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Abstract

As the population of satellites in a geocentric orbit is constantly increasing, it has
reached a point where random collisions are no longer unlikely but more and more probable.
Thus, the agencies of space-faring nations are interested in predicting the outcome of such
fragmentation events in their long-term orbit models. In this context, one often recited
model is the empirical NASA Breakup Model of EVOLVE 4.0, which can predict collision
and explosion fragmentation events. It is crucial to model each fragment’s features like
characteristic Length, area-to-mass ratio, and ejection velocity from the place of occurrence
to fully understand the breakup and its consequences.
Despite its significance, the model has not yet been implemented in an open-source,

documented, and reliable project. Hence, this work aims to change this circumstance by
providing an implementation1 in C++ 17 that consolidates the characteristics mentioned
above. Beyond that, the implementation stands out for some other vital attributes like
efficiency, performance, and delivering an extensive toolbox whose components can stand
alone. For instance, this toolbox contains the option of reading the TLE format, containing
orbital elements, or in reverse producing orbital elements by conversion from cartesian state
vectors.

The implementation has undergone multiple tests in order to be successfully verified.
Its results were compared to the original NASA references and public available partial
implementations of the NASA Breakup Model.
The resulting implementation is performant by extensively using parallelization and a

cache-optimized data layout. For example, a testing system simulated breakups with millions
of random fragments being generated in less than a second.

1https://github.com/schuhmaj/nasa-breakup-model-cpp last accessed: 01.09.2021
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Zusammenfassung

Der Bestand an Satelliten in einem geozentrischen Orbit wächst beständig, so dass
mittlerweile ein Punkt erreicht wurde, an welchem Kollisionen von Objekten nicht mehr
unwahrscheinlich, sondern im Bereich des Möglichen liegen. Die Vorhersage der Fragmen-
tierung spielt dabei eine entscheidende Rolle in Langzeitmodellen der Raumfahrtagenturen.
Ein damit assoziiertes empirisches und häufig verwendetes Modell ist das NASA Breakup
Model of EVOVLE 4.0, welches nicht nur Kollisionen, sondern auch Explosionen modelliert.
Entscheidend für die Umsetzung ist dabei die Bestimmung der Fragment Eigenschaften, wie
charakteristische Länge, Fläche zu Masse Verhältnis oder die Geschwindigkeit, um letztlich
die Konsequenzen der Fragmentierung vollständig zu verstehen.
Trotz seiner Bedeutung ist das Modell bis heute von niemandem vollständig implemen-

tiert worden in einem zuverlässigen, dokumentierten, open-source Projekt. Diese Arbeit
ändert diesen Umstand und präsentiert eine Implementierung2 in C++ 17, welche die
obigen Eigenschaften auf sich vereinigt und darüber hinaus auch noch eine Reihe weit-
erer Schlüsselmerkmale wie Effizienz, Performance und ein umfangreiches Werkzeugset mit
sich bringt, das auch individuell in seinen Subkomponenten tragfähig ist. Dazu gehören
beispielsweise TLE Format Input oder Kepler Element Output.
Zudem wurde die Implementierung umfangreichen Tests unterzogen und erfolgreich ver-

ifiziert auf ihre Gültigkeit mit den originalen NASA Referenzen und gegengeglichen mit
anderen verfügbaren partiellen Implementierungen.
Im Großen und Ganzen konnten im finalen Resultat durch Einsatz von Parallelisierung

und Cacheoptimierung auf einem Testsystem Laufzeiten von unter einer Sekunde, selbst für
Millionen von zu erzeugenden Zufallsfragmenten, erreicht werden.

2https://github.com/schuhmaj/nasa-breakup-model-cpp last accessed: 01.09.2021
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Introduction and Background
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1. Introduction

Some ”BEEP, BEEP, ...” ushered in a new era in humankind’s history in 1957 - the beginning
of the space age with Sputnik I. Since then, significant achievements have been accomplished,
deepening our knowledge about the stars and even the composition of our own planet.
However, as it always has been in human history, people leave something behind wherever
they go. This circumstance manifests in Earth’s orbit in the form of space debris, including
dysfunctional satellites or old burned-out rocket bodies. For instance, the oldest object,
Vanguard-1, launched in 1958, is still in orbit today, with its reentry date estimated for the
next century. Figure 1.1 illustrates the trend of the growing object population in Earth’s
orbit. Notably, there were two jumps in the diagram for payload debris from 2007-2008 and
2009-2010. These jumps are conditioned by a Chinese anti-satellite weapon test and the
collision of Iridium-33 and Cosmos-2251. Both incidents serve as case studies and shall be
examined later in this paper.

Figure 1.1.: Chart showing the number of objects in a geocentric orbit; from [aE]

Besides this dilemma of human-created objects in orbit, the problem has started to develop
its own dynamics since the number of objects has reached a critical point [Lio11] where
collisions will ongoingly occur, consequently increasing the fragment count as the ”most
dominating debris-generating mechanism” [LJ06]. Therefore, literature also calls the debris
population to be above ”the point of critical density” [KOK01], which marks the moment
when random collisions balance the number of decaying objects.

Another more prominent term, which the reader might be familiar with because the press
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often works with it, is the expression ”Kessler Syndrome” [KJLM10], which originates from
Donald J. Kessler. He already proposed the scenario of cascading collisions generating debris,
making future space flight more complicated, in 1978.

A problem in this context is the missing regulation of space with different actors, coming
from military, university, or commercial origin, working only in their self-interest, although
space is a significant part of our globalized economy [Sch20].

(a) Development of debris population without mit-
igation as predicted by LEGEND for LEO
(low-earth-orbit), MEO (medium-earth-orbit)
and GEO (geosynchronous-equatorial-orbit);
each curve is the average of 100 Monte-Carlo
runs

(b) Projection of population growth in LEO based
on a no-future-launch scenario; Solid curves
are based on historical data until 2006; Dashed
curves are based on historical data until 2009

Figure 1.2.: Different scenarios of object population growth; from [Lio11]

Figure 1.2a portrays this situation when no measures are undertaken to prevent random
collisions like through evasive maneuvers or sustainably designed rockets [Joh10], and
satellites are not disposed of by deorbiting or moving them to a grave-yard orbit. In contrast,
Figure 1.2b depicts impressively the Kessler Syndrom of collisions being the dominant debris
source, as this scenario implies no further launches. In conclusion, Figure 1.2 summarizes
the two extreme scenarios of total apathy and total restriction.

It would be impossible to produce those scenarios and predictions without reliable breakup
models describing the fragmentation process of, for instance, a collision. If one searches across
literature, one often finds the NASA Breakup Model of EVOLVE 4.0 as a central reference
source in this domain. Despite that, there are rarely publicly available implementations
able to produce every scenario. Further, they are written by scientists without a computer
science background and only rarely documented. This work closes this existing gap by
creating an extensive open-source implementation of the NASA Breakup Model in modern
C++.1 Moreover, the quality of the implementation is the focus of this work and not only
an accessory. This thesis will guide the reader from the theoretical background to the
implementation, and it completes with an evaluation containing verification, results, and
time measurements.

1https://github.com/schuhmaj/nasa-breakup-model-cpp last accessed: 01.09.2021
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2. Theoretical Background

This chapter aims to give the reader a qualified understanding of the Breakup Model’s
characteristics, constraints, and history. In the beginning, we will thereby examine the basic
concepts of the NASA Breakup Model of EVOLVE 4.0, going over its history, structure,
and its features. Afterward, the sections will introduce the Keplerian Elements and their
exemplary utilization in the TLE format before finally completing the topic with a quick
summary.

2.1. General Idea of the NASA Breakup Model

In the first place, the NASA Breakup Model of EVOLVE 4.0 describes disintegrations of
satellites in orbit, which could either be a collision of two spacecraft or an explosion of one
rocket body. Thus the model gets one or two satellites as input and outputs the resulting
debris. The model is empirical in its nature and based on the results of well-prepared
experiments like on-orbit or terrestrial hypervelocity tests and observed breakup events
in orbit. The Nimbus 6 R/B explosion or the Solwind/ P-78 ”collision” with an anti-
satellite-missile are two of multiple data sources for the NASA Breakup Model of Evolve 4.0
[LJKAM02]. One series of experiments to emphasize is the ground-based Satellite Orbital
Debris Characterization Impact Test (SOCIT ), which is still of interest these days as a
reference [ACH+17] and had a significant impact on the NASA Breakup Model of EVOLVE
4.0. As the name might suggest, this is not the first model describing how orbit breakups
occur. The predecessor was the Breakup Model of Evolve 3.0, which was retired because new
data led to the realization that the former model was imprecise in certain situations, like e.
g. the estimation of debris smaller than 10 cm for explosions. The main difference between
those two generations is the choice of the independent parameter. Whereas the predecessor
chooses mass as the independent variable, the new model chooses the characteristic Length,
the satellite’s diameter, as the preferred variable for function input. The motive behind
this decision is the circumstance that the characteristic Length ”is more directly linked to
both the on-orbit and terrestrial breakup data” [JKLAM01]. This phrase references the
radar observations with which it is possible to derive the characteristic Length from the
radar cross section (RCS). If we assume that the body is a sphere, the characteristic Length
(diameter) Lc can then be calculated from the radar cross section, which is considered to be
a two-dimensional circular area by the following Equation 2.1:

Lc = 2 ·
√

RCS

π
(2.1)

Another possible approach of calculating the characteristic Length Lc consists of forming
the average over the three maximum orthogonal projected dimensions, which is presented
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2.2. Explosion and Collision Archetype

below in Equation 2.2 [MPFC+15]:

Lc =
1

3
· (X + Y + Z) (2.2)

Although Lc is the independent variable, sometimes it is desirable to use the mass as input.
This fact can be especially helpful for breakup events where the mass of the bodies involved
is well-known. Two equations are required, once more assuming spherical objects:

ρ(Lc) =

{
ρAl = 2698.9 if Lc < 0.01m

92.937 · L−0.74
c otherwise

(2.3)

M(Lc) =
4

3
π ·

(Lc

2

)3
· ρ(Lc) (2.4)

where ρ in
[ kg
m3

]
, Lc in [m],M in [kg], ρAl = density of aluminum

Equation 2.3 [JKLAM01] calculates the density ρ based on an empirical approach, whereas
Equation 2.4 combines the former strategy with the sphere volume to determine the mass
M . In order to achieve the previously mentioned objective, Equation 2.4 has only to be
resolved for Lc.

The beforehand addressed aspects primarily focus on the recent additions in EVOLVE 4.0
and conversions between the mass and characteristic Length, but not on those output-related
features. Hence, a practical model must produce a valid fragmentation for a presented
breakup event with specific initial conditions and determine each fragment’s size, area-to-
mass ratio (which also implies mass and area), and ejection velocity. Besides, the model
cannot be deterministic and always produces identical debris distributions as the same
satellite breakup would lead to different results in reality. [JKLAM01]

Of course, the runtime is also an area of concern when creating a Breakup Model. Thus, the
model cannot be infinitesimally complex and has to adapt to the computational capabilities
of the time, for example, presented in [VO17] for the evolution of debris fragments or in
terms of the sheer generated number of debris [PCDL18].

2.2. Explosion and Collision Archetype

As Section 2.1 already mentioned, the NASA Breakup Model consists of two categories:
An explosion type with one participating object and a collision type with two partaking
satellites where the smaller one, mass-wise, is the projectile, and the remaining one the target.
On the one hand, tank explosions, residual propellant-related explosions, or ”deliberately
[with explosive charges] destroyed” [JKLAM01] spacecraft do use the first archetype for the
description of their fragmentation. On the other hand, the collision variant is used when
two spacecraft crash into each other. Here one must distinguish two types of collisions. A
catastrophic collision happens if both target and projectile are entirely fragmented. The
model assumes that this event occurs when the kinetic energy of the smaller object divided
by the mass of the larger vessel is greater than 40 J/g (see Equation 2.5). In the opposite
state, a non-catastrophic collision means that only the projectile is thoroughly fragmented,
and the target is littered with impacts.

Catastrophic if 40 J/g <
mprojectile · v2impact

2 ·mtarget
(2.5)

5



2. Theoretical Background

2.3. Breakup Fragment Properties

2.3.1. Size Distribution

A breakup model has to provide the absolute quantity of fragments and values for multiple
traits of the resulting pieces. So the NASA Breakup Model does both tasks by assigning
each breakup-event type a power-law distribution, approximating the amount of debris and
its presumable size (= characteristic Length) for each of the fragments. Before the size
distributions are presented, it is necessary to know that the power-law ”for NASA’s breakup
model was validated for a size range between 1 mm and 1 m via observational” [BLR+17]
and experimental data.

Explosion Case

A simple power-law, shown in Equation 2.6, has been developed based on experiments and
observations for the explosion case, ”taking [...] natural variations due to structure and
energy” [JKLAM01] into account. Usually, the scaling factor S of the power-law distribution
equals one for a regular rocket body with 600 - 1000 kg masses. However, sometimes a
scaling is required. The value S adopts thereby multiple different values, for example, ”0.1
for a Soviet/Russian Proton ullage motor; 0.1 for a Molniya orbit Soviet Early Warning
satellite; 0.25 for an Ukrainian Tsyklon third stage; 0.3 for a Soviet Anti-Satellite (ASAT);
0.5 for a Soviet battery-related explosion; 0.6 for a Soviet Electronic Ocean Reconnaissance
Satellite (EORSAT); and 2 for a Titan Transtage.” [LJKAM02] Accordingly to these results,
the equation presented below describes the number of fragments for a given size Lc or larger
in meters:

N(Lc) = S · 6 · L−1.6
c (2.6)

with S as type-dependent, unitless number (normally S = 1)

Collision Case

Collisions are, as stated above, categorized into two classes: catastrophic and non-catastrophic.
Nevertheless, the associated power-law equation is kept relatively simple, and the cases only
differ in one characteristic: the calculation of M . Equation 2.7 shows this correlation, which
depicts the number of fragments equal to or larger than a given size Lc in a similar fashion
as in an explosion. Here, m1 and m2 are respectively the target’s mass and the projectile’s
mass in [kg]. As previously mentioned, m1 is the bigger of the two masses. [JKLAM01]

N(Lc) = 0.1 ·M0.75 · L−1.71
c (2.7)

with M =

{
m1 +m2 if catastrophic

m2 · ∥vimpact∥2 otherwise

vimpact = v1 − v2 in [km/s]

6



2.3. Breakup Fragment Properties

2.3.2. Area-to-Mass Distribution

Generation of Area-to-Mass values

Aside from the characteristic Length, the area-to-mass ratio is the second parameter generated
by the NASA Breakup Model. Therefore, the simulation has to draw values from Equation 2.8
or Equation 2.11, which both rely on the normal distribution. Further, the A/M distribution
does not distinguish between the two types, explosion and collision, but rather depends
on the previously computed characteristic Lengths of the debris, which should already be
defined for continuation. [JKLAM01]

DA/M (λc, χ) = α(λc) ·N(µ1(λc), σ1(λc), χ) + (1− α(λc)) ·N(µ2(λc), σ2(λc), χ) (2.8)

where λc = log10(Lc)

χ = log10(A/M) is the variable in the distribution

N = the normal distribution function: N(µ, σ, χ) =
1

σ
√
2π
· exp

(
− (χ− µ)2

2σ2

)

Equation 2.8 determines the area-to-mass ratio for particles larger than 11 cm. The corre-
sponding parameters are then chosen depending on the given context and the characteristic
Length. Debris originating from a spacecraft uses the parameters presented in 2.10; those of
rocket bodies utilize the parameters of 2.9.

Parameter for the A/M Distribution for rocket body fragments (R/B) and greater than
11 cm:

αR/B =


1

1− 0.3571(λc + 1.4)

0.5

λc ≤ −1.4
1.4 < λc < 0

λc ≥ 0

µ
R/B
1 =


−0.45
−0.45− 0.9(λc + 0.5)

−0.9

λc ≤ −0.5
−0.5 < λc < 0

λc ≥ 0

σ
R/B
1 = 0.55

µ
R/B
2 = −0.9

σ
R/B
2 =


0.28

0.28− 0.1636(λc + 1)

0.1

λc ≤ −1.0
−1.0 < λc < 0.1

λc ≥ 0.1

(2.9)

7



2. Theoretical Background

Parameter for the A/M distribution for spacecraft fragments (S/C) greater than 11 cm:

αS/C =


0

0.3 + 0.4(λc + 1.2)

1

λc ≤ −1.95
−1.95 < λc < 0.55

λc ≥ 0.55

µ
S/C
1 =


−0.6
−0.6− 0.318(λc + 1.1)

−0.95

λc ≤ −1.1
−1.1 < λc < 0

λc ≥ 0

σ
S/C
1 =


0.1

0.1 + 0.2(λc + 1.3)

0.3

λc ≤ −1.3
−1.3 < λc < −0.3

λc ≥ −0.3

µ
S/C
2 =


−1.2
−1.2− 1.333(λc + 0.7)

−2.0

λc ≤ −0.7
−0.7 < λc < −0.1

λc ≥ −0.1

σ
S/C
2 =


0.5

0.5− (λc + 0.5)

0.3

λc ≤ −0.5
−0.5 < λc < −0.3

λc ≥ −0.3

(2.10)

The second displayed Equation 2.11 calculates the A/M values for debris smaller than 8
cm. Unlike the former Equation 2.8, it does not distinguish between the particles’ origin,
and therefore, it has an unique parameter set (2.12). The here used abbreviation SOC is
founded on the previously in Section 2.1 mentioned experimental series SOCIT.

DSOC
A/M (λc, χ) = N(µSOC(λc), σ

SOC(λc), χ) (2.11)

Parameter for the A/M distribution for fragments smaller than 8 cm:

µSOC =


−0.3 λc ≤ −1.75
−0.3− 1.4(λc + 1.75) −1.75 < λc < −1.25
−1.0 λc ≥ −1.25

σSOC =

{
0.2 λc ≤ −3.5
0.2 + 0.1333(λc + 3.5) λc > −3.5

(2.12)

The reader might ask what happens to fragments between 8 cm and 11 cm in length
because, until now, no equation was delivered. In order to solve the issue, a bridge function
is used between those two lengths [JKLAM01]. As will be shown in Section 4.4, the
implementation uses a linear approach to close the gap between these points sleekly. This
aforementioned approach fits the strategy presented in [BJR+98], which combines both
functions, too.

Application of A/M values

The A/M values give more insights about the debris than apparent in the first moment. To
start with the fundamentals, it is now possible to calculate mass M and the cross-sectional

8



2.3. Breakup Fragment Properties

area Ax of every particle. Using Equation 2.13, one can determine the area with the help of
the characteristic Length. Furthermore, by applying the relation presented in Equation 2.14,
one can derive the mass.

Ax =

{
0.540424 · L2

c where Lc < 0.00167 m

0.556945 · L2.0047077
c where Lc ≥ 0.00167 m

(2.13)

M =
Ax

A/M
(2.14)

Nevertheless, Equation 2.14 is not applicable in every situation. This fact holds for A/M

values greater than 1m2

kg because then ”the effects of solar radiation pressure cannot be
ignored” [JKLAM01]. In combination with the fact that ”[o]bjects with an [A/M] close to

or above 1m2

kg are extremely lightweight” [LS09], the received force conducts to a movement
change. Thus, we can use this fact for orbital lifetime calculation [JKLAM01]. Here lies
already a second purpose of the A/M value: It allows estimating the material of a debris
part. Large values indicate a lightweight material like multi-layer insulation, whereas smaller
A/M values indicate composite values and even smaller values heavy-metal debris [LS09].
Moreover, it is possible to use the A/M values to calculate the ballistic coefficient, although
the exact shape of the fragment may be unclear, which makes the determination of the
coefficient of drag Cd difficult [BJR+98].

Mass conservation

One thing still to consider as part of the A/M value study is the problem of mass conservation.
In general, the NASA Breakup Model is not mass conserving if exactly as many particles are
generated as calculated with the size distribution. Depending on the stochastic process of
drawing values from Equation 2.8 or Equation 2.11, one gets either too much or not enough
mass. Nevertheless, it is possible to neglect the issue by re-generating more fragments if one
has too little mass or, on the opposite, throw some generated particles away by introducing
a threshold [BJR+98] [CIO+21].

It always makes sense to apply the latter because it is not reasonable nor physically correct
if one has mass produced out of none. In contrast to deleting a mass excess, the first ansatz
of fulfilling the mass budget is more controversial, mainly because of three arguments. First
of all, one can argue that Lc in the power-law distribution always is a lower bound, hence
missing mass is concentrated in particles smaller than this bound. Secondly, the fulfillment
of the mass budget is not always target-oriented. In cases of a non-catastrophic collision,
only the projectile is entirely fragmented, whereas the target is only cratered. So the relation
of input mass as sum of projectile and target equals output mass cannot be true since the
target is not fully converted to debris. Moreover, as the third point, the paper [JKLAM01]
states that the new model stands out for producing different results with altering fragment
counts for equally sized satellites ”unlike EVOLVE 3.0 [...] which [...] produced exactly the
same number of debris for” [JKLAM01] satellites’ explosions of the same size.

The here presented implementation solves this issue by making the mass budget as upper
bound an obligation whereas the replenishment is optional. This will be presented in
Section 4.4.
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2.3.3. Ejection Velocity Distribution

Finally, the third feature to be determined by the NASA Breakup Model is the ejection
velocity which allows for tracking and predicting whether the debris is going to burn
up or remain in orbit - respectively determining the Kepler Elements. Consequently, it
is modeled by the NASA Breakup Model with Equation 2.15. As presented below, the
equation differentiates between collisions and explosions concerning the utilized parameters
of 2.16. Furthermore, the normal distribution is once again the central part of the equation.
[JKLAM01]

D∆V (χ, v) = N(µ(χ), σ(χ), v) (2.15)

where χ = log10(A/M)

v = log10(∆V )

µ, σ = depending on case, see below (2.16)

µEXP = mean = 0.2χ+ 1.85 µCOLL = mean = 0.9χ+ 2.9
σEXP = standard deviation = 0.4 σCOLL = standard deviation = 0.4

(2.16)

One step is still missing before getting the Orbital Elements which are further illustrated
in Subsection 2.4.1. After drawing values from Equation 2.15, the ejection velocity vejection is
only a scalar which does not help in determining the Orbital Elements. To achieve this goal,
we have to transfer the scalar vejection into a cartesian vector v⃗ejection. This transformation
can be performed by using the following Equation 2.17, which uses the uniform distribution
[KBS+16]:

v⃗ejection =

vejection · cos(θ) ·
√
1− u2

vejection · sin(θ) ·
√
1− u2

vejection · u


where u ∈ U[−1;1] and θ ∈ U[0;2π]

(2.17)

Henceforth, it is now feasible to determine the Orbital Elements of the debris and start to
propagate their orbits, predicting and avoiding possible collisions with those fragments in
the future by summing up the parent’s velocity v⃗parent with the presently calculated ejection
velocity vector v⃗ejection to the total velocity v⃗total.

2.3.4. Assigning parent bodies

The attentive reader may have noticed that no way of identifying the parent satellite has been
given for the collision case until now, despite this being necessary to sum up ejection velocity
and base velocity. In fact, the original paper [JKLAM01] does not specify an inheritance
hierarchy in that case. This paper’s solution consists of two steps. First, fragments greater
than the small parent satellite cannot originate from it and thus must origin from the bigger
satellite. Secondly, the remaining assignment is executed randomly but with respect to the
parent satellites’ masses which means we norm the parent satellites’ masses to the actually
generated total output mass. More details on this ansatz will follow in Section 4.4. The
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subsequently in Subsection 3.4.3 presented implementation in Python follows here the same
approach [KBS+16].

2.4. Description of an Orbit

2.4.1. Kepler Elements

In order to describe the position of a satellite around a celestial body like the Earth
unambiguously, one requires six parameters plus the moment in time, also called epoch,
when these position parameters are valid. One way of propagating an orbit with a given
input is thereby utilizing the velocity vector v⃗ and the position vector r⃗. The previous
section shows that this is relatively easy to achieve because the Breakup Model already uses
three-dimensional cartesian velocity vectors for the calculation. If additionally the position
vector is given, one has every required parameter for an orbit. Nonetheless, without some
kind of reference frame, those two cartesian vectors are useless. For this purpose, we can
use one of two feasible Earth-centered reference frames. The first possibility is to utilize the
Earth-centered inertial reference frame where X (I) and Y (J) axis span the equatorial plane
and the Z (K) axis points upwards to the north pole. Figure 2.1 shows the aforementioned
equatorial coordinate system (ECI). One has to add that long-term observations typically
require a fixed reference frame. Since the ECI is not a fixed frame due to ”gravitational
perturbations of neighboring planets” [Wal18], one has to additionally define a reference
time, which is usually the standard Epoch (January 1, 2000, 12:00 h). In combination with
the epoch, coordinates are clear and precise, independent of the Earth’s characteristics.

Figure 2.1.: The IJK equatorial coordinate system (ECI); from [Wal18]

Another option is the so-called ”Earth-centered Earth-fixed (ECEF) reference system
where the coordinate system co-rotates with Earth and hence is fixed to the Earth’s surface”
[Wal18]. It is standardized in the International Terrestrial Reference Frame (ITRF). Both
systems have their advantages and disadvantages, but to summarize it quickly: The ECI is
more valuable to represent the state of celestial bodies and spacecraft around the Earth,
whereas the ECEF is beneficial in describing objects’ positions on the Earth’s ground.

Although this would be sufficient, it is desirable to have the Orbital Elements in their
more expressive Keplerian Form. This section does not explain the conversion, but instead,

11
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it focuses more on introducing the Keplerian elements and their meaning to the reader.

Figure 2.2.: The chart shows the semi-major axis a, the inclination i, the RAAN Ω, the
argument of periapsis ω and the true anomaly θ; from [Wal18]

Figure 2.2 shows the different orbital elements and how they affect the orbit of a satellite
around the Earth. Semi-major-axis a and eccentricity e are the two elements describing the
shape of an orbit and are therefore called metric elements. a is, as the name suggests, half
of the major-axis of an ellipsoid, whereas the eccentricity reflects how circular the orbit is
(2.18).

shape =


circular if e = 0

elliptic if 0 < e < 1

parabolic if e = 1

hyperbolic if e > 1

(2.18)

The following three elements characterize the orbit’s orientation around a celestial body;
hence, they are called angular elements. The inclination i is the angle ”between the angular
momentum vector h and the z-direction of the reference frame” [Wal18] or the angle between
the reference plane, commonly the equatorial plane, and the orbital trajectory plane. In
contrast to the inclination, the right ascension of ascending node (RAAN) Ω describes the
”angle between the line from the origin O of the reference frame to the vernal point and from
O to the ascending node” [Wal18]. The vernal point is located where the sun would be seen
from the Earth at the beginning of spring. For further reading, it is sufficient to know that
this point is clearly defined. The last of the three elements is the argument of periapsis ω,
which is the angle ”in the orbital plane between the line of nodes and the periapsis measured
in the direction of the motion” [Wal18].

Those five elements clearly define an orbit. Nevertheless, one argument is still missing to
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tell where the satellite is located at a specific epoch. For this last element, there are multiple
equivalent possibilities. The simplest one is the true anomaly θ (shown in Figure 2.2) which
describes the angle between the satellite’s position and its periapsis in the direction of the
movement. Alternatively, one can use the mean anomaly M to describe the position (see
Equation 2.19, based on the mean motion in Equation 2.20):

M = n · (t− tp) (2.19)

where tp = point in time at periapsis

n =
2π

T

elliptic
=

√
µ

a3
T = Orbital Period, µ = gravitational parameter (2.20)

Lastly, the eccentric anomaly E fulfills the requirement of describing the position of a
satellite around a celestial body, too (see Equation 2.21):

M = E − e · sinE (2.21)

2.4.2. The Two Line Element Set

The utility of the Orbital Elements opens up in two applications. On the one hand, they are
far more expressive than simple coordinates, and a human can imagine the orbit without
further calculations. On the other hand, the Orbital Elements are widely used in space flight.
One example is the TLE format, short for Two Line Element Set, which is the standardized
format for orbit descriptions. It consists of two lines of 69 characters each, containing the
orbital state and some additional data like the International Designator or the satellite’s
classification. Thereby, it is realized as possible input in the implementation, as shown in
Section 4.3. For further details about the TLE format, it is advised to visit the following
site [st].

2.5. Summary of the Calculation Steps

In the prior section, The NASA Breakup Model of EVOLVE 4.0 has been thoroughly
examined, and some first decisions regarding the implementation have been addressed. The
following Figure 2.3 has the intention to summarize those lessons about the Breakup Model
and guide the reader to the next chapter. The simulation needs the minimal characteristic
Length Lc, the masses and velocities of our satellites required as input, whereby the last one
is optional in the explosion case. The resulting debris can then be associated with the event
location. Following that, one transforms the orbital states vectors to Keplerian Elements
and has the possibility to process the fragments further in e. g., an orbit propagator.
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Figure 2.3.: The whole chapter visualized as a process chart; adapted and expanded from
[Kli06]
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This chapter aims to give an extensive view of the different breakup models, their corre-
sponding purposes, and applications before finally presenting the implementations of the
NASA Breakup Model, which were used as a reference for this work.

3.1. Introduction to Breakup Model Classification

In general, this section differentiates between short-term and long-term models. The short-
term analysis focuses directly on the breakup event itself and its direct consequences ”in
the order of days” [LSWG01]. Typically, they consist of high precision ”models of the
fragmentation process, orbit propagators containing short period perturbative expressions,
and collision risk assessment tools that provide detailed information about the hazards
to on-orbit systems” [LSWG01]. On the other hand, long-term debris models analyze the
fragmentation event and its longer-term effects on the whole satellite population, including
future collisions and explosion risks. Therefore, these models also include ”orbit propagators
that incorporate long-term and secular perturbations” [LSWG01].
Another classification organizes breakup models into three categories: ”complex, semi-

analytic and empirical” [Bar96], with the first ones ”based on fundamental physical principles”
[Bar96]. In contrast, empirical models are derived from experiments and observed data and
partly follow the physical principles - like the NASA Breakup Model. Lastly, the category
in-between combines both approaches and portrays models ”developed from theoretical
expressions [combined with a calibration] through [...] experimental data” [Bar96].

3.2. Short-term Modeling

This section will first present an overview of the different existing breakup models and
their corresponding use cases before presenting recent improvements to the NASA Standard
Breakup Model.

3.2.1. Overview of Breakup Models in other areas of application

Chapter 2 introduced the NASA Standard Breakup Model as one of many different available
models that differ in their possible application scenarios. For example, the GRIM, Grazing
Impact Scattering Model, is a ”statistical model [...] to predict the resulting fragment
properties based on the projectile properties for very shallow impact angles on mirror
surfaces” [FBT+21]. The model is based on a test series of hypervelocity tests, comparable
to the SOCIT series of the NASA Breakup Model, with ”spherical particles rang[ing] between
4-50 km/s [and] masses between 10−19 kg to 10−14 kg”[FBT+21]. Thus, the model enables
future missions to evaluate the probability of instrument damage against optical sensors like
X-ray detectors that typically focus those micro-particles.
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Another paper, published in 2021, deals with the breakup of objects during reentry. They
therefore use, as a new approach, ”deep-learning to develop next-generation models for [...]
aerothermodynamic modeling” [SM21]. Modeling reentry is essential to ensure that neither
the original spacecraft nor its debris becomes a threat ”to civilians, buildings, or populated
areas on the ground” [SM21]. Furthermore, the topic has become more significant in the
last years as the growing satellite population in low-earth-orbit demands precisely planned
mission ends to mitigate its further pollution with debris.

Of course, the two models differ in their application scenarios and their calculation
expenditure and required input parameters. The GRIM, for example, requires the projectile
elevation angle for its workflow, whereas the here presented reentry model additionally needs
aerodynamic information. This section shall conclude that every model has its place and use.
Likewise, the NASA Breakup Model is only one of many available models and obviously not
always the best choice since the decision depends on the concrete context and the prioritized
parameters. Here, the NASA Breakup Model use case lies in the simulation of on-orbit
collision and explosion fragmentation events in the size span of 1 mm to 1 m, as mentioned
in Chapter 2.

3.2.2. Enhancements to the NASA Breakup Model in recent years

Tuning input parameters

The improvement of the NASA Breakup Model is an ongoing process. New breakups
happening are leading to new enhancement proposals for the model. One of them proposes
”an iterative approach to estimate the tuning parameters for the Standard Breakup Model, i.
e., the fragmented mass of the parent objects” [CIO+21] for collision. This method improves
the number of estimated fragments and therefore enhances the Breakup Model without
affecting ”the velocity distributions of the fragments” [CIO+21].

Improving physical correctness

Finally, FREMAT, the Fragmentation Event Model and Assessment Tool, is a 2017 developed
ESA project partly based on the ESA’s MASTER (see Section 3.3), which in turn is based on
the NASA Breakup Model. The tool consists of three components, with the first one being
the Fragmentation Event Generator (FREG) able of ”simulat[ing] fragmentation events
(explosions and collisions)” [AIG+17]. For completeness, the second one, Fragmentation
Events on Spatial density Tool (IFEST ), is a tool for long-term debris evolution, and the third
one, Simulation of On-Orbit Fragmentation Tool (SOFT ), fulfills its purpose in extracting
debris information like parent object identification from actual observed fragmentation
events.

FREG improves the NASA Breakup Model, especially in terms of its physical properties.
Mass conservation was already introduced in subsubsection 2.3.2 as a flaw of the NASA
Breakup Model. Furthermore, ”linear momentum and kinetic energy” [VO17] are not
conserved by the NASA Standard Breakup Model. FREG solves the mass conservation
principle by rejecting ”the most massive fragments until [it] conserve[d] or accumulate[d]
less than the initial total mass” [AIG+17]. If not enough mass was produced after this
step, FREG produces one massive additional fragment ”whose mass matches exactly the
difference between the total mass and the initial mass” [AIG+17]. In contrast, our presented
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C++ implementation either discards fragments randomly exceeding the budget or fills the
budget optionally by producing more fragments according to the original model’s power-law
distribution of Lc values.

FREG resolves the conservation of momentum by ”distributing the delta-velocities vectors
uniformly around the cent[er] of mass of each parent object” [AIG+17]. This approach can
be compared to our approach in Subsection 2.3.3, which also uses a uniform distribution
method. The C++ implementation does not sustain the last principle, conservation of
kinetic energy, whereas FREG satisfies this physical principle with an additional scaling
step of the previously calculated velocity vectors [AIG+17].

The above approaches show that the NASA Breakup Model is constantly improved in
some aspects. Even the later presented C++ implementation is not the ”pure” NASA
Breakup Model as released in the original paper 2001 [JKLAM01].

Major upcoming revisions

A direct experimental approach to totally revise the Breakup Model is the DebriSat exper-
iment, executed in 2014 [Kra02]. The necessity of an improvement results from the fact
that the current Breakup Model is based on the SOCIT series, which took place between
1991 and 1992 [ACH+17]. However, the satellite used for the test series ”characterized the
breakup of a 1960’s US Navy Transit satellite” [Kra02]. Thus, the new experiment involves
today’s satellites’ characteristics and collects the highest possible precision for ”fragments
equal or larger than 2mm” [ACH+17], ultimately creating the foundation for new, improved
models.

3.3. Long-term Debris Evolution

This section briefly introduces the embedding of fragmentation models into long-term
evolutionary models that simulate the orbital population over centuries and their results.

In general, the long-term models are mainly used to forecast the future debris distributions
in areas of interest like the LEO (low-earth-orbit) or the GEO (geostationary-earth-orbit)
region. A noteworthy work in this area is NASA’s LEGEND, the LEO-to-GEO Environmental
Debris model, capable of giving extensive predictions of Earth’s surrounding with debris.
Here, the NASA Breakup Model of EVOLVE 4.0 fulfills the role of generating fragments
when a collision occurs in the long-term context of LEGEND [LHKO04].

A long-term European model is ESA’s MASTER, which stands for Meteoroid And Space
Debris Terrestrial Environment Reference. Its latest revision is MASTER-8 from March
2019 following MASTER-2009 and ”re-calibrate[s] the Fengyun-1C and Cosmos-Iridium
events from the past [after their fragment amount has] converged to a stable value” [Bra19].
Similar to LEGEND, the MASTER model is based upon a modified NASA Breakup Model,
which details can be found in the given paper: [BLR+17]. Later, Section 9.2 sketches how
the C++ implementation could be further integrated into such a long-term model.
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3.4. Other Implementations of the Breakup Model

This section deals with available implementations of the NASA Breakup Model and their
corresponding purposes. Here, the word ”available” already marks one motivation behind
this work. Breakup models, as shown above, have various areas of application, and many
papers use them, yet there are only three open-source implementations available. In addition,
those implementations are not designed by software engineers nor substantially documented
coupled with incompleteness in terms of the NASA Breakup Model’s features. In the
following subsection, we will therefore analyze those three reference implementations in
detail and how they influenced the presented implementation in C++.

3.4.1. Implementation in C

A C implementation, which can be found on GitHub,1 and its corresponding paper is about
a proof of concept over the value of the Murchison Widefield Array (MWA) in terms of
debris clouds detection and observation. Hence the implementation creates fragments of
different sizes in order to then check their detectability against the MWA radio telescope.

With this in mind, their code can produce only the catastrophic collision case since they
lack an implementation for other scenarios. However, they claim that one can ”utili[z]e
[their] simulations to characteri[z]e explosions” [JT21]. In order to run the collision, their
implementation asks for two parameters: mass and minimal characteristic Length, which
is the minimum of parameters required for a catastrophic collision scenario. Although an
implementation for the breakup of rocket bodies exists, it is hardcoded to always use the
parameters for the spacecraft case.

Unfortunately, the project does not feature any documentation neither externally nor in the
source code, but apparently, they were ”not seeking to develop an accurate or comprehensive
simulation of any particular collision event” [JT21]; instead, they just aimed at generating
physically appropriate debris clouds.

Hence, our presented C++ implementation makes no use of this C implementation at all.

3.4.2. Implementation in FORTRAN

In contrast, the FORTRAN implementation, available on GitLab,2 only handles the explosion
case to study debris in the GEO (Geostationary Earth Orbit) region. The paper proposes
a ”way to create a synthetic population of space debris from simulated data [coming from
the implemented NASA Breakup Model], which are constrained by observational data”
[PCDL18] from the GEO region.

Their simulation gets the Keplerian Elements and the mass for an existing satellite as
input in order to calculate the explosion fragments. In addition, a second input file contains
the parameters like α, σ, µ used by the different distribution functions. The values of those
parameters can follow the in Subsection 2.3.2 and Subsection 2.3.3 presented parameters.
But it is also possible to use custom parameters linked to a ”historical fragmentation”
[PCDL18] event. As already mentioned above, the FORTRAN implementation only is able
to simulate explosions for both rocket bodies and spacecraft.

1https://github.com/steven-tingay/Orbital-Collisions last accessed: 03.09.2021
2https://gitlab.obspm.fr/apetit/nasa-breakup-model accessed: 03.09.2021
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The FORTRAN model contains documentation, and the code is organized well in terms
of tidiness and structure.

Overall, the FORTRAN code proved helpful in choosing the correct area-to-mass ratio
distribution function for a given fragment because it implements all three cases: smaller than
0.08 m, bigger than 0.11 m, and in-between. The two first-mentioned cases are well described
in the original paper, so the bridge function was the focus of interest. Here the FORTRAN
implementation chooses either the small or the big function depending on a comparison
between a randomly drawn number r and a transformed fragment’s characteristic Length
Lb using Equation 3.1:

Lb = 10 · (log10(Lc) + 1.05) (3.1)

If r > Lb applies, their implementation uses the big A/M distribution for fragments
greater than 11 cm; otherwise, the smaller one is used. The exact reason for this decision
remains unclear since no documentation is given, but we found Equation 3.1 in a second
independent paper describing a collision analysis tool called LUCA2 [RMSS17]. There,
Equation 3.1 is applied for payloads, but no random number is drawn. Instead, Lc > Lb is
used for determining the correct equation.

Our implementation will use neither of those two approaches but instead linear interpola-
tion as presented in Chapter 4.

3.4.3. Implementation in Python

The last one of the three presented implementations is in Python and is available on GitHub.3

It has been developed within an ESA Ariadna study project and is used to study active
debris removal with a game-theoretic approach. Hence, the implementation consists of two
modules: the NASA Breakup Model and the game-theoretic approach. The latter handles
active debris removal as ”a non-cooperative game between self-interested agents” [KBS+16],
representing the space-fairing nations. Those actors can either take costly actions to remove
debris threatening orbital assets or wait until another player makes an action.

Hence, the implementation has been split into two parts: The Breakup Model consisting
only of the collision component as the basis and the pykep library4 as orbit propagator.
Since those two parts need to be combined, they use the Cube approach to calculate collision
probabilities [LKMS03]. The game theoretical analysis takes place on top of the earlier
described model with different player nations executing debris removal operations alike,
removing the satellite with the highest threat potential.

As mentioned, the Python implementation only models both collision types and only uses
the A/M parameter set of 2.10, which refers to spacecraft fragments with Lc greater than
11 cm. Hence, smaller debris uses this function, too. This procedure is acceptable for the
range of 8 cm - 11 cm, as one could define a bridge function, which always uses Equation 2.8
for this range. However, it definitely does not follow the empirical observations, which led
to Equation 2.11, which portrays fragments smaller than 8 cm based on the SOCIT series.
As we will see in Section 6.2, the small size distribution of Equation 2.11 leads to mainly
bigger A/M values indicating, as described in Subsection 2.3.2, more lightweight material.

3https://github.com/richardklima/Space_debris_removal_model last accessed: 04.09.2021
4https://esa.github.io/pykep/ last accessed: 04.09.2021
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As a consequence of the neglected function, these particles are missing when comparing the
results of the Python implementation to this work’s results. One thing to add, it always
uses as minimal characteristic Length Lc = 5 cm.

The Python implementation is only sparsely documented. However, the functional division
of components is well-formed.

As input, the Python simulation needs the current TLE data5 plus the NORAD Satellite
catalog6 [KBS+16] in order to be executed. Here, it has greatly influenced our C++
implementation as it accepts the TLE format and the NORAD satellite catalog, too.
Furthermore, the overall concepts of execution order, how mass conservation is applied,
and the transformation of a scalar ejection velocity to a vector come from the Python
implementation and are reused in this C++ work. Notably, the Python implementation had
the most significant impacts on our product.

3.4.4. Conclusion

The motivation of this work results from the incompleteness and lack of clarity of the above
presented open-source implementations. Another point to consider is that none of these
implementations come with proper tests that verify their functionality and correctness.

For example, the Python implementation has been intensively investigated since it has been
the primary reference. While implementing our C++ version, we found two functional bugs
inside the Python code. In the first case, the implemented area-to-mass ratio functionality
used σ1 for the second normal distribution instead of σ2.

7 Secondly, the non-catastrophic
collision case lacked a division by 1000. As Equation 2.7 shows, the factor M is in the
non-catastrophic case the product of the projectile’s mass mprojectile in [kg] and the impact
velocity vimpact in [km/s]. Nonetheless, the developers used vimpact in [m/s].8 Hence, the

results, in this case, had an error of order O(103·0.75) = O(10
9
4 ).

Furthermore, none of the above implementations can handle every use case of the NASA
Breakup Model.

So the NASA Breakup Model often cited and used, with an increasing importance because
of the presented problems in Chapter 1, lacks any freely available helpful and exemplary
documented implementation. Thus, the following implementation in C++ handles those
problems with the aim of delivering a comprehensible, documented, extensible, rapid, and
well-tested implementation covering all scenarios of the NASA Breakup Model of EVOLVE
4.0.

5https://www.space-track.org/ last accessed: 01.09.2021
6https://www.celestrak.com/pub/satcat.csv last accessed: 01.09.2021
7https://github.com/richardklima/Space_debris_removal_model/pull/1 last accessed: 11.09.2021
8https://github.com/richardklima/Space_debris_removal_model/pull/2 last accessed: 11.09.2021
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Implementation
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4. Architecture

After introducing the fundamentals, this chapter will introduce the architecture of the NASA
Breakup Model’s implementation in C++. Before going into the details, the chapter will
first focus on giving a general sketch of the implementation.1

4.1. Overview of Components

Figure 4.1 shows the component buildup of the C++ implementation and gives a general
idea about the design concepts and how the components interact.

Figure 4.1.: Architecture visualized as UML Component Diagram

In the following, we concentrate on a brief summary of every element while discussing
the design decisions and concepts behind the given architectural structure. Note that each
component will be presented in detail in the upcoming sections. We start at the top with
the Input, which is in charge of collecting the settings like input satellites or minimal
characteristic Length given by the user. It then provides an interface to the Simulation

and Output components which both can access and handle the collected information. It is
important to remark that the Input utilizes only the Model, whereas it is used by Simulation
and Output. So if they change, the Input is not directly affected. The next component in
the diagram to describe is the Output which uses the Model in order to produce results in
the form of CSV or VTK files and is configured by the Input. Again we have the advantage
that Output only has to change if the Model changes. In charge of what the name suggests,

1https://github.com/schuhmaj/nasa-breakup-model-cpp last accessed: 01.09.2021
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the Simulation component can be described very similarly to the Output component with
the addition of a relation to the Util component. This Util component only exists for code
readability reasons. It comprises four modules consisting of utility functions like orbital
anomaly conversions or helper functions for array operations. The last and most significant
component is the Model, further described in Section 4.2. It contains structures to save
satellite data, including orbital state, and provides an interface to all other components to
access those storing capabilities.

Input Model

Simulation

Output

Figure 4.2.: Illustration of the Communication via the Model

The last point marks the most prominent advantage of the architecture visible. There is
no direct linkage between Input, Simulation, and Output, other than the user specification,
but instead, those three components communicate via the Model. The Input builds the
existing satellites with utility from the Model. Following, the Simulation uses those given
input satellites to generate satellite fragments within the same Model. Lastly, the Output

uses the final iteration of the Model to create result files. This flow is illustrated in Figure 4.2.
Hence, we have achieved an adaptable and progressive architecture with low coupling and
high cohesion.

Furthermore, the achieved independence of components makes the reuse of only a fraction
of components very easy. For instance, it is pretty straightforward just to use Input and
Model if one only wants to parse satellites from a file without the intention of simulating a
breakup event.

4.2. Model

This section describes the Model whose role is to store and provide data for the other
components. Figure 4.3 shows the hierarchy among the different classes in this segment. We
will describe this regime from left to right, beginning with the OrbitalElement class. It
consists of the six Keplerian elements previously introduced in Subsection 2.4.1, including
the Epoch and unit/ anomaly conversion functionality. Notably, it does not make use of
the C++ Standard Library but rather has its own implementation. Memory efficiency is
the reasoning behind this decision. Whereas std::tm consists of multiple integers, the here
presented Epoch uses only one single double and integer. Considering the TLE Data contains
the epoch in the UTC (Coordinated Universal Time), additional expenses for time zones are
not required.

The OrbitalElementsFactory is linked with the OrbitalElement class and hides and
simplifies the latter’s construction behind some methods. These methods are adjusted to
mirror possible needs like constructing an OrbitalElement from TLE Data or resolving
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Figure 4.3.: Model visualized as UML Class Diagram, using std qualifier, Getter and Setter
not shown

different units to an OrbitalElement.

Besides, the central part of the Model lies in the Satellite class, which unifies the core
functionality and the memory capacities for the different required input and calculated result
parameters. One has to point out that not every parameter is present as a value but rather
as a pointer. With this, we can save memory, as we often reuse the same constant name for
fragments. In addition, it provides cached methods for the conversion between cartesian
state vectors and orbital elements, with the latter being cached for further reuse if they are
once determined. These conversions methods are taken from the pykep library2 and slightly
refactored.

In the same fashion as the OrbitalElementsFactory, the SatelliteBuilder constructs
Satellite classes and additionally checks the completeness and validity of the satellites
under construction. An example use case will later be presented in Section 5.2.

Theoretically, that summarizes every vital aspect required to understand the whole scheme,
but there are some more interesting facts about the Model, especially the Satellites class.
The first version of the implementation used a vector of Satellite classes corresponding
to the Array of Structures ansatz. Although this may be sufficient for pure functionality,
we strived for an optimal runtime. By replacing the Array of Structures with a Structure

2https://esa.github.io/pykep/ last accessed: 04.09.2021
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of Arrays ansatz realized in the Satellites class, we have improved the runtime due to
more efficient memory access patterns. In addition, we were able to improve code readability
significantly by using the structured binding features of C++17 with different tuple-views
over the Satellites class. A tuple-view in this context consists of a vector of tuples
containing references to Satellites’ members’ elements.

4.3. Input

This section provides information about the extensive scope of the Input component. We
can separate the Input’s purpose chiefly into three different zones of application.

First of all, breakups always consist of involved objects - either one satellite for an explosion
event or two for the collision case. We can consider this as the first flow of data into the
model, as Figure 4.2 illustrates. Thus the interface for this data source is encoded in the
purely virtual DataSource. Secondly and thirdly, we need the user specification for the
Simulation and the Output. This information is defined via either of the two purely virtual
interfaces InputConfigurationSource and OutputConfiguartionSource.

Figure 4.4.: Input visualized as UML Class Diagram, using std qualifier

Following the above theoretical introduction, the concrete implementation is presented in
the paragraphs below. Something to consider before reading further, the below-presented
YAMLReaders hide the dependency yaml-cpp,3 which is utilized to parse the YAML files.

We realized the interface DataSource in three subclasses. These are YAMLDataReader,
TLESatcatReader, and RuntimeInputSource. The YAMLDataReader reads satellite data

3https://github.com/jbeder/yaml-cpp last accessed: 05.09.2021
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from a user-generated YAML file, whereas the second one joins data from the NORAD
satellite catalog4 and a TLE file, with the satellite catalog being a CSV file. A remark-
able feature is that the CSVReader<T...> supports every thinkable CSV scheme through
templates, making it ideal for reuse in other scenarios. As can be seen, the last-mentioned
RuntimeInputSource is ideal for using the C++ implementation as a library, as its only pur-
pose is to be a container given to the BreakupBuilder, which will be presented in Section 4.2.
The interface ConfigurationSource is accomplished in two subclasses, with one being the
already above-mentioned RuntimeInputSource class. With this in mind, the method param-
eter container idea opens up as the RuntimeInputSource provides the model data as well as
the user specification for the simulation. The precise application is later demonstrated in Sec-
tion 5.2. In contrast, the second option, YAMLConfigurationReader, reads the configuration
from a user-generated YAML file similar to the aforementioned YAMLDataReader. Last but
not least, the YAMLConfigurationReader implements the OutputConfigurationSource to
define the desired output target files like VTK or CSV.

In conclusion, the here in Figure 4.4 presented class structure has multiple advantages
since it is still possible to extend and swiftly adapt the implementation to personal needs
on-demand without changing interfaces between the architecture’s components.

4.4. Simulation

The Simulation, shown in Figure 4.5, consists of an ensemble of four classes, with one
being purely virtual. First to mention is the BreakupBuilder which, analogously to the
SatelliteBuilder, assembles Breakup classes. It provides methods to load a given user
specification, respectively an InputConfigurationSource, or overwrite already defined
settings from within the developer’s context.

Centrally, the core of the implementation is made up of the Breakup class and its subclasses,
which represent the two cases of explosion and collision. At first glance, one might assume
the antipattern of a confusing blob-class [Kru20], but the opposite is true. By consequently
splitting each step of the NASA Breakup Model of EVOLVE 4.0 into its own method, we get
clean, well-separated implementation steps. We further use the Template Method pattern
[Kru20] in order to implement shared functionality only once in the superclass. After the
construction of the class, one can commence the simulation by the run() method and get
the result via getResult(). Overall, the run method follows these steps:

1. Reset the state

2. Calculate the number of fragments with the correct Size Distribution (Equation 2.6
and Equation 2.7)

3. Allocate required memory

4. For each fragment: Calculate characteristic Length Lc

5. For each fragment: Calculate area-to-mass ratio A/M and area A and mass M

6. Enforce Mass Conservation: Delete fragments until mass maximum is reached or
optionally generate more fragments until the threshold is reached

4https://www.celestrak.com/pub/satcat.csv last accessed: 01.09.2021
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4.4. Simulation

7. For each fragment: Assign a parent (implies assigning base velocity v⃗parent)

8. For each fragment: Calculate scalar ejection velocity vejection and cartesian ejection
velocity v⃗ejection and total velocity vector v⃗total

The eight protected methods of Breakup in Figure 4.5 follow exactly those eight steps in the
order of appearance. The implementation precisely follows the equations introduced in Chap-
ter 2 using only the components of the C++ standard library like std::normal distribution

or std::uniform real distribution. The random number generator beneath is always a
std::mersenne twister engine. Nevertheless, we must consider that the Lc values follow
a power-law distribution not predefined in the C++ standard. Hence, we transform a value

Figure 4.5.: Simulation visualized as UML Class Diagram, using std qualifier
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y from a uniform distribution into a power-law distributed value x by applying Equation 4.1:

x =
(
(an+1 − bn+1) · y + bn+1

) 1
n+1

(4.1)

where y ∈ U[0;1] and Lc ∈ [a, b]

n =

{
−2.6 if explosion

−2.71 if collision

The here presented values for n are respectively the exponents of the derivatives of
Equation 2.6 and Equation 2.7. Equation 4.1 comes in handy because it already defines a
lower and an upper bound for the resulting value range. The former fits because Equation 2.6
and Equation 2.7 describe the Lc distribution for values greater than a specific minimal Lc

aka a lower bound. The latter is reasonable if used with the maximal parent Lc since we
cannot produce fragments greater than the parents. With the help of Equation 4.1, we can
fulfill Step 4.

Another problem to solve was the gap between 8 cm and 11 cm. Thus we use a linear
approach to close the gap in Step 5 with a bridge function, which is shown in the following
Equation 4.2:

DBridge
A/M (λc, χ) = β ·DA/M (λc, χ) + (1− β) ·DSOC

A/M (λc, χ) (4.2)

where β =
Lc − 0.08

0.03
and λc = log10(Lc)

Subsection 2.3.2 already introduced the mass conservation issues of the NASA Breakup
Model. In this implementation, as shown in Step 6, we solve this issue by making the
mass budget as upper bound an obligation, whereas the fulfillment remains optional via a
configuration option of the Input component.

The assignment of parent bodies in Step 7 is trivial in the explosion case since there is
only one parent. For the collision, we adopt the following from the Python implementation
inspired approach in Algorithm 1:

This approach definitely fulfills its purpose for a catastrophic collision. However, one can
argue that the approach is limited in the non-catastrophic case because depending on the
collision characteristics, including the partaking satellites material, impact velocity, and
location of impact, only the projectile is really fragmented. In contrast, only a tiny portion
of fragments would originate from the target, yet Algorithm 1 would assign most fragments
to the target origin. Nonetheless, we use this approach, as the above described does not
hold for every non-catastrophic collision and the NASA Breakup Model lacks in specifying
some characteristics like satellite material or the exact location of the impact required for a
better, more complex assignment model.

The remaining steps of the enumeration are strictly implemented, as one might expect
with the knowledge given in Chapter 2.

Furthermore, to optimize the time-to-solution Step 4, Step 5, and Step 8 run entirely
in parallel with std::execution::parallel unsequenced policy whose implementation
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Algorithm 1: Assignment of Parent Body in the Collision Case

Input: satellites: Satellites, target: Satellite, projectile: Satellite
Result: satellites containing assigned parents

1 satellites← shuffle(satellites);

2 normedTargetMass← target.mass · outputMass
inputMass ;

3 assignedTargetMass← 0;
4 foreach satellite do
5 if satellite.lc > projectile.lc then
6 satellite.parent← target;
7 assignedTargetMass← assignedTargetMass+ satellite.mass;

8 foreach satellite ∈ notAssigned do
9 if assignedTargetMass < normedTargetMass then

10 satellite.parent← target;
11 assignedTargetMass← assignedTargetMass+ satellite.mass;

12 else
13 satellite.parent← projectile;

depends on the utilized compiler.5 The results of this optimization will later be presented in
Chapter 8.

4.5. Output

The Output is the simplest component. It consists of a single interface linking the Output
to the Model. In addition, which slightly contradicts Figure 4.6 UML class diagram, there
is, for simplicity reasons, a method that takes a whole Breakup object and prints its result.

Figure 4.6.: Output visualized as UML Class Diagram, using std qualifier

5https://en.cppreference.com/w/cpp/compiler_support last accessed: 11.09.2021
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Otherwise, we have three different implementing subclasses, with two of them producing
CSV and the other one VTK files. They all have in common that they use the spdlog library6

to print the results in an asynchronous fast way per default. The CSVWriter on the left is the
most uncomplicated of the three and just prints the parameters of the satellites, and if chosen,
the Kepler Elements. The CSVPatternWriter uses a customizable pattern to produce all
possible parameter combinations in CSV output files. To avoid using many if statements, it
consists of a vector of functions (myToDo)that each print one parameter. Logically the vector
of functions is called for every satellite to fill a line. Lastly, the VTKWriter produces files
with the extension ”.vtu”, where each satellite property is printed with a similar functional
approach as in the CSVPatternWriter. These files can then be visualized with for example
ParaView.7

6https://github.com/gabime/spdlog last accessed: 05.09.2021
7https://www.paraview.org/ last accessed: 08.09.2021
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5. User Guide

This section will neither replace the README.md on the GitHub Site1 nor give detailed
instructions about the use of the C++ implementation, but it will introduce the different
available scenarios based on Chapter 2.

5.1. Input Scenarios

The user from outside a developer’s context has three options for using the Breakup Model
via the YAML configuration file. First of all, one can manually define all possible parameters
in the YAML data file. Optionally one can use the Orbital Elements or define a collision
scenario without any orbital relation by making the target fixed and giving the projectile
directly the impact velocity. Internally both scenarios are the same since only the velocity
difference is relevant for the calculation. However, if one has the Orbital Elements, it is more
comfortable to use the provided option. On the other hand, one can use a semi-automatic
input by giving in the YAML data file for each individual satellite the location to a TLE file
from which only the Orbital Elements are parsed, whereas information about e. g. mass still
has to be defined manually. The last option is fully automatic, and no YAML data file has
to be specified. Here the NORAD Satcat2 and an extensive TLE file3 must be given. The
program will then perform the mapping fully automatic. One thing to consider here is that
one should use a filter in case of more than two input satellites. Otherwise, the partaking
bodies are unclear, and the program aborts.

User

NASA Breakup Model - YAML Configuration Decisions

use YAML Data

use TLE from YAML Config

Orbital Relation - Automatic use Satcat

Orbital Relation - Semi-Automatic

Use Defined - Manual

use TLE from YAML Data

«include»

«include»

«include»

«include»

«include»

Figure 5.1.: YAML Configuration File Decisions visualized as UML Use Case Diagram

A key point to realize is that the C++ implementation does not check if there actually is

1https://github.com/schuhmaj/nasa-breakup-model-cpp last accessed: 01.09.2021
2https://www.celestrak.com/pub/satcat.csv last accessed: 01.09.2021
3https://www.space-track.org/ last accessed: 01.09.2021
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a collision probability between two satellites or whether they are at the same position. This
check has to be conducted by the user.

5.2. Using the Project as Library

Listing 5.1 sketches how to create a breakup simulation within Section 4.3 introduced
RuntimeInputSource container.

1 auto con f i gSource = std : : make shared<RuntimeInputSource >(0.05 , s a t e l l i t e s ) ;
2 BreakupBuilder breakupBui lder { con f i gSource } ;
3 auto breakup = breakupBui lder . getBreakup ( ) ;
4 breakup=>run ( ) ;

Listing 5.1: Constructing and running a breakup simulation from within C++

One Satellite in the vector of satellites can be built by the SatelliteBuilder, introduced
in Section 4.3. The versatility and readability of this Builder ansatz result from Listing 5.2:

1 S a t e l l i t e i s s = s a t e l l i t e B u i l d e r
2 . setID (25544)
3 . setName ( ” ISS” )
4 . setSatType ( SatType : :SPACECRAFT)
5 . setMassByArea (399 . 05 )
6 . s e tOrb i ta lE lements ( f a c t o r y . createFromOnlyRadians (
7 { 6798505 .86 , 0 .0002215 , 0 .9013735469 ,
8 4.724103630312 , 2 .237100203348 , 0 .2405604761} ,
9 OrbitalAnomalyType : :MEAN) )
10 . g e tResu l t ( ) ;

Listing 5.2: Source code demonstrating the qualities of the Builder approach

If in the above-presented Listing 5.2 some required value had been missing, the builder
would have thrown an exception.
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6. Verification and Validation

Section 3.4 indicated that the C++ implementation is well-tested and that the output is
verified. This chapter details the methods used for testing and comparing the simulation’s
results.

6.1. Testing

The GoogleTest framework1 provides the utility in order to verify the functionality of the
previously presented implementation in C++. In general, each unit test targets a single
class of the previously presented structure. The additional dependencies required for testing
a class follow the structure presented in Figure 4.1’s UML component view. Notably, every
test case uses the Model in some way.

The first requirement for reproducible tests is to run the simulation with a fixed random
seed. If the former requirement holds, we can then test the fragment generation, which
number should always follow the in Subsection 2.3.1 presented equations under the constraint
that no mass conservation is enforced. Moreover, we can test that the power-law distribution
of Lc values follows these equations with some tolerance of 1%-2%. Lastly, since we
parallelized the generation of fragments, we also check for duplicates in the Lc set, indicating
issues like race conditions within the random number generation. If those checks pass, the
Lc set fits the described requirements of the NASA Breakup Model.

In contrast, the A/M distribution is not that easy to verify since every fragment’s A/M
value follows a different bi-normal or normal distribution, with each having its own parameter
set depending on the fragment’s characteristic Length Lc. Thus, we cannot test if all A/M
values follow some distribution like in the former case. For this reason, we check the values
against the Python implementation. This comparison and the similar testing scenario for
the velocity distribution are presented in the following Section 6.2.

6.2. Comparison with Reference Implementation

Without losing generality, this section contrasts the C++ implementation and the Python
implementation, introduced in Subsection 3.4.3, at the Iridium-33 Cosmos-2251 collision
scenario.

Since the NASA Breakup Model is empirical and not a deterministic physical law, we
cannot validate our implementation against a physical formula. Instead, we have to compare
the produced results with available data. A quantitative comparison is not possible, as only
limited amounts of data are available for collisions and explosions. Therefore, our validation
relies on the qualitative comparison.

1https://github.com/google/googletest last accessed: 05.09.2021
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As the Python implementation was the main reference with a similar execution order and
strategy, a baseline comparison to its predictions is essential for the validation.

In the following, we investigate results regarding the correctness of our implementation but
will neither classify nor interpret the results in detail or compare them to the actual event,
as this will be done in Chapter 7. Furthermore, we only handle one collision result and its
characteristic distributions. The explosion case will not be compared since explosions and
collisions only differ in their size distributions but not in their corresponding area-to-mass
ratio or velocity distributions if one disregards varying parameters for the latter. Besides, as
Section 6.1 has shown, the size distributions have already been tested.

(a) First run
D = 0.01820 and p = 0.52857

(b) Logarithmic view of (a)

(c) Second run
D = 0.01896 and p = 0.47546

(d) Logarithmic view of (c)

Figure 6.1.: Comparison of characteristic Lengths Lc between Python and C++ implemen-
tation for the collision of Iridium-33 and Cosmos-2251 with Lc,min = 0.05 m.
For each run, an Kolmogorov–Smirnov test has been performed, which results
can be seen in (a) and (c). Here, with α = 0.05, the equivalence is accepted for
both.

For completeness, Figure 6.1 shows the already verified distribution of characteristic
Lengths Lc; one time plotted logarithmically. As one can see, the distributions are nearly
overlapping. Nevertheless, to be sure, we use a simple Kolmogorov–Smirnov test2 to verify

2https://en.wikipedia.org/wiki/Kolmogorov-Smirnov_test last accessed: 12.09.2021
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the observation. Equation 6.1 shows the rejection condition for the null hypothesis for a
given significance level α, with the first-named being, in our case, the equivalence of two
distributions. The Iridium-33 Cosmos-2251 collision distribution holds n = m = 3954, with
both parameters being the number of fragments.

Dn,m >

√
− ln

(α
2

)
·
1 + m

n

2m
(6.1)

The application of Equation 6.1 with α = 0.05 yields an acceptable result for both cases
of Figure 6.1. A second possible criterion is the p-value, with which we can reject the
hypothesis if α > p. However, it is not a criterion for acceptance.

The following figures always base on the first simulation-run, which simulates the Iridium-
33 (556 kg) Cosmos-2251 (900 kg) collision with a minimal characteristic Length Lc,min = 5
cm for generated fragments.

Figure 6.2 and Figure 6.3 continue with the area-to-mass ratio comparison for two
scenarios. The first one shows the distribution of the area-to-mass ratio compared to the
Python implementation. We can see an extreme deviation for both higher and lower area-to-
mass ratios. This phenomenon results from the fact that the Python implementation only
implements the area-to-mass distribution for fragments greater than 11 cm and reuses this
distribution for smaller fragments. This decision contradicts the original NASA Breakup
Model. However, to precisely check the equivalence of the implementations, we could remove
the bridging function (Equation 4.2) and the distribution function for smaller fragments
(Equation 2.11) from our C++ implementation. The potential effects of this (false) scenario
are collected in Figure 6.3 and fulfill the expectation of equivalence.

(a) D = 0.06828 and p = 1.94407 · 10−8 (b) Logarithmic view of (a)

Figure 6.2.: Comparison of area-to-mass ratios A/M between Python and C++ implemen-
tation in its as-is state for the collision of Iridium-33 and Cosmos-2251 with
Lc,min = 0.05 m. The result of the Kolmogorov–Smirnov test can be seen in (a).
Here, with α = 0.05, the equivalence is rejected.

However, we can prove that our C++ implementation fits better with the case distinction
between bi-normal distribution for big fragments, normal distribution for smaller fragments,
and bridging function for in-between. Figure 6.4 shows the expected A/M probability
distributions for a specific characteristic Length Lc. We consider the left Figure 6.4b for the
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(a) D = 0.02680 and p = 0.11663 (b) Logarithmic view of (a)

Figure 6.3.: Comparison of area-to-mass ratios A/M between Python and C++ implemen-
tation in a modified state for the collision of Iridium-33 and Cosmos-2251 with
Lc,min = 0.05 m. Here, the C++ implementation works without bridging
function and small fragment distribution function. The result of the Kol-
mogorov–Smirnov test can be seen in (a). Here, with α = 0.05, the equivalence
is accepted

Iridium-33 Cosmos-2251 collision as we work with spacecraft fragments. First, we notice
that our function’s maximum should be at log10(A/M) ≈ −1, as smaller fragments are more
often generated and our minimal characteristic Length is 0.05 m. Moreover, log10(A/M) > 0
is still probable for Lc ≥ 0.05 m sizes, yet the Python implementation does not produce
those values in sufficient quantities, whereas the C++ does, as illustrated in Figure 6.2b.
For even smaller values like 0.01 m, the function would be even more shifted to the right - a
criterion which the Python implementation cannot satisfy as it lacks the equations for small
fragments. The density function for Lc = 0.1 m is to be classified for the bridge function.
Figure 6.4b shows that for fragments with Lc ≥ 0.1 m, values of log10(A/M) ≤ −2 are still
probable. We even have a local maximum for fragments of the size 1.0 m there. Nevertheless,
the Python implementation does not portray this behavior, whereas the C++ does, again
as depicted in Figure 6.2b.

Figure 6.5a introduces another view of the given data. It plots the A/M values dependent
on the Lc values. It is beneficial to illustrate the 0.05 m curve from Figure 6.4b and proves
that the broadness of A/M values truly comes from the Lc ≈ 0.05 m range. In contrast,
Figure 6.5b shows the insufficiency of the Python implementation in this value range again.
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(a) for R/B (rocket body) fragments

log10 (A/M) [m2/kg]
-3 -2 -1 0 1

pr
ob

ab
ilit
y
de

ns
ity

[-]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0.01 m
0.05 m
0.1 m
1.0 m

characteristic length

(b) for S/C (spacecraft) fragments

Figure 6.4.: Breakup probability density functions for A/M values constructed by using the
NASA Breakup Model’s Equation 2.8 and Equation 2.11; from [BJR+98]

(a) C++ as it is (b) C++ adapted to mirror insufficient Python

Figure 6.5.: Comparison of characteristic Lengths Lc to area-to-mass ratios A/M for the
collision of Iridium-33 and Cosmos-2251 with Lc,min = 0.05 m.
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In the end, only the delta velocity distribution, aka the ejection velocity, remains. Since
the NASA Breakup Model does not specify the direction of the ejected fragments, the
following diagrams only show pure scalar velocities without any directional components.
Again, Figure 6.6 and Figure 6.8 differentiate between the as-is state of the C++ and the
modified version. Here, the C++ implementation noticeably produces more fragments with
higher ejection velocities. This observation is not surprising since the ∆V distribution
depends on the generated A/M values. And as the C++ implementation does not ignore
the special demands for small fragments’ A/M calculation, the distributions differ, and the
result of a KS test ends in rejection of equivalence. However, we can analogously prove
that our results better approximate the standards of the NASA Breakup Model by using
Figure 6.7. It shows that higher ejection velocities values are more probable for higher
A/M ratios, especially in the collision case depicted in Figure 6.7b. Due to the previously
presented reasons that the Python implementation cannot produce high A/M , it generates
fewer big scalar velocities. Figure 6.8 additionally depicts the A/M values and underlines
the fact that higher A/M ratios lead to higher velocities. In conclusion, the broader A/M
spectrum of the C++ implementation generates a broader velocity spectrum.

(a) C++ as it is
D = 0.03920 and p = 0.00459

(b) C++ adapted to mirror insufficient Python
D = 0.01947 and p = 0.44156

Figure 6.6.: Comparison of scalar ejection Velocity Distribution ∆V between Python and
C++ implementation for the collision of Iridium-33 and Cosmos-2251 with
Lc,min = 0.05 m. One time with our accurate implementation and one time with
the adapted version. Each scenario shows the results of a Kolmogorov–Smirnov
test. Here, with α = 0.05, the equivalence is rejected for (a) and accepted for
(b).
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Figure 6.7.: Breakup probability density functions for ejection velocity values constructed
by using the NASA Breakup Model’s Equation 2.15; from [BJR+98]

(a) Python and C++
(C++ as it is)

(b) Python and modified C++
(C++ adapted to mirror insufficient Python)

Figure 6.8.: Comparison of scalar ejection Velocity Distribution ∆V to area-to-mass ratios
A/M for the collision of Iridium-33 and Cosmos-2251 with Lc,min = 0.05 m
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After comparing and validating the results, this chapter will connect the calculated results to
the actual fragmentation events. Therefore three famous events are portrayed: The collision
of Iridium-33 and Cosmos-2251 in 2009, the deliberate destruction of Fengyun-1C with an
anti-satellite missile in 2007, and lastly, the explosion of the Nimbus 6 rocket body in 1991.
Asides from that, the data of the latter was utilized to derive the NASA Breakup Model.
Thus, we can expect for this breakup event a relatively high precision in the model’s replica.

Satellite Total Cataloged Debris with RCS Value still in Orbit

Iridium-33 657 628 346

Cosmos-2251 1714 1668 1082

Fengyun-1C 3530 3438 2864

Table 7.1.: Numbers as of September 2021, determined with the NORAD Satellite Cataloga

ahttps://www.celestrak.com/pub/satcat.csv last accessed: 01.09.2021

Satellite Total Cataloged Debris with RCS Value still in Orbit

Iridium-33 349 349 335

Cosmos-2251 809 809 785

Fengyun-1C 2680 2680 2630

Table 7.2.: Numbers as of June 2009, from [LS09]

We will commence this section with the shared analysis of the characteristic Length Lc

distributions for Iridium-33, Cosmos-2251, and Fengyun-1C. The Nimbus 6 R/B explosion
will be examined later in its dedicated Section 7.4. Before we continue, one notes the
following: Since 2007/ 2009, the number of cataloged objects for the fragmentation events
has constantly been growing while radar systems detect new fragments. Table 7.1 and
Table 7.2 clarify this circumstance. In order to make the comparison as comprehensive
as possible, the following sections will not only present the original NASA references but
also demonstrate derived statistics from the TLE and satellite data as of now. Moreover,
one can note that radar capabilities limit fragment detection and that small fragments are
more probable than big fragments, as presented in Subsection 2.3.1. As a result, small
fragments are often overseen, yet they exist. Essentially there are only rare amounts of
cataloged fragments of Lc < 0.05 m in size due to radar limitations. Therefore the following
simulations are calibrated with a minimal characteristic Length of Lc = 0.05 m to compensate
for the detection insufficiencies for small fragments. Nevertheless, this decision does not
resolve unsatisfying radar detection in the size regime 0.05 m > Lc > 0.1 m. This problem
sharpens when looking at pure numbers. Table 7.3 shows the actual regularly tracked objects

41

https://www.celestrak.com/pub/satcat.csv
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compared to the statistical estimated numbers for specific size regimes.

Regularly tracked objects Estimated Numbers

all size regimes Lc > 0.1 m 0.1 m ≥ Lc > 0.01 m 0.01 m ≥ Lc > 0.001 m

≈ 29.22 · 103 ≈ 36.5 · 103 ≈ 1 · 106 ≈ 330 · 106

Table 7.3.: The table compares the actual tracked number by Space Surveillance Networks
to the statistical estimated number; from [aE] in September 2021
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(c) Calculated cumulative Lc distribution based
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(d) The difference between the derived values from
the satellite catalog (b) and the modeled data
(c). A surplus means that the model generated
more fragments than in reality, whereas the
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Figure 7.1.: Comparison of cumulative Lc distributions

Figure 7.1c shows the results of our NASA Breakup Model’s Lc distribution for the three
fragmentations. It further presents in Figure 7.1a the original derived Lc distributions from
2009 and in Figure 7.1b the current Lc distributions derived from the radar cross section.
We can see that the model precisely follows the power-law given in Equation 2.7 and that
we still have some pitch for fragments smaller than 10−1m, which is reasonable as our radar
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detection for small fragments is limited. Since Cosmos-2251 is the bigger of the two satellites,
the implementation assigns it the larger fragments, which holds for comparison with the
results from Figure 7.1a, but interestingly not when regarding Figure 7.1b.

Figure 7.1d summarizes the statement of Figure 7.1b and Figure 7.1c by comparing their
differences. One can note that the prediction for larger parts matches the expectations of
reality. However, the model significantly underestimates the size range of 0.1 m, whereas the
size regime around 0.5 m is overestimated. This fact is not surprising, as smaller fragments
are more common and, consequently, it is implemented like that in the NSA Breakup Model,
as shown in Subsection 2.3.1. Therefore, we can assume that the model is suitable, and
the error lies in the limited radar data. On the other hand, we here follow the assumption
of spherical geometry. Thus the derived size distributions for the actual events contain a
modeling error, which could also explain the deviations for 0.05 m and 0.1 m.

The A/M and ∆V distribution will be shown individually in the following two sections:
Section 7.2 and Section 7.3.

7.1. Data Methodology

Before discussing Figure 7.2 and continuing to Section 7.2, a brief exemplary introduction
about the origin of Figure 7.2c and Figure 7.2d is given. This explanation also applies to
subfigures (c) and (d) of Figure 7.4 and Figure 7.7. Generally, we strived for current data
to compare results because the reference data from 2007/ 2009 is incomplete in terms of
cataloged satellites. So in order to produce diagrams depicting A/M and Lc values, both of
them must be independent. Therefore the Lc values were determined by Equation 2.1 by
using the radar cross section. In contrast, the A/M value was derived by the starred ballistic
coefficient B∗ from the TLE data. These two independent sources enable us to plot diagrams
that do not show any noticeable power-law relation between the values. Equation 7.1
shows the correlation between the mentioned B∗ given in the TLE in [R−1

Earth], the ballistic
coefficient B, the atmospheric density ρ0, the drag coefficient Cd, and the area-to-mass ratio
A/M :

B∗ =
ρ0 ·B
2

=
ρ0 · CD

2
·A/M (7.1)

We used ρ0 = 0.1570kg/m2 ·REarth [wik] as the atmospheric density and as coefficient of
drag Cd = 2.2 [PA11] for the given diagrams. Nevertheless, this model uses ”a fixed density
at any given height” [AP09], which ”does not vary with solar activity” [AP09]. As a result,
B∗ is underestimated. Thereby the produced A/M ratios are not sufficient in their order
of magnitude. So as a consequence, we applied the proposed scaling factors from [PA11]
and [PA09] in order to produce fitting results. After all, our diagrams consisting of only
current satellites on-orbit like in Figure 7.2c can be compared to the reference source like in
Figure 7.2b. However, if we apply the presented strategy on all cataloged fragments, even
those already decayed, we get higher A/M values than expected.

We assume that these deviations come from an overestimated B∗. As utilized in Figure 7.2d,
the whole TLE set consists of a significant number of already decayed satellites’ last created
TLE data. So as they were decaying, they were in deeper atmospheric layers at these
moments, resulting in higher aerodynamic drag, finally leading to a bigger B∗. Moreover,
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one notices that these parameters were calculated in 2009 and correlated to atmospheric
density and solar activity back then. So, in conclusion, these diagrams (c) and (d) are helpful
for comparison, but they should be handled with caution as they mirror the simplifications
above.

7.2. The Collision of Iridium-33 and Cosmos-2251

The here presented figures use the parent assignment feature of the C++ implementation
and group the fragments of this collision by parent bodies. Figure 7.2 and Figure 7.4 portray
the characteristic Length Lc to area-to-mass ratio A/M distribution. It is noticeable that
the model fits well for the Cosmos-2251 fragments, whereas the prediction for the Iridium-33
satellite is inadequate. The model predicts the maximum frequency at log10(A/M) ≈ −1,
yet in reality, it is around log10(A/M) ≈ −0.5. Regardless, we could expect this difference
as the NASA Breakup Model is based on observations and experiments before Iridium-33’s
deployment, but the satellites’ construction changed over time. Since the NASA Breakup
Model does not consider lightweight composite materials like they were used for Iridium-33
or other modern vessels [LS09], it predicts too low A/M ratios. To summarize, the observed
values of Figure 7.4b are reasonable because, as Subsection 2.3.2 mentioned, high A/M
values indicate light materials. Figure 7.4d would confirm this observation of significantly
higher A/M values in reality, although one has to be careful with Figure 7.4d as of its
simplifications explained in Section 7.1. Otherwise, Figures (c) and (d) for both Iridium and
Cosmos further reveal the limitations of radar tracking since most fragments are distinctly
visible in the area around Lc ≈ 0.1 m.

Figure 7.3 and Figure 7.5 complete this section by reviewing the fragments’ velocity to their
A/M ratio. Both diagrams do not show any significant deviation from the general behavior
that bigger A/M values indicating smaller masses have greater velocities than more massive
fragments, which is completely reasonable under consideration of energy conservation. Lastly,
Figure 7.6 shows the Iridium-33 Cosmos-2251 collisions ejection velocities including their
directions, one time logarithmically scaled.
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(a) The C++ NASA Breakup Model’s prediction (b) NASA Reference from 2009; from [LS09]

(c) Reconstructed distribution based on current
TLE and Satellite Catalog data (only 2021
and still in orbit); see Section 7.1

(d) Reconstructed distribution based on all avail-
able TLE and Satellite Catalog data (2009-
2021); see Section 7.1

Figure 7.2.: Cosmos-2251 fragments’ Lc to A/M value distribution. The simulation was run
with Lc,min = 0.05 m.

Figure 7.3.: Cosmos-2251 fragments’ ∆V to A/M value distribution. The simulation was
run with Lc,min = 0.05 m.
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(a) The C++ NASA Breakup Model’s prediction (b) NASA Reference from 2009; from [LS09]

(c) Reconstructed distribution based on current
TLE and Satellite Catalog data (only 2021
and still in orbit); see Section 7.1

(d) Reconstructed distribution based on all avail-
able TLE and Satellite Catalog data (2009-
2021); see Section 7.1

Figure 7.4.: Iridium-33 fragments’ Lc to A/M value distribution. The simulation was run
with Lc,min = 0.05 m.

Figure 7.5.: Iridium-33 fragments’ ∆V to A/M value distribution. The simulation was run
with Lc,min = 0.05 m.
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(a) Standard scale

(b) Logarithmic scale

Figure 7.6.: Iridium-33 and Cosmos-2251 Collision fragments’ v⃗ejection visualized with
ParaView . In total, there are 3954 fragments as the simulation was run with
Lc,min = 0.05 m
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7.3. The Destruction of Fengyun-1C

The People’s Republic of China tested an anti-satellite missile against one of their dysfunc-
tional weather satellites on January 11, 2007. This deliberate destruction of a satellite led to
the breakup event with the most fragments cataloged until now, 2021. Since it was a kinetic
kill vehicle, no explosives were involved, and therefore we modeled the event like a collision
of a warhead with Fengyun-1C. The minimal characteristic Length has been set to 0.05 m
and Fengyun-1C’s mass to 880 kg. In contrast, there were no explicit data sets available
on the used warhead, but only its type: SC-19. Therefore, we have chosen to model the
warhead with 500 kg of mass. Lastly, the impact velocity was well-known and set to 9.36
km/s. [PA09]
First of, the here presented plots for the Fengyun-1C fragmentation do not differentiate

between the former satellite’s and warhead’s fragments as in other literature. The motivation
behind this decision is that the combined number of fragments models the actual event’s
amount better.

The resulting figures are similarly structured as in Section 7.2, with Figure 7.7 illustrating
the A/M distribution and Figure 7.8 portraying the ejection velocities. Overall, it is
noticeable that the simulation models the fragments decently, with most fragments having
values in the corridor of log10(A/M) ∈ [−2; 0]. Overall, if just taking radar limitations and
the current available TLE Data into consideration, the results of Figure 7.7c are highly fitting
to the NASA Breakup Model’s predictions. In contrast, Figure 7.7d shows more fragments
with a high A/M ratio. We can interpret this in two ways: Either the NASA Breakup Model
underestimates the fragment count of the 0.1 m size range. This hypothesis is strengthened by
Figure 7.7b containing the original NASA Reference of 2009. Or alternatively, Figure 7.7d’s
derived TLE Data contains an error, as assumed by Section 7.1.
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7.3. The Destruction of Fengyun-1C

(a) The C++ NASA Breakup Model’s prediction (b) NASA Reference from 2009; from [LS09]

(c) Reconstructed distribution based on current
TLE and Satellite Catalog data (only 2021
and still in orbit); see Section 7.1

(d) Reconstructed distribution based on all avail-
able TLE and Satellite Catalog data (2009-
2021); see Section 7.1

Figure 7.7.: Fengyun-1C fragments’ Lc to A/M value distribution. The simulation was run
with Lc,min = 0.05 m.

Figure 7.8.: Fengyun-1C fragments’ ∆V to A/M value distribution. The simulation was run
with Lc,min = 0.05 m.
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7.4. The Explosion of the Nimbus 6 R/B

The last section of this chapter handles the Nimbus 6 upper stage explosion. It was a Delta
2nd stage with a mass of 839 kg, which exploded due to an error with the propulsion system
on May 1, 1991. [BJR+98] Although it is given, the mass has no direct influence on the
number of generated parts in case of an explosion, as mentioned in Subsection 2.3.1. The
simulation has been run with a minimal characteristic Length Lc of 0.1 m, and as Figure 7.9
underlines, the size distribution of the simulation-run nearly overlaps the distribution of
the actual event. This fact is not surprising since the Nimbus 6 R/B explosion was one
event taken into account for the derivation of the NASA Breakup Model. The latter two,
Figure 7.10 and Figure 7.11 show the A/M and the Delta Velocity distribution. One might
ask why no other comparison figures are given. Overall there are two reasons. First of all,
there are only rare figures showing the Nimbus 6 R/B explosion in literature. Secondly, the
approach we took to create the formerly presented Lc to A/M figures needs scaling factors
that have not been calculated for the Nimbus 6 R/B explosion.

(a) The C++ NASA Breakup Model’s prediction with
Lc,min = 0.1 m

(b) NASA Reference, from [Lio12]

Figure 7.9.: Nimbus 6 R/B fragments’ Lc distribution (both in blue). The NASA reference
shows additional lines illustrating other upper stage explosions. The red line
illustrates the power-law of Equation 2.6. The exact match is no coincidence
because these are the explosions used to derive Equation 2.6 of the NASA
Breakup Model.
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7.4. The Explosion of the Nimbus 6 R/B

Figure 7.10.: Nimbus 6 R/B fragments’ Lc to A/M value distribution. The simulation was
run with Lc,min = 0.1 m.

Figure 7.11.: Nimbus 6 R/B fragments’ ∆V to A/M value distribution. The simulation was
run with Lc,min = 0.1 m.
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Figure 8.1.: Cumulative fragment number for a certain minimal characteristic Length Lc,min

for the collision of Iridium-33 and Cosmos-2251. Here, no mass conservation was
enforced. The dashed lines illustrate the time measurement points of Chapter 8.

This chapter provides detailed runtime measurements for the Iridium-33 Cosmos-2251
Collision scenario. Since the formulas remain the same for other collisions or explosions, this
chapter exemplifies any simulation with a specific output size depending on the minimal
characteristic Length Lc,min. First, the most significant changes on the way to better runtime
are portrayed, and later we will investigate the influence of the mass conservation option,
which is alongside the characteristic Length Lc,min, the only variable able to change the
output volume. All plots depicting runtime are made on a computer with the following
hardware specifications: Intel(R) Core(TM) i9-9900K CPU @ 3.60GHz and 16GB DDR4-
3200. Overall, the processor has in total eight physical and sixteen virtual cores. The
program was compiled in RELEASE mode permitting the compilers GCC 9.3 and Clang
10.0 to make extensive optimizations.

The Figure 8.1 below shows the minimal characteristic Lengths utilized for the creation of
the here presented figures. The last data point for time measurements is at Lc = 0.0002 m
instead of 0.0001 m, because the testing computer failed to reserve the necessary memory for
Lc = 0.0001 m, which corresponds to approximately 163 million fragments. For comparison
reasons, the simulation allocates and deallocates for the scenario Lc = 0.0002 m around
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9.0 GB of RAM as tracked by Intel’s VTune Profiler.1 However, this is not the peak memory
consumption since it also contains temporary allocations. Therefore, the system’s manager
only recorded a maximum memory consumption of around 6.0 GB. The two last presented
data points are more interesting for runtime analysis than actually using their results as the
NASA Breakup Model was only validated for sizes between 1 mm and 1 m, as mentioned in
Subsection 2.3.1.

8.1. Milestones of Runtime

The runtime of the simulation mainly depends on the simulation-run itself and the efficiency
of the utilized model, granted that we can amortize the runtime of input and output.
Accordingly, two components of Chapter 4 are relevant if we strive for the shortest possible
runtime: The Model and the Simulation. The first optimization was accomplished for the
Model in changing the fundamental programming paradigm. Initially, we started with an
object-oriented approach modeling the fragments as satellites saved in a std::vector. This
strategy corresponds to the Arrays of Structure (AoS) approach, which is generally excellent
from a designer’s viewpoint since it is intuitive but not from a computational perspective.
By decreasing the rate of cache misses using neighborhoods, we can increase performance.
Thereby, the successive data must lie side by side in memory. Consequently, we moved from
an object-oriented approach to the data-oriented Structure of Arrays (SoA) ansatz, in which
we concentrate all data into a single object. The SoA fixes the memory bottleneck as the
next date can be prefetched before the CPU needs it.

Nonetheless, this ansatz is only applied for the simulation’s output but not for the input
because we amortize the input on the one hand. On the other hand, the arrays of structures’
ansatz is more suitable for the input as it is flexible. This flexibility comes in handy when
reading satellites from an input file, and those satellites are constructed from different means
like TLE, YAML, or CSV using a dedicated uniform Builder interface.

In conclusion, the simulation works with an SoA layout which improves the runtime of
the whole project. These changes become apparent in Figure 8.3 and Figure 8.4, which
illustrate the speed gains absolute and relative. The blue curve represents the AoS, whereas
the orange curve represents the SoA layout. Notably, the SoA seems to be as good as the
AoS approach. However, comparing the relative speed, illustrated in Figure 8.4, shows
that the AoS layout is slightly better than the SoA until a minimal characteristic Length
Lc,min ≈ 0.01 corresponding to around 62000 fragments. This observation seems reasonable
since if we assume that the advantage of successive data is only of minor size for each
fragment’s generation, then this advantage would accumulate to more significant values with
increasing fragment amounts.

Regardless one must add that the paradigm change happened in the mid of the imple-
mentation when not every feature was already implemented, e. g., the mass conservation
was implemented later. Here, we speak of the always activated upper bound, not the
later considered enforcement as lower bound. So the here plotted SoA implementation has
slightly more work to do than the AoS layout, and despite this, it is faster than the AoS
implementation for a higher number of generated debris. Therefore the SoA ansatz wins the

1https://software.intel.com/content/www/us/en/develop/tools/oneapi/components/vtune-

profiler.html last accessed: 10.0.09.2021
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duel of faster runtime even if the AoS is insignificantly better sometimes.

The transition to the SoA layout paved the way for further optimizations with the most
significant being the introduction of parallelism. The parallelization has been accomplished
using the C++ 17 features of std::execution, enabling us to efficiently transfer sequential
for each statements into parallel execution. As each fragment is independent of the other,
this can be performed lock-free without risking correctness. We only need to be careful
with generating random numbers to avoid race conditions when accessing the corresponding
generator. This issue has been resolved using the storage specifier thread local, creating
one generator instance for each thread’s lifetime. These changes particularly accelerated the
more enormous scenarios with millions of fragments being generated.

The effects of the undertaken parallelization measures are presented in Figure 8.2, which
illustrates the exemplary core utilization of one simulation-run. First of all, as profiled with
VTune, the general performance bottlenecks are the generation of random numbers and the
frequent unavoidable utilization of the pow function. The parallelization efforts directly
counter these problems, even though the workload is only divided among processors and
not decreased. Figure 8.2 shows the general core utilization, as measured by VTune, for the
scenario of Lc = 0.0005 m. We cannot achieve full parallelization since, on the one hand,
the input will always be only sequential executable, and on the other hand, time is lost due
to thread creation and joining. According to VTune, the latter is the reason behind most
registered waiting time, with only a few cores used in Figure 8.2. Despite the disadvantages,
the presented simulation performs better with parallelization than without, as presented in
Figure 8.3.

Figure 8.2.: The Breakup Simulation with Lc,min = 0.0005 analyzed with VTune

Furthermore, the SoA layout permits us not only to parallelize the calculation but also
to vectorize operations. Thus, we do not use the std::execution::parallel policy but
rather std::execution::parallel unsequenced policy. Nevertheless, the main bottle-
neck methods generating characteristic Lengths, area-to-mass ratios, and ejection velocities
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do not use vectorization, presumably due to synchronization issues with the random number
generator. However, the simulation makes use of vectorization in the tuple-view methods
(see Section 4.2) and in the parent assignment method (see Section 4.4) as profiled with
Intel Advisor2.

In summary, the last step, which parallelized the simulation-run, has improved runtime
significantly, as Figure 8.3 and Figure 8.4 depict. Here, the latest change is plotted in
magenta. It is easily overseen that the improved parallel implementation is on average six to
eight times faster than the sequential executions with exception of few generated fragments
correlating to great minimal characteristic Lengths Lc,min. However, this circumstance is
not surprising as thread creation takes some time, and it is inefficient to create a thread just
for little work.

Figure 8.3 and Figure 8.4 show the results twice, one time for the GCC 9.3 and the other
time for Clang 10.0. The proportions of the presented data mainly remain the same in both
versions. However, the GCC 9.3 is on average faster than Clang 10.0. This circumstance
becomes especially apparent at a fragment count of 107. In the end, this comparison should
emphasize the robustness of the implementation to different compilers since the speed
differences are only of low magnitudes. For completeness, Section 8.2 continues with the
dual presentation of its results.

2https://software.intel.com/content/www/us/en/develop/tools/oneapi/components/advisor.html

last accessed: 14.09.2021
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(a) Compiled with GCC 9.3

(b) Compiled with Clang 10.0

Figure 8.3.: Required calculation time [µs] compared to the number of fragments. The solid
line marks the average time of ten sequential executed simulation-runs, whereas
the colored zone around marks respectively the slowest and fastest simulation-
run. Different implementation paradigms are colored differently. The dashed
vertical lines illustrate the measurement points as presented in Figure 8.1.
Figure 8.4 portrays a relative comparison since AoS and SoA approaches are
nearly overlapping in these subfigures.
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(a) Compiled with GCC 9.3

(b) Compiled with Clang 10.0

Figure 8.4.: Relative required calculation time for a specific minimal characteristic Length Lc.
The solid line marks the average time of ten sequential executed simulation-runs,
whereas the colored zone around respectively marks the slowest and fastest
simulation-run. Different implementation paradigms are colored differently, and
the parallel Structure of Arrays has been normed as one. The dashed vertical
lines illustrate the measurement points as presented in Figure 8.1.
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8.2. Influence of Mass Conservation

After introducing the three milestones of runtime optimization, this section advances with the
option of mass conservation enforcement. Subsection 2.3.2 already proposed this procedure
as controversial. Thus the filling of the mass budget, so that input mass equals output mass,
is implemented optionally. If enabled, the simulation generates more fragments in case of
an unfilled mass budget. Figure 8.5 still contains the vertical dashed lines illustrating the
number of fragments created for a specific Lc,min as proposed by the collision size distribution
of the NASA Breakup Model. Notably, those lines are not overlapping anymore with the
actual data points, each marked with a horizontal black line. Instead, these horizontal black
lines begin at the minimal generated amount of fragments over ten simulation-runs and
end at the maximum generated amount. The enforcement of the mass budget frequently
generates more fragments because the horizontal black line is mainly on the right of the first
estimation made by the Breakup Model’s size distribution.
Consequently, the runtime usually is higher than with disabled mass budget fulfillment.

Besides the triviality of more fragments being generated, there is another reason why the
runtime is slower than when the option is turned off: The simulation cannot predict how
many fragments it has to generate until the mass budget is fulfilled. Thus, it cannot foresight
the memory requirements and has to work greedy by just allocating as much as it is best at
the moment. Hence, the strategy generates and allocates space for only one fragment at a
time since this fragment would always be the last if the best case applies.
Another observation of Figure 8.6 is that the runtime is similar to a normal execution

flow in the best case. In view of the fact that in the best case, no additional fragments have
to be produced or fragments only have to be removed because of exceedance, the simulation
behaves likewise as with disabled enforcement.
The essence of this section is the evidence that the option of mass enforcement costs

runtime and makes the simulation, on average, approximately two times slower as illustrated
in Figure 8.6.
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(a) Compiled with GCC 9.3

(b) Compiled with Clang 10.0

Figure 8.5.: Required calculation time [µs] compared to the number of fragments for enabled
and disabled option mass conservation. The solid line marks the average
time of ten sequential executed simulation-runs, whereas the colored zone
around respectively marks the slowest and fastest simulation-run. Different
implementation paradigms are colored differently. The dashed vertical lines
illustrate the measurement points as presented in Figure 8.1. The horizontal
black bars mark the lowest and highest produced fragment number over the
ten simulation-runs. Notably, the fragment count is mainly greater than with
disabled mass conservation marked by the dashed vertical lines.
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(a) Compiled with GCC 9.3

(b) Compiled with Clang 10.0

Figure 8.6.: Relative required time of enabled mass conservation compared to a disabled
option (normed to one) for a specific minimal characteristic Length Lc. The
solid line marks the average time of ten sequential executed simulation-runs,
whereas the colored zone around respectively marks the slowest and fastest
simulation-run. The dashed vertical lines illustrate the measurement points as
presented in Figure 8.1.
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This chapter sums up the whole thesis and provides an overview of opportunities building
on top of this work.

9.1. Summary

We started the journey by introducing the importance of reliable models to predict outcomes
of collisions and explosions in an ever-growing environment of on-orbit objects for the
purpose of understanding the consequences of anthropological behavior in space. Chapter 2
further introduced the NASA Breakup Model as an often utilized way to predict these events
empirically. It defined the significant fragment properties of interest like characteristic Length
Lc, area-to-mass ratio A/M , and the ejection velocity vejection. The subsequent Chapter 3
tied on these fundamentals and created the context around this work. It explored different
available implementations and underlined the necessity of an open-source, fast, reliable, and
extensive implementation of the NASA Breakup Model in modern C++. Nevertheless, it
also uncovered some ongoing improvement efforts for future breakup modeling.
The elegance of the involved architectural design was further traversed in Chapter 4,

including the major principle of low coupled components and their highly cohesive interiors,
which enables the reuse of only certain components like the Model as stand-alone. In addition,
Section 4.4 defined relevant decisions made in order to create a complete implementation.
These decisions included the definition of a bridge function by using linear interpolation to
solve the A/M gap between fragments’ sizes of 0.08 m and 0.11 m or the parent satellite
assignment algorithm. Finally, Chapter 5 presented the different input use cases and syntactic
sugar for the library application. It introduced the possibilities of automatic, semi-automatic,
or manual determination of input parameters by using YAML files, TLE Data and the
satellite catalog.

The last part included the qualitative comparison with the Python implementation, which
served as the primary reference source. Moreover, Chapter 6 contained a description of the
utilized testing frameworks. As the qualitative comparison with the Python Implementation
was successful, we further illustrated its insufficiencies in the boundary areas of A/M ratio
determination. Finally, we presented the results of our implementation able to approximate
the NASA Breakup Model’s characteristics better than the Python implementation due to
the consideration of every functional use case.
Chapter 7 depicted the modeled results of three major events, including the Iridium-33

Cosmos-2251 collision, the Fengyun-1C anti-satellite test, and the Nimbus 6 R/B explosion.
Additionally, it illustrated that the original model is partly insufficient for modern satellites
like Iridium-33 since it does not consider the material composition of modern satellites.
It thereby underestimates fragments with high A/M values indicating lighter materials.
Nevertheless, the most results were fitting under the constraint of humankind’s limited radar
capabilities.
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Lastly, Chapter 8 introduced the efforts undertaken to improve the performance of the
presented C++ implementation, which essentially are the utilization of parallelism and a
data-oriented design approach. These changes significantly improved runtime by factor six
to eight on the testing system. Further, it investigated the effects on runtime by enabling
the option enforced mass conservation, which resulted in a doubled runtime on average.

9.2. Outlook

NASA Breakup Model C++

Simulation

Input

User Specification

Utility Functions

Util

Model

Data Container

Output

Breakup SimulationInput

Adapter

Orbit Propagator

Figure 9.1.: Potential linkage of an orbit propagator to the C++ Breakup Model Implemen-
tation via an adapter

Overall, the implementation results are satisfying. Nevertheless, improvements are always
possible as there is no final state, and the requirements constantly change. One primary goal
was the creation of an open-source, well-documented C++ implementation of the NASA
Breakup Model. As we have achieved this goal, it is possible to use this existing work as the
foundation for future experiments around breakup events due to the variety of additionally
provided universal tools like TLE input or Keplerian output.

As was presented before, some considerations are about improving the physical correctness
of the Breakup Model. Since the here presented strategy of assigning parent bodies and
ensuring the conservation of mass is rather simple, some improvements in future work would
presumably advance the precise fulfillment of significant physical properties like energy
conservation. The mentioned is neither fulfilled by this implementation nor the NASA
Breakup Model, regardless of its justified presence. In fact, there are fascinating strategies
out there to patch those properties into the model, with only a tiny portion covered in
Chapter 3.
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9.2. Outlook

Another area to improve is the implementation itself. We currently solely depend on
the C++ standard library in functional terms. Thus, third-party dependencies are just
utilized for input, testing, and output. In contrast, the simulation and the model are the
pure standards of C++ 17. This decision brings the advantage of reliability and correctness
for the fundamentals of the implementation and enables parallelization and random number
generation. However, third-party libraries could provide more performance in time-intensive
areas like random number generation through, for instance, better implemented vectorization.
Therefore, they are suitable for future improvements to this work, but further guarantees
about their correctness have to be investigated.

As the Breakup Model’s different fragmentation events are implemented via inheritance, it
would be a valuable future addition to integrate other breakup models into the implementation
to form a uniform breakup interface. Undoubtedly, these additions could include breakup
models for other scenarios like reentry or breakup models with higher accuracy. Alternatively,
it is also thinkable to integrate the architecture into a long-term model via an adapter,
as illustrated in Figure 9.1. In conclusion, further reuse of the components is pretty
straightforward, and since it is open-source, there are no restrictions on possible deployment
scenarios nor thoughts.
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