy of the numerical integration in line 15, and
thus by the number of contour points N. On the other hand, N also determines the number of linear systems T(zj)Y=B
that need to be solved in each iteration in line 15 accounting for the main computational effort. When the computations for
each contour point are executed in parallel, N could be chosen according to the number of available computing nodes. The
BE matrices associated with T(zj) are stored in memory in order to avoid re-assembly in each iteration. In this respect, the
use of data-sparse formats42 or model order reduction of BE matrices12 can alleviate the memory requirements. The initial
guess of eigenvectors X(0) ∈ Cn×m can either be random, or in the case of moderately strong structural acoustic interaction,
X(0) can be chosen as the in vacuo modes of the structure. If one is then interested in the complex eigenfrequencies
corresponding to those particular modes, the eigenvalue selection in lines 10 and 18 could be made based on a modal
assurance criterion.43

Regarding the computational efficiency, several issues need to addressed when applying Algorithm 1 to structural
acoustic EVPs (7) and (8):

• Firstly, the repeated evaluation of the residuals in Equation (15) requires assembling the frequency-dependent BE
matrices at m eigenvalues in each iteration.

• Secondly, the projected EVP in Equation (12) is still nonlinear and requires a tailored solution scheme.
• Lastly, an efficient solver for linear systems T(zj)Y=B with multiple right-hand sides is required. This is particularly

important since a factorization of the coupled system matrices in Equations (5) and (6) is generally not feasible.
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Algorithm 1. NLFEAST for structural acoustic eigenvalue problems

1: input
2: complex domain  enclosed by elliptic contour  as given by Eq. (11)
3: number of contour points N
4: system matrices T(zj) at contour points zj, j = 1, … ,N
5: initial (possibly random) guess for eigenvectors X(0)

6: initialization
7: Q ∶= X(0)

8: orthonormalize columns of Q
9: solve QHT(𝜔̃)Qy = 0 for eigenpairs (𝜔̃i, yi)

10: select m eigenvalues 𝜔̃1, … , 𝜔̃m closest to the center of  by evaluating Eq. (13)
11: 𝛀 ∶= diag (𝜔̃1, ..., 𝜔̃m)
12: X ∶=

[
Qy1, … ,Qym

]
13: B ∶=

[
T(𝜔̃1)Qy1, … ,T(𝜔̃m)Qym

]
14: while max

𝜔̃i∈
‖T(𝜔̃i)Qyi‖2∕‖Qyi‖2 has not stagnated do

15: Q ∶=
∑N

j=1 wj
(
X − T−1(zj)B

) (
zjIm −𝛀

)−1

16: orthonormalize columns of Q
17: solve QHT(𝜔̃)Qy = 0 for eigenpairs (𝜔̃i, yi)
18: select m eigenvalues 𝜔̃1, … , 𝜔̃m closest to the center of  by evaluating Eq. (13)
19: 𝛀 ∶= diag (𝜔̃1, ..., 𝜔̃m)
20: X ∶=

[
Qy1, … ,Qym

]
21: B ∶=

[
T(𝜔̃1)Qy1, … ,T(𝜔̃m)Qym

]
22: output
23: eigenvalues 𝜔̃i ∈  and associated eigenvectors Qyi

The next subsections present remedies for those three aspects, thereby enabling efficient application of Algorithm 1
to large-scale structural acoustic EVPs.

3.2 Rational approximation of frequency-dependent boundary element matrices

The repeated evaluation of the residuals in Equation (15) deteriorates the numerical efficiency of NLFEAST when the
frequency-dependent BE matrices H(𝜔̃) and G(𝜔̃) are assembled explicitly for all intermediate (not yet converged) eigen-
values in each iteration. Several approaches for accelerating the setup of BE matrices have been proposed in the literature.8
Typically, polynomial approximations based on frequency sampling at Chebychev nodes24 or truncated Taylor series20 are
employed in this regard. However when evaluating at complex eigenvalues 𝜔̃ that lie apart from the real axis, the quality
of those polynomial approximations quickly deteriorates.

Therefore, we will use a Cauchy integral representation of the BE matrices which—after discretization with the
trapezoidal rule—yields a rational approximation. For a detailed discussion on different approximations inside complex
regions, we refer to the review by Austin et al.44 The approximate BE matrices read

H(𝜔̃) ≈
N∑

j=1
H(zj)vj(𝜔̃) and G(𝜔̃) ≈

N∑
j=1

G(zj)vj(𝜔̃), (21)

where the scalar-valued rational functions vj are given by

vj(𝜔̃) =
wj

zj − 𝜔̃

( N∑
k=1

wk

zk − 𝜔̃

)−1

. (22)
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The error introduced by these rational approximations depends on the fluctuation of the entries of H(𝜔̃) and G(𝜔̃)
with respect to the frequency. For example, the relative error in H(𝜔̃) can be assessed by

𝜀H(𝜔̃) =
||H(𝜔̃) −

∑N
j=1 H(zj)vj(𝜔̃)||F||H(𝜔̃)||F , (23)

where || ⋅ ||F denotes the Frobenius norm. However, an evaluation of Equation (23) is generally not feasible and an alter-
native way is required for assessing the approximations given in Equations (21) and (22). For this purpose, we first notice
that the frequency dependence of a BE matrix entry can be generally characterized by a product of a monomial and an
exponential function,45 that is,

h(𝜔̃) = 𝜔̃peir𝜔̃∕c, (24)

with the speed of sound c and the nonnegative integer exponent p. Given the frequency dependence of the single and
double layer potential in the collocation BE formulation, p= 1 is a suitable choice. Further, the spatial distance r should
be chosen as the largest distance between two points on the discretized boundary. Then, an error estimate can be obtained
from

𝜀h(𝜔̃) =
|h(𝜔̃) −∑N

j=1 h(zj)vj(𝜔̃)||h(𝜔̃)| . (25)

In practice, 𝜀h(𝜔̃) could be probed at a few points inside the complex domain  and the number of contour points N
could be increased until an acceptable accuracy is achieved. We will see in Section 4.1 that an error estimate based on
Equation (25) is in reasonable accordance with the relative error given by Equation (23).

For the convenient choice of using the same elliptic contour for the rational approximation as for the computation of
the search subspace in Equation (16), the setup of the rational approximation does not require any additional numerical
effort. The BE matrices H(zj) and G(zj) are readily available and the contour points zj and associated weights wj are
identical to those in Equations (17) and (18). In this case, Equation (16) is a trapezoidal rule approximation of the Cauchy
integral representation of eigenfunctions, which in turn includes BE matrices with the same underlying trapezoidal rule
approximation. Therefore, we expect that the approximation of BE matrices do not further impair the convergence rate
of NLFEAST nor the accuracy of the final eigenpairs. Finally, we note that some intermediate eigenvalues may also lie
outside of the contour, particularly in the first couple of iterations of NLFEAST. Although the rational approximations (21)
yield exponential convergence only inside the contour,46 they are still used in these cases to evaluate the residual (15).

3.3 Solution of the projected nonlinear eigenvalue problem

A tailored procedure for solving the projected (but still nonlinear) EVP (12) is crucial, since it determines the final accu-
racy of the eigenpairs obtained by NLFEAST. The dimension of the EVP (12) is rather small, and hence it would admit
the application of various nonlinear eigensolvers for dense systems that are available in the mathematical literature.47,48

However, with regard to computational efficiency, we would favor an eigensolver that requires minimal additional effort
in each NLFEAST iteration and in particular, avoids repeated assembly of the original system matrix. In this respect, an
obvious choice would be to simply employ a rational approximation as has already been done for the acceleration of the
residual computation in Equation (15). However, instead of only approximating the BE matrices as given in Equation (21),
an approximation of the entire coupled system matrix T(𝜔̃) is necessary in order to obtain a rational EVP that can be
subsequently linearized. The rational approximation of the projected EVP (12) is obtained by quadrature of the Cauchy
integral representation of QHT(𝜔̃)Q and reads

Np∑
j=1

(
QHT(ẑj)Q

wj

ẑj − 𝜔̃

)
y = 0, (26)

where Np denotes the number of quadrature points. Again, for the convenient choice of the same underlying elliptic
contour and trapezoidal rule as for the computation of the projection matrix in NLFEAST, Np =N holds. In that case,
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the quadrature points for the rational approximation of the EVP are identical to the contour points in Equation (17) (i.e.,
ẑj = zj), and the BE matrices at the contour points can be reused.

For solving the rational EVP (26), we follow the approach of El-Guide et al.32 and reformulate the problem as a
generalized EVP

w = 𝜆w (27)

with identical eigenvalues 𝜔̃ = 𝜆. The block matrices in Equation (27) are defined as

 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

ẑ1Im Im

ẑ2Im Im

⋱ ⋮

ẑNp Im Im

−T̂1 −T̂2 … −T̂Np 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
,  =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

Im

Im

⋱

Im

0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, (28)

where T̂j = QHT(ẑj)Qwj. The eigenvector of interest y is retrieved from

w =
[
vT,

1 … , vT
Np
, yT

]T
, vj =

y
ẑj − 𝜔̃

. (29)

The main issue with the linearization of EVPs is the significant increase of the system dimension. El-Guide et al.32

address this issue by subspace iteration in which the columns of the projection matrix are individually computed by
inverse power iteration. In our case, the inflation of the EVP associated with the linearization is mitigated by the pro-
jection (12), where the projection matrix (16) and the rational approximation of the EVP (26) can be based on the same
contour points. The computational effort for solving the linearized EVP is reduced to an order of  (

(mNp)3). We will
later see that a small number Np is sufficient to achieve a high accuracy and hence, the solution of the reduced nonlinear
EVP in Equation (12) only marginally contributes to the overall computational time for the NLFEAST algorithm. Lastly,
we note that the final accuracy of the eigenpairs could be improved by adaptively increasing Np in subsequent runs of
NLFEAST by adding new quadrature points ẑj in-between the previous ones.

3.4 Efficient solution of coupled systems with multiple right-hand sides

The main computational effort of the NLFEAST algorithm stems from the solution of the N linear systems

T(zj)Yj = B, j = 1, … , N, (30)

in each iteration in order to update the projection matrix via Equation (16). For a discussion on efficient solution strategies
for Equation (30), we need to distinguish between the two structural acoustic formulations given by Equations (7) and (8).
When forming the Schur complement of K − z2

j M with respect to coupled block matrix in (4), the system matrices read

T(zj) = izjG(zj)Cfs

(
K − z2

j M
)−1

Csf + H(zj), (31)

whereas using the Schur complement of H(zj) yields

T(zj) = K − z2
j M + izjCsfH−1(zj)G(zj)Cfs. (32)

The system in Equation (31) admits efficient application of an iterative solver to Equation (30) once a factorization of
the sparse and symmetric matrix K − z2

j M is stored. Linear systems with multiple right-hand sides such as Equation (30)
are usually solved by successively applying standard iterative schemes to obtain the solutions to each forcing vector indi-
vidually. More efficient approaches such as subspace recycling49 or block Krylov solvers50 enable to carry over information
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among the solutions to different forcing vectors. In this work, we will employ a block variant of the generalized minimal
residual (GMRes) method.51,52 While block Krylov solvers have been successfully applied to acoustic BE equations,53 to
the best of our knowledge, the present contribution is the first application to coupled structural acoustic systems with
multiple right-hand sides.

Block Krylov solvers generally work by refining the solution Yk in each iteration k such that

Yk − Y0 ∈ k
(
T(zj),R0

)
(33)

holds, where Y0 and R0 =B−T(zj)Y0 denote the initial guess and the corresponding initial residual, respectively. The
block Krylov subspace k is given by

k
(
T(zj),R0

)
= Range

[
R0 T(zj)R0 … T(zj)k−1R0

]
. (34)

In the case of block GMRes, the orthonormal basis vectors spanning the subspacek are computed via a block Arnoldi
process. The resulting block subspace is of much larger dimension compared with the subspace in standard GMRes, and
hence a faster convergence can be expected.

Having discussed the solution when using the formulation (31), we now turn our attention to the Schur complement of
the acoustic subsystem in Equation (32). Here, an iterative solution would require evaluation of H−1(zj)G(zj)CfsY(k)

j in each
iteration k. In order to avoid two nested iterations, we employ a model order reduction54 to the frequency-independent
structural subsystem and thereby enable a direct solution of Equation (30). The reduced system (32) reads

Tr(zj) = VT
[
K − z2

j M + izjCsfH−1(zj)G(zj)Cfs

]
V, (35)

in which V ∈ Rns×q could be a Krylov subspace or spanned by the in vacuo modes of the structure. In this work, we choose
a Krylov basis, which is computed once for the whole frequency range of interest.55 Once the Krylov basis is established,
the reduced system Tr(zj) can be explicitly formed by evaluating H−1(zj)G(zj)CfsV using the above described block GMRes.
The N reduced matrices Tr(zj) can be saved and reused in all subsequent NLFEAST iterations. Hence, the computational
effort of solving the high-fidelity system in Equation (30) in each iteration boils down to the effort of computing V and
reducing the coupled system matrices at each contour point only once via Equation (35). The actual solution in each
iteration requires negligible computational effort. The memory requirements to store the system matrices are reduced as
well.

4 FIRST NUMERICAL EXAMPLE: MODAL ANALYSIS OF A SUBMERGED
SPHERICAL SHELL

As a first example, we consider a spherical shell submerged in water. Its geometrical and material parameters are listed in
Table 1. A finite element mesh with 864 eight-noded quadrilateral finite elements based on the Reissner Mindlin theory
is used to discretize the sphere. This corresponds to twelve elements on a 𝜋∕2 arc and 15,564 displacement DOFs. The
acoustic field is represented by a conforming BE mesh with discontinuous bilinear interpolation functions and 3456
pressure DOFs. We first illustrate the application of NLFEAST to perform a modal analysis in Section 4.1, and then
compare the performance to a contour integral method in Section 4.2.

4.1 Eigenvalue solution using NLFEAST

In this section, we use NLFEAST to compute the eigenpairs of the submerged sphere in the frequency range from
f min = 34 Hz to f max = 82 Hz. As illustrated in Figure 2, these frequency bounds are used to define the elliptic contour.
A treatment for the nonuniqueness problem in BEM is not required in this frequency range, but would be needed above
the first interior Dirichlet eigenfrequency of approximately 148 Hz. The Burton–Miller formulation56 would resolve this
issue, however care has to be taken since the spurious eigenfrequencies are not eliminated altogether but only moved away
from the real axis.57 They could be distinguished from the actual ones based on the sign of the imaginary parts, given a



4260 BAYDOUN et al.

proper choice of the coupling parameter in the Burton–Miller formulation.58 Based on the analytical solution,59 we expect
three distinct eigenvalues in the considered frequency range with geometric multiplicities of five, seven, and nine, respec-
tively. The aspect ratio of the elliptic contour is set to 𝜁 = 0.05. The dimension of the search space in NLFEAST is set to
m= 21, which is sufficient to capture all eigenvalues. The initial eigenvectors X(0) are chosen randomly. The convergence
criterion for block GMRes is defined such that relative residuals smaller than 𝜀gmres = 10−12 are achieved for all right-hand
sides. In this example, we use the Schur complement of the structural subsystem resulting in the EVP formulation given
by Equation (8).

Figure 3 displays the convergence behavior of NLFEAST for different numbers of contour points N, and a fixed number
of Np = 16 for the solution of the projected EVP (26) by rational approximation. The accuracy is assessed by the maximum
residual defined in Equation (19), in which T(𝜔̃i) is evaluated explicitly without the approximations in Equations (21)
and (22). In this example, all m= 21 eigenvalues were found regardless of the number of contour points in the first iter-
ation after the initialization step. No spurious eigenvalues occurred in any of the test cases with NLFEAST. As expected,
the number of contour points N (and thus the quality of the projection matrix Q) determines the convergence rate of
NLFEAST, whereas the final accuracy of the eigenpairs is unaffected by this choice. Even when using only N = 6 con-
tour points, a maximum residual of 𝜀max = 4 ⋅ 10−10 is achieved after a couple of iterations. Note that in this example, the

Radius of sphere 5 m

Shell thickness 0.05 m

Density of steel 7860 kg/m3

Young’s modulus 210 GPa

Poisson’s ratio 0.3

Density of water 1000 kg/m3

Speed of sound 1500 m/s

T A B L E 1 Geometry of the sphere and properties of steel and water
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1-norm of the system matrix is of order (100) in the whole frequency range on interest and hence, the absolute and rela-
tive residuals are roughly in the same order of magnitude, cf. Equations (19) and (20). For example, the above mentioned
maximum residual of 𝜀max = 4 ⋅ 10−10 corresponds to a relative residual of 𝜀rel = 6 ⋅ 10−11.

The final accuracy of the eigenpairs is mainly controlled by the accuracy with which the projected EVP is solved. The
latter is in turn dependent on the number of quadrature points Np for the rational approximation in Equation (26). This
is illustrated in Figure 4, where now 𝜀max is displayed for different values of Np and a fixed number of contour points
N = 12. We observe that the final residuals stagnate at different values depending on the number of Np. For example,
when using Np = 6, the maximum residual stagnates at 𝜀max = 7 ⋅ 10−4. Rational approximations with more than Np = 16
did not further improve the results beyond 𝜀max = 4 ⋅ 10−10.

In Section 3.2, we have proposed rational approximations of the BE matrices (21) in order to avoid their explicit assem-
bly in each iteration. Figure 5 displays thereby introduced relative error 𝜀H(𝜔̃) given by Equation (23) when using N = 12
contour points. The plot is generated by 1683 uniformly distributed points in the complex plane and linear interpolation
in-between them. We notice that N = 12 contour points are sufficient to achieve errors 𝜀H(𝜔̃) of order (10−10) inside the
elliptic contour. The error estimator for an matrix entry given in Equation (25) yields a maximum value of 𝜀h(𝜔̃) = 6 ⋅ 10−9,
which is in reasonable accordance to the actual error shown in Figure 5. The influence of the rational approximations of
the BE matrices on the convergence of NLFEAST is examined in Figure 6. The residuals with and without approximation
are compared for N = 8 contour points and a varying number of points Np for the rational approximation. We notice that
the rational approximations only have a negligible impact on the convergence rate as well as on the final accuracy—at
least up to Np = 12. When using Np = 16, the rational approximations prevent the eigenpair from reaching the same final
accuracy as is reached when the BE matrices are explicitly formed. It stagnates at 𝜀max = 3 ⋅ 10−9 while without the ratio-
nal approximations, 𝜀max = 4 ⋅ 10−10 is achieved. However, in view of the significant saving of computational effort, this
minor deterioration of accuracy is deemed acceptable—also because other sources of inaccuracies such as discretization
errors typically have a larger impact.

As discussed in Section 3.4, the computational effort is mainly associated with the solution of linear systems (30) with
multiple right-hand sides for updating the projection matrix via Equation (16). The performances of conventional and
block GMRes are compared with each other in Figure 7 by counting the equivalent matrix vector multiplications. When
using conventional GMRes, the linear systems are solved individually for each right-hand side. The corresponding relative
residuals are plotted one after the other in Figure 7 yielding the apparent sawtooth shape (i.e., each tooth corresponds to
one right-hand side). The complete solution requires 822 matrix vector multiplications within GMRes corresponding to
an average of 39 multiplications for the solution to each right-hand side.

In contrast, block GMRes solves the linear system (30) for all right-hand sides simultaneously by performing one
matrix multiplication in each iteration. For the sake of comparability with conventional GMRes, each of those operations
are counted as m= 21 equivalent matrix vector multiplications. The dashed red curve represents the relative residual
associated with the first right-hand side. It exhibits a significantly steeper slope than conventional GMRes due to the
larger dimension of the underlying (block) Krylov subspace. This also leads to a faster overall convergence which is
illustrated by the solid red curve. The latter displays the maximum relative residual among all right-hand sides. In total,
block GMRes requires 15 iterations and a total of 315 equivalent matrix vector multiplications. In terms of computational
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F I G U R E 5 Relative
error of the rational
approximation given by
Equations (21) and (22) when
using N = 12 contour points
on the ellipse. This plot is
generated by 1683 uniformly
distributed points in the
complex plane and linear
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time, block GMRes additionally benefits from efficient memory usage due to less frequent access to the stored matrices.
In this example, block GMRes yields a speed up of more than eight times compared with conventional GMRes.

4.2 Comparison to contour integral methods

In the following, we briefly compare the performance of NLFEAST to two other nonlinear eigensolvers.

4.2.1 Comparison to the block Sakurai Sugiura method

The block Sakurai Sugiura method (block SS)26 is a contour integral method based on resolvent moments and essentially
transforms the nonlinear EVP to a generalized EVP involving block Hankel matrices. The block Hankel matrices contain
moments of the resolvent of the system matrix up to an user-defined degree, whereas the moment matrices are computed
with respect to a number L of random source vectors via complex contour integration. The algorithmic details of block SS
can be found in the literature.21,26,40

The computational efforts of both NLFEAST and block SS mainly comprise the assembly of BE coefficient matrices
and the solution of linear systems at the contour points. The latter aspect is studied in Figure 8, which shows the max-
imum residual over the number of solved linear systems. NLFEAST is executed with Np = 16 and different numbers N
of contour points. As we have already seen in the previous section, the residual in NLFEAST decreases monotonically
until stagnation. In the case of block SS, we also observe that the residuals generally decrease with an increasing N (and
thus increasing number of linear systems). However, there are also some apparent fluctuations in Figure 8, even though
the random source vectors are kept the same among all runs of block SS for the sake of comparability. In other words,
the accuracy of the eigenpairs computed by block SS may actually deteriorate in some cases even when more integration
points are used for the projection. Moreover, we note that spurious eigenvalues occurred in all our test cases with block SS
although we perform a singular value decomposition and truncation of the Hankel matrices as suggested by Asakura
et al.26 These spurious eigenvalues associated with large residuals are not included in Figure 8.

Figure 8 also indicates the number of linear systems that need to be solved in order to reach the final (i.e., highest
possible) accuracy. For the sake of comparability, we define a threshold of 𝜀max = 10−8. When using block SS with L= 21, a
total of N = 32 contour points (i.e., the solution of 32 linear systems) are required in order reach that threshold. Compared
with that, NLFEAST is an iterative scheme that solves N linear systems in each iteration. For example with N = 8, the
threshold is reached after five iterations, which corresponds to a total number of 40 linear systems. Similarly, when using
N =Np = 16 contour points, only two iterations are required summing up to a total of 32 linear systems.

Table 2 lists the associated computational times for the solution of those systems as well as the times that are required
for the assembly of the BE matrices. Regarding the solution of linear systems, NLFEAST benefits from the reuse of the
LU factorizations of K − z2

j M over the course of the iterations. Hence, given a certain number of linear systems and
right-hand sides, the solution time of NLFEAST is slightly shorter. Note that we also use block GMRes for solving the
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NLFEAST Block SS

N = 8 N = 12 N = 16 L= 15 L= 21

Num. matrix assembly 16 24 16 48 32

Num. linear solves 40 36 32 48 32

Time matrix assembly 912 s 1368 s 912 s 2736 s 1824 s

Time matrix approx. 43 s 40 s 40 s – –

Time linear solve 219 s 207 s 221 s 279 s 240 s

Total timea 1174 s 1615 s 1173 s 3015 s 2064 s

Note: Associated convergence behavior is plotted in Figure 8.
aThe total time does not refer to the total wall clock time for the execution of the algorithms but only
includes matrix assembly, rational approximation, and solution of linear systems. The other (marginal)
contributions, which are mostly identical in all test cases, are neglected.

T A B L E 2 Computational effort that
is required to solve the benchmark EVP
with εmax ≤ 10−8

linear systems arising in block SS. But actually, the major saving does not stem from the decrease of solution time but
from the fact that NLFEAST requires significantly less contour points in order to achieve the highest possible accuracy
(with a minimum number of N =Np = 13). As a result of this, fewer BE matrices need to be explicitly assembled. In this
example, the assembly of H(zj) and G(zj) at a single contour point took 57 s while the time for computing the rational
approximation via Equation (21) only marginally contributed to the total time. Summing up, depending on the respective
solver parameters, NLFEAST required 22 % to 61 % less computational time then block SS to achieve the final accuracy.
Of course these numbers may change depending on the dimension of the problem and in the case of parallel computing,
also on the number of available computing nodes.

4.2.2 Comparison to the Sakurai Sugiura method with Rayleigh Ritz projection

The ill-conditioning of the Hankel matrices in block SS has been addressed in a paper by Yokota and Sakurai,28 in which
the authors suggest a Rayleigh Ritz procedure to extract the eigenvalues from the resolvent moments based subspace.
This procedure is known as the Sakurai Sugiura method with Rayleigh Ritz projection (SSRR). While SSRR is expected to
give more accurate results than block SS, it needs to be accompanied by a nonlinear eigensolver for the projected (but still
nonlinear) EVP. This nonlinear EVP of small size can be conveniently solved by block SS with a large number L of source
vectors without impairing the computational efficiency. A similar strategy has been employed for the solution of acoustic
EVPs based on BEM,29 however with the difference that the Rayleigh Ritz projector is built by sampling the resolvent
matrix.

Our experience with SSRR is in line with those reported in previous works28,29 and indicates that the method is com-
putationally more efficient and robust than block SS. For example, with L= 21 and a degree of moments of 3, SSRR only
requires N = 18 contour points to reach the threshold of 𝜀max = 10−8 (recall that block SS required N = 32 and NLFEAST
N =Np = 13). Compared with NLFEAST, fewer linear systems need to be solved in SSRR, but still, NLFEAST requires
less computational time in this example since fewer BE matrices need to be explicitly assembled. Further, we note that
although the occurrence of spurious eigenvalues is effectively mitigated in SSRR, we still encountered them when solv-
ing the projected EVP via block SS, even with a very small degree of moments and large number L of source vectors.
In contrast, no spurious eigenvalues occur when combining SSRR with the rational approximation method presented in
Section 3.3.

5 SECOND NUMERICAL EXAMPLE: QUANTIFICATION OF MODAL
RADIATION DAMPING IN A MUSICAL BELL

A bell excited by a clapper radiates sound by an ensemble of its fundamental modes, where each of them is characterized
by an initial amplitude, eigenfrequency and a decay rate. While the eigenfrequencies can be anticipated by an in vacuo
modal analysis of the bell, the decay characteristics, which make up for the desired sound of the bell, depend on the
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acoustic radiation damping of each individual mode.60 It is the yearlong experience of bell founders that enables them to
manually tune the bell after casting.

In this second numerical example, we apply the NLFEAST algorithm in order to determine radiation damping val-
ues associated with modes of a bronze musical bell. The main geometrical and material parameters of the bell are listed
in Table 3. The bell is discretized using 20-noded hexahedral solid finite elements resulting in a total of 26,769 displace-
ment DOFs. The respective stiffness and mass matrices are extracted from ANSYS. Figure 9 shows the mesh of the
bell. The outer surfaces of the solid elements are coupled to a conforming acoustic BE mesh consisting of 2560 bilinear
discontinuous elements with a total of 10,240 pressure DOFs.

The modal analysis of the bell in interaction with surrounding air is performed using an elliptic contour with
f min = 80 Hz, f max = 390 Hz, 𝜁 = 0.05, and N =Np = 48. A treatment for the nonuniqueness problem in BEM is not
required. From a preceding in vacuo analysis, we expect m= 10 eigenpairs in the considered frequency range. The in
vacuo modes are also used as the initial guess of eigenvectors X(0) in NLFEAST. Due to the light fluid loading, the coupled
system (4) admits accurate model order reduction solely based on the structural subsystem. Hence, we form the Schur
complement of the acoustic subsystem resulting in the EVP formulation given by Equation (7). The system matrices at
the contour points are reduced by a Krylov subspace model order reduction as described in Section 3.4. The Krylov basis is
computed using a random initial vector at a single expansion point of 250 Hz. A dimension of q= 40 for the Krylov basis is
required in order to obtain all eigenpairs in this example. Hence, the computational effort of the modal analysis basically
comprises the setup of the BE matrices and solution of a single linear system H(z)X=G(z)CfsV with q= 40 right-hand
sides for each contour point. Compared with that, using the EVP formulation (8) based on the Schur complement of the
structural subsystem would necessitate solution of a linear system with multiple right-hand sides for each contour point
every time when the projection matrix needs to be updated. The memory requirements for storing the system matrices of
reduced dimension q is negligible. In contrast, using the EVP formulation (8) would require storage of several BE matri-
ces of original dimension. Moreover, using the latter approach, we were not able to find accurate eigenpairs, which may
be attributed to ill-conditioning of the FE matrices K − 𝜔2M. In this example, NLFEAST requires two iterations to reach
the final accuracy.

The first five distinct modes of the bell and the associated eigenfrequencies are shown in Figure 10. Note that due to
rotational symmetry, all modes occur with a geometric multiplicity of two. While the eigenfrequencies corresponding to
the real parts of the eigenvalues remain almost unaffected by air loading, the imaginary parts of the eigenvalues character-
ize the extent of acoustic radiation damping. Radiation damping corresponding to an individual mode can be expressed

T A B L E 3 Geometry of the bell and properties of bronze and air Height of the bell 1.2 m

Thickness of the bell 0.07 m

Radius at top end 0.45 m

Radius at bottom end 0.87 m

Density of bronze 8750 kg/m3

Young’s modulus 98.6 GPa

Poisson’s ratio 0.34

Density of air 1.22 kg/m3

Speed of sound 340 m/s

F I G U R E 9 Finite element mesh of the bell



4266 BAYDOUN et al.

1 = 105Hz 2 = 165Hz 3 = 177Hz 4 = 263Hz 5 = 368Hz

F I G U R E 10 First five distinct modes and associated eigenfrequencies of the bell
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F I G U R E 11 Modal and harmonic radiation loss
factors of the bell

by the modal loss factor

𝜂i = −2 Im (𝜔̃i)
Re (𝜔̃i)

, (36)

where Im (𝜔̃i) is negative due to the harmonic time dependency e−i𝜔t. Beside modal loss factors, harmonic loss factors are
an alternative way to quantify radiation damping and can be computed by a frequencywise response analysis.2 They can
serve us to verify the modal loss factors and thus the accuracy of the computed eigenvalues. Figure 11 shows the modal
loss factors obtained by NLFEAST as well as harmonic loss factors of the bell subject to point force excitation. The latter
are obtained by computing the radiated sound power in a standard frequency sweep analysis, which can be performed
either based on the Schur complement of the acoustic subsystem in conjunction with the above described Krylov subspace
model order reduction or based on the Schur complement of the structural subsystem without model order reduction.
The maximum relative difference in radiated sound power between these two approaches is 2.5 ⋅ 10−5 which undermines
that the coupled system admits accurate model order reduction solely based on the structural subsystem. Figure 11 also
indicates that although the imaginary parts of the eigenvalues are very small, the resulting modal loss factors agree well
with the harmonic ones at the respective eigenfrequencies.

6 SUMMARY AND CONCLUSION

We have proposed a subspace iteration method for the solution of nonlinear structural acoustic EVPs. At its core, the
method is based on the nonlinear FEAST algorithm and essentially works by iteratively refining a projection matrix that
is obtained by applying a spectral projector. We have shown that in the context of structural acoustic problems involving
complex eigenvalues, the information for computing the projection matrix can be recycled in two ways and thus giving
rise to a tailored eigensolver. Firstly, the integration points are reused for a rational approximation of the projected but
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still nonlinear EVP. This enables an accurate computation of eigenpairs at a negligible additional cost without inducing
spurious eigenvalues. Secondly, the integration points are also reused to approximate the BE matrices at intermediate
eigenvalues thereby avoiding their assembly in each FEAST iteration. Only a few points are sufficient to achieve small
errors in the BE matrices, and hence to retain the convergence rate of FEAST while significantly reducing the numerical
effort.

In consequence, the actual computation of the projection matrix remains the only computationally expensive task
required for solving the EVP. In this respect, we provide two tailored approaches for updating the projection matrix. In
the case of heavy fluid loading, we form the Schur complement of the structural subsystem and employ block GMRes
for solving the underlying coupled linear systems with multiple right-hand sides. Compared with standard GMRes,
we have achieved a speed-up of eight times in our test cases. In the case of light fluid loading, we exploit the fact
that the coupled system admits accurate model order reduction solely based on the structural subsystem. By form-
ing the Schur complement of the acoustic subsystem and computing the reduced coupled matrices again by block
GMRes, we are able to significantly reduce both the memory requirements and the effort for updating the projection
matrix.

Applications to a submerged spherical shell and to a musical bell have verified the proposed method. Comparison to
resolvent moments based contour integral methods indicates two major advantages of the proposed eigensolver. While
both methods yield similar final (i.e., highest possible) accuracies, the proposed method requires a significantly smaller
number of contour points. Hence, less BE matrices need to be explicitly assembled. Moreover, in all our test cases, the
proposed method yielded monotonous convergence without inducing spurious eigenvalues inside the contour. Finally,
the application to a bell in interaction with air has shown that accurate modal radiation damping values are obtained
despite the very weak acoustic loading.
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Abstract – A hybrid experimental-numerical approach is proposed for assessing acoustic radiation damping –

a major energy dissipating mechanism in lightweight structures. The vibrational behavior is characterized by
distributed mobility measurements using laser Doppler vibrometry allowing to realistically capture the mechan-
ical behavior of the structure under test. The experimentally obtained matrix of mobilities are coupled to a
boundary element model to evaluate the radiated sound power numerically. Thereby, acoustic measurements
and associated low frequency limitations are avoided, which results in two salient features of the proposed hy-
brid approach: modeling of diffuse incident acoustic fields and consideration of acoustic short-circuiting induced
by slits and gaps. These features contribute to an accurate and excitation-dependent estimation of acoustic
radiation damping in the low frequency range. The proposed hybrid approach is applied to flat and C-shaped
aluminum sandwich panels mounted onto a tub-shaped foundation. The results are compared to those obtained
by a previously reported numerical method.

Keywords: Boundary element method, Acoustic radiation damping, Laser Doppler vibrometry

1 Introduction

Composite structures such as honeycomb sandwich pan-
els exhibit excellent elastic properties but only low material
inherent damping. The latter issue is addressed extensively
by material scientists and engineers with a view to mitigate
unwanted vibrations by means of passive and active damp-
ing devices. Clearly, an effective design of such damping
treatments requires accurate quantification of damping in
the first place [1]. In fact, accurate quantification of differ-
ent damping contributions is an essential aspect in the
design process of lightweight structures. An important
and yet often neglected damping contribution in light-
weight structures is known as acoustic radiation damping
[2]. It refers to the energy dissipation of vibrating structures
due to far-field sound radiation.

The earliest and perhaps most straight forward
approach for assessing radiation damping is based on in-
vacuo reference measurements [3, 4]. Clarkson and Brown
deduced damping values of a honeycomb sandwich panel
by relating the input power of a shaker to the average vibra-
tional velocity [3]. By conducting the same experiments in
air and in-vacuo, they were able to distinguish between

acoustic radiation damping and material inherent damping
of the panel. Zhou and Crocker followed a different
approach and determined radiation damping of sandwich
panels clamped in a window between two reverberation
rooms by measuring both the surface velocity and the sound
pressure in the receiving room [5].

In contrast to numerical modeling, such experiments
allow to properly capture the elastic behavior of structures
involving complex material configurations. This is an
important aspect since radiation damping is particularly
relevant in lightweight structures that are designed to
achieve a high ratio of bending stiffness to mass. However,
in the majority of the cases, experimental set-ups imply sig-
nificant limitations on the specimen’s geometry and also on
the boundary conditions, which make in-situ measurements
difficult. For example, a vacuum chamber needs to be large
enough to accommodate the specimen, and it can be cum-
bersome to access all surfaces by laser Doppler vibrometry
(LDV) in order to measure the vibration levels. Moreover,
excitation by incident acoustic fields is not possible,
although radiation damping strongly depends on the type
of excitation at low frequencies.

Similar restrictions hold for sound transmission facili-
ties, which limit the geometry of the specimen to the shape
of the window cut-out between the two rooms. Moreover,*Corresponding author: suhaib.baydoun@tum.de
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the clamping inside the window hardly resembles the actual
mounting condition, which can falsify the dynamic response
at low frequencies. Indeed, acoustic measurements are gen-
erally subject to large uncertainties in the low frequency
range: Measurements inside reverberation rooms are based
on the assumption of diffuse acoustic fields, which become
invalid due to the modal behavior of the room [6], and
the effectiveness of absorbent treatments in anechoic cham-
bers is also limited below the cut-off frequency [7].

Besides experimental approaches, radiation damping
can be estimated numerically based on a vibroacoustic sim-
ulation model. In our previous work, the finite (FEM) and
the boundary element method (BEM) were combined with
a nonlinear eigensolver in order to derive radiation damping
values corresponding to certain structural modes [8]. The
main advantage of that numerical approach compared to
the above mentioned experimental methods is that the
acoustic conditions and associated effects such as scattering
and short-circuiting can be accurately modeled even at low
frequencies. Further, the coupled FEM–BEM approach
allows to capture the modal behavior of the structure and
thus the excitation dependence of radiation damping. How-
ever, the corresponding eigenfrequencies depend on the
actual boundary conditions, which can hardly be repro-
duced in a simulation. Usually, idealized boundary condi-
tions are employed in finite element models such as
clamped or simply supported. Often, it is difficult to tell
which of these conditions resembles the actual configura-
tion, and indeed the truth in many cases lies somewhere
in between. Inaccurately modeled boundary conditions
can subject acoustic quantities to large errors when sound
radiation is mainly driven by edge and corner motions.
Moreover, prestress occurring in assembled components
can have implications on sound radiation as well, but is dif-
ficult to accurately model in simulations.

The uncertainty associated with boundary conditions,
excitation and acoustic measurements in the low frequency
range is illustrated in Figure 1, which shows radiation
damping values of a foam-filled honeycomb sandwich panel.
The experimental values are taken from the literature [5]
and were obtained by the authors in a window test rig
between two reverberation rooms using shaker excitation.
Figure 1 compares those experimental values to theoretical
estimates [9, 10] based on principles of power flow as well as
to radiation damping values computed by the FEM–BEM
approach assuming an infinitely extended acoustic baffle
and five randomly positioned point forces as excitation.
All three methods show good agreement to each other in
the higher frequency range above coincidence, which occurs
around 780 Hz. However, we also observe significant devia-
tions in the lower frequency range where the modes of the
panel are widely separated and radiation damping strongly
depends on the excitation. The deviation between the
experimental and the numerical results are likely attributed
to the effect of boundary conditions, the excitation and also
to the low modal density of the reverberation rooms. Our
conclusion is that reliable methods for predicting radiation
damping in the low frequency range are currently not
available.

The uncertainties related to boundary conditions, exci-
tation and diffuse acoustic fields in the low frequency range
are widely addressed in literature – not exactly with regard
to acoustic radiation damping but in the context of sound
transmission loss [11–14]. Different to radiation damping,
which is a generally relevant aspect in lightly damped struc-
tures, sound transmission analysis only applies to partitions
between sending and receiving rooms and does not require
measuring the structural response.

Usually, researchers focus on either experimental or
numerical methods and then use the respectively other
one for the purpose of verification. However, as discussed
above, both approaches exhibit shortcomings that are of
different origins. An intuitive and yet often overlooked
alternative is to combine the advantages of numerical and
experimental methods in a hybrid approach. Examples in
the literature include fitting the equations of motions with
respect to measured transfer functions [15] and experimen-
tal-numerical evaluation of sound radiation of a boat hull
[16]. Shephard et al. combined an experimental modal anal-
ysis with a lumped parameter model for the representation
of underwater sound radiation [17]. In this way, the authors
were able to numerically include the effect of added mass
after performing the measurements in air. A similar
approach has been studied in the context of active control
by using simulated measurement data and the boundary
element method [18]. More recently, Roozen et al. [19] char-
acterized sound transmission by means of mobility measure-
ments and the Rayleigh integral method – an approach that
may be categorized as vibration-based sound power mea-
surement [20, 21].

In this work, we propose a combined experimental-
numerical procedure, which extends the currently available
methods for assessing radiation damping to the low fre-
quency range. On the one hand, we characterize the dynam-
ical behavior of complex materials by an experimental
method – ideally even in the actual mounting condition.
On the other hand, we avoid acoustic measurements and
associated limitations and instead, employ the boundary
element method (BEM) [22] to characterize the acoustic

Figure 1. Radiation loss factors of a sandwich panel with foam-
filled honeycomb core. Comparison of experimental values taken
from the literature [5] to theoretical estimates as well as to
numerical results obtained by a FEM–BEM approach.
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field. For our purpose of evaluating damping by far-field
sound radiation, BEM is particularly appealing because it
does not require special treatments for modeling unbounded
acoustic domains. Moreover, in comparison to analytical
evaluation of sound radiation [19], the use of BEM allows
to consider complex geometries as well as acoustic short cir-
cuiting induced by slits and gaps. The latter plays a signif-
icant role in the sound insulation and radiation at low
frequencies [23, 24], which will be demonstrated later in this
paper. The proposed hybrid framework contributes to an
accurate low-frequency assessment of acoustic radiation
damping covering the following aspects:

� Firstly, the dynamic response is evaluated by taking
the actual mounting condition into account, thus
avoiding idealized mechanical boundary conditions.

� Secondly, the actual acoustic field and associated
effects such as scattering and short-circuiting are con-
sidered without the need of acoustic measurement
facilities.

� Lastly, radiation damping can be evaluated under any
excitation including diffuse incident fields.

The paper is organized as follows. Section 2 describes
the experimental-numerical framework and provides details
regarding the coupling, the modeling of diffuse incident
fields and the evaluation of radiation damping. The proce-
dure is applied in Sections 3 and 4 to flat and curved hon-
eycomb sandwich panels. The influences of excitation and
acoustic conditions on radiation damping in the low fre-
quency range are investigated and the results are compared
to those obtained by a previously reported numerical
method. The paper concludes in Section 5 with a summary
of the main findings and a discussion of future applications
and studies.

2 Combined experimental-numerical
evaluation of vibroacoustic responses

Despite the above-discussed drawbacks at low frequen-
cies, experimental assessment of radiation damping offers
several advantages compared to a purely numerical assess-
ment. The behavior of complex materials is properly taken
into account, and when the measurements are conducted in
the actual mounting condition, even the effect of the
mechanical boundary conditions can be realistically
addressed. In this work, we exploit these advantages and
characterize the dynamical behavior of structures by an
experimental procedure. The structural response is given by

vr ¼ YðxÞ f s þ f i½ �; ð1Þ
in which YðxÞ 2 Cnr�ne is the experimentally determined
matrix of mobilities relating the force excitation to the
surface velocity. The angular frequency is defined as
x = 2pf. We consider the general case in which the vector
vr 2 Cnr contains three velocity degrees of freedom (DOF)
for each node on the response grid – that is one velocity
DOF for each spatial dimension. The same applies to
the excitation vector in square brackets on the right-hand

side of equation (1), which is defined on a (possibly differ-
ent) excitation grid. It comprises structural excitation
f s 2 Cne as well as excitation f i 2 Cne by an incident
acoustic field.

The acoustic field, which comprises incident and scat-
tered sound waves, is described by the Helmholtz equation
and evaluated numerically, thus avoiding the use of acous-
tic measurement facilities and associated limitations. In the
context of this work, mainly unbounded acoustic domains
are of interest, since acoustic radiation damping is associ-
ated with far-field sound radiation. In this regard, BEM
[22] is particularly well-suited for solving the Helmholtz
equation, since it does not require special treatments for
truncating the far-field sound radiation. Reformulation of
the Helmholtz equation by the Kirchhoff integral theorem
and subsequent discretization by direct collocation BEM
yields the linear system of equations [25]

Hp ¼ G vf � vi
f

� �þHpi: ð2Þ

The vectors p 2 Cnf and vf 2 Cnf contain the complete
sound pressure and fluid particle velocities, i.e., the sum
of the respective incident and scattered fields. The coeffi-
cient matrices H and G are fully populated and frequency
dependent. Acoustic sources are considered by the inci-
dent sound pressure pi and the corresponding incident
particle velocity vi

f .
The fluid loading on the structure can be expressed by

the coupling condition

f f ¼ Cefp; ð3Þ
where the coupling matrix Cef 2 Rne�nf relates the acous-
tic quantities on the BE mesh to the excitation grid. Its
computation is presented in Section 2.1. Substituting
equation (2) into equation (3) yields

f f ¼ CefH�1Gvf þCef pi �H�1Gvi
f

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

f i

: ð4Þ

The first term on the right-hand side of equation (4) can
be interpreted as a reaction force acting on the structure
by virtue of the acoustic field. It includes the effects of
radiation damping and added mass, which are included
in the measured mobility matrix Y(x) in equation (1).
The second term on the right-hand side is the excitation
force due to the incident acoustic field. It equals the force
vector fi on the right-hand side of equation (1). Once the
structural velocity vr is evaluated for a given excitation,
the fluid particle velocity is obtained by the continuity
condition

vf ¼ Cfrvr; ð5Þ
where the matrix Cfr 2 Rnf�nr establishes the coupling
between the experimental response grid and the BE
nodes. Finally, the sound pressure field can be computed
via equation (2).

The proposed hybrid procedure can be incorporated
into the design process once subcomponents or prototypes
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are available. For example, in-situ mobility measurements
could be conducted on a prototype hull of a transport vehi-
cle, and the results could in turn be used to asses the acous-
tic loading transmitted to the inside. Once the mobility
matrix Y(x) is determined, the acoustic response to differ-
ent excitations can be computed without repeating the
experiments. As we will see in Section 2.2, even the response
to diffuse incident fields can be computed in the low fre-
quency range without need of special facilities.

But of course, these advantages come at the cost of
experimentally determining the mobility matrix Y(x) of a
possibly three-dimensional, large scale structure. While
the associated effort may have been prohibitive a decade
ago, nowadays it becomes manageable due to the arising
developments and automation of LDV. The excitation in
the measurements is carried out by means of an automated
modal hammer in this work. While it is indeed cumbersome
to re-position the hammer and to repeat the LDV scan,
oftentimes one is only interested in a local excitation, e.g.,
in an excitation by a point or line force. In these cases, it
is not necessary to excite the whole surface of the structure,
since only certain columns of Y(x) are needed. Moreover,
symmetry properties can also be exploited to reduce the
measurement effort in many applications [19]. Finally, we
note that the proposed hybrid procedure is predominantly
a low frequency method, and hence, coarse response and
excitation grids are generally sufficient. Details on the
experimental procedure for determining the mobility matrix
Y(x) are reported for the test cases in Sections 3.2 and 4.

2.1 Mesh coupling

The response and excitation grids need to be coupled to
the BE mesh in order to exchange field quantities between
the subdomains, see equations (3) and (5). The continuity,
for example between the surface velocity~vr of the structure
and the fluid particle velocity vf, can be expressed by the
scalar equation

~n �~vr ¼ vf ; ð6Þ
where~n is the normal vector on the surface pointing away
from the acoustic domain. In the discrete setting, equation
(6) can only be satisfied when the response points in the
mobility measurement coincide with the interpolation
nodes of the acoustic BE mesh. However, there are several
reasons that support the use of nonconforming BE
meshes: The appropriate resolution of the response grid
in the experiment can be well anticipated based on the
expected number of bending waves of the occurring struc-
tural modes. On the other hand, regarding BEM, there is
no meshing guideline available in the context of coupled
structural acoustic problems and hence, convergence stud-
ies are necessary in order to judge the appropriateness of a
given BE discretization. Moreover, when coincidence
occurs in the frequency range of interest, the acoustic
mesh needs to be finer than the structural grid. A gradual
refinement of a BE mesh in this context is computation-
ally affordable in most cases. In contrast, repeating the
mobility measurements on a finer grid is excessively

time-consuming if not prohibitive. The use of non-con-
forming meshes also allows the choice of different interpo-
lation functions in the BE model.

When using non-conforming BE meshes, the continuity
condition in equation (6) needs to be reformulated in a
weak sense, i.e. [26]Z

C
/~n �~vrdC ¼

Z
C
/vfdC; ð7Þ

in which C denotes the submerged surface. Following a
Bubnov–Galerkin approach, the test function / is chosen
as the interpolation function of the fluid domain. After
discretization, equation (7) can be written in matrix fromZ

C
NT

f n
TNrdCvr ¼

Z
C
NT

f NfdCvf ; ð8Þ

where Nf and Nr contain the interpolation functions asso-
ciated with the BE mesh and the response grid in the
experiment, respectively. Rearranging equation (8) yields
the coupling matrix introduced in (5), i.e. [27]

Cfr ¼
Z
C
NT

f NfdC
� ��1 Z

C
NT

f n
TNrdC: ð9Þ

Note that the matrix in square brackets is also known as
the boundary mass matrix H. Similar derivations are pos-
sible for the coupling matrix Cef, which was introduced in
equation (3) to relate field quantities in the BE domain to
the excitation grid.

The response and excitation grids used in the mobility
measurements are defined respectively by subdividing the
surface of the structure into quadrilateral elements. Both,
response and excitation elements have shape functions
which approximate the geometry of the surface. The nodes
associated with those shape functions are denoted as geo-
metrical nodes and they are located on the edges and
boundaries of the element, i.e. neighboring elements share
common geometrical nodes. Further, the above introduced
interpolation functions contained inNr (and similarly those
in Ne for the excitation grid) establish a spatial approxima-
tion of field quantities. The associated nodes are called
interpolation nodes. In the experiment, the structure under
test needs to be excited at interpolation nodes of the excita-
tion grid and the response needs to be measured at the
interpolation nodes of the response grid. In order to avoid
excitation and measurements on the edges and corners of
the structure, interpolation nodes are placed inside the ele-
ments leading to discontinuous approximation of field
quantities across element boundaries. In this work, quadri-
lateral elements with eight-noded, bi-quadratic geometry
approximation and constant interpolation functions are
used for the excitation and response grids. For the acoustic
BE mesh, quadrilateral elements with nine-noded, bi-quad-
ratic geometry approximation and discontinuous, bi-linear
interpolation functions are employed. These elements are
shown in Figure 2.

The integral in equation (9) cannot be evaluated ele-
ment-wise, since the interpolation functions of the response
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grid are not continuous across acoustic boundary elements
and vice versa. This issue is overcome by a Mortar method
[28], which works as follows: First, the acoustic boundary
elements are defined as the master elements, and the ele-
ments on the response grid are defined as the slave ele-
ments, respectively, and pairs of overlapping elements are
identified by a search algorithm. Then, an auxiliary projec-
tion plane and a corresponding normal vector are defined
based on the slave element. The master element is then pro-
jected onto that plane, the resulting intersection area is sub-
divided into triangular elements, and integration is
performed over them. The procedure is schematically
depicted in Figure 2.

2.2 Diffuse field excitation

One of the main advantages of the proposed hybrid
approach is the capability to experimentally determine
the response to diffuse acoustic fields without unwanted
effects associated with the measurement room. Usually,
experimental characterization of structures subject to dif-
fuse field excitation are conducted in reverberation rooms.
These rooms need to be large enough in order to avoid
modal behavior of the incident acoustic field, which is often
an issue in the low frequency range. In contrast, application
of incident acoustic fields in BEM only relies on accurate
modeling of the scatterer’s geometry.

There are three different approaches available to numer-
ically predict the response to a diffuse acoustic field [29, 30]:
(1) excitation by a set of random plane waves, (2) stochastic
analysis based on power spectral densities (PSD), and (3)
actual modeling of a large-enough reverberant room. Model-
ing a cavity that is large-enough to admit a diffuse sound
field is computationally prohibitive when using a conven-
tional BEM formulation. The approach based on PSD
allows analytical modeling of the diffuse field but requires
singular value decomposition and truncation of the PSD
matrix in order to avoid inversion of fully populated BE
matrices. But even with truncation of the PSD matrix, the
plane wave approach, which was originally proposed by
Rafaely [31], has been shown to be more efficient [29] and
is thus followed here. The energy quantity of interest is
computed as the average value among multiple simulations.

In each of those simulations, the structure is excited by a
combination of N incident plane waves. The incident sound
pressure pið~xÞ and corresponding particle velocity vifð~xÞ at
the interpolation node with the coordinate vector ~x are
obtained from

pi ~xð Þ ¼ 1ffiffiffiffi
N

p
XI

i¼1

XJ

j¼1

pi;je
i ~ki;j�~xþhi;jð Þ; and ð10Þ

vif ~xð Þ ¼ 1ffiffiffiffi
N

p
XI

i¼1

XJ

j¼1

pi;j
qc

~n �~ki;jei ~ki;j�~xþhi;jð Þ: ð11Þ

The plane waves arrive from spatially uniformly distributed
directions and are arranged on a semi-sphere. The corre-
sponding wave vectors are given as

~ki;j ¼ x
c

cos ai sin bj; sin ai sin bj; cos bj

� 	T
; ð12Þ

with ai = ip/I and bj = 2jp/J. Further, I is the integer
value of

ffiffiffiffiffiffiffiffiffiffiffiffi
Np=4

p
and J is the integer value of 2Isinai. Each

of the N plane waves have a normally distributed ampli-
tude p(i,j) and a random phase h(i,j).

2.3 Hybrid evaluation of radiation damping

The extent of radiation damping can be quantified
either by modal loss factors, which are properties of the
structural acoustic system, or by excitation dependent loss
factors, which are a result of a harmonic response analysis
[8]. Once the vibroacoustic response is evaluated by equa-
tions (1)–(5), the excitation dependent radiation loss factor
for a specific frequency point is obtained via [32]

gr ¼
P

xEtotj j : ð13Þ

The time-averaged radiated sound power P can be com-
puted from the acoustic quantities via

P ¼ 1
2
Re pTHv�

f

� �
; ð14Þ

�n

Figure 2. Schematic of the mortar projection of a master acoustic element (solid, red) onto the auxiliary plane (dotted) defined by an
overlapping slave structural element (dashed, blue) and subsequent definition of triangular integration cells. Solid circles represent
geometrical nodes and hollow squares represent interpolation nodes.

S.K. Baydoun et al.: Acta Acustica 2022, 6, 44 5



where (�)* denotes the conjugate complex and Re(�) refers
to the real part of a complex quantity. The definition of
the boundary mass matrix H was introduced in equation
(9) and the paragraph thereafter. Note that the imaginary
part of the complex sound power corresponds to near-field
sound radiation, which has a mass-like effect on the struc-
ture and hence, does not dissipate energy.

For time-harmonic problems, the time-averaged total
vibrational energy Etot in equation (13) equals twice the
time-averaged kinetic energy or alternatively, twice the
time-averaged potential energy. The latter requires knowl-
edge of the (static) stiffness matrix of the structure under
test, which can not be estimated by mobility measurements.
Instead, in the proposed hybrid procedure, we will compute
the time-averaged total vibrational energy based on the
kinetic energy of the structural acoustic system, i.e.

Etot ¼ 1
2
vT
r Mr � i

x
CrfH�1GCfr


 �
v�
r ; ð15Þ

in which the mass matrix Mr of the structure under test is
set up by estimating the structural mass contribution of
each element on the response grid. For structures with
uniform thickness and mass density, the mass contribu-
tion of each element is simply its area percentage times
the total mass of the structure. Equation (15) also
includes energy contributions of the fluid field, where
the imaginary part ofH�1G corresponds to the additional
mass effect of the fluid, while the real part corresponds to
the energy dissipated by sound radiation. A more elabo-
rate discussion of equation (15) and the alternative way
of evaluating the total energy are given in Appendix A.

3 Assessment of radiation damping of
rectangular honeycomb sandwich panels

3.1 Set-up of the demonstrator

The set-up of the demonstrator is shown in Figure 3. A
flat aluminum honeycomb sandwich panel is mounted onto
a tub-shaped concrete foundation. The foundation has a
square cross section of 0.8 � 0.8 m2, a height of 0.4 m
and a vertically tapered wall thickness of around 0.06–
0.1 m. The short edges of the rectangular panel are glued
into aluminum F-profiles, which are then screwed onto
the upper edge of the foundation. The long edges of the
panel are not fixed and hence permit air flow between the
two sides of the panel. The free length of the panel is
approximately 0.750 m whereas two panel widths are stud-
ied. The studied panels are denoted with letters A and B,
and their dimensions are given in Table 1. The material
properties of aluminum and the honeycomb core are pro-
vided in Table 2. The concrete foundation is assumed to
be rigid in this work.

3.2 Mobility measurements

The mobility matrix is determined by using an auto-
mated modal hammer (NV Tech SAM1 [33]), which allows
to measure the exerted force by means of a force cell in the

hammer tip. The device is placed inside the concrete foun-
dation using a flexible measurement stand allowing to posi-
tion the hammer tip at the nodes of the excitation grids. A
uniform excitation grid of 6 � 4 (ne = 24) is used for panel
A, and likewise 6 � 2 (ne = 12) for panel B in order to
derive the respective mobility matrices.

The velocity response is measured by means of scanning
LDV using a single head Polytec PSV 500 system. The PSV
500 includes a camera for geometry alignment so that Euler
compensation is applied to correct for the angle of laser
beam incidence. Regarding the resolution of response grids,
preceding (in-vacuo) modal analyses of the panels have
been conducted with FEM in order to estimate the number
of bending waves in the considered frequency range up to
625 Hz. Then, the response grids are defined such that a
minimum of three elements capture one bending wave
length. This corresponds to a response grid of 8 � 6
(nr = 48) for panel A, and likewise 8 � 4 (nr = 32) for panel
B. The resulting mobility matrices Y(x) are of dimension
48� 24 and 32� 12, respectively. Reflective tape is applied
to the surfaces of the panels in order to improve the signal-
to-noise ratio, see Figure 3. The velocity response is only
measured on the top side of the panel and hence, the mobil-
ity data needs to be copied to the bottom side in order to
couple the mobility matrix to the three-dimensional BE
mesh. This approach is valid as long as the response of
the panel only involves anti-symmetric bending motion,
i.e. thickness deformation of the core does not occur, which
is a reasonable assumption in the low frequency range.

The mobility matrix Y(x) is obtained by relating the
measured velocities at the response nodes to the measured
force at the excitations nodes. The corresponding transfer
functions are evaluated based on a H1-estimator in the fre-
quency range up to 625 Hz with a resolution of approxi-
mately 0.4 Hz. Rectangular window functions are applied

Figure 3. Set-up of the demonstrator including an aluminum
honeycomb sandwich panel mounted onto a concrete founda-
tion. The black arrow indicates the location of the point force
introduced in Section 3.4.
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to the velocity as well as to the force signals in order to per-
form a fast Fourier transformation (FFT). The measure-
ment time is large enough so that the signals die out
within the window. All measurements are repeated ten
times and complex frequency domain averaging is used to
reduce the noise that is not phase correlated.

Although the mobility matrix Y(x) is subsequently
coupled to different BE models representing the acoustic
conditions (1)–(3), the actual measurement of Y(x) is con-
ducted only once in a standard laboratory without absor-
bent treatments on the walls. This is a convenient choice
and neglects the influence of the acoustic field on the struc-
tural response. This assumption will be justified later in
Section 3.5, in which fully coupled FEM–BEM simulations
are presented for the purpose of verification.

3.3 Boundary element models

As described in Section 2.1, the acoustic field around the
panel is discretized by quadrilateral boundary elements
with discontinuous bilinear interpolation functions. Uni-
formmeshes with 36� 24 elements along the in-plane direc-
tions of panel A, and 48 � 12 elements for panel B are
employed. Moreover, the following three models for the
acoustic domain are used in this work to study the effect
of acoustic boundary conditions:

� Condition (1): The panel is assumed to be confined in
an infinitely large acoustic baffle that prohibits flow
between its two sides. Two independent acoustic sub-
domains on each side are modeled using a halfspace
formulation with a modified Green’s function [34].
This condition resembles the situation in a window

test rig. The corresponding BE model is schematically
illustrated in Figure 4.

� Condition (2): The panel is assumed to be unbaffled
and is situated in an acoustic full space. A single BE
mesh with a closed surface is used. This condition
resembles the situation in an anechoic chamber.

� Condition (3): The concrete foundation is additionally
modeled. The sound waves radiated from the panel
are scattered on the rigid surfaces of the foundation.
A corresponding BE mesh of the foundation accom-
modating panel A is shown in Figure 8.

The numerals 1–3 after the alphabetical designation
denote the considered configuration – e.g. panel A confined
in a baffle will be referred to as panel A-1 in what follows.

3.4 Results obtained by hybrid procedure

This section studies radiation damping of the panels
using the hybrid procedure described in Section 2. The focus
is set on the influences of acoustic condition and excitation
on radiation damping. The panels are excited by point
forces, monopole sources and by diffuse incident fields.
The point forces with magnitude of Fz = 1 N are located
at (x= 0.31 m, y= 0.06 m, z= h/2) of panel A, and likewise
at (x = 0.31 m, y = 0.05 m, z = h/2) of panel B. The coor-
dinate system is defined such that the x-axis points in the
direction of the long edges and the xy-plane coincides with
the midplane of the panel, see Figure 3. The monopole
sources are located at (x = 1 m, y = 0 m, z = 0.3 m).
The responses to diffuse incident fields are computed as
the mean value of 300 sample simulations as described in
Section 2.2. The excitation in each simulation is given by
the summation of N = 1145 incident plane waves with nor-
mally distributed amplitudes with a mean value of 1 Pa and
random phases. The convergence of the response to diffuse
field excitation with respect to the number of sample simu-
lations will be analyzed later in this section.

Table 2. Material properties of aluminum face sheets and
aluminum honeycomb core.

Aluminum face sheets

Density qf 2690 kg/m3

Young’s modulus E 70 GPa
Poisson’s ratio ma 0.3

Aluminum honeycomb core

Density qc 135 kg/m3

Young’s modulus Ex, Ey 10 MPa*

Young’s modulus Ez 360 MPa
Shear modulus Gxy 1 MPa*

Shear modulus Gyz 280 MPa
Shear modulus Gxz 140 MPa
Poisson’s ratio mc 0.01*

* Values that are not explicitly given by the manufacturer are

Figure 4. Cross-sectional schematic of a baffled panel modeled
by two acoustic half-space BE meshes.

Table 1. Dimensions of aluminum honeycomb sandwich panels.

Panel A Panel B

Face sheet
thickness, front

tf 0.5 mm 0.5 mm

Face sheet
thickness, back

tb 0.5 mm 0.5 mm

Core thickness h 3 mm 4.5 mm
Dimensions lx � ly 0.752 � 0.5 m2 0.748 � 0.2 m2
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Figure 5 shows the experimentally determined point
mobility of panel A. The corresponding radiated sound
power and total power are plotted in Figure 6 for conditions
(1)–(3). Those power quantities are computed using equa-
tions (14) and (15), and are later required to evaluate the
extent of radiation damping. When comparing panels A-1
and A-2, we notice a considerable difference in radiated
sound power in the low frequency range. This can be
explained by the acoustic short circuiting occurring in panel
A-2 (i.e. the panel with unbaffled condition), which signifi-
cantly reduces radiation efficiency. The difference in radi-
ated sound power narrows with increasing frequency. The
radiated sound power of panel A-3 (i.e. the panel with foun-
dation) lies in between the curves of panels A-1 and A-2 for
the most part of the considered frequency range, expect
when cavity resonances occur inside the foundation. At
the respective resonance frequencies, the radiated sound
power of panel A-3 exhibits noticeable peaks that are
marked with vertical dashed gray lines in Figure 6. The
total power of the three panels shows only marginal differ-
ences, which arise due to the different BE matrices in the
computation of the kinetic energy (cf. Eq. (15)). The struc-
tural velocity is the same for all three panels since the
mobility measurement is only conducted once. A similar
analysis based on a fully coupled FEM–BEM procedure will
be presented in Section 3.5.

The resulting radiation loss factors are shown in Figure 7
for panels A and B in conditions (1)–(3). Sharp minima in
the loss factors occur at the eigenfrequencies that are asso-
ciated with bending modes in which sound pressure cancel-
lation occurs between neighboring half-cells. This
cancellation decreases in effect with increasing frequency.
The baffled panels (A-2 and B-2) exhibit high radiation
damping already in the low frequency range due to the first
bending mode that radiates sound like a piston without
cancellation. In contrast, the unbaffled panels (A-1 and
B-1) show much lower damping values due to the sound
pressure cancellation at the edges, as already discussed in
the context of Figure 6. As radiation efficiency increases
with frequency, the curves converge to each other. Distinct
maxima in radiation damping occur around the cavity res-
onance frequencies of panel A-3. They are related to the
sound power peaks encountered in Figure 6. Note that
panel B is only 200 mm wide and hence do not work as a
closure of the tub-shaped foundation, which explains why
this panel does not exhibit cavity resonances.

While the analysis in Figure 7 is limited to point force
excitation, the main advantage of the proposed hybrid pro-
cedure is the capability to model excitation by incident
acoustic fields. The procedure is illustrated in Figure 8 for
panel A-3 at 145 Hz. First, an incident field with sound
pressure pi is created and the resulting excitation force fi
is computed by BEM via equation (4). Then, the structural
response is evaluated via equation (1) using the experimen-
tal mobility matrix. Subsequent projection onto the BE
mesh by equation (5) yields the fluid particle velocity.
The latter only takes values on the panel, since the founda-
tion is assumed to be rigid, see middle subplot in Figure 8.
Finally, the complete sound pressure field p is computed by

BEM and the radiation loss factor can be evaluated in a
post processing step.

The radiation loss factors for diffuse field excitation are
obtained by constructing multiple realizations of incident
acoustic fields such as the one shown on the left subplot
in Figure 8. The verification of this averaging approach is
presented in Figure 9, which plots the mean value for the
radiation loss factor of panel A-3 at 145 Hz with increasing
number of incident field realizations. Each additional real-
ization corresponds to a simulation with N = 1145 random
incident plane waves. We notice that a number of 300 real-
izations is a reasonable compromise between computational
effort and accuracy. This also holds for other frequency
points and test cases in this work.

Figure 10 studies the excitation dependence of radiation
damping. Loss factors for excitations by point forces, mono-
pole sources and diffuse incident fields are shown. We notice
significantly higher radiation damping when the panel is
subject to incident acoustic fields. This can be explained
by the spatially uniform distribution of the incident pres-
sure field in the low frequency range that almost acts like
a plane wave excitation. In frequency regions apart from
the eigenfrequencies, this leads to a more uniform sound
pressure distribution on the panel than is achieved by a
point force excitation. At the eigenfrequencies however,
radiation loss factors are expected to be independent of
the excitation when the respective mode is (exclusively)
excited. In that case, they are equal to the corresponding
modal radiation loss factor [8]. This aspect is illustrated
on the right subplot of Figure 10, in which all the structural
resonance frequencies of panel B are marked with vertical
dashed gray lines. We can observe that the loss factors
for the three different types of excitation coincide at these
frequencies. Note that a similar behavior is expected from
panel A, but exceptions occur when the frequency resolu-
tion is too coarse, or when the respective mode is not exclu-
sively excited.

The left subplot of Figure 10 shows extremely high radi-
ation loss factors occurring around the cavity resonance fre-
quencies of panel A-3. At 537 Hz, even gr = 1 is approached,
which indicates that almost all of the vibrational energy is

Figure 5. Measured point mobility of panel A at (x = 0.31 m,
y = 0.06 m, z = h/2).

S.K. Baydoun et al.: Acta Acustica 2022, 6, 448



dissipated by sound radiation. This is a surprising result
and requires further investigation in the future. It might
be even possible to exploit the effect of (higher order) cavity
resonances in order to deliberately dissipate vibrational
energy by radiation damping.

3.5 Comparison to results obtained by coupled FEM–

BEM procedure

The panels are now analyzed by a purely numerical
FEM–BEM approach for the purpose of verification and
comparison. The acoustic BE model is coupled to an FE
model of the sandwich panel consisting of eight-noded
quadrilateral shell elements based on the Reissner–Mindlin

theory for the representation of the face sheets and twenty-
noded hexahedral solid elements for the core. The FE
meshes of the panels comprise the same number of elements
in the in-plane directions as the respective BE meshes. The
mounting of the panels is modeled by constraining the
translational DOFs along the center line of the short edges.
Moreover, the relative displacement among the nodes on
the short edges are also constrained in order to avoid unre-
alistic local deformation of the core. The FE modeling of the
sandwich panels is schematically illustrated in Figure 11. A
hysteretic loss factor of gs = 0.01 is used in all upcoming
simulations. While this is an assumed value, we note that
structural damping has a negligible influence on radiation
damping, as long as it is light and spatially homogeneous.

Figure 6. Radiated sound power and power corresponding to total vibrational energy of point-excited panel A evaluated by hybrid
procedure. Vertical dashed gray lines indicate cavity resonances occurring in panel A-3.

Figure 7. Radiation loss factors evaluated by hybrid procedure for point force excitation. Vertical dashed gray lines indicate cavity
resonances occurring in panel A-3.
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Figure 12 shows the power quantities of panel A in con-
ditions (1)–(3) subject to point force excitation at
(x= 0.31 m, y= 0.06 m, z= h/2). The results are computed
by a fully coupled FEM–BEM procedure and are largely
similar to the ones in Figure 6, which were obtained by
the hybrid procedure. The only difference is that the
FEM–BEM approach allows to include the reaction force
due to the acoustic response and thus, capture the effect of
acoustic conditions on the total vibrational energy. (Recall
that the structural velocity was the same for all three acous-
tic conditions in the hybrid procedure, since the mobility
measurement was only conducted once.) However, despite
the mutual structural acoustic coupling, we only notice mar-
ginal differences in the total vibrational energy occurring in
the vicinity of the resonance peaks, which are slightly shifted
and rounded at higher frequencies due to the structural and
acoustic damping contributions. This finding justifies that
the mobilitymeasurements reported in Section 3.2 were only
conducted once per panel in a standard laboratory without
absorbent treatments on the walls.

Figure 13 shows a comparison of diffuse field radiation
loss factors obtained by the hybrid and the FEM–BEM pro-
cedure. We notice a good agreement across the whole fre-
quency range for both panels. For panel B, even the
resonance frequencies match the numerically predicted ones
well with deviations ranging between 5% and 25%. This
indicates that the simply supported boundary conditions
in the FE model resembles the actual mounting condition
with acceptable accuracy (cf. Fig. 3). Note that neither
material properties nor the boundary conditions were
“tuned” in the FE model in order to match the experimental
results.

4 Assessment of radiation damping of a
C-shaped aluminum sandwich panel

The second test case involves a C-shaped sandwich
panel with a total thickness of 4 mm consisting of aluminum
face sheets and a Polyethylen core. Due to prestress

resulting from the bending of the panel during manufactur-
ing, its elastic properties are subject to uncertainties, which
makes the panel a suitable application for the proposed
hybrid procedure. The set up is shown in Figure 14. The
panel has a depth of 500 mm and a radius of 365 mm, which
corresponds to an unfolded length of 1147 mm. Aluminum
L-profiles are screwed onto the straight edges of the panel,
which are then mounted onto the concrete foundation. The
geometrical dimensions of the foundation were provided in
Section 3.1. The material parameters of the unprocessed
sandwich panel are listed in Table 3.

Only point force excitation is considered for this test
case. The point force acts in radial direction and is located
inside the C-shaped panel at an angular coordinate of
approximately 0.13 p and a distance of 100 mm from the
edge in longitudinal direction. The excitation in the mobil-
ity measurement is again realized by a modal hammer that
is positioned inside the concrete foundation (see Fig. 14).
The velocity response in radial direction is measured by
LDV, whereas the scanning process is divided into four runs

Figure 9. Mean value of the radiation loss factor of panel A-3
at 145 Hz with increasing number of random incident field
realizations.

Figure 8. Hybrid procedure for evaluating the response to incident acoustic fields. The forcing vector corresponding to an incident
acoustic field is computed by BEM. Then, the structural response is determined using the measured matrix of mobilities. Finally, the
resulting acoustic field is computed by BEM. All subsplots show the real parts of the respective complex-valued quantities.
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in order to ensure that all points on the response grid are
well accessed by the laser. In each of the runs, the LDV is
(re-)positioned and a p/4 arc of the surface is respectively
measured. The force signal in the hammer is used as refer-
ence to retrieve phase information of all responses. Based on
the anticipated structural modes, a uniform response grid of
5 points in longitudinal times 30 points in circumferential
direction is employed, resulting in a total of nr = 150
response points. The corresponding transfer functions are
computed in the frequency range up to 375 Hz with a reso-
lution of approximately 0.16 Hz. The frequency steps are
smaller as compared to the test case in Section 3.2, since
a longer measurement time was required to ensure that
the signal has died out.

Acoustic radiation damping of the C-shaped panel is
assessed by the proposed hybrid procedure. In this test case,
only radiation into a free acoustic field is considered, and
hence, the BE model only includes the panel but not the
concrete foundation. No acoustic baffles are modeled either.

The BE mesh consists of 10 elements in longitudinal times
64 elements in circumferential direction. The resulting radi-
ation loss factors are displayed in Figure 15. In addition, the
loss factors obtained by the coupled FEM–BEM approach
are also plotted. The underlying FE model of the sandwich
panel is defined similar to ones described in Section 3.5 and
comprises the same number of elements in the longitudinal
and circumferential directions as the BE mesh.

In the considered frequency range, the C-shaped panel
exhibits rather low radiation damping. The loss factors pre-
dicted by the hybrid and the purely numerical approach
agree qualitatively with each other. Both of them indicate
a gradual increase from gr = 10�5 to maximum values of
around gr = 0.003. However, we also notice significant dif-
ferences, particularly around the dips at resonance frequen-
cies. The latter are poorly predicted by the FE model, most
likely due to the inadequate assumption of simply sup-
ported boundary conditions and due to prestress resulting
from the bending of the panel during manufacturing. These
findings encourage the use the proposed hybrid procedure
for an accurate assessment of radiation damping in the
low frequency range under consideration of the actual
mounting condition and realistic material properties.

5 Summary and conclusion

A hybrid experimental-numerical approach has been
proposed for assessing acoustic radiation damping. The
transfer functions characterizing the structural mobility
are experimentally determined by means of automated
hammer excitation on a grid and scanning LDV. Given
the fact that radiation damping is particularly relevant in
complex material configurations with a high ratio of bend-
ing stiffness to mass, this approach offers the advantage of

Figure 11. Cross-sectional schematic illustrating the FE mod-
eling of a sandwich panel.

Figure 10. Radiation loss factors evaluated by hybrid procedure. Comparison among different types of excitation. Vertical dashed
gray lines indicate structural resonances in panel B-3, at which the three loss factors are expected to coincide.

S.K. Baydoun et al.: Acta Acustica 2022, 6, 44 11



avoiding intricate constitutive modeling. Moreover, mobil-
ity measurements allow consideration of the actual mount-
ing condition. The latter has a significant influence on the
participating structural modes and thus radiation damping
in the low frequency range.

While the structural behavior is characterized experi-
mentally, the acoustic response that is needed for assessing
radiation damping is computed by simulation. Thus, the
limitations associated to acoustic measurements are
avoided. The experimentally obtained matrix of mobilities
is coupled to an acoustic BE model allowing to compute
the response to diffuse acoustic fields even in the low fre-
quency range. Moreover, the actual acoustic field can be
modeled including the effect of acoustic short circuiting
due to slits and gaps.

Rectangular aluminum honeycomb panels mounted
onto a tub-shaped foundation served as demonstrator for
verifying the proposed hybrid procedure. The structural
mobilities of the panels were determined once and then cou-
pled to various BE models resembling different acoustic
conditions. The results illustrate that radiation damping
is strongly dependent on the actual acoustic condition in
the low frequency range. Moreover, using the same matrix
of mobilities, radiation loss factors for excitation by point
forces, monopole sources and diffuse incident fields were
computed. Finally, radiation loss factors of a C-shaped
panel were determined, in which the material properties
are difficult to predict due to prestress. The findings under-
line the importance to properly consider mounting condi-
tions, excitation and the actual acoustic field for an

Figure 12. Radiated sound power and power corresponding to total vibrational energy of point-excited panel A evaluated by fully
coupled FEM–BEM procedure. Vertical dashed gray lines indicate cavity resonances occurring in panel A-3.

Figure 13. Radiation loss factors for diffuse field excitation. Comparison of hybrid approach to FEM–BEM procedure.
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accurate low-frequency assessment of radiation damping.
Clearly, these demands can hardly be met by a purely
experimental approach and thus, support the use of the pro-
posed hybrid procedure.

Surprisingly high radiation loss factors were observed
around the cavity resonance frequencies indicating that a
large fraction of the vibrational energy is dissipated by
sound radiation. This result requires further investigation
in the future as it might open up new possibilities for
exploiting radiation damping in order to deliberately dissi-
pate vibrational energy.

Besides the assessment of radiation damping, this
hybrid framework could also be used for evaluating sound
transmission without the need of special facilities. This does
not only include standard sound insulation measurements
of partitions between two rooms. Further applications
include the assessment of transmitted acoustic loading to
the inside of transport vehicles. For example, space tele-
scopes are subject to heavy acoustic loading during launch
and typically carry vulnerable payloads such as cameras

and scientific instruments. Often, the primary structures
of spacecrafts also feature gaps and slits to address thermal
expansion, which can hardly be addressed by purely acous-
tic measurements.

While we have briefly compared the results of the pro-
posed hybrid approach to those obtained by a coupled
FEM–BEM approach, proper benchmarking with respect
to state-of-the-art experimental methods (e.g. ISO 3745)
is an ongoing task.
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Appendix A

Assessment of the total vibrational energy in coupled
structural acoustic systems

The discretized equation of motion of a structural acous-
tic system, in which BEM is applied to the acoustic subdo-
main, reads

K� x2Mþ ixCrfH�1GCfr

� 	
u ¼ f ; ð16Þ

where u is the unknown displacement vector, K and M
are the structural stiffness and mass matrices, and f is
the excitation force. The matrix ixCrfH�1GCfr intro-
duces additional mass and damping forces due to the
acoustic field. Structural damping is neglected in the
following.

As discussed in Section 2.3, the time-averaged total
vibrational energy Etot can be expressed as twice the
time-averaged potential energy, i.e.

Etot ¼ 1
2
uTKu� � 1

2
fHu: ð17Þ

where the first term in equation (17) corresponds to the
energy due to the elastic strain and the second term is
the work done by external forces. In view of equation
(16), it is obvious that Etot may also be written as

Etot ¼ 1
2
uT x2M� ixCrfH�1 xð ÞG xð ÞCfr

� �
u�; ð18Þ

which is equivalent to equation (15). When using e.g.
FEM for modeling of the structural vibration [8], the eval-
uation of equation (17) is more favorable, since it does not
involve fully populated BE matrices. All the necessary
quantities including the stiffness matrix K are readily
available.

However, as discussed in Section 2.3, the situation is dif-
ferent when characterizing the structural behavior by
mobility measurements. In that case, it is not possible to
estimate the (static) stiffness matrix K, and the approach
in equation (18) is more appropriate. Finally, we note that
the expressions in equations (17) and (18) are not fully
equivalent to each other when structural damping contribu-
tions are considered.

Cite this article as: Baydoun SK. Roozen NB. & Marburg S. 2022. Hybrid assessment of acoustic radiation damping combining
in-situ mobility measurements and the boundary element method. Acta Acustica, 6, 44.
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