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Abstract

The number of objects orbiting Earth is increasing and will continue to do so in the
future. With the increasing amount of these objects, collisions become more probable. These
collisions produce space debris orbiting Earth without an opportunity to manipulate its
trajectories.

For this thesis a software solution to model the trajectories of such objects, was developed,
using C++. This software solution uses numerical integration, namely the leapfrog integration
method, to solve a system of differential equations. These differential equations model the
two-body problem of the orbiting object and the Earth and uses Cowell’s formulation to
add perturbations to the two-body equations. The modeled perturbations are caused by the
gravitation of the Sun and the Moon, the aspherical gravitational potential of the Earth,
solar radiation pressure, and atmospheric drag.

The software solution is planned to be used as a part of larger space debris simulations
systems, developed and used by the European Space Agency’s Advanced Concept Team. It
is open source and can be found on GitHub1

1https://github.com/Wombatwarrior/BAspacedebris
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Summary

The goal of the following Bachelor’s thesis Efficient Trajectory Modelling for Space Debris
Evolution is developing a software solution in C++, that can be used to simulate the
trajectories of a large number of objects orbiting Earth. This software is planned to be used
as part of bigger simulation programs for space debris evolution.

In the Theoretical Background chapter of this thesis, first, the equations of motions, that
are part of the model used to describe the forces acting on an object near the Earth, are
introduced. Next, the used integration method is explained.

The second part of the thesis focuses on the implementation aspects of the developed
software. Starting with the used data structures to represent the simulated system. The
main focus of the Implementation chapter lies in the calculation of the accelerations, needed
to determine the trajectories of the simulated particles. At the end of the chapter the
implementation details of the leapfrog integration method and some aspects concerning I/O
are explained.

Part three analyzes some experiments conducted. First, the error convergence of the
developed software is analyzed. Additionally, the number of particle updates per second is
measured for different amounts of simulated particles. To get a better idea of possible ways
to increase simulation speed, the consumption of computation time during the simulation is
determined. In the last section, the contributions of the different accelerations used in the
simulation are compared for different orbit altitudes.

As result of this thesis, the developed software can simulate hundreds of thousands
of particles, performing around 2 million particle updates per second. The error of the
simulations achieves convergence for reasonable integration time steps. But because the used
integration method is only second-order, this convergence is rather slow. To improve the
performance of the software a higher-order integration method could be used in the future.
Another promising approach could be parallelization because the performed calculations are
independent per particle.
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Part I.

Introduction and Background
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1. Introduction

Since the beginning of the space age in the 1950s the number of objects in Earth’s space
environment is constantly increasing. For the year 2020, the amount of launched objects has
exploded (Figure 1.1). And this trend is going to continue in the future[ESA21].

The dominant reason for this rapid growth is the reduction of launch costs and the planned
installation of satellite mega-constellations like SpaceX’s Starlink with around 1700 launched
satellites and up to 42000 planned1, Amazon’s Project Kuiper with around 3200 satellites
authorized2 or China’s planned communication constellation consisting of almost 13000
satellites3, to name a few.

Figure 1.1.: Evolution of the launch traffic to low Earth orbit per mission funding. [ESA21]

With that many objects orbiting Earth, the number of potential collisions will grow
exponentially. To address the growing number of space debris objects orbiting Earth and
interfering with spaceflight missions, in 2002 the Inter-Agency Space Debris Coordination
Committee (IADC) published Space Debris Mitigation Guidelines. These Guidelines are
aimed to reduce space debris in protected regions of high importance for spaceflight missions.

1https://www.space.com/spacex-30000-more-starlink-satellites.html
2https://www.geekwire.com/2020/fcc-says-amazon-can-proceed-kuiper-satellites-will-accommodate-
rivals/

3https://circleid.com/posts/20210329-guowang-starlink-will-be-chinas-global-broadband-provider/
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1. Introduction

The Low Earth Orbit with an altitude lower than 2000 km (”Region A” in Figure 1.2)
and the Geosynchronous Region with altitudes between 35586 and 35986 km and an angle
between +15◦ and −15◦ latitude (”Region B” in Figure

1.2).

Figure 1.2.: Protected regions defined by the IADC [IAD07]

If collisions happen, this will result in debris objects in the orbit, which will raise the
probability of more collisions. This can lead to a cascade of collisions, resulting in a belt of
debris surrounding the Earth, the so-called Kessler effect.[KCP78]. This scenario makes it
important, to be able to model the evolution of objects around Earth, to predict possible
collisions and take adequate measures to avoid them.

The goal of this thesis is to develop a software solution, to model the trajectory of objects
orbiting Earth. This is done by numerical integration to solve Newton’s equations of motion
for a selection of forces acting on such objects. This software is planned to be used in space
debris evolution simulations of the European Space Agency’s Advanced Concept Team.
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2. Theoretical Background

2.1. The J2000 reference frame

As the main source to develop the model used in this thesis the book ”Fundamentals of
Astrodynamics and Applications” by Vallado and McClain is used[VM97e].

To represent the state of an object orbiting the Earth, an appropriate reference frame
is needed. For this thesis, the reference frame is the J2000 reference frame. The J2000
reference frame is an Earth-centered inertial reference frame, i. e. its origin is at the center
of the Earth and it is fixed with respect to the stars [VM97c]. Its x-axis points toward the
mean vernal equinox, i.e. the intersection point between the Sun and The Earth’s equator
on the 20th or 21st of March. The y-axis is 90° to the east in the equatorial plane and the
z-axis is pointing at the celestial north pole, along the rotational axis of the Earth.

Figure 2.1.: Orientation of the J2000 reference frame axes. [Ros98]

To define an inertial reference frame the axes are defined at an epoch time. For the J2000
reference frame, this epoch is 12:00 Terrestrial Time on 1 January 2000. This is done because
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2. Theoretical Background

the above definitions change over time, due to periodic changes of the Earth’s orbit with
respect to the stars i. e. precession and nutation[Ros98].

2.2. Equations Of Motion

The motion of an object can be calculated knowing its position ~p and its position’s first and
second derivative with respect to time i.e. its velocity ~v and acceleration ~a. The model used
for this thesis combines several accelerations applied to its objects and uses the resulting
accelerations to calculate their positions and velocities.

2.2.1. Two-body equation

For objects orbiting Earth inside the protected regions depicted in Figure 1.2 by far the most
important acceleration to take into account is the gravitational acceleration caused by the
Earth itself. The basis to calculate this acceleration is Newton’s Law of Gravitation. This
law describes the attraction between two bodies and can be used to formulate an equation
to calculate the acceleration acting on an object orbiting the Earth following an elliptic orbit
described by Kepler’s Laws.

~aKep = −
G(m⊕ +mobj)

|~p|3
~p (2.1)

Where G is the gravitational constant, m⊕ is the mass of the Earth, and mobj is the mass
of the object. Considering that m⊕ is many magnitudes greater than mobj for satellites or
debris, the object’s mass can be neglected. This results in the equations

~aKep = −Gm⊕
|~p|3

~p (2.2)

Where Gm⊕ = 3.986004407799724× 105km3sec−2 [VM97i].

2.2.2. Third-Body Equation

The last subsection considered only the Earth as an object gravitationally acting on an
object in its proximity. But since gravitation is acting on large distances, the acceleration
acting on an object, caused by a third body must be taken into account. As described by
Vallado [VM97h] a general equation to calculate the gravitational acceleration on an object
obj in a three-body system with Earth and the third body b is

~a⊕,b = ~aKep +Gmb

(
~pb − ~pobj
|~pb − ~pobj |3

− ~pb − ~p⊕
|~pb − ~p⊕|3

)
(2.3)

The first term is the acceleration acting on the object, due to Earth’s gravity, described
in the last subsection. To get an equation to calculate the acceleration caused only by
the body b the second term is examined further. Since the used J2000 reference frame is
Earth-centered the term can be simplified to
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2. Theoretical Background

~ab = Gmb

(
~pb − ~pobj
|~pb − ~pobj |3

− ~pb

|~pb|3

)
(2.4)

Using ~pb − ~pobj = −(~pobj − ~pb) and |~pb − ~pobj | = |~pobj − ~pb| [Esc65] the result is

~ab = −Gmb

(
~pobj − ~pb
|~pobj − ~pb|3

+
~pb

|~pb|3

)
(2.5)

The needed variables mb and ~pb have to be determined for an arbitrary body to calculate
its influence on an object. For relevant bodies mb is constant and known but a body’s
position has to be calculated and changes over time. The model used in this thesis takes
into account the Sun and the Moon as third bodies and has to determine their position.

Sun as The Third Body

Because the Sun’s mass makes up over 99% of the complete mass of the solar system it is
dominating the solar system with its gravity. Its effect on an object orbiting Earth is taken
into account by the model used in this thesis. To calculate the position of the Sun ~p� at a
given point in time t, first its mean anomaly `�, ecliptic longitude λ� and the distance r�
between Sun and Earth are calculated.

`� = ϕ�,0 + ν�t
λ� = Ω� + ω� + `� +

(
6892
3600 sin `� + 72

3600 sin 2`�
)

r� = 1− 0.0167024241573 cos `� − 0.0001403565055 cos 2`�

(2.6)

Where ϕ�,0 = 357.5256◦ is the mean anomaly at t = 0, ν� = 1.1407410259335311× 10−5 ◦s
is the mean angular motion, Ω� + ω� = 282.94◦ is the sum of the longitude of ascending
node and the argument of periapsis of the Sun orbiting the Earth.

To obtain the vector ~p� between Sun and Earth, the equation

~p� =

 r� cosλ�
r� sinλ� cos ε
r� sinλ� sin ε

AU (2.7)

is used. With the obliquity of the ecliptic ε = 23.4392911◦.
Now this position can be substituted into the general third body equation 2.5

~aSol = −Gm�

(
~pobj − ~p�
|~pobj − ~p�|3

+
~p�

|~p�|3

)
(2.8)

Where Gm� = 1.32712440018× 1011km3sec−2.

Moon as The Third Body

Compared to the Sun the Moon has an almost neglectable mass. But compared to the Sun
the Moon is significantly closer to the Earth i.e. objects orbiting the Earth. Because of
this proximity, the Moon’s gravitational perturbation is also incorporated into the model.
The calculation of the Moon’s position ~pM at a given point in time t, requires additional
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2. Theoretical Background

Figure 2.2.: Lunar orbit and orientation with respect to the ecliptica

ahttps://upload.wikimedia.org/wikipedia/commons/4/46/LunarOrbitandOrientationwithrespecttotheEcliptic.svg

calculations. Reason for this is the complex motion of the Moon. The inclination of the
Moon’s orbit of about 5◦ to the ecliptic (Figure 2.2), the third body perturbation, caused
by the Sun, and periodic variations of the Moon’s orbit around the Earth, must be taken
into account.

To do this the four time dependent angles ϕM , ϕMa , ϕMpand ϕMS
are needed.

ϕM = ν�t
ϕMa = νMat
ϕMp = νMpt
ϕMS

= νMst

(2.9)

Based on these angles the mean anomaly of the Moon lM, the mean elongation from the
Sun DM, the mean argument of latitude of the Moon, measured on the ecliptic from the
mean equinox of date FM and the Moon’s longitude L0 can be calculated with

lM = ϕMa + 134.96292◦

DM = ϕMp + ϕMa − ϕM + 297.85027◦

FM = ϕMp + ϕMa + ϕMS
+ 93.27283◦

L0 = ϕMp + ϕMa + 218.31617◦

(2.10)

[VM97g]
Using series expansion to calculate the position of the Moon, the values of its ecliptic

latitude λM, its ecliptic longitude βM and the magnitude of its position vector rM are
determined.

7



2. Theoretical Background

λM = L0 + 1
3600(22640 sin(lM) + 769 sin(2lM)− 4856 sin(lM − 2DM) + 2370 sin(2DM)

−668 sin(`�)− 412 sin(2FM)− 212 sin(2lM − 2DM)− 206 sin(lM + `� − 2DM)
+192 sin(lM + 2DM)− 165 sin(`� − 2DM) + 148 sin(lM − `�)
−125 sin(DM)− 110 sin(lM + `�)− 55 sin(2FM − 2DM))

(2.11)

βM = 1
3600(18520 sin

(
FM + λM − L0 + 1

3600(412 sin(2FM) + 541 sin(`�))
)

−526 sin(FM − 2DM) + 44 sin(lM + FM − 2DM)
−31 sin(−lM + FM − 2DM)− 25 sin(−2lM + FM)
−23 sin(`� + FM − 2DM) + 21 sin(−lM + FM)
+11 sin(−`� + FM − 2DM))

(2.12)

rM = 385000− 20905 cos(lM)− 3699 cos(2DM − lM)
−2956 cos(2DM)− 570 cos(2lM) + 246 cos(2lM − 2DM)
−205 cos(`� − 2DM)− 171 cos(lM + 2DM)− 152 cos(lM + `� − 2DM)

(2.13)

To obtain the position vector ~pM in the J2000 reference frame the equation

~pM =

1 0 0
0 cos(ε) − sin(ε)
0 sin(ε) cos(ε)

 ·
rM cos(λM) cos(βM)
rM sin(λM) cos(βM)

rM sin(βM)

 (2.14)

is used [VM97a].
Now this position can be substituted into the general third body equation 2.5

~aLun = −GmM

(
~pobj − ~pM
|~pobj − ~pM|3

+
~pM

|~pM|3

)
(2.15)

Where GmM = 4.9028× 103km3sec−2.

2.2.3. Spherical Harmonics

The Two-Body Equation 2.2 discussed in the subsection 2.2.1 makes assumptions. One
of these assumptions about the two bodies in question is that they are both spherically
symmetric and their density is uniform. Because of this assumption, the bodies can be
treated as point masses [VM97i]. But this assumption is not true for the Earth. Due to its
rotation, the shape of the Earth is flattened along its rotational axis. Additionally, its density
is not constant. This results in a gravitational potential that is not spherical. Because of
this, the used model incorporates perturbing accelerations, due to the Earth’s nonspherical
nature and mass distribution, using spherical harmonics.

To calculate accelerations caused by this nonspherical potential, first, the potential U
itself is defined as

U =
Gm⊕
|~p|

[
1 +

∞∑
l=2

l∑
m=0

(
R⊕
|~p|

)l
Plm[sin(φgc)]{Clm cos(mλ) + Slm sin(mλ)}

]
(2.16)
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2. Theoretical Background

Where the magnitude of the position vector |~p|, the geocentric latitude φgc and the geocentric
longitude λgc are the polar coordinates of the location of the object. Plm[sin(φgc)] are the
associated Legendre functions for the geocentric latitude. The coefficients Clm and Slm are
approximated by analyzing observation data of satellites orbiting the Earth [LPL+89]. To
calculate the acceleration due to this potential partial derivatives of the potential function
are needed. Resulting in the equation for the acceleration

~aharmonics =
∂U

∂|~p|

(
∂|~p|
∂~p

)T
+

∂U

∂φgc

(
∂φgc
∂~p

)T
+

∂U

∂λgc

(
∂λgc
∂~p

)T
(2.17)

.
The terms in the equation 2.17 are

∂U
∂|~p| = −Gm⊕

|~p|2
∞∑
l=2

l∑
m=0

(
R⊕
|~p|

)l
(l + 1)Plm[sin(φgc)]{Clm cos(mλgc) + Slm sin(mλgc)}

∂U
∂φgc

= Gm⊕
|~p|2

∞∑
l=2

l∑
m=0

(
R⊕
|~p|

)l
{Pl,m+1[sin(φgc)]−m tan(φgc)Plm[sin(φgc)]}

×{Clm cos(mλgc) + Slm sin(mλgc)}
∂U
∂λgc

= Gm⊕
|~p|2

∞∑
l=2

l∑
m=0

(
R⊕
|~p|

)l
mPlm[sin(φgc)]{Slm cos(mλgc) + Clm sin(mλgc)}

∂|~p|
∂~p = ~pT

|~p|
∂φgc
∂~p = 1

p2x+p
2
y

(
− ~pT pz
|~p|2 + ∂pz

∂~p

)
∂λgc
∂~p = 1

p2x+p
2
y

(
px

∂py
∂~p − py

∂px
∂~p

)
(2.18)

Putting these terms together the resulting equations for the components of the acceleration
~aharmonics are

aharmonicsx =

(
1
|~p|

∂U
∂|~p| −

pz
|~p|2
√
p2x+p

2
y

∂U
∂φgc

)
px −

(
1

p2x+p
2
y

∂U
∂λgc

)
py

aharmonicsy =

(
1
|~p|

∂U
∂|~p| + pz

|~p|2
√
p2x+p

2
y

∂U
∂φgc

)
py −

(
1

p2x+p
2
y

∂U
∂λgc

)
px

aharmonicsz = 1
|~p|

∂U
∂|~p|pz +

√
p2x+p

2
y

|~p|2
∂U
∂

(2.19)

[VM97f]

Zonal Harmonics

If m = 0, the dependency on longitudinal potential vanishes completely. This results in a
symmetrical potential w.r.t. the polar axis i.e. bands of latitude (Figure 2.3). The resulting
spherical harmonics are called zonal harmonics. Zonal harmonics are named Jl. In the
model used in this thesis, the J2 i.e. l = 2 is used, because it is the most significant one and
is used to simulate the oblateness of the Earth due to its rotation. Using l = 2 and m = 0,
equation 2.19 can be converted into
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2. Theoretical Background

Figure 2.3.: Zonal harmonics for different l. [VM97f]

Figure 2.4.: Sectorial harmonics for different l = m. [VM97f]

aJ2,x =
Gm⊕R2

E

√
5C20px

2|~pobj |

(
3

|~pobj |4
− 15p2z
|~pobj |6

)
aJ2,y =

Gm⊕R2
E

√
5C20py

2|~pobj |

(
3

|~pobj |4
− 15p2z
|~pobj |6

)
aJ2,z =

Gm⊕R2
E

√
5C20pz

2|~pobj |

(
9

|~pobj |4
− 15p2z
|~pobj |6

) (2.20)

[VM97b] Where the coefficient C20 = −4.84165371736× 10−4.

Sectorial Harmonics

The other type of spherical harmonics, used in the model, are so-called sectorial harmonics,
when l = m. Here the potential vanishes along longitudes resulting in an ”orange-slice”
like division into 2l sectors (Figure 2.4). These harmonics are used to model variations in
the mass concentration of the Earth. In the model the sectorial harmonics of order 2 i.e.
l = m = 2 are used.

Because the longitude affects the potential, first, the position vector ~pobj of the object is
rotated around the rotational axis of the Earth i.e. the z-axis, to align it with the current

10



2. Theoretical Background

orientation of the Earth. Where the angle θG + νEt is the angle the Earth rotated since
t = 0.

~d =

 cos(θG + νEt) sin(θG + νEt) 0
− sin(θG + νEt) cos(θG + νEt) 0

0 0 1

 ~pobj (2.21)

Using l = m = 2 in the equation 2.19 the vectors ~c22 and ~s22 can be calculated.

c22,x =
5Gm⊕R2

⊕
√
15C22dx(d2y−d2x)
2|~d|7

+
Gm⊕R2

⊕
√
15C22dy

|~d|5

c22,y =
5Gm⊕R2

⊕
√
15C22dy(d2y−d2x)
2|~d|7

− Gm⊕R2
⊕
√
15C22dx

|~d|5

c22,z =
5Gm⊕R2

⊕
√
15C22dz(d2y−d2x)
2|~d|7

(2.22)

With the coefficient C22 = 2.43914352398× 10−6.

s22,x = −5Gm⊕R2
⊕
√
15S22d2xdy

|~d|7
+

Gm⊕R2
⊕
√
15S22dx

|~d|5

s22,y = −5Gm⊕R2
⊕
√
15S22dxd2y

|~d|7
+

Gm⊕R2
⊕
√
15S22dy

|~d|5

s22,z = −5Gm⊕R2
⊕
√
15S22dxdydz

|~d|7

(2.23)

Where S22 = −1.40016683654× 10−6.
To rotate the results back to the actual position, the Matrix M is defined as

M =

cos(θG + νEt) − sin(θG + νEt) 0
sin(θG + νEt) cos(θG + νEt) 0

0 0 1

 (2.24)

Now the two vectors can be rotated around the z-axis resulting in the two acceleration
vectors

~aC22 = M~c22 (2.25)

~aS22 = M~s22 (2.26)

The sum of ~aC22 and ~aS22 is a solution of equation 2.19 with l = m = 2.

2.2.4. Solar Radiation Pressure

After discussing gravitational effects and their resulting accelerations for an object in orbit,
there are other sources of acceleration that are integrated into the model. The first one of
them is the solar radiation pressure, caused by the impulse of the Sun’s radiation that is
transferred on an object if the object is hit by it. The acceleration aused by this pressure
can be calculated using

~aSRP = −PSRP cRA�
m

(
~p− ~p�
|~p− ~p�|

)
(2.27)

. Where PSRP = 4.56 × 10−6N/m2 is the solar radiation pressure at the distance of one
astronomical unit from the Sun. A� is the surface of the object exposed to the Sun’s
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2. Theoretical Background

radiation, cR is the reflectivity of the object, ~p−~p� is the connecting vector between the Sun
and the object, and m is the mass of the object. The Sun’s position ~p� can be calculated
using Equation 2.7.

The used model is not using A�, cr and m directly. Instead, it introduces the factor
AOM , which combines A� and m for a given object and is given before the calculation and
cr is assumed to be 1. This results in the equation

~aSRP = PSRPAOM
~p− ~p�
|~p− ~p�|

(2.28)

This equation assumes the distance between the Sun and the object is exactly one
astronomical unit. To get a better approximation of the acceleration the scaling factor
AU2

|~p−~p�|2 is introduced. The result is the used equation

~aSRP = AU2PSRPAOM
~p− ~p�
|~p− ~p�|3

(2.29)

2.2.5. Atmospheric Drag

The second non-conservative acceleration included in the model is the one caused by the
friction between the Earth’s atmosphere and an orbiting object.

Because the density of the Earth’s atmosphere p (not to be confused with the position
vector ~p) decreases with the distance from the Earth, near the Earth, the influence of
atmospheric drag is extremely strong compared to other perturbing effects, but at higher
altitudes effects like third bodies or the solar radiation pressure become more dominant.
The drag effect retards the object’s motion i.e. the direction of the acceleration is opposite
of the object’s velocity w.r.t. to the atmosphere ~vrel, resulting in a loss of altitude.

The general equation to calculate the acceleration caused by the drag is

~aDrag = −1

2

cDA

m
p|~vrel|2

~vrel
|~vrel|

(2.30)

Where cD is the coefficient of drag. This value reflects how strong the influence of the
drag effect is on an object. Spheres approximately have a cD ∼ 2 to 2.1, a flat plate one
of cD ∼ 2.2. A is the cross-section area normal to the object’s velocity vector. Because to
determine A the orientation of the object is needed with a high, almost impossible to know,
accuracy, its value is approximated and constant in the used model. Calculating Equation
2.30 requires the values for p and ~vrel, that must be determined. To get the velocity relative
to the atmosphere, a model of the motion of the atmosphere itself must be chosen.

The chosen model is only using the Earth’s rotation and the position of the object,
neglecting other factors like wind.

~vrel = ~vobj − ~ω⊕ × ~pobj =

vobjx − ω⊕pobjyvobjy + ω⊕pobjx
vobjz

 (2.31)

Where

~ω⊕ =

 0
0
ω⊕

 (2.32)
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is the rotational vector of the Earth and ω⊕ = 7.292115 × 10−5 rads . Determining the
atmospheric density p can be arbitrarily complex, because the number of factors influencing
it is high, and many of them are themselves highly complex to model and interact with each
other.

For example one can consider [VM07]:

• The temperature of the atmosphere

• The magnetic field of the Earth

• Latitudinal and longitudinal variations of the atmosphere

• The influence of the Sun’s activity on the atmosphere

• Winds

• Tides

The chosen model of the atmosphere is very simple. It assumes the density of the
atmosphere decreases exponentially with the distance from the Earth’s surface.

p = p0 exp

(
−
|~pobj | −R⊕

H

)
(2.33)

Where p0 = 1.3kgm−3 is the atmospheric density at ground level and H = 8.5km is the
atmospheric scale factor [Fit12].

2.2.6. Cowell’s Formulation

As mentioned above, ~aKep is by far the main acceleration acting on an object near the
Earth. The other described effects cause perturbations on this acceleration. To formulate
total equations of motion to be integrated using numerical methods like in this thesis, the
perturbing accelerations of n sources can be added linearly to ~aKep to get the acceleration

~a = ~aKep +
n∑
i=1

~apertubredi (2.34)

This formulation is known as Cowell’s formulation. Advantageous about this formulation
is the fact, that perturbations can be added or removed easily, without affecting the
calculations of any of the other ones [VM97d]. Substituting all accelerations, described
above, into Cowell’s formulation the result is

~a = ~aKep + ~aSol + ~aLun + ~aJ2 + ~aC22 + ~aS22 + ~aSRP + ~aDrag (2.35)

This equation is used in this thesis.

2.3. Integration

To determine the motion of an object, the state of the object i.e. its position ~pi and its
derivatives ~̇pi and ~̈pi a.k.a its velocity ~vi and acceleration ~ai, is calculated along a grid of
points in time ti = t0 + ∆t ∗ i, with i = 1, 2, 3..., the step size ∆t and starting time t0.
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This leads to the problem of determining the state at the next time step i+ 1. To solve
this problem numerical integration is used. The used numerical integration method for this
thesis is the leapfrog method. This method defines the equations

~vi+1/2 = ~vi−1/2 + ~ai∆t

~pi+1 = ~pi + ~vi+1/2∆t
(2.36)

This update scheme gives the leapfrog method its name, because the velocity and position
are updated at different points in time and ”leapfrog” over each other (Figure 2.5).

Figure 2.5.: Update scheme of the leapfrog method.[Art]

The equations 2.36 can be reformulated, to determine ~p and ~v both at ti+1 = t0+∆t∗(i+1)1

[Art].

~pi+1 = ~pi + ~vi∆t+ 1
2~ai∆t

2

~vi+1 = ~vi + 1
2(~ai + ~ai+1)∆t.

(2.37)

The method needs only one evaluation of the acceleration per time step. But compared
to other integration methods with this property, e.g. Euler’s method, the order of leapfrog
is 2 instead of 1, leading to higher accuracy. But one of the most important features of the
leapfrog method is the conversation of energy for conservative forces, i.e. it is a symplectic
method[You13].

1http://www.artcompsci.org/vol1/v1web/node34.html
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3. Related Work

There are lots of software solutions, that are used for orbit propagation. One of the oldest
groups of them is the Simplified General Perturbations (SGP) model series. The development
of these orbit propagators began in the 1960s and one of them that is used by NASA and
other organizations is the Simplified General Perturbations-4 (SGP4) propagator published
in 1980[VCHK06].

Because the SGP4 model produces an error of more than 1 km per day, it is not suited to
simulate large amounts of time into the future. It is used to track objects orbiting Earth,
but due to the error in the predicted trajectories, the state of the objects frequently has to
be corrected using observation data.

Another software developed and used by the ESA is the pykep library. The pykep library
consists of highly specialized and optimized modules, that are used for mission planning and
research. But no module for trajectory propagation of a great number of particles orbiting
Earth is available yet1.

Because the goal of this thesis is to build a software solution, that can efficiently calculate
the trajectory of an object orbiting Earth, a state of the art tool is needed to compare the
developed solution’s performance. For this purpose, the heyoka tool is used. This is a C++
library, developed to integrate systems of ordinary differential equations, using Taylor’s
method. Taylor’s method, in short, uses Taylor expansion around the point in time t = t0
to determine the solution xt1 at a point in time t1, using the starting condition x0.

xt1 = x0 + x′(t0)h+
1

2
x′′(t0)h

2 + ...+
xp(t0)

p!
hp (3.1)

Where h = t1 − t0 is the time step, p is the order of the Taylor method and xn(t) is the nth

derivative of x(t) [BI21].
By increasing p the integration error ε of the method can be reduced. On the other hand,

the required calculations grow quadratic with respect to p, resulting in a trade-off between
precision and speed. Because of this, heyoka can be used to calculate solutions of a given
system of ordinary differential equations with ε being smaller than machine precision.

In this thesis heyoka is used to calculate solutions for the model derived in Section 2.2 with
machine precision. These solutions are used as ground truth in Section 5.2. The software
developed for this thesis tries to achieve a better error behavior than propagators like SGP4
for a large number of simulated particles, without being as computational demanding as a
high order Taylor integrator like heyoka.

1https://esa.github.io/pykep/documentation/index.html
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4. Implementation

As a practical part of this thesis, a C++ software solution is developed to use numerical
integration, to efficiently model the trajectories of a great number of objects, following
Newton’s Laws of motion based on the acceleration model explained in Section 2.2.

4.1. Data Structures

To develop software to determine the trajectory of a particle using the model described in
Section 2.2, first, a data structure to store the state of a particle is needed.

Since the leapfrog method described in Section 2.3 is used for integration, this data
structure has to store the values used in Equation 2.37. Other required properties of the
objects are the factors needed to calculate the solar radiation pressure using Equation 2.29
and the atmospheric drag using Equation 2.30. The first one uses the factor AOM that
represents the ratio between the object’s area affected by the solar radiation and the object’s
mass. The second one contains the factor cDA

m , i.e. the inverse of the so-called ballistic
component m

cD
times the cross-section area A of the object. Both of these values are assumed

constant in the used model and are saved in the object’s data structure.
The used data object is the Debris class with the following data members:

• The 3D position vector of the object of the current time step in km

• The 3D velocity vector of the object of the current time step in km
s

• The 3D acceleration vector of the last time step acc t0 in km
s2

• The 3D acceleration vector of the current time step acc t1 km
s2

• The object’s area over mass factor aom in km2

kg

• The object’s inverse ballistic component times the object’s cross section area bc inv

in kgm2

Because the developed software is designed to simulate multiple objects in parallel, the
DebrisContainer class is introduced. The purpose of a DebrisContainer object is to hold
a vector object of Debris objects and managing access to these Debris objects.

4.2. Acceleration Calculation

The developed software uses a pattern of linearly adding up accelerations due to different
perturbation forces. This calculation scheme is an implementation of Cowell’s formulation
described in Section 2.2.6.

The AccelerationAccumulator class is responsible for managing the calculations of these
accelerations. To achieve this an AccelerationAccumulator object holds the current time
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of the simulation and a reference to a central DebrisContainer object, holding the Debris

objects to simulate. Objects of this class can be configured to toggle the calculation of the
different acceleration sources. This is done using the confi array of boolean values indexed
by an enumeration of the AccelerationComponents.

The eight AccelerationComponents and their corresponding accelerations are:

• KepComponent : aKep Equation 2.2

• J2Component : aJ2 Equation 2.20

• C22Component : aC22 Equation 2.25

• S22Component : aS22 Equation 2.26

• LunComponent : aLun Equation 2.15

• SolComponent : aSol Equation 2.8

• SRPComponent : aSRP Equation 2.29

• DragComponent : aDrag Equation 2.30

The calculation of the accelerations per time step can be divided into two parts:

1. Determine the object independent state of the simulated system.

2. Calculate the activated acceleration components for all particles. Per particle this can
be divided into two sub steps by itself:

a) Calculate values needed for more than one component.

b) Calculate the actual component accelerations.

During step 1. some values needed for the calculation of the accelerations can be determined
and reused for all particles to reduce the number of calculations per particle. The two terms
cos(θG + νEt) and sin(θG + νEt) needed for the spherical harmonics components J2, C22 and
S22 are both independent of the particle and constant for one time step. The calculations of
the Sun’s and Moon’s position relative to the reference frame, and terms depending only
on them, are also independent of the particle and constant for one time step. These values
are calculated in the setUp method of the corresponding AccelerationComponent. At the
beginning of each time step, the AccelerationAccumulator object calls these methods for
all activated components and passes references to the results as parameters for the actual
calculations done per particle.

During step 2. the AccelerationAccumulator iterates over all Debris objects, managed
by the central DebrisContainer, and applies all activated components by accumulating the
accelerations returned by the components apply method. For a given particle and a given
time step, there are again some values, that can be calculated once and used in multiple
calculations for different components. In particular, the calculations of aSun and aSRP both
depend on the distance between the particle and the Sun. So if both components have to be
calculated the value is only calculated once and passed as a parameter to the apply methods
of the SRPComponent after being calculated by the SolComponent.
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Algorithm 1: Acceleration Step

Data: container
1 if config[SOL] or config[SRP] then
2 sun params← SolComponent.setUp(t)

3 if config[LUN] then
4 moon params← LunComponent.setUp(t)

5 if config[C22] or config[S22] then
6 c term← cos(θG + νEt)
7 s term← sin(θG + νEt)

8 forall d ∈ container do

9 new acc total← ~0
10 d srp← 0
11 if config[KEP] then
12 new acc total← new acc total +KepComponent.apply(d)

13 if config[J2] then
14 new acc total← new acc total + J2Component.apply(d)

15 if confi[C22] and config[S22] then
16 new acc total←

new acc total + C22S22Component.apply(d, c term, s term)

17 else
18 if confi[C22] then
19 new acc total←

new acc total + C22Component.apply(d, c term, s term)

20 if config[S22] then
21 new acc total←

new acc total + S22Component.apply(d, c term, s term)

22 if config[SOL] then
23 new acc total←

new acc total + SolComponent.apply(d, d srp, sun params)

24 if config[LUN] then
25 new acc total← new acc total + LunComponent.apply(d,moon params)

26 if config[SRP] then
27 new acc total←

new acc total + SRPComponent.apply(d, d srp, sun params)

28 if config[DRAG] then
29 new acc total← new acc total +DragComponent.apply(d)

30 d.acc t1← new acc total

Figure 4.1.: Acceleration calculation per time step

Two other components that can share calculation results are the C22Component and

19



4. Implementation

S22Component. Because the Equations 2.25 and 2.26 share a lot of terms, an extra
AccelerationComponent C22S22Component is introduced. This new component calculates
the sum aC22 + aS22 in one apply method, taking advantage of the similarity between these
components. As the last step for each particle, the accumulated acceleration is written to
the Debris object. The resulting algorithm is depicted in Figure 4.1 for one time step. To
achieve better calculation performance, some basic optimizations are made for all components
whenever possible.

Calculate constants up front If the equations to calculate the acceleration contain terms
that can be precalculated at compile time, the AccelerationComponent provides constant
methods to avoid recalculating these terms.

Replace divisions with multiplications For many architectures the division operation is
significantly slower than the multiplication operation. If the divisions b

a and c
a must be

calculated, the number of division operations can be reduced by calculating the inverse
a−1 = 1

a once and replacing all divisions by a with a multiplication with a−1 to ba−1 and
ca−1.

Factorize terms and calculate factors once If two terms a and b can be factorized into
the form a = cd and b = ce the shared factor c is calculated only once.

Use multiplication instead of std::pow method To avoid overhead when using the stan-
dard library std::pow, all powers are hardcoded as multiplications.

To avoid numerical errors, due to rounding errors, when adding to numbers of different
magnitude, the operations are ordered in such a way, that numbers are added in ascending
order. This is mainly used for the series expansions in Equations 2.11., 2.12 and 2.13 while
calculating aLun.

4.3. Numerical Integration

The class diagram in Figure 4.3 shows the classes responsible for integrating.
To drive the integration over time the Integrator class is used. An Integrator object

holds references to the central DebrisContainer object, holding the particles to simulate,
and an AccelerationAccumulator object with the desired acceleration configuration. Per
time step the Integrator object updates the state for each particle in the container object
following the leapfrog method. During one time step, the Integrator object first updates
the position, because the leapfrog method only needs position, velocity, and acceleration of
the last time step. The Integrator then delegates the calculation of the acceleration for the
current time step to its AccelerationAccumulator object, by calling the applyComponents
method.

As the last step, the velocity can be updated because it depends on the position and
acceleration of the current time step. The algorithm is illustrated in Figure 4.2.
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Algorithm 2: Integrator Step

Data: container
1 foreach d ∈ container do
2 d.acc t0← d.acc t1
3 d.position← d.position ∗∆t ∗ d.velocity + 1

2∆t2 ∗ s.acc t0
4 applyComponents()
5 foreach d ∈ container do
6 d.velocity ← d.velocity + 1

2∆t ∗ (d.acc t0 + d.acc t1)

Figure 4.2.: Integration algorithm per time step

Figure 4.3.: Classes involved in physics calculations

4.4. I/O

To load the starting conditions of a simulation and to write the current state of the
simulation at a given timestep, the developed software uses file input and output classes. At
the beginning of the program, the user provides an input file name and an output file name
via the command line.

The class diagram in Figure 4.4 shows the classes associated with input and output.

4.4.1. File Input

To define the starting conditions of a simulation an input text file is used. This file
specifies the start time, the end time, the time step for the simulation and a time step for
output of the complete state of the simulation. The configuration information to use for
the AccelerationAccumulator is also given as a list of boolean values specifying if the
corresponding AccelerationComponent should be applied. As part of this input file, an
arbitrary number of particles to simulate can be listed. For these particles, all properties of
the Debris class can be set to their starting conditions.

To load the simulation specifications into the software the FileInput class is used. A
FileInput object holds a reference to the central DebrisContainer to add particles while
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Figure 4.4.: Classes involved in I/O

reading the particles starting conditions. Additionally, it provides an interface to give access
to the time and configuration variables.

4.4.2. File Output

The output of the simulation state is realized using the FileOutput class. As output files,
comma-separated values (CSV) files are used.

A FileOutput object manages two file output streams, out and acc out, and appends
the state of the simulation, to the files at each writing time step. The out stream is
used to safe the state of all Debris objects of the simulation and acc out to write the
accelerations of all AccelerationComponents calculated. It holds references to the central
DebrisContainer object and is by itself referenced by the AcclerationAccumulator to
provide output functionality during the acceleration calculations.

The time step for writing the state of the simulation by the FileOutput object is defined
in the input text file. If the time since the last output is greater than this time step the
main simulation loop calls the writeDebrisData method of the FileOutput object and
triggers the use of the AccelerationAccumulator’s applyAndWriteComponents method.
This method performs the same calculations described in Section 4.2, but after calculating
the acceleration of a component it uses the FileOutput object to write the result to the
output file.
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5. Results

5.1. Used Hardware and Software

The following data from the developed software is produced by running simulations on the
CoolMUC-2 segment of the Linux cluster at the Leibniz-Rechenzentrum der Bayerischen
Akademie der Wissenschaft.1 Some Key specifications of this Hardware can be found in
Table 5.1

CoolMUC-2

CPU Intel Xeon E5-2697 v3a

Number of nodes 812

Cores per node 28

Hyperthreads per core 2

Core nominal frequency 2.6 GHz

Memory (DDR4) per node 64 GB (Bandwidth 120 GB/s - STREAM)

Table 5.1.: CoolMUC-2 Hardware specifications

Since the Developed software does not use parallelization the simulations are run only on
one node of the cluster. The used compiler is clang version 10.0.0 using the O3 optimization
level.

5.2. Error Analysis

One of the important properties of a numerical integration application, like the one developed
for this thesis, is the achieved error convergence.

For this reason, the heyoka tool described in Section 3 is used to simulate one particle to
generate synthetic ground-truth data. Due to heyoka’s configurable maximum error, the
accuracy of this data can be ensured to be at the same level as machine precision (1e−23 for
this analysis). The error metric for this analysis is the relative error in the single components
of the velocity vector, averaged over all three components.

f =
1

3

(∣∣∣∣vheyoka,x − vxvheyoka,x

∣∣∣∣+

∣∣∣∣vheyoka,y − vyvheyoka,y

∣∣∣∣+

∣∣∣∣vheyoka,z − vzvheyoka,z

∣∣∣∣) (5.1)

Because the leapfrog method described in Section 4.3 is a numerical integration method
of order 2, the accumulated global error should be O(∆t2). To analyze the error f for
decreasing ∆t, a system with the same starting conditions is simulated multiple times. After
each simulation, the used ∆t is halved. The simulated particles orbit at an altitude of 500

1https://doku.lrz.de/display/PUBLIC/CoolMUC-2
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5. Results

Figure 5.1.: Relative velocity error average of x,y,z components

km above ground at a velocity of 7.61 km/s. In Figure 5.1 the accumulated global error f at
the end of these simulations is shown for decreasing ∆t. As expected the error decreases
with smaller ∆t, but after reaching its minimum of f ∼ 1e− 11 at ∆t ∼ 1e− 8 the error
starts to increase again.

To get a better understanding of the error over time, the development of the resulting
accumulated global errors over time, for 2−21 >= ∆t >= 2−27, are shown in Figure 5.2. As
can be seen in the figure a value of ∆t < 2−25 leads to oscillations in the error, exceeding
even the errors for greater ∆t. This behavior can be explained by rounding errors, due to the
use of floating-point numbers for representing the state of an object. Because a decreasing
time step size leads to decreasing magnitude of the updates to apply to the position and
velocity vectors, if the update steps become small enough relative to these vectors, the
rounding of the update result towards the nearest valid floating-point representation deletes
more significant bits of the integration step than for bigger time steps.

In practice, this behavior at small ∆t can be ignored, because when using an integration
time step of ∆t = 1e − 8 the time to run the simulation exceeds the time simulated by
magnitudes. The leapfrog method is used for the numerical integration in the developed
software, because it is a simple to implement second-order integration method, that only
requires one evaluation of the acceleration per time step. Unfortunately, this results in the
need to choose a small ∆t to minimize the global integration error. E.g. to achieve a relative
error smaller than 1e− 8, ∆t has to be smaller than 2−16 = 1.525878e− 5. Such small time
steps slow down the simulation. To address this issue another, higher-order, integration
method could be used.
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Figure 5.2.: Relative velocity error average of x,y,z components

5.3. Calculation Speed

To investigate the performance of the developed software in terms of calculation speed, the
number of particle updates per second is used. This data is created running simulations
with 1 to 219 = 524288 particles, by doubling the number of particles for each simulation.

Because only the number of particles is important all these particles have the same starting
condition, i.e. they are in an orbit at an altitude of 500 km above ground at a velocity of
7.61 km/s. After measuring the seconds tsim to run a simulation with n particles for 10000
time steps, the number of particle updates per second

#updates

second
=
n · 10000

tsim
(5.2)

can be calculated. For each particle count, an average of 10 such simulations is used. The
simulations are performed without file output.

Figure 5.3 shows the behavior of the updates per second with an increasing number of
simulated particles. As can be seen in the graph, for a small number of particles, the number
of updates per second is rapidly increasing. This initial behavior can be explained by the
particle independent calculations described in Section 4.2 done at the beginning of each
time step, that are performed, regardless of the number of particles. If these calculations
take x seconds, the fraction x

n seconds must be added to the time needed to calculate the
acceleration of the particle, to get the time spend updating one particle. Because this
overhead per particle decreases with increasing n, for large simulations, it can be neglected
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Figure 5.3.: Particle updates per second for different number of particles

and the update time per particle is the time needed to calculate its acceleration. For the
given graph this point is reached at a simulation size of 128 particles. At this simulation
size a plateau, around 1.9 million particle updates per second, is reached.

The update rate starts to decrease slightly if n gets greater than 100000 particles. Probably
this decrease at greater n can be explained by cache effects. If the number of particles
becomes high enough, the particles already updated during the current time step will be
removed from the cache, to load the new particle data. When the next time step is starting,
the particle data then has to be loaded from slower memory, resulting in a loss of update
speed per particle.
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Figure 5.4.: Time consumption of integrate function relative to the runSimulation func-
tion

5.4. Integration profiling

Based on the results of the last Section 5.3, the same simulations up to n = 1024 are profiled
using the version 5.4.44 of the perf2 tool. The results of these profiling runs are used to
analyze the computation time needed for different simulation steps.

5.4.1. Integration Time Compared to Main Simulation Loop

First, the time consumption of the integrate method of the Integrator class is compared
to the run time of the main simulation loop. The result is depicted in Figure 5.4. As
expected the time spent in the integrate method is almost the complete time spent inside
the simulation loop. The minimum of 98.35% for a single particle and the maximum of
99.9% for 32 to 256 particles differ only by 1.55% of the total run time.

5.4.2. Computation Time Distribution Inside integrate

Because of this result, analyzing the time consumption inside the integrate method is a
good way to find computationally intensive parts of the software overall.

The result of profiling the integrate method can be seen in Figure 5.5. For the integrate
method the distribution of the time consumption of the different methods called are roughly

2https://perf.wiki.kernel.org/index.php/MainP age
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Figure 5.5.: Time consumption of integration sub steps relative to the integrate function

the same for increasing n. The calculation of the particles’ accelerations starts at 90%
for n = 1 and slightly decreases with higher n till it stabilizes around 83%. This higher
time consumption for smaller n can be explained with the same, particle independent
calculations, that explains the lower update rate at small n discussed in Section 5.3. The
time consumption of the rest of the called methods inside integrate, increases slightly with
higher n, but none of them disproportionately compared to each other.

Inside the integrate method, there are two main types of actions, that use up 99.8%
of the computation time spent inside the integrate method. The first one and by far the
more time-consuming action is the calculation of the accelerations of the particles. With
an increasing number of particles the applyComponetns method needs around 83% of the
consumed time. The other type of action is the update of the particles’ state. Adding up the
times needed to write the acceleration of the last time step from the acc t1 to the acc t0

variable, updating the position and the velocity of the Debris objects, results in a time
consumption of 2.8% + 7.1% + 6.9% = 16.8% for large n.
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5.4.3. Computation Time Distribution Inside applyComponents

Figure 5.6.: Time consumption of acceleration calculation sub steps relative to the
applyComponents function. The point ”other” mainly combines different kinds
of data access

The last method to investigate with respect to the consumption of computation time is the
applyComponents method of the AccelerationAccumulator class. The profiling result of
this method is shown in Figure 5.6

As can be seen in the graph, the distribution of computation time consumption inside
the applyComponents method changes significantly with increasing particle number n. For
small n the computation time spent inside the setUp functions of the LunComponent and
the SolComponent dominate the run time of the whole method. For a single particle, the
two functions consume 45.8% + 11.6% = 57.4% of the complete computation time. This
is caused by the complex calculations to determine the Sun’s and the Moon’s position
described in Section 2.2.2. However, as described above, for an increasing number of
particles the calculations of the particle’s accelerations start to dominate the required
computation time. This leads to a decreasing portion of the complete computation time
inside the applyComponents method. The SolComponent.setUp functions portion vanishes
at n = 32 and LunComponent.setUp at n = 128, i.e. they need less than 1% of the complete
computation time.

The apply functions of the seven AccelerationComponents start with portions of the
spent computation time in a range between 2.8% for the KepComponent and 6.1% for the
C22S22Component for a single simulated particle. The sum of all apply functions results in
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a total portion of 29.1% of the complete computation time. For n = 1024 these values span
from 7.1% for the KepComponent, 16.1% for the C22S22Component and a total of 74.0% for
all AccelerationComponents.

In contrast to Figures 5.4 and 5.5, a great portion of computation time is spent to access
data. The different types of data access during the applyComponents method are responsible
for almost the complete portion of computation time labeled ”other” in Figure 5.6. For
an increasing number of particles this fraction makes up between 13.6% for n = 1 and
around 26% for n > 128. The fact that data access is responsible for such a great amount of
computation time, makes it a promising starting point to optimize the used data structures
for faster data access. This approach would also reduce the time needed to access the particle
data during updating their state inside the integrate method analyzed in the last section.

5.5. Acceleration Component Influences

Figure 5.7.: Contributions of perturbation accelerations for different orbit altitudes

After analyzing the computation time needed to calculate the acceleration of a particle,
due to the different AccelerationComponents, this section analyzes the influence of these
components compared to each other depending on the orbit altitude of the particle.

Because the different AccelerationComponents can depend on the current time t the
data used is averaged over different points in time. For 365 days, starting at t = 0, the
accelerations for orbit altitudes between 100 km and 377600 km are calculated. For each of
the orbit altitudes, 24 particles are taken into account. The velocity used for the particles is
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the orbital velocity vorbit determined using the equation3

vorbit =

√
398600.5

R⊕ + altitude
(5.3)

.
These particles cover both protected regions depicted in Figure 1.2
Because the acceleration caused by the DragComponent quickly vanishes with the orbit

altitude, additional data for orbit altitudes between 10 km and 1100 km is used to analyze
the DragComponent separately.

Figure 5.8.: Contribution of KepComponent acceleration for different orbit altitudes

At first the relation between akep and the sum of all perturbing accelerations used
in the simulation is analyzed. The contribution of the KepComponent depending on the
orbit altitude is shown in Figure 5.8. As expected at low orbits the contribution of the
KepComponent is the smallest of all altitudes, i.e. 99.74% of the complete acceleration is
caused by the KepComponent and 0.26% are caused by all perturbations. With increasing
orbit altitude perturbations caused by the proximity to the Earth, i.e. atmospheric drag
and spherical harmonics, contribute less (Figures 5.10, 5.9a, 5.9b and 5.9c). At an orbit
altitude of around 17000 km, the maximum contribution of the KepComponent is reached.
Above 17000 km the gravitational influence due to third bodies, i.e. the Sun and the Moon,
as well as the contribution of the solar radiation pressure, become more dominant and the
contribution of the KepComponent decreases again (Figures 5.9d, 5.9e and 5.9f).

3https://keisan.casio.com/exec/system/1224665242
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(a) J2Component (b) C22Component

(c) S22Component (d) LunComponent

(e) SolComponent (f) SRPComponent

Figure 5.9.: Contributions of perturbation accelerations for different orbit altitudes
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In Figure 5.9 the contributions of the AccelerationComponents except the DragComponent
to the sum of all perturbations depending on the orbit altitude are displayed for the single
components. Figure 5.7 combines the single-component graphs to get a better impression
of the relation between the AccelerationComponents. After the DragComponent vanishes
around 150 km altitude compared to the other perturbations (Figure 5.10) above this
altitude the J2Component dominates the perturbations, i.e. its contribution is 98.4% of all
perturbations at an altitude of a few hundred km. As described above with increasing orbit
altitude the spherical harmonics contribute less and less, until around 17000 km altitude
the solar radiation pressure starts to dominate the perturbations, i.e. its contribution to all
perturbations is greater than 50% above this altitude.

Figure 5.10.: Contribution of DragComponent acceleration for different orbit altitudes

In the end, the DragComponent’s behavior is discussed separately. Because the used model
of the atmosphere described in Section 2.2.5 results in the rapidly decreasing contribution of
the DragComponent to all perturbations, the acceleration can be neglected above an orbit
altitude of a few hundred km. This behavior is illustrated in Figure 5.10.

If the needed computation time for the DragComponent.apply function analyzed in Section
5.4.3 results in an acceleration that can be neglected, a speedup of over 10% could be achieved,
for higher altitudes, by introducing an orbit above which the call to DragComponent.apply

is skipped.
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6. Conclusion

As result of this thesis, the developed software can simulate hundreds of thousands of particles,
without slowing down the simulation, due to the large number of particles, achieving an
update rate of around 2 million particle updates per second. But the number of updates
alone doesn’t say much about the performance of the software, because if the used integration
time step is small, the total simulated time is smaller too. At this point the order of the used
integration method must be considered, because a higher-order method allows for bigger
time steps. The error of the simulations achieves convergence for reasonable integration
time steps. But because the used integration method is only second-order, this convergence
is rather slow.

Building upon the software solution developed for this thesis, multiple approaches could
be followed, to further improve the performance of the software.

Optimizing the used data structures to allow faster data access while iterating over all
particles, could enhance simulation speed. One approach could be the use of a structure
of arrays in contrast to the used array of structures. This approach could achieve better
performance while looping over the particles to simulate, because for most calculations done
during the simulation only one property of the particles is needed. Using a structure of
arrays to represent the particles could lead to faster memory access because with the first
particle loaded of each cache line the needed values for the next particles would be cached
and loaded faster in the future.

Incorporating another numerical integration method, that has higher order than the used
leapfrog method, could result in a better error behavior of the software. This would allow
increasing the time steps used for integration, to speed up simulations, without increasing
the integration error of the result.

The developed software solution does not take advantage of possible parallelization.
Because the calculations performed per particle are completely independent, parallelization
is probably the best place to start to achieve higher simulation speed. As long as the
particles do not interact, this approach would result in a simply scalable software solution
for simulating large numbers of particles. If the trajectory calculations of the particles are
embedded into bigger software solutions, that needs the simulated particles to interact, i.e.
collisions must be handled, parallelization can become harder to exploit, but still worth the
efforts.
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A. Constants

Constants

Symbol Value Unit

GM⊕ 3.986004407799724× 105 km3/s2

GM� 1.32712440018× 1011 km3/s2

GMM 4.9028× 103 km3/s2

R⊕ 6378.1363 km

C20 −4.84165371736× 10−4

C22 2.43914352398× 10−6

S22 −1.40016683654× 10−6

θG 280.4606 ◦
νE 4.178074622024230× 10−3 ◦/s
ν� 1.1407410259335311× 10−5 ◦/s
νMa 1.512151961904581× 10−4 ◦/s
νMp 1.2893925235125941× 10−6 ◦/s
νMs 6.128913003523574× 10−7 ◦/s
a� 1.49619× 108 km

ϕ�,0 357.5256 ◦
Ω� + ω� 282.94 ◦
PSRP 4.56× 10−6 N/m2

p0 1.3 kg/m3

H 8.5 km

ω⊕ 7.292115× 10−5 rad/s

Table A.1.: Constants
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