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ABSTRACT

In the field of Scan-to-BIM, recent developments
achieve promising results in accuracy and flexibil-
ity, leveraging tools from the field of deep learning
for semantic segmentation of raw point cloud data.
Those methods demand large-scale, domain-specific
datasets for training. Promising ideas to fulfill this
need use primitive synthetic point cloud data, which
predominantly lack distinct point cloud properties,
such as missing patches due to occlusions in the scene.
To solve this issue, we use a specialized laser scan
simulation tool from the domain of Geosciences in
a toolchain that allows generating realistic ground
truth data based on 3D models. In this context, we
introduce a comprehensive taxonomy for the indus-
trial point cloud context. Furthermore, we provide
the missing link for a comprehensive, open-source
toolchain that is flexible towards any use case in the
field.

INTRODUCTION

Motivation

With the introduction of the Building Information
Modeling (BIM) method, the sector of Architecture,
Engineering and Construction (AEC) is trying to
overcome conventional planning processes that are
document-based and inherently describe the built en-
vironment using 2D plans (Borrmann et al. 2015).
While the adoption of BIM has been largely focused
on the disciplines of planning and design, recent ef-
forts target the method’s potential in the operation
phase. In this, relevant up-to-date information is fed
into the digital representation (as-built model) and
then leveraged to enable improved decision-making
using the so-called Digital Twin. While this concept
originated from the field of mechanical engineering
(Kritzinger et al. 2018), it is expected to have a sig-
nificant impact in the AEC sector (Sacks, Brilakis,
Pikas, Xie & Girolami 2020).

In the early stages of a project, the primary po-
tential of BIM lies in the model-based cooperation be-
tween stakeholders, planners, and contractors. Dur-
ing the operations phase, the model itself plays a ma-
jor part by providing all necessary data for operations
to be optimized, both on efficiency and sustainability.

However, due to slow adaption in the industry, good
semantic 3D models rarely exist for currently used fa-
cilities, especially when the existing facilities are ten
or more years old. The conventional way to solve this
problem is to capture the facility’s as-is condition,
and then work with the resulting data to remodel the
facility manually. This task is very time-consuming,
expensive and error-prone. For owners and opera-
tors who would like to benefit from an actual as-built
model (also referred to as “as-is model”, especially
if data is collected independently of the construction
process (Anil et al. 2013)), but have no useful legacy
data, this is very challenging.

Therefore, numerous research projects are con-
ducted in this direction that the community has
coined with the term “Scan-to-BIM”, which describes
procedures that aim to facilitate remodeling of ex-
isting facilities after capturing the current state on-
site. More generally, related approaches are gathered
within the so-called "field-to-BIM” domain (Sacks,
Girolami & Brilakis 2020). For the sake of complete-
ness, we mention the closely related yet distinct field
of ”Scan-vs-BIM”, where the as-is condition of the
asset is aligned with an existing model for further
processing.
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To capture the actual as-is condition of a facility, re-
cent, approaches predominantly use 3D point cloud
data captured by LiDAR sensors or photogramme-
try. The raw data from these sources are point clouds
representing the surfaces of visible objects during cap-
ture. This data’s main shortcoming is that it does
not inherently carry any information regarding the
captured objects’ semantics, such as information re-
garding object type or material. However, this infor-
mation is currently the most accurate and suitable in
the generation of a semantic digital building or asset
twin or a BIM model.

The point cloud is usually classified and seg-
mented according to the underlying semantics in the
first processing step. Recent artificial intelligence
(AI) methods have shown great potential in flexibility
and precision in this regard.

For these approaches, large-scale, diverse, ground
truth datasets are required for two main reasons:
Firstly, the precision of Al-based approaches inher-
ently improves with the size and quality of avail-
able training datasets. Secondly, both for Al-based
and conventional approaches (such as RANSAC and
Hough Transform), datasets with ground truth labels
are required to provide quantitative results to pre-
cisely evaluate those approaches’ actual performance.
However, the improvement of well-performing solu-
tions for well-known benchmark datasets outpaces
the development of diverse, use-case specific and pub-
licly available ground truth datasets. To counteract
these developments, we propose a flexible and scal-
able strategy that provides realistic, synthetic ground
truth data.

Related work

A comprehensive overview of solutions using deep
learning on point clouds, in general, can be found
in (Guo et al. 2020). Patraucean et al. (2015) collect
approaches specifically for the field of Scan-to-BIM.
In related research areas, publishing labeled datasets
(cf. Table 1) to foster the development of approaches
that allow automated reasoning about a point cloud’s
content has already become an essential part of the
scientific practice.

Still, the research community occupied with 3D
semantic segmentation is over-all lacking labeled
datasets compared to the advances made in areas like
computer vision, as comprehensivley summarized in
Gao et al. (2020). Popular datasets include KITTI
(Geiger et al. 2013), Semantic3D (Hackel et al. 2017),
Vaihingen (Rottensteiner et al. 2013) and Paris-Lille
(Roynard et al. 2018) for outdoor scenes; datasets for
indoor scenes have been published less often, popu-
lar examples are the S3DIS (Armeni et al. 2016) and
ScanNet (Dai et al. 2017), the latter however stored
in their voxel representation instead of point clouds.

For our use case in the industrial construction sec-
tor, latest research includes a publication on a man-

ually labeled collection of industrial point cloud data
(Agapaki et al. 2019). Unfortunately, to this date, the
data presented in this work is not accessible to the
authors, and therefore the domain remains without
a publicly accessible ground truth dataset. Agapaki
(2020) provides a comprehensive overview of available
annotated point cloud datasets, which we summarize
and extend with their acclaimed CLOI dataset in Ta-
ble 1.

Table 1: Annotated point cloud datasets

Name Context No. of points
Semantic3D urban 400 x 107
KITTI urban 180 x 107
S3DIS indoor, office 27 x 107
CLOI indoor, industrial 14 x 107
Paris-Lille  urban 4.3 %107

While recent research includes various important
approaches for the detection of elements for the in-
dustrial use case (Maalek et al. 2019, Son et al. 2015),
there remains a lack of data for those use cases. The
reason for this are diverse. For one, there is a lack
of intrinsic motivation by facility operators to share
captured as-is data, as this is not within their tradi-
tional scope of business. Furthermore, in places where
data is captured, evaluated, and processed, warranted
doubts towards open publishing arise for multiple rea-
sons, regarding employee privacy, datasets possibly
containing trade secrets, or other justifiably confiden-
tial information.

This lack of accessibility to real world annotated
data is a bottleneck for the field of Scan-to-BIM. As
point clouds from laser scans and photogrammetry
consist of points captured from the surface of 3D ob-
jects, another way to tackle the issue is to generate
synthetic data. This data has been generated using
various techniques, including randomly distributing
points on 3D surfaces (Ma et al. 2020), adding ran-
dom noise to each point (Schnabel et al. 2007), or
even capturing scenes out of video games (Yue et al.
2018). Another approach to generate large-scale syn-
thetic point cloud data was used in the work of Shen
(2020). Ma et al. (2020) have used BIM models for
the generation of point clouds by randomly placing
points on the object surfaces. Using this synthetic
data as an addition to their real world point clouds
in the training phase resulted in an increase of IoU
(intersection over union) of 7.1%.

However, the data used in their approach lacks re-
alistic properties of point clouds acquired by a laser
scanner, especially regarding occlusions, which fre-
quently occur in industrial scenes. Helios (Bech-
told & Hofle 2016) and Blensor (Gschwandtner et al.
2011) are tools to generate more realistic laser scan
point clouds based on 3D surfaces by simulating laser
beams and their reflected signal measurements. The



latter has been used for an approach similar to ours
to create a ground truth point cloud for a large-scale
urban scene (Griffiths & Boehm 2019).

Research gap

Access to large-scale ground truth datasets is crucial
to develop methods for semantic segmentation and
other ways to automatically process and enrich point
cloud data to advance the field of Scan-to-BIM fur-
ther. Unfortunately, currently no such data is pub-
licly available for the use case of industrial assets.

Industrial companies operating complex facilities
have been working with 3D models for many years.
For example, in 2009, this was documented in an of-
ficial report of the German Association of the Auto-
motive Industry (VDA 2009) that contains an effort
to communicate industry-wide standardization. Scan
data captured in active industrial facilities is delicate
regarding issues of employee privacy and nondisclo-
sure. Therefore, this data is restricted, and usually,
it is impossible to publish for academic usage and
benchmarking of state-of-the-art solutions. The op-
portunity of working with models is that their content
can be checked with ease, elements that are critical
can be replaced or removed. The synthetic data gen-
erated upon those models will not contain any infor-
mation that is not present in the model. This leads
to the limitation that the resulting point clouds only
contain objects included in the model, which can not
be circumvented. Our goal is therefore to exploit de-
tailed 3D model data to satisfy the need for 3D scan
data. As related work shows the lack of data and
the potential of synthetic data, we aim to advance
our specific use case in this regard by providing a
method to effortlessly generate large amounts of re-
alistic ground truth point cloud data.

METHOD
Overview

In our approach, we utilize the laser scan simulation
tool Helios (Bechtold & Hofle 2016), since it is an
open source tool that allows to set up the desired sim-
ulation in a modular and flexible way. Figure 2 shows
an overview of our workflow. The following subsec-
tions introduce the steps of this workflow, along with
a description of the utilized tools and file formats.

Model import

Starting from the authoring tool, we export the model
using preferably vendor-neutral formats that include
object classes. The usage of the Industry Founda-
tion Class (IFC) format (ISO 2018) is therefore the
best solution. In our testing, we tried the IFC ex-
port of Autodesk Revit with good results. If no such
information is included in the original data and the
model is stored in its plain geometry, we make use of
the FBX format. Both tested authoring applications
(Autodesk Revit and Bentley Microstation v8i) have
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Figure 2: The workflow for "BIM-To-Scan", distinguishing
between content, software application used and file format of
(intermediate) results

shown a robust export to FBX with reasonable file
sizes.

This intermediate file is then imported into the
Blender application! for further processing. While
FBX import is a standard feature with Blender, we
use the BlenderBIM plugin? for IFC import.

Model preparation

To provide a suitable set of classes for the point cloud
labels, we have developed a taxonomy for industrial
point cloud data, as depicted in Figure 3. We base
this structure on the approach for a point cloud tax-
onomy presented by Kim et al. (2016) for construc-
tion point clouds, and adapt the content to fulfill
the requirements of our project, which is the scope
of structural and MEP (Mechanical, electrical, and
plumbing) elements. To do this, we further base our
proposed taxonomy on the findings of Agapaki et al.
(2018), who have investigated important objects and
shapes in industrial asset models.

Our taxonomy is distributed over three levels. The
first level covers a very basic separation into crafts.
Level 2 allows to obtain more detailed insight for each
level 1 class. The competing goals in this are to keep
the classes distinct in regard to their geometry and
context, while providing sufficient insight to provide
valuable information for the engineering perspective.
Grouping all classes into the aforementioned levels
allows us to consider classes in varying granularity,
which can also be used to adapt classes according to
results per applied method in semantic segmentation.

Furthermore, top-down observation of the levels
allows for a simple separation of the labeled point
cloud into more compact sub-clouds without losing
class-relevant data. In comparison to the categories
introduced with the CLOI dataset (Agapaki et al.
2019), our approach adds the craft-wise separation as
a novel perspective. Additionally, we omit the sepa-

Uhttps://blender.org/
2 https://blenderbim.org/
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Figure 3: Taxonomy for the industrial use case: The complete point cloud is separated into object classes, that are divided into
sub-classes over three levels of granularity

ration of steel cross sections that result in a combina-
tion of flat sections (I, L, etc.). From our perspective,
this differentiation is overly precise at this point and
can, if necessary, better be introduced downstream by
analyzing geometric features of previously correctly
identified segments, as presented by Kim et al. (2020).

Within Blender, the assignment to categories is
executed by grouping geometries in distinct collec-
tions. In the case of imported CAD geometries with-
out semantics, this step is fully manual in our ap-
proach. Depending on the information content of the
original model, it is possible to parse the informa-
tion from the imported model data to allocate ob-
jects to their respective categories automatically. As
a proof of concept, this has been tested for an IFC
file (IFC2x3) exported from Autodesk Revit.

Scene preparation

To prepare the scene for simulation in Helios, the ob-
jects must be stored in single OBJ files, with infor-
mation on their location and orientation in the scene
stored in a XML file. The OBJ (Wavefront OBJ) file
format is chosen because it is the standard input re-
quirement for Helios. In this part of our toolchain, we
make use of the Blender plugin provided by Neumann
(2020). To pass on the information of the previously
designated object classes, a separate material dictio-
nary is is used, to map label integers to object class
strings.

Survey preparation

In advance of a stationary laser scan in any environ-
ment, scan planning is required regarding scan posi-
tions. Recent research includes approaches to opti-
mize this using building models in 2D (Dfaz-Vilarifio
et al. 2018) and 3D (Kabir Biswas et al. 2015), a
module to optimize planning for simple geometries is
included in Helios (Bechtold & Hofle 2016).

In practice, the surveyor usually selects locations
by his expert opinion and his assessment on-site, to
maximize coverage with a preferably low number of
total scans. Additionally, he needs to assure suffi-
cient overlap to guarantee precise registration. In our
workflow, the single resulting point clouds do not re-
quire registration since the simulation for each scan
is performed in the same coordinate system, as previ-
ously defined in the model. Scan planning is straight-
forward in Helios, as it allows the user to place single
scans in the scene using the user interface directly.



Laser scan simulation

Helios’ code and comprehensive documentation can
be found in the project’s Github repository®. In its
core, the simulation is performed by casting single
rays as per the defined equipment’s functionality. For
our use case, this usually means the rotating mirror
of a terrestrial laser scanner. In brief, if the simu-
lated ray intersects the surface of the model, the mea-
sured location of the intersection is returned along
with the measured waveform and material identifier.
By including equipment-specific parameters regard-
ing measurement precision (cf. Table 2), the simu-
lated measurements include measurement errors ac-
cordingly. In our case, we store the object classes,
as defined in our taxonomy in the material definition
(as a workaround), such that each point of the syn-
thetic point cloud obtains its distinct class affiliation
in the simulation itself. This is necessary to generate
fully labeled data for the training of a deep learning
network for semantic segmentation.

As an output, we receive a single point cloud per
individual scan, just like one would performing a real
laser scan. Those can subsequently be combined to
a full point cloud by merging them directly. As each
point cloud is delivered in the same global coordinate
system, registration is not necessary. Each resulting
point cloud is stored by default in a XYZ file, which is
an open ASCII file format to store point cloud data.

3 https://github.com/GIScience/helios

CASE STUDY AND RESULTS

In order to compare the quality of the synthetically
created point clouds to real ones, we performed both
a real laser scan and a laser scan simulation in the
frame of a case study. To do so, we chose a facility
for which we have access to a detailed as-planned 3D
CAD model, which allows us to perform the laser scan
simulation for direct comparison.

As scanning equipment, we use a terrestrial laser
scanner model FARO FOCUS S 150, with a cho-
sen resolution of 8192 x 3413 points resulting in
27,959,296 points per scan. This choice is made to
reflect industry standard settings for this kind of fa-
cility, in accordance with the experts we worked with.
The settings are translated to simulation parameters,
collected in Table 2, hardware specifications were

adopted from the manufacturer?.

Table 2: Case study simulation parameters

parameter value
scan frequency 16 Hz
pulse frequency 122,000 Hz
ranging error +1mm
beam divergence 19 arcsec
vertical field of view 300°
horizontal field of view 360°
head rotation 1.29 %

A total of 28 scanning locations was chosen in the
asset by the surveyor, to allow for solid surface cover-
age and cloud-to-cloud registration. Registering the
single point clouds of this scan amounts to a total
of 7.1 x 10® points, which is a size comparable those
of the datasets introduced in Table 1. For the laser
scan simulation, we used the 3D CAD model and the
full workflow introduced in this paper. The 3D CAD
model resulted in a triangulated surface model with
a total of 4,291,794 vertices and 1,430,466 faces.

To evaluate the computational effort, we ran a
single leg of the scan on a notebook with an Intel(R)
Core(TM) i7-8665U CPU and 16GB RAM, using Mi-
crosoft Windows 10 and Helios in headless mode (no
graphical output). Computation time depends on the
used hardware, but also heavily on scanning param-
eters and complexity of the scene. On the described
setup, initializing the simulation by loading the scene
takes 3 min 38 sec, the simulation of a single scan
finishes after 9 min 38 sec if we disable full wave-
form (FWF) computation. In our current testing, we
do not include material properties, therefore we omit
FWF computation. We performed the simulation for
each of the 28 scan locations of the real laser scan.

To help the general understanding of the process,
we provide overview snapshots of the used model,
along with the synthetic and real laser scan point

4 https://faro.com/



clouds in figures 7, 8 and 9. Figure 4 depicts the
point cloud category split per level 1 of our taxon-
omy in the point cloud of a selected single scan. Se-
lected properties of this point cloud are summarized
in Table 3.
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Figure 4: Point cloud category split, per level 1 in our taxonomy

Table 3: Properties of a selected single scan, surface density is
calculated for a local neighborhood with r =0.05 m, densities
and distances are described with their median values

property laser scan  synthetic data
points [pts.] 25.3x 100 27.7 % 109
surface density | 25 | 5602 4584
distance to model [m] 0.01 1x107°

The variation in these properties regarding den-
sity and distance is considerable due to the deviation
between model and the actual existing facility. To in-
vestigate this, we select the content of a small cuboid
volume from the model, the synthetic and real point
cloud. In Figure 5 we compare the points contained
in this clipping box in two rows that illustrate dif-
ferent aspects of the real scan (upper row) and the
synthetic point cloud (lower row).

The difference between Figures 5b and 5e is due
to inaccuracies in the laser scan simulation itself. As
introduced, we used the same scanning parameters
in our real laser scan and in our simulation. How-
ever, there remains a divergence between the resulting
point densities, which is due to differences between
real and modeled surfaces. This is the main short-
coming of synthetic data, and can best be recognized
in the distances between point cloud and underlying
model surface: While Figure 5f shows very small val-
ues because the simulated laser scan stays true to
the underlying surface with some divergence, the dis-
tances between the real laser scan and the model de-
picted in Figure 5c are in some areas significant. This
mainly due to the fact that our model is not an accu-
rate as-built representation but an as-planned status.
In this, object types such as secondary steel struc-
tures might be missing completely (as can be seen in
the lower parts of Figure 5), others might be less de-
tailed (such as valves, see Figure 5, center parts and
6a) or misplaced (such as the valves, and second pipe
run in the lower parts of Figure 5).

(d (e) ()

Figure 5: Comparison between real laser scan (upper row,
Sa-5c¢) and synthetic laser scan point clouds (lower row, 5d-5f):
RGB values (5a), object classes (5d), surface density with
r=0.05m (5b, 5e), cloud to model distances (5c¢, 5f)

The deviation of the model from the reality is not
only a question of all elements being present in the
model, but also of how the geometries are modeled.
In our case, this can be observed in the surface of
round pipes. The distributions of points over the
horizontal pipe section depicted in the lower parts
of Figure 5 are shown in Figure 6. This illustrates
that the general distribution is qualitatively accurate
regarding noise and the occluded rear surface of the
pipe, but the underlying surface geometry shows sig-
nificant differences. While the real pipes exhibit a
circular cross section, the pipes in our model are rep-
resented by a polygon as the model is handled in the
form of a triangulated mesh. In Figure 6¢ the dis-
tances of the points depicted in Figures 6a and 6b to
the underlying model surface are collected for com-
parison. In this, the real laser scan point cloud dif-
fers in two main aspects: Firstly, the pipe section
includes pipe brackets, which leads to the tail on the
right side of the distribution. Secondly, this distri-
bution has a larger standard deviation, which can be
explained by deviations between the circular shape of
the pipe and the polygon. Furthermore, the synthetic
data is generated using the manufacturer’s technical
specifications, which usually slightly overestimate the
precision of the equipment in situ.
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distances: Real laser scan (6a, 6¢ blue histogram) and synthetic
point cloud (6b, 6¢ green histogram)

CONCLUSIONS

Opportunities and pitfalls

The main motivation for choosing this approach is
that it allows to generate realistic and fully labeled
ground truth point cloud data as a basis for large-
scale training of deep learning networks for semantic
point cloud segmentation. The approach is intrinsi-
cally flexible towards various use cases, the only fixed
requirement is the availability of a detailed 3D model-
ideally but not necessarily as a product model with
individual semantic information per object. The
manual effort and possible errors in point cloud la-
beling are completely avoided. The modular concept
of the Helios simulation tool allows for changes in
choice and placement of scanning equipment. At the
same time the approach is freely scalable, and easily
repeatable for changing scanning strategies or even
a changed taxonomy. The objects will be assigned
to their respective classes in the model preparation
step, the rest of the task will remain unchanged, point
cloud quality unimpaired. Two of the software for-
mats in use (FBX and OBJ) are proprietary, but
well established and popular solutions in the field.
All software tools used in this are open-source, the

toolchain we use in this contribution is accessible in
an open Github repository®.

As we have found in the presented case study, the
used parameters overestimate the equipment’s preci-
sion on site, which means the data is less noisy than
the real laser scan point cloud and therefore less re-
alistic in that aspect. This might lead to the case
where approaches trained on our synthetic data will
rely too much on the higher precision and perform
significantly worse on real data. To finally verify
the added value of the synthetic data created in our
toolchain with regard to training deep learning ap-
proaches for semantic segmentation, testing needs to
be done along with real data as a next step.

Another limitation in our approach is the remain-
ing manual effort for model preparation. In compari-
son to completely manually labeling the point clouds,
however, this can be done in a fraction of time.

Outlook

Synthetic data is useful as a support for the develop-
ment of AT solutions in data-weak domains. Whereas
straightforward approaches to create such data are
known and in use, our workflow allows us to achieve
a higher level of realism in the resulting data while
keeping the process manageable. Our toolchain al-
lows us to process large-scale models, seamlessly ful-
filling all requirements that the utilized simulation
tool introduces. We introduce a comprehensive draft
for a point cloud taxonomy in the industrial envi-
ronment for our ground truth labels along with the
workflow.

In a next step, we investigate the applicability of
approaches that have been trained on our synthetic
data to real-world datasets, to evaluate the potential
that lies in the method presented in this contribu-
tion regarding its intended purpose. We outline our
next steps as follows: First we will train and test cur-
rent state of the art deep learning architectures for
semantic segmentation on synthetic point cloud data
created as presented in this contribution. Then, we
will test the networks’ performance on real scan data.
To be able to do that, we are simultaneously working
on the manual labeling of our real scan data.

ACKNOWLEDGEMENTS

This research was conducted within the scope of a
project funded by Audi AG, Ingolstadt. The funding
is highly appreciated.

5 https://github.com/fnoi/B2H



Fi ig 7: 3D odl, objects color-coded
according to our taxononty

References

Agapaki, E. (2020), Automated Object Segmentation
in Existing Industrial Facilities, PhD thesis.

Agapaki, E., Glyn-Davies, A., Mandoki, S. &
Brilakis, I. (2019), ‘CLOI: A Shape Classification
Benchmark Dataset for Industrial Facilities’, Com-
puting in Civil Engineering pp. 66-73.

Agapaki, E., Miatt, G. & Brilakis, I. (2018), ‘Priori-
tizing object types for modelling existing industrial
facilities’, Automation in Construction 96, 211-
223.

Anil, E. B., Tang, P., Akinci, B. & Huber, D. (2013),
‘Deviation analysis method for the assessment of
the quality of the as-is Building Information Mod-
els generated from point cloud data’, Automation
in Construction 35, 507-516.

URL: http://dx.doi.org/10.1016 /j.autcon.2013.06.003

Armeni, 1., Sener, O., Zamir, A. R., Jiang, H.,
Brilakis, I., Fischer, M. & Savarese, S. (2016), ‘3D
semantic parsing of large-scale indoor spaces’, Pro-
ceedings of the IEEE Computer Society Conference
on Computer Vision and Pattern Recognition 2016-
Decem, 1534-1543.

Bechtold, S. & Hofle, B. (2016), ‘{{HELIOS}: A Multi-
Purpose LiDAR Simulation Framework for Re-
search, Planning and Training of Laser Scanning
Operations with Airborne, Ground-Based Mobile
and Stationary Platforms’, ISPRS Annals of Pho-
togrammetry, Remote Sensing and Spatial Infor-
mation Sciences III-3, 161-168.

Borrmann, A., Koénig, M., Koch, C. & Beetz, J.
(2015), Building Information Modelling, Springer.

Dai, A., Chang, A. X., Savva, M., Halber, M.,
Funkhouser, T. & Niefiner, M. (2017), ‘Scan-
Net: Richly-annotated 3D reconstructions of in-
door scenes’, Proceedings - 30th IEEE Confer-

Figure 8: Synthetic point cloud, based on'
the model depicted in figure 7

Figure 9: Real laser scan point cloud of
the facility, with actual RGB values

ence on Computer Vision and Pattern Recognition,
CVPR 2017 2017-Janua, 2432-2443.

Diaz-Vilarino, L., Frias, E., Balado, J. & Gonzélez-
Jorge, H. (2018), ‘Scan planning and route op-
timization for control of execution of as-designed
bim’, International Archives of the Photogramme-

try, Remote Sensing and Spatial Information Sci-
ences - ISPRS Archives 42(4), 217-224.

Gao, B., Pan, Y., Li, C., Geng, S. & Zhao, H. (2020),
‘Are We Hungry for 3D LiDAR Data for Semantic
Segmentation?’, pp. 1-26.

URL: http://arxiv.org/abs/2006.04307

Geiger, A., Lenz, P., Stiller, C. & Urtasun, R. (2013),
‘Vision meets robotics: The KITTI dataset. The
International Journal of Robotics Research’, The

International Journal of Robotics Research (Octo-
ber), 1-6.

Griffiths, D. & Boehm, J. (2019), ‘SynthCity: A large
scale synthetic point cloud’, pp. 1-6.
URL: http://arxiv.org/abs/1907.04758

Gschwandtner, M., Kwitt, R., Uhl, A. & Pree, W.
(2011), ‘BlenSor: Blender sensor simulation tool-
box’, Lecture Notes in Computer Science (includ-
ing subseries Lecture Notes in Artificial Intelli-

gence and Lecture Notes in Bioinformatics) 6939
LNCS(PART 2), 199-208.

Guo, Y., Wang, H., Hu, Q., Liu, H., Liu, L. & Ben-
namoun, M. (2020), ‘Deep Learning for 3D Point
Clouds: A Survey’, IEEE Transactions on Pattern
Analysis and Machine Intelligence pp. 1-1.

Hackel, T., Savinov, N., Ladicky, L., Wegner, J. D.,
Schindler, K. & Pollefeys, M. (2017), ‘Seman-
tic3D.Net: a New Large-Scale Point Cloud Clas-
sification Benchmark’, ISPRS Annals of the Pho-
togrammetry, Remote Sensing and Spatial Infor-
mation Sciences 4(1W1), 91-98.



ISO (2018), Industry Foundation Classes (IFC) for
data sharing in the construction and facility man-
agement industries — Part 1: Data schema, Stan-
dard, International Organization for Standardiza-
tion, Geneva, CH.

Kabir Biswas, H., Bosché, F. & Sun, M. (2015),
Planning for Scanning Using Building Information
Models: A Novel Approach with Occlusion Han-
dling, in ‘ISARC. Proc. Int. Symp. Autom. Robot.
Constr..

Kim, H., Kim, K. & Kim, H. (2016), ‘Data-driven
scene parsing method for recognizing construction
site objects in the whole image’, Automation in
Construction 71(Part 2), 271-282.

URL: http://dx.doi.org/10.1016/j.autcon.2016.08.018

Kim, Y., Hong, C., Nguyen, P. & Choi, Y. (2020),
‘Automatic pipe and elbow recognition from three-
dimensional point cloud model of industrial plant
piping system using convolutional neural network-
based primitive classification’, Automation in
Construction 116(December 2019), 103236.

URL: https://doi.org/10.1016 /j.autcon.2020.103236

Kritzinger, W., Karner, M., Traar, G., Henjes, J. &
Sihn, W. (2018), ‘Digital Twin in manufacturing:
A categorical literature review and classification’,
IFAC-PapersOnLine 51(11), 1016-1022.

Ma, J. W., Czerniawski, T. & Leite, F. (2020),
‘Semantic segmentation of point clouds of building
interiors with deep learning: Augmenting training
datasets with synthetic BIM-based point clouds’,
Automation in Construction 113(March), 103144.
URL: https://doi.org/10.1016/j.autcon.2020.103144

Maalek, R., Lichti, D. D., Walker, R., Bhavnani,
A. & Ruwanpura, J. Y. (2019), ‘Extraction of
pipes and flanges from point clouds for automated
verification of pre-fabricated modules in oil and

gas refinery projects’, Automation in Construction
103(March), 150-167.

Neumann, M. (2020), ‘{Blender2Helios} - Github
Repository’.
URL: https://github.com/neumicha/Blender2Helios

Patraucean, V., Armeni, I., Nahangi, M., Yeung, J.,
Brilakis, I. & Haas, C. (2015), ‘State of research in
automatic as-built modelling’, 32nd International
Symposium on Automation and Robotics in Con-
struction and Mining: Connected to the Future,
Proceedings (January 2015).

Rottensteiner, F., Sohn, G., Gerke, M. & Wegner,
J. D. (2013), ‘ISPRS Test Project on Urban Classi-
fication and 3D Building Reconstruction’, ISPRS -
Commission IIT - Photogrammetric Computer Vi-
sion and Image Analysis Working Group III / 4 -
3D Scene Analysis pp. 1-16.

Roynard, X., Deschaud, J. E. & Goulette, F. (2018),
‘Paris-Lille-3D: A large and high-quality ground-
truth urban point cloud dataset for automatic seg-

mentation and classification’, International Journal
of Robotics Research 37(6), 545-557.

Sacks, R., Brilakis, 1., Pikas, E., Xie, H. S. & Giro-
lami, M. (2020), ‘Construction with digital twin
information systems’, Data-centric Engineering .

Sacks, R., Girolami, M. & Brilakis, I. (2020), ‘Build-
ing Information Modelling, Artificial Intelligence
and Construction Tech’, Developments in the Built
Environment p. 100011.

Schnabel, R., Wahl, R. & Klein, R. (2007), ‘Efficient
RANSAC for point-cloud shape detection’, Com-
puter Graphics Forum 26(2), 214-226.

Shen, J. (2020), A Simulated Point Cloud Imple-
mentation of a Machine Learning Segmentation
and Classification Algorithm, Master thesis, Pur-
due University.

Son, H., Kim, C. & Kim, C. (2015), ‘3D recon-
struction of as-built industrial instrumentation
models from laser-scan data and a 3D CAD
database based on prior knowledge’, Automation
in Construction 49, 193-200.

URL: http://dx.doi.org/10.1016/j.autcon.2014.08.007

VDA (2009), 3D Datenaustausch in der Fabrikpla-
nung, Technical report.

Yue, X., Wu, B., Seshia, S. A., Keutzer, K. &
Sangiovanni-Vincentelli, A. L. (2018), ‘A LiDAR
point cloud generator: From a virtual world to au-
tonomous driving’, arXiv pp. 458—464.



