
Dissertation

Scene Understanding and Decomposition for Synthesis
and Editing

Helisa Dhamo

Computer Aided Medical Procedures
Prof. Dr. Nassir Navab

Fakultät für Informatik
Technische Universität München

Technische Universität München
Fakultät für Informatik

Scene Understanding and Decomposition
for Synthesis and Editing

Helisa Dhamo

Vollständiger Abdruck der von der Fakultät für Informatik der Technischen Universität
München zur Erlangung einer

Doktorin der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzende(r): Prof. Dr. Rüdiger Westermann

Prüfer der Dissertation: 1. Priv.-Doz. Dr. Federico Tombari
2. Prof. Dr. Stefan Leutenegger
3. Prof. Gregory D. Hager

Die Dissertation wurde am 27.09.2021 bei der Technischen Universität München einge-
reicht und durch die Fakultät für Informatik am 19.01.2022 angenommen.

Helisa Dhamo

Scene Understanding and Decomposition for Synthesis and Editing

Dissertation, Version 1.0

Technische Universität München

Fakultät für Informatik

Lehrstuhl für Informatikanwendungen in der Medizin

Boltzmannstraße 3

85748 and Garching bei München

Abstract

Scene synthesis consists in generating data that represents a scene, often in compliance with
the constraints imposed by a given condition. Scene editing is a form of synthesis in which a
given scene is partially generated, as a result of removing, adding or changing certain parts.
View synthesis on the other hand, given a set of images of a scene from different views,
consists in generating an image of the scene from an unseen view. This can be thought of as a
form of image editing, where the content remains the same, while the view is changed.

In this dissertation, we explore deep learning approaches to tackle the challenge of scene gen-
eration in its full or partial form. In particular, we leverage different forms of compositional
representation to decompose the scene in a set of known parts. We build these representations
by understanding the scene, i.e. extracting meaningful geometric and semantic information,
such as depth, object class labels and extent, as well as interaction between objects.

First, we investigate layered depth images (LDI) to enhance the representation of a single
photo. This representation contains multiple texture and depth values per pixel, including
knowledge on the occluded pixels, which makes it suitable for view synthesis. The task of
synthesizing a layered depth image is thus generation of occluded parts, provided the visible
parts. We explore a semantic extension of an LDI, and demonstrate its superior performance
compared to the baselines, while enabling an additional object removal task.

Further, we explore a semantic representation based on scene graphs, where nodes are scene
entities (objects) while the edges denote inter-object relationships. Heretofore, scene graphs
have shown to be useful for many tasks, including conditional image generation and retrieval.
Instead, we propose the first work that leverages scene graphs for image manipulation, where
a user can make changes in an image by simply modifying the nodes and edges of a graph. To
enable changing of certain image parts, while preserving the remaining content, we enrich the
vanilla scene graph representation with neural visual features and bounding boxes obtained
per scene entity.

Finally, we want to explore a similar scene graph representation for 3D scene generation. To
circumvent the lack of appropriate data, we first create a large-scale dataset annotated with
3D semantic scene graphs and introduce the first learned method that can predict a scene
graph from a 3D scene. We further use the acquired data to train a model for simultaneous
generation and manipulation of 3D scenes using scene graphs, where we extend the graphs
with 3D bounding boxes and latent shape codes. Thereby, we demonstrate encouraging
results in the joint learning of boxes and shapes, which stimulates further research in fully-
learned scene generation models.

v

Zusammenfassung

Die Szenen Synthese besteht in der Erzeugung von Daten, die eine Szene darstellen. Dabei
werden oft verschiedene Einschränkungen auferlegt, die dabei einzuhalten sind. Szenen
Bearbeitung ist eine Form der Synthese, bei der eine gegebene Szene teilweise generiert wird,
indem bestimmte Teile entfernt, hinzugefügt oder verändert werden. Bei der Synthese von
neuen Ansichten wird hingegen ein Bild der Szene aus einem ungesehenen Blickwinkel,
mithilfe einer gegebenen Reihe von Bildern der Szene, erzeugt. Dies kann als eine Form der
Bildbearbeitung angesehen werden, bei der der Inhalt gleich bleibt, während nur die Ansicht
geändert wird.

In dieser Dissertation untersuchen wir Deep-Learning-Ansätze, um die Herausforderung der
Szene Generierung in ihrer vollständigen oder teilweisen Form anzugehen. Insbesondere
nutzen wir verschiedene Formen von kompositorischen Repräsentationen, um die Szene
in eine Reihe bekannter Teile zu zerlegen. Wir bauen diese Darstellungen auf, indem wir
zuerst versuchen die Szene zu verstehen, d. h. aussagekräftige geometrische und semantische
Informationen zu extrahieren, wie z. B. Tiefe, Objektklassen und Ausdehnung, sowie die
Interaktion zwischen Objekten.

Zunächst untersuchen wir geschichtete Tiefenbilder (LDI), um die Darstellung eines einzel-
nen Fotos zu verbessern. Dabei enthält diese Repräsentation mehrere Textur- und Tiefenwerte
pro Pixel, einschließlich des Wissens über verdeckte Pixel. Dies macht diese Darstellungen
besonders für die Synthese von Ansichten sehr geeignet. Die Aufgabe der Synthese eines
geschichteten Tiefenbildes besteht also darin, die fehlenden Teile zu generieren die von ande-
ren Objekten oder Teilen verdeckt sind. Wir erforschen eine semantische Erweiterung diese
LDI Darstellung und demonstrieren ihre Überlegenheit verglichen mit den Basismodellen.
Außerdem bietet diese Darstellung zusätzlich die Möglichkeit Objekte zu entfernen.

Darüber hinaus erforschen wir eine weitere semantische Repräsentation auf der Grundlage
von Szenengraphen, bei denen die Knoten Szenen Objekte darstellen, während die Kanten
die Beziehungen zwischen den Objekten symbolisieren. Szenengraphen haben sich bereits
als nützlich für viele Aufgaben erwiesen, einschließlich der bedingten Bilderzeugung und
-suche. Im Gegenzug schlagen wir die erste Arbeit vor, die Szenengraphen zur Bildmanipula-
tion verwendet, bei der ein Benutzer Änderungen an einem Bild vornehmen kann, indem
er einfach die Knoten und Kanten eines Graphen verändert. Damit bestimmte Teile des
Bildes verändert werden können, während der restliche Inhalt erhalten bleibt, reichern wir
die Standard-Darstellung des Szenengraphen mit neuronalen visuellen Eigenschaften und
Bounding Boxes an, die für jedes Szenen Objekt erhalten werden.

vii

Schlussendlich wollen wir eine ähnliche Szenengraph-Darstellung für die Erzeugung von
3D-Szenen erforschen. Um den Mangel an geeigneten Daten zu umgehen, erstellen wir
zunächst einen großen Datensatz, der mit semantischen 3D-Szenengraphen annotiert ist.
Des Weiteren, stellen wir die erste erlernte Methode vor, die einen Szenengraphen aus
einer 3D-Szene bestimmen kann. Die gewonnenen Daten werden auch verwendet, um ein
Modell für die gleichzeitige Erzeugung und Manipulation von 3D-Szenen mit Hilfe von
Szenengraphen zu trainieren, wobei wir die Graphen mit 3D-Bounding-Boxen und latenten
Codes zur Beschreibung der Körpereigenschaften erweitern. Dabei zeigen wir ermutigende
Ergebnisse beim gemeinsamen Lernen von 3D Bounding Boxes und Körpermerkmalen, was
zu weiteren Forschungen über vollständig gelernte Modelle zur Szene Generierung anregt.

viii

Acknowledgments

Disclaimer: This PhD has been completed without a single drop of coffee intake. Yes. I thank
all people who fueled me with their positive thoughts, support, food, art, music, and good
ideas instead.

It has been a special pleasure working with Federico Tombari, a great advisor not only for the
PhD, but also for life. Special thanks also goes to Nassir Navab, for all the fruitful discussions
and for creating an amazing group of people. I am very grateful to both for trusting me with
this opportunity in the first place and supporting me on the way. I would also like to thank
Gregory Hager for the inspiring discussions during our collaboration.

I want to express my gratitude to all my amazing colleagues: Anees, Ashkan, Azade, Ben-
jamin, Christian, David, Evin, Hendrik, Huseyin, HyunJun, Iro, Keisuke, Johanna, Mahdi,
Manuel, Maria, Mira, Niko, Shun-Cheng, Tolga, Yanyan and Yida. Thanks for the discussions,
the co-sufferings, the travels, the delicious food gatherings and the music playing nights. A
special mention goes for the most senior ones, Iro, Christian, Keisuke and David for guiding
me from the start, providing their useful tips and tricks and help me solidify my ideas. I also
thank Martina Hilla for her magic, without which the chair would not be the same.

I am particularly thankful for my internship at Facebook and the collaboration with Lei Xiao
and Feng Liu. I enjoyed our discussions and I learned a lot in those three months.

I am very grateful to my family and friends for their love and support. My mom, for showing
me through her example that hard work never goes to waste. My dad, for involving me in
his engineering projects at home since I was little, (and for proudly advertising my work on
social media). My sister Livia, for the nice drawings on my office whiteboard. My friends,
Desi, Arba, Emil, Alberto, Su, Saumitra, Erti and Aida who have always been there for me,
and cheered me up during these PhD years. I’m lucky that I shared this journey with Fabian,
my colleague slash boyfriend, who has always been understanding about my late working
hours – because he was in the office next door fighting his own battles. Thanks Fabian for
your love, ideas, and for encouraging me to keep going in the most difficult moments.

Last but not least, I want to thank whoever invented the big slide at the Informatics Faculty of
TUM. It has been a great way to replace stress with adrenaline after each paper submission.

ix

Contents

Chronological List of Authored and Co-authored Publications 1

I INTRODUCTION

1 Introduction 5
1.1 Motivation and Main Objective . 5
1.2 Contributions . 8
1.3 Structure of this Dissertation . 10
1.4 Applications . 10

2 Theory and Fundamentals 13
2.1 Computer Vision . 13

2.1.1 The pinhole camera model . 13
2.1.2 Layered depth images . 14

2.2 Deep Learning . 16
2.2.1 Brief historical overview on deep learning 16
2.2.2 Neural network fundamentals . 17
2.2.3 Convolutional neural networks (CNN) 20

2.3 Generative Models . 23
2.3.1 Variational auto-encoders . 23
2.3.2 Generative adversarial networks . 24

II COMPOSITIONAL REPRESENTATIONS FOR SYNTHESIS AND EDITING

3 Layered Depth Image Prediction 29
3.1 Related Work . 29

3.1.1 Layered representations . 29
3.1.2 View synthesis . 30
3.1.3 Monocular depth prediction . 31

3.2 Two-Layered Model (PBO) . 31
3.2.1 Dataset generation . 31
3.2.2 Joint depth map and foreground mask prediction 34
3.2.3 RGB-D background inpainting . 35
3.2.4 Implementation details . 36

3.3 Object-Driven Multi-Layer Scene Decomposition (OMLD) 37

xi

3.3.1 Data generation . 37
3.3.2 Object completion . 38
3.3.3 Layout prediction . 40
3.3.4 Image re-composition . 41
3.3.5 Implementation details . 42

3.4 Evaluation . 43
3.4.1 Conventional depth and background mask 44
3.4.2 Background inpainting . 45
3.4.3 Layered representation . 48
3.4.4 View synthesis . 52
3.4.5 Augmented diminished reality . 55

3.5 Discussion and Current Trends . 57
3.6 Conclusions and Future Work . 57

4 Scene Graphs for Generation and Manipulation 59
4.1 Related Work . 59

4.1.1 Scene understanding . 59
4.1.2 Scene generation and manipulation 60

4.2 Scene Graph Formulation . 62
4.3 Semantic Image Manipulation (SIMSG) . 64

4.3.1 Graph generation . 64
4.3.2 Training mechanism . 65
4.3.3 Graph to image model . 66
4.3.4 Loss objective . 67
4.3.5 Implementation details . 68
4.3.6 Evaluation . 69

4.4 Dataset with 3D Semantic Scene Graphs . 78
4.4.1 Nodes . 79
4.4.2 Attributes . 79
4.4.3 Relationships . 80

4.5 Scene Graph Prediction from a Point Cloud 82
4.5.1 Architecture . 82
4.5.2 Loss objective . 83
4.5.3 Implementation details . 84
4.5.4 Evaluation . 84

4.6 Graph-to-3D: 3D Scene Generation and Manipulation 87
4.6.1 Data preparation . 88
4.6.2 Encoding a 3D scene . 88
4.6.3 Shape and layout communication . 89
4.6.4 Decoding the 3D scene . 89
4.6.5 Manipulation network . 90
4.6.6 Training objectives . 91
4.6.7 Inference . 92
4.6.8 Implementation details . 92
4.6.9 Evaluation . 93

xii

4.7 Conclusions and future work . 101

5 Publications not Discussed in this Dissertation 103
5.1 Unconditional Scene Graph Generation . 103

5.1.1 Auto-regressive generation model . 103
5.1.2 Result highlights and discussion . 105

III CONCLUSION AND OUTLOOK

6 Summary and Findings 109

7 Future Work 111

IV APPENDIX

A Scene Graphs for Domain-Agnostic Scene Retrieval 115

B OMLD: Intermediate Results 119
B.1 Layout ablation . 119
B.2 Layout and object generation . 119

C 3DSSG Details and Statistics 123
C.1 Object state changes . 123
C.2 Rendered 2D graphs . 124
C.3 Statistics . 125
C.4 WordNet graphs . 129

D Graph-to-3D Details 131
D.1 Discriminator architectures . 131
D.2 Scene graph constraints . 131
D.3 Shape generation networks . 132

Bibliography 133

List of Figures 143

List of Tables 149

xiii

Chronological List of Authored and Co-authored

Publications

2021

[20] H. Dhamo*, F. Manhardt*, N. Navab, F. Tombari. “Graph-to-3D: End-to-end Generation
and Manipulation of 3D Scenes Using Scene Graphs”. IEEE International Conference on
Computer Vision (ICCV). 2021

[33] S. Garg*, H. Dhamo*, A. Farshad, S. Musatian, N. Navab, F. Tombari. “Unconditional
Scene Graph Generation”. IEEE International Conference on Computer Vision (ICCV). 2021

2020

[19] H. Dhamo*, A. Farshad*, I. Laina, N. Navab, G. D. Hager, F. Tombari, C. Rupprecht.
“Semantic Image Manipulation using Scene Graphs”. IEEE Conference on Computer
Vision and Pattern Recognition (CVPR). 2020

[141] J. Wald*, H. Dhamo*, N. Navab, and F. Tombari. Learning 3D Semantic Scene Graphs
from 3D Indoor Reconstructions”. IEEE Conference on Computer Vision and Pattern
Recognition (CVPR). 2020

2019

[21] H. Dhamo, N. Navab, F. Tombari. “Object-Driven Multi-Layer Scene Decomposition
from a Single Image”. In: IEEE International Conference on Computer Vision (ICCV). 2019

[22] H. Dhamo, K. Tateno, I. Laina, N. Navab, and F. Tombari. “Peeking Behind Objects:
Layered Depth Prediction from a Single Image”. Journal Pattern Recognition Letters
(PRL). 2019

* The first two authors contributed equally

1

Part I

Introduction

1Introduction

Figure 1.1. Compositional representations for scenes. a) exemplary scene, b) layered depth representation, c) scene
graph.

1.1 Motivation and Main Objective

Automatic scene synthesis consists on generating new scenes, which have not been perceived
before by the underlying algorithm. This can be carried our either conditionally, i.e. based
on an input that constrains the output space as desired; or unconditionally, leading to a
random outcome. It is of high interest in many fields, including augmented and virtual
reality (AR/VR), facilitating the work of artists and designers, as well as modeling and under-
standing the world. This is a highly challenging field in computer vision, as it is important to
assure that the generated scenes represent a potential real world scenario. Therefore, a model
that synthesizes scenes, should be capable of first analysing and understanding the real world
and the constraints therein. This involves, for instance, human action, object co-occurrence,
and inter-object interactions.

Scene manipulation or editing is a variant of scene synthesis, which instead of generating
the entire content, focuses on changing some aspects of an existing scene, such as adding,
replacing, transforming and removing parts. Also view synthesis – obtaining an image of a
scene, given a set of images from other views of that scene – can be thought of as a form of
image editing, in which we do not change the scene content, but the viewpoint. All of the
above tasks have in common that they boil down to hallucinating the missing/occluded parts,
in line with the visible scene context.In addition to the aforementioned generative challenge,

5

Chapter 1: Introduction

the manipulation task adds up new fronts. First, one needs to ensure that the change does
not affect regions or aspects that we wish to preserve. In case of object transformation, it is
often desired to preserve the identity of a certain object while changing its pose. In a view
synthesis task, the goal is to keep the 3D scene consistent among different views. Second,
manipulations of content or viewpoint frequently lead to revelation of originally occluded
content. Exemplary, considering an image with a chair in front of a table – if we remove the
chair from the room, or observe the room from a different angle, a region of the table that
was not originally visible will be exposed, i.e. dis-occluded. This raises the question – what is
the most effective way or representation for handling these scenarios?

To reason, for example, about occluded parts from a single image is an ambiguous problem,
which cannot be solved analytically. Nonetheless, as humans we are still able to conduct such
reasoning and even hallucinate occluded parts of objects [1, 132], based on lifelong experience
of perceiving and interacting with similar objects. Similarly, deep learning has recently shown
to be particularly strong at learning mappings for such ill-posed problems, when having
access to an appropriate and large enough dataset. Exemplary, deep learning has achieved
considerable success in generative tasks, thanks to advancements in generative models such
as variational Auto-Encoders (VAE) [71] and Generative Adversarial Networks (GAN) [38].
With this motivation, in this dissertation we rely on deep learning to extract meaningful
visual features from data in order to tackle the task of conditional scene synthesis and editing.
Furthermore, based on the intuition that awareness of the object identities aids our brains
at successfully completing invisible regions, prior to generating scene content, we attempt
to explain the scene, i.e. scene understanding. This consists in perceiving and interpreting
a scene in terms of semantics and geometry, to identify the underlying components, their
location and interactions. Thereby, we explore different compositional representations of the
scene, which enrich the knowledge about the underlying objects, while providing modular
control (Figure 1.1).

First, we harness a representation that decomposes the scene into a set of RGB-D layers
(Figure 1.1, b), such that multiple RGB-D values are available at each pixel location. The
proceeding layers in each pixel can become exposed once the vantage point of the camera
is changed and is, thus, suitable for generating novel views of the scene. Consider a user
wearing a Head-Mounted Display (HMD), in which the perceived view responds to the
user’s head motion. In this scenario, the layered representation offers a good compromise
between a single depth layer (2.5D) and 3D, as the former would lead to information holes
for the dis-occluded surfaces (Figure 1.2), while a full 3D scene exceeds the needs of the HMD
setting, i.e. most surfaces would never be visible from the slightly perturbed viewpoints.
Our layered representation is based on the Layered Depth Image (LDI) proposed by [125]
for efficient image-based rendering, which we will later discuss in detail in Section 2.1.2.
Different to LDIs, we additionally exploit semantic information for layer forming, which in
turn, as we will show later, enables the further application of object or foreground removal.
In contrast to related works that rely on multiple views as input [45, 177], in this dissertation,
we build a path towards monocular LDI prediction. The advantage is that such method does
not rely on the availability of appropriate photo sets, so that the users can experience an
immersive visualization out of any single photo. We initially introduce a simple two-layer

6

1.1 Motivation and Main Objective

Figure 1.2. Viewpoint perturbation of an image comparing simple warping of a single RGB-D and rendering from
a layered RGB-D representation (LDI). The LDI generation is done once and offline, prior to the online
simulation of the viewpoint changes. [©2019 Pattern Recognition Letters]

approach [22] which decomposes the scene into a foreground and background part, and
then inpaints the background to obtain a two-layer LDI. At the time of submission, this was
the first work that investigated this task from monocular input. A concurrent work from
Tulsiani et al. [139] tackled the same problem in a different formulation, where the LDI
prediction is instead learned in a self-supervised fashion, through a view synthesis proxy
task. We experimentally demonstrate in Section 3.4 that our approach delivers superior
results compared to [139]. Second, motivated by the advantages of the proposed two-layer
model over the view synthesis supervision alternative, we follow a similar decomposition
idea as in [22], however utilize a more object-level understanding, which generates a layer
per instance and completes the individual semantic layers of the scene [21]. This was the first
work that generated a flexible number of layers depending on scene complexity, which further
improved the generation performance for the occluded regions. Note that an alternative to
LDI generation would be to directly perform view synthesis in each view. This however
is less efficient as it invokes an inference step at every view change. In contrast, an LDI is
generated once (offline), and the computation costs on each view change amounts to solely
depth-based warping.

Second, we explore semantic decomposition of scenes via scene graphs (Figure 1.1, c), which
are representations composed of objects labels as nodes and inter-object relationship labels as
directed edges. Scene graphs have recently shown to be an appropriate interface for image
generation [65] due to two desirable properties. First, they are abstract enough to allow
for low-effort user interaction. Second, their interface is modular, which enables control on
specific parts of the scene. Compared to dense semantic maps [146], scene graphs avoid a
considerable amount of manual work from the user, i.e. tedious segmentation of each pixel.
Additionally, they make it possible to specify the semantic relationship between two entities,
which is not captured directly in a semantic map. Thereby, in this dissertation we want
to explore the usage of scene graphs for the task of semantic image manipulation [19], in
which the user can induce changes in an image by simply interacting with the nodes and
edges of a graph. Thereby we face the challenge of partial image generation, combined

7

Chapter 1: Introduction

with preservation of the rest of the image. For this purpose we extend the vanilla scene
graph representation – composed of semantic labels – to include visual neural features and
bounding box coordinates for each object node. The extended representation allows to
control what aspects of an instance need to be kept or altered during a transformation. For in-
stance, changing a relationship label girl - sitting on - horse to girl - beside

- horse requires that the appearance of the girl should be preserved, while the pose and
location with respect to the horse change. Hence, here we would keep the visual features
unchanged, and discard the box coordinates to allow the system to synthesize a valid new
box that respects the new relationship constraint.

Inspired by the scene graphs’ capabilities at generating and modifying images, our next
research goal is to explore a similar semantic-assisted scene generation task for complete
3D scenes. In contrast to the image domain, in 3D we do not face the problem of projective
ambiguity, which could facilitate the understanding of positional relationships. As suitable
datasets for the task were not available at that time, we first created an appropriate large-scale
dataset of 3D scenes with respective 3D semantic scene graphs. We obtain this dataset,
named 3DSSG [141], in a semi-automatic fashion, extending from the real 3D environments
of 3RScan [140]. As a proof of concept to depict the learning capabilities with respect to the
collected dataset, we propose the first learned method that predicts a scene graph from the
point cloud of a scene. Finally, we propose a system for simultaneous 3D scene generation
and manipulation on the basis of these scene graph annotations [20]. Notice that a few
works have very recently been proposed to generate a 3D layout (see Note below) from a
scene graph [96], which is then populated by means of shape retrieval. Nevertheless, we
are the first to explore a model for fully-learned, end-to-end scene generation. In particular,
we demonstrate that shape and layout estimation are inherently correlated tasks, enhancing
the performance of both components when learned simultaneously. Thereby, similar to the
composition proposed in the image editing task, we extend the semantic scene graphs with
3D bounding boxes and neural features obtained from object shapes.

Note

Throughout this dissertation we will use the term layout with two different definitions,
to adapt to the respective context in literature. In the context of layered depth images,
layout refers to the empty room of a scene, i.e. the set of structural elements of the scene
such as walls, floor, ceiling, etc. The reader should assume this definition in Chapter
3. In the context of the scene graph works, layout refers to a structure (skeleton) that
describes the arrangement of parts in a scene. In 3D for instance, this boils down to the
set of 3D bounding boxes of all objects in the scene. This definition should be assumed
in Chapter 4.

1.2 Contributions

This section summarizes the contributions of this dissertation. The first two publications
tackle the problem of monocular LDI generation:

8

1.2 Contributions

[22] H. Dhamo, K. Tateno, I. Laina, N. Navab, and F. Tombari. “Peeking Behind Objects:
Layered Depth Prediction from a Single Image”. Journal Pattern Recognition Letters
(PRL). 2019

[21] H. Dhamo, N. Navab, F. Tombari. “Object-Driven Multi-Layer Scene Decomposition
from a Single Image”. In: IEEE International Conference on Computer Vision (ICCV). 2019

The main contribution in [22] is the introduction of this novel task (concurrently with [139])
and the demonstration of state-of-the-art results, by means of a new method based on
depth prediction and image inpainting. Further, in [21] we propose a solution to the design
limitations of previous works – we decompose a given input image in a flexible number of
LDI layers. We do so via a semantic-aware approach that considers the detected objects in
the scene. As a technical contribution, we demonstrate that re-composing all parts back, for a
comparison against the visible surface improves the performance.

In [19] we introduce the novel task of image manipulation via a scene graph, which presents
a low-effort user interface to induce semantic changes in an image. The core technical
contribution lies in a training strategy that circumvents that need for image pairs with
changes for training:

[19] H. Dhamo*, A. Farshad*, I. Laina, N. Navab, G. D. Hager, F. Tombari, C. Rupprecht.
“Semantic Image Manipulation using Scene Graphs”. In: IEEE Conference on Computer
Vision and Pattern Recognition (CVPR). 2020

The next two works pave the way for semantic scene graphs for 3D scene generation and
editing:

[141] J. Wald*, H. Dhamo*, N. Navab, and F. Tombari. Learning 3D Semantic Scene Graphs
from 3D Indoor Reconstructions”. In: IEEE Conference on Computer Vision and Pattern
Recognition (CVPR). 2020

[20] H. Dhamo*, F. Manhardt*, N. Navab, F. Tombari. “Graph-to-3D: End-to-end Generation
and Manipulation of 3D Scenes Using Scene Graphs”. In: IEEE International Conference
on Computer Vision (ICCV). 2021

First, we tackle the lack of appropriate data with scene graphs annotations by obtaining a
corresponding dataset (3DSSG) in a semi-automatic manner, thereby having a high focus
on rich and dense semantic annotations [141]. Furthermore, we propose the first learned
method for estimating the 3D scene graph from a point cloud of a scene. In [20] we propose
the very first work that is able to generate a 3D scene from a given scene graph in a fully
end-to-end fashion, and demonstrate that joint learning of object shapes and 3D layout leads
to improved results.

As a practical contribution, in many of the aforementioned works, we generated large-scale
datasets [21, 22, 141], or dataset extensions [20] suitable for the evaluation of the proposed
novel tasks, which were not available at the time of publication of the respective works.

Finally, we approach the task of unconditional scene generation via scene graphs:

9

Chapter 1: Introduction

[33] S. Garg*, H. Dhamo*, A. Farshad, S. Musatian, N. Navab, F. Tombari. “Unconditional
Scene Graph Generation”. In: IEEE International Conference on Computer Vision (ICCV).
2021

This work will not be discussed thoroughly in this dissertation, however, we discuss a system
overview and the relevant implications for scene generation.

1.3 Structure of this Dissertation

This section briefly outlines the structure of this dissertation.

Chapter 2 sets the theoretical background for this work, including fundamental concepts in
computer vision and deep learning. In essence, we describe the pinhole camera model which
is assumed in our works, the LDI representation, as well as deep generative models.

Further, Chapter 3 presents the monocular LDI generation approaches investigated in this
work. We first give an overview of the related work, then describe our methods for two-layer
and object-driven LDI generation, and evaluate the methods by showing the usefulness in
content editing and view synthesis.

Chapter 4 presents our work on scene graphs for scene synthesis and editing. We first discuss
the related work, then introduce the methods on semantic image manipulation, generation
of 3D scene graphs, and 3D scene synthesis/manipulation, together with the respective
evaluations.

Chapter 5 briefly introduces an additional work carried out during this thesis, which offers
interesting insights for future works in unconditional scene generation.

In the Appendix we provide additional findings and results, such as the application of the
obtained 3D scene graphs in domain-agnostic scene retrieval A, supplementary results on
the evaluation of the proposed object-driven layered scene decomposition B, more details
and statistics on the 3DSSG dataset C, as well as further details and metric definition for 3D
scene generation D.

1.4 Applications

This section aims to show the practical value of the work carried out during this thesis. We
identify the following set of potential applications.

Immersive visual experience View synthesis is the direct application of the LDI representa-
tions generated in our works [21, 22]. When perturbing the original viewpoint, the additional
layers support novel regions that were originally not visible. For instance, in Mixed Reality
(XR) – assuming a user has access to reality only through a mounted camera in the HMD – it is
of interest to warp the image obtained by the camera to the viewpoint of the user, so that the

10

1.4 Applications

scene is naturally perceived by the eyes. Moreover, one can obtain a 3D photo [45], in which
the image responds to the slight viewpoint changes of the user head/device – technically a
view synthesis step for each view perturbation – which gives a 3D effect to the perception of
a standard photo.

Image editing software Editing photos is one of the most interesting tasks for visual artists,
e.g. photographers, using commercial designer tools such as Photoshop. There is particular
focus on smarter inpainting tools, such as content-aware fill. One step further for such
a tool would be to incorporate semantic information in a user friendly manner, similar
to our proposed graph-based semantic image manipulation work [19]. Alternatively, one
could decompose the underlying image in layers [21] to offer a comfortable interface for
object-aware removal.

Robotics The field of robotics can also benefit from our scene manipulation works [19, 20].
For instance, a robot instructed to tidy up a room can first manipulate the scene graph of the
perceived scene, e.g. changing their relationships and attributes: “clothes lying on the floor”
to “folded clothes on a shelf”, to obtain a realistic future view of the room.

Scene retrieval In [141] we show that the generated scene graphs can be used for domain-
agnostic scene retrieval, where the graphs of a 3D scene or an image are used as query to
retrieve the most similar 3D scene from a database. This can be useful for instance, for
localizing a robotic agent or human, or providing the user with a room that best matches the
expectations. More details on this retrieval task can be found in appendix A.

11

2Theory and Fundamentals

2.1 Computer Vision

2.1.1 The pinhole camera model

Figure 2.1. The Pinhole Camera Model describes the perspective projection of the 3D points onto the image plane.
I: image plane, C: camera center, c: optical center, f: focal length, P: point in 3D space, p: 2D projected
point.

All works presented in this dissertation follow the pinhole camera model to relate 3D points
and the 2D image plane. Given the world and a camera, located at position C, the pinhole
camera model describes a mapping between a 3D point P “ px,y, zqT in the world and its
respective projected point p “ pu, vqT on the image plane I of the camera [41]. Let the focal
length f be the distance from the camera center C to the image plane I. Following the similar
triangles rule, (c.f. Figure 2.1 (right)), the following equations can be derived v

f
“
y
z

, u
f
“ x
z

from which we can infer v “ fy
z

and u “ fx
z

. The image plane origin is usually defined at the
top-left corner of the image. Therefore, the points after projection are shifted by the optical
center c “ pcx, cyq, leading to v “ fy

z
` cy and u “ fx

z
` cx.

Commonly, homogeneous coordinates are utilized to turn the perspective projection into a linear
system, and therefore simplify the notation and many related derivations. This is done by
adding a fourth coordinate to a 3D point p “ px,y, z, 1qT . In homogeneous representation
all points P “ pλx, λy, λz, λqT with λ ‰ 0 represent the same euclidean 3D point. For λ “ 0,
this formulation describes a 3D point which lies at infinity. These points live in the projective
space P3. The associated 3D point can be obtained through a simple division by the last
coordinate px,y, z,kqT p“px

k
, y
k

, z
k
qT . Notice that unlike euclidean spaces, projective spaces can

13

Chapter 2: Theory and Fundamentals

explain points at infinity (k “ 0). The perspective projection can thus be written as a linear
transformation

p “

»

—

—

—

—

–

u

v

1

fi

ffi

ffi

ffi

ffi

fl

“

»

—

—

—

—

–

fx
z
` cx

fy
z
` cy

1

fi

ffi

ffi

ffi

ffi

fl

”

»

—

—

—

—

–

f 0 cx 0

0 f cy 0

0 0 1 0

fi

ffi

ffi

ffi

ffi

fl

»

—

—

—

—

—

—

—

—

–

x

y

z

1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

“ KP. (2.1)

Here K denotes the camera intrinsics matrix, which contains the parameters of the perspective
projection. Equation 2.1 describes a camera that is located at the center of the world coordinate
system, which is, most commonly, not the case. Therefore, one needs another matrix T to
describe the transformation from world space to camera space. T is known as the extrinsics
matrix, or camera pose, and contains its rotation and translation in 3D world space p “ KTP.
In projective space, T is a 4ˆ 4 matrix that can be written as

T “

»

—

–

R t

0 1

fi

ffi

fl
(2.2)

where R is a 3ˆ 3 rotation matrix, while t is a 3 dimensional translation vector.

Given two cameras and their respective intrinsics K1, K2 and extrinsics (camera poses) T1, T2,
utilizing the pinhole camera model, one can warp the image obtained in camera 1, to the
viewpoint of camera 2. To perform this warping, we need to have per-pixel distance from the
image plane of the source camera, to the 3D points, i.e. depth d1

p2 “ K2T2T
´1
1 pK´1

1 p1q ¨ d1 (2.3)

where p2 is further divided by its last coordinate to obtain the final 2D point. Often pixel-wise
depth information is stored in an organized 2D structure with the same resolution as the
respective image, also known as a depth map.

2.1.2 Layered depth images

Layered Depth Images (LDI) [125] encompass a scene representation that contains multiple
depth values along each ray line in a single view. It was introduced as an efficient image-
based rendering method, emerged in times of limited computational power. When rendering
in a perturbed view, some scene structures that are occluded in the original camera frame
get exposed – also known as dis-occlusion – and therefore populate the target view, Figure
2.2. The number of layers is different in every pixel and depends on the scene complexity.
For small view perturbations from a vintage point, rendering from a 3D scene mesh is
considerably more expensive and contains more data than needed. Technically, the LDI data
structure is represented as a 2D array of layered depth linked lists of varying size. Each
element in the list contains RGBA information, depth and a splat index.

14

2.1 Computer Vision

Figure 2.2. Layered depth image in source (reference) view T1. When the view is perturbed T2, the empty (black)
pixels are filled with information from the consecutive layers (gray), illustrating the advantage over a
single layer depth.

Traditionally, LDIs can be obtained by warping a set of images into a common view, or
alternatively, by using a ray tracer to sample points from a scene view in every line of sight
[125]. The latter offers the advantage of controllable sampling density, while the former is
constrained to the data availability in the given image frames. Nevertheless, in real world
scenarios, where we do not know the 3D scene and are limited to a set of multi-view images,
only the former alternative is applicable.

To render an LDI in a different view-point, [125] leverage an efficient incremental warping
approach, following the pinhole camera model. Let T1 be the camera matrix for the LDI, which
projects a 3D point from the world coordinates system into the camera’s pixel coordinate
system. Similarly, we define T2 as the target view camera matrix. Then, the transformation
matrix between the two views is T1,2 “ T2T

´1
1 , which maps a point p1 “ px1,y1, z1, 1q to

p2 “ px2,y2, z2, 1q using homogeneous coordinates

p2 “ T1,2p1. (2.4)

Exploiting the linearity of this operation, one can rewrite it as

T1,2p1 “ T1,2

»

—

—

—

—

—

—

—

—

–

x1

y1

z1

1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

“ T1,2

»

—

—

—

—

—

—

—

—

–

x1

y1

0

1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

` z1 ¨ T1,2 ¨

»

—

—

—

—

—

—

—

—

–

0

0

1

0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

“ start` z1 ¨ depth. (2.5)

Moving along a scanline, i.e. pixels with the same y1 and increasing x1, the start component
at pixel px1 ` 1,y1q can be computed from the start component at pixel px1,y1q as

15

Chapter 2: Theory and Fundamentals

start “ T1,2

»

—

—

—

—

—

—

—

—

–

x1 ` 1

y1

0

1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

“ T1,2

»

—

—

—

—

—

—

—

—

–

x1

y1

0

1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

` T1,2 ¨

»

—

—

—

—

—

—

—

—

–

1

0

0

0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

“ start` xincr. (2.6)

This decomposition and incremental computation of the matrix operations reduces unneces-
sary computational costs, shared among different pixel locations.

For each layered depth pixel, the computation of the target pixel coordinates is done in
back-to-front order. Evidently, the color values are warped from the source to the target
pixels. Here the splat size is computed as a function of the distance from the surface point to
the T1 camera, as well as the angle between the surface normal and the line of sight.

Noteworthy, very related to LDIs are Multiplane Images (MPI) proposed by Zhou et al. [177],
which leverage multiple RGBA layers of fixed depth. MPI can be thought of as a discrete
version of the LDI, where the number of layers need to be pre-defined explicitly, in contrast
to the LDI.

2.2 Deep Learning

At the heart of each method proposed in this thesis lies deep learning. This section starts
with a historical overview to place modern deep learning in the right context. Further,
it introduces the fundamentals of deep neural networks, such as their composition and
optimization. Finally, the section concludes with an overview on convolutional neural
networks (CNN) – which we heavily rely on in this work – and their most relevant building
blocks.

2.2.1 Brief historical overview on deep learning

Despite the very recent outburst, deep learning is not a new concept. There have been three
waves of deep learning, starting from 1940. Below, we give an overview of each of these
waves, referring the reader to [37] for more details.

The first wave is known as cybernetics (1940 - 1960), essentially referring to linear models
motivated by neuroscience. McCulloch and Pitts [99] introduced the artificial neuron, which
could recognize two different classes of inputs, resulting in a positive or negative answer.
Note that here the weights were not learned. Instead, they had to be set by a human operator.
The perceptron from Rosenblatt [119], is the first model that could learn a single neuron,
given pairs of data examples from each category. However, soon after many limitations of the

16

2.2 Deep Learning

linear models were discovered, such as, for instance, the inability to learn the XOR function.
Such limitations significantly stalled the progress in AI, leading to the first winter of AI.

The second wave (connectionism), emerged in the 1980s. The core idea is that simple com-
putational units can learn more complex concepts when combined together in a network.
In its core lied the idea of distributed representation [49], which aimed to employ neurons
that learn shared concepts, e.g. color, among different categories, to reduce the number of
necessary computational units. Interestingly, the back-propagation algorithm was introduced
during this time, which is today still an integral part of the training of almost all deep net-
works [120]. Regardless of this advancement, the second winter of AI emerged in the 1990s,
as the initial expectations were unable to be accomplished in practice, leaving the AI investors
disappointed.

Last, the still ongoing third wave of deep learning began with the introduction of deep
belief networks from Hinton et al. [48] in 2006. They proposed to employ greedy layer-wise
pre-training, an efficient training strategy that was later successfully incorporated in other
models. Importantly, due to these findings, combined with increasing computational power,
researchers were able to train deeper networks and started to understand the theoretical
importance of network depth. The rise of deep networks led to a remarkable boost for many
tasks in computer vision. Notably, in year 2012 AlexNet [74] – a deep convolutional network
trained on two GPUs – significantly outperformed other methods on the ImageNet [18]
classification challenge.

2.2.2 Neural network fundamentals

Neural networks consist of multiple layers of computation nodes, also known as neurons,
inspired by the biological brain. Thereby, the neurons of the first layer represent the input
layer, while the neurons of the last layer form the output layer. The remaining nodes, corre-
sponding to the intermediate layers are called hidden layers. The nodes of adjacent layers most
commonly have connections between them. However, there are cases where non-neighboring
neurons are also connected [43]. A single layer in the network – referred to as perceptron
– aggregates the information from the input units by multiplying the inbound signal with
weights, and adding a free term, referred to as bias. The weights and bias values are learned
during the training process.

For a given neuron zj in layer lwe write

zj “
ÿ

i

w
plq
ji xi ` b

plq
j “ w

plqT
j x` b

plq
j (2.7)

whereas for the whole layer we have

z “Wlx` bl. (2.8)

17

Chapter 2: Theory and Fundamentals

Figure 2.3. A simple neural network architecture with two layers, i.e. one hidden layer

Here, xi is the result of a preceding layer that is connected with zj, wji are the layer weights
and bj constitutes the bias term. Wl P Rdinˆdout and bl P Rdout are the weights and bias in
matrix form, where din and dout are namely the size of the input and output vector (x P Rdin ,
z P Rdout). Similarly, from the relation in Eq. (2.7) one can simply deduce the formulation for
a model with two layers, as depicted in Figure 2.3

ypx,θq “W2hpW1x` b1q ` b2. (2.9)

where θ “ tW1,W2,b1,b2u describe the parameters of the network. Here h denotes the
activation function. The purpose of an activation is to introduce non-linearity in the neural
network. Notice that, if we omit h from Eq. (2.9), one can rewrite it as

ypx,θq “W2pW1x` b1q ` b2 “W
˚x` b˚, (2.10)

which is equivalent to a single-layer network with weights W˚ “ W2W1 and bias b˚ “
W2b1 ` b2. Common choices for the activation layer include the sigmoid function, the
Rectifier Linear Unit (ReLU) and its variants [15, 44], as well as the hyperbolic tangent
(tanh).

Optimization

Having defined the structure of the neural network, the objective is to optimize all the
learnable parameters θ (i.e. weights and biases). In a supervised learning context, given pairs
of input and output samples pxi, tiq, i.e. training dataset, this is done by feeding the input
values xi to the neural network and finding the parameters θ that minimize an error function
between the predicted value and the known ground truth target ti. This process is referred to
as the training of the network. Thereby, an epoch represents a single pass through the entire
training dataset. For a regression problem a common loss function is the L2 norm

18

2.2 Deep Learning

Epθq “
ÿ

i

‖ypxi, θq ´ ti‖2 . (2.11)

The goal of minimizing the error function, also known as cost or loss, is reached through
an iterative optimization process, which aims to find the minima of the error function,
i.e. locations in Epθq where the error gradient is 0, ∇Epθq “ 0. Certainly there can be more
than one minimum within the error function, and this is usually the case, given that the
model is non-linear, i.e. the error function non-convex. The lowest possible value in Epθq is
typically also referred to as its global minimum. In practice, it is fairly impossible to converge
to the global minimum, but a good local minimum suffices in most applications.

There are various methods used to approach the zeros in the gradient of the error functions,
including steepest descent and conjugate gradient. The core idea is to go in the direction of
´∇Epθq in a particular time step τ. The corresponding weights update is given by

θpτ`1q “ θpτq ´ η
BE

Bθpτq
(2.12)

where η denotes the learning rate. The learning rate η is commonly a very important hyper-
parameter of the optimization. If the learning rate is too small, it can lead to very slow
convergence, while a too large learning rate could cause continuous oscillation around an
optimum without ever reaching it.

The data samples can be fetched all at once, in mini-batches, or one at a time. The bigger
the batch, the more robust the weight updates are with respect to noise in individual input
samples. However, in deep networks memory bounds set a limit in the batch size that
can be used to train. Therefore, a mini-batch variant of gradient descent is leveraged for
the optimization, which is called stochastic gradient descent (SGD). More recent optimization
techniques exist, which rely on adaptive mechanisms and are more commonly employed
in practice. For instance, SGD with momentum [113] computes the gradients of a step as
a combination of the previous and the current gradients. This accelerates training when
gradients of consecutive steps point the same direction, and slows it down when the directions
change, i.e. to avoid oscillations around a minimum. Other optimizers, such as RMSprop,
Adadelta [164] and Adam [70] incorporate adaptive learning rates for each parameter, relying
on a history of past gradients. They reduce the need for hyper-parameter tuning of the
learning rate and are particularly successful for noisy data.

Back-propagation

Now we dive into the problem of gradient estimation in a deep network architecture. This is
typically done using the so called back-propagation algorithm, which is an efficient way for
gradient computation. To understand why this is the case, we formulate the solution for the
error minimization. In the two-layer network example, we are interested in minimizing

Epθ, x, tq “
N
ÿ

i“1

||W2hpW1xi ` b1q ` b2 ´ ti||2. (2.13)

19

Chapter 2: Theory and Fundamentals

Relying on a gradient based method for the weight update, we are required to compute the
gradients of the cost function with respect to θ

BE

Bθ
“
B

Bθ

N
ÿ

i“1

||W2hpW1xi ` b1q ` b2 ´ ti||2. (2.14)

We observe that the forward pass has the structure of a function composition of the form
l2pl1pxqq, with l1pxq “ hpW1x ` b1q and l2pxq “ pW2x ` b2q being each layer of the neural
network. Therefore, we can apply the chain rule for gradient computation of the cost function
with respect to the parameters and obtain

BE

BW2
“
BE

Bl2

Bl2

BW2
,

BE

BW1
“
BE

Bl2

Bl2

Bl1

Bl1

BW1
. (2.15)

Notice that, some terms of the derivative computation with respect to W1, are already
computed for W2. A similar observation can be deduced for the bias terms. This means that
the error value in a particular hidden neuron is given by propagating back the errors of the
proceeding adjacent layers with whom this unit shares a connection. The shared reusable
terms can be stored, to avoid re-computation and hence make gradient computation more
efficient.

We illustrate the presented training procedure in a nutshell:

Training epoch of a neural network

1. Forward propagate data samples xi in the neural network, using the current
parameters θ

2. Compute the difference between the ground truth ti and the predicted output yi

3. Compute the derivatives BEi
Bθ

for each weight from the propagated errors

4. Update the weights in the direction of steepest decent of the error gradient

Having obtained a set of parameters that minimize the cost function from training, the neural
network is able to predict outputs for new input samples that it has never seen before. This
process is also known as testing or inference.

2.2.3 Convolutional neural networks (CNN)

For certain computer vision applications, based on a structured input, e.g. image, one wants
to enforce particular properties in the learned model that are hard to capture with standard
neural networks (MLPs). For instance, recognizing certain shapes or features in images
should be based on a local context and not in the entire image. Moreover, the extraction of
relevant features should be independent on the exact location in the image. For example,
consider the problem of image classification. A cat should still be classified as a cat,
regardless of its location in the image. Since linear layers consider pairings between each

20

2.2 Deep Learning

input and output node, it can become quite costly when dealing with high dimensional input
data such as images. With this motivation arises the need for weights that capture only local
structures around a pixel. Further, the location independence allows for weight sharing across
spatial locations, which significantly reduces the number of parameters. This is the basis for
the convolutional neural networks [78]. Here, the weights are commonly referred to as filters
or kernels, due to the resemblance with a correlation problem, where one of the images is a
small window sliding along the other one, resulting in a map of dot products. Like the usual
neural network, each convolutional layer proceeds with an activation function to introduce
non-linearity.

Building blocks of a convolutional neural network

Fully-connected Layer. The most basic block is a fully-connected layer, also known as a
linear layer. Same as in a regular neural network, every input neuron is connected with all
the output neurons. As previously discussed, a fully connected layer computes the weighted
sum of all input parameters and adds a bias to the output according to ypxq “Wx` b with
W P Rdinˆdout and b P Rdout .

Convolutional Layer. The convolutional layer can be considered the most identifying layer
of a CNN, as it enables its desired weight sharing and local connectivity properties. In
a 2-dimensional scenario, a convolution is carried out through a set of dout filters with
Wi P Rdinˆkxˆky and i P t1, ...,doutu, i.e. the learnable parameters of the layer. Thereby,
din denotes the depth of the input feature and kx,ky represent the spatial filter size. Each
filter is spatially slid across the input feature of sizeMˆNˆ din, computing a dot product
between the filter values and the corresponding local region in the input feature, resulting
in an output feature of size M ˆN. The final output volume M ˆN ˆ dout for this layer
can be obtained by stacking all dout output feature maps. Another relevant parameter for a
convolution is the stride. A stride of s can reduce the output resolution by a factor of s, by
only applying the convolution at every s-th location in the input feature. One can optionally
add a bias to the convolved feature maps. Similarly, it is possible to employ a 1-dimensional
or 3-dimensional convolution, by adjusting the number of dimensions in the filters.

Pooling Layer. Pooling layers [78] are intended for down-sampling (sub-sampling) the in-
put feature map, similar to the stride parameter for convolutions. By reducing the spatial size
of the feature maps, it controls the capacity of the network and introduces some invariance
to small transformations of the input, as very precise local information is lost. Since the exact
locations of features are not relevant in most tasks, it is often sufficient to only maintain the
relative locations. Each feature map is convolved with a filter of size kxˆ ky, which forwards
the desired signal within the filter. This filter is not learnable and can be set explicitly as
a maximum, averaging or even L2-norm operation. Similarly to a convolution layer, another
hyper-parameter of the pooling layer is the stride. Notice that for max-pooling the gradient
is simply set to flow through the input with the maximum value, since themaxp¨q operation
is not differentiable.

Activation functions. Convolution layers are usually followed by non-linear activation
functions. Sigmoid σpxq “ 1

1`e´x and tanh thpxq “ 2σp2xq ´ 1 are activation functions

21

Chapter 2: Theory and Fundamentals

that limit the output range to namely r0, 1s and r´1, 1s, which is convenient for mapping
continuous input values to a more interpretable value, for example, closer to a yes or no
answer. However, these functions encounter a saturation problem, as their gradients become
very small as we diverge from the middle range. Therefore, more practically Rectified Linear
Unit (ReLU) fpxq “ maxp0, xq are used for intermediate (hidden) layers, while sigmoid and
tanh are often used for output layers to constrain the range of output values. Notably, ReLU
does not saturate which, thus, speeds up convergence. Nevertheless, ReLU can drive many
neurons in the inactive region (zero output and gradients). This led to alternatives such
as leaky ReLU [44] or exponential linear unit (ELU) [15] which have a softer effect on the
negative neurons.

Feature Normalization. In deep neural networks feature normalization is a necessity, due
to the common vanishing gradient problem. The multiplication of mostly small terms in the
partial gradient computation leads to very small updates for early layers. Normalization
thus keeps the features of each layer at a stable range, avoiding such gradient decay.

Many normalization techniques have been proposed [6, 56, 74, 152] in literature, such as
Local Response Normalization (LRN), introduced with AlexNet [74]. Batch Normalization
(BatchNorm) is, however, the most popular approach [56], and also extensively employed
in the works presented in this dissertation. BatchNorm computes moments across the mini-
batch dimension, which are used to update an exponential moving average and standard
deviation. To accomplish this, [56] first uses mini-batch statistics to map the features to a
mean of zero and standard deviation of one. For every dimension k of an input x we have

x̂pkq “
xpkq ´ Erxpkqs
a

Varrxpkqs
. (2.16)

In some cases, this whitening of the features, i.e. mean of zero and unit standard deviation, is
not appropriate to represent the layer. Considering the output of a ReLU activation, which
dampens the negative values, zero is not a good choice for the mean value. Therefore, a
learnable scaling and offset are applied on the normalized value:

ypkq “ γpkqx̂pkq ` βpkq. (2.17)

During inference, it is desired that the output is entirely determined by the input. Hence,
we normalize using the population mean and variance instead of relying on mini-batch
statistics. Noteworthy, Wu and He [152] have shown that BatchNorm does not work well for
small batch sizes. Therefore, they propose GroupNorm, computing the statistics through the
channels dimension in groups of a given size.

Common CNN architectures

This section introduces some common CNN architectures, which are also used in this work.

Residual networks. He et al. [43] introduced ResNet, which is based on residual connection
blocks, with the motivation to address the vanishing gradient problem [43]. We denote with
H the mapping that a neural network block learns in a standard form H “ fpxq. Instead, a

22

2.3 Generative Models

ResNet block learns the residual mapping H “ x` fpxq, by applying an addition operation
between the input of the block and the result feature of the block. Such residual connections
come with two main benefits. First, learning a small residual x is a much easier task than
directly learning the whole mapping H. Second, this optimizes the gradient flow as gradients
can take a shortcut through the residual connection around it, allowing to train very deep
networks. In this work, we employ a ResNet-50 architecture as a backbone for various tasks,
such as RGBA-D object completion [21] as well as joint depth and mask prediction [22].

Skip connections. The U-Net architecture [118] was first proposed for the purpose of
precise image segmentation. Since then, it has been widely adopted for a diverse set of
image translation tasks [58]. In its core lie the skip connections, which consist in concatenating
features of the same spatial size from the encoder and decoder, prior to being processed by
the proceeding decoder layer. This enables a combination of high and low level features
which has proven to improve the sharpness of the outputs. In this dissertation, we employ a
U-Net-like architecture for RGB-D background inpainting [21, 22].

2.3 Generative Models

In terms of what they model, neural networks can be classified in two main categories,
generative and discriminative models. A discriminative model learns the conditional probability
of a target given the input data. For instance, provided an input image, a discriminative model
can be trained to predict the category of the object in the image, or regress the depth values
for each pixel, provided the respective target ground truth data. Instead, a generative model,
aims to learn the probability of the data itself, in the form of common patterns and regularities
in the data and the likeliness of certain samples to (co-)occur. Once trained, generative models
can be used to synthesize new data, which fairly represent the real data distribution. In
this dissertation, we employ generative models and their conditional variants for a set of
tasks, such as image inpainting [21, 22], scene generation [20] and manipulation [19, 20], as
well as unconditional scene graph generation [33]. The sections below present Variational
Auto-Encoders and Generative Adversarial Networks, as they are also used in the work
presented in this dissertation.

2.3.1 Variational auto-encoders

Auto-Encoders fae refer to a class of neural networks that aim to learn a compact and efficient
representation of data, also known as latent code. Since no labels are required for training of
an Auto-Encoder, they constitute a classic representative for unsupervised learning. Essentially,
the latent codes are learned by means of a reconstruction loss (e.g. L2 norm), trying to
reproduce the input data with Lr “ ||faepxq ´ x||2. The network architecture consists of two
parts. The encoder receives the raw data and computes the latent codes. The decoder then
receives the latent codes to reconstruct the original data. Typically, Auto-Encoders provide a
good approximation of the original data, however, they cannot perform a one-to-one copy of

23

Chapter 2: Theory and Fundamentals

the input, as the latent codes only extract the relevant information from the data. Thus, they
serve as data compression, and some denoising effect is expected.

It is very difficult to use a vanilla Auto-Encoder as a generative model. Since no assumptions
can be made on the distribution of the learned latent codes, appropriate sampling cannot
be conducted easily. This problem is addressed by a variational variant of Auto-Encoders
(VAE) [71]. The core idea is to regularize the distribution of the latent codes, such that it is
regular enough to sample. A VAE is similar in structure to a vanilla Auto-Encoder, as it is
composed by an encoder and decoder network. Differently, instead of a single vector, they
aim to learn a distribution on the latent vectors from the data, which facilitates later sampling.
Practically, most often this distribution is assumed to be Gaussian, and the encoder network
returns a mean µ and a covariance matrix σ to describe such distribution. After sampling
a point from this distribution, one can decode it to the high-dimensional data. To do so, in
addition to the reconstruction loss on the input (high-dimensional) data, VAEs incorporate a
Kullback-Leibler divergence term on the latent code level, as a regularization between the
learned Gaussian distribution and a standard Gaussian

L “ Lr `DKLpNpµ,σq,Np0, 1qq. (2.18)

Note that at training time, one needs to back-propagate the error gradients all the way to the
input nodes. However, the sampling operation from the learned distribution z „ Npµ,σq is
not differentiable. Therefore, VAEs are practically used with a common re-formulation, better
known as reparameterization trick, making the network fully differentiable. The core idea is
to transfer the sampling at an input node, by introducing a new parameter ε „ Np0, 1q. The
random variable z is then obtained as a function of the learned distribution and ε, according
to z “ µ` σd ε, where d denotes element-wise multiplication. In this form, the VAE is fully
differentiable.

We refer the reader to [71] for a mathematical formulation of VAEs and derivations.

2.3.2 Generative adversarial networks

Generative Adversarial Networks (GANs) [38] refer to a generative model, which in essence
is composed of a generator G and a discriminator D, trained with conflicting objectives. The
goal of the generator G is to synthesize data that is not distinguishable from the real data. On
the other end, the discriminator D is trained to distinguish if a given sample is synthesized
(fake) or taken from the real data distribution (real)

LGAN “ min
G

max
D

Ex„pdatapxqrlogDpxqs ` Ez„pzpzqrlogp1´DpGpzqqqs. (2.19)

These two opposite objectives can push the generator to continuously improve its modeling
of the true distribution, resulting in more and more realistic synthesized samples. GANs
can be simply extended to conditional variants [8], which led to their popularity in many
computer vision tasks, such as image inpainting [55, 108], image editing [180], style transfer

24

2.3 Generative Models

[58, 81, 181], super-resolution [79] and 3D object generation [151]. Isola et al. [58] propose a
general–purpose conditional GAN that can be used for a variety of image translation tasks,
such as labels to images, gray scale to color images, contours to image and incomplete to full
image. The conditional GAN objective can be represented as

LGAN “ Ex,yrlogDpx,yqs ` Exrlogp1´Dpx,Gpxqqqs (2.20)

where x represents the conditioning input and y the corresponding target image. In this
formulation, G optimizes the following objective

Ĝ “ min
G

max
D

LGAN ` λL1L1py´Gpxqq. (2.21)

which combines a GAN term and a L1 term with λL1 being their balancing factor.

Compared to VAEs, GANs commonly result in more realistic and crisp images, which
makes them the most popular image-based generative model to date. On the other hand,
VAEs are generally more stable to train and less data-hungry than GANs, while being more
interpretable as they explicitly learn a distribution of latent codes.

25

Part II

Compositional Representations for
Synthesis and Editing

3Layered Depth Image Prediction

Our objective is to learn a mapping from a single RGB image to an LDI, i.e. a layered RGB-D
representation of the scene. The task encompasses a set of open problems in computer
vision, such as monocular depth prediction, and completion of occluded segments. In this
dissertation, the LDI generation problem is formulated as a system that first understands the
scene, i.e. identifies the set of visible entities in the image, and then completes each entity with
the respective occluded regions. We start with a simple approach that decomposes the scene
in a foreground and a background layer, which will be detailed in Section 3.2. Throughout
this dissertation we will refer to this two-layered model as PBO (Peeking Behind Objects).
Unsurprisingly, such two-layered model is often not sufficient to capture all the occluded
structures in the scene. Exemplary, if at a certain image location there is a chair occluding
a table, which is in turn occluding a wall, multiple levels of dis-occlusion (revelation) can
eventually take place, which need more layers to be fairly represented. Therefore, building
on a similar structure, we formulate an object-driven approach which decomposes the scene
into a set of layers, representing the empty background (layout) as well as each identified
object in the scene (Figure 3.1), described in Section 3.3. This method – which I will refer
to as OMLD (Object-driven Multi-Layer Decomposition) – generates a flexible number of
layers, depending on the complexity of each scene. Both methods are evaluated at the
time of publication, against state-of-the-art baselines. Section 3.4 reports the results on LDI
generation, novel view synthesis as well as diminished reality.

3.1 Related Work

3.1.1 Layered representations

Scene representations that decompose a scene in layers are explored in a variety of formula-
tions, such as depth ordering of semantic maps [57, 136, 159] and amodal color images [23],
optical flow [134, 142], stereo reconstruction [7], scene decomposition in depth surfaces [91]
and planes [90].

The focus of this thesis is on the Layered Depth Images (LDI) by Shade et al. [125], which
refer to an extended single-view representation of a scene that contains multiple RGB-D
values per pixel. As discussed in Section 2.1.2 LDIs were first proposed for efficient image-
based rendering on view perturbations, to deal with information holes on dis-occlusion.
Applications include 3D photography [45] and video view interpolation [182]. Hedman et
al. [45] use such a representation to reconstruct a 3D photo from multi-view inputs, captured

29

Chapter 3: Layered Depth Image Prediction

"remove the sofas"

novel view

input image

Object-driven decomposition

object-wise layers layout layer

Applications

Figure 3.1. Starting with an image, OMLD decomposes the scene into a set of RGBA-D object layers and layout
layer. The representation can be used for view synthesis and object removal. [©2019 IEEE]

from a set of hand–held camera images. The different views are stitched together in a
panorama LDI of two layers. Zhou et al. [177] infer multi-plane images (MPI), a similar
representation from stereo input, that decomposes an image into sweep planes with fixed
depth. Concurrently with [139] we proposed the first work for LDI prediction from a single
RGB image [22]. Thereby, Tulsiani et al. [139] propose an indirect supervision with a view
synthesis proxy task. Though naturally under-constrained, monocular LDI generation has
the advantage of enabling the 3D enhancement of any given photo, even if additional views
or depth information is not available. In contrast to [139] we formulate the problem as
a combination of scene understanding (depth prediction, background segmentation) and
inpainting. Further, we exploit an object-driven approach [21], which in contrast to previous
monocular LDI generation methods generates a flexible number of layers. Succeeding our
works, LDI [128] and MPI [137] based approaches, relying on monocular input were proposed,
for namely 3D photography and view synthesis.

3.1.2 View synthesis

The task of predicting the depth or 3D structure of a scene is directly related to novel view
synthesis and we later demonstrate our LDI prediction within this challenging application.
View synthesis consists in generating an image from an unseen view of a scene, utilizing
image information from known viewpoints. A recent line of work on synthesizing new views
directly minimizes a reconstruction loss between the reference and the target image in an
end-to-end manner [31, 154, 178]. Depth prediction often arises as an implicit, intermediate
representation in such frameworks when using view pairs as input or supervision [32, 36, 154,
176]. At the time of publication of [22], Zhou et al. [178] was the most comparable method, as
it does not rely on multi-view inputs or additional geometry. There have been view synthesis
approaches, more recent than our works, which exploit MPIs [137] or point clouds [149] as
intermediate representations, and rely on differentiable/neural rendering to obtain the final
image result.

30

3.2 Two-Layered Model (PBO)

3.1.3 Monocular depth prediction

One of the first approaches for depth estimation from a single image involved hand-engineered
features and inference using Markov Random Fields (MRF) [123, 124]. Later, data-driven
methods were proposed that retrieve and warp similar samples from a database [68, 72]. With
the rise of deep learning, depth prediction from a single image became a popular and active re-
search field. Here we mainly discuss works that predict depth in a supervised fashion. Eigen
et al. [25] were first to propose a multi-scale CNN with a coarse and fine component, further
extended to other modalities such as normal maps and semantic segmentation [24]. Further,
Chakrabarti et al. [9] exploit CNNs to estimate depth as a combination of depth derivatives
of different orders. Deeper fully-convolutional networks [69, 76] were then proposed, namely
based on a ResNet [43] and DenseNet [53] architecture. Commonly, Conditional Random
Fields (CRFs) [80, 92, 93, 145, 155] are used as a way to enforce geometrical constraints.
Another line of works exploit semantics to facilitate depth prediction [61, 89]. Other works,
more recent than our publications [114, 115] focus on improving the performance on the
depth contours, as smooth edges is a commonly observed problem in CNN-based depth
prediction.

Deep networks have additionally been leveraged to generate 3D information from a single
image, as a single 3D object [14, 27, 150, 151], or a factored 3D scene [138]. Different from our
approaches, these methods do not focus on texture generation in the occluded regions. Other
related works exploit more extended inputs to predict 3D scene representations, such as a
panorama image [183], or depth information [40, 131, 148].

3.2 Two-Layered Model (PBO)

In PBO we break down the LDI prediction task into two subsequent steps, which are pre-
sented in Figure 3.2. First, given an input RGB image I, we jointly learn a standard depth
map d as well as a binary mask mBG (Section 3.2.2) indicating the background pixels in
the image. Then, the binary mask is multiplied with the RGB image and the predicted
depth map, to extract the not occluded background regions pĨBG, d̃BGq, which are fed to
the following step. Second, we employ RGB-D background completion via a deep GAN
network, conditioned on the masked modalities pĨBG, d̃BGq, which yields the background
layer pIBG,dBGq as explained in Section 3.2.3. The resulting LDI, comprised of two layers, is
thus given by the quadruple pI,d, IBG,dBGq. To evaluate this work, a large scale dataset with
LDI representations is needed, which was not available at the time of the submission [22].
Section 3.2.1 describes the acquisition of the data which will be used for the purpose of this
work.

3.2.1 Dataset generation

At the time of the submission of [22], there were no publicly available datasets containing
LDI representations, suitable for deep learning purposes. The closest related [45] provided

31

Chapter 3: Layered Depth Image Prediction

depth and mask
prediction

incomplete RGB-D
background

inpainted RGB-D
background

Gc

Gd

- multiplication

Figure 3.2. Overall two-layer method pipeline. (Top) A depth map and foreground mask are predicted simultane-
ously, via a fully-convolutional network. The RGB input and the predicted depth map are multiplied
with the mask, to discard the foreground pixels. (Bottom) The partial RGB-D information is inpainted
through a GAN architecture.

FG color BG color BG depthFG depth FG mask

a) LDI dataset generation b) dataset examples

Figure 3.3. Dataset generation. a) LDI extraction from multiple views. b) Examples from the generated dataset. FG:
Foreground, i.e. first RGB-D layer. BG: Background, including novel RGB-D pixels after dis-occlusion.
[©2019 Pattern Recognition Letters]

input semantic labels

room layout mask + inpainting our mask + inpainting

Figure 3.4. Illustration of semantic-based room layout separation vs. our adaptive foreground segmentation.
[©2019 Pattern Recognition Letters]

a dataset of only 20 panoramic LDIs 1. Hence, we decided to automatically generate an
appropriate dataset for LDI learning, based on readily available RGB-D datasets that contain
data sequences with associated camera poses.

We base our LDI dataset generation in an image-based rendering approach, that projects
multiple available views of the scene onto a reference frame, Figure 3.3, a). This populates
the reference frame with new RGB-D pixels, corresponding to occluded segments, i.e. that
were not visible in the reference (source) view. For each frame we assume the camera
pose is given. We used 40k RGB-D frames with the respective camera poses. To ensure
continuity in the generated results – which facilitates learning with a CNN – we require

1http://visual.cs.ucl.ac.uk/pubs/casual3d/datasets.html

32

3.2 Two-Layered Model (PBO)

object instance annotations, to make sure that RGB-D values that correspond to the same
object are stored in the same layer. Given these requirements on data modality, we base
our dataset generation on a synthetic indoor dataset such as SceneNet [98], that consists of
photorealistic environments.

The LDI extraction algorithm is as follows. We leverage a moving window of size F “ 20
which extracts subsets of consecutive RGB-D frames corresponding to the same scene. We
define the middle frame as reference view, fref and refer to the remaining ones as supportive
frames. Then, we warp each pixel u of the supportive frames fi into the reference view

uwarped “ π
`

Tref
i π

´1 puiq
˘

, (3.1)

where πpq denotes perspective projection and Tref
i represents the transformation from fi to

fref. We use uwarped as the reference frame coordinates of the re-projected colors, instance
labels and depth values. The moving window is incremented with a step of size 1, leading to
an F´ 1 overlap between consecutive frame subsets.

Along with pixel coordinates, the perspective projection gives the new depth values, cor-
responding to metric distance from a point in 3D to the reference camera plane. Since the
SceneNet dataset [98] provides ray lengths r instead of depths d, the following conversion is
applied to obtain the desired depth maps

dpuq “
rpuq

||K´1 9u||2
, (3.2)

where K denotes the camera intrinsics and 9u represents a pixel in homogeneous coordi-
nates.

Once the depth values for the occluded background regions of the reference view are com-
puted, i.e. warped from the support views, we want to select the pixels that will populate the
background layer. Therefore we apply the following validity conditions:

1. The candidate depth value should be larger than the respective foreground (first layer)
pixel at that location.

dwarpedpuwarpedq ą d
FG
ref puwarpedq (3.3)

2. The candidate pixel and the respective foreground pixel should have a different object
id.

idwarpedpuwarpedq ‰ id
FG
ref puwarpedq (3.4)

3. The candidate pixel is a potential background pixel, only if the associated object instance
does not occlude any other objects at any pixel location.

Finally, at each pixel location we keep in the background layer the pixel with the smallest
warped depth among all valid candidates. We additionally extract a binary foreground mask,
indicating pixels in the image whose reference instance label is found in the list of occluding

33

Chapter 3: Layered Depth Image Prediction

instances. In summary, the automatically acquired dataset consists of 40k samples, including
a two-layer representation of RGB, depth, as well as a foreground segmentation mask. Figure
3.3, b) shows a few examples from the generated dataset. To obtain separate training and test
data we utilize the split as proposed in SceneNet.

Note that the result of our method differs from a trivial room layout separation, which
would instead give an “empty box” representation of the scene. In our particular application
involving small vintage point perturbations, some object instances should practically be
considered background, provided that they are not occluding other structures. Exemplary, in
Figure 3.4 we expect to reveal segments of the occluded chair instead of just floor, during the
dis-occlusion of the front table.

We empirically found out that the aforementioned LDI extraction algorithm does not work
on real datasets like ScanNet [16], since not enough overlap is created between consecutive
views and the dense segmentation annotations are not perfectly accurate. Nevertheless, while
the ground truth generation relies on synthetic data, our method does generalize to the real
domain as shown later in the experiments section.

3.2.2 Joint depth map and foreground mask prediction

The goal of this stage is to learn a mapping from an RGB image I to a conventional depth map
d, which, combined with I, will represent the first layer of the LDI. We simultaneously aim to
learn a guiding background maskmBG that would later discard the foreground segments,
thus indicating the regions of interest for the upcoming background completion. This can
be interpreted as implicit learning of an adaptive threshold for the foreground-background
separation, as a function of the distance from the camera, occlusion, as well as the structure
continuity. For example, in Figure 3.2, wall regions that are closer to the camera compared to
the brown chair, will still be categorized as background, since they are smoothly connected
with the remaining part of the wall and do not occlude other objects.

For the purpose of depth and mask prediction, we employ a fully convolutional ResNet-
50 architecture originally proposed by [76] for monocular depth prediction. The original
network is extended with one additional up–projection block, which preserves the input
resolution. We train our model on both tasks, separately and jointly. The latter shows
superior performance for both tasks, which is intuitively justified as the underlying tasks
are very related. The two tasks share all the network weights, except from the last layer,
which branches out in two separate result layers. To supervise depth prediction we employ
the reverse Huber loss LrHpd, d̂q, following [76], whereas the foreground segmentation is
supervised through a L2–norm L2pmBG, m̂BGq. We train jointly by combining the respective
depth and segmentation losses with equal weight

Ldm “ LrHpd, d̂q ` L2pmBG, m̂BGq, (3.5)

where d,mBG denote the ground truth maps, while ˆ̈ indicates predictions. Further, we apply
an arbitrary threshold of 0.55 on the regressed masks to distinguish between background and

34

3.2 Two-Layered Model (PBO)

foreground. This threshold slightly favors classification as foreground to prevent undesired
foreground segments from interfering with background structures during completion, while
discarding background parts has a smaller negative effect on completion. Moreover, we
observe that applying erosion on the resulting masks, further removes undesired false
positives, i.e. wrong foreground predictions, typically located around the object boundaries.

3.2.3 RGB-D background inpainting

Predicting color and depth information in the occluded regions introduces additional ambigu-
ities, as it is not easy to infer the unknown scene content and multiple solutions are possible.
Hence, background inpainting is rather a hallucinatory task, that consists in creating plausible
content conditioned on the available visible regions. Ideally, we want to generate realistic
background images, that preserve texture details even on the more ambiguous dis-occluded
parts. Therefore, we tackle the inpainting problem via a GAN-based approach, as GANs have
shown promising results in generating realistic images, including RGB inpainting tasks [55,
58, 108].

Given a masked (incomplete) RGB-D input pĨBG, d̃BGqwe aim to obtain a complete RGB-D
result pIBG,dBGq, representing the background layer of a scene. Practically, pĨBG, d̃BGq are
obtained as ĨBG “ mBGI, d̃BG “ mBGd. We adopt a state-of-the-art model [58] and explore
diverse ways of extending to the RGB-D case. For the generator G and the discriminator
D we utilize similar architectures as in [58]. Written in its general form the adversarial loss
leveraged in our inpainting GANs is

La “ Ex,yrlogDpx,yqs ` Exrlogp1´Dpx,Gpxqqqs (3.6)

Following a standard GAN formulation, G optimizes the following objective

Ĝ “ min
G

max
D

La ` λL1L1py´Gpxqq. (3.7)

The L1 loss measures the reconstruction error between the generated and ground truth
samples.

On one hand, a shared RGB and depth completion learning could potentially strengthen their
consistency. The representational difference between the two, however, promotes distinct
learning. To examine the adverse reactions of these two motivations, we analyze various
weight-sharing compositions.

Combined RGB-D completion In the combined approach, we employ a single generator
architecture with four input and output channels (RGB-D). The discriminator receives eight
channels, including the incomplete RGB-D prior as well as the generated or real RGB-D
image. The objective function LRGB´D follows Eq. 3.6 and 3.7, with x “ ĨBG ‘ d̃BG and
y “ IBG ‘ dBG, where ‘ denotes concatenation.

35

Chapter 3: Layered Depth Image Prediction

Separate RGB and depth completion In the separate training approach we employ two
separate generators and discriminators for color Gc,Dc and depth Gd,Dd, without any
shared parameters between the respective RGB and depth parts. Following the same equa-
tions, here Lc with x “ ĨBG and y “ IBG, as well as Ld with x “ d̃BG and y “ dBG are
optimized independently.

Separate RGB and depth completion with pairing This final GAN model is built upon
the latter approach and further combined with an additional multi-modal discriminator
network which we call pair discriminator Dpair, that aims to encourage inter-domain consis-
tency between RGB and depth. Dpair receives an RGB-D input, either from the ground truth
data or the generator and distinguishes real RGB and depth correspondences. The respective
generators Gd and Gc receive a signal from their separate discriminators as well as from the
pair discriminator, thus optimizing an additional term

Lpair “ EĨ˚BG,I˚BG
rlogDpairpIBG,dBGqs ` EĨ˚BGrlogp1´DpairpGcpĨBGq,Gdpd̃BGqqqs, (3.8)

where I˚ denotes the respective tuple pI,dq for notation simplicity. The final Ĝc and Ĝd
objectives then become

Ĝc “ min
Gc

max
Dc

Lc ` λpair min
Gc

max
Dpair

Lpair ` λL1L1pIBG,GcpĨBGqq (3.9)

Ĝd “ min
Gd

max
Dd

Ld ` λpair min
Gd

max
Dpair

Lpair ` λL1L1pdBG,Gdpd̃BGqq. (3.10)

3.2.4 Implementation details

For the background mask erosion we used a cross–shaped structure with a size of 5ˆ 5 pixels.
For the joint depth and mask prediction we used the Adam optimizer with a batch size of 8
and a learning rate of 0.001. All the inpainting discriminators adopt the C64-C128-C256-C512
architecture as proposed in [58], where C denotes a Convolution–BatchNorm–ReLU block
followed by the number of filters. The loss weights are namely λpair “ 0.5 and λL1 “ 100.
In all the inpanting models, we normalize the input color and depth images separately to
r´1, 1s, and then set the inpainting regions to ´2. The network then learns to identify image
regions to be inpainted. For all the inpainting variants we train with a batch size of 1 and set
the learning rate to 0.0002.

Though an interesting proof of concept for RGB-D inpainting on occluded regions, the naive
two-layer method [22] is not ideal. Two layers are not sufficient to represent complex scenes,
with multiple levels of occlusion. Moreover, the occluded areas of objects that fall on the
foreground layer will not be covered. Hence, we introduced the following improvement in
the method design, which will be explained in Section 3.3.

36

3.3 Object-Driven Multi-Layer Scene Decomposition (OMLD)

recomposed scene

RGBA-D object completion

RGBA-D background

class scores

mask
scores

MDP

mask union

completion

layout

...

depth prediction
recompose

- concatenate

...

Network B

Network A

MDP - Min Depth Pooling

Network C pred displaced
instance

GT depth map

��

- displace

⊙��

⊙��

GT displaced
instance

- add- instance-wise
- image-wise

Figure 3.5. OMLD scene layering framework. Left: Network A (top) completes the occluded parts for each detected
instance, resulting in an RGBA-D image. Network B (bottom) generates an RGBA-D representation
for the layout (empty scene). Right: The outputs are concatenated and fed to the Minimum Depth
Pooling (MDP) layer, that recomposes the scene an gives the first visible layer. The displacement
of the recomposed first layer depth of every instance, from the ground truth depth is used in the
re-composition loss to supervise Network C and produce the final result. [©2019 IEEE]

3.3 Object-Driven Multi-Layer Scene Decomposition (OMLD)

Since scenes come with varying levels of complexity, assuming a pre-determined number of
layers to represent them is not ideal, as it limits their flexibility and representational power.
In this section we explain the proposed multi-layer scene decomposition method, which is
based on an object aware approach and therefore does not impose a restriction in the number
of the generated LDI layers. Here the number of layers is controlled by the number of the
detected object instances in the current scene. Starting with an RGB image I we formulate
a framework that first decomposes the scene in the respective objects and layout (empty
scene room). Then, each detected component is completed to its amodal visibility using
two parallel networks for object completion (Section 3.3.2) and layout completion (Section
3.3.3). Finally, the set of generated amodal layers is fed to a re-composition component to
enforce global scene consistency (Section 3.3.4). To supervise our framework, we need ground
truth RGBA-D representations for each object tI˚1 , I˚2 , ..., I˚Nu and the room layout I˚BG in their
amodal visibility. Section 3.3.1 describes the ground truth data generation procedure, based
on layer-wise rendering from available 3D scenes.

3.3.1 Data generation

Our goal of object-wise layer inference implies the need for additional ground truth data for
the supervision of the learned models, i.e. RGBA-D representations of every object and layout
of the scene, which we acquire automatically from existing datasets. Different from the data
generation approach for the two-layer method [22], here we employ a mesh-based scene
rendering approach. The benefit of the 3D mesh is that it captures all the available information
in the scene, while the former image-based rendering only captures information which is
casually available in the given set of consecutive image frames. The rendering algorithm
works as follows. For every frame, each instance which is visible in that view is rendered

37

Chapter 3: Layered Depth Image Prediction

separately, in the form of an RGBA color image, depth map as well as an object category
label. Thereby, we utilize the dense semantic and instance annotations, accompanying the
3D meshes of the respective datasets, to extract the vertices of each visible object in every
view frame. Structural elements are identified by their semantic category (floor, wall, ceiling,
window) and grouped together to compose the layout layer representing the empty room. In
case of multiple structural instances falling on the same pixel, the point closer to the camera,
i.e. lowest depth, is kept. Note that we discard all instances that were not originally visible
in a certain view. For instance, an object located behind the enclosing wall of the currently
visible room is not desired as part of the compositional layers of that view. The proposed
semantic-aware rendering offers the additional advantage – compared to [22, 139] – that
it enables learning of class specific features, which might turn helpful in regressing more
realistic objects in the synthesized LDI layers.

In this work we render from two different 3D datasets, namely the synthetic SunCG [131]
and the real Stanford 2D-3D-S [3]. Both datasets contain scene meshes together with 2D
modalities (color, depth, instances, semantics). The latter suffers from the presence of holes
and missing surface parts –a typical real-world mesh nuisance – which in our task results
in incomplete object renderings. Therefore, we leverage a post-processing step, to filter
the rendered layered images, based on the amount of overlap between layers. Thus, when
the number of overlapping pixels among all the layers surpasses an empirically chosen
threshold, the respective layered representation contains enough novel information in case
of dis-occlusion. The purpose of utilizing a synthetic dataset [131] is for a fair evaluation,
given pixel-perfect ground truth, while the real-world dataset [3] demonstrates applicability
in a real setting. We show in Figure 3.6 two examples from the automatically generated
datasets.

The generated object and layout layers can be easily arranged in an LDI representation, using
the depth maps to sort the layers at every pixel location.

3.3.2 Object completion

The objective of the object completion network (Network A, Figure 3.5) is to establish a
mapping from the modal RGB perception of an object, i.e. occluded object in the input
image I to its amodal RGBA-D perception, i.e. complete representation I˚i . We additionally
utilize a binary modal mask m̂i as a prior for each object, as in other ambiguous tasks [23,
27]. Additionally, we incorporate semantic class labels, to encourage class-aware learning.
Network A is thus composed of two branches (Figure 3.7), which receive namely the input
RGB image concatenated with the amodal mask of an object Ĩi “ I ‘ m̂i, as well as the
associated class score ĉi; and predicts the amodal RGBA-D representation of that object,
amounting to a five-channel result Î˚i “ pÎi, d̂iq. This object completion model is applied
instance-wise, for each available modal mask. The architecture details are provided in Section
3.3.5. Note that different from similar works in object completion [23], we feed whole images
in Network A instead of regions of interest (RoIs) focused on each instance. Though RoI
cropping leads in general to more efficient computation, we argue that, first, by cropping
and resizing one alters the focal length of an image, which weakens depth perception, as it

38

3.3 Object-Driven Multi-Layer Scene Decomposition (OMLD)

object layers layoutoriginal view

co
lo

r
de

pt
h

in
st

an
ce

class labels door sofa sofa carpet table

(a) Based on SunCG

object layers layoutoriginal view

class labels table table shelf chair table chair shelf sofa

co
lo

r
de

pt
h

in
st

an
ce

(b) Based on Stanford 2D-3D-S

Figure 3.6. Illustration of the automatically acquired datasets. For every view frame in the respective datasets,
we provide the RGBA, depth, instance segmentation and class categories. All modalities are available
for full-image content, object-wise layers as well as the layout.

lessens global context and hinders the understanding for object extent and scale. Second,
fixed-size RoIs limit the generation resolution, which mostly affects the texture details of
large objects.

Taking into consideration real world input conditions where ground truth modal masks are
not given, we practically leverage predicted masks from Mask R-CNN [42], both at training
and inference time. At training time, to match each ground truth instance mask with the
closest mask from the set of Mask R-CNN predictions, we employ intersection-over-union
(IoU). We however discard matches that have an IoU ă 0.3, to avoid wrong correspondences.
We then train the object completion network using the remaining instances, for which we
have a (valid) ground truth – prediction pair. We incorporate a L1 loss objective on the
amodal RGBA-D predictions Î˚i , which is weighted by a relevance map γ

Lcompletion “ ||γpI
˚
i ´ Î

˚
i q||1. (3.11)

The need for a dense weighting γ arises from the fact that we want to avoid learning shortcuts,
as different image regions impose different difficulty level for the task at hand. For instance,

39

Chapter 3: Layered Depth Image Prediction

mask16classes
1
1 4

3 12

64

...

96064

12x16x1024 class and color features

ResNet 50
backbone

RGBA

decoder

Figure 3.7. Overview of the proposed object completion encoder architecture. Class probabilities branch (left)
and image branch (right) are concatenated along channels in the bottleneck layer. [©2019 IEEE]

the network could learn to just copy information from the input to the output, considering
that a considerable fraction of the image contains visible object regions. Additionally, it can
easily learn to generate zeros since an object’s extent typically spans a small fraction of the
whole image. Hence, we want to set a higher error influence in pixels close to the object
appearance, were dis-occlusions are expected. Thus we set γ “ 0.7 in the visible area of the
object in the original image including a neighbourhood (by applying a dilation of size 31ˆ 31
in the ground truth modal mask), γ “ 1.5 in the occluded regions of that instance, and γ “ 0.2
otherwise. At inference time, each mask and class label prediction from Mask R-CNN [42]
is fed to the object completion network together with the input RGB image, to obtain each
amodal RGBA-D object layer.

The task of object completion from a single RGB input imposes a set of concurrent challenges.
First, copying the modal area might represent already a relatively good shortcut solution,
though the occluded areas are not properly learned. Second, the guiding modal masks
are not perfect around the edges, therefore the network has to differentiate between the
object instances along boundaries. Therefore, an additional pre-training step is employed,
to encourage the network in learning features of object distributions in complete visibility
and generate plausible outputs. Thereby prior to learning the original completion task, we
train Network A as an Auto-Encoder Î˚i “ fautopI

˚
i q (i.e. in an unsupervised way) on amodal

RGBA-D object representations
Lauto “ ||I

˚
i ´ Î

˚
i ||1. (3.12)

Here we utilize only object instances which do not touch the image borders to guarantee full
object visibility. Further, we freeze the decoder weights (including the bottleneck layer) and
re-train the encoder – this time for object completion – using the supervision scheme from Eq.
(3.11). This Auto-Encoder based initialization helps the completion task by encouraging the
partially occluded objects to share the same latent space as their respective complete RGBA-D
representation.

3.3.3 Layout prediction

The goal of the layout prediction network (Network B in Figure 3.5) is to learn a mapping
from the input RGB image I to the corresponding RGB-D scene layout I˚BG, i.e. the empty
room of the scene at hand. In addition to I, we utilize a standard predicted depth map d̂ as a

40

3.3 Object-Driven Multi-Layer Scene Decomposition (OMLD)

prior, given that empirical findings suggested that this gives considerable improvement on
the depth layout prediction. Note that such input did however hinder the performance on the
object completion counterpart, which we relate with the smeared out object boundaries on
predicted depth maps at the time of publication. Further, the layout prediction model would
benefit from a binary mask indicating the background/foreground areas. We estimate such
background mask as the union of the full set of predicted object modal masks m̂BG “

Ťn
i“1 m̂i.

Thus our model receives an RGBA image I, concatenated with a learned depth map d̂ (in our
experiments we leverage [76]), as well as the obtained background mask m̂BG. Different from
the background inpainting in PBO (Section 3.2.3), here we do not occlude the non-structural
regions while feeding the input image. Since the predicted masks are noisy variants of the
true masks, they can potentially leave out relevant segments from the input.

We supervise the layout prediction network via an adversarial loss [38] to encourage gener-
ation of realistic layouts. Moreover, we put emphasis on the consistency of the generated
edges, such that the room contour – an interesting property of the layout – does not get
overlooked by the network. A similar motivation has been discussed in a depth completion
task [169], where occlusion boundaries are estimated as an intermediate step to improve the
final result. Instead of explicitly acquiring and supervising such boundaries [169], we utilize
a perceptual loss term Lp [64]. The synthesized and ground truth layouts are separately
fed to a VGG-16 [129] network, trained on a classification task on ImageNet [18]. Then, the
perceptual loss L1 computes the distance between the respective VGG-16 feature maps from
ground truth and predictions. Here we leverage the features at the end of the first block,
given that it captures the edges as desired. Thus, the total loss objective becomes

Llayout “ λrLr ` λpLp `min
G

max
D
pLaq (3.13)

Lr “ ||IBG ´ ÎBG||1 ` ||dBG ´ d̂BG||1 (3.14)

Lp “ ||φ1pIBGq ´ φ1pÎBGq||1 (3.15)

La “ EĨBG,IBGrlogDpĨBG, IBGqs ` EĨBGrlogp1´DpĨBG,GpĨBGqqqs, (3.16)

where ĨBG “ I‘ m̂BG ‘ d̂, ÎBG, d̂BG denote the output color and depth respectively, and φ1

is the resulting feature map of the first VGG-16 block.

Network B is essentially implemented as a U-Net [118] based architecture with skip connec-
tions, whose details are provided in Section 3.3.5.

3.3.4 Image re-composition

So far, each layer is inferred independently, without awareness of the other object instances
or the enclosing room layout. This becomes particularly relevant as we try to re-compose
the entire scene. The goal of the third component in the OMLD model, is thus to improve
the global depth consistency of all regressed scene parts (objects and layout). The algorithm
first performs concatenation of all the generated layers and, at each pixel location, extracts

41

Chapter 3: Layered Depth Image Prediction

the RGBA-D value from the layer with the minimum depth, i.e. essentially a z-buffer. We
name this step minimum depth pooling (MDP). The result of MDP is an RGB image – ideally
identical to the original input – in addition to the corresponding visible depth map, as well as
an index map imap that represents the argmin of depth, which indicates the instance index
from where the information in that pixel location is copied. Next we explain how we use
the obtained information from MDP to impose structural coherency between the generated
multi-layer representation and the original input image.

Since learned models for monocular depth prediction fairly learn a global understanding for
depth, which is aware of the whole image content, we use a conventional inferred depth map
d̂ as a prior for the layer sorting task. For each layer l, we extract the region in d̂ in which l is
the front instance, using a binary maskml, which is one if imap “ l, and zero otherwise. We
then incorporate a re-composition block (Network C), that consumes the predicted instance
depth d̂l, concatenated with the masked conventional depth prediction d̂ dml from [76].
Then we define a set of depth displacements δl, as the distance between the mean ground
truth dl and the mean predicted d̂l layer depth (overml)

δl “

ř

ml d dl
ř

ml
´

ř

ml d d̂l
ř

ml
, (3.17)

where d is the element-wise multiplication. Further, we obtain a pseudo ground truth depth
for each instance l, using the originally predicted depth layer as dδ,l “ d̂l ` δl and optimize
the following objective

Lrecompose “ ||dδ,l ´ d̂l||1. (3.18)

This shifts the predicted depth to reach global consistency, while not affecting the local
characteristics of each object.

Our experiments suggest that the proposed MDP-driven re-composition loss improves both
the modal areas of the objects, and the occluded parts, given that it preserves the shape of the
objects, while allowing the entire layer to shift towards the right direction.

3.3.5 Implementation details

This section provides the implementation details of the OMLD model.

Network A The object completion network accepts two inputs, namely a concatenation of
the input RGB image with the modal mask score, and a vector of class scores, as predicted
from Mask R-CNN [42], Figure 3.7. Network A is essentially a ResNet-50 [43] backbone,
where the original fully-connected layer is discarded. We append a convolution layer instead
with outchannels “ 960 channels. The class branch consists of two deconvolution layers of 64
channels each applied consecutively on the class scores, which is a feature vector with size
equals to the number of classes. The results of both branches are then concatenated along

42

3.4 Evaluation

the channel dimension, followed by layer normalization [6]. Further, the resulting feature
is processed via a decoder architecture which contains five up-projection layers [76]. The
network used for the Auto-Encoder pre-training has the same architecture as the object
completion network, however, given the partially different input modalities, we learn the
completion encoder from scratch instead of fine-tuning its Auto-Encoder counterpart.

Network B The layout network follows a U-Net [118] composition, similar to [58]. The
generator G is an architecture with skip connections which contains seven down-sampling
(convolution blocks) and up-sampling level (deconvolution blocks), each layer having a
stride of two. The number of output channels starts at 64 and is further doubled after each
convolution layer. Similarly, each deconvolution layer halves the feature map channels. After
each deconvolution, the output feature map is concatenated with the feature map in the
encoder, which has the same resolution. The discriminator D contains six convolution blocks
and a final fully-connected layer. The discriminator feature maps contain namely 64, 128, 256,
512, 512 and 512 channels. All blocks in G and D contain a (de)convolution layer followed
by batch normalization and leaky ReLU activation. The loss weights used for training are
λr “ 100 and λp “ 25.

Network C The re-composition network consists of three convolutional layers with filter size
3ˆ 3, each followed by a ReLU activation.

Zero-padding on image borders As LDIs are mainly intended for view synthesis, during
viewpoint change the novel image contains empty regions on the borders, for content that
was beyond the visible frame from the vintage point. To provide some additional context
in the original view, we add zero padding to our input images prior to being processed
by the network. Hence, the original frame is spanned by predicting the originally padded
surroundings. In our experiments we use horizontal padding bands of 16 pixels and vertical
bands of 12 pixels.

Training We train Network A, B and C separately, using the Adam Optimizer [70] with a
learning rate of namely 1 ¨10´4 for Network A, 2 ¨10´3 for Network B and 1 ¨10´3 for Network
C. The batch size is 4 (resolution 384ˆ 512) for the experiments on SunCG and 8 (resolution
256 ˆ 256) for Stanford 2D-3D-S. The whole training takes 2 to 3 days on an Nivida RTX
GPU.

3.4 Evaluation

This section presents the evaluation protocol and the performed experiments to assess
the performance of the proposed methods, PBO and OMLD. We report qualitative and
quantitative evaluation in three different tasks. First we evaluate the direct outcome of
the methods, i.e. the image and depth layers. Second, we evaluate a novel view synthesis
application after warping the generated layers in a different view. Additionally, we introduce
the task of image manipulation from an LDI, in which we can remove components of choice

43

Chapter 3: Layered Depth Image Prediction

L1 loss L1 + GAN loss

(a)

(b)

(c)

Figure 3.8. Qualitative comparison on the generation performance of the pixel-wise L1 loss (left) and the adversarial
variant (GAN loss + L1) (right). Red box: Regions of interest. [©2019 Pattern Recognition Letters]

from the original scene, exploiting the semantic compositional nature of our approaches.
Note that the latter task is not possible with other LDI generation works.

PBO We evaluated the two-layer model on the SceneNet [98] and NYU depth v2 [102]
datasets. For SceneNet, we use our ground truth background data described in Section 3.2.1,
therefore we present both qualitative and quantitative results. In absence of ground truth
data in the real domain, we only show qualitative results on NYU. We compare against two
baselines for LDI generation [139] and view synthesis [139, 178].

OMLD We evaluated the object-driven model on two public benchmark datasets: SunCG
[131] and Stanford 2D-3D-S [3], using the generated LDI dataset explained in Section 3.3.1.
To obtain dense layers for the sparse object layers, we merge the output objects into a layered
representation, in accordance with the original LDI idea [125]. In each pixel, the first layer
represents the first visible point along the ray-line, the second layer relates to the next visible
surface point and so on. The merging is done by an extended version of MDP, which sorts
the depth of the object-wise layers, instead of simply returning the minimum. We evaluate
OMLD against two baselines, namely the proposed PBO and Tulsiani et al. [139].

3.4.1 Conventional depth and background mask

We train the joint depth map and foreground segmentation prediction task through a subset
of around 30k RGB-D samples from the train split of the SceneNet dataset. Further, we test
on around 500 images, from the validation split. For the depth prediction task we obtain an
absolute relative error (REL) of 0.184. The mask prediction task is instead evaluated using
intersection over union (IoU), which leads to an accuracy of 0.71 for foreground and 0.93 for
background.

44

3.4 Evaluation

Method
Region

RGB metrics Depth error

SSIM Ò RMSE Ó PSNR Ò REL Ó RMSE Ó

Tulsiani et al. [139]
whole 0.781 30.76 18.37 0.511 3.731

inpainted – 67.33 11.57 0.606 3.893

PBO combined
whole 0.914 20.74 21.79 0.156 0.574

inpainted – 56.75 13.05 0.197 0.704

PBO separate
whole 0.918 21.78 21.37 0.151 0.555

inpainted – 60.78 12.46 0.175 0.633

PBO separate with Dpair
whole 0.919 21.76 21.38 0.149 0.549

inpainted – 57.94 12.87 0.172 0.622

Table 3.1. Comparison of our GAN versions with [139], on SceneNet. Inpainting applied on learned background
masks and depths. [©2019 Pattern Recognition Letters]

3.4.2 Background inpainting

Quantitative results on the background layer generation for PBO are reported in Tables 3.1
and 3.2. In the former, the final results are products of our full pipeline that consumes a single
RGB input. Here the first layer depth and the background mask are predicted as described
in Section 3.2.2. In the latter, we feed ground truth depth maps and background masks in
the background inpainting model. We present a comparison against [139] as the only LDI
generation work at the time of publication. We train this method in SceneNet, on the same
splits as ours, utilizing the official code repository from the authors. In addition, we ablate
the different weight-sharing variants introduced in Section 3.2.3. For this purpose, to evaluate
the generated depth maps we compute two common metrics used in depth prediction works,
such as the relative error (REL) and root mean square error (RMSE). To assess texture image
generation performance, in addition to the RMSE error we utilize structural similarity index
(SSIM) and peak signal to noise ratio (PSNR). The errors are measured in two different
settings, one for the entire image, and the other on the inpainted background regions only.
As Table 3.1 shows, we outperform [139] in all metrics. On the first layer depth, their relative
error is 0.395, so considerably higher compared to PBO. Note that [139] leverage a self-
supervised LDI prediction approach, via view synthesis, which makes depth estimation a
harder task. This explains the generally large error gap for depth.

The ablation study in Tables 3.1 and 3.2 shows that the combined RGB-D inpainting variant
performs the poorest in terms of depth prediction. In contrast, the accuracy of the RGB
inpainting has a slight advantage compared to the other methods. We believe that the RGB
counterpart is dominating the learning signal. Textural features from the color domain could
induce unnecessary gradients for the depth prediction task, thus having a negative impact on
depth regression performance. Moreover, one could argue that the color inpainting benefits
from depth information, which provides hints for the separation between different structures.

45

Chapter 3: Layered Depth Image Prediction

Method
Region

RGB metrics Depth error

SSIM Ò RMSE Ó PSNR Ò REL Ó RMSE Ó

PBO combined
whole 0.891 19.45 22.35 0.044 0.189

inpainted – 51.32 13.92 0.090 0.349

PBO separate
whole 0.900 20.09 22.07 0.018 0.100

inpainted – 53.98 13.49 0.041 0.193

PBO separate with Dpair
whole 0.903 19.76 22.22 0.017 0.095

inpainted – 52.70 13.69 0.041 0.197

Table 3.2. Analysis of our GAN versions, on the SceneNet dataset [98]. Inpainting module applied on ground truth
masks and depths. [©2019 Pattern Recognition Letters]

The separate RGB and depth approaches, with and without pairing lead to a clearly better
performance for background depth inpainting, particularly on the inpainted background
region, which is of high interest. Further, the pairing loss Lpair brings an improvement in
the depth inpainting task, particularly noticeable when learning from predicted depths and
masks (Table 3.1). Figure 3.10 demonstrates the ablation of the pair discriminator Dpair
visually. One can observe that the respective RGB and depth counterparts in the inpainted
background are better aligned in the variant that leverages Dpair.

Figure 3.8 illustrates the qualitative difference of using a GAN loss term in addition to the
pixel-wise reconstruction loss L1. Notably, the model based purely on L1 loss generates
relatively accurate images, while it fails to capture local and global real world visual patterns,
such as realistic object shapes (e.g. the door in image a), edge sharpness (example a and c),
and fine texture details (b). Also the depth maps tent to be slightly sharper in the combined L1

and GAN variant. This motivates the choice of using an adversarial approach in this work.

As expected the background inpainting performance is better when a more accurate depth
(here ground truth) is available for the first layer (Table 3.2 compared to Table 3.1). Notably,
the 2nd layer relative error on Table 3.2 is in a very low range, while the relative errors
in Table 3.1 are comparable to the inherent first-layer depth prediction error from Section
3.4.1. Moreover, the relative errors from the depth inpainting results are even lower than
those of first-layer depth map prediction. While conventional depth map predictors usually
learn a decent absolute scale, difficult regions such as object borders tend to be smeared,
which introduces additional errors, compared to the simple object-less background layer.
Interestingly, the proposed PBO method is a flexible asset that can be easily integrated into a
regular depth prediction model, without affecting the accuracy. In particular, as the quality of
CNN-based depth prediction improves, the LDI generation becomes more accurate, without
major changes in the proposed method.

Figure 3.9 demonstrates qualitative results of the background inpainting task on SceneNet.
Here the only input is the RGB image, i.e. the first-layer depths and masks are predicted from

46

3.4 Evaluation

RGB input inpainted BG ground truth BG ground truth BG ground truth FG inpainted BG depth prediction

Figure 3.9. Qualitative examples of foreground removal and RGB-D background inpainting, evaluated on
SceneNet [98], with the respective ground truth. Black: invalid pixels. [©2019 Pattern Recognition
Letters]

original without pair discriminator with pair discriminator

Figure 3.10. Qualitative results of the background completion RGB-D alignment. (Left) Original input. (Center)
Result without pair discriminator. (Right) Result with pair discriminator.

the first PBO stage. Though the background ground truth is not always available, as some
regions have not been visible from any viewpoint during warping, the generated images are
always complete. Interestingly, the model can occasionally hallucinate a different object from
the ground truth, which in turn is equally plausible considering the occlusion ambiguity,
e.g. second example, our model generated a door as opposed to the ground truth window.

Figure 3.11 provides qualitative results on the mask prediction, depth estimation and RGB-D
background inpainting on the real NYU depth v2 dataset [102], to illustrate the method’s
capability to generalize to real environments. Here the ground truth background is not
available. Nevertheless, one can judge on the inpainting plausibility by observing the
generated images. To bridge the domain gap between synthetic and real data, we fine-tune
the weights learned on SceneNet with classic inpainting and segmentation tasks. As in a
classic inpainting problem, we apply random occluding masks on the NYU images to mimic
an occlusion scenario and train the GAN to reconstruct these missing regions. Similarly, the
background mask prediction task is fine-tuned on the real domain, using NYU semantic labels
to separate foreground (non-structural categories) from background (structural categories).

47

Chapter 3: Layered Depth Image Prediction

Input image mask BG color BG depthFG depth

Figure 3.11. Qualitative examples of background mask prediction and RGB-D background inpainting on NYU
depth v2 [102]. [©2019 Pattern Recognition Letters]

For the first-layer depth prediction task, we train the respective model (pre-trained on
ImageNet) fully on NYU, as depth data is readily available in this dataset [102].

3.4.3 Layered representation

We evaluate the OMLD method against state-of-the-art work in monocular LDI generation,
which at the time of publication were PBO and Tulsiani et al. [139]. The comparison against
PBO evaluates the relevance of the multi-layer representation, which assumes multiple
levels of occlusion in the image. Furthermore, the comparison with Tulsiani et al. [139]
confirms the advantage of exploiting a direct supervision for the LDI generation. For a fair
comparison against the two-layer baselines, we evaluate OMLD using our first two layers
in the quantitative and qualitative evaluation. Additionally, we report the results on all
layers separately on a plot figure (Figure 3.15). Further ablation and qualitative evaluation
on intermediate results can be found in appendix B. We evaluate our results on two metrics,

48

3.4 Evaluation

input image 1st layer 1st layer2nd layer 2nd layer

ours ground truth

Figure 3.12. LDI prediction results on SunCG. Left: The input color image. Center: Our predictions for the first
two layers, obtained after sorting the object-wise layers. Right: Ground truth, as extracted from the
mesh-based rendering.[©2019 IEEE]

Mean Pixel Error (MPE) and Root Mean Square Error (RMSE). The measurements for each
layer are done separately, since the difficulty is expected to depend on the layer index.

In these experiments, we use Mask R-CNN [42] predictions for the mask and class scores
as input to our framework. For Stanford 2D-3D-S, we employ a network trained on the
MS-COCO dataset [88]. For our experiments on SunCG, we finetune the network pre-trained
on MS-COCO, using the NYU 40 class categories. As for the input depth predictions, we
use the model from Laina et al. [76], respectively trained on SunCG and Stanford 2D-3D-S.
We chose [42] and [76] as common baselines with available code. We also make this choice
for fairness of comparison, since in PBO [22] we also use [76] to predict the first layer depth.
However, OMLD is practically agnostic to the choice of these models.

SunCG All experiments on the SunCG dataset are carried out on the same splits, with 11k
images on the training set and 2k on the test set. The quantitative results are shown in
Table 3.3. As the first color image represents the input itself, we only report depth for the first
layer. OMLD clearly outperforms [139] and PBO in all metrics, considering both the depth
and color component. In addition, we perform an ablation on the most relevant components
of OMLD, such as semantic-awareness, the perceptual loss Lp, and the re-composition block.
One can observe an improvement from adding each component, with a more noticeable
effect on depth prediction.

We refer the reader to Figure 3.13 for a visual comparison between the methods, with a
particular qualitative difference. As OMLD learns the depths instance-wise, it overcomes the
problem of smeared object boundaries, which is a common nuisance of many CNN-based
depth estimators. Sharp object edges are a desired property in view synthesis in particular,
as smooth edges lead to very noticeable shape deformations in the warped images. More
qualitative examples generated by OMLD can be seen in Figure 3.12.

Stanford 2D-3D-S From all the acquired data samples from 2D-3D-S, we extracted 14k
images with considerable ground truth coverage, namely 13k for the training set and 1k for
the test set. We follow one of the splits from the original 2D-3D-S paper [3] (area 1,2,3,4,6

49

Chapter 3: Layered Depth Image Prediction

gr
ou

nd
 tr

ut
h

gr
ou

nd
 tr

ut
h

PB
O

PB
O

O
M

LD
O

M
LD

1st layer 2nd layer1st layer 2nd layer

Tu
ls

ia
ni

 e
t a

l.
Tu

ls
ia

ni
 e

t a
l.

Figure 3.13. Comparison of LDI generation results on SunCG. For each example, Left: The input color image.
Right: From top to bottom - ground truth, two-layer predictions of OMLD, PBO and Tulsiani et al. [139]
for the first two layers.

Method
1st layer depth 2nd layer depth 2nd layer RGB

MPE RMSE MPE RMSE MPE RMSE

Tulsiani et al. [139] 1.174 1.687 1.582 2.873 72.70 91.51

PBO 0.511 0.832 1.139 1.848 48.57 76.98

OMLD, baseline (w/o classes) 0.551 0.879 0.687 1.120 43.97 66.51

+ class scores 0.508 0.793 0.700 1.090 44.50 65.70

+ Lp 0.496 0.800 0.657 1.095 43.92 66.48

+ Lrecompose 0.473 0.767 0.641 1.071 43.12 65.66

Table 3.3. Evaluation of LDI prediction on SunCG for the first two layers of depth and the 2nd layer of RGB. We
outperform the baselines. The errors are measured for color range 0´ 255 and depth in meters.[©2019
IEEE]

vs. area 5a,b). We pre-trained OMLD on SunCG and fine-tuned on Stanford 2D-3D-S. We
infer masks and semantic labels for 2D-3D-S by running a Mask R-CNN model trained on
COCO. To map the semantic categories across datasets, we convert the COCO classes to
NYU-40 (as in our SunCG models). For the 2D-3D-S layout training we had to disable the

50

3.4 Evaluation

input

ours ground truth

1st layer 1st layer2nd layer 2nd layer

Figure 3.14. LDI prediction results on Stanford 2D-3D-S. Left: The input color image. Center: Our predictions for
the first two layers, obtained after sorting the object-wise layers. Right: Ground truth, as extracted
from the mesh-based rendering. Black in the color images and dark blue in the depth maps indicates
information holes.[©2019 IEEE]

Method
1st layer depth 2nd layer depth 2nd layer RGB

MPE RMSE MPE RMSE MPE RMSE

Tulsiani et al. [139] 0.805 1.088 0.954 1.230 57.42 72.65

PBO 0.456 0.676 0.830 1.193 42.92 55.87

OMLD w/o Lrecompose 0.509 0.764 0.692 0.993 42.57 55.07

OMLD 0.469 0.695 0.688 0.987 42.45 54.92

Table 3.4. Evaluation of LDI prediction on Stanford 2D-3D-S. LDI predictions for the first two layers of depth
and 2nd layer of RGB. The errors are measured for color range 0 ´ 255 and depth in meters.[©2019
IEEE]

GAN loss, since the network was generating sparse layouts, trying to mimic an undesired
characteristic of the incomplete real data. Table 3.4 reports the quantitative LDI generation
results. OMLD again performs better than the baselines for the second layer components,
which is the main focus of the works. Interestingly, PBO results are slightly superior on the
first layer, since the OMLD formulation is more sensitive to ground truth noise, information
holes and miss-detection (from Mask R-CNN). However, the results in the synthetic dataset
encourage further improvement dependent on the quality of the available real datasets. We
trained Tulsiani et al. with rendered source-target image pairs, as Stanford 2D-3D-S does
not provide raw sequential trajectories appropriate for view synthesis, i.e. with high overlap
between the views. To factor out the raw-rendered domain gap, as well as inconsistencies
introduced by rendering artefacts in a pair of views, at test time we also use rendered images
for both the source and the target image.

51

Chapter 3: Layered Depth Image Prediction

SunCG

Stanford 2D-3D

Figure 3.15. Per-layer evaluation of OMLD on SunCG (top) and Stanford 2D-3D-S (bottom). Left: Number of
layer statistics per image. Center: MPE and RMSE errors for RGB. Right: MPE and RMSE errors for
depth.

Figure 3.14 illustrates some qualitative results of OMLD on Standford 2D-3D-S. Note that the
ground truth for the second layer is often sparse, despite the automatic selection procedure
from Section 3.3.1. We only compute the evaluation in the subset of pixels for which ground
truth is available.

Additionally we report the performance of all layers generated by OMLD. For every layer l,
whenever there is no novel content (zeros), we migrate the information from the previous
layer l ´ 1. Then we compute the RMSE and MPE metrics between the predicted and the
ground truth layers, only in the regions of interest, i.e. with novel content. The results are
shown in Figure 3.15. The frequency plot on the left reports similar statistics for both datasets
in the amount of layers per scene. We observe that most scenes require at least three layers.
As expected, the first layer exhibits the lowest errors for texture and depth as it corresponds
to visible, less ambiguous regions. The performance is comparable in the middle range
of layers. Interestingly, we observe a performance increase in the last layers. We attribute
this result to the increase of the contribution of the layout component in the composition of
later layers. Regressing the layout, i.e. the empty box of the scene, is an easier problem than
completing occluded object parts.

3.4.4 View synthesis

Synthesizing novel views is a direct application of the LDI generation task at hand. Therefore,
we report view synthesis evaluations to compare the proposed methods against each other as
well as state-of-the-art works. Starting with a source image I and an arbitrary transformation
matrix T , the goal is to obtain a target image, which represents the content of I, after the source
view has been multiplied by T . For this purpose, we leverage a rendering approach that
warps the LDI layers in order, i.e. the information holes left by previous layers are filled by the
following layers. Each layer’s warping step is followed by morphological operations (dilation
and erosion) to fill the small holes. The resulting texture images are further compared against
the ground truth target images.

52

3.4 Evaluation

original 15cm right15cm left original 15cm down15cm up

si
ng

le
 R

G
B-

D
si

ng
le

 R
G

B-
D

LD
I

LD
I

Figure 3.16. LDIs rendered on perturbed views on SceneNet. (Upper row): warping of a single RGB-D layer; (Lower
row): warping of the proposed LDI. [©2019 Pattern Recognition Letters]

original

single RGB-D LDIsingle RGB-DLDI

novel views

Figure 3.17. LDIs rendered on perturbed views, NYU v2. (Left): Input RGB. (Right): Novel views rendered from a
single RGB-D vs. our LDI prediction. [©2019 Pattern Recognition Letters]

For SceneNet, we use a pair of consecutive frames (1 to 2 steps) from the original dataset
as source and target images. To generate SunCG data pairs, we obtain target frames by
perturbing the initial camera poses and rendering from the 3D mesh to the target view.
In all view synthesis experiments, we utilize the same dataset splits as in the previous
experiments.

53

Chapter 3: Layered Depth Image Prediction

Table 3.5. View synthesis on SceneNet. We evaluate
the images on MPE, SSIM and PSNR, in
range 0-255.

Method SSIM Ò MPE Ó PSNR Ò

AF, [178] 0.53 51.00 17.83

AF, [178] (FCRN) 0.53 47.18 18.49

Tulsiani et al. [139] 0.58 46.41 18.14

PBO 0.62 37.49 19.63

Table 3.6. View synthesis on SunCG. The synthesized
images are evaluated in terms of SSIM, MPE
and RMSE, in range 0-255. [©2019 IEEE]

Method SSIM Ò MPE Ó RMSE Ó

Tulsiani et al. [139] 0.33 71.36 87.09

PBO 0.56 29.01 49.89

OMLD 0.65 18.19 34.71

source image

AF (FCRN) our LDI warping ground truth target

Tulsiani et al.

Figure 3.18. Qualitative comparison of PBO and baselines on novel view synthesis on SceneNet. [©2019 Pattern
Recognition Letters]

To motivate the added value of a layered representation compared to a single-layer RGB
and depth pair, we qualitatively evaluate view synthesis with random view perturbation,
using the PBO model. In this experiment, the source view corresponds to the original input
RGB image. We define the origin of the world coordinate system at the source camera. Thus
the source pose has identity rotation Rref and zero translation tref. We modify either tx or
ty in the reference translation vector tref to obtain a target pose with namely horizontal or
vertical shift. Further, we utilize Eq. 3.1 to project the LDI layers, from source to target. The
rendering results on SceneNet and NYU are shown namely in Figure 3.16 and 3.17. One
can observe that, different from the single-layered model, our two-layered model populates
the target view with additional pixels, that were originally occluded in the source image.
The inpainting network can fairly complete the background, even when edges or relatively
complex textures are present in the occluded background.

Next, we present comparisons of the proposed methods against state-of-the-art. At the time
of publication of PBO [22] the only comparable methods were Appearance Flow (AF) [178]
and [139], as they also receive a single input image and an arbitrary transformation. Other
related view synthesis works explored multi-view inputs [31, 154, 176] or exploited scene
geometry [32, 36] and their view generation is thus limited by the learned geometry. We
trained their original models using code from their public repositories, on the same partitions
of SceneNet as we trained PBO. The input and output are pairs of consecutive frames on

54

3.4 Evaluation

source target OMLD PBO Tulsiani et al.

Figure 3.19. View synthesis examples. Left: Source image, i.e. the input to the proposed method as well as the
target image, to be compared with the predictions. Right: Predicted novel views, using the LDIs from
the proposed method, [22] and [139].[©2019 IEEE]

SceneNet. To factor out network capacity in our experiments, we also trained AF in another
variant, based on the same model as in our depth-mask prediction branch2. Table 3.5 and
Figure 3.18 report the comparison between the methods, and show that PBO outperforms
[178] and [139] in all metrics, Mean Pixel Error (MPE), SSIM and PSNR. Moreover, the
qualitative examples in Figure 3.18 confirm that our results preserve object shapes better and
are more consistent with the ground truth target image.

We compared OMLD [21] against [139] and PBO [22]. We utilize the learned layered repre-
sentation from each method and carry out the warping procedure to synthesize the target
views. Table 3.6 reports the quantitative results. We observe a clearly better performance for
OMLD in all metrics, as a consequence of more accurate color and depth layers. Figure 3.19
illustrates how OMLD is better at preserving the shapes of the objects during warping, and is
better aligned with the target image.

3.4.5 Augmented diminished reality

Here we show another application of the investigated LDI generation methods, augmented
diminished reality. Such manipulation of the scene content is not possible with other LDI
inference works, as they do not rely on semantic or instance aware decomposition [45, 139].

Figure 3.20 illustrates the application of the proposed PBO method in diminished reality. First,
we discard the foreground content to obtain the background layer. We then detect floor planes
from the depth component in the background layer, such that other objects can be later added
to the scene, in a geometry-aware manner. This is particularly interesting in interior design
and furniture retail, to remove the current objects from an indoor space and experiment

2In their official repository, Zhou et al. [178] report improved performance when upgrading their architecture to
fully convolutional networks.

55

Chapter 3: Layered Depth Image Prediction

Figure 3.20. The proposed PBO method, applied to augmented-diminished reality. (Top) Input RGB image (Bottom)
Result after background inpainting and rendering of new furniture.

"remove the TV"

"remove the lamp"

"remove the person"

input ours ground truth

Figure 3.21. Illustration of object removal results. The category labels of the left indicate which object should be
removed from the original image. We compare our predicted synthesized images (center) against the
ground truth (right). [©2019 IEEE]

with different furniture configurations. We call such application diminished-augmented reality
reconstruction from a single RGB image.

Object removal While the two-layer PBO model [22] enables the removal of the whole
foreground, OMLD [21] allows for even more specific control at the instance level, i.e. removal
of specific objects of interest from the image, as desired by the user. We take the generated
layered representation before the sorting-based fusion, where each layer is either an object or
the layout. Then, we specify the instance or object category to be removed from the input
image. In the scope of this work, we assume fixed text descriptions of the form "remove
chair". Nevertheless, employing natural language processing (NLP) approaches would be an
interesting future exploration. Figure 3.21 illustrates examples of this novel task on SunCG.
Interestingly, the generated images contain reasonable shapes for partially occluded objects,
even when a good fraction of them is not visible.

56

3.5 Discussion and Current Trends

3.5 Discussion and Current Trends

Since the rise of monocular LDI prediction task, pioneered by two orthogonal concurrent
works of Tulsiani et al. [139] and PBO (ours), two main trends were established, which
supervise the network either via view synthesis, or as a combination of depth reasoning and
inpainting. The proceeding works that leverage similar layered representations also follow
one of these trends for supervision [128, 137]. The most related work is 3DPI (3D Photo
Inpainting) from Shih et al. [128]. The authors propose a layered depth inpainting approach
that first uses an off-the-shelf depth prediction model, then utilizes depth discontinuities
to define the inpainting areas. Finally an inpainting network is applied in these areas. The
main difference from the OMLD formulation, is that the layer boundaries are not defined
from semantic reasoning, but as depth boundaries. Comparing both methods, the main
conceptual advantage of 3DPI is that it supports self-occlusion, since depth boundaries can
locate within the same object. OMLD instead provides a better modeling for object shapes,
due to the underlying semantic and instance reasoning, while enabling the additional image
manipulation task. I believe that an interesting future exploration would be a combination of
ideas from OMLD and 3DPI, which exploits semantics for more realistic object shapes, while
leveraging the depth boundaries in each object layer to model self-occlusion.

3.6 Conclusions and Future Work

In this chapter we investigated two methods for decomposing a scene into a layered depth
representation from a single RGB input. As a first proof-of-concept, we introduced PBO, a
two-layer pipeline built over a feed-forward CNN for depth and mask prediction, and a GAN
for background inpainting. We demonstrated how the additional information included in a
layered depth map is a useful representation of the content of a scene with respect to standard
depth prediction, particularly in dealing with occlusion in view synthesis. PBO outperformed
the self-supervised [139] alternative by Tulsiani et al. in terms of layered representation and
even view synthesis, despite the latter being trained via a view synthesis objective. In
particular, we found that a model based on background inpainting is able to well explain
the whole occluded surfaces, while a view synthesis model is bound by the perturbations it
was exposed to during training (which results in less complete reconstructions). Importantly,
the quality of the LDI prediction goes hand-in-hand with the accuracy of the individual
components of our pipeline. As consequence, the performance of PBO gets naturally better
as the fields of depth prediction and image inpainting advance.

To overcome the representational limitations of PBO, we additionally proposed an object-
aware approach (OMLD), the first method to accommodate a flexible number of output
layers, i.e. dependent on the scene complexity. We have demonstrated that the method
outperforms previous works, especially on the invisible regions of partially occluded objects.
Moreover, the evaluation proved that semantic awareness and the proposed re-composition
mechanism improve the generation performance. Finally, the object-aware decomposition of

57

Chapter 3: Layered Depth Image Prediction

OMLD makes it possible to semantically manipulate the original input. We illustrated such
capability by means of an object removal setting.

There is still a number of open challenges for the future. As our models rely on multiple
components, e.g. mask prediction, depth inference, inpainting, failures in any component can
lead to artefacts and affect the outcome. For instance, in case of repetitions in the detection
for a certain object, OMLD would construct two layers rather than one.

More general, future research can be dedicated to modeling self-occlusion, making textures
more crisp and realistic. For instance, one can represent an object instance with multiple
values per pixel – instead of a single layer –, recognize the occlusion boundary within an
object via depth discontinuities [128] and then inpaint the self-occluded object region.

58

4Scene Graphs for Generation and
Manipulation

Scene graphs refer to a data representation that describes physical scenes, where nodes and
edges represent namely objects and inter-object relationships. This chapter of the dissertation
explores scene graphs as a mean for scene synthesis and manipulation. Due to their modular
and high-level nature, scene graphs are a convenient interface for controllable generation.
Further, they are a low effort user interface for scene editing, which spares a few time
consuming steps in the editing pipeline. Exemplary, instead of segmenting and inpainting
a set of unwanted raw pixels from a photo, the user can simply remove the nodes from its
graph for a similar outcome. Section 4.2 provides a formal definition of the utilized scene
graph representation as well as the structure of the graph processing networks utilized in our
methodology. In Section 4.3 we describe our method for semantic manipulation of images.
We refer to this model as SIMSG, i.e. Semantic Image Manipulation via Scene Graphs. We
will show that SIMSG does not rely on direct supervision for image edits, i.e. no need for
paired data of original and modified content. At the time of this research, there was no readily
available real dataset that contains 3D scenes with scene graph annotations. In Section 4.4 we
introduce 3DSSG, the semi-automatically obtained dataset of scene graphs associated with
real 3D scene reconstructions [141], which we acquired to enable our works in 3D. Section
4.5 describes how we learn scene graphs from point clouds using the 3DSSG data. Finally,
Section 4.6 presents Graph-to-3D, a model for 3D scene generation and manipulation based
on the scene graphs from 3DSSG, which utilizes the predicted graphs from Section 4.5 as a
means of cycle-consistency metric.

4.1 Related Work

4.1.1 Scene understanding

Scene understanding focuses not only on recognizing and localizing the objects present in the
scene, but also their context and relationships. Here we visit the different representations in
literature explored to parse a scene, with a focus on graph structures and their applications.

Scene graphs and images

Scene graphs is a term originally introduced in computer graphics where nodes are objects,
and the edges represent relative transformations between the objects. The term has later been
used in association with images, to provide abstract, structured representations of image

59

Chapter 4: Scene Graphs for Generation and Manipulation

content. Isola et al. [57] utilize scene graphs to facilitate scene collaging, where the directed
edges represent support relations between objects. Further, Johnson et al. [63] defined a scene
graph as a directed graph structure that contains semantic labels for objects, their attributes
and inter-object relationships, i.e. how they interact with each other. Following this high-
level semantic representation, different methods have been proposed to infer scene graphs
from an image input [46, 84, 85, 103, 112, 156, 158, 165]. Scene graph generation is usually
formulated as detecting visual entities in the image (object detection) [117] and recognizing
their interactions (visual relationship detection) [17, 59, 95, 121, 162]. In literature, scene
graphs have been explored for a variety of tasks including image retrieval [63], conditional
image generation [4, 65] and Visual Question Answering (VQA) [34]. We propose the first
work that uses scene graphs for semantic image manipulation [19].

3D scene understanding: from object detection to scene graphs

An active research area within 3D scene understanding focuses on semantic segmentation [16,
26, 51, 109, 111] and object detection or classification [109, 110, 133, 175]. Holistic scene
understanding [130] on the other hand predicts not only object semantics, but also the scene
layout and sometimes even the camera pose [54]. Scenes are often represented through a
hierarchical tree [83, 94, 127, 173], where the leaves are typically objects, which are grouped
in scene components and functional entities in the intermediate nodes. A line of works use
probabilistic grammar to parse scenes [94, 173]. Fisher et al. [30] exploit semantic scene
graphs obtained via geometric rules on synthetic data, where relationships constitute spatial
arrangements, enclosing or support.

Very recently the community started to explore semantic relationships on real world 3D
environments. Armeni et al. [2] present a hierarchical mapping of 3D models of large spaces,
organized in four levels: camera, object, room and building. The main difference of our
3DSSG dataset published in [141], is that we provide larger graphs with denser connections
(see Table 4.3). Additionally, our focus is on more semantic inter-object relationships, which
are difficult to obtain automatically, such as support. Moreover, as 3DSSG builds on a 3D
dataset with changing scenes [140], it enables certain dynamic task, such as the proposed
3D scene retrieval in appendix A. and a potential for change detection and human activity
analysis.

The aforementioned graph representations are utilized to explore tasks related to scene
comparison [30], layout generation [96], object type predictions in query locations [179],
as well as to improve 3D object detection [127] or 6D pose [75]. The research presented in
this dissertation, additionally proposes the first work for scene graph prediction from a 3D
scene (point cloud) [141] and introduces domain agnostic scene retrieval [141] as well as fully
learned 3D scene generation [20].

4.1.2 Scene generation and manipulation

60

4.1 Related Work

Images

Conditional image generation methods model the conditional distribution of images given
some prior information, such as image labels [100, 105], attributes [157], lower resolution
images [79], semantic segmentation maps [11, 147] and natural language descriptions [86, 116,
167, 170]. More general architectures enable translating from one image domain to another
using paired [58] or unpaired training data [181]. Most relevant to our approach are methods
that generate natural scenes from scene graphs [65] or layout [50, 172]. Johnson et al. use
a graph convolution network (GCN) to translate the scene graph into a layout and further
decode it into an image [65]. Our work published in [19] builds on this architecture while
introducing additional mechanisms for information transfer from an input image, when the
goal is image editing.

Image manipulation focuses on generating certain image parts while keeping the remaining
image regions unchanged. A line of works performs automatic object-level image manip-
ulation, such as editing of faces using attributes [13, 77, 171]. Other works propose image
composition from a pair of foreground and background entities [5, 166]. At scene level the
most common form of image manipulation is inpainting [108], which can be also conditioned
on semantics [161] or user-specified contents [62, 174], as well as object removal [126]. A
semantic map can also serve as editing interface for interactive image generation [147]. In
our work [19] we instead propose using scene graphs as a lower-effort user interface, which
allows not only change of the object labels, but also the inter-object relationships. Moreover,
as we show later, a single general-purpose model supports a diverse set of editing scenarios.
On another line, retrieval approaches such as Hu et al. [52] tackle image editing via a hand-
crafted approach, which uses graphs to find a similar image patch from a database, suitable
for replacement. In contrast, our framework allows for high-level semantic edits and can deal
with object deformations which cannot be captured via copy-pasting. Yao et al. [160] explore
3D-aware manipulation of a scene by disentangling geometry from semantics. However, this
approach is limited to a specific type of scenes (streets) and target objects (cars) and requires
CAD models for training. Instead, our approach [19] tackles semantic changes of objects
and relationships in natural scenes. Very recent related work focuses on interactive image
generation from scene graphs [4] or layout [135]. These methods differ from ours in that they
translate a graph or layout in multiple image variants, while our goal is to edit an existing
image.

3D scenes

3D scene generation can be conditioned on various input modalities, including images,
graphs and text descriptions. A line of works generates 3D scenes conditioned on images
[104, 138]. Jiang et al. [60] propose scene synthesis, which is controlled via probabilistic
grammar. Ma et al. [97] translate text to a scene graph – consisting of pairwise and group
relationships – to then retrieve sub-scenes for 3D synthesis in a progressive manner. Graphs
have been also applied to generate at the object level [101] with a hierarchical representation
of parts. Very related are works that focus on scene layout generation. GRAINS [83] leverage
graphs of hierarchical structure to synthesize 3D scenes, using a recursive VAE architecture
that generates a scene layout, and uses retrieval from a database to populate the layouts

61

Chapter 4: Scene Graphs for Generation and Manipulation

with object shapes. Luo et al. [96] incorporate a VAE based model to generate a 3D scene
layout conditioned on a scene graph, combined with a rendering approach to obtain the final
image output. Other relevant works use deep priors [144] or relational graphs [143] to learn
object occupancy in the top-view of indoor environments. The auto-regressive architecture
in [143] can additionally be used to edit a given scene, by adding new objects. Different
from our work published in [20], these works either explore image-based representations
as final output, or obtain 3D object shapes through retrieval in contrast to our end-to-end
fully-learned scene generation. Moreover, while these models operate on synthetic scenes,
we chose to work with real world datasets, to avoid influence of human-induced bias.

4.2 Scene Graph Formulation

Scene graph definition We define a semantic scene graph G “ pN,Rq, as a set of object
nodes ni P N and directed relationship edges rij P R with i P t1, ...,Nu and j P t1, ...,Nu,
withN being the number of objects. In a vanilla scene graph, the nodes are represented as
semantic object class categories, i.e. ni “ ci. Throughout this work, we additionally utilize
augmented scene graph representations, where nodes are extended with other modalities,
such as bounding box parameters bi, e.g. ni “ pci,biq. In all cases, the edges are comprised
of semantic predicate categories. Each relationship is characterized by an outbound object
(subject), the edge label (predicate) and the inbound object (object), i.e. a triplet subject - predicate
- object.

Graph processing network In our graph processing networks we require a mechanism that
allows information to flow between objects, along their connecting relationships. As scenes
come with diverse complexities, we want the graph processing models to allow flexibility
in the number of input nodes. Thus, we employ a Graph Convolutional Network (GCN)
similar to [65], to process the acquired triples. Each layer lg of the GCN operates on directed
relationships triplets (subject – predicate – object) which we denote (out – p – in) and consists
of three steps. First, each triplet ij is fed in a Multi-Layer Perceptron (MLP) g1p¨q for message
propagation

pψ
plgq

out,ij,φ
plg`1q
p,ij ,ψplgqin,ijq “ g1pφ

plgq

out,ij,φ
plgq

p,ij ,φplgqin,ijq. (4.1)

Second, the aggregation step combines the information coming from all the edges of each
node

ρ
plgq

i “
1
Mi

´

ÿ

jPRout

ψ
plgq

out,ij `
ÿ

jPRin

ψ
plgq

in,ji

¯

(4.2)

whereMi is the number of edges for node i, and Rout, Rin are the set of edges of the node
as out(in)-bound objects. The resulting feature is linearly projected through a final update
MLP g2p¨q

φ
plg`1q
i “ g2pρ

plgq

i q. (4.3)

62

4.2 Scene Graph Formulation

Alternatively, inspired by [82], we adapt a residual graph connection to overcome potential
Laplacian smoothing on graphs. Throughout this chapter, I will refer to this node update
variant as residual GCN.

φ
plg`1q
i “ φ

plgq

i ` g2pρ
plgq

i q. (4.4)

The final features φplg`1q
out,ij ,φplg`1q

p,ij ,φplg`1q
in,ij are then processed by the next convolutional layer

lg, in the same fashion. After each layer lg, the node visibility is propagated to a further
neighbour level. Hence, the number of layers equals the order of relations that the model can
capture.

63

Chapter 4: Scene Graphs for Generation and Manipulation

4.3 Semantic Image Manipulation (SIMSG)

Figure 4.1. Semantic Image Manipulation at inference time. Given an image, we infer a semantic scene graph.
The user makes changes in the graph’s nodes and edges. Then, our image generation network gives an
edited version of the input image, which respects the constellations in the modified graph.[©2020 IEEE]

The focus of this work is to perform semantic manipulation of images using a scene graph as
interface for requesting the changes. Given an image I as input, we infer its scene graph G

which will serve as interaction interface with a user. Further, we generate a new image I 1

from the edited scene graph G̃ in combination with the original content of I. An overview
of the method is shown in Figure 4.1. At inference time, our method consists of three core
components. First, we encode the image contents in a spatio-semantic scene graph, designed
so that it can easily be manipulated by a user. Second, the user modifies the given scene graph
at the node-level to change object categories and locations in the image, or at the edge-level
to change the semantic relationships between objects. Finally, the manipulated image is
generated from the modified graph.

A practical limitation in this task is the difficulty in obtaining training data with pairs of source
and target images annotated with scene graphs. To overcome this limitation, we demonstrate
a method that does not rely on direct supervision for image edits, and instead learns through
an unsupervised image reconstruction proxy task. Thus, the image manipulation task is
learned in a self-supervised way. Note that the underlying system components, e.g. graph
generation, are still learned with full supervision, utilizing image-graph pairs.

At the core of our method lies a training mechanism that randomly masks patches from the
image as well as information from the scene graph, and then aims to reconstruct the same
image. We explain this technique in Section 4.3.2. The full training pipeline can be seen in
Figure 4.2. First, a graph generation network is used to extract information from the input
image, such as bounding boxes and a semantic scene graph (Section 4.3.1). Then, the scene
graph is processed (Section 4.3.3) and arranged in a 2D layout (Section 4.3.3). Further, the
generated layout and input image are fed in a decoder to synthesize the final image (Section
4.3.3).

4.3.1 Graph generation

The task of scene graph generation from an image consists in describing an input image with
a semantic graph G “ pN,Rq, of objects N (nodes) and their relationships R (directed edges).
Since this is a well-researched problem [84, 103, 156, 165], in our work we integrate a state-of-

64

4.3 Semantic Image Manipulation (SIMSG)

Figure 4.2. Overview of the SIMSG supervision. Top: Given an input image, we predict the respective scene
graph and use it to reconstruct the input from a corrupted representation. a) The graph nodes ni (blue)
encompass class embeddings, bounding box coordinates xi (green) and visual features φi (violet) from
cropped objects. We randomly mask boxes xi, visual features φi and patches in the input image. The
model then learns to reconstruct the same graph and image utilizing the persisting information. b) The
per-node feature vectors are projected to image space to form a layout, using the predictions from the
SGN.[©2020 IEEE]

the-art method for scene graph prediction (F-Net) [84], trained independently from the other
components. The method clusters the scene graph into subgraphs of objects and their (partial)
relationships, to reduce computation. Controllable image generation would profit from more
detailed descriptions than the semantic node and edge categories in the vanilla scene graph.
Therefore, we propose a graph representation that constitutes an augmentation of the vanilla
scene graph with visual (neural) features and spatial locations. We thus define object nodes
as triplets ni “ pci,φi, xiq P N, where ci P Rd is a d-dimensional, learned embedding of
the object category and xi P R4 represents the four values defining the bounding box of the
object (top, left, bottom, right). φi P Rdφ is a visual feature encoding of the object which
can be obtained by feeding the object image patch to a convolutional neural network (CNN),
here VGG-16 [129], pre-trained for image classification (ImageNet [18]). Similarly, for a given
relationship describing an object pair (i, j), the method learns a class embedding ρij of the
relationship class rij P R.

Importantly, our augmented scene graph contains sufficient information to represent the
appearance and location of objects while allowing for control in the preservation of each
component. For instance, in a relationship change scenario, one can preserve appearance
features of an object, while the corresponding locations and relationships are changed. In a
object replacement scenario instead, we are interested in preserving the location (bounding
box coordinates) and discarding the initial appearance features.

4.3.2 Training mechanism

Training the model with full supervision would require annotations of the form pI,G,G 1, I 1q
where a pair of related images I and I 1 that exhibit a change is annotated with scene graphs,
namely G and G 1. Given the difficulty in acquiring ground truth pI 1,G 1q, our goal is to

65

Chapter 4: Scene Graphs for Generation and Manipulation

train a model supervised only by pI,Gq through a reconstruction proxy task. Consequently,
we generate annotation quadruplets pĨ, G̃,G, Iq using the available data pI,Gq as the target
supervision and synthesize pĨ, G̃q through a random masking procedure that operates on the
node level. This idea is inspired by common image inpainting works, which create input
pairs Ĩ and I, where Ĩ is a corrupted version of the image, containing missing patches of
information. During training, the object neural features φi are masked with an arbitrary
probability pφ. Independently, we mask the bounding box coordinates xi with probability
px. In practice, the information of the masked node is replaced by zeros. Additionally,
when occluding graph information, image regions corresponding to the hidden nodes are
also occluded. Effectively, this masking mechanism transforms the editing task into a self-
reconstruction, or a denoising problem. The network will learn to complete the missing parts
in the corrupted graph and image, utilizing the remaining information.

At inference time, once the graph nodes or edges are edited by a user, the image regions
subject to modification are occluded, and the network, having learned to reconstruct the
image from the scene graph, will create a reasonable modified image. In the example of
Figure 4.1, the user wishes to apply a change in the way the girl interacts with the horse,
editing the predicate label from riding to beside. Since we expect the spatial arrangement
to change, our system occludes the bounding boxes xi, localizing these objects in the original
image. Then, their new extents and positions x̂i will be estimated considering the layout
of the rest of the scene (e.g. grass, trees). To encourage this change, the system should
automatically mask the original image regions related to the target objects. Simultaneously,
to ensure that the visual identities of horse and girl are preserved through the change, their
visual feature encodings φi must remain unchanged.

4.3.3 Graph to image model

Spatio-semantic scene graph network

To process our augmented graph representation we leverage a spatio-semantic scene graph
network (SGN). The SGN network learns a graph transformation that allows information
to flow between objects, along their relationships. Given a graph G̃ with partially occluded
information, the task of the SGN is to learn meaningful neural representations per object
that will be then used to reconstruct the image. This is done via a series of convolutional
operations on the graph structure.

After T graph convolutional layers, the last layer predicts one latent representation per object
(node) ψi P Rs. This output object representation is further processed through two separate
MLPs, in order to predict bounding box coordinates x̂i P R4, and a spatial binary mask
m̂i P RMˆM indicating pixel-wise object extent. Predicting coordinates for each object is a
form of reconstruction, since object locations are known and are already encoded in the input
ni. As we show later, this is needed when modifying the graph, for example for a new node
to be added. As described in the following section, the predicted object representation will be
then reassembled into the spatial configuration of an image, referred to as the scene layout.

66

4.3 Semantic Image Manipulation (SIMSG)

Scene layout

This component is responsible for transforming the graph-structured representations pre-
dicted by the SGN back into a 2D spatial arrangement of features, which can then be decoded
into an image. To this end, we use the predicted bounding box coordinates x̂i to project
the masks m̂i in the proper region of a 2D feature map of the same resolution as the input
image. We concatenate the original visual feature φi with the node features ψi to obtain a
final node feature. The projected mask region is then filled with the respective features, while
the remaining area is padded with zeros. This process is repeated for all objects, resulting
in |N| tensors of dimensions pdφ ` sq ˆHˆW, which are aggregated through summation
into a single layout for the image. The output of the layout component is an intermediate
representation of the scene, which contains enough information to reconstruct an image.

Image synthesis

The last part of the pipeline is a decoder architecture, which synthesizes a target image,
combining the information in the source image I and the generated layout. We explore
two different decoder architectures, cascaded refinement networks (CRN) [11] (similar to
[65]), as well as SPADE [107], originally proposed for image synthesis from dense semantic
segmentation. Different from the original works [11, 65, 107], we condition the image
synthesis on the source image by concatenating the predicted layout with extracted low-level
global features from the source image. Note that prior to image feature extraction, regions of
I are occluded using the mechanism explained in Section 4.3.2. We fill the occluded regions
with Gaussian noise to encourage diversity for the generator.

4.3.4 Loss objective

We train the image reconstruction model via a combination of loss terms, common in
image synthesis. The bounding box prediction is trained by minimizing the L1-norm:
Lb “ ‖xi ´ x̂i‖1

1, with weighting term λb. Due to unavailability of binary masks in the
given datasets, the mask prediction is instead learned in a self-supervised way, via attention.
The image synthesis task is supervised by adversarial training, using two discriminators,
similar to [65]. First, a global discriminator Dglobal encourages consistency over the entire
image. A local discriminator Dobj in turn operates on each reconstructed object region to
ensure that the generated patches look realistic. We additionally apply an auxiliary classifier
loss [105] to ensure that the appearance of the generated objects fairly represents their real
labels. Finally, we apply a reconstruction loss term Lr “ }I´ I

1}1 to enforce image content
preservation in regions that have not been changed. The total image synthesis loss is then

Lsynthesis “ Lr ` λgmin
G

max
D

LGAN,global

` λomin
G

max
D

LGAN,obj ` λaLaux,obj,
(4.5)

where λg, λo, λa are loss weighting factors and

LGAN “ E
q„preal

logDpqq ` E
q„pfake

logp1´Dpqqq, (4.6)

67

Chapter 4: Scene Graphs for Generation and Manipulation

where preal is the ground truth distribution (of either an object or the image) and pfake corre-
sponds to the distribution of fake objects or images, while q is the input to the discriminator
which is sampled from preal or pfake. In our SPADE version, we additionally employ a
perceptual loss term based on VGG-19 λpLp and a GAN feature loss term λfLf following the
original implementation [107]. Moreover, following SPADE, Dglobal becomes a multi-scale
discriminator.

4.3.5 Implementation details

Graph prediction network To acquire scene graphs for the experiments on Visual Genome
(VG) we utilized a state-of-the-art scene graph prediction network [84], which we trained
using the official code repository 1 provided by the authors. Thereby, we use the default
parameters from the original paper, with a batch size of 8 images for 30 epochs. Following
the commonly used pre-processing from [17], we obtain a subset of Visual Genome (sVG)
with 399 object and 24 predicate classes. To avoid overlap between the training and test data
for the image manipulation model we utilize the dataset splits from [65].

SGN architecture details. The SGN network is composed of 5 graph convolutional layers.
The propagation and update units are essentially 2-layer MLPs, where the hidden units have
a size of 512 and the output units a size of 128. The last layer of the SGN returns the node
features s “ 128, binary masks (16ˆ 16) and bounding box coordinates via a 2-layer MLP
with a hidden unit dimension of 128. During training, the visual features φi and bounding
box coordinates xi are randomly masked with independent probabilities of pφ “ 0.25 and
px “ 0.35 respectively. The class embedding vectors that represent the object ci and predicate
labels ri have a size of 128 each. Each node ni is a concatenation of ci with four bounding
box coordinates xi (top, left, bottom, right) and the visual features φi (dφ “ 128) in the
image patch within the box. To extract the neural features we leverage a pre-trained VGG-16
architecture [129] followed by a linear layer.

CRN architecture details. The CRN architecture consists of 5 cascaded refinement mod-
ules [11], with namely 1024, 512, 256, 128 and 64 output channels. Each module consists of
two 3 ˆ 3 convolutions, each followed by batch normalization [56] and Leaky-ReLU. The
output of each module is concatenated with the down-sampled initial CRN input, before
being fed to the next layer. The input to the first layer is the concatenation of the generated
layout and the masked image global features. We report results for images with a 64ˆ 64
resolution. The object discriminator is only applied on the image regions that have been
changed.

SPADE architecture details. We employ a SPADE architecture with 5 residual blocks [107].
Each block results in a tensor with namely 1024, 512, 256, 128 and 64 channels. In particular,
the layout is fed in the SPADE normalization layer, to modulate the layer activations, while
the image global feature is concatenated with the modulation result. We use a global discrim-
inator Dglobal with two scales. Also here, the object discriminator is only applied on the
changed image regions.

1https://github.com/yikang-li/FactorizableNet

68

https://github.com/yikang-li/FactorizableNet

4.3 Semantic Image Manipulation (SIMSG)

Global feature extraction branch details. The (randomly) masked image regions are popu-
lated with standard Gaussian noise. Image features are extracted using a convolutional layer
that results in 32 channels, with kernel size 1ˆ 1, followed by batch normalization and ReLU
activation. Additionally, a binary mask is concatenated with the image features that indicates
the regions of interest (noise), so that the network can easily identify these regions.

Training settings. We trained the graph-to-image model with Adam optimization [70] with
an initial learning rate of 10´4. The batch size for the 64ˆ 64 images is 32, while for 128ˆ 128
is 8. All objects in an image batch are fed as a single batch to SGN, visual feature extractor
and discriminator. The weighting factors for the loss terms are namely λg “ 0.01, λo “
0.01, λa “ 0.1, λb “ 10 for CRN and λg “ 1, λo “ 0.1, λa “ 0.1, λb “ 50, λf “ 10, λp “ 10 for
SPADE. Training on an Nvidia RTX GPU takes about 3 days for Visual Genome and 4 hours
for CLEVR, for images of size 64 ˆ 64. All models on VG were trained for 300k iterations,
while CLEVR models are trained for 40k iterations.

4.3.6 Evaluation

We evaluate our SIMSG method quantitatively and qualitatively on common image recon-
struction and generation metrics. To measure image reconstruction, we report results for
standard metrics such as the structural similarity index (SSIM), the mean absolute error
(MAE) as well as perceptual error (LPIPS) [168]. To assess the image generation quality and
diversity, we report the common inception score (IS) [122] and the FID [47] metric. In absence
of a real scene graph dataset with source-target pairs, we rely on synthetic data for a full
quantitative evaluation on image edits, to complement our evaluation. Therefore we perform
experiments on two datasets, CLEVR [66] and Visual Genome [73]. As CLEVR is a synthetic
dataset, obtaining automatic ground truth pairs for image editing is feasible, which allows
quantitative evaluation of SIMSG. Experiments on Visual Genome (VG) instead illustrate our
method’s capabilities in a real, much less constrained and more diverse setting. As image
editing cannot be quantitatively evaluated in VG, we evaluate an image inpainting proxy
task and compare against a conditional version of sg2im [65].

Manipulation types

Our model supports a variety of modification types at inference time, depending on the
user interaction with the graph. These manipulation modes include object removal, addition
and replacement, as well as relationship changes. Here we define how each editing mode
is practically carried out. Note that it is technically possible to perform more complex
manipulations as a sequence of these elementary changes.

Object removal: A node is entirely removed from the scene graph together with all its
connecting inbound and outbound edges. The source image region corresponding to the
node area is masked out (occluded).

Object replacement: The semantic label of a node is assigned to a different category. The
visual encoding φi of that node is masked out (set to zero), as it describes the old object which

69

Chapter 4: Scene Graphs for Generation and Manipulation

we want to replace. The location component of respective bounding box xi is preserved, to
keep the novel object in place, while the size component is replaced by the bounding box
estimated from the SGN, to fit the new semantic category. Note that in case the user wants to
specify an object appearance from a query image, φi is replaced by the neural feature of the
query object instead of being masked out.

Relationship change: This operation changes the semantic label of an edge ij. The goal is
to preserve the subject i and object j visual features as much as possible but change their
interaction, e.g. <sitting> to <standing>, often leading to re-positioning of objects or
a pose change. Thus, the respective neural features φi and φj are maintained, while the
bounding box coordinates xi and xj are masked (set to zeros). Both the original and the
newly generated image regions are occluded, to enable inpainting of the dis-occluded region
and new object generation.

Object addition: A new node is added to the graph, in which the semantic label is set as
desired by the user. As there is no information about the location or appearance of the new
object, xi and φi are set to zeros. The respective image region defined by the predicted x̂i is
also occluded. The user can additionally specify connecting edges between the newly added
node and the existing objects.

Baselines

We adapt the sg2im model [65] to an image manipulation baseline. We dub this model
Conditional sg2im baseline (Cond-sg2im). Since the original sg2im method synthesizes images
from a scene graph input only, without a source image, their image generation network
consists of the layout concatenated with normal noise. Instead, we condition this network on
the input image by replacing the noise component with this image. Similar to SIMSG, we
mask image areas corresponding to the objects being reconstructed, before the concatenation.
All loss terms are the same as for SIMSG. Note that this baseline supports all manipulation
types, except from relationship change. Additionally, we employ a fully-supervised baseline
(full-sup) – with the same architecture as Cond-sg2im – which assumes source and target pairs
of images and the corresponding graphs. The entire source image and target scene graph
are provided as input to the model. The model is trained by optimizing the L1 objective
to the ground truth target image. The other loss terms remain the same as in our model.
Additionally, we utilize ISG [4] as baseline, which was state-of-the-art in interactive scene
generation from a scene graph at the time of publication [19]. Since we are mainly interested
in semantically rich and diverse relationships, we trained [4] on Visual Genome, utilizing their
official code repository. Note that originally ISG was trained on COCO with automatically
obtained scene graphs. Since Visual Genome lacks segmentation masks, we disable the mask
discriminator from ISG.

Synthetic data

We leverage the CLEVR framework from [66] to generate a dataset of image and scene graph
editing pairs pI,G,G 1, I 1q. We obtain 21,310 pairs of images (128 ˆ 128), split into 80% for
training, 10% for validation and 10% for testing. The data pairs contain the same scene under

70

4.3 Semantic Image Manipulation (SIMSG)

blue sphere red cylinder

source editedtarget source edited source edited

red sphere cyan cube

right of front of

front of behind

a) relationship change b) object removal c) attribute change d) object addition

source edited

brown sphere

red sphere

Figure 4.3. Image manipulation on CLEVR We illustrate different scene manipulation types, including relation-
ship change between two objects, object removal and object replacement (corresponding to attribute
changing).[©2020 IEEE]

Method
All pixels RoI only

MAE Ó SSIM Ò LPIPS Ó FID Ó MAE Ó SSIM Ò

Full-sup 6.75 97.07 0.035 3.35 9.34 93.49

SIMSG (CRN) 7.83 96.16 0.036 6.32 10.09 93.54

SIMSG (SPADE) 5.47 96.51 0.035 4.73 7.22 94.98

Table 4.1. Image manipulation on CLEVR. We compare our method against a fully-supervised baseline. [©2020
IEEE]

a change, such as addition, removal, positional change or attribute change. The images
contain 3 to 7 randomly shaped and colored objects. We obtain predicates from the relative
positions of objects in different object pairs – {front of, behind of, left of, right
of}. Additionally, the dataset includes annotations of bounding boxes. This enables the
evaluation of our method with exact ground truth for the manipulation task. We train our
model as described, i.e. without making use of the image pairs, and compare our approach to
the fully-supervised baseline.

In Table 4.1 we report the mean SSIM, MAE, LPIPS and FID on CLEVR for the manipulation
task (including object replacement, removal, addition and relationship change). Note that IS
would not be appropriate for CLEVR, as it would compare the generated synthetic images
against a real image distribution. Our SIMSG method performs either better or comparable
to the fully-supervised baseline on the reconstruction metrics, which shows the capability
of generating meaningful changes, i.e. close to the ground truth. Though many outputs are
valid, this is still an indication of a correct outcome, especially for the learning of object
attributes. The FID results are instead better for the fully-supervised setting. This suggests
that additional supervision for pairs, if available, would potentially lead to improvement
in the visual quality, e.g. less artifacts. Figure 4.3 illustrates the qualitative performance
of SIMSG on CLEVR in four different modes: relationship changes (a), object removal (b),
object addition (c) or replacement (changing its attributes) (d). To facilitate visualization, we
highlight the modified area with a bounding box.

71

Chapter 4: Scene Graphs for Generation and Manipulation

co
nd

iti
on

al
sg

2i
m

ou
rs

 C
R

N
gt

Figure 4.4. Visual feature encoding. Comparison between the baseline (top) and our method (center) on Visual
Genome for object reconstruction. The scene graph remains unchanged; an object in the image is
occluded, while φi and xi are kept. Our neural features φi preserve appearance characteristics when
the objects are masked out from the source image. [©2020 IEEE]

IS
G

ou
rs

so
ur
ce

Figure 4.5. Qualitative results comparing SIMSG with CRN decoder and ISG [4] in the fully-generative setting.
The entire image is masked and reconstructed using the per-object visual feature information.

Real images

We evaluate SIMSG on Visual Genome (VG) [73] to assess its performance on real images.
We use the VG v1.4 dataset with the splits as proposed in [65]. After the pre-processing step
of [65] the dataset features 178 object categories and 45 relationship types, where each split
consists of 62,565 train, 5,506 validation, and 5,088 test images with scene graph annotations.
We evaluate our models with ground truth (GT) scene graphs on all the images of the test
set. For the experiments with predicted scene graphs (P), an image filtering takes place
(e.g. when no objects are detected), therefore the evaluation in performed in 3874 images
from the test set. We observed edge duplicates in the ground truth scene graphs which can
lead to ambiguity for some manipulation tasks. For instance, when we change only one of
the duplicate edges, the object pair can contain two conflicting relationships (e.g. on and
beside). Hence, we remove such repetitions once one of the duplicate edges is edited.

In absence of ground truth pairs for manipulations, we only report quantitative evaluation
on image reconstruction. In this case, objects (one at a time) are masked out in the original
image and we evaluate the reconstruction task. This task can be interpreted as semantically
conditioned inpainting. Nevertheless, we illustrate the method on the manipulation setting
qualitatively, as no ground truth pairs are neccessary.

72

4.3 Semantic Image Manipulation (SIMSG)

Method Decoder
All pixels RoI only

MAE Ó SSIM Ò LPIPS Ó FID Ó IS Ò MAE Ó SSIM Ò

ISG [4] (Generative, GT) Pix2pixHD 46.44 28.10 0.32 58.73 6.64˘0.07 - -

SIMSG (Generative, GT) CRN 41.57 33.9 0.34 89.55 6.03˘0.17 - -

SIMSG (Generative, GT) SPADE 41.88 34.89 0.27 44.27 7.86˘0.49 - -

Cond-sg2im [65] (GT) CRN 14.25 84.42 0.081 13.40 11.14˘0.80 29.05 52.51

SIMSG (GT) w/oφi CRN 9.83 86.52 0.073 10.62 11.45˘0.61 27.16 52.01

SIMSG (GT) w/φi CRN 7.43 88.29 0.058 11.03 11.22˘0.52 20.37 60.03

SIMSG (GT) w/oφi SPADE 10.36 86.67 0.069 8.09 12.05˘0.80 27.10 54.38

SIMSG (GT) w/φi SPADE 8.53 87.57 0.051 7.54 12.07˘0.97 21.56 58.60

SIMSG (P) w/oφi CRN 9.24 87.01 0.075 18.09 10.67˘0.43 29.08 48.62

SIMSG (P) w/φi CRN 7.62 88.31 0.063 19.49 10.18˘0.27 22.89 55.07

SIMSG (P) w/oφi SPADE 13.16 84.61 0.083 16.12 10.45˘0.15 32.24 47.25

SIMSG (P) w/φi SPADE 13.82 83.98 0.077 16.69 10.61˘0.37 28.82 49.34

Table 4.2. Image reconstruction on Visual Genome. We report the results for SIMSG (ours) and the baselines,
using ground truth scene graphs (GT) and predicted scene graphs (P). (Generative) refers to results in a
fully generative setting, i.e. the whole input image is occluded. [©2020 IEEE]

Reconstruction task. Here we want to evaluate our networks’ reconstruction capabilities
in two different settings, fully and partially generative. The results are reported in Table 4.2.
In the fully generative setting (Generative), we occlude the entire input image and utilize the
per-object encoded features φi and bounding boxes xi for reconstruction. We compare our
model against ISG [4], who also use per-object features and a scene graph as input. Table 4.2
(Generative) reports comparable reconstruction errors, while SIMSG clearly dominates when
a source image is provided as input (c.f.SIMSG (GT)). This confirms our choice of directly
manipulating an existing image, rather than simply fusing different node features. Unsur-
prisingly, inception score (IS) and FID mostly relate to the decoder network, where SPADE
outperforms CRN and Pix2pixHD. For the partially generative setting, we are interested in
reconstructing a single object in the image, while the rest is kept unchanged. The evaluation
is performed over all objects in the test set. In particular we want to ablate the visual feature
φi and quantify its influence in visual appearance encoding. We use all the associated object
bonding boxes xi, class labels and neural features (w/ φi) to condition the SGN. However,
the region of the image corresponding to the reconstructed object is occluded. Table 4.2
shows the reconstruction error a) over all pixels and b) in the object area only (RoI). We report
the same learned model without (w/o φi) visual features. Here φi is set to zeros. We test
SIMSG in two different settings; using ground truth graphs (GT) and graphs predicted from
the input images (P). As expected, activating the visual features of the missing region leads
to improvement of the reconstruction metrics (MAE, SSIM, LPIPS). On the other hand, the IS
and FID metrics are not considerably affected, as they do not measure pair-wise similarity
between corresponding ground truth and synthesized images. Table 4.2 shows that while
the CRN and SPADE decoders perform similarly in reconstruction metrics (CRN is slightly
better), SPADE dominates for the FID and inception score, suggesting higher generation
quality.

73

Chapter 4: Scene Graphs for Generation and Manipulation

"sand" to "ocean"

a) object replacement

"riding" to "next to"

"sitting in" to "standing on"

b) relationship change
"near" to "on"

source ours CRNoriginal graph

c) object removal

remove "building"remove "bird"remove "tree"

ours SPADEsource ours CRNoriginal graph ours SPADE

"sheep" to "elephant"

"car" to "motorcycle"

Figure 4.6. Image manipulation Given the source image and the ground truth scene graph, we edit the image by
changing the semantic labels of the graph. We illustrate a) object replacement, b) relationship changes,
and c) object removal. Green bounding box highlights the changed node or edge.[©2020 IEEE]

Figures 4.4 and 4.5 illustrate visually the image reconstruction qualitatively, namely in the
partial and full generation setting. Figure 4.4 shows that both SIMSG and the cond-sg2im
baseline, generate reasonable object shapes in accordance with their semantic category.
However, as our SGN is aware of the objects’ visual features, appearance characteristics
from the original image are successfully preserved. In practice, this capability is particularly
beneficial during a relationship change, i.e. when the objects of an image are re-positioned,
while their identity is preserved. In Figure 4.5 we observe similar results as ISG, even though
our method is not specifically trained for the fully-generative task.

Main task: image editing. Here we test our method’s potential in making manipulations
in an image as a result of interactively editing the scene graph, i.e. changing nodes or edges
in the graph. Figure 4.6 illustrates qualitative results in three manipulation modes — object
removal, object replacement and relationship changes. The method is capable of diverse
replacements (a), ranging from objects to background instances. Notably, the novel entity
adapts to the image context, e.g. the ocean on the second row does not occlude the person,
which would be expected in standard image inpainting with a bounding box as mask. A
more challenging and interesting scenario is to change the relationship between objects,
which typically involves re-positioning. Figure 4.6 (b) shows that the model understands
different semantic relations, such as sitting vs. standing and riding vs. next to.
The objects are re-positioned in a reasonable way, according to the semantic relationship
change. For object removal (c), one can observe that the method performs well at inpainting
regions with uniform texture, but can also handle more complex textures (left example).

74

4.3 Semantic Image Manipulation (SIMSG)

remove "building" remove "girl"

remove "boat" remove "bus" remove "train"

remove "bird"

source ISG ours

source ISG ours source ISG ours

source ISG ours source ISG ours

source ISG ours

Figure 4.7. Qualitative results comparing SIMSG with CRN decoder against ISG on object removal.

gt mask both ��
�� keep both query image query maskmask �� query image query ��

Figure 4.8. Ablation of the node components We illustrate the effect of the proposed node components, in all
their possible combinations - i.e. with vs. without bounding boxes xi and visual neural features φi. In
the case of using a query image, we extract visual features of an object (indicated with a red box) and
update the node of an object of the same category in the input image.[©2020 IEEE]

Interestingly, when we remove the building (example on the right), the originally hanging
sign is placed in the bush. Additionally, we adapt [4] for object removal by removing a node
and its connecting edges from the input graph (same as in ours), while the visual features
of the remaining nodes (coming from our source image) are used to reconstruct the rest of
the image. Figure 4.7 demonstrates that our method performs generally better, since it is
intended for direct manipulation on an image.

Component ablation. Figure 4.8 qualitatively ablates the node components in the proposed
augmented scene graph. For a given image, we occlude a region corresponding to a certain
node which we want to reconstruct. We experiment with all possible combinations of masking
and keeping the bounding box coordinates xi and neural features φi from the scene graph
representation. One task of interest would be to inpaint the missing region with another
object of the same category (e.g. changing color or style). Thus we additionally explore a
setting in which external neural features φ are extracted from a query object in another

75

Chapter 4: Scene Graphs for Generation and Manipulation

wears

G
ro

u
n

d
 t

ru
th

Pr
ed

ic
te

d

standing on under riding against

Pr
ed

ic
te

d

above carrying parked on laying on looking at

G
ro

u
n

d
 t

ru
th

Figure 4.9. Heatmaps generated from object and subject relative positions for a subset of predicate categories.
The object is centered at p0, 0q and the relative position of the subject is calculated. The heatmaps are
generated from the relative distances of centers of the object and subject of a pair. Top: Ground truth
boxes. Bottom: our inferred boxes after masking the location information from the scene graph.

image. As expected, masking the box coordinates leads to a change in the size and location
of the newly generated object, while masking the visual features φ results in changed object
appearance.

Spatial distribution of predicates Another aspect of the performance that we want to
assess is, how good our model has learned to accurately localize new objects in relation to
objects already existing in the scene. As box prediction is a one-to-many problem, a metric
that directly compares the predicted and ground truth box would be ill-posed. Therefore,
we instead visualize the heatmaps of relative placement between box pairs. In particular,
for every triplet (i.e. subject - predicate - object) we predict the subject and object bounding
box coordinates x̂i, by masking the respective ground truth boxes from the graph. From
there, for every triplet we extract the relative object-subject distance between the box centers,
which are later grouped by predicate category. Figure 4.9 visualizes the heatmaps of the
ground truth and predicted bounding box distributions per predicate. We observe similar
distributions, in particular for relationships that are spatially meaningful, such as wears,
above, or riding.

Failure cases Despite the encouraging results in many diverse scenarios and manipulation
types, we identify a few failure cases of the SIMSG method. First, in this task we want to
prevent the encoder from “copying” the whole RoI, which is not desired for instance if we
want to change the relationships of a deformable instance, e.g. from sitting to standing.
As a side effect, while the model is able to retain general appearance information, some visual
properties of changed objects are sometimes not recovered. For instance, the color of the

76

4.3 Semantic Image Manipulation (SIMSG)

behind right of remove ''bus''

source editedtarget
a) b) c)

girl eating

Figure 4.10. Illustration of failure cases of our model, related to a) partial feature encoding, b) not modeled depen-
dence between nodes and c) underrepresented/difficult scenarios.

green object in Figure 4.10 a) is preserved while the material is wrongly altered. Second, the
model does by default not adapt regions corresponding to unchanged nodes as a consequence
of a related change. For instance, shadows or reflections do not follow the re-positioned
objects, if those are not nodes of the graph and explicitly marked as changing subject by the
user, Figure 4.10 b). In addition, similarly to other methods evaluated on Visual Genome,
the quality of some close objects remains limited, e.g. close-up of people eating, Figure 4.10
c). Also, we have observed that often having a node face connected to animals, typically
results in a human face. This can be attributed to the fact that, most face annotations in the
Visual Genome dataset are related to a human. Last, we found it challenging to generate
images that preserve the graph constrains in higher resolution. For instance, our model with
SPADE decoder is capable of generating plausible images in 128ˆ 128 resolution, whereas
the relationship changes are often not met.

77

Chapter 4: Scene Graphs for Generation and Manipulation

4.4 Dataset with 3D Semantic Scene Graphs

sofa:seat:furniture coffee table:table:furniture

size: low
shape: rectangular
texture: wooden

shape: L-shaped
color: brown

attributes
(shape, color, etc.)

class hierarchy
(lexical relations)

Node
(object instance)

standing close by

relationship
(support, spatial, etc.)

ottoman:seat:furniture hand bag:item

shape: rectangular
color: white, brown
material: leather

shape: rectangular
color: brown, dark
affordance: sitting

lying on

Figure 4.11. 3DSSG Scene graph representation including hierarchical class labels c and attributes A per node, as
well as relationship triplets between the nodes.[©2020 IEEE]

With the goal of generating and manipulating 3D scenes via a semantic graph, we want to
collect a large-scale dataset suitable for these tasks. Most importantly we wish to have sets
of real 3D scenes and the corresponding semantic graphs. We are particularly interested in
working with real environments, to capture real-world patterns in object arrangements, and
reduce human induced bias. Thereby, we introduce 3DSSG which provides 3D semantic scene
graphs for 3RScan [140], a large scale, real-world dataset with around 1.4k 3D reconstructions
of 478 changing indoor environments. An exemplary semantic scene graph G “ pN,Rq
in 3DSSG is illustrated in Figure 4.11. Notably, the nodes represent 3D object instances
in a 3D scan, which in contrast to previous works [2, 16, 73, 140], are not assigned to a
single object category, but instead are defined by a class hierarchy c “ pc1, ..., cdq where
c P Cd, and d can vary. In addition to these object categories each node contains a list of
attributes A that describe the visual and physical properties of the object. Thereby, one
interesting type of attributes are affordances [153], which specify possible functions of an
instance, such as sitting or eating. Since we deal with dynamic environments, we draw a
connection between affordances and the object states. The edges in the 3DSSG graphs define
semantic relationships (predicates) between the nodes such as lying on, standing in,

higher than, same as. To obtain the labels in 3DSSG we combine human annotations
with geometric data and additional manual verification to ensure good quality graphs.
In summary, 3DSSG contains 1482 scene graphs with 48k object nodes and 544k edges.
Interestingly, 3D scene graphs can easily be rendered to 2D. Given a 3D scene and a camera
pose, it is possible to extract the graph part that is present in that image. Note that support and
attribute comparison relationships do not depend on the reference view and therefore remain
unchanged, while directional relationships (behind, front, left, right) need to be
recomputed for the novel (camera) viewpoint. Considering the 363k raw RGB-D images
with camera poses of 3RScan, this results in 363k 2D scene graphs. Table 4.3 provides a
comparison of our 3DSSG dataset with the only available real 3D scene graph dataset from
Armeni et al. [2]. More information and statistics about 3DSSG are provided in appendix
C. In the following sections I will describe the different entities of our 3D semantic scene
graphs.

78

4.4 Dataset with 3D Semantic Scene Graphs

dataset size instances classes obj. rel.

Armeni et al. [2] 35 buildings 3k 28 4

727 rooms

3DSSG (Ours) 1482 scans 48k 534 40

478 scenes

Table 4.3. Comparison between 3D scene graph datasets. [©2020 IEEE]

4.4.1 Nodes

The nodes in our graph represent object instances in a 3D scene. Each instance is defined
by a class hierarchy c where c1 is the corresponding annotated label from 3RScan. The
subsequent labels (ci`1) are obtained as a result of recursive parsing of the lexical definition
of the previous step ci via WordNet [28]. For instance, the definition “chair with a support
on each side for arms" gives us ci`1 “ chair as a hypernym for ci “ armchair. Note that
due to lexical ambiguities, this algorithm results in multiple interpretations of a class label,
e.g. an academic chair vs. a sitting chair. Therefore, we perform a manual selection step,
to obtain a single definition per class label that is most likely referring to an object in an
indoor environment. Thus the dataset provides 534 lexical descriptions and the respective
class hierarchies, one per each class label. Figure 4.12 visualizes the lexical hierarchy on a
small partition of classes. The complete lexical tree containing all the labels can be found in
appendix C.

armchair chair

ottoman stool

coffee table table

desk

seatsofa

cabinet

furniture furnishing

pillow

cushion padding

artifact

Figure 4.12. Lexical hierarchical sub-tree on a small subset of object class labels. The extended version can be found
in appendix C. [©2020 IEEE]

4.4.2 Attributes

Attributes are semantic labels which augment the graph nodes with explicit object properties.
In the following we define the different types of attributes and describe their acquisition.
Given the semantic diversity and the large number of instances in the dataset, we put
particular attention in the efficiency of label extraction and annotation.

Static Properties describe visual object features including color, shape, size, texture and
physical properties such as (non-)rigidity. For size related attributes, geometric data is used in

79

Chapter 4: Scene Graphs for Generation and Manipulation

combination with class labels to identify the relative size of the objects within the same class
category. Since some features are class specific, we exploit lexical descriptions to assign them
automatically on the class level, e.g. a ball is spherical. More complex attributes cannot be
automatically annotated, since they are instance specific. This includes, for example, material
(metal, ceramic), shape (round, squared) or texture (color or pattern). We design an
interface to let expert annotators manually label them. Note that since the 3RScan dataset
contains multiple scans of the same scene, many object instances repeat among the different
scans. Since static attributes do not change, we annotate them in the reference scan and
further replicate to each rescan.

Dynamic Properties refer to attributes, which describe properties that are subject of change
in dynamic scenes. In the 3DSSG dataset we refer to them as states, including open /

closed, on / off or full / empty. State categories are inherently class specific, e.g. doors
can be open or closed, while a couch can not. Their current condition, however, is particular
to an instance and time of scanning. Therefore, state annotation is also carried out manually,
together with the static properties.

Affordances We define affordances as object functionalities or interaction possibilities of
nodes of a specific object class e.g. a plate is for eating.This definition follows previous
works [2, 35, 153]. Differently, since we work with changing scenes, we condition them on
their dynamic state attribute. For instance, only a opened door can be closed. These
changes are often induced by human activity (see examples in appendix C). Overall, 3DSSG
contains 93 different attributes on approximately 21k object instances which amount to a
total of 48k attributes.

4.4.3 Relationships

We define three main categories in 3DSSG , which will be described in the following para-
graphs: a) support relationships, b) spatial or proximity relationships and c) comparative
relationships.

Support Relationships Support relationships denote the supporting structures of the enti-
ties in a scene [102]. In real 3D scans, automatically extracting support relationships is quite
challenging in practice, due to data noise and partiality. For instance, information holes
in a scan, do not always guarantee a contact point between the child and parent structure.
Thus our algorithm first finds potential support candidates, followed by verification steps.
For each object, we extract the neighbouring instances which are present within a radius
(e.g. 5cm) as potential support candidates. These support candidates then go through a
manual verification step to eliminate wrong assignments and complete missing relationships.
The remaining class support pairs are then annotated with a more specific semantic label
(e.g. lying on, leaning against) and then specified for each instance in the dataset.
Note that an instance can have one, multiple or no supports. For instance, walls are by
default supported by the floor, a shelf can be supported by two different walls, and the floor
is the only instance that does not have any support.

80

4.4 Dataset with 3D Semantic Scene Graphs

Proximity Relationships Proximity or spatial relationships indicate the relative position
between two objects (e.g. behind of, next to, left of). As some of them have a di-
rectional nature (left) one needs to establish a reference view to fully define the relationship
description. We compute proximity relationships automatically, based on geometric rules,
between the nodes that share a support structure. A bag on a table therefore has no proximity
relationship with a chair. Note that this proximity could be automatically derived from the
relations of its support parent (table) with the chair. Thus this choice reduces the annotation
redundancy between instances.

Comparative Relationships As the name suggests, comparative relationships are derived
via a comparison between object attributes, e.g. smaller than, brighter than, cleaner

than, same color as. We obtain these attributes automatically, leveraging the afore-
mentioned attributes from Section 4.4.2.

81

Chapter 4: Scene Graphs for Generation and Manipulation

4.5 Scene Graph Prediction from a Point Cloud

In this section we introduce the Scene Graph Prediction Network (SGPN) that learns from
3DSSG data. Starting from a scene s given as a point set P, as well as the class-agnostic
instance segmentation M, the objective is to generate a scene graph G “ pN,Rq, describing
the object class categories (nodes) in the scene N as well as the class categories of their
relationships (edges) R, Figure 4.13.

Note

Recently in literature instance segmentation can also assume class labels (alongside of
instance labels). To make clear that we only rely on instance labels, here we use the
term class-agnostic instance segmentation. This work focuses on the estimation of node
and class labels, therefore we utilize such instance information directly from the 3RScan
reconstructions. In theory, every 3D geometric segmentation method that is able to
segment separate instances could be used to generate this input.

4.5.1 Architecture

Following works in scene graph prediction from images [95, 156, 158], we want to extract
visual features per node φn and edge φr. Thereby, we employ two PointNet [109] networks
to obtain φn and φr, which we name ObjPointNet and RelPointNet respectively. Thus, for a
scene s, we extract the point set of each individual instance i, masked with M

Pi “ tδmki d pk|k “ t1, ..., |P|uu (4.7)

where p,m are instances of P,M, δ denotes the Kronecker delta 2, and | ¨ | is the number of
points in P. Having obtained the instance-level point sets Pi, we feed them separately to
ObjPointNet .

Further, to extract neural features that represent an edge, we obtain a point set for every node
pair (i,j). Thereby, we leverage the union of the two 3D bounding boxes B of the pair, and
extract all points that lie within this union box

Pij “ tpk|pk P pB
i YBjq,k “ t1, ..., |P|uu. (4.8)

The input to RelPointNet is thus a point set representing an edge Pij, concatenated with
a helper mask Mij, that indicates the instance correspondence in Pij. The mask has the
value one for points belonging to instance i, two if the point belongs to instance j and zero
otherwise. As preserving the reference view of the edge Pij is important to infer directed
proximity relationships like left or right, we do not apply rotational augmentation in
the data. The scale of both the object and edge point sets is also left unchanged as size can

2δij “ 1 ðñ i “ j

82

4.5 Scene Graph Prediction from a Point Cloud

G
C
N

RelPointNet

Fully-Connected Graph of Features

ObjPointNet

Input: Point set of a scene Output: 3D Scene Graph

...

guitar

floor

pillow

couch

...
none

n
o

n
e

ly
in

g
o

n

standing on

standing on
right of

Figure 4.13. Scene Graph Prediction Network Starting with a point set P of a scene, and its class-agnostic instance
segmentation M, we estimate a scene graph G. Left: Neural point features φ are extracted for each
instance and edge. Center: The features φ are organized in a graph form for further processing from a
GCN. Right: The resulting graph consists of semantic labels for object nodes and edges.[©2020 IEEE]

provide meaningful information to infer object categories. We, however, normalize the center
of the object and edge point clouds to zero.

Once all features are extracted, we arrange them in a graph structure, such that we can
process triples of the form (subject, predicate, object). Thereby, φn occupy subject
and object units, while edge features φr occupy the predicate units. We employ a residual
GCN to process the relationship triplets. At the last GCN layer, we leverage two MLPs for
the prediction of the final node and predicate class categories.

4.5.2 Loss objective

We supervise SGPN with a joint object classification loss Lobj and predicate classification loss
Lpred which are simply added together as

Ltotal “ λobjLobj ` Lpred (4.9)

where λobj is a loss weighting factor. Based on observations on the natural world, we
direct the attention to the fact that for a certain object pair there are multiple valid relations
that describe their interaction. Exemplary, a chair can be close by another chair, and
simultaneously have the same size (same size as). With this motivation, instead of the
standard multi-class cross entropy, we formulate the predicate loss Lpred as per-class binary
cross entropy. This way, edge labels are inferred independently. For both loss terms we
employ focal loss as it is more robust with respect to class imbalance [87]

L “ ´αtp1´ ptqγ logpt (4.10)

83

Chapter 4: Scene Graphs for Generation and Manipulation

where pt represents the prediction logits and γ is a hyper-parameter. αt is the normalized
inverse frequency in the case of multi-class loss (Lobj) and a fixed factor (indicating edge /
no-edge) for the per-class predicate loss (Lpred).

4.5.3 Implementation details

We adopt two standard PointNet architectures for node and edge feature extraction. The input
points to ObjPointNet have three channels to accommodate a 3D point, while the RelPointNet
inputs have four (one extra channel for the helper mask). The size of the resulting features
φn and φr is 256. The GCN is implemented with l “ 5 residual layers, where g1p¨q and g2p¨q

(see Section 4.2) are composed of a linear layer followed by a ReLU activation. The MLPs
for class prediction consist of three linear layers each, with batch normalization and ReLU
activation. We utilize λobj “ 0.1. For the per-class binary classification loss, αt is set to 0.25.
We use an Adam optimizer, where the learning rate is 10´4 and the scene batch size is 1.

4.5.4 Evaluation

Method
Relationship Object Class Predicate

R@50 R@100 R@5 R@10 R@3 R@5

À RelPred Baseline 0.39 0.45 0.66 0.77 0.62 0.88

Single Predicate, ObjCls from PointNet 0.46 0.52 0.69 0.79 0.70 0.85

Á Multi Predicate, ObjCls from PointNet 0.41 0.67 0.68 0.78 0.92 0.96

Multi Predicate, ObjCls from GCN 0.30 0.60 0.60 0.73 0.79 0.91

Table 4.4. Evaluation of the scene graph prediction task on 3DSSG. We present triples prediction, object classifica-
tion as well as predicate prediction accuracy. [©2020 IEEE]

In the following, we report results of our 3D graph prediction evaluated on our newly created
3DSSG dataset, utilizing the same train and test splits as originally proposed by 3RScan [140].
Since our scene graphs are quite dense and diverse in labels (see statistics in appendix C)
a pre-processing of the ground truth graph data was necessary to train a learned model.
We split the original graphs into subgraphs of size 4–9 nodes based on their 3D location.
Furthermore, we only consider a subset of the object and relationship classes and discard the
most underrepresented categories. After the pre-processing we effectively use 160 different
classes for objects and 26 for predicates. For reproducibility purposes we have made these
splits publicly available.

Baselines

In absence of related works that predict scene graphs from 3D data, we compare the method
against a relationship prediction baseline, inspired by [95]. We re-implemented and adapted
their method to work with 3D data. The baseline extracts node and edge features from an
image, which we translate to PointNet features in 3D, similar to our network. The edge and
node features are passed directly, namely to a predicate and object classifier, each having

84

4.5 Scene Graph Prediction from a Point Cloud

three fully connected layers followed by batch norm and ReLU. We validate the effectiveness
of our multi predicate classifier and GCN in our proposed network in an ablation study.

Metrics

Following previous works [95, 156] we base our evaluation on a top-k recall metric (R@k).
The top-k metric checks if the ground truth label falls in the first k prediction scores, sorted in
decreasing order. We first evaluate predicate and object classification separately. Additionally,
we evaluate the relationship triplet prediction. Since SGPN predicts the object categories
independently from the predicates, there are no natural triplet classification scores as output
of the network. Thus we obtain an ordered list of triplet classification scores by multiplying
the respective subject, object and predicate scores of a certain triplet [158]. Note that for
fairness of comparison, in the multiple predicate prediction variant, we consider none as
the most dominant (top-1) score if for all predicate categories the binary prediction score is
smaller than 0.5.

Results

Table 4.4 reports the quantitative evaluation. We outperform the baseline in graph related
metrics, such as predicate and triplet prediction, while being comparable in object classifi-
cation. As expected, the multiple predicate prediction model leads to a better performance
for predicates, which we relate to the ambiguity in a single-answer classification problem,
when multiple outputs are reasonable. Moreover, we report two versions of the model, in
which the object classification branch is applied a) directly on the PointNet features φn and
b) to the output node features of the GCN. We observe a slight dominance for the former
in terms of object and predicate prediction accuracy. Figure 4.14 illustrates examples of the
resulting scene graphs. In all nodes and edges we show the predicted labels together with the
respective ground truth in brackets. We observe that most node and edge label predictions
are reasonable. Often, misclassifications are justifiable, e.g. predicting desk instead of table,
second row. Interestingly, predicate false positives often make sense, e.g. third row: orange
trashcan is on the right of the green trash can, even though ground truth was not available.

85

Chapter 4: Scene Graphs for Generation and Manipulation

Figure 4.14. Qualitative results of our scene graph prediction (best viewed in the digital file). Light green: correctly
predicted edges, dark green: partially correct edges, blue: false positives – missing ground truth, red:
miss-classified edges, gray: false negatives – wrongly predicted as none when the ground truth is a valid
relationship.

86

4.6 Graph-to-3D: 3D Scene Generation and Manipulation

4.6 Graph-to-3D: 3D Scene Generation and Manipulation

Figure 4.15. Overall Graph-to-3D architecture. Our model generates a 3D scene as a set of 3D bounding boxes and
object shapes for a given scene graph. To this end, we use a scene graph variational Auto-Encoder
with two parallel GCN encoders for shape and boxes. The latent information from the box and shape
component is combined through a shared encoder. The final 3D scene is obtained by sampling from the
shared latent distribution and combining the predictions from the two GCN decoders for 3D boxes and
shapes. We further use a GCN manipulator to support user modifications to the scene. [©2021 IEEE]

Having annotated real 3D world environments with scene graphs, we can next investigate
the novel problem of 3D scene generation from an input scene graph, in a fully learned
manner. Thus, given a scene graph G “ pN,Rq, where nodes ni “ ci P C are semantic
object categories and edges rij P R are semantic relationship categories with i P t1, ...,Nu
and j P t1, ...,Nu, the goal is to generate a 3D scene S as described by the graph. The 3D
scene here is represented S “ pB, Sq as a set of per-object 3D bounding boxes B “ tb0, ...,bNu
and shapes S “ ts0, ..., sNu. Our model is based on a variational scene graph Auto-Encoder,
inspired by [96] on 3D layout generation for the purpose of image synthesis. However, while
[96] use a retrieval-based approach to populate the generated boxes with object shapes, we
learn layouts and shapes jointly via a shared latent embedding, as these are two inherently
cohesive tasks that should support each other. Additionally, we enable the related task of
scene manipulation, using the same learned network. Similarly to the task from Section 4.3,
given a 3D scene and its respective scene graph, a user can modify the scene by making
changes in the graph, such as adding new nodes or changing relationships. In 3D we do
not need to learn object removal as this can be simply achieved by discarding the respective
shape and box.

Figure 4.15 shows the pipeline of the proposed method. First, we encode the layout and
shapes conditioned on scene graphs via a layout Elayout and shape Eshape encoder, Section 4.6.2.
Further, a shared encoder Eshared combines features from Elayout and Eshape, Section 4.6.3. The
shared embedding is then processed by a shape decoder Dshape and a layout decoder Dlayout

to obtain the boxes and shapes of the reconstructed 3D scene. Finally, the manipulation
network T enables user-induced changes in the scene. In the following sections, we describe
each of these components in detail.

87

Chapter 4: Scene Graphs for Generation and Manipulation

4.6.1 Data preparation

For the purpose of learning object poses and shapes, we require canonical pose annotations
which are not present in the 3RScan dataset or our 3DSSG extension with scene graphs.
We thus carried out an efficient semi-automatic annotation framework to obtain canonical
oriented (tight) bounding boxes for each instance. We model the oriented boxes with 7
degrees-of-freedom (7DoF) – 3 for size, 3 for translation as well as 1 parameter for the rotation
around the z-axis – since the majority of objects is supported horizontally by a planar surface.
We use volume as criteria to optimize the rotational parameter, motivated by the fact that
the oriented bounding box should ideally fully enclose the object while possessing minimal
volume. First, for every object we extract the respective point set p. Then, we rotate the
points along the z-axis incrementally using angles α in the interval r0, 90r degrees, with a
step size of 1 degree, pt “ Rpαqp. At each step, we extract the axis-aligned bounding box
from the rotated point set pt, by calculating the extrema of all point coordinates along each
axis. We then estimate the area of the bounding box projected in bird’s eye view, obtained via
an orthogonal projection onto the ground plane. Note that this is equivalent to the minimum
volume criteria in a 7DoF scenario. We then label the rotation α̂ having the smallest box
top-down view area (c.f. appendix D for more details). Having obtained the optimal box, we
can easily extract the final box parameters: such as the width w, the length l, the height h,
the rotation α̂ together with the centroid pox,oy,ozq.

Note that for each computed oriented bounding box, we are still left with ambiguity – there
are four possible options regarding the object’s facing direction. Hence, for objects with two
or more vertical axes of symmetry, e.g. tables, we automatically define as front the largest
dimension (among length and width). This rule is in accordance with the canonical pose
definitions from ShapeNet [10], therefore it facilitates learning transfer between different
datasets. For other objects such as sofa or chair, we annotate the facing direction manually,
leading to 4.3k manually annotated instances in total.

Finally, due to impartial scans in real world reconstructions, we observed misalignments in
the bounding boxes (originally obtained from the scene point clouds). Objects are oftentimes
detached from their supporting surfaces. For instance a chair with highly reflecting legs
leads to a "flying" box which is not touching the floor. We approach this problem by using
the support relationships from 3DSSG to detect such inconsistencies. We identify "flying"
objects that have a distance of more that 10cm from their support, and adjust the respective
bounding boxes, such that they touch the upper level of the support parent. In the case of
planar support such as floor, we utilize the RANSAC [29] algorithm to fit a plane in a circular
neighbourhood region around the object and fix the height h and centroid parameter oz of
the object box such that it touches the calculated plane.

4.6.2 Encoding a 3D scene

Our network consists of two separate graph encoders for layout Elayout and shapes Eshape. The
layout encoder Elayout is essentially a GCN that takes the augmented scene graph Gb – where

88

4.6 Graph-to-3D: 3D Scene Generation and Manipulation

each node ni “ pci,biq is extended with the bounding box bi of each object – and results in a
per-node output feature vector fb,i, where fb “ ElayoutpGbq.

When generating an object shape in a scene, it is important to consider contextual consistency
with the other objects. As an example, one would expect a dining chair to co-occur with
a dining table, while an office chair is more likely to be found close to a desk. Thus, we
employ a GCN to infer globally consistent object shapes, instead of sampling the shapes
independently via a standard shape Auto-Encoder. Learning a GCN Auto-Encoder on shapes,
e.g. point clouds – similarly to the bounding boxes – is considerably more difficult due to
the uncontinuous output space. Therefore, we instead propose to learn shape generation
leveraging a latent shape space in canonical poses. This latent space can be obtained via
shape generative models which consist of an encoder Egenp¨q and a decoder Dgenp¨q, such as an
Auto-Encoder or Auto-Decoder network [39, 106]. Following the same formulation as in the
layout counterpart, we create the augmented scene graph Gs where each node ni “ pci, esi q,
and esi “ Egenpsiq. Interestingly, as the method consumes latent codes it becomes agnostic
to the shape representation. In our evaluations, we experiment with AtlasNet [39] and
DeepSDF [106] as state-of-the-art models for namely point cloud and SDF generation. Please
refer to appendix D for more details on AtlasNet and DeepSDF. The GCN-based shape
encoder Eshape, is fed with Gs to obtain per-node latent shape features fs “ EshapepGsq.

4.6.3 Shape and layout communication

We introduce a shared encoder Eshared to foster communication between the inherently related
tasks of layout and shape generation. Thereby, Eshared takes as input the concatenation of
the result features from both encoders and gives a shared feature as fshared “ Esharedpfbs,Rq
with fbs “ tfb,i ‘ fs,i | i P p1, ...,Nqu. The shared features fshared are then fed to a network,
implemented as an MLP, to obtain a shared posterior distribution pµ,σq under a Gaussian
prior, where µ and σ are namely the mean and variance. We sample zi from this distribution
and feed the result to the respective layout and shape decoders. To obtain zi at training
time, given that sampling is naturally not differentiable, we apply the commonly used
re-parameterization trick.

4.6.4 Decoding the 3D scene

We harness two GCN-based decoder networks whose goal is to learn a mapping from the
shared latent representation of the scene objects, as well as the semantic scene graph, to the
fully-learned reconstructed 3D scene. The layout decoder Dlayout is a GCN network followed
by two parallel MLP branches, which predict namely b´α,i (box location and size) and αi
(angle). Concretely, Dlayout consumes a set of per-node sampled latent vectors zwithin the
learned distribution, together with the semantic graph G. Its output are the associated object
bounding boxes pb̂´α, α̂q “ Dlayoutpz,C,Rq. Similarly, the shape decoder Dshape is fed with
per-node sampled latent vectors z and the graph G, to obtain the final shape encodings

89

Chapter 4: Scene Graphs for Generation and Manipulation

ês “ Dshapepz,C,Rq. The architecture follows the structure of Dlayout, with the difference that
the GCN here is followed by a single MLP.

Having obtained the set of 3D bounding boxes and shapes, one can finally generate the full
3D scene. Thus, every shape encoding is translated into the respective shape representation
using the decoder module of the shape generative model at hand ŝi “ Dgenpê

s
i q. Each shape

ŝi is then transformed from its canonical pose to scene coordinates, utilizing the obtained 3D
bounding box parameters b̂i.

4.6.5 Manipulation network

We extend the Graph-to-3D model with a manipulation network T, which enables semantic
changes in the scene, while keeping some parts unchanged. The alternative of directly
(and independently) changing a subset of scene nodes, would lead to a model that is not
aware of the unchanged scene parts, and therefore eventually evoke collisions and other
inconsistencies. T is again based on a GCN architecture and receives the shared latent graph
Gl “ pz,C,Rq (with nodes ni “ pci, ziq) as obtained from the encoder networks. As a first
step, we augment the latent graph with node and edge changes Gl “ pẑ, pC, pRq. Thereby,
pC is composed of the original node labels C as well as the newly added/changed nodes
C 1. Similarly, pR consists of the original graph edges R together with the new in-bound and
out-bound edges R 1 of N 1. In addition, among the existing relationships R, some predicate
labels are modified according to the user input. Note that we do not have any corresponding
latent representations for the changed nodes N 1, as they are externally produced. We instead
pad z 1i with zeros to compute ẑi. For a given semantic change, there can be many possible
outputs, regarding the object shape, size and location. To model the continuous one-to-many
nature of the output space, we introduce stochasticity by concatenating the changed nodes
ẑi with samples zni from a normal distribution with zero mean and unit standard deviation.
The unchanged nodes are concatenated with a vector of zeros instead. The outcome of
T is a set of transformed per-node latent vectors zT “ Tpẑ ‘ ẑn, pC, pRq, as illustrated in
Figure 4.16. Afterwards, the latents predicted by T for the modified nodes are plugged back
into the original latent graph Gl, to encourage changes which are consistent with the original
unchanged nodes. Finally, the changed latent graph is fed to the respective decoders to
synthesize the updated scene. During inference, the node and edge changes are induced
manually, based on a user’s input. At training time, the user input is simulated by making
random augmentations to the original scene graph. Essentially, for a given scene graph we
randomly either drop a node and discard all its edges, pick a random relationship and change
its label, or simply leave the scene graph unchanged.

90

4.6 Graph-to-3D: 3D Scene Generation and Manipulation

4.6.6 Training objectives

To train Graph-to-3D on the unchanged nodes, including the generation mode and unchanged
nodes in manipulation, we optimize a reconstruction term

LrpN,Rq “
1
N

N
ÿ

i“1

p||b̂´α,i ´ b´α,i||1 ` CEpα̂i,αiq ` ||êsi ´ e
s
i ||1q, (4.11)

combined with a Kullback-Leibler divergence term

LKL “ DKLpEpz|G,B, esq|ppz|Gqq, (4.12)

where pp¨q denotes the Gaussian prior distribution, Ep¨q represents the complete encoding
network and CE indicates multi-class cross-entropy. We discretize the angles in bins to obtain
24 classes.

Self-supervised learning for modifications

Since inferring a scene from a high-level graph representation is a one-to-many mapping,
directly supervising the changed nodes with a standard reconstruction loss, e.g. L1, is not a
suitable modeling for the task. Many possible object shapes would satisfy a certain object
category, and many possible object constellations would satisfy a certain relationship con-
straint. Therefore, we propose a novel relationship discriminator Dbox, which can directly
learn to interpret relationships and layouts from data and is, thus, capable of steering the
models to learn appropriate changes. We feed Dbox with the data describing an object pair,
namely two boxes, two object labels, as well as their relationship label. The role of Dbox
is then to enforce that the newly generated box will be following the semantic relationship
label. As in a common adversarial training, we feed the discriminator with either real or fake
(generated) samples, i.e. boxes after modification. Thus Dbox learns to distinguish between
real and fake compositions, while the generator tries to produce realistic compositions to fool
the discriminator. The loss optimizes the following objective inspired by [38]

LD,b “min
G

max
D
r

ÿ

pi,jqPR1
Eci,cj,rij,bi,bjrlogDboxpci, cj, rij,bi,bjqs

` Eci,cj,rijrlogp1´Dboxpci, cj, rij, b̂i, b̂jqqss.
(4.13)

Notice that this discriminator loss is applied to all edges that contain a relationship change or
a node addition.

Additionally, we adopt an auxiliary discriminator [105] that operates at the object level
and learns to discriminate between shapes. Such discriminator can learn to distinguish
if the synthesized shape comes from the underlying shape distribution. Similarly to the
object discriminator from Section 4.3, in addition to the GAN loss, we leverage an auxiliary
classification loss Laux

LD,s “ Laux `min
G

max
D
r

N
ÿ

i“1

Eci,esi rlogDshapepe
s
i qs ` Ecirlogp1´Dshapepêsi qqss. (4.14)

91

Chapter 4: Scene Graphs for Generation and Manipulation

Figure 4.16. Scene graph modification. For a provided scene graph we apply changes to the nodes (addition) or
edges (relationships). The manipulation network T takes the latent representations of all nodes and
updates the codes for the changed nodes. Edges that underwent changes are then fed to our relationship
discriminator which enforces that the box predictions follow the constrains of the node and edge labels.
[©2021 IEEE]

to encourage that the synthesized shapes fairly represent their true class. Technically, Laux

is a cross-entropy loss between the predicted class from the discriminator Dshape and the
respective true class label ci.

To summarize, the total loss objective used to train Graph-to-3D is

Ltotal “ Lr ` λKLLKL ` λD,bLD,b ` λD,sLD,s (4.15)

where the λs are the respective loss weights.

4.6.7 Inference

Generation Given a scene graph, we first sample a random vector per-node from the
gaussian prior. Then we feed the augmented scene graph (class embeddings and sampled
vectors) to the shape and layout decoders to recover a 3D scene.

Manipulation We first encode the input scene given the scene graph (newly added nodes
are again sampled from the gaussian prior). We then run T to update the latent of the changed
nodes w.r.t. the new graph, decode the scene and add the changes to the input scene.

4.6.8 Implementation details

We use 5 residual layers for each GCN block. In the encoders Eshape and Elayout, prior to
computation, the class categories ci and rij are fed to embedding layers, while the shape
embedding, bounding box and angles are projected via a linear layer. The shape embeddings

92

4.6 Graph-to-3D: 3D Scene Generation and Manipulation

esi have a dimension of 128. Both discriminators are composed of fully-connected layers,
where all layers (excluding the last) are followed by batch norm and Leaky-ReLU. For Dbox,
consisting of 3 layers, the last fully-connected layer is followed by a sigmoid. Here the
class categories for objects ci and predicates rij are fed in one-hot form giving a size of
namely 160 and 26. Dshape consists of two consecutive layers followed by two branches of
fully-connected layers, which end with namely a softmax (for classification) and sigmoid
(for discrimination). The architectures of the discriminators are presented in appendix D. We
train the model for 100 epochs, using the Adam optimizer with a learning rate of 0.001 and
batch size of 8. The training takes one day on a Titan Xp GPU. The loss weights are namely
λKL “ 0.1, λD,b “ 0.1 and λD,s “ 0.1.

4.6.9 Evaluation

This section describes the evaluation we used to measure the performance of Graph-to-3D in
terms of layout and shape generation/manipulation. This task involves multiple goals and
components. We are interested in obtaining realistic shapes and layout configurations, that
in addition, fairly represent the labels of the input scene graph.

Evaluation protocol

We evaluate Graph-to-3D on the obtained 3DSSG dataset [141], on the same splits as for the
graph prediction task, i.e. with 160 classes of objects and 26 classes of relationship predicates.
As multiple results are valid for the same input, typical reconstruction metrics, such as L1
norm or Chamfer loss are not ideal, due to their one-to-one comparison between the predic-
tions and the available ground truth. Following [96] we rely on the geometric constraints
imposed by the relationship labels to assess if the generated layouts are correct. We evaluate
these constraints on each predicted box pair that is labelled with one of the following re-
lations: left, right, smaller, larger, front, behind, lower, higher and
same. Note that we exclude other "more semantic" relationships, as they are annotated man-
ually and therefore cannot be captured by a geometric rule, e.g. belonging to, leaning
against. More details on the constraint formulation can be found in appendix D.

A quantitative evaluation to assess the quality of the generated shapes, as well as the entire
scenes is not straight-forward with the current evaluation metrics. We propose a way to carry
out such quantitative evaluation via a cycle-consistency verification. Once we generate the
shapes from our models, we feed them to our scene graph prediction network (SGPN) from
Section 4.5 to obtain the respective predicted scene graphs. Then, we compare the ground
truth scene graphs (i.e. input to our scene generation models) against the inferred graphs
from SGPN. We motivate this metric by the expectation that plausible shapes and scenes
should lead to the same graph prediction as the input graph. Similar evaluation metrics
have been proposed for the task of image generation from a semantic map [147], where the
input semantics are compared against the predicted semantics from the synthesized image.
This comparison is evaluated via the standard top-k recall metric for objects, predicates and
relationship triplets, as explained in the SGPN evaluation. Finally, we report a perceptual

93

Chapter 4: Scene Graphs for Generation and Manipulation

user study to assess the global correctness of the scenes, style fitness between the objects as
well as validity of the graph constrains.

Baselines

3D-SLN Due to the unavailability of SunCG, we train the closest baseline 3D-SLN [96] to our
method on 3DSSG utilizing their official code3. Unlike [96] we do not obtain an image output
or assume image availability, therefore we discard their render-based refinement. To obtain
3D shapes for 3D-SLN, we employ their retrieval-based approach, in which for every b̂i we
retrieve from 3RScan the most similar object shape from the same class. As in the original
3D-SLN paper, similarity is defined through the norm of aspect ratio distances between the
height, width and length dimensions.

Progressive Generation Another model which supports 3D generation and manipulation
would be a progressive (auto-regressive) approach. Progressive methods have been explored
before for similar tasks, such as PlanIT from [143] for room instantiation based on relational
graphs. At each step, a new node is added to the scene. Thereby, a GCN (same as Dlayout)
receives the current scene – as a set of node c and edge r labels, and 3D boxes b – together with
a new node ni to be added. The model then predicts the new box as bi “ Apci, rij, zi, c, r, zq.
Here zi represents a randomly sampled noise vector from a normal distribution with zero
mean and unit standard deviation. For the novel node ni, we only feed the object category ci
and its relationships rij with existing objects j, while the respective box bi is masked with
zeros. At inference time, in generation mode, the progressive model assumes the first node
given, then gradually adds more nodes and their relationships. In manipulation mode, the
model receives a current scene and a change to be incorporated, where the boxes of the
nodes affected by the change are set to zeros. We train the progressive baseline with varying
graph sizes (ranging from 2 to 10), so that it learns to generate the consecutive node for
each generation step. We order the nodes hierarchically, according to the graph topology
of the support relationships, e.g. pillow should be generated after the supporting bed. The
disconnected nodes are placed last in order.

Ablations To ablate the effect of utilizing a GCN for the shape generation, we employ a
variational autoencoder directly based on AtlasNet. This model is not aware of the scene
context, neighbouring objects and connectivity. For a given point cloud si we can compute
the posterior distribution pµi,σiq “ Egenpsiqwhere pµ,σq are the mean and log-variance of
a diagonal Gaussian distribution. During inference, one can sample from the posterior to
generate new shapes. Further, we ablate the effect of sharing between the layout and shape
components, by training a variant with separate models for shape (Graph-to-Shape) and
layout (Graph-to-Box) generation. Each network follows the same architecture choices for the
encoders and decoders, except that Eshared is not present. Additionally, we train our method
without the modification network T, to ablate its influence.

3https://github.com/aluo-x/3D_SLN

94

https://github.com/aluo-x/3D_SLN

4.6 Graph-to-3D: 3D Scene Generation and Manipulation

Method
Shape left / front / smaller / lower /

same total
Representation right behind larger higher

3D-SLN [96] – 0.74 0.69 0.77 0.85 1.00 0.81

Progressive – 0.75 0.66 0.74 0.83 0.98 0.79

Graph-to-Box – 0.82 0.78 0.90 0.95 1.00 0.89

Graph-to-3D AtlasNet [39] 0.85 0.79 0.96 0.96 1.00 0.91

Graph-to-3D DeepSDF [106] 0.81 0.81 0.99 0.98 1.00 0.92

Table 4.5. Scene graph constrains on the generation task (higher is better). The total accuracy is computed as
mean over the individual edge class accuracy to minimize class imbalance bias. [©2021 IEEE]

Method
Shape

mode
left / front / smaller / lower /

same total
Representation right behind larger higher

3D-SLN [96]

–

change

0.62 0.62 0.66 0.67 0.99 0.71

Progressive 0.81 0.77 0.76 0.84 1.00 0.84

Graph-to-Box 0.65 0.66 0.73 0.74 0.98 0.75

Graph-to-3D w/o T
AtlasNet [39]

0.64 0.66 0.71 0.78 0.96 0.75

Graph-to-3D 0.73 0.67 0.82 0.79 1.00 0.80

Graph-to-3D w/o T
DeepSDF [106]

0.71 0.71 0.80 0.79 0.99 0.80

Graph-to-3D 0.73 0.71 0.82 0.79 1.00 0.81

3D-SLN [96]

–

addition

0.62 0.63 0.78 0.76 0.91 0.74

Progressive 0.91 0.88 0.79 0.96 1.00 0.91

Graph-to-Box 0.63 0.61 0.93 0.80 0.86 0.76

Graph-to-3D w/o T
AtlasNet [39]

0.64 0.62 0.85 0.84 1.00 0.79

Graph-to-3D 0.65 0.71 0.96 0.89 1.00 0.84

Graph-to-3D w/o T
DeepSDF [106]

0.70 0.73 0.85 0.88 0.97 0.82

Graph-to-3D 0.69 0.73 1.00 0.91 0.97 0.86

Table 4.6. Scene graph constraints on the manipulation task (higher is better). The total accuracy is computed
as mean over the individual edge class accuracy to minimize class imbalance bias. Top: Relationship
change mode. Bottom: Node addition mode.[©2021 IEEE]

Layout evaluation

Table 4.5 reports the geometric constrain accuracy on the generation task, purely based on
the synthesized 3D boxes. Graph-to-3D performs better than the baselines on all metrics.
Interestingly, it also outperforms the variant with decoupled shape and layout (Graph-to-
box) which indicates that the joint learning of shape and layout improves layout generation.
Table 4.6 shows the geometric constraint metric on the manipulation task. We report node
addition and relationship change separately. One can observe that the progressive model
performs best for the node addition task (Table 4.6, bottom), while Graph-to-3D is fairly
comparable for relationship changes. This outcome is expected, because the progressive
model is explicitly trained for addition, i.e. it can process the whole context of the existing
scene and add a new node in accordance with this context. Finally, the models that use the

95

Chapter 4: Scene Graphs for Generation and Manipulation

ge
ne

ra
tio

n
m

an
ip

ul
at

io
n

gr
ap

h
w

ith
 c

ha
ng

es

node addition relationship change

Figure 4.17. Qualitative results with DeepSDF encoding of Graph-to-3D on 3D scene generation (middle) and ma-
nipulation (bottom), starting from a scene graph (top). Dashed lines reflect new/changed relationship,
while empty nodes indicate added objects. [©2021 IEEE]

manipulation network T perform better than 3D-SLN or the respective Graph-to-3D model
without T on the manipulation task, since T explicitly models support for changes.

Shape evaluation

Figures 4.17 and 4.18 demonstrate qualitative results from Graph-to-3D trained with DeepSDF
encodings and AtlasNet encodings respectively. In both cases we first sample a scene condi-
tioned on a scene graph (top). Then we feed the generated scene to the network, together with
a scene graph containing a change, which is then reflected in the 3D scene (bottom). Graph-
to-3D understands a diverse set of relationships including support (lying on, attached
to), spatial proximity (right, front) and attribute comparison (bigger than, same as).
For instance, the model is capable of adding a pillow on the bed (Figure 4.17), or change sofa
sizes in accordance with the relationship label (Figure 4.18). The object shapes and sizes fairly
represent the class categories in the input scene graph, for both representations.

Next, in Figure 4.19 we demonstrate a few examples that show how Graph-to-3D can leverage
scene context on shape generation. We observe that chairs tend to have an office style (middle)
when related to a desk, and a more standard style when connected to a dinning table instead
(left), or when there is no explicit relationship to a table/desk (right). Moreover, the number
of pillows lying on a sofa can affect its style and size, i.e. a large sofa vs. a small sofa.
These patterns learned from data show a promising advantage of the proposed fully-learned
graph-driven method.

Table 4.7 reports the quantitative results as a SGPN prediction consistency on 3D shapes
and complete 3D scenes. The object and predicate recall metric are mostly related to shape
generation and layout generation respectively. The triplet recall metric considers object and

96

4.6 Graph-to-3D: 3D Scene Generation and Manipulation

gr
ap

h
w

ith
 c

ha
ng

es
ge

ne
ra

tio
n

m
an

ip
ul

at
io

n

node addition relationship change

Figure 4.18. Qualitative results with AtlasNet encoding of Graph-to-3D on 3D scene generation (middle) and ma-
nipulation (bottom), starting from a scene graph (top). Dashed lines reflect new/changed relationship,
and unfilled nodes indicate added objects.

predicate labels simultaneously, and is therefore affected by all components. We compare
different models, such as retrieval-based 3D-SLN and progressive model, AtlasNet VAE,
Graph-to-Box/Shape as well as the shared Graph-to-3D model. The last two models are
presented for both AtlasNet and DeepSDF shape encodings. To run the SGPN network
on the SDF based results, we first sample a set of points from the generated shapes. For
reference we also present the SGPN results on the ground truth scenes (3RScan data). The
latter leads to the highest predicate prediction accuracy, which is expected. Interestingly, on
shape-related metrics, our Graph-to-3D model gives comparable results to predictions from
ground truth data. Models relying on graph processing for shape generation outperform
the simple AtlasNet VAE, that is not aware of relationships between the objects. Comparing
the shared and disentangled models we observe a consistent performance gain for both the
shape and layout-related metrics, meaning the joint layout and shape learning favours both
tasks. Generally, the methods based on a point cloud encoding work a bit better than the
respective SDF models. This can be explained with the fact that the point sampling from
the SDF might not capture the noise in the ground truth point clouds that SGPN is trained
with. Finally, to ablate our pose annotations, we also run the Graph-to-Box/Shape variant
using shapes in non-canonical poses. Here we still utilize the automatically generated tight
bounding boxes, however, the front direction is unknown, leading to four possible rotations.
The performance of this model is significantly worse, which confirms the relevance of our
direction annotations.

Perceptual study

We carried out a user study with 20 people, each evaluating «30 pairs of generated scenes.
Each sample in the study contains a scene graph, the 3D-SLN [96] baseline with retrieved

97

Chapter 4: Scene Graphs for Generation and Manipulation

Figure 4.19. Effect of scene context in scene generation. Top: Connection to a desk makes a chair look like an office
chair. Bottom: The number of pillows lying on a sofa affects its size and style. [©2021 IEEE]

Layout Model Shape Model
Shape Recall Objects Recall Predicate Recall Triplets

Representation Top 1 Top 5 Top 10 Top 1 Top 3 Top 5 Top 1 Top 50 Top 100

3D-SLN [96] Retrieval
3RScan Data

0.56 0.81 0.88 0.50 0.82 0.86 0.15 0.57 0.82

Progressive Retrieval 0.35 0.66 0.79 0.41 0.70 0.82 0.09 0.40 0.70

Graph-to-Box AtlasNet VAE

AtlasNet [39]

0.41 0.74 0.83 0.57 0.80 0.88 0.08 0.46 0.77
;Graph-to-Box ;Graph-to-Shape 0.39 0.68 0.77 0.55 0.79 0.88 0.05 0.35 0.69

Graph-to-Box Graph-to-Shape 0.51 0.81 0.86 0.57 0.80 0.88 0.23 0.63 0.84

Graph-to-3D 0.54 0.84 0.90 0.60 0.82 0.90 0.21 0.65 0.85

Graph-to-Box Graph-to-Shape
DeepSDF [106]

0.47 0.74 0.83 0.57 0.80 0.87 0.14 0.57 0.81

Graph-to-3D 0.51 0.80 0.88 0.58 0.80 0.89 0.19 0.59 0.83

3RScan data 0.53 0.82 0.90 0.75 0.93 0.98 0.18 0.61 0.83

Table 4.7. Scene graph prediction accuracy on 3DSSG, using the SGPN model from [141], measured as top-k recall
for object, predicate and triplet prediction (higher is better). ;Model trained with non-canonical objects,
exhibiting significantly worse results. [©2021 IEEE]

Method Shape Model
Shape Generation Manipulation

Representation Size Location Angle Shape Size Location Angle Shape

3D-SLN [96] Retrieval
3RScan Data

0.026 0.064 11.833 0.088 0.001 0.002 0.290 0.002

Progressive – 0.009 0.011 1.494 – 0.008 0.008 1.559 –

Graph-to-Box Graph-to-Shape
AtlasNet [39]

0.009 0.024 1.869 0.000 0.007 0.019 2.920 0.000

Graph-to-3D 0.097 0.497 20.532 0.005 0.037 0.061 14.177 0.007

Graph-to-Box Graph-to-Shape
DeepSDF [106]

0.009 0.024 1.895 0.011 0.005 0.019 3.391 0.014

Graph-to-3D 0.091 0.485 19.203 0.015 0.015 0.035 9.364 0.016

Table 4.8. Comparison on diversity results (std) on the generation (left) and manipulation tasks (right), computed
as standard deviation over location and size in meters and angles in degrees. For shape we report the
average chamfer distance between consecutive generations.[©2021 IEEE]

shapes from ShapeNet and our Graph-to-3D model with shared layout and shape. To avoid
human bias, the scenes are given anonymously and in random order. The users were asked
to rate each scene in the range 1-7 (7 is best) on three different aspects 1) global correctness,
2) functional and style fitness between objects and 3) correctness of graph constraints. The
results for 3D-SLN are namely 2.8, 3.7, 3.6, while Graph-to-3D reports 4.6, 4.9, 5.4. Our method
was preferred in namely 72%, 62%, and 68% of the cases.

98

4.6 Graph-to-3D: 3D Scene Generation and Manipulation

input scene and graph diverse manipulations

(a) DeepSDF encodings

(b) AtlasNet encodings

Figure 4.20. Diverse generation of shapes and layout during manipulation. Given an input graph and correspond-
ingly generated scene (left), we obtain diverse results (right) for the added or changed objects.

Diversity

In Table 4.8 we quantitatively evaluate diversity of the generated and manipulated scenes.
For the bounding boxes, we measure the standard deviation among 10 samples resulting from
the same input. This metric is computed separately as mean over size in meters, translation in
meters and rotation angle in degrees. For the shape diversity, we measure the mean Chamfer
distance between these 10 samples. We observe that the progressive model performs worst

99

Chapter 4: Scene Graphs for Generation and Manipulation

in terms of diversity for both generation and manipulation. The VAE-based models instead,
result in more interpretable diversity values, which are larger for object position than for
size. Both shared models (Graph-to-3D) exhibit higher diversity in layout. Regarding shape
diversity, the two Graph-to-3D shared models perform better for manipulation, yet, our
results for generation are worse. As a reminder, the baseline’s shape retrieval method is
based on bounding box similarity. One intuition for the more diverse shapes is that, a slight
diversity in the box can lead to significant changes in shape, as two completely different
shapes can emerge from two similar boxes.

Additionally, We demonstrate qualitatively the capabilities of Graph-to-3D in generating a
diverse set of manipulated scenes under the same graph, in Figure 4.20. We provide results
corresponding to both shape generative models, i.e. AtlasNet and DeepSDF (c.f.Figure 4.20
a) and b)). In this experiment, we first generate a scene given an input scene graph. Sub-
sequently, we apply changes in the scene graph, such as object additions and relationship
changes, and let the model run multiple times to incorporate these changes. Notably, Graph-
to-3D is capable of incorporating diverse manipulations for the same input, considering 3D
shape, location, size and rotation.

100

4.7 Conclusions and future work

4.7 Conclusions and future work

In this chapter we presented our methodology for generating and editing scenes, using scene
graphs as interface.

We first introduced the novel task of semantic image manipulation using scene graphs.
Thereby, we proposed SIMSG – a model that does not require pairs of original and modified
images for training, thanks to our novel training strategy based on a reconstruction proxy
task. The resulting system provides a way to change either the objects, their appearance
or their relationships by directly interacting with the nodes and edges of the scene graph.
SIMSG achieves compelling evidence for its ability to support high-level modification of
natural images. Nonetheless, generating images with high resolution from a scene graph
is still an open problem. While the image generation quality increases when employing
more recent decoders such as SPADE – even for higher resolutions – the SGN’s capability for
layout generation degrades. This can be partially attributed to the self-supervised inference
of object masks, leading to a weak signal for higher resolutions; and the dominance of the
image generation task over layout inference.

Further, to pave the way towards similar tasks in 3D, we extracted 3DSSG, a large-scale 3D
scene graph dataset with semantic relationship annotations for real-world 3D reconstructions.
The dataset has been released to facilitate future research. We leveraged 3DSSG to train a
GCN based graph prediction network (SGPN) from 3D scenes that is capable of predicting
object semantics as well as the relationships between objects. Thereby, we illustrated that
using graph convolutions for scene graph processing leads to better performance than simply
considering each object pair.

Finally, we proposed Graph-to-3D, a novel model for fully-learned 3D scene generation from
scene graphs, which is simultaneously able to conduct scene manipulation. Thereby, we
utilized the predictions from SGPN to evaluate if the generated scenes are in consensus with
the input scene graph information. We observed that joint learning of shape and layout led
to improvements for all metrics, confirming our motivation for exploring the potential of
fully generative models as an alternative to retrieval-based approaches for shape. We show
that Graph-to-3D can be trained with different shape representations – without changes
in the architecture – here demonstrated with point clouds and implicit functions (SDFs).
Our evaluations on visual quality, semantic constrains, perceptual study and diversity have
exhibited compelling results on the generation and manipulation task.

Future work could, first, be dedicated to improving certain aspects of the proposed models.
For instance, SIMSG could be improved by investigating architectural modifications that
enable it to work with higher image resolutions; or by exploring pose-appearance decoupling
strategies to enhance the preservation of visual features when objects are deformed. SGPN
can be adapted to accommodate larger scene graphs, or process a raw scene end-to-end,
without need for class-agnostic segmentation. Graph-to-3D can be adjusted to additionally
generate a texture for each instance, combined with scene graph attributes that describe
texture-relevant properties. In addition, for the future it would be of high interest to design
graph-based models for translating between different domains such as image, text and 3D

101

Chapter 4: Scene Graphs for Generation and Manipulation

scans, using scene graphs as a latent representation as it is naturally compatible with all
domains.

102

5Publications not Discussed in this
Dissertation

This chapter presents research works performed during the thesis time frame that are not
thoroughly discussed in this dissertation, which are however relevant to this research topic.

5.1 Unconditional Scene Graph Generation

So far in this dissertation, we have explored the scene graphs capabilities in synthesizing
scenes conditionally, either as generation of whole scenes or manipulation of parts. A natural
further step would be to consider unconditional generation of scenes. A model that is capable
of generating novel scenes understands common patterns of object constellations and can
recognise faulty or unusual configurations. Different from other scene generation works we
propose a generative model (SceneGraphGen) to learn a distribution of scene graphs, instead
of scenes in their final representation such as images or 3D. The motivation of this choice is
to learn the underlying semantic structure of real-world scenes more effectively, which is
relevant especially for complex scenes, where current unconditional scene generation models
struggle. Once a scene graph is sampled, one can translate it to an actual scene by using a
graph-to-scene model of choice, such as [65] or [20]. The contributions of this work include:

1. being the first work that learns an unconditional generative model on semantic scene
graphs associated with natural scenes.

2. propose an adaptation to an existing label-less graph generative model [163] to accom-
modate scene graph data.

3. propose two Maximum Mean Discrepancy (MMD) based metrics to evaluate the novel
task at the graph and node level.

Here we provide a brief overview of the underlying model and results, and refer the reader
to the respective publication for additional details [33].

5.1.1 Auto-regressive generation model

Given a set of n scene graph samples Gs “ tG1
s,G2

s, ..,Gns u, which are assumed to represent
the distribution of scene graphs pdatapGsq, the goal is to learn a generative model from Gs,
which can later generate novel scene graph samples. In other words, we want to learn a

103

Chapter 5: Publications not Discussed in this Dissertation

Figure 5.1. Overview of the auto-regressive generation process of SceneGraphGen. In each step, the current graph
sequence (green) is taken as input, to generate a new node and a set of connecting edges (red). In the
first step, the node is sampled from a prior distribution.

distribution pφpGsq over scene graphs which is close to pdatapGsq. A scene graph sample
Gs “ pO,Eq follows the same definition as in Chapter 4, consisting of semantic labels for
objects and relationship edges. We formulate this task as an auto-regressive model, as
it enables a flexible number of nodes and graph connectivity, which are crucial to fairly
represent the highly varying scene graphs associated with natural scenes. Inspired by [163]
to enable such auto-regressive formulation we represent each scene graph as a sequence
X “ pO,Eto,Efromq, where O denotes a sequence of all objects from the set O, and E represents
the sequence of all outbound (to) and inbound (from) edges.1 Note that the sequence
X is itself composed of multiple sequences. For a given node in the sequence we have
Xi “ pOi,Eto

i ,Efrom
i q, where Oi is the object node, Eto

i and Efrom
i are the sequence of edges

between Oi and each previous node. Thus we translate the task of learning pφpGsq to
learning a sequence distribution pφpXq. The probability over sequence X is decomposed into
successive conditionals

pφpXq “ ppX1q

n
ź

i“2

pφpXi|Xăiq. (5.1)

Xăi “ pX1, ..,Xi´1q depicts the partial scene graph sequence up to step i. We further split
each conditional pφpXi|Xăiq into three parts for each of the components as

pφpXq “ ppO1q

n
ź

i“2

pφ1pOi|Xăiqpφ2pE
to
i |Oi,Xăiqpφ3pE

from
i |Oi,Eto

i ,Xăiq. (5.2)

SceneGraphGen thus models the complete probability distribution over scene graph se-
quences pφpXq as described by Eq. 5.2. Thereby, each component is aware of the sequence

1Note that a set and a sequence here are not equivalent, even though they essentially contain the same items. A
sequence is defined by the notion of ordering as multiple permutations of a set are possible to obtain a sequence.
We refer the reader to [33, 163] for a more detailed explanation and formulation.

104

5.1 Unconditional Scene Graph Generation

history, and edge generation is conditioned on the node categories. Moreover, the inbound
edges are aware of the respective outbound edges, to avoid a semantic paradox, e.g. A -

behind - B should not co-occur with B - behind - A. Here ppO1q is an assumed prior
distribution over the first node, which can be obtained from the categorical distribution over
the object occurrences. Thereby, to process sequence information, we rely on Gated Recurrent
Units (GRU) [12].

The overall generation procedure is depicted in Figure 5.1. We first sample the first object
node from the prior distribution of nodes, empirically computed from the training set. In
other steps i we use the previous sequence Xi´1 as input to compute the hidden states using
three GRU’s corresponding to namely the node and two edge directions. These hidden states
are then used to obtain the next node i, as well as a sequence of edges connecting to each
previous node j. The new node Ôi is generated via an MLP by sampling from the object
category prediction scores θOi . Similarly, we generate the sequences of edges Êto

i and Êfrom
i

using two edge GRUs, from the respective prediction scores θE
to

i and θE
from

i . The node and
sequence of edges are combined to form the next sequence Xi. This process is continued until
the node generator outputs an end-of-sequence (EOS) token.

The network is optimized via cross-entropy (CE) between the predicted scores and the ground
truth sequence at each step. For a sample scene graph sequence X, the loss is given by

LpX;φq “
n
ÿ

i“2

CEpθOi ,Oiq `
n
ÿ

i“2

i´1
ÿ

j“1

CEpθEto
i,j ,Eto

i,jq `

n
ÿ

i“2

i´1
ÿ

j“1

CEpθEfrom
i,j ,Efrom

i,j q (5.3)

5.1.2 Result highlights and discussion

To evaluate SceneGraphGen we carried out a set of experiments which measure the per-
formance in scene graph generation, as well as three different applications: unconditional
image generation, anomaly detection and scene graph completion. For the scope of this
dissertation, we provide a highlight of the scene generation results, which are more relevant
for this thesis research topic. We refer the reader to the published paper [33] for a formulation
of the proposed MMD metrics, as well as the complete evaluation.

We evaluated our model on the Visual Genome dataset. In absence of a direct baseline, we
compared against GraphRNN [163], adapted to generate categorical labels instead of the
original binary output, as well as to support directed edges. The quantitative evaluation
shows a relative improvement of 5% in the MMD metric and 80% in the MMD graph
metric. We also evaluate at the image level, using sg2im [65] to convert the respective
generated graphs to images. The FID value reports a relative improvement over GraphRNN
by 4.6%. This shows the relevance of conditioning the edge prediction on the categories of
the respective object nodes, which is the main difference between the methods.

Figure 5.2 shows a few samples of generated images by converting our generated graphs via
the sg2im network. Interestingly, comparing the FID and Inception score results of images
generated from our sampled graphs with those generated from ground truth graphs, also
using sg2im, we observe very comparable values (a slight dominance in FID of our method by

105

Chapter 5: Publications not Discussed in this Dissertation

Figure 5.2. Some examples of 64x64 images synthesized using sg2im on the corresponding scene graphs generated
by SceneGraphGen. [©2021 IEEE]

Figure 5.3. Some examples of 64x64 resolution images synthesized via a) Unconditional StyleGAN [67] trained on
Visual Genome (left) b) sg2im [65] on scene graphs generated by SceneGraphGen trained on Visual
Genome (right). [©2021 IEEE]

2.4%, while ground truth is 5.2% better in Inception score). This shows that SceneGraphGen
has learned to generate meaningful graphs, leading to similar image quality as ground truth
scene graphs.

We additionally compare our generated images against StyleGAN2, a state-of-the-art model
in unconditional image generation [67], trained on the same dataset. Figure 5.3 illustrates
results for both methods. We observe that, while StyleGAN2 leads to better FID results,
the images resulting from our generated graphs have more well grounded compositions,
especially as scenes become more complex. Additionally, comparing the object occurrences
against the ground truth test set of Visual Genome, shows that our model is more in line with
the ground truth compared to the StyleGAN2 model, with the ground-truth average error of
1.2, compared to 1.4.

We conclude that leveraging scene graphs as an intermediate step for unconditional image
generation is a promising future direction. The images synthesized from generated graphs
are comparable in quality with those generated from ground truth graphs, and are better
grounded semantically compared to conventional unconditional image generation results.
We see a natural improvement for the graph-based unconditional image generation as models
for generating images from scene graphs get better.

106

Part III

Conclusion and Outlook

6Summary and Findings

In this dissertation, we explored compositional representations for scenes, with the aid of
scene understanding, to tackle tasks relying on partial or complete scene generation. In the
image domain, we essentially employ recent advances in semantic instance segmentation
[42] and monocular depth prediction [76] to construct such representations, and thus enhance
the given input to enable a modular control on the parts therein. We have shown that having
knowledge on the scene components can lead to improved performance, while providing
additional functionalities such as relationship changes.

Our object-driven approach for monocular LDI generation (OMLD) has demonstrated su-
perior results – qualitatively and quantitatively – compared to the baselines at the time of
publication [21]. As expected, the effect is more drastic in the occluded parts of intermediate
(partially occluded) objects, as OMLD takes special care about occluded regions of each
individual instance. Further, we have illustrated how the proposed object-aware composition
is capable of object removal, which is currently not possible with any other LDI generation
work.

We have also shown that decomposing an image via a scene graph, into semantic nodes and
edges can be useful for high-level image manipulation. In particular, the graph augmented
with neural features and bounding box coordinates per instance provides a flexible tool,
in which the user can choose what aspects of an object (location, appearance) to alter or
preserve. Making changes in a graph involves less user effort than manipulating pixels in
a semantic map [107, 146]. Furthermore, scene graphs enable the additional capability of
directly modifying relationships.

Comparing the depth-based and graph-based representations for images, we conclude that,
while dense depth information offers the possibility for efficient novel view synthesis, scene
graphs come with the advantage for more types of content manipulation. In particular,
although it is technically possible to change the order of objects in the scene of a layered
depth image – like it is via changes in the edges of the graph – one needs to make sure that
there are no collisions occurring in the novel constellations, which essentially can only be
enforced through hand-crafted rules. Nevertheless, considering the object removal task –
the layered depth representation leads to generally more plausible shapes in the inpainted
regions, as it explicitly models amodal appearance of objects.

We explored a similar scene graph representation associated with 3D data, with a focus on
obtaining semantically rich relationship labels to describe real indoor scenes. We released
the acquired 3DSSG dataset for future research. Thereby, we discussed the advantages
of annotating scene graphs in 3D, as the respective 2D scene graphs can be obtained by

109

Chapter 6: Summary and Findings

simply rendering the 3D counterpart from a certain camera view. We also proposed the first
learned method that estimates a scene graph from a point cloud, using 3DSSG for training.
In the respective publication [141] we demonstrate that 3D and 2D graphs can be applied for
cross-domain retrieval, which is here only discussed in appendix A.

Further, we investigated our final goal of 3D scene generation and editing via a scene graph.
We have shown that an augmented 3D graph representation that contains information on 3D
bounding boxes, shape encodings and semantic labels is suitable for simultaneous end-to-end
synthesis and manipulation of scenes.

Compared to 2D compositional representations, 3D modeling reduces the ambiguity of
certain relationships, such as proximity. Exemplary, a certain relative placing of bounding
boxes in the image domain can potentially represent both a front of and behind of

relationship, dependent on the object sizes. As expected, we have observed more failure cases
in such relationship categories in 2D, compared to 3D. Additionally, in 3D object removal
becomes trivial – it is very straight forward to separate the content of a certain object from the
rest of the scene, by simply discarding the corresponding points, while in the image space
one has to adequately inpaint the regions occluded by this object. Theoretically, it is possible
to obtain an image from the generated 3D scene, given a viewpoint. Thereby, a 3D scene
would allow for larger viewpoint changes compared to a layered depth structure. On the
other hand, synthesizing an image directly on the image domain would in practice lead to a
considerably higher quality compared to rendering from synthesized 3D models, thanks to
the great recent advances in GAN networks for image generation [67].

110

7Future Work

Alongside the potential improvements on the proposed representations and AI models,
which are discussed in sections 3.6 and 4.7, here we want to debate possible directions for
future research harnessing such scene representations.

This dissertation presents depth-based and graph-based representations separately, due to the
large domain gap between the respective datasets, e.g. indoor depth datasets vs in-the-wild
scene graph datasets. However, it would be an interesting future direction to combine all
these components for a more holistic scene understanding and representation, which exploits
each individual advantages. For instance, depth information can be useful to disambiguate
spatial proximity relationships. One step towards this goal is our generated 3DSSG dataset,
that contains all these modalities for training and evaluation of the employed AI models (see
Appendix C, rendered scene graphs).

Another interesting direction would be to employ scene graphs as a domain-agnostic modality
to translate between 2D and 3D scenes, i.e. carry out rendering and inverse rendering via a
semantic graph. For instance, one could utilize a unified representation for visual features
in 2D and 3D to augment the graph nodes. Similarly, the same system can additionally
accommodate natural language, so to obtain 2D/3D scenes from a text description or add a
caption to the given scene.

One potential future direction would be to combine a compositional representation at the
scene level with one at the object-level. For instance, StructureNet [101] – which employs
a graph structure to represent object parts in 3D – would be a fruitful extension to our 3D
scene graph, to obtain a graph of graphs. In the light of scene synthesis and editing, such
hierarchical model can allow additional customization for the user, by specifying how certain
object parts should be, or interpolating between two given object parts.

Despite the high recent interest in image generation from a scene graph, there is little attention
in explaining what these networks learn. I believe this would be particularly relevant for
such a task as it relies on many components (nodes, edges) and dissecting the model to
understand the influence of each part could lead to interesting answers. This analysis could
support more effective design choices in the future.

As our acquired 3D scene graph dataset comes with dynamic scenes, it is possible to leverage
the scene graphs of multiple scans of the same room to recognize changes. Often this changes
are a result of human activity and interaction with the objects in the room, which I believe is
an interesting future study direction. This is often related to changes in state attribute, e.g. an
oven going from open to closed indicates that someone is potentially cooking.

111

Chapter 7: Future Work

One possible application in robotics, utilizing the scene graph representations, would be to
recognize unusual states that require the robot’s action. Exemplary, to identify if a room is
messy, one idea is to train an unconditional generative model on scene graphs – similar to
the one discussed in Chapter 5 – on a set of graphs corresponding to tidy rooms, and identify
outlier graphs at test time as messy.

To conclude, in my opinion there is quite a lot of potential in using the compositions described
in this dissertation, or their extended variants, for future research.

112

Part IV

Appendix

AScene Graphs for Domain-Agnostic
Scene Retrieval

a)
 2

D
 Im

ag
e

c)
 N

at
u

ra
l

La
n

gu
ag

e

Output: 3D Scene

“There are two
armchairs of the

same type one with
a bag lying on it.“

Input: Scan Pool and Query a), b) or c) Scene Graph

b)
 3

D
 S

ce
n

e G3D

GL

...

G2D

Figure A.1. Cross Domain 2D-3D Scene Retrieval: We use scene graphs in our domain-agnostic scene retrieval
task to close the domain gap between different modalities, like 2D images and 3D scenes. [©2020 IEEE]

This section illustrates an application of the obtained 3D scene graphs. We exploit the
semantic nature of scene graphs in the task of scene retrieval, as a means of communication
between different domains. Given a database of 3D scans of scenes, and an image taken at a
different time in one of these environments, the goal is to identify the closest match from the
database to localize, e.g. the robotic agent that is taking the picture. In particular, we consider
the scenario of dynamic indoor environments, with potential changes in illumination and
object placement, which fairly represents a real life situation in the aforementioned task. We
argue that scene graphs are very suitable for this cross-domain task in presence of scene

115

Chapter A: Scene Graphs for Domain-Agnostic Scene Retrieval

changes, as they encode semantic information which is less likely to change, whilst serving as
a shared domain which can describe both 2D and 3D. Though we only explore with images
and 3D scenes, a transfer between other domains such as natural language is technically
possible.

In essence, we formulate this task as a database search, based on a set of object classes and
relationship triplets. Further, we need similarity metrics to find the most similar scene in the
database. Note that though comparing the graphs directly via their graph edit distance is the-
oretically possible, this leads to a NP-complete problem, which motivates our simplification
to multisets of nodes and edges.

To get the similarity of two graphs, a similarity score τ is applied on the corresponding
multisets spGq respectively. In our experiments we explore two different similarity functions:
Jaccard τJpA,Bq, Eq. A.1 and Szymkiewicz-Simpson τSpA,Bq, Eq. A.2.

τJpA,Bq “
|AX B|

|AY B|
(A.1)

τSpA,Bq “
|AX B|

minp|A|, |B|q
(A.2)

While the Jaccard coefficient is a widely used metric, the Szymkiewicz-Simpson coefficient
is more suitable when the two sets A and B differ considerably in size, which is often the
case in a 2D-3D retrieval, with the image graph often being considerably smaller. Our graph
matching procedure combines the similarity metric of the object semantics, generic label-less
edges E as well as semantic relationships R to obtain

fpĜ, Ĝ 1q “
1
|Ĝ|

|Ĝ|
ÿ

i“1

τpspĜpiqq, spĜ 1piqqq1 (A.3)

where τ is either the Jaccard or Szymkiewicz-Simpson coefficient and Ĝ is defined as the
augmented graph Ĝ “ pN,E,Rqwhere E are binary edges.

Table A.1 and A.2 report two different scene retrieval tasks.2 The goal is to match either an
image (Table A.2) or a 3D scan (Table A.1) with the most similar indoor scene from a database
of 3D reference scans from the validation set of 3RScan. For this purpose, we predicted scenes
graphs for all the 3D scans, as well as for the images. The image (2D) graphs are obtained by
rendering the predicted 3D graphs as described in Section 4.4. Note that the query image
or 3D scan is always recorded at a different time (rescan in 3RScan) from the scans in the
databaze (reference scans in 3RScan). We compute the scene graph similarity between each
query and the pool of reference scans. We then order the matches by their similarity and
report the top-n metric, i.e. the rate of the true positive assignments, placed among the top-n
matches from our algorithm. In our experiment, we either use ground truth or predictions

1we define fS and fJ to use τS and τJ respectively.
2In the tables Ĝ is replaced with G to simplify notation

116

for the query and target graphs (indicated in the Graph-column in Table A.1 and A.2). To
decouple the effect of the different similarity functions from the graph prediction accuracy,
we first evaluate τJpA,Bq and τSpA,Bq using ground truth graphs. As expected, using the
Szymkiewicz-Simpson coefficient leads to better results in 2D-3D matching, whereas for
3D-3D matching the performance of both coefficients is on par. Moreover, adding semantic
edges to the graph matching – in addition to simple binary edges – improves the accuracy.
The tables also confirm that our predicted graphs Á achieve better performance than the
baseline model À.

Graph Top-1 Ò Top-3 Ò Top-5 Ò

τSpspN3Dq, spN3Dqq GT 0.86 0.99 1.00

fSpG3D,G3Dq GT 0.96 1.00 1.00

τJpspN3Dq, spN3Dqq GT 0.89 0.95 0.95

fJpG3D,G3Dq GT 0.95 0.96 0.98

τJpspN3Dq, spN3Dqq À 0.15 0.40 0.45

fJpG3D,G3Dq À 0.29 0.50 0.59

τJpspN3Dq, spN3Dqq Á 0.32 0.46 0.50

fJpG3D,G3Dq Á 0.34 0.51 0.56

Table A.1. Evaluation: 3D-3D scene retrieval of changing 3D rescans to reference 3D scans in 3RScan. [©2020 IEEE]

Graph Top-1 Ò Top-3 Ò Top-5 Ò

τJpspN2Dq, spN3Dqq GT 0.49 0.75 0.84

τSpspN2Dq, spN3Dqq GT 0.98 0.99 1.00

fJpG2D,G3Dq GT 0.55 0.85 0.86

fSpG2D,G3Dq GT 1.00 1.00 1.00

τSpspN2Dq, spN3Dqq À 0.17 0.36 0.42

fSpG2D,G3Dq À 0.10 0.25 0.32

τSpspN2Dq, spN3Dqq Á 0.17 0.36 0.41

fSpG2D,G3Dq Á 0.13 0.38 0.42

Table A.2. Evaluation: 2D-3D scene retrieval of changing rescans to reference 3D scans in 3RScan. [©2020 IEEE]

117

BOMLD: Intermediate Results

B.1 Layout ablation

Here, we ablate the components of the layout branch (Network B), via a direct comparison of
the layout predictions against the ground truth layouts. Table B.1 demonstrates the effective-
ness of the added loss components. In particular, the model variant that does not receive a
depth prior, leads to considerably less accurate depth. This is an example of performance
gain, due to decoupling of a hard task (i.e. predicting invisible depth from a single color
image) into two simpler tasks (i.e. standard depth prediction and RGB-D inpainting). Further,
the employed perceptual loss and adversarial loss lead to an improvement for both texture
and depth synthesis.

Method
color depth

MPE RMSE MPE RMSE

Base, without input depth pred 21.42 42.94 0.662 1.091

Base with input depth pred 22.64 42.45 0.505 0.993

+ adversarial loss 20.93 41.47 0.495 0.953

+ perceptual loss 19.40 39.89 0.482 0.919

Table B.1. Ablation of the layout prediction (Network B) on the SunCG dataset. Base refers to the model as
introduced in the paper, where only the reconstruction loss is present Lr. The errors are measured for
color range 0´ 255 and depth in meters.

B.2 Layout and object generation

Here we show the intermediate results of OMLD, object completion and layout prediction,
i.e. the semantic layers prior to the aggregation in LDI layers. Figure B.1 and B.2 provide
examples for each dataset. From top to bottom, we provide the input image, the mask scores
predicted by Mask R-CNN, (where opacity indicates confidence), followed by the predictions
of our network and ground truth. The two bottom rows report the predicted layouts and
the respective ground truth layouts. The generated layers represent fairly plausible object
shapes and textures, neglecting the color of the occluding objects. For Stanford 2D-3D-S, the
collected ground truth contains holes – in particular for layout – however the network learns
from the available pixels to regress continuous maps.

119

Chapter B: OMLD: Intermediate Results

Figure B.1. RGBA object and layout layers on Stanford 2D-3D. Input image, instance examples (top to bottom:
mask, prediction, ground truth) followed by the layout result.

120

B.2 Layout and object generation

Figure B.2. RGBA object and layout layers on SunCG. Input image, instance examples (top to bottom: mask,
prediction, ground truth) followed by the layout result.

121

C3DSSG Details and Statistics

C.1 Object state changes

Beside static attributes which do not change over time, such as the color or material of an
object, an interesting property of the 3DSSG dataset are dynamic attributes (e.g. messy /

tidy, open / closed, on / off). Interestingly, one can draw connections between
such state properties and human activity. Thus, state changes could potentially be useful in
providing information about activities that might have happened in a particular environment.
Figure C.1 shows a few scene tuples captured at different time steps in which the state of
certain objects has changed.

Figure C.1. Example scenes at two different times where object states have changed. Left: toilet seat is down
and then up - someone might have used the toilet, Center: floor went from messy to tidy - someone
might has cleaned the room, Right: bed went from tidy to messy - someone might have slept in the
bed.

123

Chapter C: 3DSSG Details and Statistics

C.2 Rendered 2D graphs

Figure C.2 illustrates 2D scene graphs of the 3DSSG dataset, associated with rendered views
of the 3D scene. The rendered graphs naturally come with depth and dense semantic instance
masks, which are not present in current 2D scene graph datasets currently available. Visual
Genome [73] for instance, one of the most common scene graph datasets in the image domain,
only provide bounding box annotations. We believe dense annotations would be relevant to
facilitate certain tasks such as image generation.

Figure C.2. Rendered 2D graphs with a small subset of the relationships from our newly created 3D semantic scene
graph dataset 3DSSG . From left to right: RGB image, rendered depth, rendered dense semantic instance
segmentation, dense semantic instance segmentation on textured model, 2D semantic scene graph.

124

C.3 Statistics

C.3 Statistics

In this paragraph, we present further data statistics. Figure C.3 reports histograms to visualize
the statistics related to the number of relationships (a, b) or attributes (c, d) in 3DSSG per
3D scene (scan) as well as per object instance. These statistics show that our scene graphs
are quite dense. Figures C.5 and C.6 show the most frequent object, predicate, attribute and
affordance occurrences extracted from the 3DSSG graphs. Please note that for visualization
simplicity nouns and prepositions are removed from affordances. For example, hanging
in or hanging on are collapsed into hanging. Figure C.7 highlight some of the most
common semantic connections present in the dataset. Further, Figure C.4 illustrates a few
scene examples, where the objects are annotated with the corresponding attributes.

0 200 400 600 800 1000 1200 1400
Number of Relationships per Scene

0

20

40

60

Nu
m

be
r o

f S
ce

ne
s

(a) Scenes and number of relationships

0 20 40 60 80 100 120 140
Number of Relationships per Instance

0

2000

4000

Nu
m

be
r o

f I
ns

ta
nc

es

(b) Object instances and number of relationships

0 2 4 6 8 10 12
Number of Attributes per Instance

0

2500

5000

7500

10000

Nu
m

be
r o

f I
ns

ta
nc

es

(c) Object instances and number of attributes

0 100 200 300 400 500
Number of Attributes per Scene

0

20

40

60

Nu
m

be
r o

f S
ce

ne
s

(d) Scenes and number of attributes

Figure C.3. Histograms of number of relationship and attribute occurences in 3DSSG.

Figure C.4. Example object instances (top) and their corresponding attributes (below).

125

Chapter C: 3DSSG Details and Statistics

103

Number of Occurences

wall
chair

pillow
box

shelf
floor

ceiling
plant
door
table

window
item
lamp

curtain
object

cabinet
picture

bag
light

clothes
doorframe

armchair
sink

kitchen cabinet
towel

heater
trash can

blanket
stool

monitor
commode

desk
cushion

wardrobe
bed

windowsill
sofa

basket
bench

tv
coffee table

clutter
nightstand

toilet
radiator

blinds
bath cabinet

kitchen counter
bicycle
bucket

50 Most Frequent Object Labels

(a) Most frequent (Top-50) object classes used for
the training of the Scene Graph Prediction Network

102 104

Number of Occurences

same object type
same shape
same color

left
right

close by
front

behind
same material

attached to
standing on

brighter than
darker than
higher than
lower than

same as
same state

same texture
bigger than

smaller than
lying on

hanging on
supported by

same symmetry as
more comfortable than

standing in
build in

leaning against
more closed

more open
connected to
belonging to
messier than
cleaner than

lying in
part of
cover

fuller than
hanging in

Relations

(b) Predicate classes

Figure C.5. Object and predicate classes, sorted by occurrence, presented in logarithmic scale

126

C.3 Statistics

101 102 103 104

Number of Occurences

white
flat

rectangular
rigid
wide

tall
low

narrow
wooden

symmetry no symmetry
brown

padded
black
tiled

closed
blue

glass
big

metal
gray

small
green

tidy
red

messy
nonrigid

patterned
off

beige
dark

colorful
square
bright
clean

symmetry 1 plane
ceramic

shiny
yellow
striped

open
painted

silver
orange

light
empty

on
symmetry infinite planes

sloping
cardboard
cylindrical

pink
leather

symmetry 2 planes
purple
round

full
plastic

folded together
semicircular

half open/closed
half full/empty

circular
seat down

hanging
stone

L-shaped
carpet

minimalistic
written on

concrete
seat up

classy
velvet

oval
gold
brick

marbled
old

dirty
dotted

bare
bunk

mobile
octagon

half up/down
checker
classical

new
u-shaped

down
cork

heart-shaped
up

93 Attributes

(a) Attributes

102 103 104

Number of Occurences

placing
carrying
moving
leaning

hanging
sitting

closing
opening
holding
turning

throwing
laying

sleeping
switching

storing
washing
cleaning
walking

watering
lighting

slamming
looking

warming
covering
wearing

decorating
folding

standing
cooking

watching
working

eating
drying
using

reading
riding

cooling
playing
writing

drinking
heating

taking
baking
wiping
calling

printing
showering
belonging

brewing
listening

50 Most Frequent Affordances

(b) Simplified affordances

Figure C.6. Attributes and affordances in the 3DSSG dataset, sorted by occurrence, presented in logarithmic scale.

127

Chapter C: 3DSSG Details and Statistics

wall

floorattached toceiling

chair

standing on

windowsill

tv standshelf

table

window
more open

supported by

curtain

hanging on

pillow

lying on

leaning
against

sofa
more comfor-

table than

bed

commode
desk

couch

counter

cabinet

door
belonging to

box
standing in

stool

doorframe

armchair

picture

trash can

plant

wardrobe

more closed

heater

connected to

lamp

kitchen cabinet

bag

light

bench

blanket

nightstand

towel

toilet

item

monitor

object

radiator

kitchen counter part of

coffee table

stand

bath cabinet

bucket

cushion

sink
build in

pc

clothes

basket

blinds

washing
machine

side table

mirror

refrigerator

tv

backpack

rack

oven

couch table

ottoman

dining chair

stove

bathtub

showcase

bin

clutter

frame

cupboard

Figure C.7. Most frequent triplets (subject, predicate, object) with more than 50 occurrences in 3DSSG.
Please note that to simplify visualization, proximity relationships and the majority of comparative
relationships are filtered out.

128

C.4 WordNet graphs

C.4 WordNet graphs

Figure C.8 visualizes the hierarchy of classes obtained via WordNet. By traversing the tree,
one can extract the per-node hierarchy of labels c. For an object originally annotated as bench,
the hierarchical label c would be c “ tbench, seat, furniture, ..., entityu.
Thereby, colored nodes represent class labels from the annotation set, while white nodes are
not part of the original label set (typically abstract representations).

Figure C.8. Visualization of the hierarchical tree of lexical relationships on a (bigger) subset of classes from 3RScan,
extending Figure 4.12

129

DGraph-to-3D Details

D.1 Discriminator architectures

layer layer input input output

id type layer channels channels

L1 Linear poi,oj, rij,bi,bjq 360 512

L2 Batch Norm L1 512 512

L3 Leaky-ReLU L2 512 512

L4 Linear L3 512 512

L5 Batch Norm L4 512 512

L6 Leaky-ReLU L5 512 512

L7 Linear L6 512 1

out Sigmoid L7 1 1

Table D.1. Architecture of Dbox

layer layer input input output

id type layer channels channels

L1 Linear esi 128 512

L2 Batch Norm L1 512 512

L3 Leaky-ReLU L2 512 512

L4 Linear L3 512 512

L5 Batch Norm L4 512 512

L6 Leaky-ReLU L5 512 512

L7 Linear L6 512 1

outD Sigmoid L7 1 1

L9 Linear L6 512 160

outC Softmax L9 160 160

Table D.2. Architecture of Dshape

D.2 Scene graph constraints

As a way to evaluate layout we utilized their fitness with the scene graph constraints. The
metrics follow the definitions from Table D.3. We validate all predicate categories in 3DSSG

131

Chapter D: Graph-to-3D Details

that can be captured with a geometric rule. Other edges are not straight forward to validate
in this manner, as they are manually annotated (e.g. belonging to, leaning against).

Relationship Rule

left of cx,i ă cx,j and ioupbi,bjq ă 0.5

right of cx,i ą cx,j and ioupbi,bjq ă 0.5

front of cy,i ă cy,j and ioupbi,bjq ă 0.5

behind of cy,i ą cy,j and ioupbi,bjq ă 0.5

higher than hi ` cz,i{2 ą hj ` cz,j{2

lower than hi ` cz,i{2 ă hj ` cz,j{2

smaller than wilihi ă wjljhj

bigger than wilihi ą wjljhj

same as iouCpbi,bjq ą 0.5

Table D.3. Computation of geometric constraint accuracy, for an instance pair (i, j). iouC refers to iou computation
after both objects have been centered at zero.

D.3 Shape generation networks

Point clouds We utilize AtlasNet [39], to learn a low-dimensional latent embedding on
point clouds. AtlasNet – based on PointNet [109] for the encoder part – receives a point
cloud and encodes it into a global feature descriptor via Eatlas. AtlasNet is particularly
suited for the task since the sampling on the uv-map allows to generate point clouds at
arbitrarily resolutions while only using a small set of points during training. This leads to
very efficient training while saving memory. Further, the resulting point cloud is inferred
via the decoder Datlas, using this global feature descriptor together with sampled 2D points
from the uv-map. We train AtlasNet on a mixture of synthetic data from ShapeNet and real
3RScan objects, transformed in canonical pose.

Implicit functions Additionally, we utilize DeepSDF [106] to generate shapes represented
as implicit functions. For this purpose, we learn class-specific Auto-Decoders trained on
the synthetic data from ShapeNet [10]. We use 350 shapes in canonical pose and learn a
128-dimensional continuous shape space. We then label each object in 3RScan with the feature
descriptor of the best fitting shape from the training set. Initially, we attempted to use a
similar partial scan alignment as originally proposed in [106]. Yet, we empirically found
out that it does not work well for 3RScan data, as the point quality is quite low. Thus, we
instead utilize the 3D points to find the best matching descriptor from the training set by
computing the SDF value for each shape and taking the one with minimal value. As we train
our generative model on the basis of these annotations, we can still make use of a continuous
shape space.

132

Bibliography

[1] A. Aguiar and R. Baillargeon. “Developments in young infants’ reasoning about occluded
objects”. In: Cognitive Psychology 45 (2002), pp. 267–336 (see p. 6).

[2] I. Armeni, Z.-Y. He, J. Gwak, A. R. Zamir, M. Fischer, J. Malik, and S. Savarese. “3D Scene
Graph: A Structure for Unified Semantics, 3D Space, and Camera”. In: International Conference on
Computer Vision (ICCV). 2019 (see pp. 60, 78–80).

[3] I. Armeni, S. Sax, A. R. Zamir, and S. Savarese. “Joint 2D-3D-Semantic Data for Indoor Scene
Understanding”. In: arXiv:1702.01105 (2017) (see pp. 38, 44, 49).

[4] O. Ashual and L. Wolf. “Specifying object attributes and relations in interactive scene generation”.
In: ICCV. 2019, pp. 4561–4569 (see pp. 60, 61, 70, 72, 73, 75).

[5] S. Azadi, D. Pathak, S. Ebrahimi, and T. Darrell. “Compositional gan: Learning conditional image
composition”. In: arXiv preprint arXiv:1807.07560 (2018) (see p. 61).

[6] J. Ba, J. R. Kiros, and G. E. Hinton. “Layer Normalization”. In: arXiv:1607.06450 (2016) (see pp. 22,
43).

[7] S. Baker, R. Szeliski, and P. Anandan. “A layered approach to stereo reconstruction”. In: CVPR
(1998) (see p. 29).

[8] J. Z. Bingning Wang Kang Liu. “Conditional Generative Adversarial Networks for Commonsense
Machine Comprehension”. In: IJCAI. 2017 (see p. 24).

[9] A. Chakrabarti, J. Shao, and G. Shakhnarovich. “Depth from a Single Image by Harmonizing
Overcomplete Local Network Predictions”. In: NIPS (2016) (see p. 31).

[10] A. X. Chang, T. Funkhouser, L. Guibas, P. Hanrahan, Q. Huang, Z. Li, S. Savarese, M. Savva,
S. Song, H. Su, et al. “Shapenet: An information-rich 3d model repository”. In: arXiv preprint
arXiv:1512.03012 (2015) (see pp. 88, 132).

[11] Q. Chen and V. Koltun. “Photographic image synthesis with cascaded refinement networks”. In:
ICCV. 2017, pp. 1511–1520 (see pp. 61, 67, 68).

[12] K. Cho, B. van Merrienboer, D. Bahdanau, and Y. Bengio. “On the Properties of Neural Machine
Translation: Encoder-Decoder Approaches”. In: arXiv preprint arXiv:1409.1259 (2014) (see p. 105).

[13] Y. Choi, M. Choi, M. Kim, J.-W. Ha, S. Kim, and J. Choo. “Stargan: Unified generative adversarial
networks for multi-domain image-to-image translation”. In: CVPR. 2018, pp. 8789–8797 (see
p. 61).

[14] C. B. Choy, D. Xu, J. Gwak, K. Chen, and S. Savarese. “3D-R2N2: A Unified Approach for Single
and Multi-view 3D Object Reconstruction”. In: ECCV. 2016 (see p. 31).

[15] D. Clevert, T. Unterthiner, and S. Hochreiter. “Fast and Accurate Deep Network Learning by
Exponential Linear Units (ELUs)”. In: 4th International Conference on Learning Representations,
ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016, Conference Track Proceedings. Ed. by Y. Bengio and
Y. LeCun. 2016 (see pp. 18, 22).

133

Bibliography

[16] A. Dai, A. X. Chang, M. Savva, M. Halber, T. Funkhouser, and M. Nießner. “ScanNet: Richly-
annotated 3D Reconstructions of Indoor Scenes”. In: International Conference on Computer Vision
and Pattern Recognition (CVPR). 2017 (see pp. 34, 60, 78).

[17] B. Dai, Y. Zhang, and D. Lin. “Detecting visual relationships with deep relational networks”. In:
CVPR. 2017, pp. 3076–3086 (see pp. 60, 68).

[18] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. “ImageNet: A large-scale hierarchical
image database”. In: CVPR (2009) (see pp. 17, 41, 65).

[19] H. Dhamo, A. Farshad, I. Laina, N. Navab, G. D. Hager, F. Tombari, and C. Rupprecht. “Semantic
image manipulation using scene graphs”. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition. 2020, pp. 5213–5222 (see pp. 1, 7, 9, 11, 23, 60, 61, 70).

[20] H. Dhamo, F. Manhardt, N. Navab, and F. Tombari. “Graph-to-3D: End-to-end Generation and
Manipulation of 3D Scenes using Scene Graphs”. In: International Conference on Computer Vision.
2021 (see pp. 1, 8, 9, 11, 23, 60, 62, 103).

[21] H. Dhamo, N. Navab, and F. Tombari. “Object-Driven Multi-Layer Scene Decomposition From a
Single Image”. In: Proceedings IEEE International Conference on Computer Vision (ICCV). 2019 (see
pp. 1, 7, 9–11, 23, 30, 55, 56, 109).

[22] H. Dhamo, K. Tateno, I. Laina, N. Navab, and F. Tombari. “Peeking behind objects: Layered
depth prediction from a single image”. In: Pattern Recognition Letters 125 (2019), pp. 333–340 (see
pp. 1, 7, 9, 10, 23, 30, 31, 36–38, 49, 54–56).

[23] K. Ehsani, R. Mottaghi, and A. Farhadi. “Segan: Segmenting and generating the invisible”. In:
CVPR. 2018 (see pp. 29, 38).

[24] D. Eigen and R. Fergus. “Predicting Depth, Surface Normals and Semantic Labels with a Common
Multi-scale Convolutional Architecture”. In: ICCV. 2015 (see p. 31).

[25] D. Eigen, C. Puhrsch, and R. Fergus. “Depth Map Prediction from a Single Image Using a
Multi-scale Deep Network”. In: NIPS. 2014 (see p. 31).

[26] F. Engelmann, T. Kontogianni, A. Hermans, and B. Leibe. “Exploring Spatial Context for 3D
Semantic Segmentation of Point Clouds”. In: International Conference on Computer Vision (ICCV)
Workshops. 2017 (see p. 60).

[27] H. Fan, H. Su, and L. J. Guibas. “A Point Set Generation Network for 3D Object Reconstruction
From a Single Image”. In: CVPR. 2017 (see pp. 31, 38).

[28] C. Fellbaum, ed. WordNet: an electronic lexical database. MIT Press, 1998 (see p. 79).

[29] M. A. Fischler and R. C. Bolles. “Random sample consensus: a paradigm for model fitting with
applications to image analysis and automated cartography”. In: Communications of the ACM 24.6
(1981), pp. 381–395 (see p. 88).

[30] M. Fisher, M. Savva, and P. Hanrahan. “Characterizing structural relationships in scenes using
graph kernels”. In: ACM Trans. Graph (2011) (see p. 60).

[31] J. Flynn, I. Neulander, J. Philbin, and N. Snavely. “Deepstereo: Learning to predict new views
from the world’s imagery”. In: CVPR. 2016 (see pp. 30, 54).

[32] R. Garg, V. K. BG, G. Carneiro, and I. Reid. “Unsupervised cnn for single view depth estimation:
Geometry to the rescue”. In: European Conference on Computer Vision. Springer. 2016, pp. 740–756
(see pp. 30, 54).

[33] S. Garg, H. Dhamo, A. Farshad, S. Musatian, N. Navab, and F. Tombari. “Unconditional Scene
Graph Generation”. In: International Conference on Computer Vision. 2021 (see pp. 1, 10, 23, 103–
105).

134

Bibliography

[34] S. Ghosh, G. Burachas, A. Ray, and A. Ziskind. “Generating Natural Language Explanations for
Visual Question Answering using Scene Graphs and Visual Attention”. In: ArXiv abs/1902.05715
(2019) (see p. 60).

[35] J. J. Gibson. The Ecological Approach to Visual Perception. Boston: Houghton Mifflin, 1979 (see p. 80).

[36] C. Godard, O. Mac Aodha, and G. J. Brostow. “Unsupervised monocular depth estimation with
left-right consistency”. In: CVPR. 2017, pp. 270–279 (see pp. 30, 54).

[37] I. Goodfellow, Y. Bengio, A. Courville, and Y. Bengio. Deep learning. Vol. 1. 2. MIT press Cam-
bridge, 2016 (see p. 16).

[38] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and
Y. Bengio. “Generative adversarial nets”. In: Advances in neural information processing systems.
2014, pp. 2672–2680 (see pp. 6, 24, 41, 91).

[39] T. Groueix, M. Fisher, V. G. Kim, B. Russell, and M. Aubry. “AtlasNet: A Papier-Mâché Approach
to Learning 3D Surface Generation”. In: Proceedings IEEE Conf. on Computer Vision and Pattern
Recognition (CVPR). 2018 (see pp. 89, 95, 98, 132).

[40] R. Guo, C. Zou, and D. Hoiem. “Predicting Complete 3D Models of Indoor Scenes”. In: arXiv:1504.02437
(2015) (see p. 31).

[41] R. Hartley and A Zisserman. Multiple View Geometry in Computer Vision. Second. Cambridge
University Press, ISBN: 0521540518, 2004 (see p. 13).

[42] K. He, G. Gkioxari, P. Dollár, and R. Girshick. “Mask r-cnn”. In: ICCV. 2017 (see pp. 39, 40, 42, 49,
109).

[43] K. He, X. Zhang, S. Ren, and J. Sun. “Deep Residual Learning for Image Recognition”. In: CVPR
(2016) (see pp. 17, 22, 31, 42).

[44] K. He, X. Zhang, S. Ren, and J. Sun. “Delving Deep into Rectifiers: Surpassing Human-Level
Performance on ImageNet Classification”. In: 2015 IEEE International Conference on Computer
Vision, ICCV 2015, Santiago, Chile, December 7-13, 2015. IEEE Computer Society, 2015, pp. 1026–
1034 (see pp. 18, 22).

[45] P. Hedman, S. Alsisan, R. Szeliski, and J. Kopf. “Casual 3D Photography”. In: (2017) (see pp. 6,
11, 29, 31, 55).

[46] R. Herzig, M. Raboh, G. Chechik, J. Berant, and A. Globerson. “Mapping images to scene graphs
with permutation-invariant structured prediction”. In: NeurIPS. 2018 (see p. 60).

[47] M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler, and S. Hochreiter. “GANs Trained by a Two
Time-Scale Update Rule Converge to a Local Nash Equilibrium”. In: NeurIPS. 2017 (see p. 69).

[48] G. E. Hinton, S. Osindero, and Y.-W. Teh. “A fast learning algorithm for deep belief nets”. In:
Neural computation 18.7 (2006), pp. 1527–1554 (see p. 17).

[49] G. E. Hinton et al. “Learning distributed representations of concepts”. In: Proceedings of the eighth
annual conference of the cognitive science society. Vol. 1. Amherst, MA. 1986, p. 12 (see p. 17).

[50] S. Hong, D. Yang, J. Choi, and H. Lee. “Inferring semantic layout for hierarchical text-to-image
synthesis”. In: CVPR. 2018 (see p. 61).

[51] J. Hou, A. Dai, and M. Nießner. “3D-SIS: 3D Semantic Instance Segmentation of RGB-D Scans”.
In: Conference on Computer Vision and Pattern Recognition (CVPR). 2019 (see p. 60).

[52] S.-M. Hu, F.-L. Zhang, M. Wang, R. R. Martin, and J. Wang. “PatchNet: A Patch-based Image
Representation for Interactive Library-driven Image Editing”. In: ACM Trans. Graph. 32 (2013)
(see p. 61).

135

Bibliography

[53] G. Huang, Z. Liu, L. van der Maaten, and K. Q. Weinberger. “Densely connected convolutional
networks”. In: CVPR. 2017 (see p. 31).

[54] S. Huang, S. Qi, Y. Xiao, Y. Zhu, Y. N. Wu, and S.-C. Zhu. “Cooperative Holistic Scene Under-
standing: Unifying 3D Object, Layout, and Camera Pose Estimation”. In: Conference on Neural
Information Processing Systems (NeurIPS). 2018 (see p. 60).

[55] S. Iizuka, E. Simo-Serra, and H. Ishikawa. “Globally and locally consistent image completion”.
In: ACM Transactions on Graphics (TOG) 36.4 (2017), p. 107 (see pp. 24, 35).

[56] S. Ioffe and C. Szegedy. “Batch normalization: Accelerating deep network training by reducing
internal covariate shift”. In: arXiv preprint arXiv:1502.03167 (2015) (see pp. 22, 68).

[57] P. Isola and C. Liu. “Scene Collaging: Analysis and Synthesis of Natural Images with Semantic
Layers”. In: ICCV (2013) (see pp. 29, 60).

[58] P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros. “Image-to-Image Translation with Conditional
Adversarial Networks”. In: In CVPR (2017) (see pp. 23, 25, 35, 36, 43, 61).

[59] S. Jae Hwang, S. N. Ravi, Z. Tao, H. J. Kim, M. D. Collins, and V. Singh. “Tensorize, factorize and
regularize: Robust visual relationship learning”. In: CVPR. 2018, pp. 1014–1023 (see p. 60).

[60] C. Jiang, S. Qi, Y. Zhu, S. Huang, J. Lin, L. Yu, D. Terzopoulos, and S. Zhu. “Configurable 3D Scene
Synthesis and 2D Image Rendering with Per-pixel Ground Truth Using Stochastic Grammars”.
In: International Journal of Computer Vision (IJCV) (2018) (see p. 61).

[61] J. Jiao, Y. Cao, Y. Song, and R. W. H. Lau. “Look Deeper into Depth: Monocular Depth Estimation
with Semantic Booster and Attention-Driven Loss”. In: ECCV. 2018 (see p. 31).

[62] Y. Jo and J. Park. “SC-FEGAN: Face Editing Generative Adversarial Network with User’s Sketch
and Color”. In: arXiv preprint arXiv:1902.06838 (2019) (see p. 61).

[63] J. Johnson, R. Krishna, M. Stark, L. Li, D. A. Shamma, M. S. Bernstein, and L. Fei-Fei. “Image
retrieval using scene graphs”. In: CVPR. 2015 (see p. 60).

[64] J. Johnson, A. Alahi, and L. Fei-Fei. “Perceptual Losses for Real-Time Style Transfer and Super-
Resolution”. In: ECCV. 2016 (see p. 41).

[65] J. Johnson, A. Gupta, and L. Fei-Fei. “Image Generation from Scene Graphs”. In: CVPR. 2018 (see
pp. 7, 60–62, 67–70, 72, 73, 103, 105, 106).

[66] J. Johnson, B. Hariharan, L. van der Maaten, L. Fei-Fei, C Lawrence Zitnick, and R. Girshick.
“Clevr: A diagnostic dataset for compositional language and elementary visual reasoning”. In:
CVPR. 2017 (see pp. 69, 70).

[67] T. Karras, S. Laine, M. Aittala, J. Hellsten, J. Lehtinen, and T. Aila. “Analyzing and improving
the image quality of stylegan”. In: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition. 2020, pp. 8110–8119 (see pp. 106, 110).

[68] K. Karsch, C. Liu, and S. B. Kang. “Depth Transfer: Depth Extraction from Videos Using Non-
parametric Sampling”. In: DICCV. 2016 (see p. 31).

[69] A. Kendall and Y. Gal. “What uncertainties do we need in bayesian deep learning for computer
vision?” In: NIPS. 2017, pp. 5580–5590 (see p. 31).

[70] D. P. Kingma and J. Ba. “Adam: A method for stochastic optimization”. In: arXiv preprint
arXiv:1412.6980 (2014) (see pp. 19, 43, 69).

[71] D. P. Kingma and M. Welling. “Auto-encoding variational bayes”. In: ICLR (2013) (see pp. 6, 24).

[72] J. Konrad, M. Wang, and P. Ishwar. “2d-to-3d image conversion by learning depth from examples”.
In: CVPR Workshops. 2012 (see p. 31).

136

Bibliography

[73] R. Krishna, Y. Zhu, O. Groth, J. Johnson, K. Hata, J. Kravitz, S. Chen, Y. Kalantidis, L.-J. Li, D. A.
Shamma, et al. “Visual genome: Connecting language and vision using crowdsourced dense
image annotations”. In: IJCV 123.1 (2017), pp. 32–73 (see pp. 69, 72, 78, 124).

[74] A. Krizhevsky, I. Sutskever, and G. E. Hinton. “Imagenet classification with deep convolutional
neural networks”. In: Advances in neural information processing systems. 2012, pp. 1097–1105 (see
pp. 17, 22).

[75] N. Kulkarni, I. Misra, S. Tulsiani, and A. Gupta. “3D-RelNet: Joint Object and Relational Network
for 3D Prediction”. In: International Conference on Computer Vision (ICCV) (2019) (see p. 60).

[76] I. Laina, C. Rupprecht, V. Belagiannis, F. Tombari, and N. Navab. “Deeper depth prediction with
fully convolutional residual networks”. In: 2016 Fourth international conference on 3D vision (3DV).
IEEE. 2016, pp. 239–248 (see pp. 31, 34, 41–43, 49, 109).

[77] G. Lample, N. Zeghidour, N. Usunier, A. Bordes, L. Denoyer, et al. “Fader networks: Manipulat-
ing images by sliding attributes”. In: NeurIPS. 2017, pp. 5967–5976 (see p. 61).

[78] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. “Gradient-based learning applied to document
recognition”. In: Proceedings of the IEEE 86.11 (1998), pp. 2278–2324 (see p. 21).

[79] C. Ledig, L. Theis, F. Huszár, J. Caballero, A. Cunningham, A. Acosta, A. Aitken, A. Tejani, J. Totz,
Z. Wang, et al. “Photo-realistic single image super-resolution using a generative adversarial
network”. In: CVPR. 2017, pp. 4681–4690 (see pp. 25, 61).

[80] B. Li, C. Shen, Y. Dai, A. van den Hengel, and M. He. “Depth and surface normal estimation from
monocular images using regression on deep features and hierarchical CRFs”. In: CVPR. 2015 (see
p. 31).

[81] C. Li and M. Wand. “Precomputed Real-Time Texture Synthesis with Markovian Generative
Adversarial Networks”. In: ECCV. Ed. by B. Leibe, J. Matas, N. Sebe, and M. Welling. 2016 (see
p. 25).

[82] G. Li, M. Müller, A. Thabet, and B. Ghanem. “DeepGCNs: Can GCNs Go as Deep as CNNs?” In:
International Conference on Computer Vision (ICCV). 2019 (see p. 63).

[83] M. Li, A. Gadi Patil, K. Xu, S. Chaudhuri, O. Khan, A. Shamir, C. Tu, B. Chen, D. Cohen-Or,
and H. Zhang. “GRAINS: Generative Recursive Autoencoders for Indoor Scenes”. In: ACM
Transactions on Graphics (TOG) (2018) (see pp. 60, 61).

[84] Y. Li, W. Ouyang, B. Zhou, J. Shi, C. Zhang, and X. Wang. “Factorizable net: an efficient subgraph-
based framework for scene graph generation”. In: ECCV. 2018, pp. 335–351 (see pp. 60, 64, 65,
68).

[85] Y. Li, W. Ouyang, B. Zhou, K. Wang, and X. Wang. “Scene graph generation from objects, phrases
and region captions”. In: ICCV. 2017, pp. 1261–1270 (see p. 60).

[86] Y. Li, Z. Gan, Y. Shen, J. Liu, Y. Cheng, Y. Wu, L. Carin, D. Carlson, and J. Gao. “StoryGAN: A
Sequential Conditional GAN for Story Visualization”. In: arXiv preprint arXiv:1812.02784 (2018)
(see p. 61).

[87] T. Lin, P. Goyal, R. Girshick, K. He, and P. Dollár. “Focal Loss for Dense Object Detection”. In:
International Conference on Computer Vision (ICCV). 2017 (see p. 83).

[88] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár, and C. L. Zitnick.
“Microsoft coco: Common objects in context”. In: European conference on computer vision. Springer.
2014, pp. 740–755 (see p. 49).

[89] B. Liu, S. Gould, and D. Koller. “Single image depth estimation from predicted semantic labels”.
In: CVPR (2010) (see p. 31).

137

Bibliography

[90] C. Liu, K. Kim, J. Gu, Y. Furukawa, and J. Kautz. “PlaneRCNN: 3D Plane Detection and Recon-
struction From a Single Image”. In: CVPR. 2019 (see p. 29).

[91] C. Liu, P. Kohli, and Y. Fukurawa. “Layered scene decomposition via the occlusion-crf”. In: CVPR.
2016 (see p. 29).

[92] F. Liu, C. Shen, and G. Lin. “Deep Convolutional Neural Fields for Depth Estimation from a
Single Image”. In: CVPR (2015) (see p. 31).

[93] M. Liu, M. Salzmann, and X. He. “Discrete-Continuous Depth Estimation from a Single Image”.
In: CVPR. 2014, pp. 716–723 (see p. 31).

[94] T. Liu, S. Chaudhuri, V. Kim, Q. Huang, N. Mitra, and T. Funkhouser. “Creating Consistent Scene
Graphs Using a Probabilistic Grammar”. In: ACM Transactions on Graphics (TOG) (2014) (see
p. 60).

[95] C. Lu, R. Krishna, M. Bernstein, and L. Fei-Fei. “Visual Relationship Detection with Language
Priors”. In: European Conference on Computer Vision (ECCV). 2016 (see pp. 60, 82, 84, 85).

[96] A. Luo, Z. Zhang, J. Wu, and J. B. Tenenbaum. “End-to-End Optimization of Scene Layout”. In:
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 2020
(see pp. 8, 60, 62, 87, 93–95, 97, 98).

[97] R. Ma, A. G. Patil, M. Fisher, M. Li, S. Pirk, B.-S. Hua, S.-K. Yeung, X. Tong, L. Guibas, and
H. Zhang. “Language-Driven Synthesis of 3D Scenes from Scene Databases”. In: SIGGRAPH
Asia, Technical Papers. 2018 (see p. 61).

[98] J. McCormac, A. Handa, S. Leutenegger, and A. J.Davison. “SceneNet RGB-D: 5M Photorealistic
Images of Synthetic Indoor Trajectories with Ground Truth”. In: ICCV (2017) (see pp. 33, 44, 46,
47).

[99] W. S. McCulloch and W. Pitts. “A logical calculus of the ideas immanent in nervous activity”. In:
The bulletin of mathematical biophysics 5.4 (1943), pp. 115–133 (see p. 16).

[100] M. Mirza and S. Osindero. “Conditional generative adversarial nets”. In: arXiv preprint arXiv:1411.1784
(2014) (see p. 61).

[101] K. Mo, P. Guerrero, L. Yi, H. Su, P. Wonka, N. Mitra, and L. Guibas. “StructureNet: Hierarchical
Graph Networks for 3D Shape Generation”. In: ACM Transactions on Graphics (TOG) (2019) (see
pp. 61, 111).

[102] P. K. Nathan Silberman Derek Hoiem and R. Fergus. “Indoor Segmentation and Support Inference
from RGBD Images”. In: ECCV. 2012 (see pp. 44, 47, 48, 80).

[103] A. Newell and J. Deng. “Pixels to graphs by associative embedding”. In: NeurIPS. 2017, pp. 2171–
2180 (see pp. 60, 64).

[104] Y. Nie, X. Han, S. Guo, Y. Zheng, J. Chang, and J. J. Zhang. “Total3DUnderstanding: Joint Layout,
Object Pose and Mesh Reconstruction for Indoor Scenes From a Single Image”. In: IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR). 2020 (see p. 61).

[105] A. Odena, C. Olah, and J. Shlens. “Conditional image synthesis with auxiliary classifier GANs”.
In: Proceedings of the 34th International Conference on Machine Learning-Volume 70. 2017, pp. 2642–
2651 (see pp. 61, 67, 91).

[106] J. J. Park, P. Florence, J. Straub, R. Newcombe, and S. Lovegrove. “Deepsdf: Learning continuous
signed distance functions for shape representation”. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition. 2019, pp. 165–174 (see pp. 89, 95, 98, 132).

[107] T. Park, M.-Y. Liu, T.-C. Wang, and J.-Y. Zhu. “Semantic Image Synthesis with Spatially-Adaptive
Normalization”. In: CVPR. 2019 (see pp. 67, 68, 109).

138

Bibliography

[108] D. Pathak, P. Krahenbuhl, J. Donahue, T. Darrell, and A. A. Efros. “Context Encoders: Feature
Learning by Inpainting”. In: The IEEE Conference on Computer Vision and Pattern Recognition
(CVPR). 2016 (see pp. 24, 35, 61).

[109] C. R. Qi, H. Su, K. Mo, and L. Guibas. “PointNet: Deep Learning on Point Sets for 3D Classification
and Segmentation”. In: Conference on Computer Vision and Pattern Recognition (CVPR). 2017 (see
pp. 60, 82, 132).

[110] C. R. Qi, H. Su, M. Nießner, A. Dai, M. Yan, and L. Guibas. “Volumetric and Multi-View CNNs
for Object Classification on 3D Data”. In: Computer Vision and Pattern Recognition (CVPR). 2016
(see p. 60).

[111] C. R. Qi, L. Yi, H. Su, and L. Guibas. “PointNet++: Deep Hierarchical Feature Learning on Point
Sets in a Metric Space”. In: Conference on Neural Information Processing Systems (NeurIPS). 2017
(see p. 60).

[112] M. Qi, W. Li, Z. Yang, Y. Wang, and J. Luo. “Attentive Relational Networks for Mapping Images
to Scene Graphs”. In: arXiv preprint arXiv:1811.10696 (2018) (see p. 60).

[113] N. Qian. “On the momentum term in gradient descent learning algorithms”. In: Neural networks
12.1 (1999), pp. 145–151 (see p. 19).

[114] M. Ramamonjisoa, Y. Du, and V. Lepetit. “Predicting Sharp and Accurate Occlusion Boundaries
in Monocular Depth Estimation Using Displacement Fields”. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR). 2020 (see p. 31).

[115] M. Ramamonjisoa and V. Lepetit. “SharpNet: Fast and Accurate Recovery of Occluding Contours
in Monocular Depth Estimation”. In: The IEEE International Conference on Computer Vision (ICCV)
Workshops (2019) (see p. 31).

[116] S. Reed, Z. Akata, X. Yan, L. Logeswaran, B. Schiele, and H. Lee. “Generative adversarial text to
image synthesis”. In: arXiv preprint arXiv:1605.05396 (2016) (see p. 61).

[117] S. Ren, K. He, R. Girshick, and J. Sun. “Faster r-cnn: Towards real-time object detection with
region proposal networks”. In: Advances in neural information processing systems. 2015, pp. 91–99
(see p. 60).

[118] O. Ronneberger, P. Fischer, and T. Brox. “U-Net: Convolutional Networks for Biomedical Image
Segmentation”. In: MICCAI (2015) (see pp. 23, 41, 43).

[119] F. Rosenblatt. “The Perceptron: {A} Probabilistic Model for Information Storage and Organization
in the Brain”. In: Psychological Review 65 (1958), pp. 386–408 (see p. 16).

[120] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. “Learning representations by back-propagating
errors”. In: nature 323.6088 (1986), pp. 533–536 (see p. 17).

[121] M. A. Sadeghi and A. Farhadi. “Recognition using visual phrases”. In: CVPR. 2011 (see p. 60).

[122] T. Salimans, I. J. Goodfellow, W. Zaremba, V. Cheung, A. Radford, and X. Chen. “Improved
Techniques for Training GANs”. In: NeurIPS. 2016 (see p. 69).

[123] A. Saxena, S. H. Chung, and A. Y. Ng. “Learning depth from single monocular images”. In: NIPS.
2006 (see p. 31).

[124] A. Saxena, M. Sun, and A. Y. Ng. “Make3d: Learning 3d scene structure from a single still image”.
In: PAMI (2009) (see p. 31).

[125] J. Shade, S. Gortler, L.-w. He, and R. Szeliski. “Layered Depth Images”. In: SIGGRAPH ’98. 1998,
pp. 231–242 (see pp. 6, 14, 15, 29, 44).

139

Bibliography

[126] R. R. Shetty, M. Fritz, and B. Schiele. “Adversarial scene editing: Automatic object removal from
weak supervision”. In: NeurIPS. 2018, pp. 7717–7727 (see p. 61).

[127] Y. Shi, A. X. Chang, Z. Wu, M. Savva, and K. Xu. “Hierarchy Denoising Recursive Autoencoders
for 3D Scene Layout Prediction”. In: Computer Vision and Pattern Recognition (CVPR). 2019 (see
p. 60).

[128] M.-L. Shih, S.-Y. Su, J. Kopf, and J.-B. Huang. “3D Photography using Context-aware Layered
Depth Inpainting”. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2020
(see pp. 30, 57, 58).

[129] K. Simonyan and A. Zisserman. “Very deep convolutional networks for large-scale image recog-
nition”. In: arXiv:1409.1556 (2014) (see pp. 41, 65, 68).

[130] S. Song, S. Lichtenberg, and J. Xiao. “SUN RGB-D: A RGB-D Scene Understanding Benchmark
Suite”. In: Conference on Computer Vision and Pattern Recognition (CVPR). 2015 (see p. 60).

[131] S. Song, F. Yu, A. Zeng, A. X. Chang, M. Savva, and T. Funkhouser. “Semantic Scene Completion
from a Single Depth Image”. In: CVPR (2017) (see pp. 31, 38, 44).

[132] E. S. Spelke. “Principles of object perception”. In: Cognitive science 14.1 (1990), pp. 29–56 (see p. 6).

[133] H. Su, S. Maji, E. Kalogerakis, and E. G. Learned-Miller. “Multi-view Convolutional Neural
Networks for 3D Shape Recognition”. In: International Conference on Computer Vision (ICCV). 2015
(see p. 60).

[134] D. Sun, E. B. Sudderth, and M. J. Black. “Layered segmentation and optical flow estimation over
time”. In: CVPR (2012) (see p. 29).

[135] W. Sun and T. Wu. “Image Synthesis From Reconfigurable Layout and Style”. In: ICCV. 2019 (see
p. 61).

[136] J. Tighe, M. Niethammer, and S. Lazebnik. “Scene Parsing with Object Instances and Occlusion
Ordering”. In: CVPR (2014) (see p. 29).

[137] R. Tucker and N. Snavely. “Single-view View Synthesis with Multiplane Images”. In: The IEEE
Conference on Computer Vision and Pattern Recognition (CVPR). 2020 (see pp. 30, 57).

[138] S. Tulsiani, S. Gupta, D. Fouhey, A. A. Efros, and J. Malik. “Factoring Shape, Pose, and Layout
from the 2D Image of a 3D Scene”. In: CVPR. 2018 (see pp. 31, 61).

[139] S. Tulsiani, R. Tucker, and N. Snavely. “Layer-structured 3D Scene Inference via View Synthesis”.
In: ECCV. 2018 (see pp. 7, 9, 30, 38, 44, 45, 48–51, 54, 55, 57).

[140] J. Wald, A. Avetisyan, N. Navab, F. Tombari, and M. Nießner. “Rio: 3d object instance re-
localization in changing indoor environments”. In: Proceedings of the IEEE International Conference
on Computer Vision. 2019, pp. 7658–7667 (see pp. 8, 60, 78, 84).

[141] J. Wald, H. Dhamo, N. Navab, and F. Tombari. “Learning 3D Semantic Scene Graphs from 3D
Indoor Reconstructions”. In: Conference on Computer Vision and Pattern Recognition (CVPR). 2020
(see pp. 1, 8, 9, 11, 59, 60, 93, 98, 110).

[142] J. Y. A. Wang and E. H. Adelson. “Representing moving images with layers”. In: IEEE transactions
on image processing (1994) (see p. 29).

[143] K. Wang, Y. Lin, B. Weissmann, M. Savva, A. X. Chang, and D. Ritchie. “PlanIT: planning and
instantiating indoor scenes with relation graph and spatial prior networks”. In: ACM Trans.
Graph. 38 (2019), 132:1–132:15 (see pp. 62, 94).

[144] K. Wang, M. Savva, A. X. Chang, and D. Ritchie. “Deep convolutional priors for indoor scene
synthesis”. In: ACM Transactions on Graphics (TOG) 37.4 (2018), p. 70 (see p. 62).

140

Bibliography

[145] P. Wang, X. Shen, Z. Lin, S. Cohen, B. Price, and A. L. Yuille. “Towards Unified Depth and
Semantic Prediction From a Single Image”. In: CVPR. 2015 (see p. 31).

[146] T.-C. Wang, M.-Y. Liu, J.-Y. Zhu, A. Tao, J. Kautz, and B. Catanzaro. “High-Resolution Image
Synthesis and Semantic Manipulation with Conditional GANs”. In: CVPR. 2018 (see pp. 7, 109).

[147] T.-C. Wang, M.-Y. Liu, J.-Y. Zhu, A. Tao, J. Kautz, and B. Catanzaro. “High-resolution image
synthesis and semantic manipulation with conditional gans”. In: CVPR. 2018, pp. 8798–8807 (see
pp. 61, 93).

[148] Y. Wang, D. J. Tan, N. Navab, and F. Tombari. “Adversarial Semantic Scene Completion from a
Single Depth Image”. In: 3DV (2018) (see p. 31).

[149] O. Wiles, G. Gkioxari, R. Szeliski, and J. Johnson. “SynSin: End-to-End View Synthesis From a
Single Image”. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR). 2020 (see p. 30).

[150] J. Wu, Y. Wang, T. Xue, X. Sun, W. T. Freeman, and J. B. Tenenbaum. “MarrNet: 3D Shape
Reconstruction via 2.5D Sketches”. In: NIPS. 2017 (see p. 31).

[151] J. Wu, C. Zhang, T. Xue, W. T. Freeman, and J. B. Tenenbaum. “Learning a Probabilistic La-
tent Space of Object Shapes via 3D Generative-Adversarial Modeling”. In: Advances In Neural
Information Processing Systems. 2016, pp. 82–90 (see pp. 25, 31).

[152] Y. Wu and K. He. “Group normalization”. In: ECCV. 2018, pp. 3–19 (see p. 22).

[153] F. Xia, A. R. Zamir, Z.-Y. He, A. Sax, J. Malik, and S. Savarese. “Gibson Env: Real-World Perception
for Embodied Agents”. In: Computer Vision and Pattern Recognition (CVPR). 2018 (see pp. 78, 80).

[154] J. Xie, R. Girshick, and A. Farhadi. “Deep3d: Fully automatic 2d-to-3d video conversion with
deep convolutional neural networks”. In: ECCV. 2016 (see pp. 30, 54).

[155] D. Xu, E. Ricci, W. Ouyang, X. Wang, and N. Sebe. “Multi-scale Continuous CRFs as Sequential
Deep Networks for Monocular Depth Estimation”. In: CVPR. 2017 (see p. 31).

[156] D. Xu, Y. Zhu, C. Choy, and L. Fei-Fei. “Scene Graph Generation by Iterative Message Passing”.
In: CVPR. 2017 (see pp. 60, 64, 82, 85).

[157] X. Yan, J. Yang, K. Sohn, and H. Lee. “Attribute2image: Conditional image generation from visual
attributes”. In: ECCV. 2016, pp. 776–791 (see p. 61).

[158] J. Yang, J. Lu, S. Lee, D. Batra, and D. Parikh. “Graph r-cnn for scene graph generation”. In: ECCV.
2018, pp. 670–685 (see pp. 60, 82, 85).

[159] Y. Yang, S. Hallman, D. Ramanan, and C. C. Fowlkes. “Layered Object Models for Image Seg-
mentation”. In: PAMI (2012) (see p. 29).

[160] S. Yao, T. M. Hsu, J.-Y. Zhu, J. Wu, A. Torralba, B. Freeman, and J. Tenenbaum. “3D-aware scene
manipulation via inverse graphics”. In: NeurIPS. 2018 (see p. 61).

[161] R. A. Yeh, C. Chen, T. Yian Lim, A. G. Schwing, M. Hasegawa-Johnson, and M. N. Do. “Semantic
image inpainting with deep generative models”. In: CVPR. 2017, pp. 5485–5493 (see p. 61).

[162] G. Yin, L. Sheng, B. Liu, N. Yu, X. Wang, J. Shao, and C. Change Loy. “Zoom-net: Mining deep
feature interactions for visual relationship recognition”. In: ECCV. 2018, pp. 322–338 (see p. 60).

[163] J. You, R. Ying, X. Ren, W. L. Hamilton, and J. Leskovec. “GraphRNN: Generating Realistic
Graphs with Deep Auto-regressive Models”. In: ICML (2018) (see pp. 103–105).

[164] M. D. Zeiler. “Adadelta: an adaptive learning rate method”. In: arXiv preprint arXiv:1212.5701
(2012) (see p. 19).

141

Bibliography

[165] R. Zellers, M. Yatskar, S. Thomson, and Y. Choi. “Neural motifs: Scene graph parsing with global
context”. In: CVPR. 2018, pp. 5831–5840 (see pp. 60, 64).

[166] F. Zhan, H. Zhu, and S. Lu. “Spatial Fusion GAN for Image Synthesis”. In: arXiv preprint
arXiv:1812.05840 (2018) (see p. 61).

[167] H. Zhang, T. Xu, H. Li, S. Zhang, X. Wang, X. Huang, and D. N. Metaxas. “Stackgan: Text to
photo-realistic image synthesis with stacked generative adversarial networks”. In: ICCV. 2017,
pp. 5907–5915 (see p. 61).

[168] R. Zhang, P. Isola, A. A. Efros, E. Shechtman, and O. Wang. “The Unreasonable Effectiveness of
Deep Features as a Perceptual Metric”. In: CVPR. 2018 (see p. 69).

[169] Y. Zhang and T. Funkhouser. “Deep Depth Completion of a Single RGB-D Image”. In: CVPR
(2018) (see p. 41).

[170] Z. Zhang, Y. Xie, and L. Yang. “Photographic text-to-image synthesis with a hierarchically-nested
adversarial network”. In: CVPR. 2018 (see p. 61).

[171] B. Zhao, B. Chang, Z. Jie, and L. Sigal. “Modular generative adversarial networks”. In: ECCV.
2018 (see p. 61).

[172] B. Zhao, L. Meng, W. Yin, and L. Sigal. “Image Generation from Layout”. In: (2019) (see p. 61).

[173] Y. Zhao and S. chun Zhu. “Image Parsing with Stochastic Scene Grammar”. In: Conference on
Neural Information Processing Systems (NeurIPS). 2011 (see p. 60).

[174] Y. Zhao, B. L. Price, S. Cohen, and D. Gurari. “Guided Image Inpainting: Replacing an Image
Region by Pulling Content From Another Image”. In: 2019 IEEE Winter Conference on Applications
of Computer Vision (WACV) (2018), pp. 1514–1523 (see p. 61).

[175] Y. Zhao, T. Birdal, H. Deng, and F. Tombari. “3D Point Capsule Networks”. In: Conference on
Computer Vision and Pattern Recognition (CVPR). 2019 (see p. 60).

[176] T. Zhou, M. Brown, N. Snavely, and D. G. Lowe. “Unsupervised learning of depth and ego-
motion from video”. In: CVPR. 2017 (see pp. 30, 54).

[177] T. Zhou, R. Tucker, J. Flynn, G. Fyffe, and N. Snavely. “Stereo Magnification: Learning View
Synthesis Using Multiplane Images”. In: ACM Trans. Graph. (2018) (see pp. 6, 16, 30).

[178] T. Zhou, S. Tulsiani, W. Sun, J. Malik, and A. A. Efros. “View synthesis by appearance flow”. In:
ECCV. 2016 (see pp. 30, 44, 54, 55).

[179] Y. Zhou, Z. While, and E. Kalogerakis. “SceneGraphNet: Neural Message Passing for 3D Indoor
Scene Augmentation”. In: IEEE Conference on Computer Vision (ICCV). 2019 (see p. 60).

[180] J.-Y. Zhu, P. Krähenbühl, E. Shechtman, and A. A. Efros. “Generative visual manipulation on the
natural image manifold”. In: ECCV. 2016, pp. 597–613 (see p. 24).

[181] J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros. “Unpaired image-to-image translation using cycle-
consistent adversarial networks”. In: Proceedings of the IEEE international conference on computer
vision. 2017, pp. 2223–2232 (see pp. 25, 61).

[182] C. L. Zitnick, S. B. Kang, M. Uyttendaele, S. Winder, and R. Szeliski. “High-quality Video View
Interpolation Using a Layered Representation”. In: ACM SIGGRAPH. 2004 (see p. 29).

[183] C. Zou, A. Colburn, Q. Shan, and D. Hoiem. “LayoutNet: Reconstructing the 3D Room Layout
from a Single RGB Image”. In: arXiv:1803.08999 (2018) (see p. 31).

142

List of Figures

1.1 Compositional representations for scenes. a) exemplary scene, b) layered depth
representation, c) scene graph. 5

1.2 Viewpoint perturbation of an image comparing simple warping of a single RGB-
D and rendering from a layered RGB-D representation (LDI). The LDI generation
is done once and offline, prior to the online simulation of the viewpoint changes.
[©2019 Pattern Recognition Letters] . 7

2.1 The Pinhole Camera Model describes the perspective projection of the 3D
points onto the image plane. I: image plane, C: camera center, c: optical center, f:
focal length, P: point in 3D space, p: 2D projected point. 13

2.2 Layered depth image in source (reference) view T1. When the view is perturbed
T2, the empty (black) pixels are filled with information from the consecutive
layers (gray), illustrating the advantage over a single layer depth. 15

2.3 A simple neural network architecture with two layers, i.e. one hidden layer . 18

3.1 Starting with an image, OMLD decomposes the scene into a set of RGBA-D
object layers and layout layer. The representation can be used for view synthesis
and object removal. [©2019 IEEE] . 30

3.2 Overall two-layer method pipeline. (Top) A depth map and foreground mask are
predicted simultaneously, via a fully-convolutional network. The RGB input and
the predicted depth map are multiplied with the mask, to discard the foreground
pixels. (Bottom) The partial RGB-D information is inpainted through a GAN
architecture. 32

3.3 Dataset generation. a) LDI extraction from multiple views. b) Examples from
the generated dataset. FG: Foreground, i.e. first RGB-D layer. BG: Background,
including novel RGB-D pixels after dis-occlusion. [©2019 Pattern Recognition
Letters] . 32

3.4 Illustration of semantic-based room layout separation vs. our adaptive fore-
ground segmentation. [©2019 Pattern Recognition Letters] 32

3.5 OMLD scene layering framework. Left: Network A (top) completes the occluded
parts for each detected instance, resulting in an RGBA-D image. Network B
(bottom) generates an RGBA-D representation for the layout (empty scene).
Right: The outputs are concatenated and fed to the Minimum Depth Pooling
(MDP) layer, that recomposes the scene an gives the first visible layer. The
displacement of the recomposed first layer depth of every instance, from the
ground truth depth is used in the re-composition loss to supervise Network C
and produce the final result. [©2019 IEEE] . 37

143

List of Figures

3.6 Illustration of the automatically acquired datasets. For every view frame in
the respective datasets, we provide the RGBA, depth, instance segmentation and
class categories. All modalities are available for full-image content, object-wise
layers as well as the layout. 39

3.7 Overview of the proposed object completion encoder architecture. Class
probabilities branch (left) and image branch (right) are concatenated along chan-
nels in the bottleneck layer. [©2019 IEEE] . 40

3.8 Qualitative comparison on the generation performance of the pixel-wise L1 loss
(left) and the adversarial variant (GAN loss + L1) (right). Red box: Regions of
interest. [©2019 Pattern Recognition Letters] 44

3.9 Qualitative examples of foreground removal and RGB-D background inpainting,
evaluated on SceneNet [98], with the respective ground truth. Black: invalid
pixels. [©2019 Pattern Recognition Letters] . 47

3.10 Qualitative results of the background completion RGB-D alignment. (Left)
Original input. (Center) Result without pair discriminator. (Right) Result with
pair discriminator. 47

3.11 Qualitative examples of background mask prediction and RGB-D background
inpainting on NYU depth v2 [102]. [©2019 Pattern Recognition Letters] 48

3.12 LDI prediction results on SunCG. Left: The input color image. Center: Our
predictions for the first two layers, obtained after sorting the object-wise layers.
Right: Ground truth, as extracted from the mesh-based rendering.[©2019 IEEE] 49

3.13 Comparison of LDI generation results on SunCG. For each example, Left: The
input color image. Right: From top to bottom - ground truth, two-layer predic-
tions of OMLD, PBO and Tulsiani et al. [139] for the first two layers. 50

3.14 LDI prediction results on Stanford 2D-3D-S. Left: The input color image. Cen-
ter: Our predictions for the first two layers, obtained after sorting the object-wise
layers. Right: Ground truth, as extracted from the mesh-based rendering. Black
in the color images and dark blue in the depth maps indicates information
holes.[©2019 IEEE] . 51

3.15 Per-layer evaluation of OMLD on SunCG (top) and Stanford 2D-3D-S (bot-
tom). Left: Number of layer statistics per image. Center: MPE and RMSE errors
for RGB. Right: MPE and RMSE errors for depth. 52

3.16 LDIs rendered on perturbed views on SceneNet. (Upper row): warping of a
single RGB-D layer; (Lower row): warping of the proposed LDI. [©2019 Pattern
Recognition Letters] . 53

3.17 LDIs rendered on perturbed views, NYU v2. (Left): Input RGB. (Right): Novel
views rendered from a single RGB-D vs. our LDI prediction. [©2019 Pattern
Recognition Letters] . 53

3.18 Qualitative comparison of PBO and baselines on novel view synthesis on
SceneNet. [©2019 Pattern Recognition Letters] 54

3.19 View synthesis examples. Left: Source image, i.e. the input to the proposed
method as well as the target image, to be compared with the predictions. Right:
Predicted novel views, using the LDIs from the proposed method, [22] and
[139].[©2019 IEEE] . 55

144

List of Figures

3.20 The proposed PBO method, applied to augmented-diminished reality. (Top)
Input RGB image (Bottom) Result after background inpainting and rendering of
new furniture. 56

3.21 Illustration of object removal results. The category labels of the left indicate
which object should be removed from the original image. We compare our
predicted synthesized images (center) against the ground truth (right). [©2019
IEEE] . 56

4.1 Semantic Image Manipulation at inference time. Given an image, we infer a
semantic scene graph. The user makes changes in the graph’s nodes and edges.
Then, our image generation network gives an edited version of the input image,
which respects the constellations in the modified graph.[©2020 IEEE] 64

4.2 Overview of the SIMSG supervision. Top: Given an input image, we predict
the respective scene graph and use it to reconstruct the input from a corrupted
representation. a) The graph nodes ni (blue) encompass class embeddings,
bounding box coordinates xi (green) and visual features φi (violet) from cropped
objects. We randomly mask boxes xi, visual features φi and patches in the input
image. The model then learns to reconstruct the same graph and image utilizing
the persisting information. b) The per-node feature vectors are projected to
image space to form a layout, using the predictions from the SGN.[©2020 IEEE] 65

4.3 Image manipulation on CLEVR We illustrate different scene manipulation
types, including relationship change between two objects, object removal and
object replacement (corresponding to attribute changing).[©2020 IEEE] 71

4.4 Visual feature encoding. Comparison between the baseline (top) and our
method (center) on Visual Genome for object reconstruction. The scene graph
remains unchanged; an object in the image is occluded, while φi and xi are kept.
Our neural features φi preserve appearance characteristics when the objects are
masked out from the source image. [©2020 IEEE] 72

4.5 Qualitative results comparing SIMSG with CRN decoder and ISG [4] in the
fully-generative setting. The entire image is masked and reconstructed using
the per-object visual feature information. 72

4.6 Image manipulation Given the source image and the ground truth scene graph,
we edit the image by changing the semantic labels of the graph. We illustrate
a) object replacement, b) relationship changes, and c) object removal. Green
bounding box highlights the changed node or edge.[©2020 IEEE] 74

4.7 Qualitative results comparing SIMSG with CRN decoder against ISG on object
removal. 75

4.8 Ablation of the node components We illustrate the effect of the proposed node
components, in all their possible combinations - i.e. with vs. without bounding
boxes xi and visual neural features φi. In the case of using a query image, we
extract visual features of an object (indicated with a red box) and update the
node of an object of the same category in the input image.[©2020 IEEE] 75

145

List of Figures

4.9 Heatmaps generated from object and subject relative positions for a subset of
predicate categories. The object is centered at p0, 0q and the relative position of
the subject is calculated. The heatmaps are generated from the relative distances
of centers of the object and subject of a pair. Top: Ground truth boxes. Bottom:
our inferred boxes after masking the location information from the scene graph. 76

4.10 Illustration of failure cases of our model, related to a) partial feature encoding,
b) not modeled dependence between nodes and c) underrepresented/difficult
scenarios. 77

4.11 3DSSG Scene graph representation including hierarchical class labels c and
attributes A per node, as well as relationship triplets between the nodes.[©2020
IEEE] . 78

4.12 Lexical hierarchical sub-tree on a small subset of object class labels. The extended
version can be found in appendix C. [©2020 IEEE] 79

4.13 Scene Graph Prediction Network Starting with a point set P of a scene, and
its class-agnostic instance segmentation M, we estimate a scene graph G. Left:
Neural point features φ are extracted for each instance and edge. Center: The
features φ are organized in a graph form for further processing from a GCN.
Right: The resulting graph consists of semantic labels for object nodes and
edges.[©2020 IEEE] . 83

4.14 Qualitative results of our scene graph prediction (best viewed in the digital
file). Light green: correctly predicted edges, dark green: partially correct edges,
blue: false positives – missing ground truth, red: miss-classified edges, gray:
false negatives – wrongly predicted as none when the ground truth is a valid
relationship. 86

4.15 Overall Graph-to-3D architecture. Our model generates a 3D scene as a set of
3D bounding boxes and object shapes for a given scene graph. To this end, we
use a scene graph variational Auto-Encoder with two parallel GCN encoders for
shape and boxes. The latent information from the box and shape component is
combined through a shared encoder. The final 3D scene is obtained by sampling
from the shared latent distribution and combining the predictions from the two
GCN decoders for 3D boxes and shapes. We further use a GCN manipulator to
support user modifications to the scene. [©2021 IEEE] 87

4.16 Scene graph modification. For a provided scene graph we apply changes to the
nodes (addition) or edges (relationships). The manipulation network T takes the
latent representations of all nodes and updates the codes for the changed nodes.
Edges that underwent changes are then fed to our relationship discriminator
which enforces that the box predictions follow the constrains of the node and
edge labels. [©2021 IEEE] . 92

4.17 Qualitative results with DeepSDF encoding of Graph-to-3D on 3D scene gen-
eration (middle) and manipulation (bottom), starting from a scene graph (top).
Dashed lines reflect new/changed relationship, while empty nodes indicate
added objects. [©2021 IEEE] . 96

146

List of Figures

4.18 Qualitative results with AtlasNet encoding of Graph-to-3D on 3D scene gen-
eration (middle) and manipulation (bottom), starting from a scene graph (top).
Dashed lines reflect new/changed relationship, and unfilled nodes indicate
added objects. 97

4.19 Effect of scene context in scene generation. Top: Connection to a desk makes
a chair look like an office chair. Bottom: The number of pillows lying on a sofa
affects its size and style. [©2021 IEEE] . 98

4.20 Diverse generation of shapes and layout during manipulation. Given an input
graph and correspondingly generated scene (left), we obtain diverse results
(right) for the added or changed objects. 99

5.1 Overview of the auto-regressive generation process of SceneGraphGen. In each
step, the current graph sequence (green) is taken as input, to generate a new
node and a set of connecting edges (red). In the first step, the node is sampled
from a prior distribution. 104

5.2 Some examples of 64x64 images synthesized using sg2im on the corresponding
scene graphs generated by SceneGraphGen. [©2021 IEEE] 106

5.3 Some examples of 64x64 resolution images synthesized via a) Unconditional
StyleGAN [67] trained on Visual Genome (left) b) sg2im [65] on scene graphs
generated by SceneGraphGen trained on Visual Genome (right). [©2021 IEEE] 106

A.1 Cross Domain 2D-3D Scene Retrieval: We use scene graphs in our domain-
agnostic scene retrieval task to close the domain gap between different modali-
ties, like 2D images and 3D scenes. [©2020 IEEE] 115

B.1 RGBA object and layout layers on Stanford 2D-3D. Input image, instance
examples (top to bottom: mask, prediction, ground truth) followed by the layout
result. 120

B.2 RGBA object and layout layers on SunCG. Input image, instance examples
(top to bottom: mask, prediction, ground truth) followed by the layout result. 121

C.1 Example scenes at two different times where object states have changed. Left:
toilet seat is down and then up - someone might have used the toilet, Center:
floor went from messy to tidy - someone might has cleaned the room, Right:
bed went from tidy to messy - someone might have slept in the bed. 123

C.2 Rendered 2D graphs with a small subset of the relationships from our newly
created 3D semantic scene graph dataset 3DSSG . From left to right: RGB image,
rendered depth, rendered dense semantic instance segmentation, dense semantic
instance segmentation on textured model, 2D semantic scene graph. 124

C.3 Histograms of number of relationship and attribute occurences in 3DSSG. . . 125

C.4 Example object instances (top) and their corresponding attributes (below). . . 125

C.5 Object and predicate classes, sorted by occurrence, presented in logarithmic
scale . 126

C.6 Attributes and affordances in the 3DSSG dataset, sorted by occurrence, presented
in logarithmic scale. 127

147

List of Figures

C.7 Most frequent triplets (subject, predicate, object) with more than
50 occurrences in 3DSSG. Please note that to simplify visualization, proximity
relationships and the majority of comparative relationships are filtered out. . 128

C.8 Visualization of the hierarchical tree of lexical relationships on a (bigger) subset
of classes from 3RScan, extending Figure 4.12 129

148

List of Tables

3.1 Comparison of our GAN versions with [139], on SceneNet. Inpainting applied
on learned background masks and depths. [©2019 Pattern Recognition Letters] . . 45

3.2 Analysis of our GAN versions, on the SceneNet dataset [98]. Inpainting module
applied on ground truth masks and depths. [©2019 Pattern Recognition Letters] 46

3.3 Evaluation of LDI prediction on SunCG for the first two layers of depth and
the 2nd layer of RGB. We outperform the baselines. The errors are measured for
color range 0´ 255 and depth in meters.[©2019 IEEE] 50

3.4 Evaluation of LDI prediction on Stanford 2D-3D-S. LDI predictions for the
first two layers of depth and 2nd layer of RGB. The errors are measured for color
range 0´ 255 and depth in meters.[©2019 IEEE] 51

3.5 View synthesis on SceneNet. We evaluate the images on MPE, SSIM and PSNR,
in range 0-255. 54

3.6 View synthesis on SunCG. The synthesized images are evaluated in terms of
SSIM, MPE and RMSE, in range 0-255. [©2019 IEEE] 54

4.1 Image manipulation on CLEVR. We compare our method against a fully-
supervised baseline. [©2020 IEEE] . 71

4.2 Image reconstruction on Visual Genome. We report the results for SIMSG
(ours) and the baselines, using ground truth scene graphs (GT) and predicted
scene graphs (P). (Generative) refers to results in a fully generative setting, i.e. the
whole input image is occluded. [©2020 IEEE] 73

4.3 Comparison between 3D scene graph datasets. [©2020 IEEE] 79
4.4 Evaluation of the scene graph prediction task on 3DSSG. We present triples

prediction, object classification as well as predicate prediction accuracy. [©2020
IEEE] . 84

4.5 Scene graph constrains on the generation task (higher is better). The total accu-
racy is computed as mean over the individual edge class accuracy to minimize
class imbalance bias. [©2021 IEEE] . 95

4.6 Scene graph constraints on the manipulation task (higher is better). The to-
tal accuracy is computed as mean over the individual edge class accuracy to
minimize class imbalance bias. Top: Relationship change mode. Bottom: Node
addition mode.[©2021 IEEE] . 95

4.7 Scene graph prediction accuracy on 3DSSG, using the SGPN model from [141],
measured as top-k recall for object, predicate and triplet prediction (higher
is better). ;Model trained with non-canonical objects, exhibiting significantly
worse results. [©2021 IEEE] . 98

149

List of Tables

4.8 Comparison on diversity results (std) on the generation (left) and manipula-
tion tasks (right), computed as standard deviation over location and size in
meters and angles in degrees. For shape we report the average chamfer distance
between consecutive generations.[©2021 IEEE] 98

A.1 Evaluation: 3D-3D scene retrieval of changing 3D rescans to reference 3D scans
in 3RScan. [©2020 IEEE] . 117

A.2 Evaluation: 2D-3D scene retrieval of changing rescans to reference 3D scans in
3RScan. [©2020 IEEE] . 117

B.1 Ablation of the layout prediction (Network B) on the SunCG dataset. Base
refers to the model as introduced in the paper, where only the reconstruction
loss is present Lr. The errors are measured for color range 0´ 255 and depth in
meters. 119

D.1 Architecture of Dbox . 131
D.2 Architecture of Dshape . 131
D.3 Computation of geometric constraint accuracy, for an instance pair (i, j). iouC

refers to iou computation after both objects have been centered at zero. 132

150

	Titlepage
	Abstract
	Acknowledgments
	Chronological List of Authored and Co-authored Publications
	I Introduction
	1 Introduction
	1.1 Motivation and Main Objective
	1.2 Contributions
	1.3 Structure of this Dissertation
	1.4 Applications

	2 Theory and Fundamentals
	2.1 Computer Vision
	2.1.1 The pinhole camera model
	2.1.2 Layered depth images

	2.2 Deep Learning
	2.2.1 Brief historical overview on deep learning
	2.2.2 Neural network fundamentals
	2.2.3 Convolutional neural networks (CNN)

	2.3 Generative Models
	2.3.1 Variational auto-encoders
	2.3.2 Generative adversarial networks

	II Compositional Representations for Synthesis and Editing
	3 Layered Depth Image Prediction
	3.1 Related Work
	3.1.1 Layered representations
	3.1.2 View synthesis
	3.1.3 Monocular depth prediction

	3.2 Two-Layered Model (PBO)
	3.2.1 Dataset generation
	3.2.2 Joint depth map and foreground mask prediction
	3.2.3 RGB-D background inpainting
	3.2.4 Implementation details

	3.3 Object-Driven Multi-Layer Scene Decomposition (OMLD)
	3.3.1 Data generation
	3.3.2 Object completion
	3.3.3 Layout prediction
	3.3.4 Image re-composition
	3.3.5 Implementation details

	3.4 Evaluation
	3.4.1 Conventional depth and background mask
	3.4.2 Background inpainting
	3.4.3 Layered representation
	3.4.4 View synthesis
	3.4.5 Augmented diminished reality

	3.5 Discussion and Current Trends
	3.6 Conclusions and Future Work

	4 Scene Graphs for Generation and Manipulation
	4.1 Related Work
	4.1.1 Scene understanding
	4.1.2 Scene generation and manipulation

	4.2 Scene Graph Formulation
	4.3 Semantic Image Manipulation (SIMSG)
	4.3.1 Graph generation
	4.3.2 Training mechanism
	4.3.3 Graph to image model
	4.3.4 Loss objective
	4.3.5 Implementation details
	4.3.6 Evaluation

	4.4 Dataset with 3D Semantic Scene Graphs
	4.4.1 Nodes
	4.4.2 Attributes
	4.4.3 Relationships

	4.5 Scene Graph Prediction from a Point Cloud
	4.5.1 Architecture
	4.5.2 Loss objective
	4.5.3 Implementation details
	4.5.4 Evaluation

	4.6 Graph-to-3D: 3D Scene Generation and Manipulation
	4.6.1 Data preparation
	4.6.2 Encoding a 3D scene
	4.6.3 Shape and layout communication
	4.6.4 Decoding the 3D scene
	4.6.5 Manipulation network
	4.6.6 Training objectives
	4.6.7 Inference
	4.6.8 Implementation details
	4.6.9 Evaluation

	4.7 Conclusions and future work

	5 Publications not Discussed in this Dissertation
	5.1 Unconditional Scene Graph Generation
	5.1.1 Auto-regressive generation model
	5.1.2 Result highlights and discussion

	III Conclusion and Outlook
	6 Summary and Findings
	7 Future Work

	IV Appendix
	A Scene Graphs for Domain-Agnostic Scene Retrieval
	B OMLD: Intermediate Results
	B.1 Layout ablation
	B.2 Layout and object generation

	C 3DSSG Details and Statistics
	C.1 Object state changes
	C.2 Rendered 2D graphs
	C.3 Statistics
	C.4 WordNet graphs

	D Graph-to-3D Details
	D.1 Discriminator architectures
	D.2 Scene graph constraints
	D.3 Shape generation networks

	Bibliography
	List of Figures
	List of Tables

