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Abstract

In the care of patients with cancer, knowledge of the disease spread and overall burden is
a key factor in the clinical decision-making process. Medical imaging is routinely used as
noninvasive method to aid diagnosis and staging as well as treatment selection, planning,
and monitoring. In addition to qualitative image inspection by physicians, standardized cate-
gorical and quantitative variables are increasingly used for accurate and reproducible image
evaluation. Nevertheless, the manual determination of detailed image-derived parameters can
require laborious examination and maneuvering, thus being time-consuming, error-prone, and
operator dependent. Conversely, automated image analysis methods can be employed to im-
prove robustness and repeatability. Notably, deep learning techniques have demonstrated high
accuracy in automating visual tasks and are promising for enabling image-derived biomarkers
in oncology.

This dissertation presents contributions to image analysis methods in positron emission tomog-
raphy (PET) / computed tomography (CT) and their application in determining image-derived
biomarkers in oncology. The first contribution consists in a deep learning method for au-
tomated classification of elevated tracer uptake regions, trained for multiple radiotracers.
PET/CT image regions are classified as uptake suspicious or nonsuspicious for cancer. Addi-
tionally, high-uptake regions are classified with respect to their anatomical location. Results
indicate that a convolutional neural network can classify high uptake sites in good agreement
with the visual assessment by a physician. The second contribution consists in the application
of automated uptake classification in Prostate Specific Membrane Antigen (PSMA)-ligand
PET/CT to assess prostate cancer stage. Results indicate that the proposed method can be
used to determine the image-based nodal and metastatic stage according to a standardized
reporting framework in concordance with expert reader evaluation. The third contribution
consists in the application of automated uptake classification in 18F-Fluorodeoxyglucose (FDG)
PET/CT images to estimate total metabolic tumor volume (TMTV) in lymphoma patients.
Results show that in the examined cohort the proposed method determined an estimation
of baseline TMTV significantly correlated and having comparable prognostic value with the
TMTV estimation obtained semi-automatically by clinicians.

The presented methods for automated analysis of PET/CT images using deep learning show
promising results for supporting physicians in evaluating cancer stage and overall burden.
Moreover, the investigated methods could potentially allow clinicians to identify novel biomark-
ers based on the rich information extracted from whole-body tumor assessment in PET/CT
images. In conclusion, deep learning algorithms may aid the evaluation of informative and ac-
tionable image-derived cancer biomarkers and, together with diligent validation in multicenter
trials, drive their establishment in the clinical routine.
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Zusammenfassung

Bei der Versorgung von Krebspatienten ist die Kenntnis der Krankheitsausbreitung und Gesamt-
belastung ein Schlüsselfaktor im klinischen Entscheidungsprozess. Medizinische Bildgebung
wird routinemäßig als nichtinvasive Methode zur Unterstützung der Diagnose und des Sta-
gings sowie der Behandlungsauswahl, -planung und -überwachung verwendet. Neben der
qualitativen Bildbetrachtung durch den Arzt werden zunehmend standardisierte kategoriale
und quantitative Parameter zur genauen und reproduzierbaren Bildauswertung eingesetzt.
Nichtsdestotrotz kann die manuelle Bestimmung detaillierter, bildabgeleiteter Merkmale
ein mühsames, arbeitsintensives und zeitaufwendiges Verfahren sein, das fehleranfällig und
bedienerabhängig ist. Umgekehrt können automatisierte Bildanalyseverfahren eingesetzt
werden, um die Robustheit und Wiederholbarkeit zu verbessern. Insbesondere Deep-Learning-
Techniken haben eine hohe Genauigkeit bei der Automatisierung visueller Aufgaben gezeigt
und sind vielversprechend für die Ermöglichung bildbasierter Biomarker in der Onkologie.

Diese Dissertation beinhaltet Beiträge zu bildanalytischen Verfahren in der Positronen-Emissions-
Tomographie (PET) / Computertomographie (CT) und deren Anwendung bei der Bestimmung
bildbasierter Biomarker in der Onkologie. Der erste Beitrag besteht in einer Deep-Learning-
Methode zur automatisierten Klassifizierung von Regionen mit erhöhter Traceranreicherung,
trainiert für mehrere Radiotracer. PET/CT-Bildbereiche werden als krebsverdächtige oder
nicht krebsverdächtige Strukturen klassifiziert. Darüber hinaus werden Regionen mit hoher
Aufnahme hinsichtlich ihrer anatomischen Lage klassifiziert. Die Ergebnisse deuten darauf
hin, dass ein neuronales Faltungsnetzwerk in guter Übereinstimmung mit der visuellen Be-
urteilung durch einen Arzt Orte mit hoher Aufnahme klassifizieren kann. Der zweite Beitrag
besteht in der Anwendung der automatisierten Aufnahmeklassifikation bei PET/CT mit dem
prostataspezifischen Membranantigen (PSMA)-Liganden zur Beurteilung des Prostatakrebs-
stadiums. Die Ergebnisse zeigen, dass die vorgeschlagene Methode verwendet werden kann,
um das bildbasierte nodale und metastatische Stadium gemäß eines standardisierten Berichts-
rahmens in Übereinstimmung mit einer Expertenbewertung durch Befunder zu bestimmen.
Der dritte Beitrag besteht in der Anwendung der automatisierten Aufnahmeklassifikation in
18F-Fluorodesoxyglucose (FDG) PET/CT-Bildern zur Schätzung des metabolischen Gesamttu-
morvolumens (TMTV) bei Lymphompatienten. Die Ergebnisse zeigen, dass die vorgeschlagene
Methode in der untersuchten Kohorte eine Schätzung des TMTV-Ausgangswerts erlaubt,
die signifikant korreliert ist und einen vergleichbaren prognostischen Wert ergibt wie die
halbautomatische, von Klinikern ermittelte TMTV-Schätzung.

Die vorgestellten Methoden zur automatisierten Analyse von PET/CT-Bildern mittels Deep
Learning zeigen vielversprechende Ergebnisse, um Ärzte bei der Beurteilung des Krebsstadiums
und der Tumorgesamtbelastung zu unterstützen. Darüber hinaus könnten die untersuchten
Methoden es Klinikern möglicherweise ermöglichen, neue Biomarker basierend auf den
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umfangreichen Informationen zu identifizieren, die mit Hilfe der Ganzkörper-PET/CT ge-
wonnen werden kann. Zusammenfassend lässt sich sagen, dass Deep-Learning-Algorithmen
die Bewertung informativer und umsetzbarer bildbasierter Krebsbiomarker unterstützen und
zusammen mit einer sorgfältigen Validierung in multizentrischen Studien ihre Etablierung in
der klinischen Routine vorantreiben können.
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Part I

Introduction





1Introduction

Cancer is one of the leading causes of death worldwide [80]. Information on cancer genesis,
molecular profile, metabolism, progression, and response to external stimuli is fundamental for
developing effective treatments as well as tailoring and implementing them for each patient.
The analysis of tissue samples obtained via biopsy or surgery allows ex-vivo evaluation at
cellular level and is often considered as gold standard examination. Nevertheless, this sampling
method can only provide a limited coverage of organs and tissues, it is not systematically
applicable in all cases and can cause side-effects. Medical imaging, on the other hand, can be
used to noninvasively assess defined tissue properties in vivo with a larger sampling space up
to the entire body. Technological advancements in the imaging field have enabled to approach
or surpass millimetric resolution, increase sensitivity and in some applications to record
multiple tissue properties and their evolution over time within a single examination, creating
a wealth of information. In addition to qualitative visual image inspection by physicians,
categorical and quantitative parameters are increasingly being used to characterize disease
as image-derived biomarkers. Therefore, accurate and reproducible image analysis methods
are necessary to enable the identification and clinical application of robust and repeatable
biomarkers. Notably, machine learning methods have recently demonstrated high accuracy in
automating visual tasks and their application in medical image analysis is a promising enabler
of informative and actionable image-derived biomarkers.

1.1 Contributions

This dissertation focuses on methods for the analysis of positron emission tomography (PET)
/ computed tomography (CT) images aimed at identifying the presence of sites suspicious
for cancer and determining their anatomical localization, with applications in assessing the
disease spread and overall burden. Contributions are related to algorithm development
and evaluation of the presented methods for clinical applications. First, a convolutional
neural network is described for the classification of foci with elevated radiotracer uptake
as nonsuspicious or suspicious for cancer and the classification of their anatomical location.
Methods to leverage PET/CT data obtained with different radiotracers for training purposes
are presented, including the use of transfer learning and a dedicated network architecture
for concurrent training. Second, the application of the presented algorithm is assessed for
the automated identification of prostate cancer stage according to a standardized reporting
framework, showing fair concordance with physicians. Third, the application of uptake
classification is assessed for the automated estimation of baseline total metabolic tumor
volume in lymphoma patients, showing comparable prognostic value with estimates obtained
manually by physicians.
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1.2 Outline

In this dissertation essential background information is first introduced.

• Section 1.3 introduces the medical imaging modalities discussed in the thesis. Fundamen-
tal aspects of underlying principles, data acquisition and quantification are described.

• Section 1.4 provides background information on imaging biomarkers in PET/CT for
applications in oncology. Radiotracers commonly used in clinical examinations are con-
cisely described. Essential aspects of staging based on PET/CT imaging are introduced.
Established and emerging semiquantitative parameters are presented.

• Section 1.5 summarizes the main elements of image classification related to the contri-
butions presented in the dissertation. Convolutional neural networks, transfer learning
techniques, and evaluation metrics are described.

Contributions to images analysis methods and their use for clinical applications are then
presented and discussed.

• Chapter 2 presents contributions in image analysis methods for classification of foci with
elevated tracer uptake. Strategies to train a convolutional neural network by leveraging
PET/CT data obtained with different radiotracers are described and shown to increase
performance when the availability of image data and expert-annotated ground truth is
limited.

• Chapter 3 describes the use of uptake classification for automated assessment of prostate
cancer nodal and metastatic stage according to a standardized reporting framework.
Results are compared to the ones indicated by physicians showing fair concordance.

• Chapter 4 presents the use of uptake classification for automated estimation of total
metabolic tumor volume. The method is evaluated with a retrospective analysis in
a cohort of lymphoma patients enrolled in a multi-center trial. Baseline metabolic
tumor volume estimates obtained automatically with the proposed method and semi-
automatically by clinicians are shown to be significantly correlated and have comparable
prognostic value for progression free survival and overall survival.

Significant parts of the results presented in the dissertation have been published. The cor-
responding publications are indicated at the beginning of the respective chapters and listed
in the Appendix. While the realization of the contributions described was conducted by the
author of this thesis, the first-person plural is occasionally used to reflect a collective team
effort. Finally, chapter 5 concludes the dissertation by discussing the results presented in the
thesis and directions for future research.
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1.3 Medical imaging with PET/CT

This section introduces fundamental aspects of the medical imaging modalities discussed in
the dissertation. The purpose is to provide an essential understanding to readers unacquainted
with positron emission tomography / computed tomography, while references to more detailed
descriptions are indicated. Physical principles of image acquisition as well as quantification
characteristics are concisely described. Medical images are typically obtained by measuring the
energy emerging from the human body as result of either natural processes or the interaction
with artificial stimuli. In several modalities employed in clinical routine, images are formed by
acquiring an electromagnetic or mechanical radiation signal generated by an artificial source,
external or introduced into the subject, and modulated by the human body. Medical imaging
allows the unique possibility to measure defined properties of organs and tissues in multiple
spatial dimensions and detect as well as monitor alterations. Such capability has resulted
in numerous clinical applications from diagnosis to staging as well as treatment selection,
planning, and monitoring.

1.3.1 X-ray Computed Tomography

Computed Tomography (CT) is a type of transmission imaging in which X-ray electromagnetic
radiation, typically within an energy window of 50 keV≤ hν ≤140 keV for diagnostic imaging
[10], is generated by an external source and directed to the target object. By rotating the source
around the target object and measuring the emerging radiation with an array of detectors, the
spatial distribution of the object attenuation coefficient is reconstructed, through the solution
of an inverse problem, and can be visualized as a CT image. A schematic illustration of a
conventional CT scanner is displayed in Fig. 1.1.

The X-ray source consists in a vacuum tube in which electrons are accelerated with an electric
field between a cathode filament, where they are liberated via thermionic emission, and
an anode disk, where they decelerate, resulting in the emission of X-ray radiation named
bremsstrahlung with a continuous spectrum, and X-ray emission with sharp spectral lines
characteristic of the anode material. The intensity of the generated radiation is controlled
by the electron current, while the spectrum is related to the acceleration voltage and anode
material. A metal filter is used to reduce low energy components and lower the patient dose.

As the X-ray photons traverse the target object, they interact with it through different absorp-
tion and scattering mechanisms, resulting in an attenuation of the radiation intensity. For a
monochromatic X-ray and a homogenous medium, this can be modeled by an exponential
reduction of the intensity as a function of the material thickness, with a fixed linear attenuation
coefficient related to the material. For a monochromatic X-ray and an inhomogeneous medium,
the attenuation is obtained by a negative exponential of the summed attenuation contributions
of the volume elements traversed by the radiation. Each contribution consists in the linear
attenuation coefficient of a volume element multiplied by its thickness. Thus, each radiation
ray emerging from the target object carries defined information on the attenuation properties
of the material it intersects, namely the integral of the linear attenuation coefficient along the
ray line.

1.3 Medical imaging with PET/CT 5



Fig. 1.1. Schematic illustration of an X-Ray Computed Tomography scanner. Adapted from [74].

The intensity of the radiation emerging from the object is measured by an array of detectors.
Different detector designs can be employed in CT systems, including gaseous ionization
detectors, scintillator detectors, and direct semiconductor detectors. In gas detectors, X-ray
photons ionize a gas producing ions and free electrons in a chamber with an applied electric
field, creating a measurable electric current. Scintillator detectors consist in a scintillator
medium, in which X-ray photons are converted to lower energy photons, coupled with
photodiodes, which convert the lower energy radiation intensity signal to an electric current
signal. In direct semiconductor detectors, X-ray photons interact with a semiconductor
material under an applied electric field producing hole-electron pairs generating an electric
current. Direct semiconductor detectors have been recently employed in research on photon-
counting computed tomography, aimed at exploiting the detection and energy measurement
of individual X-ray photons to improve image quality. In all the detector types described, the
measurement of the generated electric current allows to store and process the X-ray intensity
information digitally.

In modern CT scanners the X-ray tube and detector block are mounted on a slip ring structure
on which they can rotate and receive electrical power. Traditionally, the X-ray source generates
a fan beam, and the resulting radiation is measured by a diametrically opposed detector
arc. By rotating the source and detector arc, multiple one-dimensional intensity profiles are
recorded at different source positions, of the radiation emerging from a slice of the scanned
object. These intensity profiles can be interpolated and visualized in a two-dimensional image
named sinogram (Fig. 1.2a), whose spatial dimensions correspond to the X ray angles and
offsets in the slice plane. The sinogram values represent the integral of the linear attenuation
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coefficient for each line in the slice plane, an operation known as Radon transform. It is
proven analytically that from a sinogram the spatial distribution of the attenuation coefficient
can be reconstructed [93]. A common reconstruction method equivalent to the inverse Radon
transform is Filtered Back Projection (FBP), which consists in applying a ramp filter to the
measured one-dimensional attenuation profiles and summing the resulting values projected
back along the corresponding X-ray lines for all angles. Different kernels can be used for
FPB other than the ramp filter, with a different trade-off between image noise and spatial
resolution. A separate class of reconstruction methods comprises iterative reconstruction (IR)
algorithms. In IR methods, images are reconstructed by iterative optimization of an objective
function guaranteeing data fidelity. Physical factors such as photon statistics, X-ray beam
spectrum, and detector geometry can be incorporated in IR methods. For detailed descriptions
of reconstruction algorithms we refer to Computed Tomography reviews [10][67].

a b

Fig. 1.2. Examples of (a) computed tomography sinogram and (b) reconstructed CT image. CT image courtesy of
Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.

As result of the reconstruction, a discretized two-dimensional linear attenuation coefficient
map of an object slice is obtained, which can be visualized as a CT image (Figure 1.2b).
Typically, multiple object slices are scanned resulting in a three-dimensional acquisition. The
linear attenuation coefficient depends in general on the X-ray energy spectrum used. In
medical imaging applications, CT images are expressed in units termed Hounsfield units (HU)
by linearly rescaling the attenuation coefficient measured, such that the attenuation of water
corresponds to 0 HU and zero attenuation corresponds to −1000 HU. Lung tissue and fat
correspond to negative Hounsfield units, while muscles, connective tissue and most soft tissue
organs correspond to positive Hounsfield units, and bone is related to higher values typically
up to 2000 HU. Medical CT scanners typically provide integer values between −1024 HU and
3071 HU. CT is routinely employed in a broad variety of clinical contexts including imaging
of stroke, trauma, as well as oncologic, cardiovascular, abdominal and lung diseases with
applications in diagnosis, treatment guidance and monitoring.

1.3 Medical imaging with PET/CT 7



1.3.2 Positron Emission Tomography

Positron Emission Tomography (PET) is a type of emission imaging in which a radiopharma-
ceutical containing a radionuclide is injected in a scanned subject where it distributes, and the
radionuclide decays by positron emission, generating pairs of gamma photons resulting from
electron–positron annihilation. By measuring the number and coincidence time of gamma
photons emerging from the scanned object with a ring of detectors, the spatial distribution
of the radioactivity concentration within the subject is reconstructed, trough the solution of
an inverse problem, and can be visualized as a PET image. A schematic illustration of a PET
scanner is displayed in Fig. 1.3.

coincidence

detection

annihilation

Fig. 1.3. Schematic illustration of a Positron Emission Tomography scanner. Adapted from [75].

PET radiopharmaceuticals are chemical substances containing a positron emitting radionuclide.
In PET imaging, a radionuclide is typically bound to a ligand, forming a radiopharmaceutical
compound which interacts with physiological and pathological processes once injected in a
subject. By measuring the spatial distribution of radioactivity concentration within the subject
through PET imaging, functional information can be assessed on a biological process of interest
marked by the concentration of radiopharmaceutical. Radionuclides used in PET include 18F,
11C, 13N, 15O, 68Ga, 82Rb, 62Cu among others and are produced through a cyclotron, reactor,
or generator either directly or indirectly via production of a parent radionuclide. Radionuclide
characteristics useful for PET imaging include a low fraction of non-positron decays, a short
positron range, a half-life allowing to image the biologic process of interest without excessive
radiation dose and with a viable radiotracer supply chain. Radiopharmaceuticals can be
designed to act as analogues of biological molecules or bind to specific targets, allowing
to assess a biological process of interest. Radiopharmaceutical properties useful for PET
imaging include high affinity for the intended target as well as metabolic, kinetic, and
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excretion characteristics allowing to image the target of interest without interference from
other processes and without excessive radiation dose. PET radiopharmaceuticals for clinical
use in oncology are described in section 1.4.1.

As the radiotracer is distributed within the subject, the proton-rich radionuclides undergo
one or multiple decay processes including positron decay, by which a proton is converted to a
neutron with emission of a positron and a neutrino. The residual transition energy is converted
in kinetic energy of the positron and the neutrino. The positron traverses the medium within
a range which depends on its energy and the density of the medium, typically in the order of
a few millimeters for PET radionuclides in water [103]. Subsequently, the positron interacts
with an electron of the medium and both particles are annihilated resulting in the emission of
two 511-keV photons in opposite directions, with an angle close to 180 degrees and depending
on the residual positron momentum at annihilation. As the gamma photons traverse the
object, they undergo different absorption and scattering processes causing attenuation of
the radiation intensity, which can be accounted for by a total attenuation coefficient that
depends on the photon energy and the traversed medium. Photon pairs which emerge from
the subject without interaction and in close coincidence therefore carry defined information
on the location of the originating annihilation and radiotracer decay.

The number of gamma photons emerging from the subject is measured by a ring of detectors.
Modern PET scanners employ scintillation crystals in which an incident gamma photon
is converted in lower energy photons. Different materials have been used as scintillation
crystals in PET scanners, including bismuth germinate (BGO), lutetium oxyorthosilicate (LSO),
and lutetium yttrium oxyorthosilicate (LYSO), each with different physical properties in
terms of attenuation coefficient, photon yield, and scintillation decay time. Lower energy
photons produced by the scintillation crystals are converted to electric signal and amplified
either via a photomultiplier tube or, in more recent scanners, via a silicon photomultiplier.
The conversion to lower energy photons and then electric signal allows to measure the
count, energy, and timestamp of gamma photons detected as well as record and process this
information digitally.

In modern PET scanners, detectors are arranged in an array of rings, with the scanned subject
positioned at the center. By detecting gamma photon pairs in opposing detectors within a
short time window named coincidence window, a line of response is defined connecting the
two detectors, where an annihilation event may have occurred. In addition to cases where an
annihilation actually occurred along the defined line of response, named true coincidences,
other events can be detected along the same line of response due to random coincidence
of unrelated annihilations, or due to the scattering of gamma photons. Different methods
can be used to correct for random coincidences, including the subtraction of the count rate
measured with a delayed coincidence window, which approximates the random coincidence
rate. Dedicated methods can be used to correct for scatter events, including a Monte Carlo
simulation of the scatter distribution from an initial estimate of the reconstructed activity
distribution.

The true coincidence events measured for all the lines of response in a plane can be represented
in a sinogram image (Figure 1.4a). In this image, each sinogram value represents the total
number of annihilations occurred generating photon pairs along a line of response minus
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undetected annihilations due to the attenuation of gamma photons. After correcting for
attenuation, the spatial distribution of annihilation events can be reconstructed through the
solution of an inverse problem with analytic or iterative reconstruction methods. Moreover, the
time of flight technique is employed in recent PET scanners, through which the measurement
of the time difference in arrival of photon pairs at the detectors allows to estimate the distance
they traveled and in which segment of the line of response the originating annihilation may
have occurred. Including the time of flight information in the reconstruction allows to improve
sensitivity and image quality, particularly in heavy subjects in which the amount of attenuation
and scattering is higher. Further details of attenuation correction in PET/CT will be provided
in section 1.3.3. For a detailed description of methods to correct for attenuation, random
coincidences, and scatter, as well as image reconstruction algorithms we refer to Positron
Emission Tomography reviews [103][2].

a b

Fig. 1.4. Examples of (a) positron emission tomography sinogram and (b) reconstructed PET image. PET image
courtesy of Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland.

Following image reconstruction, a discretized spatial map of positron emission events occurred
during the acquisition is obtained, which can be visualized as a PET image (Fig. 1.4b).
Typically, events occurring in multiple planes are measured by an array of detector rings,
resulting in a three-dimensional acquisition. The spatial map of decay events within the subject
carries defined information on the radiotracer distribution and interaction with physiological
and pathological processes during the acquisition time. In static PET scans, image acquisition
is performed at a fixed time delay after injection for which the highest image quality and
reproducibility is obtained for the radiotracer and biologic process of interest. Assuming the
radiotracer distribution is constant during the acquisition time, PET images can be expressed
in units of radioactivity concentration, such as Bq/mL or equivalent units, calculated at
the time of scan start by correcting for decay during the acquisition time. The measured
radioactivity concentration is proportional to the concentration of radiopharmaceutical and
its metabolites. However, since the administered dose, distribution volume, and kinetic
behavior of the radiotracer are different for each PET scan, the measured units of radioactivity
concentration are not a quantitative assessment of the biochemical process of interest and
cannot be compared between scans. To partially correct for factors of inter-scan variability and
describe the biological process of interest under simplistic assumptions, static PET images can
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be expressed in semiquantitative units, which are described in section 1.4.3. In dynamic PET
scans, temporal variations in the radiotracer distribution are measured through an extended
acquisition time. By describing the tracer kinetic behavior with compartmental models, kinetic
parameters can be derived from the measured dynamic PET data, which are quantitative
indicators of the biochemical process of interest. For a detailed description of dynamic
PET techniques and tracer kinetic modeling methods we refer to dedicated reviews [2][94].
PET imaging is routinely employed for several clinical applications including cancer staging,
response assessment in oncology, evaluation of cardiac viability and perfusion as well as
examination of Parkinson’s disease, Alzheimer’s disease, and epilepsy.

1.3.3 Hybrid PET/CT

PET images are often visualized in combination with high-resolution CT or MR images, to
facilitate anatomical localization of findings and support image interpretation. Integrated
PET/CT scanners have been developed for combined acquisition with both imaging modalities
in close spatial alignment, allowing to assess functional and structural information with a
single machine and imaging procedure. Moreover, in PET/CT scanners the acquired CT data
can be used for attenuation correction of PET images, more accurately and with a shorter scan
time compared to other techniques used for attenuation correction.

In PET/CT scanners, both imaging units are mounted on the same support with the CT unit in
front adjacent to the PET unit in the back. The centers of both imaging units are aligned such
that the respective fields of view are separated only by a fixed axial displacement. Typically,
in a PET/CT protocol the CT scan is first acquired in less than one minute, during which
the patient is asked to perform breath hold or, if uncapable, shallow breathing, to minimize
motion artifacts. Following the CT scan, the patient bed is translated, and the PET acquisition
is performed. This allows to acquire co-registered PET and CT images in a single session,
which can be visualized side by side or fused to support image interpretation.

The acquired CT data can be effectively used for attenuation correction of PET images.
Typically, a single blank CT scan, acquired without a subject in the scanner, is used in
combination with a CT scan of each patient to obtain the corresponding map of attenuation
correction factors. Since the attenuation correction factor depends on the photon energy, a
scaling is applied from the lower energy of CT X-ray radiation to the higher energy of PET
gamma photons. The scaling factor is defined for a given tissue as ratio of the mass attenuation
coefficient of 511-keV photons to the mass attenuation coefficient of X-ray photons at a single
effective energy representing the CT spectrum, typically in the range 50–80 keV [71]. A fixed
set of scaling factors is applied, each one for a different tissue type and applied to all volume
elements of the corresponding tissue type segmented from the CT image. The resulting map
of attenuation coefficients for 511-keV photons is used in modern PET/CT scanners for PET
attenuation correction as well as scatter correction via Monte Carlo simulation. Compared
to other PET attenuation correction techniques which require a transmission scan using an
external long-lived source of gamma photons and last several minutes to acquire sufficient
counts, CT-based attenuation correction allows a shorter scan time. Depending on clinical
requirements for the PET/CT examination, solely a low dose CT with reduced image quality
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may be acquired for the purpose of attenuation correction, or a higher dose CT with superior
image quality may be acquired instead or in addition, to serve diagnostic purposes.

Factors affecting the CT image quality and mismatches between PET and CT data can cause
artifacts in PET/CT images, for instance due to patient motion, truncation of the CT field of
view, CT contrast agents and metal objects. In presence of PET/CT artifacts, the visualization
of a PET image reconstructed without correcting for attenuation and scatter may be required
to support correct image interpretation. Dedicated reconstruction algorithms and acquisition
protocols have been developed to eliminate or limit the occurrence of artifacts in PET/CT
[103][2].

1.4 PET/CT imaging biomarkers in oncology

This section introduces biomarkers used in PET/CT imaging for clinical applications in oncology.
A biomarker is described as a defined characteristic measured as indicator of physiological
processes, pathological processes, or biological response to an intervention or exposure [49].
As a plethora of management options is available in oncology, spanning from watchful waiting
to localized and systemic treatments, accurate knowledge of cancer spread and progression is
crucial for clinical decision making. Whole-body PET/CT imaging allows to obtain meaningful
disease information, combining a functional assessment, with PET radiopharmaceuticals
designed to interact with pathologic processes, and a structural assessment, with CT images
reflecting variations in morphology and density. In this section PET/CT imaging biomarkers
are presented, either established or emerging, for clinical use in oncology, including both
different radiopharmaceuticals and image-based parameters used to evaluate the disease
status and inform clinical decisions.

1.4.1 PET radiotracers in clinical oncology

Numerous radiopharmaceuticals have been developed and investigated to assess different
biological processes related to cancer through PET imaging. However, a limited set of
radiotracers is widely employed in clinical routine, in part due to challenges and costs
associated with establishing regulatory approval, reimbursement or payment for healthcare
providers, sustainable tracer production and supply. PET radiotracers which are broadly
employed for clinical applications in oncology are here concisely described.

The most common PET radiotracer used clinically in oncology is 18F-fluoro-2-deoxy-glucose
(18F-FDG) (Fig. 1.5a). 18F-FDG is a glucose analogue which enters cells via glucose transporters,
where it is either phosphorylated and does not undergo further glycolytic reactions or is
transported back outside the cells. By measuring the accumulation of 18F-FDG in tissue,
PET imaging can therefore be used to evaluate glucose consumption noninvasively. Notably,
tumors commonly have increased glucose consumption, overexpressing glucose transporters
and glycolytic enzymes. Thus, 18F-FDG PET images are used to identify tumors in a broad
variety of cancer types. Nevertheless, not all cancer cells have increased glycolytic activity
as to accumulate 18F-FDG: neuroendocrine and prostate tumors for instance do not have
significantly upregulated 18F-FDG uptake. Moreover, several biological processes unrelated to
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cancer are associated with increased glucose consumption, including muscle activation, brown
fat activation, inflammation, infection, and bone regeneration. While the numerous processes
of glucose absorption unrelated to cancer may be assessed with 18F-FDG PET for alternative
clinical and research purposes, in clinical 18F-FDG PET oncology scans such processes may
constitute a confounding factor, limiting the specificity in identifying tumor sites and requiring
careful image inspection for appropriate interpretation [112].

a b c

d e f

Fig. 1.5. Maximum Intensity Projections of PET scans obtained with different radiotracers used in oncology:
(a) 18F-FDG, (b) 68Ga-PSMA-11, (c) 18F-PSMA-1007, (d) 18F-NaF PET, (e) 68Ga-DOTATE, (f) 18F-FES.
Adapted from [114][41][45][53][19][43].

Several radiotracers are used for prostate cancer imaging. Carbon-11 choline is used to assess
tumor lipid metabolism, as choline is a precursor for the synthesis of phospholipids. Prostate
tumors have an altered lipid metabolism which results in increased uptake of 11C-choline [91].
Fluorine-18 fluciclovine is a synthetic leucine amino acid analogue used to assess tumor amino
acid metabolism. Prostate tumors have increased expression of amino acid transporters and
can be identified in 18F-fluciclovine PET imaging [105]. Radiotracers designed to bind with
prostate specific membrane antigen (PSMA) have been increasingly employed for prostate
cancer imaging (Fig. 1.5b, Fig. 1.5c). PSMA is a transmembrane protein expressed in prostate
tissue and highly overexpressed in a large majority of prostate cancer cells [33]. PSMA-ligand
PET can be used to identify prostate cancer sites for primary staging of high-risk patients, after
biochemical recurrence, during systemic treatment, and prior to PSMA-targeted radioligand
therapy [38]. Several PSMA-targeted radiotracers have been developed, including 68Ga-
labeled and 18F-labeled compounds, with multiple ones being evaluated in clinical trials (Tab.
1.1) [134]. Notably, in up to 5% of prostate cancer patients PSMA-ligand PET can produce
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false negatives [38], as a fraction of prostate cancer cells do not overexpress PSMA. Other than
in prostate tissue, physiologic PSMA expression is present in salivary glands, kidneys, intestine,
and parasympathetic ganglia. Moreover, PSMA is overexpressed in the neovasculature of
non-prostate cancer tumors. PSMA-targeted tracer uptake has been described in several
malignant tumor types and nonmalignant conditions including increased osteoblastic activity,
hemangiomas, and inflammation [59].

Isotope Tracer Excretion

68Ga 68Ga-PSMA-11 Kidney-dominant
18F 18F-DCFPyL Kidney-dominant

18F-PSMA-1007 Liver-dominant
18F-rhPSMA-7.3 Liver-dominant

Tab. 1.1. Exemplar 68Ga-labeled and 18F-labeled radiotracers targeting PSMA with completed or ongoing clinical
trials

Fluorine-18 sodium fluoride (18F-NaF) (Fig. 1.5d) is a radiotracer used to assess bone
remodeling. Fluoride-18 ions ([18F]F-) bind to the bone matrix where they are in part
incorporated forming fluorapatite. [18F]F- uptake is increased in regions with higher perfusion
and bone remodeling rates [29]. In oncology applications, 18F-NaF PET is used to identify bone
metastases, in which bone remodeling is altered resulting in higher tracer uptake. Several
physiological processes and nonmalignant diseases related to bone can result in increased
[18F]F- uptake and may constitute a confounding factor for identifying tumor sites [4].

Somatostatin receptor-targeted radiotracers are used for imaging neuroendocrine tumors.
Tumors originating from neuroendocrine cells typically overexpress somatostatin receptors,
and multiple radiotracers with different affinity to somatostatin receptor subtypes have been
developed to identify neuroendocrine tumors via PET imaging. The tracers 64Cu-DOTATATE
and 68Ga-DOTATATE (Fig. 1.5e) have the highest affinity to SSTR2, the most frequent receptor
subtype. The tracer 68Ga-DOTATOC has affinity to both SSTR2 and SSTR5 receptor subtypes
[66]. PET imaging with somatostatin receptor-targeted radiotracers can be used to aid
diagnosis, staging and follow up of patients with neuroendocrine tumors as well as to select
patients for peptide receptor radionuclide therapy [121], which was shown to be beneficial
for well-differentiated metastatic disease [119].

Fluorine-18 fluoroestradiol (18F-FES) (Fig. 1.5f) is an estrogen analogue used to assess the
expression of estrogen receptor in tumor cells. Brest cancer cells express the estrogen receptor
(ER) in around 75% of the cases at diagnosis [127]. Patients with ER-positive breast cancer
are more likely to respond to antihormonal therapy. The ER-status of metastatic lesions
can differ from the primary tumor and be heterogeneous within a single tumor or between
lesions within a single patient. ER-status evaluation via biopsy is only possible for a limited
number of patients and metastatic sites. 18F-FES PET can be used to identify ER-positive breast
cancer noninvasively and support the selection of patients who are more likely to benefit from
antihormone therapy.
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1.4.2 Cancer stage

The anatomical extent of cancer spread is an informative biomarker which can be evaluated
in PET/CT imaging and is used to estimate prognosis, plan treatment, and monitor response
to therapy. Several standardized classification systems for different cancer types have been
proposed to characterize the disease spread, facilitating reproducible clinical assessment and
communication of findings. Moreover, cancer spread, in some cases combined with other
prognostic markers, determines cancer stage, which is an indicator of cancer progression
highly relevant for patient management.

The TNM classification of malignant tumors is a standardized system used to classify the
anatomical extent of cancer spread in numerous types of malignancies. The TNM system
defines specific classes of cancer spread related to the primary tumor (T), regional lymph
nodes (N) and distant metastases (M). The exact anatomical boundaries of each class are
defined differently for each cancer type depending on the organ or tissue of origin. The TNM
classification system is maintained in collaboration between the Union for International Cancer
Control (UICC) and the American Joint Committee on Cancer (AJCC). Both UICC and AJCC
publish separate staging manuals [8][1], while they work jointly to regularly update their
staging systems based on recent scientific evidence and changes in cancer management.

The TNM classification is an assessment of cancer stage solely based and anatomic spread.
Recent AJCC staging systems define prognostic stage groups (from stage I to stage IV), to
stratify patients with respect to outcome, on the basis of the TNM classification and additional
prognostic indicators, such as tumor grade or serum tumor markers, where these are highly
relevant for prognosis. For instance, the AJCC prognostic stage groups for prostate cancer are
determined based on TNM classification, tumor grade, and blood level of prostate specific
antigen.

Dedicated staging systems have been developed for specific cancer types, including blood
cancer subtypes for which the TNM classification is not used. The Ann Arbor staging system
[17] and the Lugano staging classification [20] are used to classify the extent of anatomical
spread of lymphoma, based on the degree of involvement of lymph nodes and other organs.
While the TNM classification is globally recognized, several cancer type-specific classification
systems have been devised by dedicated working groups, including broadly established ones
such as the International Federation of Gynecology and Obstetrics (FIGO) [89] and the
International Association for the Study of Lung Cancer (IASLC) [47]. The TNM classification
is not used for brain and spinal cord tumors, in which the primary tumor size is significantly
less relevant than its histology and location, while extraneural metastases are rare [1].

PET/CT imaging, combining functional and structural information, allows to identify tumor
sites and their anatomical location in the whole body in several cancer types and is an
established clinical tool for staging [92].
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1.4.3 Semiquantitative PET parameters

In PET imaging, the radioactivity concentration at a given spatial location and time point
is proportional to the concentration of radiotracer and its metabolites. The radioactivity
concentration measured therefore depends on administered dose, distribution volume, and
kinetic behavior of the radiotracer. Thus, PET images expressed in units of radioactivity
concentration are not a quantitative measure of the biochemical process of interest. In static
PET scans, semiquantitative units have been proposed to partially correct for factors of inter-
scan variability and compare PET image values between subjects or time points under specific
assumptions.

Standardized Uptake Value (SUV) units are broadly used to express PET images in semiquanti-
tative values. SUV units (SUVBW ) are calculated as ratio between the measured radioactivity
concentration, and the administered dose divided by body weight. The radioactivity con-
centration and administered dose are decay corrected to the same time point. Instead of
body weight, the administered dose may be divided by the lean body mass to calculate SUV
units (SUVLBM ). Alternatively, the administered dose may be divided by body surface area to
obtain SUV units (SUVBSA). SUVLBM and SUVBSA units have been introduced to account
for the nonuniform relative tissue composition in patients with different body weights. For
instance, in 18F-FDG PET, tracer uptake in adipose tissue is low, and SUVLBM units, also
referred to as SUL units, are recommended compared to SUVBW units to avoid overestimation
of tracer uptake in obese patients. Since membrane transporters driving 18F-FDG uptake
may be saturated by glucose, SUV units may be corrected in 18F-FDG PET for the plasma
glucose level, by multiplication with the measured plasma glucose concentration divided
by the population average of 5.0 nmol/L [7]. Overall, SUV values are influenced by several
factors in 18F-FDG PET, including patient habitus, tracer uptake time and plasma glucose
levels [70]. Guidelines have been defined to standardize the imaging procedure and facilitate
reproducibility [7]. SUV values are typically reported to describe the tracer uptake within a
region of interest (ROI) in the PET image, for instance corresponding to an organ or tumor site.
Following the definition of an ROI, parameters frequently used to describe the tracer uptake
within the ROI are the mean SUV value (SUVmean), the maximum SUV value (SUVmax) and
the average SUV value obtained positioning a 1 mL sphere such that the average SUV value
within the sphere and the ROI is maximized (SUVpeak). SUVmean, SUVmax and SUVpeak
parameters are all dependent on the exact ROI delineation and image noise level, each SUV
parameter to a different extent, depending on the ROI size and tracer uptake pattern. SUV
parameters derived from 18F-FDG PET can be used to evaluate treatment response in cancer
patients. In patients with non-Hodgkin lymphoma undergoing chemotherapy, the percent
change between baseline and interim PET scan of the highest SUV within manifestations
of lymphoma (∆SUVmax) is an independent determinant of treatment outcome [31]. The
established PET Response Criteria in Solid Tumors (PERCIST) defines objective response
classes based on percent changes, between baseline and follow up 18F-FDG PET scans, of the
highest SUVpeak within lesions, changes in lesions size, and presence of new lesions [130].

Standardized Uptake Ratio (SUR), also referred to as SUV ratio (SUVR), are dimensionless
units used to express PET images in semiquantitative values of tracer uptake in relation to
the uptake in a reference body region. SUR units are calculated in any PET image region as
ratio between the measured radioactivity concentration and the radioactivity concentration
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measured in a specific region of interest used as reference. Assuming no specific uptake
occurs in the reference region, SUR units are used to partially correct for factors inter-scan
variability of the measured radioactivity concentration, such body habitus, administered dose,
and plasma clearance of the radiotracer. SUR can be referred to as tumor-to-liver ratio (TLR),
tumor-to-blood ratio (TBR) or tumor-to-muscle ratio (T/M) depending on region of interest
used as reference. In 18F-FDG PET, tumor-to-blood SUR has been shown to significantly
correlate with metabolic rate of FDG in tumors [126]. A one to five score, based on tumor-to-
mediastinum ratio, tumor-to-liver ratio, and presence of new lesions in a follow up 18F-FDG
PET scan, named Deauville score is broadly used to evaluate treatment response in patients
with lymphoma [83].

1.4.4 Tumor burden parameters

Semiquantitative parameters to characterize tumor burden from PET images have been
proposed as image-derived biomarkers. Compared to PET parameters used to describe tracer
uptake for a single region of interest, tumor burden parameters are used to describe the total
spatial extent or intensity of malignant tracer uptake in an organ or in the entire body region
covered by the PET scan. Numerous research investigations have demonstrated that tumor
burden parameters have significant prognostic value. Nevertheless, tumor burden parameters
are not yet used in the clinical routine, in part because they require systematic delineation of
image regions with tracer uptake suspicious for cancer, which can be time consuming and have
limited accuracy when performed with commonly used semi-automated techniques, while no
consensus yet exist on the use of a specific delineation method.

Total Metabolic Tumor Volume (TMTV), also referred to as Metabolic Tumor Volume (MTV),
is a semiquantitative tumor burden parameter derived from 18F-FDG PET images expressed in
SUV units. TMTV is calculated by delineating PET image regions with tracer uptake suspicious
for cancer and summing the volume of all delineated regions. Typically, semi-automated
delineation methods are used, in which an expert reader gives initial input to or adjusts
results of an automated segmentation algorithm, commonly based on a fixed SUV threshold, a
fixed-percentage threshold relative to the SUVmax of each suspicious region, region growing,
or a combination of them. The use of different methods to determine TMTV has been found to
yield appreciably different TMTV values when applied to the same cohort, while the different
values obtained retained a comparable prognostic value [24][62]. In retrospective analyses,
TMTV has been shown to have significant prognostic value for overall survival in multiple
cancer types, including head and neck cancer [87], esophageal carcinoma [61], follicular
lymphoma [82], and diffuse large B-cell lymphoma [25]. Analogous to TMTV, PSMA Total
Volume (PSMA-TV) has been proposed as tumor burden parameter derived from PSMA-ligand
PET images expressed in SUV units. In recent retrospective analyses, PSMA-TV was found to
have significant prognostic value for risk stratification and response assessment of prostate
cancer patients [51][109][106][110].

Total Lesion Glycolysis (TLG) is a semiquantitative tumor burden parameter derived from 18F-
FDG PET images expressed in SUV units. Similar to TMTV, TLG is determined by delineating
PET image regions with tracer uptake suspicious for cancer. TLG is calculated by summing for
each delineated region the volume of the region multiplied by its SUVmean. In retrospective
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analyses, TLG was found to have significant prognostic value for risk stratification and response
assessment in multiple solid tumor types [125]. With a definition analogous to TLG, PSMA
Total Lesion uptake (PSMA-TL) has been proposed as tumor burden parameter derived from
PSMA-ligand PET images expressed in SUV units [107].

Skeletal tumor burden parameters are image-derived biomarkers used to characterize tumor
load in bone as indicator of disease burden. Bone PET Index Volume (BPIvol) and Bone PET
Index SUV (BPIsuv) are semiquantitative tumor burden parameters derived from 68Ga-PSMA-
11 PET/CT images [5]. BPIvol is calculated as ratio, expressed as percentage, between the
volume of bone metastases, determined from the PET image by delineation of regions with
uptake suspicious for cancer, and the volume of the skeleton, determined by delineation
of bone from the CT image. BPIsuv is calculated as ratio between the sum for each bone
metastasis of the region volume multiplied by its SUVmean, and the volume of the skeleton.
bonePSMA-TV and bonePSMA-TL are tumor burden parameters with a definition analogous to
PSMA-TV and PSMA-TL, while limited to image regions suspicious for cancer in the skeleton
[42]. Fluoride Tumor Volume (FTV) and Total Lesion Fluoride (TLF) are skeletal tumor
burden parameters derived from 18F-fluoride PET images, with a definition analogous to
bonePSMA-TV and bonePSMA-TL [100].

1.5 Image classification

This section introduces elements of image classification. The purpose is to provide essential
background information related to the contributions presented in the dissertation, while
references to more detailed descriptions of the discussed methods are provided. A brief
introduction to the image classification problem is provided. Deep learning methods used
for image classification, including convolutional neural networks and transfer learning, are
concisely described. Metrics to evaluate the performance of a classification algorithm are
outlined.

1.5.1 Introduction

In computer vision, image classification is the task of assigning to an image a single label or
multiple labels from a fixed set of predefined classes. The term binary classification is used
to indicate the task of assigning a single label between two predefined classes. The term
multiclass classification is used to indicate the task of assigning a single label from three or
more predefined classes. The term multi-label classification is used to indicate the task of
assigning any set of labels from a fixed set of predefined classes.

Since the introduction of digital images, methods for automated image classification gained
interest in research and found application in numerous fields such as factory automation,
office automation, surveillance, medical imaging, and biometrics. In any real-word setting,
numerous variability factors pose challenges to the image classification task, such as variations
in viewpoint, contrast, scale, deformation, occlusion and background. Moreover, high intra-
class variation can result in significantly dissimilar appearances for instances of the same class.
To address these challenges, several image classification methods employ supervised machine
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learning algorithms, whereby the visual appearance of each class is modeled trough a set of
examples with a known label. Methods which rely on a predefined set of image features are
concisely described in this subsection, while convolutional neural networks, employing image
features learned directly from the training examples, are described in section 1.5.2.

Methods employing predefined image features have been described for the task of object
recognition, which requires both identifying the presence of a given object in an image and
determining its position. The task of object recognition is closely related to image classification,
since it can be considered as the task of classifying for each image subregion whether a given
object is tightly enclosed by the image subregion. Local image features invariant to scale,
translation, and rotation, determined at defined key image locations through a Scale Invariant
Feature Transform (SIFT) were described and proven useful for object recognition given an
example model image of the same object [78]. Haar-like image features employed by a
cascade of classifiers, each trained with a boosting algorithm, were shown to be effective
for rapid face detection [129]. Features based on Histograms of Oriented Gradients (HOG),
determined for all image regions were employed by a support vector machine classifier, used
to scan all image positions and scales to identify the presence of a person, for the task of
pedestrian detection [30]. Deformable Parts Models (DPM) were used for detection of objects
of multiple categories and consisted in part-based models with a star structure, composed
of a root filter associated to the entire object, plus a set of parts filters and corresponding
deformation models. Filters were based on HOG features and trained using latent support
vector machines classifiers, where a latent variable was used to account for different object
configurations while having partially labeled training data [37].

1.5.2 Convolutional neural networks

Convolutional neural networks (CNNs) are a subclass of artificial neural networks used as ma-
chine learning algorithm in several computer vision applications including image classification,
object localization and instance segmentation. Compared to image processing methods relying
on predefined image features, CNNs employ a set of convolution operations whose parameters
are optimized directly to minimize the error for the task of interest on the training examples.
The distinctive ability to identify useful image features through the algorithm training has
been termed feature learning.

A convolutional neural network for image classification was first described for the task of
handwritten digits recognition [76]. The CNN was composed of four sequential layers;
each of the first two layers included convolution, subsampling and pointwise hyperbolic
tangent operations, while each of the latter two layers included linear mapping and pointwise
hyperbolic tangent operations. The network parameters were optimized to minimize a mean
squared error cost function based on the expected output and CNN output on a set of labeled
training examples, using stochastic gradient descent and backpropagation. The network
proved to be effective in classifying handwritten digits with a broad variety of styles, size,
and graphical completeness. A method for face detection in grayscale images was described
employing a CNN to classify whether an image window contains a face. The network was
trained with a bootstrap algorithm, which included falsely detected examples in the training
set as the training progressed. Moreover, predictions from multiple identical networks trained
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with different random weight initializations were combined, and the method was able to
detect faces in a wide variety of images, while producing a limited number of false detections
[102].

The availability of large, annotated visual datasets, and the efficient implementation of the
convolution operation in powerful graphical processing units supported the introduction of
a convolutional neural network used to classify real-word images in one thousand object
categories [73]. The network comprised five convolutional layers and three fully connected
layers. The CNN employed rectified linear units as activation function enabling faster training
compared to the saturating hyperbolic tangent activation function. Moreover, a regularization
technique named dropout was used, by which a fraction of the outputs of hidden neurons
in the fully connected layers was randomly set to zero at each training iteration. The CNN
significantly outperformed other classification methods based on predefined image features.
CNN architectures were described which further improved the accuracy of image classification,
including the use of a small filter size with more convolutional layers [116], inception
modules combining filters of different sizes [120], and residual connections performing
identity mapping between layers blocks to facilitate optimization of networks with numerous
convolutional layers [57]. In the narrow well-defined task of classifying real-word images in
a predefined benchmark dataset with a fixed set of object categories, convolutional neural
networks approached the performance previously reported for a single human annotator
[58].

1.5.3 Transfer learning

Machine learning methods traditionally rely on the assumption that training and test data
are drawn from the same distribution and feature space. However, in many applications
collecting a sufficiently large training dataset is expensive and impractical or infeasible. In
this context, knowledge transfer from a related application for which training data is available
can be beneficial. Formally, a domain can be defined as a feature space paired with a marginal
probability distribution, while a task can be defined as a label space paired with a predictive
function, which can be considered as the conditional probability distribution of labels given
a feature vector. Given a source domain and task, transfer learning aims at improving the
learning in a target application with a different domain or task, using the knowledge from the
source information [88].

The term inductive transfer learning is used for cases where the target task is different from
the source task, and labeled data is available in the target domain. Moreover, in the particular
case in which no labeled data is available in the source domain, the term self-taught learning
has been proposed to describe a framework in which a feature representation is derived from
unlabeled data in the source domain and then used to train a predictive model in the target
domain [95]. The term unsupervised transfer learning is used for cases where the source and
target task are different, and no labeled data is available in the source and target domains.
The term transductive transfer learning is used for cases where source and target tasks are
the same, but source and target domains are different. Furthermore, the particular case in
which source and target feature spaces are the same but probability distributions are different
is referred to as domain adaptation.
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For the task of image classification, different transfer learning approaches based on convolu-
tional neural networks have been proposed, relying on the transfer of feature representations
and network parameters. For instance, CNNs trained on large image datasets for object
category classification can be used as fixed feature extractors to obtain meaningful image
representations and employed by machine learning methods in a different target domain or
task. Depending on level of similarity between the source and target domains and tasks, more
generic low-level CNN features may be used from activation maps of early layers, or more
dataset-specific high-level CNN features may be used from activation maps of later layers. It
was shown that training a linear classifier using high-level features of a CNN developed for
object classification improved results compared to highly tuned task-specific techniques in
several visual recognition applications [98]. An alternative approach to using the source CNN
layers for fixed feature extraction consists in fine-tuning the source CNN layers by further
optimizing their parameters with training examples for the target application.

1.5.4 Evaluation metrics

Multiple parameters can be used to evaluate the performance of a classification algorithm. For
machine learning methods, performance parameters are determined based on the ability of
the method to correctly classify items in a dataset used specifically for evaluation purposes,
here referred to as the test set. Ideally, the composition of a test set should appropriately
reflect the distribution of cases in which the method is intended to be applied. In practice, test
datasets with a limited number of items are used, and a selection bias may be present due
to limitations in data collection. The relevance of the different evaluation metrics depends
on the context in which a classification method is applied and the composition of the test
dataset used for the evaluation. In this section, parameters used to evaluate the performance
of classification algorithms discussed in the dissertation are concisely described.

In the task of binary classification, the two labels which can be assigned are often defined as
the presence or absence of a given attribute of interest. In this context, the instances used to
evaluate the classifier performance are conventionally named with either the term ‘positive’
or ‘negative’, based on whether or not they were classified as having the attribute of interest
by the algorithm, preceded by the term ‘true’ or ‘false’, based on whether or not they were
correctly classified compared to the ground truth label. A two-by-two confusion matrix can be
used to represent the classification of instances in the test set, in which the row index indicates
the ground truth label, and the column index indicates the label assigned by the classification
algorithm (or vice versa), such that entries indicate the total number of true positives (TP),
false positives (FP), true negatives (TN), and false negatives (FN). Tab. 1.3 reports parameters
that can be derived to describe binary classification performance.

Moreover, in cases where the prediction of a binary classifier is determined by thresholding of
a positivity score employed by the classification algorithm, different parametric curves can be
drawn as a function of the prediction threshold (θ), whereby a positivity score higher than the
threshold is associated with a positive prediction. For each parametric curve, a corresponding
metric can be determined to assess the classifier performance (Tab. 1.3).
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Parameter Description Computation

Accuracy fraction of test set instances
correctly classified

(TP+TN)/(TP+FP+TN+FN)

Sensitivity, recall or true
positive rate (TPR)

fraction of test set
instances correctly
classified among the ones
having the attribute of
interest according to the
ground truth label

TP/(TP+FN)

False negative rate (FNR) complementary to
sensitivity

FN/(TP+FN)=1-
sensitivity

Specificity or true negative
rate (TNR)

fraction of test set instances
correctly classified among
the ones which do not have
the attribute of interest
according to the ground
truth label

TN/(TN+FP)

False positive rate (FPR) complementary to
specificity

FP/(TN+FP)=1-specificity

Positive predictive value
(PPV) or precision

fraction of test set instances
correctly classified among
the ones which were
predicted as having the
attribute of interest

TP/(TP+FP)

Negative predictive value
(NPV)

fraction of test set instances
correctly classified among
the ones which were
predicted as not having the
attribute of interest

TN/(TN+FN)

Youden’s J statistic (J) combines sensitivity and
specificity

sensitivity+specificity–1

Tab. 1.2. Parameters used to describe the performance of a binary classification algorithm

In the task of multiclass classification, a n-by-n confusion matrix can be used to represent the
classification of instances in the test set, where n is number of possible labels, the row index
indicates the ground truth label, and the column index indicates the label assigned by the
classification algorithm (or vice versa). Accuracy is defined as the fraction of test set instances
correctly classified by the algorithm. Binary classification metrics can be determined relative
to a single class by considering only the membership to a specific class as attribute of interest
for the prediction. Moreover, binary classification metrics determined separately for each class
can be aggregated by average or by sum weighted for the prevalence of each class in the test
set, to obtain multiclass performance metrics. For instance, balanced accuracy (BA) can be
determined as the mean of true positive rate scores relative to each class, while the mean
average precision (mAP) can be determined as the mean of average precision scores relative
to each class.
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Parameter Description Parametric curve Computation

Area under the
Receiver Operating
Characteristic Curve
(AUCROC)

area under the
parametric curve
representing false
positive rate and
sensitivity as a
function of the
prediction threshold

(x, y)ROC =
(FPR(θ),
TPR(θ))

∫ 1

0
y dx =∫ −∞

+∞
TPR(θ)FPR′(θ) dθ

Area under the
Free-response
Receiver Operating
Characteristic curve
(AUCFROC)

area under the
parametric curve
representing the
number of false
positives per relevant
parent test unit, for
instance a single
image or subject
comprising multiple
test instances, and
sensitivity as a
function of the
prediction threshold,
limited upwards to
one false positive per
test unit

(x, y)F ROC =
(FPRper−unit(θ),
TPR(θ))

∫ 1

0
y dx =∫ F P R−1

per−unit
(1)

+∞
TPR(θ)·

FPR′
per−unit(θ) dθ

Area under the
precision-recall
curve or average
precision (AP)

area under the
parametric curve
representing
sensitivity and
precision as a
function of the
prediction threshold

(x, y)P R =
(TPR(θ),
PPV (θ))

∫ 1

0
y dx =∫ −∞

+∞
PPV (θ)TPR′(θ) dθ

Tab. 1.3. Parameters used to describe the performance of a binary classification algorithm for which the prediction
can be obtained as function of a threshold (θ) applied to a positivity score employed by the algorithm,
such that a positivity score higher than the threshold is associated with a positive prediction.
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2Radiotracer uptake classification

This chapter presents contributions in image analysis methods for automated classification of
foci with elevated radiotracer uptake in PET/CT images. The methods described are aimed
at supporting time-efficient, reproducible, and accurate measurements for the assessment of
image-derived cancer biomarkers. While the motivation and methods described are applicable
to different cancer types and PET radiotracers, the analysis presented focuses primarily on
prostate cancer and PSMA-ligand PET/CT. The use of 18F-FDG PET/CT images of lymphoma
and lung cancer patients as additional source of training information is investigated given
the context of limited availability of PSMA-ligand PET/CT images with expert-annotated
ground truth. This chapter concisely introduces background information on prostate cancer
and PSMA-ligand image analysis. Methods for radiotracer uptake classification using a
convolutional neural network are described, corresponding results are reported and discussed.
The evaluation of the presented image analysis method for prostate cancer staging support is
discussed in Chapter 3.

Substantial parts of this chapter have already been published and are quoted verbatim:

[12] N. Capobianco et al. “Transfer Learning of AI-Based Uptake Classification from
18F-FDG PET/CT to 68Ga-PSMA-11 PET/CT for Whole-Body Tumor Burden
Assessment”. In: Journal of Nuclear Medicine 61.supplement 1 (May 2020),
p. 1411

[16] N. Capobianco et al. “Whole-Body Uptake Classification and Prostate Cancer
Staging in 68Ga-PSMA-11 PET/CT Using Dual-Tracer Learning”. en. In: Euro-
pean Journal of Nuclear Medicine and Molecular Imaging (July 2021)

2.1 Introduction

Accurate staging has a pivotal role in the management of prostate cancer, a disease with
generally favorable outcome when confined to the prostate, while having poor prognosis if
metastasized at the time of diagnosis [115]. As a plethora of management strategies is avail-
able, ranging from watchful waiting to localized and systemic treatments, reliable information
on the disease spread pattern and overall burden is crucial in the clinical decision-making
process [85]. While the gold standard for prostate cancer staging remains histopathology,
imaging is increasingly being utilized as noninvasive assessment [79]. Notably, Prostate-
Specific Membrane Antigen (PSMA)-targeted PET/CT has shown high accuracy, superior to
other imaging modalities, for primary staging of high-risk prostate cancer patients [60][81]
as well as for staging after biochemical recurrence [96][32]. The 68Ga-PSMA-11 compound
manufactured by the University of California, San Francisco and the University of California,
Los Angeles has recently received approval by the U.S. Food and Drug Administration.
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In addition to procedure guidelines [38], pitfalls reviews [111][59][97] and case reports
[35][44], standardized reporting frameworks for PSMA-ligand PET have been proposed to
support replicable and rigorous image assessment [34][101][18]. Moreover, the use of
quantitative image-derived biomarkers, such as the total tumor volume, has shown promising
results for risk stratification and response assessment [51][109][106][110]. Nevertheless, the
application in clinical routine of detailed reporting schemes and image-derived biomarkers
remains labor intensive, subject to error and operator dependent in cases where a high number
of manual measurements is required, such as when categorical or quantitative variables have
to be determined for all suspected lesions. In this context, the use of semi-automated and
automated image analysis methods is promising to support accurate, reproducible, and time-
efficient assessment.

Recently, semi-automated and automated methods for image analysis in 68Ga-PSMA-11
PET/CT have been developed. A convolutional neural network (CNN) was trained to predict
the PSMA-ligand PET positivity status of lymph nodes from CT alone [54], showing a per-
formance comparable to trained radiologists. To support semi-automated quantification of
tumor burden, masks of organs that exhibit physiological uptake and bone were obtained from
CT images using thresholding methods [5][52], machine learning methods [42], and deep
learning methods [109]. While the CT information alone can be used to aid semi-automated
identification and anatomical localization of suspicious elevated uptake sites, including the
PET information in a machine learning system for whole-body PSMA-ligand image analysis
could be beneficial. In particular, the identification of elevated uptake regions as physiological
based on automated analysis of the sole CT information is particularly challenging for regions
such as small intestines or ureters and would require manual corrections. A machine learning
algorithm trained on multimodal PET/CT information may more accurately identify such
regions of physiological uptake limiting the number of manual corrections required, as well as
potentially being able to identify further challenging patterns of nonsuspicious uptake, such as
uptake in ganglia and unspecific uptake in lymph nodes and bone. Recently, a convolutional
neural network was trained with multimodal PET/CT information to identify tracer uptake
regions suspicious for prostate cancer within the pelvis [132] with promising results.

In the current analysis, we developed and evaluated a multi-task convolutional neural network
trained on the PET and CT information for the identification and anatomical location classifica-
tion of suspicious tracer uptake sites in the entire axial body coverage of the scan. We employ
multi-task training, previously evaluated in 18F-FDG PET/CT [114] with encouraging results,
for assessment of 68Ga-PSMA-11 images. In addition, we explore two strategies to leverage
training information from both radiotracers: transfer learning by pretraining on 18F-FDG
images with fine-tuning on 68Ga-PSMA-11 images, and a modified network architecture for
synergistic dual-tracer learning.

2.2 Materials and Methods
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2.2.1 Patients

Two groups of subjects who underwent 68Ga-PSMA-11 PET/CT at the Klinikum rechts der Isar
(Technical University of Munich) were retrospectively analyzed. The rationale for the definition
and inclusion of the two groups was to allow the representation of different disease stages in
the training dataset while keeping an acceptable expected annotation workload for the expert
readers, employing a different annotation scheme for each group. The first group, referred to
as group A, consisted of 123 consecutive subjects referred to PSMA-ligand PET/CT for primary
staging or for assessment of biochemical recurrence. The second group, referred to as group
B, consisted of 50 consecutive subjects referred to PSMA-ligand PET/CT for all indications of
prostate cancer. PET/CT images were acquired on a Biograph mCT scanner (Siemens Medical
Solutions). Diagnostic CT scans were acquired after intravenous injection of contrast agent
(Imeron 300), followed by PET acquisition. PET scans were acquired (54 ± 10) min (mean ±
std) after injection of 68Ga-PSMA-11 ligand solution (149 ± 26) MBq, with acquisition time of
3–4 min per bed position.

2.2.2 Image analysis

Data annotation

PET/CT images were reviewed by expert nuclear medicine physicians who segmented sites
of elevated tracer uptake, labeled them as nonsuspicious or suspicious for prostate cancer,
and assigned them an anatomical localization from a set of physiological uptake sites and
sites relevant for staging. Due to differences in patient tumor burden and to maintain an
acceptable annotation workload, different annotation schemes were used for subjects in group
A and group B, which were then considered in the deep learning model development and
validation. For subjects in group A, having a low tumor burden, all regions of elevated tracer
uptake were segmented semi-automatically using 45% of region SUVmax thresholding [106].
For subjects in group B, which included cases of high tumor burden, all high-uptake sites with
SUVmax above the average liver uptake within a PERCIST-based reference region [130] were
segmented with an incremental connected component algorithm [11] using 45% of SUVmax
thresholding, of which up to one hundred sites per subject with the highest SUVmax were
annotated. For each subject in group B at least ten suspicious uptake sites were annotated
when present, additionally labeling sites with lower SUVmax if necessary.

Model development

Subjects of group A (n=123) were assigned to an N and M stage based on expert annotations
and following the PROMISE miTNM framework. A stratified split of subjects in group A based
on stage was then performed forming a development (n=71) and a hold-out test set (n=52).
All subjects of group B (n=50) were added to the development set. Four-fold cross validation
on the final development set (n=121) was used to evaluate different model training schemes.
The hold-out test set was used exclusively to report results of the model testing and was not
employed for the model development. A diagram summarizing the dataset split is reported in
Fig. 2.1.
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stratified split based on N and M stage 
according to PROMISE miTNM

Model development Model testing

18F-FDG PET/CT

121

training

validation

testing

18F-FDG PET/CT 68Ga-PSMA-11 PET/CT 68Ga-PSMA-11 PET/CT

Lymphoma and 
lung cancer 
patients from 
Sibille et al. 
[26]

Group B –
consecutive scans, all 
or min. 10 suspicious 
findings annotated 
per subject

Group A – consecutive patients 
referred for primary staging or 
assessment of biochemical 
recurrence, all suspicious findings 
annotated

629 50 123

68Ga-PSMA-11 PET/CT

71 52

four-fold cross validation splitsingle split

model selection model performance testing

68Ga-PSMA-11 PET/CT

629 50 71

566 63

52

91 30

Fig. 2.1. Diagram summarizing the PET/CT datasets used in the analysis and the data split performed for the
deep learning model development and testing.

A multi-task convolutional neural network was trained to both classify PET/CT regions of
interest as uptake suspicious or nonsuspicious for cancer and assign them an anatomical loca-
tion classification. In addition to expert-annotated findings, regions of interest with SUVmax
above 1 which were not labeled by the experts as suspicious were generated automatically
with an incremental connected component algorithm [11], labelled as nonsuspicious, and
used for training. These were generated using with 45% of SUVmax thresholding and only
for subjects in group A or subjects in group B with up to nine suspicious findings, i.e. for
PET/CT images where all suspicious findings were annotated and remaining image regions
could be considered as physiological uptake. The network architecture and hyperparameters
are illustrated in Fig. 2.2a. Inputs to the network are thirteen PET/CT coronal (192 mm x
192 mm) reformations extracted with offsets (-144, -96, -48, -24, -12, -6, 0, +6, +12, +24,
+48, +96, +144 mm) from the region of interest SUVmax position, after resampling of PET
at CT at 3mm isotropic resolution, PET windowing between 0 and 15 SUV and CT windowing
between -300 and 300 HU.
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Fig. 2.2. Convolutional neural network architecture used for PET uptake classification when training (a) with
data from a single radiotracer and (b) with data from two radiotracers, encoding the tracer type as input
to the network. Multiplanar Reformations (MPRs) extracted from a region of interest being classified
are represented as exemplar input to the network. In the three-dimensional illustration, numbers along
layers’ edges indicate the size of the feature maps resulting as output of the corresponding layers.

We evaluated different training strategies to improve the algorithm performance. First (I),
the model was trained with sequential sampling of all the training examples. Second (II), a
balanced sampling of the training examples was performed, where a fixed maximum number
of training examples per class per subject was randomly sampled at each training epoch
(maximum of 32 physiological and 32 suspicious findings, 4 findings for each anatomical
location class). Third (III), regions of interest used for training were augmented through affine
transformations of the PET/CT randomly generated at each training epoch with isotropic
scaling between 0.8 and 1.2 and rotations between -17.2 and 17.2 degrees in all directions, to
obtain additional regions with plausible pose and size. Forth (IV), to leverage expert knowledge
of the same task in 18F-FDG PET/CT images, we trained the network as in (III) with datasets
from [114], with a single split between training (90%) and validation (10%). The rationale
for the 18F-FDG dataset split was to maximize the training data for knowledge transfer to
PSMA-ligand PET/CT, while evaluation on a hold-out 18F-FDG test set was considered outside
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the scope of the analysis, which is mainly focused on assessing the proposed method for
staging support in PSMA-ligand PET/CT. Fifth (V), we evaluated transfer learning by fine
tuning on PSMA-ligand PET/CT data the network weights initially trained with 18F-FDG
PET/CT images. Sixth (VI), we evaluated simultaneous training with PSMA-ligand and FDG
PET/CT images by adding a binary input encoding the tracer type to the first fully connected
layer and only for the output branch of the network responsible for classifying nonsuspicious
vs suspicious uptake, as illustrated in Fig. 2.2b. Finally, we validated the network with highest
performance by training it on the entire development set and evaluating it on the test set.

2.2.3 Statistical analysis

The main metrics used to evaluate the network performance were the area under the precision-
recall curve, which accounts for marked class imbalance, referred to as average precision (AP),
for the classification of regions as suspicious or nonsuspicious, and the classification accuracy
of regions labeled as suspicious by the experts, for the anatomical location classification. The
performance metrics were evaluated by pooling findings of all subjects together, and a 95%
confidence interval was calculated by 2000 bootstrap resampling of the subjects. To compare
different training schemes on the development set, a two-sided paired z-test was performed
based on the bootstrap replicates with a significance level set to 5%. Bonferroni correction
was used to account for multiple comparisons. For the test set, additional performance metrics
were evaluated: number of true positives, false positives, false negatives, recall and positive
predictive value for the classification as suspicious or nonsuspicious, classification accuracy of
all findings labeled by the experts for the anatomical location classification. For the test set,
except for the average precision, the performance metrics were also evaluated and reported
on a per-subject basis.

2.3 Results

In total 173 subjects were included in the analysis of which 123 in group A and 50 in group B.
A total of 5,577 high uptake regions were annotated, of which 4,520 were physiological uptake
and 1,057 were suspicious uptake. The median volume of regions annotated as suspicious was
1.3 mL (interquartile rage 0.6–3.0 mL. In addition to the expert-annotated findings, more than
160,000 regions with nonsuspicious uptake were automatically generated for subjects in the
development set. A summary of the findings and expert annotations is reported in Tab. 2.1.

Tab. 2.1. Summary of the findings annotated by an expert reader in 68Ga-PSMA-11 PET/CT images using semi-
automated segmentation methods, reported by anatomical location label assigned, in descending order
of occurrence.

Number of
findings

Number of suspicious
findings (%)

Total 5577 1057 (19)

Anatomical location
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Tab. 2.1. (continued).

abdomen, liver 1875 22 (1)

abdomen, small intestine 870 8 (1)

abdomen, kidney 357 0 (0)

neck, submandibular gland 334 0 (0)

neck, parotid gland 310 0 (0)

abdomen, spleen 277 0 (0)

abdomen, lymph nodes, iliacal 164 159 (97)

neck, sublingual gland 149 0 (0)

abdomen, bladder 146 0 (0)

abdomen, lymph nodes, para-aortic 134 133 (99)

abdomen, bones, pelvis 123 121 (98)

thorax, bones, spine 109 109 (100)

abdomen, bones, spine 86 77 (90)

thorax, lymph nodes 79 75 (95)

thorax, bones, ribs 72 72 (100)

neck, glottis 50 0 (0)

abdomen, bones, sacrum 50 47 (94)

abdomen, ureter 38 1 (3)

abdomen, prostate 30 30 (100)

abdomen, lymph nodes, presacral 29 28 (97)

neck, tonsils 27 0 (0)

lower limb, bones, femur 23 22 (96)

thorax, bones, scapula 23 23 (100)

neck, bones, spine 20 19 (95)

cranium, nose 17 0 (0)

thorax, bones, sternum 17 17 (100)

abdomen, lymph nodes, obturator 15 15 (100)

neck, thyroid 15 0 (0)

neck, cervical lymph nodes 13 11 (85)
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Tab. 2.1. (continued).

upper limb, bones, humerus 12 12 (100)

abdomen, lymph nodes, inguinal 10 9 (90)

thorax, lung 10 9 (90)

cranium, mouth, teeth 9 0 (0)

abdomen, colon 8 0 (0)

abdomen, lymph nodes, inguinal / femoral 8 8 (100)

thorax, oesophagus 7 0 (0)

thorax, bones, clavicle 6 6 (100)

thorax, skin 5 5 (100)

abdomen, ganglia 5 1 (20)

abdomen, rectum 4 2 (50)

cranium, skull 4 3 (75)

thorax, ganglia 4 1 (25)

cranium, mouth, palate 4 0 (0)

lower limb, lymph nodes, femoral 3 3 (100)

cranium, mouth, floor of mouth 3 0 (0)

abdomen, skin 3 2 (67)

cranium, eye 3 0 (0)

abdomen, lymph nodes, mesenterial 3 2 (67)

abdomen, lymph nodes, peri-hepatic 2 1 (50)

thorax, mediastinum, hilum 2 0 (0)

abdomen, penis 2 0 (0)

abdomen, testis 2 0 (0)

abdomen, adrenal gland 1 1 (100)

neck, accessory sinuses, maxillary sinus 1 0 (0)

thorax, pleura 1 1 (100)

abdomen, stomach, cardia / fundus / body 1 0 (0)

abdomen, lymph nodes, peri-splenic 1 1 (100)

neck, bones, clavicle 1 1 (100)
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Fig. 2.3 illustrates results obtained using different methods to train the CNN, evaluated
with cross validation on the development dataset of 68Ga-PSMA-11 PET/CT images. The
corresponding main performance metrics are summarized in Tab. 2.2. For the classification
of findings as suspicious or nonsuspicious, using sequential sampling (I) as baseline [AP:
84.1, confidence interval (CI): 76.2-89.3], a performance improvement not statistically signifi-
cant after applying Bonferroni correction was found with other training schemes including:
balanced sampling (II) (AP: 85.0, CI: 77.5-89.8, p=0.197), its combination with affine (III)
data augmentation (AP: 87.0, CI: 81.0-91.3, p=0.067) and their combination with transfer
learning (V) (AP: 87.7, CI: 82.3-91.8, p=0.072) or combined training with 18F-FDG data (VI)
(AP: 87.9 CI:82.3-91.7, p=0.047). Balanced sampling allowed markedly lower training time
due to fewer training examples being processed on average per epoch (3584 vs 128640).
For the anatomical location classification of suspicious findings, compared to sequential (I)
sampling (accuracy: 64.9, CI: 59.8-70.9), affine data augmentation (III) significantly improved
performance (accuracy: 72.7 CI: 68.5-77.1, p<0.001) while balanced sampling (II) alone did
not (accuracy: 66.8, CI: 61.5-73.4, p=0.095). Compared to affine data augmentation (III),
transfer learning (V) showed a further significant improvement (accuracy: 79.2 CI:75.1-82.7,
p=0.001), with a performance not significantly different compared to combined training with
18F-FDG data (VI) (accuracy: 80.0 CI:74.8-84.1, p=0.489), which overall scored highest for
both classification tasks.

a b

Fig. 2.3. Performance obtained for (a) classification of PET uptake sites as nonsuspicious or suspicious and (b)
classification of their anatomical location, using different strategies to train a convolutional network
evaluated with four-fold cross validation on the development set of 68Ga-PSMA-11 PET/CT scans.
Performance metrics are determined by pooling findings of all subjects together. Error bars indicate the
95% confidence interval obtained via bootstrap resampling at subject level.

Following combined training using 18F-FDG images together with 68Ga-PSMA-11 scans of the
entire development set and evaluation on the 68Ga-PSMA-11 test set, an average precision
of 80.4 (CI: 71.1-87.8), a sensitivity of 81.1% (CI: 70.6-90.1) and a positive predictive
value of 66.8% (CI: 60.3-72.7) were obtained (Tab. 2.3). Anatomical location classification
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Tracer 68Ga-PSMA-11 18F-FDG

Classification
output

nonsuspicious vs
suspicious

anatomical
location

nonsuspicious vs
suspicious

anatomical
location

Performance
metric

APa Accuracysuspicious APa Accuracysuspicious

Model training

I: Sequential
sampling

84.1 (76.2,89.3) 64.9 (59.8,70.9) - -

II: Balanced
sampling

85.0 (77.5,89.8)
p=0.197 vs. I

66.8 (61.5,73.4)
p=0.095 vs I

- -

III: II + Affine
transformations

87.0 (81.0,91.3)
p=0.067 vs. I

72.7 (68.5,77.1)
p<0.001* vs. I

- -

IV: III on
18F-FDG data

- - 77.1 (70.8,87.3) 76.7 (71.2,81.3)

V: Transfer
learning by fine
tuning of IV

87.7 (82.3,91.8)
p=0.072 vs. I

79.2 (75.1,82.7)
p=0.001* vs. III

- -

VI: III +
combined
training on
68Ga-PSMA-11
and 18F-FDG
data

87.9 (82.3,91.7)
p=0.047 vs. I

80.0 (74.8,84.1)
p=0.489 vs. V

77.9 (71.0,86.5)
p=0.739 vs. III

77.2 (71.1,81.2)
p=0.681 vs. III

aAverage Precision
*Significant

Tab. 2.2. PET uptake classification performance using different strategies to train a convolutional network,
evaluated with four-fold cross validation on a development set of 68Ga-PSMA-11 PET/CT scans and
a fixed validation dataset of 18F-FDG PET/CT scans. Performance metrics are determined by pooling
findings of all subjects together, with a 95% confidence interval obtained via bootstrap resampling at
subject level, reported in brackets. The P value for a two-sided paired z-test based on bootstrap replicates
is reported.

accuracy was 77.0% (CI: 70.0-83.4) for suspicious regions and 94.4% (92.4-96.1) for all
expert-annotated regions.

2.4 Discussion

In this analysis we showed that a convolutional neural network can be trained to classify sites
of elevated 68Ga-PSMA-11 uptake in the entire axial body coverage of the scan by leveraging
both PET and CT information. Having extensively included in the training data regions
with uptake above 1 SUV, the network can be used to assess a broad window of the tracer
distribution in the body and effectively identify sites suspicious for prostate cancer. Moreover,
thanks to the combined identification of suspicious uptake sites and the classification of their
anatomical location, the network can be used to assess the spread pattern of suspicious sites
in different organs and tissues. Additionally, we found that including training information
from PET/CT images and expert annotations obtained with a different PET tracer improved
the network performance on 68Ga-PSMA-11 PET/CT images, for which a limited number
of reader-annotated cases was available. Previously described methods for 68Ga-PSMA-11
PET/CT image analysis using machine learning were trained on PET/CT information to identify
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Tracer 68Ga-PSMA-11

Classification output nonsuspicious vs suspicious

Summary statistic Pooled (CI) Per-subject

Average Min Q1 Median Q3 Max

Performance metric

APa 80.4 (71.1,87.8) - - - - - -

Recall 81.1 (70.6,90.1) 85.2 11.1 73.8 100.0 100.0 100.0

PPVb 66.8 (60.3,72.7) 65.5 0.0 50.0 68.3 100.0 100.0

True positives 159 (114,209) 3.1 0 1 2 3 19

False positives 79 (58,102) 1.5 0 0 1 2 8

False negatives 37 (18,59) 0.7 0 0 0 1 8

Classification output anatomical location

Performance metric

Accuracysuspicious 77.0 (70.0,83.4) 78.4 0.0 57.5 95.0 100.0 100.0

Accuracyall 94.4 (92.4,96.1) 94.1 78.6 90.9 94.9 100.0 100.0
aAverage Precision
bPositive predictive value

Tab. 2.3. PET uptake classification performance obtained with combined training of a convolutional neural
network using 68Ga-PSMA-11 PET/CT and 18F-FDG PET/CT scans, evaluated on a hold-out test dataset
of 68Ga-PSMA-11 PET/CT scans. Performance metrics determined by pooling findings of all subjects
together are reported. Summary statistics for performance metrics determined at per-subject level are
also reported. 95% confidence intervals obtained via bootstrap resampling at subject level are reported
in brackets.

suspicious uptake regions limited to the pelvis [132] or were trained on CT-only information
to segment a predefined set of organs and then used to guide semi-automated identification
of suspicious high uptake regions in the whole body [42][109].

In the current analysis, regions of interest were segmented both by the expert reader as
well as for the network training and validation using methods based on thresholding, which
allow limited flexibility and accuracy in delineating contours. Although the threshold-based
segmentation methods used have limited accuracy, these offer a practical solution for rapid
semi-automated annotation by an expert reader, they are often used in clinical practice and
research investigations on metabolic tumor volume [3], as well as mentioned in procedure
guidelines [7]. Nonetheless, efforts for standardizing and advancing segmentation techniques
are ongoing, and machine learning based methods are promising for improving automated
segmentation accuracy. Notably, for tumor segmentation in 18F-FDG PET/CT images, machine
learning methods have recently shown improved test-retest repeatability [90] and accuracy
[56][131] compared to thresholding methods, as well as ability to delineate tumor regions in
the whole body [64][6]. While our results with 68Ga-PSMA-11 PET/CT images support the
use of machine learning methods for identification and anatomical location classification of
suspicious uptake sites, future analyses are required to evaluate the accuracy and repeatability
of different segmentation methods in PSMA-ligand images for varying tumor sites in the whole
body. Moreover, while different software implementations of threshold-based segmentation
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methods were reported to yield comparable results for metabolic tumor volume quantification
in 68Ga-PSMA-11 PET/CT scans [55], there may be variations in machine learning-based
segmentation methods and the concordance and potential standardization of these should
also be investigated.

A limited number of subjects with advanced prostate cancer was included in the analysis
and these were used solely for the network training. Given the very low tumor burden of
subjects in the test set, it was not possible within the context of this analysis to evaluate the
ability of the proposed method to estimate total tumor volume within a wide range and in
particular for subjects at an advanced stage, for which tumor burden may be more informative.
Furthermore, the majority of uptake regions annotated as suspicious for prostate cancer were
in lymph nodes or bone, while suspicious findings in other organs were limited. Since the
network was trained to evaluate single regions of interest, it was possible to use PET/CT scans
with only partial annotation of suspicious sites for training. This is beneficial since labeling can
be highly time consuming in cases where a large number of lesions need to be fully annotated.
Moreover, as the network was trained with a variety of regions of interest in the whole body,
it may prove useful for the staging and tumor burden assessment also in subjects with an
advanced disease, but this will need to be confirmed in future analyses.

The ground truth used to train and evaluate the proposed algorithm was determined by
visual assessment of the images by an expert physician, while neither histopathology nor
follow-up information was considered. Additionally, PET/CT image quality characteristics,
such as pitfalls due to motion or artifacts, reconstruction settings and partial volume effects
may influence the output of the network and results will require expert supervision for the
use in clinical context. Despite the above limitations, the network showed good ability to
identify even small suspicious sites with a limited number of false positives, compared to
the expert evaluation. In this analysis, we found that combining training information from
18F-FDG PET/CT and 68Ga-PSMA-11 PET/CT led to improved accuracy for the identification
and anatomical location classification of suspicious uptake sites. This result brings forward the
promising perspective of a deep learning framework for supporting staging and tumor burden
assessment in multiple cancer types with PET/CT images obtained using different tracers.
Notably, an increasing variety of PET radiotracers is being clinically used and developed in
oncology, with multiple alternative compounds undergoing clinical trials for PSMA-targeted
imaging alone. On the one hand, the lesion anatomical spread pattern and tumor volume
are meaningful biomarkers in different cancer types independently of the PET tracer used.
On the other hand, with each compound having a different biodistribution, training distinct
networks de novo as a separate solution for each tracer would require a significant number
of image datasets and expert annotations to reach sufficient accuracy. Ideally, combining
information from multiple diseases and tracers in a single network could create synergies,
leveraging similarities in physiological uptake, tracer excretion patterns and tumor spread,
while still accounting for differences based on the provided input encoding the tracer type. In
the current analysis performance improvements when training with information from both
68Ga-PSMA-11 PET/CT and 18F-FDG PET/CT images were found mainly for 68Ga-PSMA-11
PET/CT scans, having a smaller training dataset. Moreover, a significant improvement was
found for the task of anatomical location classification, possibly driven mainly by the larger
CT training information, while the performance increase in identification of suspicious uptake
was less pronounced. The overall benefit of a combined training approach may depend on the
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level of similarity and the relative frequency of the different imaging findings between tracers,
and future analyses will be required to evaluate the extensibility of the proposed framework
to additional patient cohorts and radiotracers.
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3Prostate cancer staging based on
PSMA-ligand imaging

This chapter discusses the evaluation of the uptake classification method described in Chapter
2 for automated assessment of prostate cancer nodal and metastatic stage based on PSMA-
ligand PET/CT imaging. A convolutional neural network is used to identify sites with uptake
suspicious for cancer and assign them an anatomical location classification relevant for
staging. Based on the identified anatomical pattern of cancer spread, a stage category
relevant for disease management is assigned following a standardized framework concordant
with established staging guidelines. The agreement between the automated image analysis
method and the visual evaluation by an expert reader is assessed. The chapter concisely
introduces background information on prostate cancer staging. Methods used to evaluate the
stage classification based on automated image analysis and expert assessment are detailed,
corresponding results are described, findings and limitations are discussed.

Parts of this chapter have already been published and are partially quoted:

[13] N. Capobianco et al. “Whole-Body Lesion Detection and Prostate Cancer Staging
in 68Ga-PSMA-11 PET/CT Using Deep Learning”. en. In: European Journal of
Nuclear Medicine and Molecular Imaging 47.S1 (Sept. 2020), pp. 273–274

[16] N. Capobianco et al. “Whole-Body Uptake Classification and Prostate Cancer
Staging in 68Ga-PSMA-11 PET/CT Using Dual-Tracer Learning”. en. In: Euro-
pean Journal of Nuclear Medicine and Molecular Imaging (July 2021)

3.1 Introduction

In prostate cancer, the anatomical extent of disease spread is an important factor to evaluate
prognosis as well as to select and tailor treatment. While localized disease confined to the
prostate is associated with a generally favorable outcome and can be indolent in a subset
of patients with low-grade tumors [118], in presence of metastases at the time of diagnosis
prostate cancer is associated with a poor outcome and can constitute a threat to life [115].
Several clinical examinations are used to evaluate prostate cancer presence and progression
including serum Prostate Specific Antigen (PSA) analysis, digital rectal examination, imaging,
and histopathology. Based on the clinical information available, the anatomical extent of
prostate cancer spread can be classified in fixed categories defined by staging guidelines, with
respect to the primary tumor (T), local lymph nodes (N) and distant metastases (M). The
categories defined by the American Joint Committee on Cancer (AJCC) staging manual for
prostate cancer are reported in Tab. 3.1.
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Primary Tumor, clinical (cT)

TX Primary tumor cannot be assessed

T0 No evidence of primary tumor

T1 Clinically inapparent tumor that is not palpable

T1a Tumor incidental histologic finding in 5% or less of tissue resected

T1b Tumor incidental histologic finding in more than 5% of tissue resected

T1c Tumor identified by needle biopsy found in one or both sides, but not palpable

T2 Tumor is palpable and confined within prostate

T2a Tumor involves one-half of one side or less

T2b Tumor involves more than one-half of one side but not both sides

T2c Tumor involves both sides

T3 Extraprostatic tumor that is not fixed or does not invade adjacent structures

T3a Extraprostatic extension (unilateral or bilateral)

T3b Tumor invades seminal vesicle(s)

T4 Tumor is fixed or invades adjacent structures other than seminal vesicles, such as
external sphincter, rectum, bladder, levator muscles, and/or pelvic wall

Regional lymph nodes (N)

NX Regional lymph nodes were not assessed

N0 No positive regional lymph nodes

N1 Metastases in regional lymph node(s)

Distant metastases (M)

M0 No distant metastasis

M1 Distant metastasis

M1a Nonregional lymph node(s)

M1b Bone(s)

M1c Other site(s) with or without bone disease

Tab. 3.1. Prostate cancer TNM stage categories defined in the AJCC 8th edition cancer staging manual. Pathological
T stage (pT) categories are omitted. Adapted from [9].

While histopathology remains the gold standard for prostate cancer staging, imaging is in-
creasingly used for noninvasive disease evaluation. Notably, PSMA-ligand hybrid imaging has
shown superior accuracy for prostate cancer staging compared to conventional imaging. In
response to the increased adoption of PSMA-ligand imaging, the Prostate Cancer Molecular
Imaging Standardized Evaluation (PROMISE) criteria has been proposed [34], defining a stan-
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dardized reporting framework which includes the molecular imaging TNM system (miTNM)
for image-based staging. The miTNM system is designed to parallel the clinicopathologic
TNM framework. Additionally, categories describing the PSMA expression level for each
lesion (miPSMA score) and the pattern of bone involvement are introduced to aid image
interpretation, prognostication, and PSMA-targeted treatment planning.

The PROMISE system provides a framework to aid reproducibility of image interpretation
and reporting, defining clinically meaningful image-based categorical variables and related
diagnostic flowcharts. On the one hand, image evaluation may be operator-dependent and
error-prone if it relies solely on visual inspection. On the other hand, the systematic use of
manual measurements for each suspicious image region can be highly time consuming. We
evaluated the use of automated image analysis, based on the uptake classification algorithm
described in Chapter 2, to support prostate cancer staging following the PROMISE miTNM
framework.

3.2 Materials and Methods

We assessed the ability of the uptake classification algorithm described in Chapter 2 to
determine the N and M stage from 68Ga-PSMA-11 PET/CT images fully automatically. For
this purpose, annotations of elevated uptake sites assigned by an expert physician in 123
consecutive PET/CT scans of prostate cancer patients (group A), referred for primary staging
or assessment of biochemical recurrence, were used to determine a stage category for each
subject. Following PROMISE recommendations, a distinction between patterns of bone
metastases was considered. No subject presented diffuse bone marrow involvement. This
resulted in three N stage categories, related to regional lymph node metastases: N0 (none), N1
(single), N2 (multiple) and six M stage categories, related to distant metastases: M0 (none),
M1a (extrapelvic lymph nodes), M1b/u (single bone lesion, unifocal), M1b/o (up to three
multiple bone lesions, oligometastatic), M1b/d (four or more bone lesions, disseminated), M1c
(other organs). The stage category was employed both as ground truth and for performing a
stratified split determining a hold-out test set of 52 subjects. The remaining 71 subjects were
used for training the uptake classification algorithm as detailed in Chapter 2. An illustration
of the dataset split for the subjects in group A is represented in Fig. 2.1. A summary of the N
and M stage for subjects in group A is reported in Tab. 3.2.

For each test set subject, we first segmented all regions with SUVmax above 1 using an
incremental connected component algorithm [11] and 45% of SUVmax thresholding. These
regions were then processed by the convolutional neural network, classified as nonsuspicious
or suspicious and assigned an anatomical location label. The anatomical location labels of
regions classified as suspicious were used to obtain a prediction of the N and M stage according
to the PROMISE miTNM framework. Predictions of the N and M stage were then compared to
the ones based on expert annotations.

Agreement between the N and M stage estimated using the CNN and determined from the
expert labels was assessed using percent agreement and confusion matrices.
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Development (group A) Test

Total 71 52

Stage

miN0M0 8 6

miN1M0 11 8

miN2M0 5 3

miN0M1a 2 1

miN1M1a 3 3

miN2M1a 7 5

miN0M1b/u 11 8

miN1M1b/u 7 4

miN2M1b/u 1 1

miN0M1b/o 3 2

miN1M1b/o 1 1

miN2M1b/o 2 1

miN0M1b/d 5 4

miN1M1b/d 1 1

miN2M1b/d 2 2

miN0M1c 1 1

miN2M1c 1 1

Tab. 3.2. Summary of the N and M stage assigned based on expert reader annotation of PSMA-ligand PET/CT
images according to the PROMISE miTNM framework, for subjects in group A.

3.3 Results

Based on the expert annotations of subjects in group A, 52 patients had miN0 stage, 40 had
miN1 stage, 31 had miN2 stage, whereas 41 subjects had miM0 stage, 21 had miM1a stage,
57 had miM1b stage and 4 had miM1c stage.

Fig. 3.1 shows an example subject in the test dataset assessed using the CNN. After assigning
an N stage based on CNN annotations and based on expert annotations, agreement was 67%,
while agreement for identification of any pelvic nodal involvement (N0 vs N1/N2) was 81%.
The confusion matrix for the N stage assessment is shown in Tab. 3.3. After assigning an
M stage based on CNN annotations and based on expert annotations, agreement was 62%,
agreement excluding discrimination of bone involvement pattern was 73% and agreement for
identification of any distant metastases (M0 vs M1) was 77%. The confusion matrix for the M
stage assessment is shown in Tab. 3.4.
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Fig. 3.1. (a) coronal and (d) sagittal Maximum Intensity Projections (MIP) of a 68Ga-PSMA-11 PET scan for
a subject in the test set. (b, e) Regions of interest classified by the convolutional neural network as
suspicious overlayed to the PET MIP in yellow, together with the anatomical location label assigned by
the network. (c, f) Regions of interest identified by an expert physician as suspicious uptake overlayed
to the PET MIP in yellow, together with the anatomical location label assigned by the expert.

Predicted stage miN0 miN1 miN2 Total

Annotations stage

miN0 14 7 1 22

miN1 2 11 4 17

miN2 0 3 10 13

Total 16 21 15 52

Tab. 3.3. Confusion matrix comparing the N stage determined according to the PROMISE miTNM framework
based on expert annotations and based on convolutional neural network annotations.
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Predicted stage miM0 miM1a miM1b/u miM1b/o miM1b/d miM1c Total

Annotations stage

miM0 8 5 4 0 0 0 17

miM1a 2 6 1 0 0 0 9

miM1b/u 1 0 7 4 0 1 13

miM1b/o 0 0 0 3 1 0 4

miM1b/d 0 0 0 1 6 0 7

miM1c 0 0 0 0 0 2 2

Total 11 11 12 8 7 3 52

Tab. 3.4. Confusion matrix comparing the M stage determined according to the PROMISE miTNM framework
based on expert annotations and based on convolutional neural network annotations.

3.4 Discussion

In this survey we showed that an automated image analysis method, employing a convolutional
neural network to identify sites of suspicious tracer uptake and classify their anatomical
location, was able to determine the N and M prostate cancer stage according to the PROMISE
miTNM framework fully automatically in fair concordance with the expert evaluation.

Our analysis focused on prostate cancer staging with respect to regional lymph nodes and
distant metastases, while the assessment of the primary tumor extent was not addressed.
For clinical staging of the primary tumor, Digital Rectal Examination is the recommended
examination given its wide accessibility [9]. Moreover, PSMA-ligand imaging is typically
employed in cases where there is a suspicion of metastases prior to initial treatment, or in
cases of suspected recurrence based on high PSA levels after primary treatment, to identify
potential secondary sites of tumor spread relevant for treatment planning. Nevertheless,
combined PSMA-ligand and anatomical imaging can provide useful clinical information for
the primary tumor. Notably, PSMA-ligand PET/CT [77] and PET/MRI [40] have shown the
ability to detect intraprostatic tumors, suggesting a potential role in guiding biopsy in a subset
of patients with improved accuracy compared to conventional approaches. Furthermore,
invasion of the primary tumor in adjacent organs for T staging can be assessed with PSMA-
ligand PET/MRI [50]. While threshold-based image analysis methods are more frequently
used, machine learning methods also showed utility for segmentation of intraprostatic tumors
in PSMA-ligand PET [72], and additional analyses are required to further investigate the
potential of machine learning methods for primary prostate cancer delineation and T staging
based on multimodal imaging.

We found a moderate level of agreement between N and M stage assigned based on the
neural network annotations and expert annotations, which decreased when considering a
higher number of stage categories corresponding to increased anatomical granularity. In terms
of automated image analysis, correctly identifying stage is a particularly challenging task
given that the misclassification of a single elevated uptake region, either as false positive,
false negative, or improper anatomical location, can result in up-staging or under-staging.
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Equivocal tracer uptake potentially resulting from known pitfalls of PSMA expression in
non-prostate cancer tissue or due to artifacts may be incorrectly classified by the network and
results will require supervision by an expert physician to guide clinical decisions. Nevertheless,
the proposed method was able to correctly label a good majority of suspicious uptake sites
relevant for staging and could be employed to assist a human reader in evaluating images as
well as in performing detailed measurements, only requiring manual input for a limited set of
improperly classified high uptake regions.

The present analysis was retrospective and employed a restricted single-center test cohort
of prostate cancer patients referred to PET/CT imaging for primary staging or assessment of
biochemical recurrence. While a stratified split based on stage was performed to determine the
hold-out test set, the stage categories were nonuniformly represented, and distant metastases
other than in bone or lymph nodes were strongly underrepresented. Moreover, PET and
CT images had relatively uniform image quality characteristics and were acquired with a
single scanner. Future analyses should further evaluate the proposed method with respect to
different image quality characteristics and including a broader range of disease progression,
ideally considering a multi-center cohort.

The ground truth used to determine the N and M stage in the current analysis was neither
based on histopathology nor follow-up information but only on visual assessment by a single
physician. Recent analyses have found good intrareader and inter-reader agreement for visual
interpretation of 68Ga-PSMA-11 PET images [39][124], supporting the reproducibility of
image evaluation when performed by an expert reader following standardized criteria. In the
present analysis we reported results based on the recently described PROMISE framework,
while multiple other evaluation systems have been proposed [101][36]. Nevertheless, the
miTNM framework has the advantage of mirroring the broadly recognized TNM classification
and was recently supported by consensus guidelines for PSMA PET reporting [18].
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4Total Metabolic Tumor Volume
estimation in lymphoma

This chapter describes the evaluation of deep learning-based tracer uptake classification in
18F-FDG PET/CT images for automated estimation of Total Metabolic Tumor Volume (TMTV) in
patients with lymphoma. Baseline TMTV has potential as prognostic factor to identify high-risk
patients who may benefit from more intensive treatment strategies. However, determining
TMTV involves the segmentation of all malignant foci throughout the body, a task which
requires extensive manual input from an experienced reader when performed with commonly
employed image analysis methods. In the present retrospective analysis, we evaluated an
automated method for TMTV estimation in a cohort of patients with diffuse large B-cell
lymphoma from a multi-center clinical trial. Background information on TMTV estimation in
patients with lymphoma is first introduced. Methods used to determine TMTV, by combining
a high-uptake segmentation algorithm with deep learning-based classification to discard
physiological uptake regions, are described. Techniques employed to compare the TMTV
estimations obtained automatically and determined semi-automatically by experts, as well
as their respective prognostic value are detailed. Results related to the uptake classification,
TMTV segmentation, and survival analysis are reported. Finally, key findings and limitations
are discussed.

Substantial parts of this chapter have already been published and are quoted verbatim:

[15] N. Capobianco et al. “Fully Automated Deep Learning FDG Uptake Classification
Enables Total Metabolic Tumor Volume (MTV) Estimation in Diffuse Large B-Cell
Lymphoma with Similar Predictive Value as Expert MTV Measurements”. In:
Journal of Nuclear Medicine 61.supplement 1 (May 2020), p. 504

[14] N. Capobianco et al. “Deep-Learning 18 F-FDG Uptake Classification Enables
Total Metabolic Tumor Volume Estimation in Diffuse Large B-Cell Lymphoma”.
en. In: Journal of Nuclear Medicine 62.1 (Jan. 2021), pp. 30–36

4.1 Introduction

Total metabolic tumor volume derived from 18F-FDG PET/CT baseline scans is a promising
prognostic factor in diffuse large B-cell lymphoma (DLBCL) [104][117] and other types of
lymphoma [68][27][82]. DLBCL is the most frequent non-Hodgkin lymphoma, being present
in about 30%–40% of non-Hodgkin lymphoma cases worldwide. Although the prognosis of
DLBCL can be improved with immunochemotherapy, more than 30% of patients are refractory
or relapse after first-line treatment, with a poor outcome [46][28]. Therefore, there is a
need to identify high-risk patients who could benefit from intensive or novel therapies early.
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Unfortunately, the role of current prognostic factors such as the International Prognostic Index
[63], Revised International Prognostic Index [108], and National Comprehensive Cancer
Network International Prognostic Index [133], based on tumor burden surrogates is limited.
Thus, baseline TMTV, which estimates the total metabolic tumor burden at diagnosis, has
been proposed as an alternative prognostic tool for early risk stratification.

To date, TMTV is not yet routinely used in clinical lymphoma patient management, in part
because of a lack of consensus throughout the literature. Several methods have been proposed
to calculate TMTV [24][62][3], and the cutoffs reported to detect high risk patients differed
among methods and investigations. However, recent analyses have suggested that, despite
these differences, most methods yielded similar accuracy in predicting patient prognosis
when applied in similar patient groups [24][62], emphasizing the strong prognostic power of
baseline TMTV.

Regardless of the criteria used for delineating tumor regions, all methods for deriving TMTV
require extensive and time-consuming manual input from an experienced reader. The reader
either manually segments the tumor regions or, more commonly, uses an automated method
to detect all regions with increased uptake and then manually eliminates the regions of
physiologic uptake and adds in undetected tumor regions [3]. Recently, a machine-learning
algorithm using a convolutional neural network (CNN) was trained to differentiate physiologic
from nonphysiologic uptake regions in whole-body 18F-FDG PET scans acquired from an
unselected population of more than 600 patients, including half who were lymphoma patients
with different subtypes of diseases [113][114]. This CNN achieved a high degree of accuracy
in characterizing increased tracer uptake in the whole body as physiologic or nonphysiologic.
Such automated identification of nonphysiologic regions would facilitate TMTV measurement
and clinical adoption. This analysis therefore sought to assess the ability of this CNN to identify
regions from which TMTV could be automatically calculated and to evaluate the ability of
the resulting TMTV in predicting patient outcome among a large group of DLBCL patients
included in an international phase III trial wherein TMTV has already been demonstrated
to be a strong predictor of 4-y progression-free survival (PFS) and overall survival (OS). To
evaluate the CNN performance, regions with elevated tracer uptake automatically identified
as physiologic or suspicious were compared with regions attributed to suspicious uptake by an
expert reader using a semiautomatic method.

4.2 Materials and Methods

4.2.1 Patients

Patients from an ancillary analysis [21][128] of the REMARC trial (NCT01122472) were
retrospectively analyzed. This trial is a phase III investigation that was designed to assess the
efficacy of lenalidomide versus placebo in responding elderly DLBCL patients (60–80 y old)
treated with the standard first-line rituximab, cyclophosphamide, doxorubicin hydrochloride
(hydroxydaunorubicin), vincristine sulfate, and prednisone (R-CHOP) therapy approach [123].
The institutional review board approval and the informed consent of the REMARC trial
included all the ancillary investigations. The ancillary analysis was conducted by involving
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301 patients who underwent baseline PET/CT before R-CHOP and showed that TMTV was a
strong prognosticator of outcome in patients responding to first-line chemotherapy combined
with monoclonal antibody treatment.

4.2.2 Image Acquisition and Analysis

All baseline 18F-FDG PET/CT images from the ancillary analysis were collected in an anonymized
DICOM format. Patients whose PET or CT DICOM series had incomplete axial slices or irregu-
lar slice intervals were excluded. PET images were expressed in SUV units, accounting for
injected dose and patient body weight.

PET/CT images were analyzed using an investigational software prototype (PET Assisted
Reporting System [PARS]; Siemens Medical Solutions USA, Inc.) that uses artificial intelligence.
The prototype first automatically located a cylindric reference region at the center of the
proximal descending aorta by applying a landmarking algorithm to the CT image [122]. This
region was used to determine the mean blood pool SUV and mean blood pool SUV standard
deviation (SD), following PERCIST recommendations [130]. The 3-dimensional regions of the
PET image with increased tracer uptake were identified for each subject using an automated
whole-body high-uptake segmentation algorithm (multi-foci segmentation, MFS) [127]. In
line with the PERCIST recommendations, only the regions with SUVpeak greater than twice
the mean blood pool SUV plus twice the mean blood pool SUV standard deviation were
included. Those regions were then further segmented according to 42% of the SUVmax
threshold, and the ones with volumes below 2 cm3 were discarded. The resulting regions of
interest (ROIs), called ROIP ARS , were then automatically processed by a CNN. Details of the
training and validation of this CNN were previously reported [114]. The input of the CNN
was the PET/CT data together with the set of ROIP ARS sites. For each ROIP ARS , the output
of the CNN was the anatomic localization among a set of possible anatomic sites relevant
for staging and whether the ROIP ARS uptake was physiologic (e.g., due to unspecific bowel
uptake, muscle activation, inflammation, infection, or bone degeneration) or suspicious (i.e.,
due to lymphoma). The volumes of all ROIP ARS sites classified as suspicious uptake were
then summed to obtain the TMTVP ARS .

The CNN was also used in combination with two other settings of the initial high-uptake ROI
segmentation: the first used an initial threshold of 2.5 SUV instead of the blood-pool–based
threshold, followed by thresholding with 41% of SUVmax; the second also included ROIs
with a volume between 0.1 and 2 cm3.

The TMTV obtained by 2 experienced nuclear medicine physicians in the context of a previous
analysis [21][128] was used as a reference (TMTVREF ). The TMTVREF was obtained using
the semiautomatic version of the Beth Israel Fiji (ImageJ) software plugin [69], which was
previously used to demonstrate the prognostic value of TMTV in various lymphoma subtypes
[82][26]. To calculate TMTVREF , the physician combined automated and manual steps as
follows. First, volumes of interest with high uptake in the PET images were segmented using
an automated method, which applied in sequence an algorithm based on component trees and
shape priors [48], a region growing, and a final region delineation using 41% of the region
SUVmax threshold [84]. Second, the resulting ROIs were manually reviewed by the reader,
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who selected only the regions corresponding to lymphoma (ROIREF ), adding an ROIREF

wherever a lymphoma lesion had been missed by the algorithm by drawing a prism around
that lesion and applying a 41% SUVmax threshold. The volumes of all lymphoma ROIREF

sites were summed to obtain the reference TMTV (TMTVREF ).

4.2.3 Statistical Analysis

To evaluate the performance of the CNN classification, for each patient, each ROIP ARS , having
been labeled as presenting suspicious or physiologic uptake by the CNN, was compared
with all the ROIREF sites of that patient taken together. The ROIP ARS was considered to
match the ROIREF if at least 50% of its volume overlapped with one or several ROIREF

sites. ROIP ARS sites classified as suspicious and matching one or several ROIREF sites were
considered true-positives, ROIP ARS sites classified as physiologic and matching one or several
ROIREF sites were considered false-negatives, ROIP ARS sites classified as physiologic and not
matching any ROIREF sites were considered true-negatives, and ROIP ARS sites classified as
suspicious and not matching any ROIREF sites were considered false-positives. The sensitivity,
specificity, and accuracy of the uptake classification were calculated. The performance of the
CNN classification was also assessed in case a minimum overlap of 25% and 75% was required
to consider an ROIP ARS as matching the ROIREF .

To evaluate differences between TMTVP ARS and TMTVREF , Bland– Altman analysis was
performed. Since the Shapiro–Wilk test revealed a significant nonnormal distribution of the
differences between TMTVP ARS and TMTVREF (P < 0.001), the median bias and limits of
agreement at the 2.5 and 97.5 percentiles were reported in the Bland– Altman plot. To assess
the correlation between ranked TMTV values, the Spearman rank correlation coefficient was
used. For each patient, the agreement between the patient set of ROIP ARS sites classified
as suspicious and the patient set of ROIREF sites was characterized using the Dice score,
precision (the fraction of voxels in the set of ROIP ARS sites classified as suspicious that were
also present in the set of ROIREF sites), and recall (the fraction of voxels in the set of ROIREF

sites that were also present in the set of ROIP ARS sites classified as suspicious).

Survival analysis was performed for both TMTVP ARS and TMTVREF with respect to PFS and
OS. Receiver-operating-characteristic curves were used to determine TMTV cutoffs to predict
the occurrence of events within 4 y for both PFS and OS, by maximizing the Youden index
(sensitivity + specificity - 1). Survival functions were computed by Kaplan–Meier analyses
and used to estimate survival time statistics (such as 4-y PFS rate and 4-y OS rate) for low-
and high-TMTV groups. A log-rank test was used to assess whether differences between
Kaplan–Meier survival curves were significant. Univariate Cox regression was used to calculate
hazard ratios between survival groups. Statistical significance was set at a P value of less than
0.05. Statistical analysis was performed using R, version 3.6.1, with survivalROC, version
1.0.3, and pROC, version 1.15.3 [99].
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4.3 Results

In total, 280 patients from 124 centers were included in the analysis. Patient characteristics are
reported in Tab. 4.1. All received first-line treatment with R-CHOP and were responders at the
time of inclusion in the trial, 142 received a lenalidomide regimen afterward as maintenance,
and 138 received placebo. After a median follow-up of 5 y, 86 patients presented with a PFS
event and 51 patients had an OS event; the 4-y survival rates were 69% for PFS and 83% for
OS. The 4-y survival rates were comparable to those of the entire trial.

Patient characteristics Data (%)

Sex

Female 119 (42.5)

Male 161 (57.5)

Age (median, ranges) years 68 (58-80)

Ann Arbor Stage

I 1 (0.4)

II 25 (8.9)

III 57 (20.4)

IV 197 (70.4)

Performance status (ECOG)

0 113 (40.4)

1 119 (42.5)

2 39 (13.9)

3 2 (0.7)

4 2 (0.7)

Missing 5 (1.8)

IPI

1 6 (2.1)

2 73 (26.1)

3 97 (34.6)

4 81 (28.9)

5 19 (6.8)

Missing 4 (1.4)

Elevated LDH (>Upper limit of normal*)

No 111 (39.6)

Yes 165 (58.9)

Missing 4 (1.4)

*LDH upper limit set specifically for each laboratory

Tab. 4.1. Patient characteristics.
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PET/CT images were acquired using different scanner models from different vendors as
summarized in Tab. 4.2. The delay between injection and acquisition time was (71.7±14.1) min
(mean ± std). The SUVmean in the proximal descending aorta cylindric region was 1.6 ± 0.5
(mean ± std across subjects), resulting in an SUVpeak threshold of 3.6 ± 1.2 for detecting
ROIs with increased tracer uptake.

PET/CT scan characteristics Data

Injected dose (MBq) 309 ± 87 (mean ± std)

Post injection scan delay (min) 71.7 ± 14.1 (mean ± std)

PET slice thickness (mm) Median: 3.7; min-max: 2.0–5.0

PET pixel spacing (mm) Median: 4.0; min-max: 2.3–5.5

CT slice thickness (mm) Median: 3.00; min-max: 1.25–8.00

CT pixel spacing (mm) Median: 1.17; min-max: 0.86–1.52

PET/CT scanner model

General Electric (all) 72

Discovery 690 40

Discovery STE 14

Discovery ST 8

Discovery RX 4

Discovery 600 3

Discovery 710 2

Discovery LS 1

Siemens (all) 105

Biograph HiRez (1080) 40

Biograph Truepoint (1093,1094) 27

Biograph mCT 25

Biograph LSO (1023,1024) 8

Biograph BGO (1062) 5

Philips (all) 103

Gemini TF 38

Gemini GXL 36

Allegro Body 19

Unspecified (Philips) 10

Tab. 4.2. PET/CT scan characteristics.

The results below are described for the PERCIST-based setting of the initial high-uptake ROI
segmentation, whereas changes observed with other settings are reported in Tab. 4.5, Tab. 4.7
and Tab. 4.8.
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4.3.1 Uptake Classification

In total, 6,737 ROIP ARS sites exhibiting increased uptake were obtained from the 280 subjects.
There were 7,996 ROIREF sites in the 280 subjects. Descriptive statistics for the number
of ROIP ARS and ROIREF sites per subject are summarized in Tab. 4.3. Among the 6,737
ROIP ARS sites with increased uptake, 2,831 (42%) were classified as having suspicious uptake
by the CNN.

ROIP ARS ROIREF

Total number of ROI 6737 7996

Average number of ROI per subject (min–max) 24.1 (2–91) 28.6 (1-201)

Median number of ROI per subject (IQR) 19.0 (13.0–31.2) 16.0 (6.0-38.0)

Tab. 4.3. Descriptive statistics related to the number of ROIP ARS and ROIREF in the 280 subjects included in the
analysis.

When compared with the ROIREF sites obtained by the experienced reader, the identification
of the ROIP ARS sites with suspicious uptake by the CNN yielded 3,317 true-negatives, 2,399
true-positives, 589 false-negatives, and 432 false-positives. Corresponding sensitivity was
80%, specificity was 88%, and accuracy was 85%.

Additionally, the mean per-subject ROIP ARS classification accuracy was 87% (median, 89%;
interquartile range [IQR], 81%– 96%). There were an average of 20 correctly classified
ROIP ARS sites per subject (median, 17 ROIP ARS sites; IQR, 11–27 ROIP ARS sites) and an
average of 4 incorrectly classified ROIP ARS sites per subject (median, 2 ROIP ARS sites; IQR,
1–5 ROIP ARS sites), which were regions classified as suspicious by the CNN that did not
overlap with the set of ROIREF sites or regions classified as physiologic by the CNN but
overlapped with the set of ROIREF sites. Two examples of uptake classification of ROIP ARS

sites with corresponding ROIREF are shown in Fig. 4.1. Results with a minimum overlap of
25% and 75% required to consider a ROIP ARS as matching the ROIREF are reported in Tab.
4.4.

4.3.2 TMTV

After discarding the ROIP ARS sites classified as physiologic uptake by the CNN, a median
TMTVP ARS of 110 cm3 was obtained (IQR, 33–281 cm3). The median TMTVREF was 240 cm3

(IQR, 80–529 cm3) (Tab. 4.6).

There was a significant correlation between ranked TMTV estimates (ρ=0.76; P < 0.001).
The median Dice score across all patients between the patient set of ROIP ARS sites labeled
as suspicious and the patient set of ROIREF sites was 0.73 (IQR, 0.33– 0.86), the median
recall of the patient set of ROIP ARS sites labeled as suspicious with respect to the patient
set of ROIREF sites was 0.62 (IQR, 0.20–0.81), and the median precision was 0.96 (IQR,
0.86–0.99). The Bland–Altman plot comparing TMTVP ARS and TMTVREF (Fig. 4.2) showed
wide limits of agreement.
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a b c

d e f

SUV

Fig. 4.1. Detection and classification of high 18F-FDG uptake regions as physiological or suspicious. (a, d)
Maximum-intensity projection (MIP) PET images of two subjects with low TMTV (a) and high TMTV
(d). (b, e) ROIP ARS obtained automatically using the PARS software prototype. ROIP ARS detected by
the MFS algorithm are overlaid on to the PET MIP. ROIP ARS classified by the deep learning algorithm
as physiological are shown in green, and ROIP ARS classified as suspicious are shown in yellow. (c, f)
ROIREF regions obtained by an experienced nuclear medicine physician using a semiautomatic software.

4.3.3 Survival Analysis

The area under the receiver-operating-characteristic curve for predicting the 4-y PFS was 0.63
for TMTVP ARS and 0.69 for TMTVREF (Fig. 4.3). The optimal cutoffs for predicting the 4-y
PFS were 171 cm3 for TMTVP ARS and 242 cm3 for TMTVREF . Kaplan–Meier survival curves
are shown in Fig. 4.4. The 4-y PFS rates were 79% and 54% for the low- and high-TMTVP ARS

groups and 83% and 55% for the low- and high-TMTVREF groups, respectively. The log-rank
test indicated a significantly longer PFS time in the low-TMTV patient group for both TMTV
estimation methods (P < 0.001 for TMTVP ARS and TMTVREF ). Cox regression for PFS
resulted in hazard ratios (high-TMTV group vs. low-TMTV group) of 2.3 (95% confidence
interval, 1.5–3.6; P < 0.001 for Wald test) for TMTVP ARS and 2.6 (95% confidence interval,
1.6–4.1; P < 0.001) for TMTVREF . The survival results are summarized in Tab. 4.9.

For the 4-y OS, the area under the receiver-operating-characteristic curve was 0.65 for
TMTVP ARS and 0.68 for TMTVREF . The optimal TMTV cutoffs for predicting the 4-y OS were
148 cm3 for TMTVP ARS and 223 cm3 for TMTVREF . The 4-y OS rates were 90% and 74% for
the low- and high-TMTVP ARS groups and 93% and 74% for the low- and high-TMTVREF

groups, respectively. The log-rank test revealed a significantly higher OS time in the low-TMTV
patient group for both TMTV estimation methods (P < 0.001 for TMTVP ARS and TMTVREF ).
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Overlap≥25% Overlap≥50% Overlap≥75%

Overall accuracy 0.85 0.85 0.84

Overall sensitivity 0.79 0.80 0.81

Overall specificity 0.91 0.88 0.85

Average misclassified number of
ROIP ARS per subject (min–max)

3.5 (0-61) 3.6 (0-60) 3.9 (0-53)

Median misclassified number of
ROIP ARS per subject (IQR)

2.0 (1.0-4.0) 2.0 (1.0-5.0) 2.0 (1.0-5.0)

Average classification accuracy per
subject (min–max)

0.88
(0.33-1.00)

0.87
(0.34-1.00)

0.86
(0.42-1.00)

Median classification accuracy per
subject (IQR)

0.90
(0.82-0.96)

0.89
(0.81-0.96)

0.88
(0.80-0.94)

Tab. 4.4. Results associated with the classification of ROIs with uptake significantly above the blood pool and
volume above 2 mL, when different levels of overlap are required to consider a ROI as matching the
reference TMTV region.

Cox regression for OS resulted in hazard ratios (high-TMTV group vs. low-TMTV group) of
2.8 (95% confidence interval, 1.6–5.1; P < 0.001) for TMTVP ARS and 3.7 (95% confidence
interval, 1.9–7.2; P < 0.001) for TMTVREF .

The sensitivity, specificity, negative predictive value, positive predictive value, and accuracy
for predicting the occurrence of survival events within 4 y, determined at the optimal TMTV
cutoff for each method, are reported in Tab. 4.10 and were similar for both PFS and OS.

4.4 Discussion

Our main result was that a fully automated method combining a region delineation method
based on PERCIST recommendations and a CNN-based algorithm to distinguish between
regions with elevated physiologic uptake and nonphysiologic regions was able to generate,
in a uniform population of DLBCL patients, TMTV values predictive of 4-y PFS and OS with
an accuracy comparable to that obtained when TMTV is calculated by manual selection
of the tumor regions by medical experts. Although the CNN-based algorithm was trained
using images obtained on only 2 scanner models from the same vendor, the algorithm was
highly accurate in classifying increased uptake in patients from an international trial involving
124 centers that obtained images on different scanner models from different vendors and
with variable reconstruction settings. This accuracy underlines the robustness of the CNN
despite different image quality. Moreover, this algorithm was not originally trained for
TMTV computation and outcome prediction and was developed with data from patients with
different lymphoma subtypes and lung cancer who underwent PET at baseline and for response
assessment. However, we showed that the algorithm was successful in a group of patients with
a homogeneous lymphoma subtype scanned at baseline, enabling the identification of a TMTV
cutoff separating high-risk from low-risk patients and predicting prognosis with accuracy
comparable to that of the reference method. No subject was excluded because of failure of
the initial high-uptake ROI segmentation, which identified at least one high-uptake region in
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SUVmax >2.5
(vol>2 mL)

SUVpeak
>Blood Pool
(vol>2 mL)

Total number of MFS* findings (ROIP ARS) 18674 6737

Average number of ROIP ARS per subject (min–max) 66.7 (6–242) 24.1 (2–91)

Median number of ROIP ARS findings per subject (IQR) 59.0 (39.0–86.0) 19.0 (13.0–31.2)

Average misclassified number of ROIP ARS per subject
(min–max)

6.9 (0–73) 3.6 (0–60)

Median misclassified number of ROIP ARS per subject
(IQR)

4.0 (2.0–9.0) 2.0 (1.0–5.0)

Overall accuracy 0.90 0.85

Overall sensitivity 0.79 0.80

Overall specificity 0.92 0.88

Average classification accuracy per subject (min–max) 0.90 (0.40–1.00) 0.87 (0.34–1.00)

Median classification accuracy per subject (IQR) 0.93 (0.86–0.97) 0.89 (0.81–0.96)

*Multi-foci segmentation

Tab. 4.5. Results associated with the classification of high-uptake ROIs for two different groups of ROIs obtained
with two different settings of the multi-foci segmentation algorithm.

TMTV Estimation Mean STD Min Q1 (25%) Median Q3 (75%) Max

TMTVP ARS (mL) 235.2 347.6 0.0 32.9 110.2 280.8 2471.9

TMTVREF (mL) 433.7 571.3 2.27 80.0 240.0 529.3 3832.7

Tab. 4.6. Descriptive statistics of TMTV obtained using the software prototype PARS (TMTVP ARS) and the
reference method for the 280 subjects included in the analysis.

all subjects. Furthermore, comparable results were obtained when different settings of the
initial high-uptake ROI segmentation were applied using a lower threshold (2.5 SUV) than
the PERCIST-recommended blood-pool–based threshold (Tab. 4.5 and Tab. 4.7), suggesting
the robustness of the algorithm to the initial segmentation results. Additionally, the accuracy
of the high-uptake ROI classification was not substantially impacted when a different level
of overlap was required to consider an ROI as matching the TMTVREF and when ROIs with
volumes of less than 2 cm3 were included in the analysis (Tab. 4.4 and Tab. 4.8).

The median TMTVP ARS and the resulting cutoff were lower than those observed for TMTVREF .
This finding could be due to multiple factors, including the higher initial SUV threshold used
for TMTVP ARS relative to the one used for TMTVREF , the manual addition of suspicious
regions with low uptake in TMTVREF , regions being classified as physiologic in TMTVP ARS

but considered suspicious in TMTVREF , and differences in the contouring of suspicious regions
between TMTVP ARS and TMTVREF . However, the ability of the TMTVP ARS estimates to be
predictive of PFS and OS despite involving a TMTV range different from that of TMTVREF is
consistent with what has already been reported [24][62] when comparing different TMTV
estimation methods. This result confirms both the validity of the CNN method and the value
of TMTV as a prognostic indicator.
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Fig. 4.2. Bland–Altman plot comparing fully automated and reference TMTV estimations. Bland–Altman plot
comparing the TMTV obtained using the software prototype PARS (TMTVP ARS) and the reference TMTV
(TMTVREF ) obtained by a nuclear medicine physician using a semiautomatic software.

Our analysis had limitations. Results of the receiver-operating-characteristic curve analysis
and survival rates were reported for a four-year follow up time, whereas for longer follow-up
intervals survival information was censored in the majority of subjects, resulting in larger
confidence intervals for survival rates as visualized in the Kaplan-Meier curves. Since there is
currently no gold standard method for TMTV calculation from 18F-FDG PET/ CT images [23],
the reported figures of merit supporting the uptake classification performance and accuracy of
the TMTV segmentation are limited to the comparison with the reference method considered
in the analysis. Moreover, a uniform cohort of lymphoma patients was evaluated in the current
investigation, and results may differ for different lymphoma subtypes or different cancer
types.

In the present work, we evaluated a fully automated application of PARS. However, PARS
was initially intended to be used in a supervised manner, allowing the reader to correct for
potentially misclassified regions when appropriate. In particular, pitfalls in PET/CT image
quality, such as misalignment due to motion or image artifacts, may influence the classification
output of the CNN algorithm, and the results should be validated by an expert. This is especially
true when the labeling results are used to derive a prognostic index such as TMTV that can be
used to stratify the risk and guide personalized therapy. Nevertheless, this approach could
be used by expert readers to efficiently estimate TMTV, as the deep learning–based method
is able to automatically identify several relevant suspicious uptake sites and automatically
discard physiologic uptake sites, with the expert only having to correct the potential improper
classification of a limited number of regions per subject, requiring limited user interaction and
potentially improving inter-reader variability. This approach may introduce bias in the TMTV
estimation process by relying on pre-generated results. However, this risk should be marginal,
especially when a careful revision of the results is performed by an experienced reader.
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SUVmax >2.5
(vol>2 mL)

SUVpeak
>Blood Pool
(vol>2 mL)

Mean TMTV (min–max) 258.2
(0.0–2544.1)

235.2
(0.0–2471.9)

Median TMTV (IQR) 126.8
(37.8–295.0)

110.2
(32.9–280.8)

Average Dice with respect to the patient set of ROIREF

(min-max)
0.59 (0.00–0.99) 0.60 (0.00–0.99)

Median Dice with respect to the patient set of ROIREF

(IQR)
0.71 (0.31–0.86) 0.73 (0.33–0.86)

Average recall with respect to the patient set of
ROIREF (min-max)

0.56 (0.00–1.00) 0.53 (0.00–0.99)

Median recall with respect to the patient set of
ROIREF (IQR)

0.66 (0.23–0.85) 0.62 (0.20–0.81)

Average precision with respect to the patient set of
ROIREF (min-max)

0.79 (0.00–1.00) 0.89 (0.00–1.00)

Median precision with respect to the patient set of
ROIREF (IQR)

0.88 (0.72–0.96) 0.96 (0.86–0.99)

Spearman correlation coefficient with respect to
reference TMTV

0.73 0.76

Tab. 4.7. Results associated with total metabolic tumor volume obtained using two different settings of the
high-uptake region detection algorithm (multi-foci segmentation).

To our knowledge, this was the first analysis showing that an artificial intelligence method can
generate a TMTV value prognostic of outcome in a large series of patients with DLBCL, with
results comparable to other currently used methodologies. Other machine-learning–based
approaches for TMTV estimation in lymphoma patients, including some involving CNN, are
being developed and evaluated [65]. The automated method for TMTV segmentation as-
sessed in the present analysis combined a region delineation method based on PERCIST
recommendations and a deep-learning–based classification scheme for rapidly discarding phys-
iologic uptake. Further efforts toward developing a stricter definition of TMTV, standardizing
volume-segmentation methods, and establishing guidelines for the inclusion of tumor-bearing
anatomic regions are ongoing, and these will constitute a prerequisite for the optimization of
a complete automated method [3].
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SUVmax
>2.5
(vol>2 mL)

SUVmax
>2.5
(vol>0.1 mL)

SUVpeak
>Blood Pool
(vol>2 mL)

SUVpeak
>Blood Pool
(vol>0.1 mL)

Total number of MFS*
findings (ROIP ARS)

18674 82114 6737 16717

Number of ROIP ARS

per subject, average
(min-max)

66.7 (6-242) 293.3
(11-1952)†

24.1 (2-91) 59.7 (2-689)†

Number of ROIP ARS

per subject, median
(IQR)

59.0
(39.0-86.0)

191.0
(91.8-428.5)†

19.0
(13.0-31.2)

39.5
(23.0-72.5)†

Classification accuracy
per subject, average
(min-max)

0.90
(0.40-1.00)

0.89
(0.46-1.00)‡

0.87
(0.34-1.00)

0.85
(0.38-1.00)†

Classification accuracy
per subject, median
(IQR)

0.93
(0.86-0.97)

0.93
(0.83-0.97)‡

0.89
(0.81-0.96)

0.87
(0.78-0.94)†

TMTV, average
(min-max)

258.2
(0.0-2544.1)

275.9
(0.0-2571.9)†

235.2
(0.0-2471.9)

244.8
(0.0-2488.3)†

TMTV, median (IQR) 126.8
(37.8-295.0)

142.2
(42.9-340.1)†

110.2
(32.9-280.8)

123.3
(35.9-295.6)†

Dice with respect to
the patient set of
ROIREF , average
(min-max)

0.59
(0.00-0.99)

0.60
(0.00-0.99)†

0.60
(0.00-0.99)

0.62
(0.00-0.99)†

Dice with respect to
the patient set of
ROIREF , median
(IQR)

0.71
(0.31-0.86)

0.71
(0.35-0.85)†

0.73
(0.33-0.86)

0.74
(0.39-0.88)†

*Multi-foci segmentation
†p < 0.05,‡p > 0.05, Wilcoxon signed-rank test compared to the same variable obtained by
neglecting ROIs with a volume below 2 mL

Tab. 4.8. Results associated with the classification of high-uptake ROIs for four groups of ROIs obtained with two
different settings of the multi-foci segmentation algorithm both with and without the neglection of ROIs
with a volume between 0.1 mL and 2 mL.
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a b

Fig. 4.3. ROC curves for determining the occurrence of PFS or OS events using a TMTV threshold. ROC curves
for TMTVP ARS and TMTVREF for (a) 4-y PFS and (b) 4-y OS. Areas under the ROC curves (AUC) and
optimal TMTV cutoff thresholds are reported.

TMTV estimation AUC* Cutoff
(mL)

Hazard
ratio
(95% CI)

High
TMTV 4-y
Survival

Low
TMTV 4-y
Survival

P

Progression-free Survival

TMTVP ARS 0.61 110 2.4
(1.5–3.7)

58% 81% 0.00016

TMTVREF 0.64 242 2.6
(1.6–4.1)

55% 83% 0.00004

Overall survival

TMTVP ARS 0.64 148 2.8
(1.6–5.1)

74% 90% 0.00044

TMTVREF 0.66 223 3.7
(1.9–7.2)

74% 93% 0.00012

*Area under the ROC curve

Tab. 4.9. Results associated with ROC analysis of TMTV, Kaplan–Meier estimation of four-year survival rates, Cox
regression hazard ratio, and Wald test p-values for PFS and OS for the 280 subjects included in the
analysis.

Accuracy Sensitivity Specificity NPV* PPV†

TMTVP ARS PFS 0.60 0.66 0.57 0.79 0.41

TMTVREF PFS 0.61 0.67 0.58 0.80 0.42

TMTVP ARS OS 0.63 0.67 0.62 0.89 0.28

TMTVREF OS 0.58 0.78 0.53 0.92 0.27

*Negative predictive value
†Positive predictive value

Tab. 4.10. Performance of the prediction of the occurrence of an event for both PFS and OS based on the TMTV
cutoff thresholds selected by maximizing Youden’s J index.
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Fig. 4.4. Survival curves for the low- and high-TMTV groups for fully automated and reference TMTV estimations.
Kaplan–Meier survival curves for PFS (a: TMTVP ARS , b: TMTVREF ) and OS (c: TMTVP ARS , d:
TMTVREF ).
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Part III

Conclusion





5Conclusion and outlook

The research presented in this dissertation aimed at developing and evaluating methods to
enable image-derived biomarkers in oncology. This chapter summarizes the main results
obtained and discusses possible directions for future research.

In Chapter 2 a method for automated identification and anatomical location classification of
sites suspicious for cancer in PET/CT images was described. The method was found to have
good agreement with visual assessment by an expert physician. Considering the context of
limited availability of image data with expert-annotated ground truth, training the described
algorithm with information from both 68Ga-PSMA-11 PET/CT and 18F-FDG PET/CT scans
was found to improve performance. Given the ability to automatically identify relevant
imaging findings, the investigated techniques are promising to support physicians for efficient
assessment of cancer spread and overall burden.

The analysis described considered as ground truth the visual image evaluation by a single
physician. To fully validate the proposed method, the accuracy, reproducibility, and time-
efficiency for a defined task with and without employing the algorithm should be compared
for several users in a prospective analysis, using as ground truth the consensus from multiple
experts, or ideally a composite standard of truth including follow-up or histology information.
Moreover, dedicated surveys may in the future critically evaluate the proposed method, or
investigate new solutions, for the analysis of challenging imaging findings, such as in presence
of artifacts, tracer uptake pitfalls, or cases requiring contextual patient information beyond
the PET/CT scan for correct interpretation. Notably, PET/CT image quality characteristics can
vary significantly due to different acquisition systems, scan protocols, and image formation
algorithms employed. Future analyses should evaluate the impact of different image quality
characteristics on the performance of deep learning methods used to identify suspicious tracer
uptake, and to which extent dedicated harmonization or algorithm training strategies can
mitigate this impact.

In this dissertation, an uptake classification algorithm jointly trained with information from
68Ga-PSMA-11 PET/CT and 18F-FDG PET/CT scans was described. Currently, several radio-
tracers are in use and in development for clinical applications in oncology. Future analyses
should further investigate the combination of training information from multiple radiotracers,
to reduce the need for extensive sets of image data and expert-annotated ground truth for
each tracer with potentially partly redundant information whose collection requires significant
resources. With the same objective of maximizing the value of training information while
minimizing the burden of its collection, approaches to acquire selected informative examples,
such as active learning, or limit the need for expert-annotated ground truth, such as weakly
supervised, semi-supervised or unsupervised learning, could be valuable for PET/CT image
analysis. Moreover, given the frequently incumbent restrictions on data sharing, including
the constraints imposed by data protection regulations, methods to train PET/CT image

67



analysis algorithms across multiple centers without exchanging local training samples, such
as federated learning, could be investigated, together with the impact of combining possibly
heterogeneous training information originating from different centers.

The uptake classification algorithm described in the dissertation was trained with PET images
expressed in SUV units, which have several limitations. Future analyses could investigate
the use of parametric PET images for automated identification of suspicious uptake, combin-
ing multiple relevant kinetic parameters. Furthermore, while several recent analyses have
evaluated deep learning techniques for identification of suspicious tracer uptake in PET/CT
images, future analyses could investigate whether similar results can be obtained with other
multimodal images such as SPECT/CT or PET/MRI, and whether training information for
the same image analysis task may be efficiently shared across different hybrid images. While
the method described in this dissertation focuses on a dichotomous classification of tracer
uptake as nonsuspicious or suspicious, future analyses may consider multiple categories re-
lated to increased tracer uptake including for instance brown fat activation, muscle activation,
inflammation, or infection, in a multiclass classification task.

The method described in this dissertation for automated identification of suspicious tracer
uptake combined an initial segmentation of high uptake regions based on thresholding, having
limited accuracy, with a deep learning-based classification algorithm to discard physiological
uptake regions. Future analyses could evaluate the use of entirely deep learning-based
segmentation algorithms for contouring regions suspicious for cancer in the whole body
in PET/CT images, and compare their accuracy with commonly employed threshold-based
methods, for different cancer types and radiotracers.

Notably, deep learning algorithms may be subject to bias and lack interpretability, posing a
significant challenge for their use in guiding clinical decisions. Future investigations could
further highlight limitations and sources of bias of deep learning algorithms for PET/CT image
analysis; while methods developed in the active research field referred to as explainable
artificial intelligence may aid interpretability, one example being the identification of relevant
image features used for classification.

In Chapter 3 the use of the uptake classification method described in Chapter 2 to support
prostate cancer staging based on PSMA-ligand PET/CT images was evaluated. The method was
found to determine the extent of cancer spread with respect to local lymph nodes and distant
metastases, according to the standardized PROMISE miTNM framework, in fair concordance
with the visual assessment by a physician.

While the cohort analyzed included subjects referred to PSMA-ligand PET/CT for primary
staging or assessment of biochemical recurrence, future analyses could evaluate the proposed
method in a patient cohort representative of a broader spectrum of prostate cancer progression,
including subjects with advanced disease with distant lesions other than in bone or lymph
nodes, as well as subjects with diffuse bone marrow involvement. Future investigations may
also evaluate the extent to which the proposed method could support users in determining
prostate cancer stage, and whether further advances in the algorithm performance are required
for this purpose. While the analysis described in the dissertation focused on PSMA-ligand
tracer uptake suspicious for prostate cancer, future surveys could evaluate cases with PSMA-
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ligand tracer uptake related to other cancer types, and whether these cases can be identified
through image analysis methods for appropriately supporting prostate cancer staging.

The analysis described in this thesis focused on staging with respect to local lymph nodes and
distant metastases. In prostate cancer, the majority of subjects present disease localized to the
prostate at diagnosis, and staging the primary tumor has a significant role for patient man-
agement, with diagnostic information increasingly being obtained through imaging. Future
investigations could evaluate image analysis methods to support T staging, characterizing
the primary tumor extent and invasion of adjacent anatomical structures based on hybrid
imaging with PET/CT or PET/MRI. Besides the TNM classification, histological biomarkers
such as the International Society of Urological Pathology (ISUP) Grade Group are highly
relevant for risk stratification. Future analyses may further investigate whether PET/CT or
PET/MR image-derived biomarkers might allow to reliably characterize the primary tumor
grade noninvasively. Furthermore, while the present dissertation evaluated the use of the
described uptake classification method for prostate cancer staging, future investigations may
evaluate PET/CT image analysis methods for supporting the staging of other cancer types
according to established staging criteria.

In Chapter 4 the use of a deep learning-based 18F-FDG uptake classification algorithm for
estimation of Total Metabolic Tumor Volume in patients with diffuse large B-cell lymphoma was
described. The method was found to determine a fully automated estimation of baseline TMTV
from PET/CT images which was significantly correlated and had comparable prognostic value
with a TMTV estimation obtained semi-automatically by an expert physician. Classification
of high-uptake regions using deep learning for rapidly discarding physiologic uptake may
considerably simplify TMTV estimation and facilitate its use as prognostic indicator in patients
with diffuse large B-cell lymphoma.

Future prospective analyses may further evaluate the accuracy, reproducibility, and time-
efficiency of TMTV estimation by multiple users with and without employing the proposed
algorithm. Since no consensus currently exists regarding the most appropriate method for
TMTV segmentation, future investigations and consensus guidelines may identify a suitable
recommended method allowing sufficient accuracy and reproducibility. In this context, entirely
deep learning-based algorithms for segmentation of suspicious uptake regions are promising
and may be further evaluated for TMTV segmentation in future analyses. The survey described
in this dissertation equally evaluated PET/CT images acquired with different scanners models
from multiple vendors, and future analyses may investigate the extent to which various image
quality characteristics impact the performance of described method and the estimation of
TMTV. While the analysis described in this thesis focused on estimation of TMTV based on
18F-FDG PET/CT images in patients with diffuse large B-cell lymphoma, future investigations
may further evaluate the proposed method for TMTV estimation in other lymphoma subtypes,
other cancer types, or based on PET/CT images acquired with other radiotracers.

For supporting the use of TMTV in clinical settings, future analyses may evaluate the integra-
tion of TMTV with well-established disease indicators, propose viable related criteria to guide
decisions in defined clinical applications, such as risk stratification or response assessment,
and evaluate the impact of applying the proposed criteria for patient management.
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The image analysis methods described in this dissertation allow to derive relevant findings for
determining meaningful image-derived biomarkers, including cancer stage and overall burden.
Moreover, by identification and anatomical location classification of regions suspicious for
cancer in whole-body images, the described methods allow to extract extended information,
which may support the investigation of novel image-derived biomarkers to characterize disease
in oncology. In conclusion, image analysis methods based on deep learning may aid physicians
in evaluating informative and actionable image-derived cancer biomarkers and, together with
diligent validation in multicenter trials, drive their establishment in the clinical routine.

70 Chapter 5 Conclusion and outlook



Part IV

Appendix





AList of Authored and Co-authored
Publications

Primary author

Journal articles

N. Capobianco, M. Meignan, A.-S. Cottereau, L. Vercellino, L. Sibille, B. Spottiswoode, S.
Zuehlsdorff, O. Casasnovas, C. Thieblemont, and I. Buvat. “Deep-Learning 18 F-FDG Uptake
Classification Enables Total Metabolic Tumor Volume Estimation in Diffuse Large B-Cell
Lymphoma”. en. In: Journal of Nuclear Medicine 62.1 (Jan. 2021), pp. 30–36

N. Capobianco, L. Sibille, M. Chantadisai, A. Gafita, T. Langbein, G. Platsch, E. L. Solari,
V. Shah, B. Spottiswoode, M. Eiber, W. A. Weber, N. Navab, and S. G. Nekolla. “Whole-Body
Uptake Classification and Prostate Cancer Staging in 68Ga-PSMA-11 PET/CT Using Dual-
Tracer Learning”. en. In: European Journal of Nuclear Medicine and Molecular Imaging (July
2021)

Conference abstracts

N. Capobianco, A. Gafita, G. Platsch, L. Sibille, B. Spottiswoode, M. Eiber, W. Weber, N. Navab,
and S. Nekolla. “Transfer Learning of AI-Based Uptake Classification from 18F-FDG PET/CT to
68Ga-PSMA-11 PET/CT for Whole-Body Tumor Burden Assessment”. In: Journal of Nuclear
Medicine 61.supplement 1 (May 2020), p. 1411

N. Capobianco, M. Meignan, A. S. Cottereau, L. Vercellino, L. Sibille, B. Spottiswoode, S.
Zuehlsdorff, O. Casasnovas, C. Thieblemont, and I. Buvat. “Fully Automated Deep Learning
FDG Uptake Classification Enables Total Metabolic Tumor Volume (MTV) Estimation in Diffuse
Large B-Cell Lymphoma with Similar Predictive Value as Expert MTV Measurements”. In:
Journal of Nuclear Medicine 61.supplement 1 (May 2020), p. 504

N. Capobianco, A. Gafita, G. Platsch, L. Sibille, B. Spottiswoode, M. Eiber, W. A. Weber, N.
Navab, and S. G. Nekolla. “Whole-Body Lesion Detection and Prostate Cancer Staging in
68Ga-PSMA-11 PET/CT Using Deep Learning”. en. In: European Journal of Nuclear Medicine
and Molecular Imaging 47.S1 (Sept. 2020), pp. 273–274

73



Co-author

Journal articles

A.-S. Cottereau, M. Meignan, C. Nioche, N. Capobianco, J. Clerc, L. Chartier, L. Vercellino,
O. Casasnovas, C. Thieblemont, and I. Buvat. “Risk Stratification in Diffuse Large B-Cell
Lymphoma Using Lesion Dissemination and Metabolic Tumor Burden Calculated from Baseline
PET/CT†”. en. In: Annals of Oncology 32.3 (Mar. 2021), pp. 404–411

Conference abstracts

F. Orlhac, N. Capobianco, A.-S. Cottereau, L. Vercellino, S. Zuehlsdorff, O. Casasnovas, C.
Thieblemont, M. Meignan, and I. Buvat. “Refining the Stratification of Diffuse Large B-Cell
Lymphoma Patients Based on Metabolic Tumor Volume (MTV) by Automatically Adapting the
MTV Cut-off Value to the Segmentation Method”. In: Journal of Nuclear Medicine 61.supple-
ment 1 (2020), pp. 274–274

74 Chapter A List of Authored and Co-authored Publications



Bibliography

[1] M. B. Amin, American Joint Committee on Cancer, and A. C. Society, eds. AJCC Cancer Staging
Manual. Eight edition / editor-in-chief, Mahul B. Amin, MD, FCAP ; editors, Stephen B. Edge, MD,
FACS [and 16 others] ; Donna M. Gress, RHIT, CTR - Technical editor ; Laura R. Meyer, CAPM
- Managing editor. Chicago IL: American Joint Committee on Cancer, Springer, 2017 (cit. on
p. 15).

[2] D. L. Bailey, D. W. Townsend, P. E. Valk, and M. N. Maisey. Positron Emission Tomography Basic
Sciences. English. Springer, London, 2005 (cit. on pp. 10–12).

[3] S. F. Barrington and M. Meignan. “Time to Prepare for Risk Adaptation in Lymphoma by
Standardizing Measurement of Metabolic Tumor Burden”. en. In: Journal of Nuclear Medicine
60.8 (Aug. 2019), pp. 1096–1102 (cit. on pp. 37, 50, 60).

[4] S. Bastawrous, P. Bhargava, F. Behnia, D. S. W. Djang, and D. R. Haseley. “Newer PET Application
with an Old Tracer: Role of 18 F-NaF Skeletal PET/CT in Oncologic Practice”. en. In: RadioGraphics
34.5 (Sept. 2014), pp. 1295–1316 (cit. on p. 14).

[5] M. Bieth, M. Krönke, R. Tauber, et al. “Exploring New Multimodal Quantitative Imaging Indices
for the Assessment of Osseous Tumor Burden in Prostate Cancer Using 68 Ga-PSMA PET/CT”. en.
In: Journal of Nuclear Medicine 58.10 (Oct. 2017), pp. 1632–1637 (cit. on pp. 18, 28).

[6] P. Blanc-Durand, S. Jégou, S. Kanoun, et al. “Fully Automatic Segmentation of Diffuse Large B
Cell Lymphoma Lesions on 3D FDG-PET/CT for Total Metabolic Tumour Volume Prediction Using
a Convolutional Neural Network.” en. In: European Journal of Nuclear Medicine and Molecular
Imaging 48.5 (May 2021), pp. 1362–1370 (cit. on p. 37).

[7] R. Boellaard, R. Delgado-Bolton, W. J. G. Oyen, et al. “FDG PET/CT: EANM Procedure Guidelines
for Tumour Imaging: Version 2.0”. en. In: European Journal of Nuclear Medicine and Molecular
Imaging 42.2 (Feb. 2015), pp. 328–354 (cit. on pp. 16, 37).

[8] J. Brierley, M. K. Gospodarowicz, and C. Wittekind, eds. TNM Classification of Malignant Tumours.
Eighth edition. Chichester, West Sussex, UK ; Hoboken, NJ: John Wiley & Sons, Inc, 2017 (cit. on
p. 15).

[9] M. K. Buyyounouski, P. L. Choyke, J. K. McKenney, et al. “Prostate Cancer - Major Changes
in the American Joint Committee on Cancer Eighth Edition Cancer Staging Manual: Prostate
Cancer-Major 8th Edition Changes”. en. In: CA: A Cancer Journal for Clinicians 67.3 (May 2017),
pp. 245–253 (cit. on pp. 42, 46).

[10] T. M. Buzug. Computed Tomography: From Photon Statistics to Modern Cone-Beam CT. Berlin:
Springer, 2008 (cit. on pp. 5, 7).

[11] M. R. Camacho, E. Etchebehere, N. Tardelli, et al. “Validation of a Multifocal Segmentation
Method for Measuring Metabolic Tumor Volume in Hodgkin Lymphoma”. en. In: Journal of
Nuclear Medicine Technology 48.1 (Mar. 2020), pp. 30–35 (cit. on pp. 29, 30, 43).

75



[12] N. Capobianco, A. Gafita, G. Platsch, et al. “Transfer Learning of AI-Based Uptake Classification
from 18F-FDG PET/CT to 68Ga-PSMA-11 PET/CT for Whole-Body Tumor Burden Assessment”. In:
Journal of Nuclear Medicine 61.supplement 1 (May 2020), p. 1411 (cit. on pp. 27, 73).

[13] N. Capobianco, A. Gafita, G. Platsch, et al. “Whole-Body Lesion Detection and Prostate Cancer
Staging in 68Ga-PSMA-11 PET/CT Using Deep Learning”. en. In: European Journal of Nuclear
Medicine and Molecular Imaging 47.S1 (Sept. 2020), pp. 273–274 (cit. on pp. 41, 73).

[14] N. Capobianco, M. Meignan, A.-S. Cottereau, et al. “Deep-Learning 18 F-FDG Uptake Classification
Enables Total Metabolic Tumor Volume Estimation in Diffuse Large B-Cell Lymphoma”. en. In:
Journal of Nuclear Medicine 62.1 (Jan. 2021), pp. 30–36 (cit. on pp. 49, 73).

[15] N. Capobianco, M. Meignan, A. S. Cottereau, et al. “Fully Automated Deep Learning FDG Uptake
Classification Enables Total Metabolic Tumor Volume (MTV) Estimation in Diffuse Large B-Cell
Lymphoma with Similar Predictive Value as Expert MTV Measurements”. In: Journal of Nuclear
Medicine 61.supplement 1 (May 2020), p. 504 (cit. on pp. 49, 73).

[16] N. Capobianco, L. Sibille, M. Chantadisai, et al. “Whole-Body Uptake Classification and Prostate
Cancer Staging in 68Ga-PSMA-11 PET/CT Using Dual-Tracer Learning”. en. In: European Journal
of Nuclear Medicine and Molecular Imaging (July 2021) (cit. on pp. 27, 41, 73).

[17] P. P. Carbone, H. S. Kaplan, K. Musshoff, D. W. Smithers, and M. Tubiana. “Report of the
Committee on Hodgkin’s Disease Staging Classification”. eng. In: Cancer Research 31.11 (Nov.
1971), pp. 1860–1861 (cit. on p. 15).

[18] F. Ceci, D. E. Oprea-Lager, L. Emmett, et al. “E-PSMA: The EANM Standardized Reporting
Guidelines v1.0 for PSMA-PET”. en. In: European Journal of Nuclear Medicine and Molecular
Imaging (Feb. 2021) (cit. on pp. 28, 47).

[19] C. A. Chang, D. A. Pattison, R. W. Tothill, et al. “68Ga-DOTATATE and 18F-FDG PET/CT in
Paraganglioma and Pheochromocytoma: Utility, Patterns and Heterogeneity”. en. In: Cancer
Imaging 16.1 (Dec. 2016), p. 22 (cit. on p. 13).

[20] B. D. Cheson, R. I. Fisher, S. F. Barrington, et al. “Recommendations for Initial Evaluation, Staging,
and Response Assessment of Hodgkin and Non-Hodgkin Lymphoma: The Lugano Classification”.
en. In: Journal of Clinical Oncology 32.27 (Sept. 2014), pp. 3059–3067 (cit. on p. 15).

[21] A. Cottereau, L. Vercellino, O. Casasnovas, et al. “High Total Metabolic Tumor Volume at Baseline
Allows to Discriminate for Survival Patients in Response after R-Chop: An Ancillary Analysis of
the Remarc Study”. en. In: Hematological Oncology 37 (June 2019), pp. 49–50 (cit. on pp. 50,
51).

[22] A.-S. Cottereau, M. Meignan, C. Nioche, et al. “Risk Stratification in Diffuse Large B-Cell Lym-
phoma Using Lesion Dissemination and Metabolic Tumor Burden Calculated from Baseline
PET/CT†”. en. In: Annals of Oncology 32.3 (Mar. 2021), pp. 404–411 (cit. on p. 74).

[23] A.-S. Cottereau, I. Buvat, S. Kanoun, et al. “Is There an Optimal Method for Measuring Baseline
Metabolic Tumor Volume in Diffuse Large B Cell Lymphoma?” en. In: European Journal of Nuclear
Medicine and Molecular Imaging 45.8 (July 2018), pp. 1463–1464 (cit. on p. 59).

[24] A.-S. Cottereau, S. Hapdey, L. Chartier, et al. “Baseline Total Metabolic Tumor Volume Measured
with Fixed or Different Adaptive Thresholding Methods Equally Predicts Outcome in Peripheral
T Cell Lymphoma”. en. In: Journal of Nuclear Medicine 58.2 (Feb. 2017), pp. 276–281 (cit. on
pp. 17, 50, 58).

[25] A.-S. Cottereau, H. Lanic, S. Mareschal, et al. “Molecular Profile and FDG-PET/CT Total Metabolic
Tumor Volume Improve Risk Classification at Diagnosis for Patients with Diffuse Large B-Cell
Lymphoma”. en. In: Clinical Cancer Research 22.15 (Aug. 2016), pp. 3801–3809 (cit. on p. 17).

[26] A.-S. Cottereau, A. Versari, A. Loft, et al. “Prognostic Value of Baseline Metabolic Tumor Volume
in Early-Stage Hodgkin Lymphoma in the Standard Arm of the H10 Trial”. en. In: Blood 131.13
(Mar. 2018), pp. 1456–1463 (cit. on p. 51).

76 Bibliography



[27] A. Cottereau, S. Becker, F. Broussais, et al. “Prognostic Value of Baseline Total Metabolic Tumor
Volume (TMTV0) Measured on FDG-PET/CT in Patients with Peripheral T-Cell Lymphoma
(PTCL)”. en. In: Annals of Oncology 27.4 (Apr. 2016), pp. 719–724 (cit. on p. 49).

[28] M. Crump, S. S. Neelapu, U. Farooq, et al. “Outcomes in Refractory Diffuse Large B-Cell Lym-
phoma: Results from the International SCHOLAR-1 Study”. en. In: Blood 130.16 (Oct. 2017),
pp. 1800–1808 (cit. on p. 49).

[29] J. Czernin, N. Satyamurthy, and C. Schiepers. “Molecular Mechanisms of Bone 18F-NaF Deposi-
tion”. en. In: Journal of Nuclear Medicine 51.12 (Dec. 2010), pp. 1826–1829 (cit. on p. 14).

[30] N. Dalal and B. Triggs. “Histograms of Oriented Gradients for Human Detection”. In: 2005 IEEE
Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05). Vol. 1. San
Diego, CA, USA: IEEE, 2005, pp. 886–893 (cit. on p. 19).

[31] U. Dührsen, S. Müller, B. Hertenstein, et al. “Positron Emission Tomography–Guided Therapy of
Aggressive Non-Hodgkin Lymphomas (PETAL): A Multicenter, Randomized Phase III Trial”. en.
In: Journal of Clinical Oncology 36.20 (July 2018), pp. 2024–2034 (cit. on p. 16).

[32] M. Eiber, T. Maurer, M. Souvatzoglou, et al. “Evaluation of Hybrid 68Ga-PSMA Ligand PET/CT
in 248 Patients with Biochemical Recurrence After Radical Prostatectomy”. en. In: Journal of
Nuclear Medicine 56.5 (May 2015), pp. 668–674 (cit. on p. 27).

[33] M. Eiber, W. P. Fendler, S. P. Rowe, et al. “Prostate-Specific Membrane Antigen Ligands for
Imaging and Therapy”. en. In: Journal of Nuclear Medicine 58.Supplement 2 (Sept. 2017), 67S–
76S (cit. on p. 13).

[34] M. Eiber, K. Herrmann, J. Calais, et al. “Prostate Cancer Molecular Imaging Standardized
Evaluation (PROMISE): Proposed miTNM Classification for the Interpretation of PSMA-Ligand
PET/CT”. en. In: Journal of Nuclear Medicine 59.3 (Mar. 2018), pp. 469–478 (cit. on pp. 28, 42).

[35] M. Eiber, S. G. Nekolla, T. Maurer, G. Weirich, H.-J. Wester, and M. Schwaiger. “68Ga-PSMA
PET/MR with Multimodality Image Analysis for Primary Prostate Cancer”. en. In: Abdominal
Imaging 40.6 (Aug. 2015), pp. 1769–1771 (cit. on p. 28).

[36] S. Fanti, S. Minozzi, J. J. Morigi, et al. “Development of Standardized Image Interpretation for
68Ga-PSMA PET/CT to Detect Prostate Cancer Recurrent Lesions”. en. In: European Journal of
Nuclear Medicine and Molecular Imaging 44.10 (Sept. 2017), pp. 1622–1635 (cit. on p. 47).

[37] P. F. Felzenszwalb, R. B. Girshick, D McAllester, and D Ramanan. “Object Detection with Dis-
criminatively Trained Part-Based Models”. In: IEEE Transactions on Pattern Analysis and Machine
Intelligence 32.9 (Sept. 2010), pp. 1627–1645 (cit. on p. 19).

[38] W. P. Fendler, M. Eiber, M. Beheshti, et al. “68Ga-PSMA PET/CT: Joint EANM and SNMMI
Procedure Guideline for Prostate Cancer Imaging: Version 1.0”. en. In: European Journal of
Nuclear Medicine and Molecular Imaging 44.6 (June 2017), pp. 1014–1024 (cit. on pp. 13, 14,
28).

[39] W. P. Fendler, J. Calais, M. Allen-Auerbach, et al. “68 Ga-PSMA-11 PET/CT Interobserver Agree-
ment for Prostate Cancer Assessments: An International Multicenter Prospective Study”. en. In:
Journal of Nuclear Medicine 58.10 (Oct. 2017), pp. 1617–1623 (cit. on p. 47).

[40] D. A. Ferraro, A. S. Becker, B. Kranzbühler, et al. “Diagnostic Performance of 68Ga-PSMA-11
PET/MRI-Guided Biopsy in Patients with Suspected Prostate Cancer: A Prospective Single-Center
Study”. en. In: European Journal of Nuclear Medicine and Molecular Imaging (Feb. 2021) (cit. on
p. 46).

[41] A. Fourquet, C. Aveline, O. Cussenot, et al. “68Ga-PSMA-11 PET/CT in Restaging Castration-
Resistant Nonmetastatic Prostate Cancer: Detection Rate, Impact on Patients’ Disease Manage-
ment and Adequacy of Impact”. en. In: Scientific Reports 10.1 (Dec. 2020), p. 2104 (cit. on
p. 13).

Bibliography 77



[42] A. Gafita, M. Bieth, M. Krönke, et al. “qPSMA: Semiautomatic Software for Whole-Body Tumor
Burden Assessment in Prostate Cancer Using 68 Ga-PSMA11 PET/CT”. en. In: Journal of Nuclear
Medicine 60.9 (Sept. 2019), pp. 1277–1283 (cit. on pp. 18, 28, 37).

[43] F. Giammarile, P. Castellucci, R. Dierckx, et al. “Non-FDG PET/CT in Diagnostic Oncology: A
Pictorial Review”. en. In: European Journal of Hybrid Imaging 3.1 (Dec. 2019), p. 20 (cit. on
p. 13).

[44] F. L. Giesel, C. Kesch, M. Yun, et al. “18F-PSMA-1007 PET/CT Detects Micrometastases in a
Patient With Biochemically Recurrent Prostate Cancer”. en. In: Clinical Genitourinary Cancer 15.3
(June 2017), e497–e499 (cit. on p. 28).

[45] F. L. Giesel, K. Knorr, F. Spohn, et al. “Detection Efficacy of 18 F-PSMA-1007 PET/CT in 251
Patients with Biochemical Recurrence of Prostate Cancer After Radical Prostatectomy”. en. In:
Journal of Nuclear Medicine 60.3 (Mar. 2019), pp. 362–368 (cit. on p. 13).

[46] C. Gisselbrecht, B. Glass, N. Mounier, et al. “Salvage Regimens With Autologous Transplantation
for Relapsed Large B-Cell Lymphoma in the Rituximab Era”. en. In: Journal of Clinical Oncology
28.27 (Sept. 2010), pp. 4184–4190 (cit. on p. 49).

[47] P. Goldstraw, K. Chansky, J. Crowley, et al. “The IASLC Lung Cancer Staging Project: Proposals
for Revision of the TNM Stage Groupings in the Forthcoming (Eighth) Edition of the TNM
Classification for Lung Cancer”. en. In: Journal of Thoracic Oncology 11.1 (Jan. 2016), pp. 39–51
(cit. on p. 15).

[48] E. Grossiord, H. Talbot, N. Passat, M. Meignan, P. Terve, and L. Najman. “Hierarchies and Shape-
Space for Pet Image Segmentation”. In: 2015 IEEE 12th International Symposium on Biomedical
Imaging (ISBI). Brooklyn, NY, USA: IEEE, Apr. 2015, pp. 1118–1121 (cit. on p. 51).

[49] F.-N. B. W. Group. “BEST (Biomarkers, Endpoints, and Other Tools) Resource [Internet]”. In:
(2016) (cit. on p. 12).

[50] B. Grubmüller, P. Baltzer, S. Hartenbach, et al. “PSMA Ligand PET/MRI for Primary Prostate
Cancer: Staging Performance and Clinical Impact”. en. In: Clinical Cancer Research 24.24 (Dec.
2018), pp. 6300–6307 (cit. on p. 46).

[51] B. Grubmüller, D. Senn, G. Kramer, et al. “Response Assessment Using 68Ga-PSMA Ligand PET
in Patients Undergoing 177Lu-PSMA Radioligand Therapy for Metastatic Castration-Resistant
Prostate Cancer”. en. In: European Journal of Nuclear Medicine and Molecular Imaging 46.5 (May
2019), pp. 1063–1072 (cit. on pp. 17, 28).

[52] J. Hammes, P. Täger, and A. Drzezga. “EBONI: A Tool for Automated Quantification of Bone
Metastasis Load in PSMA PET/CT”. eng. In: Journal of Nuclear Medicine: Official Publication,
Society of Nuclear Medicine 59.7 (July 2018), pp. 1070–1075 (cit. on p. 28).

[53] S. A. Harmon, E. Bergvall, E. Mena, et al. “A Prospective Comparison of 18 F-Sodium Fluoride
PET/CT and PSMA-Targeted 18 F-DCFBC PET/CT in Metastatic Prostate Cancer”. en. In: Journal
of Nuclear Medicine 59.11 (Nov. 2018), pp. 1665–1671 (cit. on p. 13).

[54] A. Hartenstein, F. Lübbe, A. D. J. Baur, et al. “Prostate Cancer Nodal Staging: Using Deep Learning
to Predict 68Ga-PSMA-Positivity from CT Imaging Alone”. en. In: Scientific Reports 10.1 (Dec.
2020), p. 3398 (cit. on p. 28).

[55] P. E. Hartrampf, M. Heinrich, A. K. Seitz, et al. “Metabolic Tumour Volume from PSMA PET/CT
Scans of Prostate Cancer Patients during Chemotherapy—Do Different Software Solutions Deliver
Comparable Results?” en. In: Journal of Clinical Medicine 9.5 (May 2020), p. 1390 (cit. on p. 38).

[56] M. Hatt, B. Laurent, A. Ouahabi, et al. “The First MICCAI Challenge on PET Tumor Segmentation”.
en. In: Medical Image Analysis 44 (Feb. 2018), pp. 177–195 (cit. on p. 37).

[57] K. He, X. Zhang, S. Ren, and J. Sun. “Deep Residual Learning for Image Recognition”. In: 2016
IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas, NV, USA: IEEE,
June 2016, pp. 770–778 (cit. on p. 20).

78 Bibliography



[58] K. He, X. Zhang, S. Ren, and J. Sun. “Delving Deep into Rectifiers: Surpassing Human-Level
Performance on ImageNet Classification”. In: 2015 IEEE International Conference on Computer
Vision (ICCV). Santiago, Chile: IEEE, Dec. 2015, pp. 1026–1034 (cit. on p. 20).

[59] M. S. Hofman, R. J. Hicks, T. Maurer, and M. Eiber. “Prostate-Specific Membrane Antigen PET:
Clinical Utility in Prostate Cancer, Normal Patterns, Pearls, and Pitfalls”. en. In: RadioGraphics
38.1 (Jan. 2018), pp. 200–217 (cit. on pp. 14, 28).

[60] M. S. Hofman, N. Lawrentschuk, R. J. Francis, et al. “Prostate-Specific Membrane Antigen PET-
CT in Patients with High-Risk Prostate Cancer before Curative-Intent Surgery or Radiotherapy
(proPSMA): A Prospective, Randomised, Multicentre Study”. en. In: The Lancet 395.10231 (Apr.
2020), pp. 1208–1216 (cit. on p. 27).

[61] S. H. Hyun, J. Y. Choi, Y. M. Shim, et al. “Prognostic Value of Metabolic Tumor Volume Mea-
sured by 18F-Fluorodeoxyglucose Positron Emission Tomography in Patients with Esophageal
Carcinoma”. en. In: Annals of Surgical Oncology 17.1 (Jan. 2010), pp. 115–122 (cit. on p. 17).

[62] H. Ilyas, N. G. Mikhaeel, J. T. Dunn, et al. “Defining the Optimal Method for Measuring Baseline
Metabolic Tumour Volume in Diffuse Large B Cell Lymphoma”. en. In: European Journal of Nuclear
Medicine and Molecular Imaging 45.7 (July 2018), pp. 1142–1154 (cit. on pp. 17, 50, 58).

[63] International Non-Hodgkin’s Lymphoma Prognostic Factors Project. “A Predictive Model for
Aggressive Non-Hodgkin’s Lymphoma”. en. In: New England Journal of Medicine 329.14 (Sept.
1993), pp. 987–994 (cit. on p. 50).

[64] S. Jemaa, J. Fredrickson, R. A. D. Carano, T. Nielsen, A. de Crespigny, and T. Bengtsson. “Tumor
Segmentation and Feature Extraction from Whole-Body FDG-PET/CT Using Cascaded 2D and 3D
Convolutional Neural Networks”. en. In: Journal of Digital Imaging 33.4 (Aug. 2020), pp. 888–894
(cit. on p. 37).

[65] S. Jemaa, J. Fredrickson, A. Coimbra, et al. “A Fully Automated Measurement of Total Metabolic
Tumor Burden in Diffuse Large B-Cell Lymphoma and Follicular Lymphoma”. en. In: Blood
134.Supplement_1 (Nov. 2019), pp. 4666–4666 (cit. on p. 60).

[66] C. B. Johnbeck, U. Knigge, and A. Kjær. “PET Tracers for Somatostatin Receptor Imaging of
Neuroendocrine Tumors: Current Status and Review of the Literature”. en. In: Future Oncology
10.14 (Nov. 2014), pp. 2259–2277 (cit. on p. 14).

[67] W. Kalender. Computed Tomography: Fundamentals, System Technology, Image Quality, Applications.
English. Weinheim: Wiley-VCH, 2011 (cit. on p. 7).

[68] S. Kanoun, C. Rossi, A. Berriolo-Riedinger, et al. “Baseline Metabolic Tumour Volume Is an
Independent Prognostic Factor in Hodgkin Lymphoma”. en. In: European Journal of Nuclear
Medicine and Molecular Imaging 41.9 (Sept. 2014), pp. 1735–1743 (cit. on p. 49).

[69] S. Kanoun, I. Tal, A. Berriolo-Riedinger, et al. “Influence of Software Tool and Methodological
Aspects of Total Metabolic Tumor Volume Calculation on Baseline [18F]FDG PET to Predict
Survival in Hodgkin Lymphoma”. en. In: PLOS ONE 10.10 (Oct. 2015). Ed. by C.-T. Chen,
e0140830 (cit. on p. 51).

[70] J. W. Keyes. “SUV: Standard Uptake or Silly Useless Value?” eng. In: Journal of Nuclear Medicine:
Official Publication, Society of Nuclear Medicine 36.10 (Oct. 1995), pp. 1836–1839 (cit. on p. 16).

[71] P. E. Kinahan, D. W. Townsend, T. Beyer, and D. Sashin. “Attenuation Correction for a Combined
3D PET/CT Scanner”. en. In: Medical Physics 25.10 (Oct. 1998), pp. 2046–2053 (cit. on p. 11).

[72] D. Kostyszyn, T. Fechter, N. Bartl, et al. “Intraprostatic Tumor Segmentation on PSMA PET Images
in Patients with Primary Prostate Cancer with a Convolutional Neural Network”. en. In: Journal
of Nuclear Medicine 62.6 (June 2021), pp. 823–828 (cit. on p. 46).

[73] A. Krizhevsky, I. Sutskever, and G. E. Hinton. “ImageNet Classification with Deep Convolutional
Neural Networks”. en. In: Communications of the ACM 60.6 (May 2017), pp. 84–90 (cit. on p. 20).

Bibliography 79



[74] H. Labriet, C. Nemoz, M. Renier, et al. “Significant Dose Reduction Using Synchrotron Radiation
Computed Tomography: First Clinical Case and Application to High Resolution CT Exams”. en.
In: Scientific Reports 8.1 (Dec. 2018), p. 12491 (cit. on p. 6).

[75] J. Langner. “Development of a Parallel Computing Optimized Head Movement Correction Method
in Positron Emission Tomography”. In: Master of computer science thesis, university of Applied
sciences Dresden and research center Dresden-rossendorf (2003) (cit. on p. 8).

[76] Y. LeCun, B. Boser, J. S. Denker, et al. “Backpropagation Applied to Handwritten Zip Code
Recognition”. en. In: Neural Computation 1.4 (Dec. 1989), pp. 541–551 (cit. on p. 19).

[77] C. Liu, T. Liu, Z. Zhang, et al. “68 Ga-PSMA PET/CT Combined with PET/Ultrasound-Guided
Prostate Biopsy Can Diagnose Clinically Significant Prostate Cancer in Men with Previous Negative
Biopsy Results”. en. In: Journal of Nuclear Medicine 61.9 (Sept. 2020), pp. 1314–1319 (cit. on
p. 46).

[78] D. Lowe. “Object Recognition from Local Scale-Invariant Features”. In: Proceedings of the Seventh
IEEE International Conference on Computer Vision. Kerkyra, Greece: IEEE, 1999, 1150–1157 vol.2
(cit. on p. 19).

[79] B. R. Mason, J. A. Eastham, B. J. Davis, et al. “Current Status of MRI and PET in the NCCN
Guidelines for Prostate Cancer”. In: Journal of the National Comprehensive Cancer Network 17.5
(May 2019), pp. 506–513 (cit. on p. 27).

[80] C. D. Mathers, T. Boerma, and D. Ma Fat. “Global and Regional Causes of Death”. en. In: British
Medical Bulletin 92.1 (Dec. 2009), pp. 7–32 (cit. on p. 3).

[81] T. Maurer, J. E. Gschwend, I. Rauscher, et al. “Diagnostic Efficacy of 68 Gallium-PSMA Positron
Emission Tomography Compared to Conventional Imaging for Lymph Node Staging of 130
Consecutive Patients with Intermediate to High Risk Prostate Cancer”. en. In: Journal of Urology
195.5 (May 2016), pp. 1436–1443 (cit. on p. 27).

[82] M. Meignan, A. S. Cottereau, A. Versari, et al. “Baseline Metabolic Tumor Volume Predicts
Outcome in High-Tumor-Burden Follicular Lymphoma: A Pooled Analysis of Three Multicenter
Studies”. eng. In: Journal of Clinical Oncology: Official Journal of the American Society of Clinical
Oncology 34.30 (Oct. 2016), pp. 3618–3626 (cit. on pp. 17, 49, 51).

[83] M. Meignan, A. Gallamini, M. Meignan, A. Gallamini, and C. Haioun. “Report on the First
International Workshop on Interim-PET Scan in Lymphoma”. en. In: Leukemia & Lymphoma 50.8
(Jan. 2009), pp. 1257–1260 (cit. on p. 17).

[84] M. Meignan, M. Sasanelli, R. O. Casasnovas, et al. “Metabolic Tumour Volumes Measured at
Staging in Lymphoma: Methodological Evaluation on Phantom Experiments and Patients”. en. In:
European Journal of Nuclear Medicine and Molecular Imaging 41.6 (June 2014), pp. 1113–1122
(cit. on p. 51).

[85] J. L. Mohler, E. S. Antonarakis, A. J. Armstrong, et al. “Prostate Cancer, Version 2.2019, NCCN
Clinical Practice Guidelines in Oncology”. In: Journal of the National Comprehensive Cancer
Network 17.5 (May 2019), pp. 479–505 (cit. on p. 27).

[86] F. Orlhac, N. Capobianco, A.-S. Cottereau, et al. “Refining the Stratification of Diffuse Large B-Cell
Lymphoma Patients Based on Metabolic Tumor Volume (MTV) by Automatically Adapting the
MTV Cut-off Value to the Segmentation Method”. In: Journal of Nuclear Medicine 61.supplement
1 (2020), pp. 274–274 (cit. on p. 74).

[87] K. Pak, G. J. Cheon, H.-Y. Nam, et al. “Prognostic Value of Metabolic Tumor Volume and Total
Lesion Glycolysis in Head and Neck Cancer: A Systematic Review and Meta-Analysis”. en. In:
Journal of Nuclear Medicine 55.6 (June 2014), pp. 884–890 (cit. on p. 17).

[88] S. J. Pan and Q. Yang. “A Survey on Transfer Learning”. In: IEEE Transactions on Knowledge and
Data Engineering 22.10 (Oct. 2010), pp. 1345–1359 (cit. on p. 20).

80 Bibliography



[89] S. Pecorelli, J. Benedet, W. Creasman, J. Shepherd, and on behalf of the 1994-1997 FIGO
Committee on Gynecologic Oncology. “FIGO Staging of Gynecologic Cancer”. en. In: International
Journal of Gynecology & Obstetrics 65.3 (June 1999), pp. 243–249 (cit. on p. 15).

[90] E. Pfaehler, L. Mesotten, G. Kramer, et al. “Repeatability of Two Semi-Automatic Artificial
Intelligence Approaches for Tumor Segmentation in PET”. en. In: EJNMMI Research 11.1 (Dec.
2021), p. 4 (cit. on p. 37).

[91] C. Plathow and W. A. Weber. “Tumor Cell Metabolism Imaging”. en. In: Journal of Nuclear
Medicine 49.Suppl_2 (June 2008), 43S–63S (cit. on p. 13).

[92] T. Poeppel, B. Krause, T. Heusner, C. Boy, A. Bockisch, and G. Antoch. “PET/CT for the Staging
and Follow-up of Patients with Malignancies”. en. In: European Journal of Radiology 70.3 (June
2009), pp. 382–392 (cit. on p. 15).

[93] J. Radon. “On the Determination of Functions from Their Integral Values along Certain Manifolds”.
In: IEEE Transactions on Medical Imaging 5.4 (Dec. 1986), pp. 170–176 (cit. on p. 7).

[94] A. Rahmim, M. A. Lodge, N. A. Karakatsanis, et al. “Dynamic Whole-Body PET Imaging: Principles,
Potentials and Applications”. en. In: European Journal of Nuclear Medicine and Molecular Imaging
46.2 (Feb. 2019), pp. 501–518 (cit. on p. 11).

[95] R. Raina, A. Battle, H. Lee, B. Packer, and A. Y. Ng. “Self-Taught Learning: Transfer Learning from
Unlabeled Data”. en. In: Proceedings of the 24th International Conference on Machine Learning -
ICML ’07. Corvalis, Oregon: ACM Press, 2007, pp. 759–766 (cit. on p. 20).

[96] I. Rauscher, T. Maurer, A. J. Beer, et al. “Value of 68Ga-PSMA HBED-CC PET for the Assessment
of Lymph Node Metastases in Prostate Cancer Patients with Biochemical Recurrence: Comparison
with Histopathology After Salvage Lymphadenectomy”. en. In: Journal of Nuclear Medicine 57.11
(Nov. 2016), pp. 1713–1719 (cit. on p. 27).

[97] I. Rauscher, M. Krönke, M. König, et al. “Matched-Pair Comparison of 68 Ga-PSMA-11 PET/CT and
18 F-PSMA-1007 PET/CT: Frequency of Pitfalls and Detection Efficacy in Biochemical Recurrence
After Radical Prostatectomy”. en. In: Journal of Nuclear Medicine 61.1 (Jan. 2020), pp. 51–57
(cit. on p. 28).

[98] A. S. Razavian, H. Azizpour, J. Sullivan, and S. Carlsson. “CNN Features Off-the-Shelf: An
Astounding Baseline for Recognition”. In: 2014 IEEE Conference on Computer Vision and Pattern
Recognition Workshops. Columbus, OH, USA: IEEE, June 2014, pp. 512–519 (cit. on p. 21).

[99] X. Robin, N. Turck, A. Hainard, et al. “pROC: An Open-Source Package for R and S+ to Analyze
and Compare ROC Curves”. en. In: BMC Bioinformatics 12.1 (Dec. 2011), p. 77 (cit. on p. 52).

[100] E. M. Rohren, E. C. Etchebehere, J. C. Araujo, et al. “Determination of Skeletal Tumor Burden on
18F-Fluoride PET/CT”. en. In: Journal of Nuclear Medicine 56.10 (Oct. 2015), pp. 1507–1512
(cit. on p. 18).

[101] S. P. Rowe, K. J. Pienta, M. G. Pomper, and M. A. Gorin. “Proposal for a Structured Reporting
System for Prostate-Specific Membrane Antigen–Targeted PET Imaging: PSMA-RADS Version
1.0”. en. In: Journal of Nuclear Medicine 59.3 (Mar. 2018), pp. 479–485 (cit. on pp. 28, 47).

[102] H. Rowley, S. Baluja, and T. Kanade. “Neural Network-Based Face Detection”. In: IEEE Transactions
on Pattern Analysis and Machine Intelligence 20.1 (Jan./1998), pp. 23–38 (cit. on p. 20).

[103] G. B. Saha. Basics of PET Imaging. en. New York, NY: Springer New York, 2010 (cit. on pp. 9, 10,
12).

[104] M. Sasanelli, M. Meignan, C. Haioun, et al. “Pretherapy Metabolic Tumour Volume Is an Indepen-
dent Predictor of Outcome in Patients with Diffuse Large B-Cell Lymphoma”. en. In: European
Journal of Nuclear Medicine and Molecular Imaging 41.11 (Nov. 2014), pp. 2017–2022 (cit. on
p. 49).

Bibliography 81



[105] B. Savir-Baruch, L. Zanoni, and D. M. Schuster. “Imaging of Prostate Cancer Using Fluciclovine”.
en. In: PET Clinics 12.2 (Apr. 2017), pp. 145–157 (cit. on p. 13).

[106] C. Schmidkonz, M. Cordes, D. Schmidt, et al. “68Ga-PSMA-11 PET/CT-Derived Metabolic Pa-
rameters for Determination of Whole-Body Tumor Burden and Treatment Response in Prostate
Cancer”. en. In: European Journal of Nuclear Medicine and Molecular Imaging 45.11 (Oct. 2018),
pp. 1862–1872 (cit. on pp. 17, 28, 29).

[107] S. Schmuck, C. A. von Klot, C. Henkenberens, et al. “Initial Experience with Volumetric 68 Ga-
PSMA I&T PET/CT for Assessment of Whole-Body Tumor Burden as a Quantitative Imaging
Biomarker in Patients with Prostate Cancer”. en. In: Journal of Nuclear Medicine 58.12 (Dec.
2017), pp. 1962–1968 (cit. on p. 18).

[108] L. H. Sehn, B. Berry, M. Chhanabhai, et al. “The Revised International Prognostic Index (R-IPI)
Is a Better Predictor of Outcome than the Standard IPI for Patients with Diffuse Large B-Cell
Lymphoma Treated with R-CHOP”. en. In: Blood 109.5 (Mar. 2007), pp. 1857–1861 (cit. on
p. 50).

[109] R. Seifert, K. Herrmann, J. Kleesiek, et al. “Semiautomatically Quantified Tumor Volume Using 68

Ga-PSMA-11 PET as a Biomarker for Survival in Patients with Advanced Prostate Cancer”. en. In:
Journal of Nuclear Medicine 61.12 (Dec. 2020), pp. 1786–1792 (cit. on pp. 17, 28, 37).

[110] R. Seifert, K. Kessel, K. Schlack, et al. “PSMA PET Total Tumor Volume Predicts Outcome of
Patients with Advanced Prostate Cancer Receiving [177Lu]Lu-PSMA-617 Radioligand Therapy in
a Bicentric Analysis”. en. In: European Journal of Nuclear Medicine and Molecular Imaging 48.4
(Apr. 2021), pp. 1200–1210 (cit. on pp. 17, 28).

[111] S. Sheikhbahaei, A. Afshar-Oromieh, M. Eiber, et al. “Pearls and Pitfalls in Clinical Interpretation
of Prostate-Specific Membrane Antigen (PSMA)-Targeted PET Imaging”. en. In: European Journal
of Nuclear Medicine and Molecular Imaging 44.12 (Nov. 2017), pp. 2117–2136 (cit. on p. 28).

[112] P. D. Shreve, Y. Anzai, and R. L. Wahl. “Pitfalls in Oncologic Diagnosis with FDG PET Imaging:
Physiologic and Benign Variants”. en. In: RadioGraphics 19.1 (Jan. 1999), pp. 61–77 (cit. on
p. 13).

[113] L. Sibille, N. Avramovic, B. Spottiswoode, M. Schaefers, S. Zuehlsdorff, and J. Declerck. “PET
Uptake Classification in Lymphoma and Lung Cancer Using Deep Learning”. In: Journal of Nuclear
Medicine 59.supplement 1 (May 2018), p. 325 (cit. on p. 50).

[114] L. Sibille, R. Seifert, N. Avramovic, et al. “18 F-FDG PET/CT Uptake Classification in Lymphoma
and Lung Cancer by Using Deep Convolutional Neural Networks”. en. In: Radiology 294.2 (Feb.
2020), pp. 445–452 (cit. on pp. 13, 28, 31, 50, 51).

[115] R. L. Siegel, K. D. Miller, and A. Jemal. “Cancer Statistics, 2020”. en. In: CA: A Cancer Journal for
Clinicians 70.1 (Jan. 2020), pp. 7–30 (cit. on pp. 27, 41).

[116] K. Simonyan and A. Zisserman. “Very Deep Convolutional Networks for Large-Scale Image
Recognition”. In: arXiv preprint arXiv:1409.1556 (2014). arXiv: 1409.1556 (cit. on p. 20).

[117] M.-K. Song, J.-S. Chung, H.-J. Shin, et al. “Clinical Significance of Metabolic Tumor Volume
by PET/CT in Stages II and III of Diffuse Large B Cell Lymphoma without Extranodal Site
Involvement”. en. In: Annals of Hematology 91.5 (May 2012), pp. 697–703 (cit. on p. 49).

[118] E. Steyerberg, M. Roobol, M. Kattan, T. van der Kwast, H. de Koning, and F. Schröder. “Prediction
of Indolent Prostate Cancer: Validation and Updating of a Prognostic Nomogram”. en. In: Journal
of Urology 177.1 (Jan. 2007), pp. 107–112 (cit. on p. 41).

[119] J. Strosberg, G. El-Haddad, E. Wolin, et al. “Phase 3 Trial of 177 Lu-Dotatate for Midgut Neu-
roendocrine Tumors”. en. In: New England Journal of Medicine 376.2 (Jan. 2017), pp. 125–135
(cit. on p. 14).

82 Bibliography

https://arxiv.org/abs/1409.1556


[120] C. Szegedy, Wei Liu, Yangqing Jia, et al. “Going Deeper with Convolutions”. In: 2015 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR). Boston, MA, USA: IEEE, June
2015, pp. 1–9 (cit. on p. 20).

[121] D. Taïeb, R. J. Hicks, E. Hindié, et al. “European Association of Nuclear Medicine Practice
Guideline/Society of Nuclear Medicine and Molecular Imaging Procedure Standard 2019 for
Radionuclide Imaging of Phaeochromocytoma and Paraganglioma”. en. In: European Journal of
Nuclear Medicine and Molecular Imaging 46.10 (Sept. 2019), pp. 2112–2137 (cit. on p. 14).

[122] Y. Tao, Z. Peng, A. Krishnan, and X. S. Zhou. “Robust Learning-Based Parsing and Annotation of
Medical Radiographs”. In: IEEE Transactions on Medical Imaging 30.2 (Feb. 2011), pp. 338–350
(cit. on p. 51).

[123] C. Thieblemont, H. Tilly, M. Gomes da Silva, et al. “Lenalidomide Maintenance Compared
With Placebo in Responding Elderly Patients With Diffuse Large B-Cell Lymphoma Treated With
First-Line Rituximab Plus Cyclophosphamide, Doxorubicin, Vincristine, and Prednisone”. en. In:
Journal of Clinical Oncology 35.22 (Aug. 2017), pp. 2473–2481 (cit. on p. 50).

[124] A. Toriihara, T. Nobashi, L. Baratto, et al. “Comparison of 3 Interpretation Criteria for 68 Ga-
PSMA11 PET Based on Inter- and Intrareader Agreement”. en. In: Journal of Nuclear Medicine
61.4 (Apr. 2020), pp. 533–539 (cit. on p. 47).

[125] C. Van de Wiele, V. Kruse, P. Smeets, M. Sathekge, and A. Maes. “Predictive and Prognostic Value
of Metabolic Tumour Volume and Total Lesion Glycolysis in Solid Tumours”. en. In: European
Journal of Nuclear Medicine and Molecular Imaging 40.2 (Jan. 2013), pp. 290–301 (cit. on p. 18).

[126] J. van den Hoff, L. Oehme, G. Schramm, et al. “The PET-Derived Tumor-to-Blood Standard
Uptake Ratio (SUR) Is Superior to Tumor SUV as a Surrogate Parameter of the Metabolic Rate of
FDG”. en. In: EJNMMI Research 3.1 (2013), p. 77 (cit. on p. 17).

[127] M. van Kruchten, A. W. J. M. Glaudemans, E. F. J. de Vries, et al. “PET Imaging of Estrogen
Receptors as a Diagnostic Tool for Breast Cancer Patients Presenting with a Clinical Dilemma”.
en. In: Journal of Nuclear Medicine 53.2 (Feb. 2012), pp. 182–190 (cit. on p. 14).

[128] L. Vercellino, A.-S. Cottereau, O. Casasnovas, et al. “High Total Metabolic Tumor Volume at
Baseline Predicts Survival Independent of Response to Therapy”. en. In: Blood 135.16 (Apr.
2020), pp. 1396–1405 (cit. on pp. 50, 51).

[129] P. Viola and M. Jones. “Rapid Object Detection Using a Boosted Cascade of Simple Features”.
In: Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern
Recognition. CVPR 2001. Vol. 1. Kauai, HI, USA: IEEE Comput. Soc, 2001, pp. I–511–I–518 (cit. on
p. 19).

[130] R. L. Wahl, H. Jacene, Y. Kasamon, and M. A. Lodge. “From RECIST to PERCIST: Evolving
Considerations for PET Response Criteria in Solid Tumors”. en. In: Journal of Nuclear Medicine
50.Suppl_1 (May 2009), 122S–150S (cit. on pp. 16, 29, 51).

[131] A. J. Weisman, M. W. Kieler, S. Perlman, et al. “Comparison of 11 Automated PET Segmentation
Methods in Lymphoma”. In: Physics in Medicine & Biology 65.23 (Nov. 2020), p. 235019 (cit. on
p. 37).

[132] Y. Zhao, A. Gafita, B. Vollnberg, et al. “Deep Neural Network for Automatic Characterization of
Lesions on 68Ga-PSMA-11 PET/CT”. en. In: European Journal of Nuclear Medicine and Molecular
Imaging 47.3 (Mar. 2020), pp. 603–613 (cit. on pp. 28, 37).

[133] Z. Zhou, L. H. Sehn, A. W. Rademaker, et al. “An Enhanced International Prognostic Index
(NCCN-IPI) for Patients with Diffuse Large B-Cell Lymphoma Treated in the Rituximab Era”. en.
In: Blood 123.6 (Feb. 2014), pp. 837–842 (cit. on p. 50).

[134] C. Zippel, S. C. Ronski, S. Bohnet-Joschko, F. L. Giesel, and K. Kopka. “Current Status of PSMA-
Radiotracers for Prostate Cancer: Data Analysis of Prospective Trials Listed on ClinicalTrials.Gov”.
en. In: Pharmaceuticals 13.1 (Jan. 2020), p. 12 (cit. on p. 13).

Bibliography 83





List of Figures

1.1 Schematic illustration of an X-Ray Computed Tomography scanner. Adapted from
[74]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2 Examples of (a) computed tomography sinogram and (b) reconstructed CT image.
CT image courtesy of Klinikum rechts der Isar, Technical University of Munich,
Munich, Germany. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3 Schematic illustration of a Positron Emission Tomography scanner. Adapted from
[75]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.4 Examples of (a) positron emission tomography sinogram and (b) reconstructed
PET image. PET image courtesy of Centre Hospitalier Universitaire Vaudois,
Lausanne, Switzerland. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.5 Maximum Intensity Projections of PET scans obtained with different radiotracers
used in oncology: (a) 18F-FDG, (b) 68Ga-PSMA-11, (c) 18F-PSMA-1007, (d) 18F-
NaF PET, (e) 68Ga-DOTATE, (f) 18F-FES. Adapted from [114][41][45][53][19][43]. 13

2.1 Diagram summarizing the PET/CT datasets used in the analysis and the data split
performed for the deep learning model development and testing. . . . . . . . . 30

2.2 Convolutional neural network architecture used for PET uptake classification
when training (a) with data from a single radiotracer and (b) with data from two
radiotracers, encoding the tracer type as input to the network. . . . . . . . . . . 31

2.3 Performance obtained for (a) classification of PET uptake sites as nonsuspicious
or suspicious and (b) classification of their anatomical location, using differ-
ent strategies to train a convolutional network evaluated with four-fold cross
validation on the development set of 68Ga-PSMA-11 PET/CT scans. . . . . . . . 35

3.1 (a) coronal and (d) sagittal Maximum Intensity Projections (MIP) of a 68Ga-PSMA-
11 PET scan for a subject in the test set. (b, e) Regions of interest classified by the
convolutional neural network as suspicious overlayed to the PET MIP, together
with the anatomical location label assigned by the network. (c, f) Regions of
interest identified by an expert physician as suspicious uptake overlayed to the
PET MIP, together with the anatomical location label assigned by the expert. . . 45

4.1 Detection and classification of high 18F-FDG uptake regions as physiological
or suspicious. (a, d) Maximum-intensity projection (MIP) PET images of two
subjects with low TMTV (a) and high TMTV (d). (b, e) ROIP ARS obtained
automatically using the PARS software prototype. (c, f) ROIREF regions obtained
by an experienced nuclear medicine physician using a semiautomatic software. 56

85



4.2 Bland–Altman plot comparing fully automated and reference TMTV estimations.
Bland–Altman plot comparing the TMTV obtained using the software prototype
PARS (TMTVP ARS) and the reference TMTV (TMTVREF ) obtained by a nuclear
medicine physician using a semiautomatic software. . . . . . . . . . . . . . . . 59

4.3 ROC curves for determining the occurrence of PFS or OS events using a TMTV
threshold. ROC curves for TMTVP ARS and TMTVREF for (a) 4-y PFS and (b) 4-y
OS. Areas under the ROC curves (AUC) and optimal TMTV cutoff thresholds are
reported. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.4 Survival curves for the low- and high-TMTV groups for fully automated and refer-
ence TMTV estimations. Kaplan–Meier survival curves for PFS (a: TMTVP ARS , b:
TMTVREF ) and OS (c: TMTVP ARS , d: TMTVREF ). . . . . . . . . . . . . . . . . 63

86 List of Figures



List of Tables

1.1 Exemplar 68Ga-labeled and 18F-labeled radiotracers targeting PSMA with com-
pleted or ongoing clinical trials . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.2 Parameters used to describe the performance of a binary classification algorithm 22
1.3 Parameters used to describe the performance of a binary classification algorithm

for which the prediction can be obtained as function of a threshold applied to a
positivity score employed by the algorithm. . . . . . . . . . . . . . . . . . . . . 23

2.1 Summary of the findings annotated by an expert reader in 68Ga-PSMA-11 PET/CT
images using semi-automated segmentation methods, reported by anatomical
location label assigned, in descending order of occurrence. . . . . . . . . . . . 32

2.1 (continued). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.1 (continued). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.2 PET uptake classification performance using different strategies to train a con-

volutional network, evaluated with four-fold cross validation on a development
set of 68Ga-PSMA-11 PET/CT scans and a fixed validation dataset of 18F-FDG
PET/CT scans. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.3 PET uptake classification performance obtained with combined training of a
convolutional neural network using 68Ga-PSMA-11 PET/CT and 18F-FDG PET/CT
scans, evaluated on a hold-out test dataset of 68Ga-PSMA-11 PET/CT scans. . . 37

3.1 Prostate cancer TNM stage categories defined in the AJCC 8th edition cancer
staging manual. Pathological T stage (pT) categories are omitted. Adapted from
[9]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.2 Summary of the N and M stage assigned based on expert reader annotation of
PSMA-ligand PET/CT images according to the PROMISE miTNM framework. . . 44

3.3 Confusion matrix comparing the N stage determined according to the PROMISE
miTNM framework based on expert annotations and based on convolutional
neural network annotations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.4 Confusion matrix comparing the M stage determined according to the PROMISE
miTNM framework based on expert annotations and based on convolutional
neural network annotations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.1 Patient characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.2 PET/CT scan characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.3 Descriptive statistics related to the number of ROIP ARS and ROIREF in the 280

subjects included in the analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.4 Results associated with the classification of ROIs with uptake significantly above

the blood pool and volume above 2 mL, when different levels of overlap are
required to consider a ROI as matching the reference TMTV region. . . . . . . . 57

87



4.5 Results associated with the classification of high-uptake ROIs for two different
groups of ROIs obtained with two different settings of the multi-foci segmentation
algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.6 Descriptive statistics of TMTV obtained using the software prototype PARS
(TMTVP ARS) and the reference method for the 280 subjects included in the
analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.7 Results associated with total metabolic tumor volume obtained using two different
settings of the high-uptake region detection algorithm (multi-foci segmentation). 60

4.8 Results associated with the classification of high-uptake ROIs for four groups of
ROIs obtained with two different settings of the multi-foci segmentation algorithm
both with and without the neglection of ROIs with a volume between 0.1 mL and
2 mL. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.9 Results associated with ROC analysis of TMTV, Kaplan–Meier estimation of four-
year survival rates, Cox regression hazard ratio, and Wald test p-values for PFS
and OS for the 280 subjects included in the analysis. . . . . . . . . . . . . . . . 62

4.10 Performance of the prediction of the occurrence of an event for both PFS and OS
based on the TMTV cutoff thresholds selected by maximizing Youden’s J index. 62

88 List of Tables




	Titlepage
	Abstract
	Acknowledgments
	I Introduction
	1 Introduction
	1.1 Contributions
	1.2 Outline
	1.3 Medical imaging with PET/CT
	1.3.1 X-ray Computed Tomography
	1.3.2 Positron Emission Tomography
	1.3.3 Hybrid PET/CT

	1.4 PET/CT imaging biomarkers in oncology
	1.4.1 PET radiotracers in clinical oncology
	1.4.2 Cancer stage
	1.4.3 Semiquantitative PET parameters
	1.4.4 Tumor burden parameters

	1.5 Image classification
	1.5.1 Introduction
	1.5.2 Convolutional neural networks
	1.5.3 Transfer learning
	1.5.4 Evaluation metrics



	II Contributions
	2 Radiotracer uptake classification
	2.1 Introduction
	2.2 Materials and Methods
	2.2.1 Patients
	2.2.2 Image analysis
	2.2.3 Statistical analysis

	2.3 Results
	2.4 Discussion

	3 Prostate cancer staging based on PSMA-ligand imaging
	3.1 Introduction
	3.2 Materials and Methods
	3.3 Results
	3.4 Discussion

	4 Total Metabolic Tumor Volume estimation in lymphoma
	4.1 Introduction
	4.2 Materials and Methods
	4.2.1 Patients
	4.2.2 Image Acquisition and Analysis
	4.2.3 Statistical Analysis

	4.3 Results
	4.3.1 Uptake Classification 
	4.3.2 TMTV
	4.3.3 Survival Analysis

	4.4 Discussion


	III Conclusion
	5 Conclusion and outlook

	IV Appendix
	A List of Authored and Co-authored Publications
	Bibliography
	List of Figures
	List of Tables


