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Abstract 

Proteins are the building blocks of the cell. Critical functions are driven and regulated by 

assemblies formed by proteins and other biomolecules (such as DNAs, RNAs). Understanding 

the structure of protein assemblies plays a pivotal role in discovering their function. Although 

the recent years have seen a great progress in experimental structure determination methods, 

there are still challenges and limitations, largely due to the highly dynamic and impressively 

diverse nature of protein assemblies.  

Complementary to the experimental methods, molecular dynamics (MD) simulations provide 

an atomistic view of a wide range of biomolecular processes. The focus of this work is on the 

application of MD simulations in the structural analysis of protein assemblies. An overview of 

the current protein-protein docking tools and methodologies for predicting the complex 

structures is presented. Next, protein complexes of two members of the Rab small GTPases, 

Rab8a and Rab1b, that regulate cellular membrane trafficking are scrutinized using MD and 

free-energy simulations. The influence of post-translational modifications of Rab8a on its 

binding to the exchange factor Rabin8 is studied. Furthermore, using dihedral-angle biasing 

potential replica-exchange method, structural flexibility of the wild type and S111-

phosphorylated Rab1b in complex with GTP/GDP is evaluated. Finally, a self-learning 

accelerated-sampling scheme that specifically identifies and compensates for low free-energy 

conformations is introduced and utilized to explore the large-scale conformational changes in 

bacterial Argonaute protein in the absence of substrate and upon binding to guide and target 

DNA strands. The effectiveness of the accelerated dynamics scheme is validated by the insight 

it provides from the transition mechanisms leading to the activation of the Argonaute protein.  
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Zusammenfassung 

Proteine sind die Bausteine der Zelle. Kritische Funktionen werden durch Zusammenschlüsse 

von Proteinen und anderen Biomolekülen (z. B. DNAs, RNAs) gesteuert und reguliert. Das 

Verständnis der Struktur von Protein-Assemblies spielt eine entscheidende Rolle bei der 

Entdeckung ihrer Funktion. Obwohl in den letzten Jahren große Fortschritte bei den 

experimentellen Methoden zur Strukturbestimmung erzielt wurden, gibt es immer noch 

Herausforderungen und Einschränkungen, die größtenteils auf die hochdynamische und 

erstaunlich vielfältige Natur von Protein-Assemblies zurückzuführen sind.  

Ergänzend zu den experimentellen Methoden bieten Molekulardynamik (MD)-Simulationen 

einen atomistischen Einblick eine große Vielfalt von biomolekularen Prozessen. Der 

Schwerpunkt dieser Arbeit liegt auf der Anwendung von MD-Simulationen bei der 

Strukturanalyse von Protein-Assemblies. Es wird ein Überblick über die aktuellen Protein-

Protein-Docking-Tools und Methoden zur Vorhersage der komplexen Strukturen vorgestellt. 

Anschließend werden zwei Mitglieder der kleinen Rab-GTPasen, Rab8a und Rab1b, die den 

zellulären Membrantransport regulieren, mit Hilfe von MD- und Freie-Energie-Simulationen 

unter die Lupe genommen. Der Einfluss von posttranslationalen Modifikationen von Rab8a auf 

seine Bindung an den Austauschfaktor Rabin8 wird untersucht. Des weiteren wird die 

strukturelle Flexibilität des Wildtyps und des S111-phosphorylierten Rab1b im Komplex mit 

GTP/GDP unter Verwendung der Dihedral-Angle Biasing Potential Replica-Exchange-

Methode untersucht. Schließlich wird ein selbstlernendes Accelerated-Sampling-Schema 

eingeführt, das spezifisch Konformationen mit niedriger freier Energie identifiziert und 

kompensiert, um die großräumigen Konformationsänderungen des bakteriellen Argonaute-

Proteins in Abwesenheit von Substrat und bei Bindung an Leit- und Ziel-DNA-Stränge zu 

untersuchen. Die Effektivität des beschleunigten Dynamikschemas wird durch den Einblick in 

die Übergangsmechanismen, die zur Aktivierung des Argonaute-Proteins führen, validiert.  
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1. Introduction 

Inside the cell is a strange place. The diversity of the biological macromolecules found there 

has a great deal of wonder for curious observers. They vary in shape, weight, and function, but 

all are necessary for the life cycle of cells. 

The information of life is preserved in one simple coded dimension–the genetic information–

and is transferred between nucleic acids and proteins. Deoxyribonucleic acids (DNAs) contain 

all the genetic information and are formed along a strand by a sequence of four different 

nucleotide bases. Each base is comprised of a phosphate group, sugar, and one of the four 

organic bases: adenine, cytosine, guanine, or thymine (denoted by A, C, G, T). A binds to T 

and G binds to C, making each strand of the DNA duplex complementary to the other. 

Ribonucleic acid (RNA) is usually found as single strand helix and has a slightly different base 

pairing since it uses the base uracil (U) instead of thymine. The genetic information stored in 

DNA is transcribed to RNA and then translated into a sequence of amino acids forming the 

protein. This is known as the central dogma of molecular biology. As it will be discussed later, 

the sequence of amino acid residues has a direct impact on the physical properties of the protein 

and therefore, the genes not only determine proteins' presence or absence, but also their way of 

operation. 

The building blocks of proteins are the amino acids, all of which share a basic composition: an 

amino group, a central carbon atom (Cα) along with a sidechain specific to the amino acid, and 

a carboxyl group. The peptide linkage that connects all the amino acids is a single covalent 

bond between the carbon atom of the carboxyl group and the nitrogen atom from the amino 

group. The juxtaposition of amino acids gives rise to their secondary structure–either an α-

helices or a β-sheets. The overall three-dimensional structure of a protein–also known as 

tertiary structure–takes a compact globular shape or an elongated conformation (Figure 1-1) 
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Figure 1-1. Protein’s tertiary structure. 

The 3D structure of a protein is composed of local folded segments that form α-helices (cyan) or β-sheets 

(magenta), both held in place by hydrogen bonds (yellow dashed line), as illustrated in cartoon 

representation of two sample proteins: a, substrate binding domain 2 of ABC transporter GlnPQ (Protein 

Data Bank (PDB): 4zef (1)) and b: dimeric structure of elongated fibrous segment of herpes simplex 

virus type 1 (PDB: 4tt0 (2)). 

 

The common amino acids are considered to be only 20, each of which has certain features owing 

to the unique sidechain it contains. Glycine, for instance, has only a hydrogen atom as the 

sidechain, which allows it to adopt unusual dihedral angles and thereby, increasing the 

polypeptide chain's flexibility. Branched sidechains, seen in valine, isoleucine, and leucine, are 

stiffer and easier to be fixed in a certain position, which hardens the main chain. The amino 

acid properties are governed by their sidechain's electrostatic charge distribution. Polar 

sidechains form hydrogen bonds to water and other molecules. Neutral polar residues are found 

at the surface as well as inside proteins, while the nonpolar residues are buried inside the protein 

fold. As internal residues they usually form hydrogen bonds with each other or with the 

polypeptide backbone. Charged sidechains are commonly found at the molecular surface. 

Theory and experiments have shown that the protein folding is governed by a number of factors. 

Hydrogen bonds between the polar sidechains, van der Waals interactions of the tightly packed 

residues, hydrophobic interactions of the non-polar residues and the attractive and repulsive 

forces between electrostatically-charged residues are among the major contributors (3). These 

intra-molecular forces guide the protein towards adopting a tertiary structure in which it is 

active. This arrangement is known as the native conformation. 

The proteins are not always readily in their active form. In fact, they are considered to be most 

of the times rather inert, waiting to be activated, or degraded and replaced. The switching of 

proteins between active and inactive states is widely encountered in nature and allows a 

dynamic regulation of processes that are essential for cell's survival, such as cell division, 
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signaling and transcriptional regulations (4). These mechanisms may be triggered by 

conformational changes, binding to effectors, or post-translational modification (PTM). 

PTM is a reversible biochemical process in which the amino acid residues of a protein are 

covalently modified after its synthesis. Modifications can be of numerous types namely, 

phosphorylation, methylation, ubiquitination, etc. They increase both the structural and 

functional diversity of proteins and are known to facilitate protein folding and enhance the 

function (5). Moreover, PTMs can influence the stability of proteins and interfere in their 

interactions with other proteins. The majority of proteins operate not as isolated molecules, but 

as components of larger macromolecular assemblies that drive certain biological functions. 

Proteins are usually surrounded by many potential binding partners, creating a crowded 

environment. The vast majority of proteins are specific in the choice of binding partners–they 

must have complementary shape and surface physical properties. On the other hand, many 

proteins are found to be involved in more than one complex (6). Understanding the effects of a 

covalent modification on the protein itself, and on its association with other proteins is of great 

importance in deciphering their function and their biological pathways. 

Using high-resolution structural characterization techniques one can determine the final 

structure of protein complexes. However, during the binding process proteins usually transition 

to a number of intermediate states that, for a thorough understanding of the process, are of equal 

significance. In the work presented here, we use atomistic molecular dynamics (MD) combined 

with advanced sampling techniques to better understand the entire process of conformational 

transitions upon complex formation. A summary of the most important computational protein-

complex prediction methods will be presented, some of which have reached a promising 

efficiency in protein complex detection (Chapter 3). Using MD simulations and free-energy 

calculations, we will study the influence of PTMs on two GTPase proteins involved in 

membrane trafficking processes (Chapters 4 and 5). Moreover, we will determine the 

contribution of different sidechain arrangements on the binding process with other effectors. 

Finally, we will present an enhanced sampling scheme that uses a self-learning algorithm for 

exploring the conformational landscape of large protein domain motions (Chapter 6). The 

application of the technique in bacterial Argonaute protein will be presented, where the 

interplay between the protein and DNAs creates a beautiful illustration of the dynamic 

conformational changes observed in biomolecules. But first, let us go through the fundamental 

theories used in this work. 
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2. Theory 

2.1. Molecular dynamics simulations 

In the work presented here, classical mechanics is used to describe the motions of atoms and 

molecules. In classical mechanics, an atom is treated as one particle that obeys Newton's 

equation of motion, 

 

𝐹𝑖 =
𝜕2𝑟𝑖(𝑡)

𝜕𝑡2
𝑚𝑖 , 2-1 

 

where 𝐹𝑖 is the force exerted on atom 𝑖 with the mass 𝑚𝑖, located at the position 𝑟𝑖 at time 𝑡. 

Forces are calculated from a potential-energy function 𝑉–called "force field", 

 

𝐹𝑖 =
𝜕𝑉(𝑟1, … , 𝑟𝑁)

𝜕𝑟𝑖
. 2-2 

 

In the force field used here–from the Amber software package (7)–the potential-energy function 

consists of four terms, 

 

𝑉 =  ∑ 𝑘𝑏(𝑟 − 𝑟0)
2

𝑏𝑜𝑛𝑑𝑠

 +  ∑ 𝑘𝜃(𝜃 − 𝜃0)
2

𝑎𝑛𝑔𝑙𝑒𝑠

 +  ∑ 𝑉𝑛[1 + 𝑐𝑜𝑠(𝑛∅ − 𝛾)]

𝑑𝑖ℎ𝑒𝑑𝑟𝑎𝑙𝑠

+ ∑ ∑ [
𝐴𝑖𝑗

𝑅𝑖𝑗
12  −

𝐵𝑖𝑗

𝑅𝑖𝑗
6  +  

𝑞𝑖𝑞𝑗
𝜀𝑅𝑖𝑗

]

𝑁

𝑗 = 𝑖 + 1

𝑁 − 1

𝑖 = 1

,                                                    2-3 

 

where the first two terms represent the covalent-bond contributions using harmonic potential 

functions with the equilibrium distance and angle, 𝑟0 and 𝜃0, and spring constants 𝑘𝑏 and 𝑘𝜃. 

The dihedral angles between bound atoms are represented using a periodic cosine function that 

has 𝑛 minima, the scaling factor 𝑉𝑛 and a phase shift of 𝛾. The last term describes the non-

bonded interactions namely, the van der Waals forces between atoms 𝑖  and 𝑗  with the 

parameters 𝐴𝑖𝑗 and 𝐵𝑖𝑗, and the electrostatic interactions between the atom pair with partial 
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charges 𝑞𝑖  and 𝑞𝑗 , calculated according to Coulomb's law. Parameters for the bond length, 

angles and dihedral contributions are typically derived from quantum-chemical calculations.  

The Newton's equation of motion is integrated using the Verlet algorithm (8), which is derived 

from a truncated Taylor expansion of the coordinate of particle at time 𝑡, 

 

𝑟𝑖(𝑡 + ∆𝑡)  =  𝑟𝑖(𝑡)  +  
𝜕𝑟𝑖(𝑡)

𝜕𝑡
∆𝑡 + 

1

2

𝜕2𝑟𝑖(𝑡)

𝜕𝑡2
∆𝑡2. 

 

Similarly, 

 

𝑟𝑖(𝑡 − ∆𝑡)  =  𝑟𝑖(𝑡)  −  
𝜕𝑟𝑖(𝑡)

𝜕𝑡
∆𝑡 + 

1

2

𝜕2𝑟𝑖(𝑡)

𝜕𝑡2
∆𝑡2. 

 

The ∆𝑡 is the time step. Summing these two equations, we have 

 

𝑟𝑖(𝑡 +  ∆𝑡)  =  2𝑟𝑖(𝑡)  − 𝑟𝑖(𝑡 − ∆𝑡) + 
𝜕2𝑟𝑖(𝑡)

𝜕𝑡2
∆𝑡2 . 

 

2.1.1 Temperature and pressure 

In the previous section, we defined the internal interactions of a system composed of N particles 

and showed how one can simulate the evolution of such system over time by solving the 

Newton's equation of motion iteratively. Nevertheless, a realistic modelling of the 

biomolecules' surroundings requires replication of the relevant temperatures and pressures. The 

instantaneous temperature of a body of N particles at time t is,  

 

𝑇(𝑡)  =  ∑
𝑚𝑖𝑣𝑖

2

𝑁𝑑𝑓𝑘𝐵
,

𝑁

𝑖 = 1

 

 

where 𝑁𝑑𝑓 is the particles' degrees of freedom, 𝑚𝑖 their mass and  𝑣𝑖 their velocity. There are 

several formalisms for adjusting the temperature, namely the Berendsen and Nosé-Hoover 

thermostats (9,10). The fundamental idea, however, relies on rescaling the velocities using a 

new auxiliary term in the Hamiltonian, such that the overall temperature remains close to a 

reference temperature. To simulate at constant pressure, the barostatic formalism, such as 

Berendsen (9) and Parrinello-Rahman (11), consider the cell's (simulation box) size and shape 

variables that are dynamic and can change during the simulation.  
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2.1.2 Periodic boundary condition 

In the physiological conditions that MD aims to model, the protein or DNA of interest is 

surrounded by copious water molecules and ions. On the other hand, the computational cost of 

modelling large number of solvent molecules is very high. The common workaround is to use 

periodic boundary conditions. To mimic large systems, images of a smaller–though sufficiently 

sized–simulation box that contains the solvated molecule of interest in physiological ion 

concentrations are juxtaposed in all directions. The images are identical and therefore, only the 

atoms within the central box need to be simulated. Atoms can enter or leave the box and leaving 

of an atom from one side entails its entering of the opposing side. The larger box, however, is 

imitating the environment of a much larger solvent box. 

2.1.3 Cut-off radius  

The large number of atoms that the simulation box contains increases the computational cost of 

pairwise van der Waals- and electrostatic-force calculations. To avoid this, we use a cut-off 

radius of 9 Å and neglect the short-range atomic interactions beyond that distance. The 

potentials at the cut-off radius are set to zero to avoid discontinuity in the system's energy 

function. With the application of a cut-off radius, we cannot simply neglect the long-range 

interactions; instead, we take advantage of the periodic boundary condition in a technique called 

Particle Mesh Ewald (PME). 

2.1.4 Particle mesh Ewald Method 

In PME, the Coulomb potential is the summation of two terms, 

 

𝑉𝑐 = ∑𝑉𝑠𝑟
𝑖,𝑗

 +  ∑Φ̃𝑙𝑟(𝒌)|(𝜌̃(𝒌))|
2.

𝒌

 

 

The first term sums the short-range electrostatic interactions, and the second term calculates the 

long-range interactions based on the Fourier transforms of the potential (Φ̃𝑙𝑟) and the charge 

density (𝜌̃). The short-ranged interactions are calculated with high accuracy using the actual 

charge positions, while the long-range calculations are accelerated by interpolation of charge 

positions on a mesh which is provided by the periodic boundary conditions. 

2.2. Enhanced sampling methods 

If one considers all arrangements of dihedral angle and sidechain rotations, the number of 

possible states for a protein grows exponentially. These states, owing to the force field constants, 
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are separated by large energy barriers and the MD simulations are usually stuck in one with 

only small fluctuations of bond lengths and angles observed. Such states are known as local 

energy minimum. Since the early days of molecular simulations, enhancement of the sampling 

to go beyond energy minima and capture more relevant states within limited simulation times 

has been the focus of many researchers. These efforts have resulted in development of several 

fruitful techniques. In Chapter 5 we will introduce and utilize a replica-exchange technique that 

promotes sidechain and dihedral-angle rotations. In Chapter 6 we will report on another 

accelerated-sampling technique, which has some similarities to the Metadynamics method. 

Therefore, it is useful to briefly introduce the two methods. Further details on our 

implementations will be discussed in the chapters. 

2.2.1 Metadynamics 

A very well-established class of enhanced sampling methods–called Metadynamics–involves 

filling of the energy minima in a controlled and history-dependent manner using a bias 

potential–typically, a Gaussian function (12,13). Metadynamics technique runs in the following 

procedure: i) running a short simulation, ii) computing the histogram (𝛨𝑡(𝑠)) of the collective 

variable (CV) of interest, iii) updating the bias,  

 

𝐵𝑡+1(𝑠) = 𝐵𝑡(𝑠) + 𝑇 log(𝐻𝑡(𝑠)), 

 

and iv) resuming the simulations. In the first phase, the bias is zero and the system will remain 

in the first local minimum. In the next runs, the bias is introduced and updated, and thus the 

system explores a different range of CV values. The approximation of the histogram in 

Metadynamics is a Gaussian of width 𝜎 and height 𝑤, 

 

𝑇 log(𝐻𝑡(𝑠)) ~ 𝑤 exp (−
(𝑠𝑡 − 𝑠)

2

2𝜎2
) . 

 

This results in, 

 

𝐵𝑡(𝑠)  =  𝑤 ∑ exp (
(𝑠𝑡′ −  𝑠)

2

2𝜎2
)

𝑡′ < 𝑡

. 

 

This sum causes increasingly higher deviations in the CVs. At some point, the energy minimum 

is entirely filled with the bias and the system moves to other states.  

Metadynamics has been successfully applied to a variety of problems and its development it 

still ongoing (14,15). One of its advantages is that the CV histogram is provides a direct estimate 
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of the free energy. The choice of CV in metadynamics, on the other hand, is of critical 

importance and sometimes a major difficulty. While CVs are typically a lower-dimensional 

projection of the atomic coordinates, they must represent the energy-minima states as well. 

Moreover, the values of the CVs should be distinguishable in the minima and in the transition 

states. Finally, one should avoid having too many of them, as each CV adds a dimension in the 

space that needs to be filled with the bias potential, which makes the simulation costly.  

2.2.2 Hamiltonian replica-exchange MD method 

Another strategy to augment MD sampling is the replica-exchange technique. Here we briefly 

outline the formulation of the Hamiltonian replica-exchange method used as the advanced 

sampling technique throughout this study. The probability of configuration 𝑋 in the mth replica 

obeys the Boltzmann distribution 𝑃𝑚(𝑋) at the temperature 𝑇𝑚, 

 

𝑃𝑚(𝑋)  =  
1

𝑍𝑚
exp(−𝛽𝑚ℋ(𝑋)), 

 

where 𝛽𝑚 is the inverse temperature, 1 𝑘𝐵𝑇𝑚
⁄  with 𝑘𝐵  being the Boltzmann constant, ℋ(𝑋) is 

the Hamiltonian and 𝑍𝑚 is the partition function. The overall probability of the system with M 

replicas, 𝑃𝑎𝑙𝑙 , is the multiplication of the probability of each replica, 

 

𝑃𝑎𝑙𝑙  =  ∏𝑃𝑖(𝑋𝑖)

𝑀

𝑖

. 

 

The probability that the configuration 𝑋 of the mth replica is exchanged with configuration 𝑋′ 

of the nth replica is the transition probability, written as, 

 

𝑊(𝑋,ℋ𝑚; 𝑋′,ℋ𝑛) 

 

The probability of the reverse process is, 

 

𝑊(𝑋′,ℋ𝑚; 𝑋,ℋ𝑛) 

 

The balance condition for the extended system to reach Boltzmann equilibrium requires  

 

𝑃𝑎𝑙𝑙[(. . . ; 𝑋,ℋ𝑚; 𝑋′,ℋ𝑛; . . . )]𝑊(𝑋,ℋ𝑚; 𝑋′,ℋ𝑛)  

= 𝑃𝑎𝑙𝑙[(. . . ; 𝑋′,ℋ𝑚; 𝑋,ℋ𝑛; . . . )]𝑊(𝑋′,ℋ𝑚; 𝑋′,ℋ𝑛). 
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This leads to 

 

𝑊(𝑋,ℋ𝑚; 𝑋
′,ℋ𝑛)

𝑊(𝑋′, ℋ𝑚; 𝑋,ℋ𝑛)
= exp(−∆), 

where,  

 

∆ ≡  𝛽{[ℋ𝑚(𝑋′)  + ℋ𝑛(𝑋)]  − [ℋ𝑚(𝑋)  + ℋ𝑛(𝑋′)]}. 

 

Based on the Metropolis criteria for the transition probability, 

 

{
𝑊(𝑋,ℋ𝑚; 𝑋′,ℋ𝑛)  =  1      𝑓𝑜𝑟          ∆≤ 0

exp(−∆)                                 𝑓𝑜𝑟          ∆> 0
. 

That is, the exchange is accepted if the result in a lower overall energy level. If the overall 

energy is unfavorable, the exchange is accepted only according to the Boltzmann weighted 

probability. The exchange attempts are done between the neighboring replicas (16).  

 

 

2.3. Free energy calculations based on MD 

simulations 

Describing the thermodynamics of a system using free energy has been one of the most 

important objectives of biomolecular simulations. Having an estimation of a system's free 

energy can minimize the need for experimental measurements and has many useful applications 

in various fields, namely in drug design. In many cases, the aim is to calculate the free-energy 

difference between two states that are either different in conformation or are the bound/unbound 

states of two ligands to a single receptor. To this end, one needs to have an accurate-enough 

physical model of the biological system and be able to sample the regions in the phase-space 

that correspond to those states. This implies, however, two limitations; one is the accuracy of 

the current force fields, and the second is insufficient sampling. Improvement of the force fields 

is an everlasting goal of the researchers in this field. The latter also can be overcome by coupling 

free-energy calculations to enhanced sampling techniques, such as Metadynamics or 

Hamiltonian replica-exchange MD. There exist a number of techniques that allow calculation 

of the free-energy differences between two well-defined thermodynamic states, such as 
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thermodynamic integration or free energy perturbation (FEP) theory, both of which rely on the 

notion of a coupling parameter (17–21). Here, we will introduce the FEP theory. 

Consider a biomolecular system with constant number of particles, N, at a given set of 

coordinates 𝒒 and momenta 𝒑. The partition function, 𝑍, for such a system is, 

 

𝑍 =  
1

ℎ3𝑁𝑁!
∬ exp(−𝛽ℋ(𝒒, 𝒑))𝑑𝒑𝑑𝒒, 

 

where ℎ is Planck's constant and the fraction corresponds to the zero entropy of the ideal gas. 

ℋ(𝒒, 𝒑) is the Hamiltonian, representing the overall energy and ∬ 𝑑𝒑𝑑𝒒 stands for integration 

over all 6N coordinates of the phase space. The free energy of the system corresponding to the 

canonical ensemble, i.e., at temperature and volume, is, 

 

𝐺 =  −
1

𝛽
ln(𝑍). 

 

Here, we wish to estimate the free-energy difference between two states A and B, for instance, 

corresponding to different conformations of a protein, is, 

 

∆𝐺BA  = 𝐺B − 𝐺A = −
1

𝛽
ln ( 

𝑍B
𝑍A
 ). 

 

The Hamiltonian that is used for the free-energy difference calculations is a function of the two 

conformations' Hamiltonians, ℋA  and ℋB . The new combined Hamiltonian, ℋcomb , is 

dependent on 𝜆, a coupling parameter, such that for one value of 𝜆, ℋcomb  =  ℋA, and for 

another value, ℋcomb  =  ℋB. 

Given a sufficient sampling of a set of configurations, an estimation of the difference in free 

energy can be achieved by simply using the probability distribution along 𝜆 i.e., counting how 

often a given value of 𝜆 is encountered during the simulation. If 𝜆A and 𝜆B correspond to state 

A and B, the relative probability of 𝜆A and 𝜆B is derived from the partition functions of the 

states, 

 

𝑝(𝜆B)

𝑝(𝜆A)
 =  

∭exp(−𝛽ℋ(𝒒, 𝒑; 𝜆)) 𝛿(𝜆 −  𝜆B)𝑑𝒑𝑑𝒒𝑑𝜆

∭exp(−𝛽ℋ(𝒒, 𝒑; 𝜆)) 𝛿(𝜆 −  𝜆A)𝑑𝒑𝑑𝒒𝑑𝜆
 =  

𝑍B
𝑍A
, 

 

where 𝛿 is the delta function. Thus, 
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∆𝐺BA  =  −
1

𝛽
ln ( 

𝑝(𝜆B)

𝑝(𝜆A)
). 

 

The obtained 𝜆 probability distribution has to be reweighted to an unbiased distribution if it 

includes any configurational biasing of any sort. In the replica-exchange framework presented 

in the following chapters, however, the free-energy differences are calculated solely based on 

the sampling in the unbiased reference replica, where the exchanges are reweighted via the 

Metropolis criterion that leads to a Boltzmann distribution. 
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3. Protein-Protein Complex Structure 

Prediction: Methods and Tools1 

Almost all processes in the cell dependent on formation of protein complexes. Proteins and 

other biological molecules form assemblies that have specific functions, such as transcription 

and translation of genetic information or transport of materials across cell membranes (22,23). 

Understanding a complex's structure is central to understanding its function. Recent years have 

witnessed a surge in the number of resolved compound structures owing to powerful molecular-

biology instruments and equipment. X-ray crystallography, for instance, has been extremely 

fruitful in determining the structure of more than five thousand protein compounds at atomic –

or sub-atomic–resolutions (24). Another example is Cryogenic electron microscopy (CryoEM), 

which has been revolutionary for the field of structural biology, especially for larger assemblies. 

In CryoEM, contrary to X-ray crystallography, it is not necessary to purify and crystallize large 

amounts of proteins. It only requires a sufficient number of snapshots from different viewpoints, 

which collectively form a high-resolution image (25). In addition, using Nuclear Magnetic 

Resonance (NMR) the structures of many complexes–although mostly dimeric– have been 

elucidated (26,27). NMR is limited to complexes of small size (~20 kD). Nevertheless, it can 

be used to assist structural modelling and affinity determination of larger complexes given that 

the partner proteins have known structures.  

Despite the great progress in the experimental determination of protein-protein complexes, it is 

still a challenge to determine all putative protein-protein complexes of the cell (28). The number 

of  proteins in the cell is in the order of thousands or tens of thousands (29,30). However, the 

number of relevant complexes and assemblies amount to hundreds of thousands (24). Moreover, 

weak, or transient protein-protein interactions are often too unstable to allow structural 

 

1 This chapter has been previously published in similar form in: Pourjafar-Dehkordi, Danial, 

and Martin Zacharias. "Prediction of protein–protein complex structures by 

docking." PROTEIN INTERACTIONS: Computational Methods, Analysis and Applications. 

2020. 59-85. 
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determination at high atomic resolutions. There are experimental approaches to detect such 

assemblies, however a detailed insight into the complex is missing. A realistic and accurate 

structure prediction protocol, therefore, is of increasing importance (29,31,32).  

The abundance of resolved protein-protein complex structures provides us with a template, 

using which we can construct a model for complex formation (33). A recent study suggests that 

the majority of natural protein-protein interactions can be modelled by a template-based 

approach (34). The hurdle to overcome is to properly map the target protein sequence to the 

template sequence. Template-based protein-protein complex modelling is a powerful tool that 

has been reviewed (35) and will not be part of the present chapter. It is noteworthy that even 

template-based models often require further refinements. This will be further discussed in the 

final section of the chapter. If, however, the target-template similarity is insufficient or protein 

partners are unknown, the template-based models fall short of their functionality. Here is where 

protein-protein docking methods can be extremely useful. Protein-protein docking methods are 

computational techniques that predict the structure of a complex starting from the structure of 

its isolated protein monomers (31,36).  

Most of protein-protein docking algorithms use a concept known as optimal complementarity 

as the main target criteria for predicting interactions. According to this concept, the partner 

structures are considered as rigid bodies, whose interactions follow a "lock and key" principle, 

proposed by E. Fischer (37). The binding affinity and specificity are then determined by the 

associated changes in the free energy, caused by structural and physiochemical changes in the 

protein partners. These methods are called the rigid-body protein-protein docking methods (32). 

The principles of these methods will be described in the first section of the chapter.  

Nevertheless, based on frequent experimental observations, partners appear to induce 

conformational changes upon binding, that are prerequisite for complex formation. In other 

words, biological macromolecules usually are not rigid and can undergo various types of 

motion at physiological temperatures. Based on these observations, the induced-fit concept of 

partner proteins has evolved (37,38). According to this concept, a pre-existing ensemble of 

interconvertible conformational states are at equilibrium. Within this ensemble there are states 

close to the bound and unbound forms and all states are accessible, even in the unbound form, 

albeit with a potentially lower statistical weight. Binding to partner molecules shifts the 

equilibrium towards the bound form. For a realistic prediction, the protein-protein docking 

algorithm needs to account for such conformational differences among states. Inclusion of 

conformational changes either directly or in the form of pre-calculated ensembles in docking 

approaches will be reviewed in the second section of this chapter.  

Biochemical and biophysical experiments supplement docking algorithms by identifying 

amino-acid residues that interact with partners, or by setting upper and lower bounds for the 

inclusion of residues in the vicinity of the binding site (39–41). Additionally, the knowledge 
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gained from bioinformatics–for instance, the conservation of surface residues or co-evolution 

of residues on partners–augments to the precision of docking methods (28). These will be 

covered in more details in the third section.  

To create an accurate structural model, complex structures obtained from an initial rigid- or 

semi-rigid-body docking algorithms need to be refined. Indeed, most of current protein-protein 

docking methods have an initial exhaustive systematic search, from which a subgroup of 

complexes are selected to go through a secondary refinement step (31,42). In the last section 

such flexible refinement steps and various techniques for scoring the predictions will be  

 

 

Figure 3-1. The most common types of docking methodologies.  

a, docking based on solving a correlation task; the overlap of a ligand protein (blue) with the surface of 

a receptor protein (grey) is calculated by solving a correlation integral (43). The correlation is positive if 

the ligand overlaps with the surface region (orange) but becomes unfavourable with increasing overlap 

with the interior of the receptor. Using a grid to discretize the protein the correlation is rapidly solved 

using FFT and the best possible overlap for a given relative protein orientation is extracted. The 

resolution of the FFT grid determines the model's accuracy. b, geometric hashing to match surface 

descriptors on both protein partners (44). Concave (red arrows) and convex areas (black arrows) on the 

protein's surface are illustrated. Docked structures are assessed based on the level of matching between 

concave and convex regions. c, docking by systematic energy minimization or short MD simulations 

starting from thousands of different juxtapositions of the partner proteins with the aim to find an 

energetically stable complex (on the right of the panel). 
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discussed and possible directions of improvement will be outlined. Finally, in a conclusion 

section very recent developments to predict protein interaction geometries using brute-force 

Molecular Dynamics (MD) simulations including full flexibility of binding partners and explicit 

inclusion of solvent molecules will also be discussed. 

3.1. Rigid-body docking approaches 

In protein-protein docking using rigid partner structures the aim is to generate a variety of 

possible interaction geometries, rapidly and exhaustively, with significant complementarity but 

a minimal overlap of partner structures. The degrees of freedom for each partner with respect 

to the other are limited to three translational and three rotational. A variety of computational 

methods have been developed in recent years to efficiently generate numerous putative bound 

geometries. To implicitly account for conformational adjustment of binding partners some 

nonspecific sterical overlap between docking partners is typically tolerated. Among the most 

common ones are fast Fourier transform (FFT) correlation techniques (35,43,45,46) to 

efficiently locate overlaps between complementary protein surfaces and geometric hashing 

methods to rapidly match geometric surface descriptors of proteins (Figure 3-1) (42,44). In the 

FFT-docking approach, the two protein partners are represented by cubic grids; the grid points 

are assigned discrete values for inside, outside and on the surface of the protein. A geometric 

complementarity score is calculated for the two binding partners by computing the correlation 

of the two grids representing each protein. Instead of summing up all the pair products of the 

grid entries, one can make use of the Fourier correlation theorem. The corresponding correlation 

integral can easily be computed in Fourier space. The discrete Fourier transform for the receptor 

grid needs to be calculated only once. Due to the special shifting properties of Fourier 

transforms the different translations of the ligand grid with respect to the receptor grid can be 

computed by a simple multiplication in Fourier space. This process is repeated for various 

relative orientations of the two proteins. Several available computer programs for protein-

protein docking use the Cartesian FFT algorithm (Table 3-1). 

A disadvantage of standard Cartesian FFT-based correlation methods is that for each relative 

orientation of one protein with respect to the other, there needs to be a FFT performed. Typically, 

the orientations vary by 10-15 º (45). The discretisation of the relative orientation can be 

avoided by correlating spherical polar basis functions that represent, for example, the surface 

shape of protein molecules (47). More recent approaches allow for solving the whole 

multidimensional search process–including orientation and translation–in Fourier space, 

instead of solving only the translation correlation task for discrete relative orientations of the 

proteins in Cartesian space (48). Using FFT correlation technique it is possible to solve a rigid-
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body docking problem for protein partners within minutes on standard PC. It has been 

successfully applied in the field of protein-protein docking and is part of most protein-protein 

docking webservers (Table 3-1).  

Recently, new multidimensional correlation methods have been developed that allow the 

correlation of multi-term potentials. Each function needs to be expressed in terms of spherical 

basis functions. characterizing the surface properties of the protein partners (49). Utilizing such 

rapid scoring methods, the full partition function of the rigid-body docking problem can be 

calculated (48). One significant drawback of the FFT correlation method is that it is directly 

applicable only to protein dimer predictions and requires sequential application, when it comes 

to molecular assemblies consisting of many protein partners. 

In addition to the FFT correlation method, protein-protein binding arrangements are identified 

using a technique called geometric hashing (Figure 3-1). It has been developed originally to 

match complementary subsections of several datasets. The protein surface is typically 

represented as a set of triangles that are stored in a hash table. By means of a hash key, matching 

triangles on the surface of the other partner is quickly identified. These triangles account for 

points on the molecular surface, having a certain geometrical (concave, convex) and/or physico-

chemical (polar, hydrophobic) character. Complex geometries are evaluated based on the level 

of complementarity between the triangles of the binding partners. PATCHDOCK, for instance, 

is a program employing geometric hashing (50). 

A third group of rigid-body approaches use multi-start energy minimization, Brownian 

dynamics or Monte Carlo simulations to predict the bound complex (31). A great advantage of 

these methods is that they can include a range of conformational flexibility already at the initial 

systematic search step. However, the computational demand is larger compared to FFT-based 

correlation methods or geometric hashing. Often, the search needs to be limited to predefined 

regions of the binding partners. Another advantage is their capability to simultaneously dock 

multiple protein partners. To reduce the computational costs, coarse-grained protein models 

were employed, which allows to energy-minimize thousands of start configurations (51,52). 

Available programs that belong to this class are ATTRACT, RosettaDock, SwarmDock and 

HADDOCK (53–59). Several docking approaches are also available as webservers (Table 3-1). 

With the help of the community-wide Critical Assessment of Predicted Interactions (CAPRI) 

experiment the progress in protein-protein docking prediction methods has been extensively 

monitored over the last 15 years (60–62). CAPRI is a challenge, in which different groups test 

docking methods' blind prediction of protein-protein complex structures. For protein partners 

with small differences between unbound and bound conformation and some experimental hints 

on the interaction region accurate predictions of complex structures are possible (62,63). 

However, when protein partners undergo significant conformational changes upon association 

or for protein homology models the predictions are often incorrect or very limited accuracy. 
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Computational approaches to realistically predict protein-protein binding geometries need to 

account for such conformational changes.  

 

Table 3-1. Protein-protein docking programs and associated websites or webservers. 

 

3.2. Description of protein flexibility during 

systematic docking search 

Protein-protein docking tools tend to perform better when starting from bound structures–those 

that have been extracted from the known complex–, compared to when they start from 

structures determined in the absence of the partner. This is due to the conformational changes 

that components of protein complexes experience upon binding, which might be of local 

(sidechain or loop transitions) or global (domain motions) nature (Figure 3-2). Unfortunately, 

the structure of the constituents of a complex are not always resolved; in such cases, one needs 

PROGRAM (REF.) SEARCH METHOD PROTEIN 

REPRESENTATION 

3D DOCK (64) Correlation FFT Discrete 

ATTRACT (53) Guided: multi-minimization Coarse grain 

CLUSPRO (46) Correlation FFT Discrete 

DOT (65) Correlation FFT Discrete 

GRAMM-X (66) Correlation FFT Discrete 

HADDOCK (59) Guided: data-driven, MD Atomic 

HEX (67) Correlation polar FFT Discrete 

ICM-DISCO (68) Guided: MC minimization Atomic 

MOLFIT (69) Correlation FFT Discrete 

PATCHDOCK (50) Geometric Surface 

ROSETTADOCK (55) MC & minimization Coarse grain to atomic 

ZDOCK (45) Correlation FFT Discrete 

MEGADOCK (70) Correlation FFT Discrete 

SWARMDOCK (57) MC on a Swarm Discrete 

F2DOCK (71) Correlation FFT Discrete 

FRODOCK (72) Guided: distance restraints Discrete 

PYDOCK (73) Correlation FFT Discrete 

PROBE (74) Geometric, MC minimization Discrete 

http://www.sbg.bio.ic.ac.uk/docking/
http://www.attract.ph.tum.de/
https://cluspro.bu.edu/login.php
https://www.sdsc.edu/CCMS/DOT/
http://vakser.compbio.ku.edu/resources/gramm/grammx/
https://wenmr.science.uu.nl/haddock2.4/
http://hexserver.loria.fr/
http://www.molsoft.com/icm_pro.html
http://www.weizmann.ac.il/Chemical_Research_Support/molfit/
https://bioinfo3d.cs.tau.ac.il/PatchDock/
https://www.rosettacommons.org/software
http://zdock.umassmed.edu/
http://www.bi.cs.titech.ac.jp/megadock/
https://bmm.crick.ac.uk/~svc-bmm-swarmdock/
http://www.cs.utexas.edu/~bajaj/cvc/software/f2dock.shtml
http://frodock.chaconlab.org/
https://life.bsc.es/pid/pydockweb
http://pallab.serc.iisc.ernet.in/probe/
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to turn to comparative modelling–using their homologs and a known template with sufficient 

sequence similarity. The homology-based models are typically of lower accuracy than the 

experimentally determined structures and can also contain sidechain or loop misplacements that 

interfere with rigid-body docking process. Indeed, rigid-body docking methods fail to predict 

the native complex if the bound and unbound structures differ significantly (62,63). Therefore, 

a refinement step, in which the conformational readjustments are accounted for, is desirable. 

Several approaches of flexible refinement, ensemble docking and explicit inclusion of 

flexibility during the entire docking process have been developed to include possible 

conformational changes during docking (31).  

 

 

 

Figure 3-2. Conformational changes upon protein complex formation. 

These changes are either local (e.g., sidechain or loop motions) or global. a, functional loop regions 

known as switch I & switch II in the small G-protein Rab8a adopt a closed arrangement in the unbound 

state (magenta, PDB: 4lhw), but adopt a more open conformation once bound to the Guanine nucleotide 

exchange factor, Rabin8 (red and green, PDB: 4lhy). b, global backbone changes (opening/closing 

motion) are observed by comparing the cartoon representation of the Ribonuclease Inhibitor (RI) in the 

unbound (grey, PDB: 2bnh) vs. in complex with Ribonuclease A (RNase A) (green and magenta, PDB: 

1dfj). In addition to the global changes also side changes are observed (stick models in the inset of panel 

b). 

 



 

26 

 

3.3. Experimental and bioinformatics data 

incorporated in docking 

Like any other approach, protein-protein docking methods come with limitations, such as false 

positives, or the diversity of final predictions, especially when there are large proteins involved. 

Nevertheless, they have improved by integrating low- or high-resolution experimental data to 

steer the docking engine towards the correct results, or to filter out false predictions at post-

processing stages, although it might have added to the workflow's complexity (53,75). The term 

integrative modelling is typically used for methods that combine experimental and 

bioinformatics data from various sources to generate structural models of molecular assemblies 

(28,76,77). A variety of experimental data can be used to guide docking of proteins and we will 

discuss only the most common types of data.  

Cross-linking has been used increasingly in the recent years to supervise and validate protein 

docking data. Mass spectrometry is a common experimental technique used to identify the 

location of the cross-links, which are included as upper-bound distance restraints during 

docking, or screening the solutions (78). Mechler et al. used distance restraints between specific 

residues–obtained from cross-linking experiments–to adjust and score the models proposed by 

HADDOCK (79). ATTRACT docking software also incorporates such data (80). Small-angle 

X-ray scattering in solution (SAXS) is another technique for characterizing structural and 

dynamics of biomolecules at low resolutions (28). SAXS data, calculated as a form of 

convolution, has served in several docking programs as a scoring function (81). Most of the 

current methods use SAXS data as a filter to refine and rank the final predictions (82–84), 

whereas other methods directly use them during the sampling stage (81,85). 

Despite the great progress of CryoEM experiments in the recent years, the resolution is in some 

cases low (>10 Å). Nevertheless, this low-resolution electron-density envelope can be very 

useful for evaluating the shape of the macromolecular complex. For example, HADDOCK can 

contain CryoEM data in addition to other sources of experimental and bioinformatics restraints 

to generate putative models of complexes (86). The generated solutions are then scored based 

on HADDOCK scoring function. The ATTRACT approach has also the option to perform 

docking of an arbitrary number of protein molecules guided by low-resolution CryoEM density 

envelopes (87). Based on this implementation, it was demonstrated that inclusion of low-

resolution (15-20 Å) CryoEM data is highly efficient to guide docking to near-native geometries 

for the majority of complexes in a large benchmark set (88). 
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3.4. Flexible refinement and final scoring of 

docked complexes 

 

Pons et al. have investigated the limitations of rigid-body docking strategies in combination 

with a rescoring step using rigid-body FFT-correlation-based docking and scoring with the 

PyDock approach (89). This approach employs an electrostatic Coulomb contribution with a 

surface-area-based solvation term and a van der Waals term. The protocol performed very well 

for most proteins that undergo minor conformational changes upon complex formation (<1 Å 

root-mean-square deviation (RMSD) between unbound and bound structures), but 

unsatisfactory results for cases with significant binding-induced conformational changes or 

with homology-modelled proteins. Hence, improvement of the prediction accuracy of proposed 

binding modes is necessary for specific scoring indicating a coupling between realistic scoring 

and accurate prediction of the complex structure.  

Almost all docking approaches employ a refinement and rescoring step applied to a subset of 

docking solutions–even those methods that include some degree of conformational flexibility 

during the initial search. The number of structures that undergo a refinement step are typically 

in the order of hundreds or thousands of the initial solutions and therefore, computational 

efficiency of the refinement step is critical. The FireDock approach (90) uses a combination of 

rigid-body moves and sidechain optimization to refine docking solution obtained by PatchDock 

(50). The refinement steps of the program HADDOCK consist of a series of energy 

minimizations and dynamics in dihedral variables followed by MD simulation in Cartesian 

coordinates that allows inclusion of explicit solvent (91). Most FFT-based approaches such as 

CLUS-PRO or ZDOCK employ energy minimization and sometimes also short MD simulations 

to remove sterical overlaps and improve the surface complementarity (92,93). The Rosetta 

molecular modelling suite is frequently used for optimizing the geometry of protein-protein 

complexes (56,94). The Rosetta program typically uses internal dihedral angles as 

conformational variables. It can be used for flexible refinement of just the sidechains at the 

interface, but also in combination with “backrub” motions to modify the backbone geometry 

(95). The approach is used both for refinement of solutions from FFT-correlation docking and 

for solutions obtained directly from a coarse-grained Rosetta protein-protein docking approach. 

Often the local refinement of docked complexes using energy-minimization or MD approaches 

does not move the partner structures significantly from the starting geometry–it just optimizes 

the interface interactions. In many cases especially when the unbound protein structures differ 

from the conformation in the bound complex none of the solutions come very close to the native 

binding geometry. Often, even the acceptable solutions according to the CAPRI criteria are not 
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reached (Table 3-1). In such cases, not only must the refinement step improve the interface 

arrangements, but it also must globally move the partners closer. The iATTRACT approach 

(96) is a docking refinement strategy that tries to combine minimization in the global 

translational and rotational variables with a full atomic flexibility of only the predicted interface 

region. In this way small sidechain movements can trigger large-scale whole-body movements 

of partner proteins (outlined and illustrated in Figure 3-3). 

 

 

 

Figure 3-3. Refinement of protein-protein docking geometries by iATTRACT.  

In iATTRACT full mobility of the interface residues (within 5-10 Å) is combined with the global 

mobility of the partners in terms of overall rotation and translation. The intra-molecular interactions of 

the interface atoms are described by an elastic network model (indicated in a and illustrated in b, receptor 

protein in green cartoon, ligand protein in red cartoon, interface as yellow stick model). The 

intermolecular interactions at the interface (yellow sticks) are described by a standard force field (OPLS 

(97), indicated in c). Small changes at the interface can trigger large-scale rearrangements in rotation and 

translation of a predicted start complex (d) as illustrated in a series of energy-minimization snapshots (e-

g).  

 

High-performance computers allow longer MD simulations on putative docked complexes for 

further refinement under realistic conditions–including full flexibility of partners and explicit 

solvent molecules (98–100). However, even in long MD simulations protein-protein complexes 

can be trapped for a long time in non-specific “sticky” complexes and do not move forward to 

reach a near-native state (100). Among several advanced sampling options, replica-exchange 

simulations (REMD) with an added biasing potential to the partners in the replicas (H-REMD 
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or BP-REMD approach) is a possibility to avoid such trapping in non-specific geometries and 

a broader range of conformations can be sampled. The replica exchanges allow also sampling 

of relevant states in a reference replica without biasing (101,102).  

Many docking methodologies incorporate a two state-scoring procedure; an initial scoring 

followed by a final, more sophisticated evaluation (40). The initial scoring, for instance based 

on surface complementarity, eliminates unlikely docking solutions and restricts the number 

of  relevant complexes to a few hundred or thousand, for an accurate evaluation. The final 

scoring employs a physics-based force-field function that includes van zacharder Waals 

interactions, electrostatic Coulomb interactions and solvation contributions. This is the 

implemented approach in HADDOCK (37) , Rosetta (34) , pyDock  (54) and  ATTRACT (82) 

approaches. In the final scoring, each term of the force fields are assigned a weight which are 

calibrated based on benchmark sets of known complexes and a large collection of decoy 

conformations.  

Alternatively, knowledge-based docking solutions are also used (36,41,103–106), in which 

random distributions of residues on the protein surface are evaluated based on the observed 

probability of finding those residues at protein-protein interfaces. The advantage of this 

approach is that the effective free-energy function can be deduced by taking the logarithm of 

the probability ratio into account. Most of the designed statistical potentials are based on the 

pairwise contacts or distance between residues (41,106). However, the concept can be expanded 

to multi-body potentials. Recently, new methods for optimizing such potentials have been used 

to further improve statistical potentials based in part on machine learning applications (107,108). 

In most cases, scoring of complexes is performed on single docked structures (e.g. cluster 

representatives) by just calculating the interaction energy between partner molecules, based on 

force fields or knowledge-based potentials. However, protein complexes are not static 

structures. To account for the flexible character of the complexes, molecular mechanics Poisson 

Boltzmann/generalized Born surface area (MMPBSA/MMGBSA) approaches can be employed 

(109). In these approaches, an ensemble of docked conformations in the vicinity of the starting 

complex is generated using MD simulations. This ensemble is analysed using a molecular-

mechanics force field–similar to the single structure scoring–combined with either Poisson-

Boltzmann or Generalized Born approach to implicitly account for solvation effects. This 

technique has been extremely successful for scoring protein-protein or protein-peptide 

complexes (110,111). It is, however, more demanding than scoring based on single structures.  

It is important to note that almost all scoring methods are based on the interaction between 

partners. However, protein binding is driven not only by interactions between partners but also 

by the binding free energy. The binding free energy includes many parameters in addition to 

the interaction between partners. For example, it is influenced by the energy of deforming the 

unbound structure into the bound structure, by the entropic cost of reducing the rotational and 
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translational freedom of one partner relative to the other and by the changes in the 

conformational entropy of the partners–usually a restriction of conformational mobility. All 

these effects can be calculated in free energy simulations of protein-protein binding using 

restraint MD simulations (112–114). In such calculations one typically restraints the 

conformations of the partners to stay close to the starting structure in the bound (or predicted) 

complex and applies restraints to keep the relative orientation of the partners. Subsequently, 

dissociation of the partners is achieved along a separation distance coordinate by adding an 

appropriate biasing potential and the associated free energy along the dissociation path is 

obtained. Finally, simulations are performed at the bound and dissociated states to calculate the 

free energy of releasing the restraints. Such methods have been used to evaluate single 

complexes (115) or a set of complexes using a coarse-grained model (116). Moreover, the 

methodology was systematically tested on 20 test systems and including 50 decoy complex for 

each test case in combination with an implicit solvent description (117). It was concluded that 

the performance is indeed slightly better than scoring based on interaction energies, but further 

developments are necessary to improve accuracy and convergence of the methodology. 

 

Table 3-2. CAPRI protein-protein docking criteria. 

 

QUALITY % NATIVE CONTACTS LIGAND-RMSD INTERFACE RMSD 

HIGH ≥ 50 RMSD ≤ 1 Å or RMSD ≤ 1 Å 

MEDIUM ≥ 30 1 Å < RMSD ≤ 5 Å or 1 Å < RMSD ≤ 2 Å 

ACCEPTABLE ≥ 10 5 Å < RMSD ≤ 10 Å or 2 Å < RMSD ≤ 4 Å 

INCORRECT < 10 – – 

 

3.5. Conclusions  

Protein-protein docking approaches have seen steady progress in recent years that has been 

monitored regularly by the community-wide docking challenge CAPRI.  Docking methods and 

docking servers are frequently used also by non-expert users working in the field of protein-

protein interactions. In addition to prediction by protein-protein docking, complex structures 

for many of the natural protein-protein interactions can be generated based on template-based 

modelling methods followed by structural refinement. Even in cases with no appropriate 

template it is possible in many cases to include experimental information or data from 

bioinformatics to restrict or guide the search for protein-protein docking searches. Hence, the 

prediction of dimeric protein-protein interactions is a highly evolved field with many available 

approaches and many successful applications. However, the prediction of weak interactions that 
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may form the basis for an assembly of several proteins to form multi-protein complexes is still 

extremely challenging. These assemblies mediate many cellular functions and may also 

undergo rapid changes in the cell due to association and dissociation of sub-elements. 

Experimental data such as low-resolution density from CryoEM, Cryo-tomography or in vivo 

crosslinking data could be combined with docking methods to obtain structural models of larger 

molecular assemblies in the cell. These approaches may allow in the not-too-distant future the 

structural modelling of the assembly and disassembly of many multi-protein complexes even 

in a crowed cell-type environment.  
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4. Covalent Modification of Small GTPase 

Rab8a Impedes Binding to The Exchange 

Factor Rabin81 

GTPases are key players in cellular signaling processes. Post-translational modification of 

GTPases can modulate their function and signaling properties. Phosphorylation of Rab proteins, 

which belong to the Ras superfamily of small GTPases that regulate intracellular transport, has 

recently been implicated in the pathogenesis of Parkinson Disease (PD). For Rab8a, it was 

shown that the phosphorylation of residue serine 111 (pS111) is dependent on the protein kinase 

PINK1, and that mimicking the phosphorylation at S111 by a serine/glutamate substitution 

(S111E) impaired Rab8a activation by its cognate guanine nucleotide exchange factor (GEF) 

Rabin8. Here, we performed comparative molecular dynamics and free energy simulations on 

Rab8a and Rab8a:Rabin8 complexes to elucidate the molecular details on how pS111 and 

S111E may influence the interaction with Rabin8. The simulations indicate that S111E and 

pS111 establish an intramolecular interaction with the neighboring arginine residue 79 (R79). 

The interaction persists in the complex and perturbs a favorable intermolecular salt-bridge 

contact between R79 in Rab8a and aspartate 187 in Rabin8. Binding free energy analysis 

reveals that S111E and pS111, as well as the R79A mutation, drastically decrease the binding 

affinity for Rabin8. Combining the R79A mutation with S111E or pS111 nearly diminishes 

Rab8a−Rabin8 binding. In vitro experiments confirm our computational results showing a > 

80% decrease in the nucleotide exchange rate of the respective Rab8a mutants in the presence 

of Rabin8 compared to that of the wild type. In addition to insights into how S111 

phosphorylation of Rab8a influences GEF-mediated activation, the simulations demonstrate 

 

1 This chapter has been previously published in similar form in: Pourjafar-Dehkordi, Danial, et 

al. "Phosphorylation of Ser111 in Rab8a modulates Rabin8-dependent activation by 

perturbation of side chain interaction networks." Biochemistry. 2019, 58, 33, 3546–3554. 

Reprinted with permission from the American Chemical Society. 
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how sidechain modifications in general can allosterically influence the surface sidechain 

interaction network between binding partners. 

4.1. Introduction 

The Rab subfamily of small GTPases is involved in the spatial and temporal regulation of 

vesicular trafficking (118–121). The subfamily consists of ~60 Rab proteins in humans with 

specific intracellular localization to mediate signaling functions (122). The basis for mediating 

signaling processes is a molecular switch between an inactive guanosine diphosphate (GDP)-

bound state and an active guanosine triphosphate (GTP)-bound state. To switch from the 

inactive to the active state, the binding of guanine exchange factors (GEFs) and activation by 

GEFs are required (118). GEFs are enzymes that stimulate the release of GDP and binding of 

free GTP to Rab proteins. Additional partner proteins, termed effectors, can recognize the active 

GTP form and promote cellular downstream processes. GTPase activating proteins (GAPs) 

eventually return Rabs back to their inactive state by stimulating the intrinsic GTPase activity 

(123,124). The Rab activity state is communicated to regulatory proteins and downstream 

interaction partners by two functionally important loop regions known as switch I and II. These 

regions are conformationally flexible in the inactive state, but they become structurally ordered 

in the active form. Due to their pivotal role in binding to interaction partners, any changes in 

the conformation of these regions are going to influence the binding profile of the GTPase. 

The activity of Rab GTPases can be further modulated by post-translational modifications 

(PTMs) such as phosphorylation (125–127). For example, it has been found that Parkinson’s 

disease (PD) kinase LRRK2 regulates a subset of Rab GTPases (128). Another example is the 

PTEN-induced kinase 1 (PINK1) that is a protein kinase which is indirectly involved in the 

phosphorylation of a conserved Ser111 residue in the Rab8a, Rab8b, and Rab13 GTPases in 

vivo (125). PINK1 is important for mitochondrial quality control, and mutations in PINK1 are 

associated with autosomal recessive Parkinson’s disease (125). Recently, it was found that 

mimicking the phosphorylation of Ser111 by introducing a Ser111 ➝ Glu (S111ERab8a) 

substitution significantly impairs Rab8a activation by its cognate GEF, Rabin8 (125). 

The crystal structure of GDP-bound Rab8a in complex with Rabin8 provided molecular insights 

into the mode of this Rab-GEF interaction (120). Interestingly, in this three-dimensional 

structure, the S111Rab8a is not directly interacting with Rabin8 (i.e., is not part of the interface). 

Hence, the decrease on the rate of Rab8a activation by Rabin8 due to S111Rab8a phosphorylation 

cannot be readily explained by a PTM-induced obstruction of the protein-protein interface. 

However, S111Rab8a is located opposite a negative surface patch of the Rabin8 (125). Therefore, 
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the repulsion of charges between the phosphorylation-mimicking S111ERab8a mutation or the 

 

 

Figure 4-1. The start structures of the simulations. 

a, cartoon representation of the crystal structure of Rab8a bound to GNP–the GTP analogue–which 

served as the starting structure for Rab8a simulations (PDB: 4lhw). GNP is shown in atom-colour coded 

sticks and Mg2+ in green sphere. Start structure of the Rab8a variants were generated by replacing 

S111Rab8a with glutamic acid (S111ERab8a) or phosphoserine (pS111Rab8a) in silico. b, cartoon 

representation of the crystal structure of the Rab8a:Rabin8 complex and location of bound GDP and of 

residues S111Rab8a, R79Rab8a and D187Rabin8 as sticks. The insets illustrate the contact of R79Rab8a and 

D187Rabin8 and the negative patch (red) of Rabin8’s electrostatic surface around residue D187Rabin8, 

respectively. 

 

Ser111Rab8a phosphorylation and the negative surface patch of Rabin8 may provide a molecular 

cause for the less efficient complex formation.  

In the present study we investigate the Rab8a:Rabin8 complex using molecular dynamics (MD) 

simulations to elucidate the molecular mechanism by which the Ser111Rab8a phosphorylation 

impairs the interaction with Rabin8. We compare the Rabin8-binding of wild type Rab8a with 

the corresponding S111ERab8a mutant and pS111Rab8a modified form. In the complex, D187Rabin8 

interacts with the switch II residue R79Rab8a to form a favorable salt-bridge interaction 

stabilizing the complex. However, in case of the Ser111 phosphorylation or S111E substitution, 

we identified intramolecular sidechain interactions in Rab8a between S111ERab8a/pS111Rab8a 

and R79Rab8a. This interaction weakens or even disrupts the interaction with D187Rabin8 in the 

complex with Rabin8. The simulations demonstrate that R79Rab8a plays a key role in mediating 

polar interactions between Rab8a and Rabin8 that can be perturbed by introducing the 

S111ERab8a mutation or upon S111Rab8a phosphorylation. The simulation results could be 
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confirmed by experimental in vitro measurements showing that the Rabin8-mediated nucleotide 

exchange rate of Rab8a variants (S111ERab8a, R79ARab8a) is decreased by >80% compared to 

wild type Rab8a.  

The study gives insights into the molecular mechanism of signaling modulation by 

phosphorylation of Rab8a. It furthermore is a model system on how modifications of polar and 

charged residues adjacent to (but not localized in) a protein-protein interface can allosterically 

modulate binding strength. 

4.2. Results and Discussions 

In a previous study it has been found that the phosphorylation-mimicking S111ERab8a 

substitution (and possibly also S111Rab8a phosphorylation) in Rab8a impairs the activation by 

its cognate GEF, Rabin8 (125). To investigate the molecular origin of this effect, we performed 

a series of MD simulations of isolated Rab8a variants and in complex with Rabin8, starting 

from the known structures (Figure 4-1). The substitutions were performed in silico to yield 

Rab8a S111ERab8a and pS111Rab8a variants, both in isolated Rab8a and in the complex with 

Rabin8 (see Methods). As a first step, we performed simulations on the isolated Rab8a variants  

 

 

 

Figure 4-2. Results from the simulation of the isolated Rab8a in complex with GTP and GDP. 

a, root-mean- square deviation (RMSD) of protein's heavy atoms with respect to the initial structure wild 

type (WT), S111E- and pS111-Rab8a variants bound to GTP (upper left panel) and GDP (lower left 

panel). The RMSD probability density distributions are also indicated. b, representative conformations 

of the three most populated clusters obtained from cluster analysis of the trajectories along with their 

population for GDP- bound S111E-Rab8a (b) and pS111-Rab8a (c) cases. The numbers next to snapshots 

report the population of the clusters and their equivalent clusters in the GTP-bound state. 
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(bound to GTP or GDP) starting from the experimental structure in complex with a bound GTP 

analog (PDB: 4lhw) (120). On a simulation time scale of 200 ns, the sampled states remained 

close to the start structure with a similar overall root-mean-square-deviation (RMSD) relative 

to the start structure of all variants (Figure 4-2a). On this time scale, fluctuations of the switch 

I and II regions (for the GDP-bound cases) but no unfolding processes were observed. However, 

both the phosphorylation mimetic S111ERab8a as well as the pS111Rab8a variant formed transient 

hydrogen bonding states with the sidechain of R79Rab8a in the neighboring switch II region 

(Figure 4-2). Especially pS111Rab8a formed a robust salt-bridge contact to R79Raba8 with two H-

bonds for 75 % of the simulation time. Only in less than 10 % (S111ERab8a) and 2 % (pS111Raba8) 

of the simulation time, there was no contact with R79Rab8a. The sampling of these intramolecular 

H-binding contacts was observed in both the simulations with GTP- and GDP-bound Rab8a. In 

contrast, there were no stable contacts between S111Rab8a and R79Rab8a observed in the MD 

simulations of wild type Rab8a.   

4.2.1 Simulation of Rab8a in complex with Rabin8 

As a next step, MD simulations of the Rab8a variants in complex with Rabin8 were performed 

starting from the known crystal structure (GDP-bound, PDB: 4lhy, residue substitution at  

 

position S111Rab8a by in silico mutation). For all the variants, as indicated by the RMSD plots 

and the trajectories snapshots in Figure 4-3, the protein interface remained unchanged, showing 

that the mutations did not alter the overall structure. However, in the case of wild type Rab8a 

in complex with Rabin8, the R79Rab8a can form a hydrogen-bonded salt-bridge contact to D187 

of Rabin8 (D187Rabin8). This hydrogen-bonded state was also observed as the dominant local 

conformational cluster during the simulations of the wild type Rab8a in complex with Rabin8 

suggesting that the contact contributes favorably to the stability of the Rab8a-Rabin8 complex 

(Figure 4-4). It is characterized by a short distance between sidechain groups of R79Rab8a and 

D187Rabin8 and a larger distance of R79Rab8a and S111Rab8a. Indeed, several conformational 

clusters for the arrangement of the D187Rabin8, R79Rab8a and S111Rab8a sidechains could be 

distinguished for the wild-type case during the simulations, mostly with direct intermolecular 

contacts between R79Rab8a and D187Rabin8 (Figure 4-4).  

In both cases of pS111Rab8a modification and S111ERab8a substitution, the simulations indicate 

that the intramolecular contact to R79Rab8a persists in the simulations in complex with Rabin8 
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Figure 4-3. MD simulation of GDP-bound Rab8a variants in complex with Rabin8. 

a, heavy atoms RMSD of Rabin8 with respect to the initial structure after superimposing the complex on 

the Rab8a partner protein vs. simulation time. The RMSD probability density is also illustrated. 

Superposition of five snapshots (cartoon representation) obtained from the simulations of WT (b), S111E 

(c) and pS111 (d) variants of Rab8a in complex with Rabin8 (snapshots taken every 50 ns). 

 

(Figure 4-4). The average distance of residue S111Rab8a to R79Rab8a is considerably shorter than 

that of the wild type (WT complex, 7.8 Å; S111E-Rab8a complex, 5.1 Å; pS111-Rab8a 

complex, 4.1 Å). In the most populated states, the R79Rab8a-D187Rabin8 contact is disrupted or 

shows only a weak H-bonding geometry and some sampled states allow for simultaneous 

contacts of all three residues, such that the average R79Rab8a-D187Rabin8 distance is similar in all 

simulations of the complexes (WT complex, 5.4 Å; S111E-Rab8a complex, 5.2 Å; pS111-

Rab8a complex, 5.3 Å). The cluster analysis of the arrangement of the three residues in the 

simulations of the S111ERab8a and pS111Rab8a variants indicated sampling of fewer distinct 

clusters compared to the wild type (Figure 4-4). Interestingly, due to the formation of the 

intramolecular contact between residue S111Rab8a and R79Rab8a, the average distance of residue 

S111Rab8a relative to D187Rabin8 is also reduced in the simulations of the pS111Rab8a and 

S111ERab8a variants (WT complex, 9.2 Å; S111E-Rab8a complex, 8.0 Å; pS111-Rab8a complex, 

7.1 Å). It brings the negative charges of these residues closer together, and thus is expected to 

weaken the binding. Finally, control simulations of the double substitution S111E-R79A-Rab8a 

or pS111-R79A-Rab8a in complex with Rabin8 indicate no stable arrangement with close 
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Figure 4-4. Dominant conformational states observed in simulations of Rab8a:Rabin8 

complexes. 

Dominant conformational states observed in simulations of Rab8a:Rabin8 complexes. a, representative 

snapshot of the most populated cluster obtained from 200 ns MD simulations of wild-type Rab8a in 

complex with Rabin8. b, same as a, but for S111E-Rab8a in complex with Rabin8. c, the most populated 

cluster representative for the MD simulations of the S111E-R79A-Rab8a:Rabin8 complex. d, 

representative snapshot of the pS111-Rab8a:Rabin8 complex. e, same as in d but for the pS111-R79A-

Rab8a:Rabin8 complex. Hydrogen bonds are illustrated with yellow dashes. The numbers on the lower 

right in each panel indicate the population of the clusters as percentage of the frames. 

 

contacts of the sidechains R79Rab8a, S111Rab8a and D187Rabin8 (snapshots of most dominant states 

are illustrated in Figure 4-4). 

4.2.2 Influence of S111-phosphorylation on binding affinity to 

Rabin8 

To quantify the effect of the S111ERab8a and pS111Rab8a substitution in Rab8a on the binding to 

Rabin8, we evaluated the trajectories using the molecular mechanics-Poisson-Boltzmann 

surface area (MMPBSA) method (129,130). It should be emphasized that these calculations do 

not include all contributions to binding (they neglect for instance conformational entropy 

contributions) but allow a semi-quantitative comparison of relative binding affinity of the 

variants. The assumption is that the reduction in conformational entropy upon complex 

formation is similar for all variants. The MMPBSA calculations indicate only a small binding 
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affinity difference in favor of Rab8a:GDP vs. Rab8a:GTP to Rabin8, which is in line with the 

experimental evidence that there is no strong preference for Rabin8 GEF interactions with the 

GDP vs. GTP bound forms of Rab8a (120). Both, the substitution S111ERab8a as well as the 

pS111Rab8a modification resulted in a calculated reduction of the binding strength (by about ~9-

10 kcal/mol). Apparently, this gives an estimate of the energetic contribution of the favorable 

R79Rab8a-D187Rabin8 contact that is frequently sampled in the case of the WT-Rab8a:Rabin8 

complex, but either disrupted or weakened by the presence of the nearby negatively charged 

residues S111ERab8a or pS111Rab8a in the Rab8a variants. It is important to emphasize that the 

calculated magnitude of this binding energy reduction is likely an overestimation because the 

entropic contributions to restrict the conformational freedom of the sidechain motion upon 

binding are not included. Since our MD simulations indicate that the R79Rab8a residue may play 

a key role in mediating the effect of the S111Rab8a modification, which does not directly contact 

the Rabin8 partner, we used the “alanine scan” option in the MMPBSA approach to investigate 

the effect of substituting the R79Rab8a by alanine (R79ARab8a). Already in case of the wild type 

in complex with Rabin8, the R79ARab8a is predicted to significantly reduce the Rab8a:Rabin8 

binding affinity (Table 4-1). In case of the S111ERab8a and pS111Rab8a variants of Rab8a, a 

further reduction in affinity was observed. With the loss of contact between R79Rab8a and 

D187Rabin8 by replacing the arginine with alanine (R79ARab8a), an attractive force between the 

two proteins is eliminated, and by addition of the phospho-mimetic S111E substitution (S111E-

R79A-Rab8a), a repulsive electrostatic force between the two negatively charged residues 

(S111ERab8a and D187Rabin8) is predicted to weaken the complex affinity even more. This is 

reflected by the sum of Coulomb and polar-solvation contributions that represent the 

electrostatic contribution to binding. This contribution is more positive (by 5-9 kcal/mol) for 

all the R79ARab8a variants compared to the cases with no R79Rab8a mutation (Table 4-1).  

In addition to the average effect of the substitutions we also split the trajectories into sets of 

frames that belong to different conformational clusters formed by the residues R79Rab8a, 

S111Rab8a and D187Rabin8 (Figure 4-5). The MMPBSA analysis of these sets of frames indicates 

that each cluster of sidechain arrangements contributes differently to the binding affinity. Some 

clusters make a favorable and others a less favorable or even unfavorable contribution to 

binding. For example, in case of the wild type simulations at around 100 ns mostly 

conformations with a R79Rab8a-D187Rabin8 distance > 4 Å are sampled resulting in an overall 

slightly positive interaction energy (ΔE > 0) compared to states with a smaller R79Rab8a-

D187Rabin8 distance. The S111ERab8a substitution or phosphorylation results in a shift of the 

clusters to more states with an unfavorable effect on binding. 
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Figure 4-5. Sampling of conformational substates and interatomic distances involving residues 

R79Rab8a, S111ERab8a, pS111Rab8a and D187Rabin8. 

In the top panels the assignments to most populated clusters are indicated by different point colours. The 

clusters are numbered based on their population in a descending order. The intramolecular distances 

between R79Rab8a-D187Rabin8 and residue S111Rab8a are calculated between the arginine amino group (NH2) 

or OG of aspartic acid and the sidechain OG of S111Rab8a, CG of S111ERab8a and OG of pS111Rab8a, 

respectively. The intermolecular distances between R79Rab8a and D187Rabin8 are the hydrogen-bond 

distances of the arginine amino group and OG of D187Rabin8. Rab8a–Rabin8 interaction energies are 

calculated using the MMPBSA approach. The green lines in energy plots indicate the mean over a rolling 

2 ns window. 

 

The interaction energy (indicated as ΔE) is more positive compared to the wild type simulations 

especially in time intervals that correspond to conformations with increased R79Rab8a-D187Rabin8 

distances (the lower panel in Figure 4-5). The arrangement forms a model system how 

modifications of residues not being part of an interface can mediate or control binding affinity 
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by changing the network of contacts of the nearby residues (in the present case, of R79Rab8a) 

with residues on the partner protein. 

The simulations suggest differences in the binding affinity of the Rab8a variants to Rabin8, 

which should result in decreased nucleotide exchange rates for those variants compared to wild 

type Rab8a. Except for the pS111Rab8a variant, it was possible to generate, express and purify 

all Rab8a variants. We determined the kinetics of Rabin8-stimulated nucleotide exchange 

reactions for WT-Rab8a, S111E-Rab8a, R79A-Rab8a and S111E-R79A-Rab8a. The Rabin8-

simulated GDP ➝ GTP exchange rates were calculated for each Rab8a variant based on the 

time-dependent change of intrinsic tryptophan fluorescence, as reported in ref. (131). We found 

that the phospho-mimetic S111ERab8a and the R79ARab8a mutants resulted in > 80 % reduction 

of the nucleotide exchange rate compared to wild type Rab8a. In the case of the S111E-

R79ARab8a double mutant, the nucleotide exchange activity was almost completely abolished (~ 

95 % decrease). Since the mutations are not on the Rabin8 side, the decreased activity must be 

due to the weakened binding of Rabin8 to Rab8a variants. Hence, the experimental results are 

in line with the computational prediction that the presence of S111ERab8a or pS111Rab8a prevents 

R79Rab8a to engage in interactions with Rabin8, and therefore decreases the binding affinity. 

Note that the simulations clearly indicate qualitatively similar effects of S111ERab8a and 

pS111Rab8a that in the latter case need to be considered as a prediction because experiments were 

performed for only the phospho-mimetic S111ERab8a and the R79ARab8a mutants. 

 

4.3. Conclusions 

Post-translational modifications may play a role in modulating signaling properties of GTPases 

(125,132). Indeed, for Rab8a it has been previously shown that mimicking the phosphorylation 

at serine 111 (S111ERab8a) reduces the GEF-mediated activation by Rabin8 (125). Interestingly, 

the structure determination of the Rab8a:Rabin8 complex revealed that S111Rab8a is not directly 

located at the interface to Rabin8, and that even upon phosphorylation no direct contact to 

Rabin8 is sterically possible (120,125). In the study presented here, we investigated the 

molecular details on how S111ERab8a and pS111Rab8a affect the interaction with Rabin8 using a 

series of MD-simulations and free energy calculations. Both the in silico S111ERab8a substitution 

as well as the pS111Rab8a modification tend to form intramolecular salt bridge-like contacts to 

the nearby R79Rab8a residue within the switch II region. This was observed in the isolated Rab8a 

variant and in the complex with Rabin8 as dominant conformational states that in case of the 

complex perturbs and even disrupts the R79Rab8a-D187Rabin8 salt-bridge contact in contrast to the 

wild-type complex. The importance of R79Rab8a for stabilizing the binding of Rab8a to Rabin8 
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could be demonstrated by analyzing the R79ARab8a substitution as well as double mutations 

(R79ARab8a-S111ERab8a, R79ARab8a-pS111Rab8a). Although the predicted effects on the change in 

binding free energy due to the substitutions are likely to be larger than the experimental binding 

free energy changes, the order of the effect of each variant correlates very well with 

experimental data on the binding to Rabin8 and the GEF efficiency of Rabin8. In vitro 

experiments investigating the Rabin8-mediated nucleotide exchange reactions confirmed the 

computational results. We show that the exchange rates of all Rab8a (S111E, R79A) variants 

are decreased by >80% compared to wild type Rab8a, suggesting that the residue R79Rab8a in 

Rab8a plays an essential role in mediating the binding of Rabin8, and that S111ERab8a interferes 

with this function.  

It is well known that phosphorylation of protein residues can alter conformational equilibria, 

and in turn influence binding to protein partners. Examples are the phosphorylation of Arg/Ser 

rich proteins (RS-proteins) resulting in conformational changes and disruption of binding to 

RNA molecules (133), or the phosphorylation of Tyr residues in Ras-GTPases that alter the 

switch I and II conformation directly affecting the interaction with effectors (134,135). The 

present study demonstrates a potential mechanism on how a chemical modification of a residue, 

which is not part of the binding interface, can modulate signaling events due to altering the 

neighboring sidechain interaction network that is part of the interface with the partner protein. 

Such mechanism can be of particular importance when it comes to the fine-tuning of cell 

signaling events, where a complete disruption of the binding, and thus signaling, would be 

detrimental. The perturbation or alteration of interacting sidechain networks can potentially be 

the basis of allosteric effects mediated not by chemical modification of sidechains, but by 

binding of an allosteric effector adjacent to the interface with another binding partner. Indeed, 

for HLA-DR (MHC class II) molecules the conformational change of a Trp sidechain induced 

by binding of the co-chaperone HLA-DM (at a site not overlapping with the peptide binding 

groove) has been found to control peptide binding and exchange (136). Similar to the present 

case the allosteric effect is then mediated by perturbation of a sidechain interaction network 

that mediates the interaction with the binding partner. 

4.4. Methods 

4.4.1 Simulation protocol 

All isolated Rab8a simulations started from the crystal structure bound to 

phosphoaminophosphonic acid guanylate ester (GNP) (PDB: 4lhw) (120). The Rabin8-bound 

simulations started from the crystal structure of Rab8a:Rabin8 complex (PDB: 4lhy) (120). The 

nitrogen atom between the β- and ɣ-phosphate in GNP was exchanged with an oxygen atom to 
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model the Rab8a:GTP structure. The terminal phosphate was removed to form an initial model 

of the Rab8a:GDP complex. In the model of the phosphorylated complex, the Ser111 (S111Rab8a) 

was replaced with phosphoserine (Ser111:pS111Rab8a) to form the phosphorylated Rab8 

structures. The Amber ff14sb force field was used for the proteins, additional force field 

parameters for GDP, GTP and phosphoserine were taken from the Amber parameter database 

at their fully unprotonated states (137–139). A study by Mann et al. (140) supports the 

unprotonated state of GTP as the most populated state at neutral pH. For Rab8a:GDP 

simulations, a Mg2+ ion with two bound water molecules was placed next to GDP-phosphate. 

Using sodium and chloride ions, the salt concentration was adjusted to 0.1 M and the systems 

were solvated with the TIP3P water model (141,142). The solvated systems were equilibrated 

by a first energy minimization (5000 steps), followed by 25 ps of heating and 50 ps of density 

equilibration, followed by a simulation in NPT ensemble at 300 K. During these equilibration 

phases, all protein nucleotide heavy atoms as well as magnesium ions were restraint with a 

harmonic potential at force constant of 5.0 kcal mol-1Å-2. Data gathering production simulations 

were performed without any restraints. The pmemd version of the Amber 16 software package 

(143) in combination with hydrogen mass repartitioning (144) was used which allows a 

simulation time step of 4 fs. Long range interactions were included using the particle mesh 

Ewald (PME) method combined with periodic boundary conditions and a 9 Å cut-off for real 

space non-bonded interactions. Trajectories were processed and analyzed using CPPTRAJ 

program (143). The DBSCAN algorithm was used for clustering of the trajectories with a 

distance cutoff of 1.0 Å of heavy atoms root mean square deviation (RMSD) and a frame 

interval of 200ps. Figures were generated using PyMol software package (145). 

4.4.2 Binding affinity calculations 

The interaction energies between Rab8a and Rabin8 were calculated using MMPBSA tool  of 

the AMBER software suite (129). The binding free energy of an aqueous complex of two bound 

proteins can be approximated as  

 

∆𝐺binding ≈  ∆𝐸MM  + ∆𝐺solvation  −  𝑇∆𝑆 

 

∆𝐸MM = ∆𝐸vdW  + ∆𝐸Coulomb  + ∆𝐸polar solvation 

 

∆𝐺solvation = ∆𝐸cavity  +  ∆𝐸dispersion solvent 

 

where ∆𝐸MM , ∆𝐺binding  or ∆𝐺solvation  and − 𝑇∆𝑆  represent the gas-phase molecular 

mechanical energy change, the solvation free energy change and the conformational entropy 
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change upon binding, respectively (146). In our calculations, the entropy term was neglected. 

Five production simulations of 2 ns in duration started from the complex of GDP-bound Rab8a 

and Rabin8 (PDB: 4lhy) at 300K, generating snapshots every 10 ps. A similar set of simulations 

were carried out starting from the same structure but with S111ERab8a mutated. were carried out 

starting from the same structure but with S111ERab8a mutated. Using the "alanine scan" feature 

of MMPBSA, the contribution of R79Rab8a in each case was evaluated. Calculations were carried 

out on a sum of 1000 frames for each complex at an ion concentration of 0.1M.  
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Table 4-1. Calculated binding free energies (kilocalories per mole) of Rabin8 in complex with Rab8a variants. 

 

Mean contributions to 

binding 

Rabin8:Rab8aGDP Rabin8:R79A-

Rab8aGDP 

Rabin8:S111E-

Rab8aGDP 

Rabin8:S111E-

R79A-Rab8aGDP 

Rabin8:pS111-

Rab8aGDP 

Rabin8:pS111-

R79A-Rab8aGDP 

Rabin8:Rab8aGTP 

ΔEVAN DER WAALS -112.9 -111.0 -110.5 -109.2 -121.6 -118.9 -116.9 

ΔECOULOMB -648.7 -480.1 -460.8 -288.9 -407.2 -245.7 -535.9 

ΔEPOLAR_SOLVATION 666.3 506.1 488.0 324.8 441.6 285.1 560.6 

ΔECAVITY -87.5 -83.8 -85.9 -82.7 -95.6 -92.7 -89.7 

ΔEDISPERSION_SOLVENT 171.3 165.9 169.2 164.6 181.2 177.0 173.3 

ΔGBINDING -11.6 ± 0.3 -2.9 ± 0.3 -0.01 ± 0.3 8.5 ± 0.3 -1.8 ± 0.4 4.8 ± 0.4 -8.7 ± 0.4 

ΔΔGBINDING - 8.6 ± 0.4 11.5 ± 0.5 20.0 ± 0.5 9.8 ± 0.5 16.4 ± 0.47 2.8 ± 0.5 
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5. Conformational Switching in Small 

GTPases Upon Binding To GTP/GDP1 

Rab GTPases constitute the largest branch of the Ras protein superfamily that regulate intra- 

cellular membrane trafficking. Its signaling activity is mediated by the transition between an 

active GTP-bound state and an inactive GDP-bound state. In the inactive state the switch I and 

II segments adopt largely disordered flexible conformations whereas in the active state these 

regions form defined conformations. The switch I and II segments are central for recognition 

of Rab GTPases by interacting partners. Phosphorylation of the Rab1b-GTPase at residue 

Ser111 (pS111) results in modulation of signaling activity due to alterations of the protein 

interaction interface but possibly also due to modulation of the conformational flexibility. We 

have studied the flexibility of native and pS111-Rab1b in complex with GTP or GDP using 

extensive molecular dynamics (MD) simulations and an advanced sampling DIhedral Angle-

biasing potential Replica-Exchange Molecular dynamics (DIA-REMD) method. The DIA-

REMD technique promotes backbone and sidechain dihedral transitions along a series of replica 

simulations in selected segments of the protein segments and through exchanges also improves 

sampling in an unbiased reference simulation. Application to the Rab1b system results in 

significantly enhanced sampling of different switch I/II conformational states in the GDP-

bound Rab1b. The pS111 modification is found to reduce the conformational flexibility even 

in the presence of GDP, which may influence signaling activities. The stabilizing effect can be 

attributed to the formation of additional surface salt bridges between arginine residues and 

pS111 that are not present in the native structure. The DIA-REMD technique could be a 

valuable approach for studying also other signaling proteins that contain flexible segments.  

 

1 This chapter has been previously published in similar form in: Pourjafar‐Dehkordi, Danial, 

and Martin Zacharias. "Influence of a Ser111‐Phosphorylation on Rab1b GTPase 

conformational dynamics studied by advanced sampling simulations." Proteins. 2021; 1-9. 

Reprinted with permission from John Wiley & Sons. 
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5.1. Introduction 

Rab proteins belong to the class of small GPTases and are key actors in a variety of intra- 

cellular trafficking events in eukaryotic cells. Central elements of Rab GTPases are molecular 

switches that can alternate between a guanosine triphosphate (GTP)-bound active state and a 

guanosine diphosphate (GDP)-bound inactive state. Activation is mediated by guanine nu- 

cleotide exchange factors (GEFs), that catalyze the release of GDP and exchange of GDP by 

GTP. Hydrolysis of the GTP into GDP and switching back to the inactive state can be facilitated 

through binding to GTPase activating proteins (GAPs) and activation of the intrinsic GPTase 

activity (123,147). The conformational changes associated with activation or inactivation of 

GTPases occur in characteristic switch regions I and II. These flexible segments can undergo 

transitions between structured (in the active state with bound GTP) and largely unfolded 

inactive states in the presence of bound GDP. Most signaling interactions of Rab GTPases are 

associated with the switch I and II segments. Specific post-translational modification (PTM) of 

amino acid residues can further modulate the activity and regulation of small GTPases 

(120,127,148). Such modifications include adenylylation, phosphorylation and 

phosphocholination of residues and reside either in the spatial vicinity or are directly located in 

the two conformational switch regions (127,148–150). 

Growing evidence suggests that there are links between regulation of Rabs and Parkinson 

disease (PD)- related proteins (125,128,151,152). PTEN-induced kinase 1 (PINK1), for 

instance, is a serine/threonine kinase that functions as a mitochondrial damage sensor, whose 

mutations cause autosomal recessive PD (153). It has been shown that once activated, PINK1 

regulates a number of Rab GTPases, namely Rab1b, 8a, 8b, and 13, through an indirect 

phosphorylation of a highly conserved residue, Serine 111 (125). This modification has been 

proven to diminish Rab8a’s binding to its cognate GEF (152) by interfering with the network 

of surface sidechain interactions (131). The determination of the X-ray structure of Rab8a with 

phosphorylated Serine 111 (pS111) indicated only little difference compared to the native non-

phosphorylated GTPase structures. These include in the case of the pS111 variant small 

adjustments in the backbone structure of switch II with bound GTP and a better resolved 

residual switch II structure in the presence of GDP (152). Also, for the closely related Rab1b, 

Nuclear Magnetic Resonance (NMR) spectroscopy indicated no major structural alterations in 

solution due to the pS111 modification. However, these studies could not resolve the behavior 

of the switch I and and switch II regions of the Rab1b GTPase. Thermal melting experiments 

revealed an overall structural stabilization of the pS111-Rab1b both with bound GDP and in 

the presence of the GTP-analog GppNHp (152). Hence, the influence of the pS111 

modification on the conformational flexibility of Rab1b is still not understood. The 
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increased stability of the pS111 variant indicates that the pS111 modification potentially 

affects the ensemble of conformational states of the switch regions not detected by the 

structural studies and that it can play a role for the interaction with other signaling 

proteins. To complement the biochemical and structural studies we employ comparative 

MD simulations to investigate the effects of this PTM on the conformational dynamics of 

Rab1b both in complex with GDP and GTP.  

MD simulations have played already a substantial role in gaining a deeper understanding of 

GTPases. For example, the catalytic cleavage of GTP at high resolution was studied by a 

combination of X-ray, Fourier-transform infrared spectroscopy (FTIR) and combined quantum 

mechanics and molecular mechanics (QM/MM) in atomic detail by Gerwert and coworkers 

(154). Several computational studies have addressed the transition from active to inactive states 

and have illustrated the interplay of interactions between the protein’s backbone atoms, the 

nucleotide’s phosphate atoms and the Mg2+ ion along the transition process (155,156). 

Furthermore, accelerated MD simulations indicate that the mechanism by which the small 

GTPases bind to the nucleotide is based on conformational selection due to sampling of multiple 

conformations regardless of the nucleotide bound. Previous free energy simulations on the 

adenylylation of a Rab GTPase predicted a stabilization of the GTPase active form even in the 

presence of GDP which was later also confirmed experimentally (157). 

In the present study we investigate the influence of the pS111 modification on the Rab1b dy- 

namics using extensive comparative MD simulations of the phosphorylated and non-

phosphorylated S111 variants with and without bound GDP or GTP. During conventional MD 

(cMD) simulations only moderate conformational fluctuations are observed in the switch 

regions even in the presence of bound GDP. To improve sampling of relevant states, we also 

employ an advanced sampling technique DIA-REMD, introduced previously, that promotes 

conformational transitions of specific protein regions during an MD simulation study (158,159). 

In the DIA-REMD technique, the low-energy backbone and sidechain dihedral angles are 

penalized with a biasing potential that promotes transitions to conformations separated by 

energy barriers. Different levels of the biasing potential are applied along a series of parallel 

running replicas. At preset intervals exchanges between the replicas are attempted and accepted 

by a Metropolis criterion. Our study demonstrates that the procedure indeed significantly 

enhances the sampling of relevant switch I and II conformations also in the reference replica 

without a biasing potential (resulting in correct canonical sampling in the original force field). 

In addition, the simulations indicate an overall stabilizing effect of the pS111 modification on 

the Rab1b active conformational state in the presence of GTP but also GDP.  

The stabilization is mainly mediated by an interaction of the phosphate group with the R79 

residue located in the switch II segment (and another Arg residue) and provides an explanation 
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for the experimentally observed increased stability of the pS111 variant of Rab1b. The study 

also demonstrates that the application of the DIA-REMD technique could be helpful to study 

other flexible protein or peptide segments that may play a role in signal transduction processes.  

5.2. Results 

5.2.1 Comparative molecular dynamics simulation of GTP/GDP-

bound Rab1b.  

It is well established that the structural flexibility of GTPases can be strongly modulated by 

bound GTP or GDP nucleotides especially in the switch I and II regions. We performed un- 

restrained explicit solvent MD simulations on the Rab1b GTPase with bound GTP and GDP 

starting from the same structure (PDB ID: 3nkv, Figure 5-1) that represents the active GTP- 

bound form. The two simulations were also performed with the S111-phosphorylated variant 

of Rab1b (pS111-Rab1b). On the timescale of 2 μs in all cases, the overall structures of Rab1b 

and the arrangements of its switch regions remained overall close to the start structure (Figure 

5-1). No rearrangement or dissociation of the bound nucleotides was observed. Even the switch 

I and II regions resulted in only modest fluctuation and variation from the start structure. 

Slightly larger deviations of the switch I and II segments were observed with bound GDP vs.  

 

Figure 5-1. Start structure of the Rab1b variants free MD simulations. 

a, crystal structure of the active Rab1b in complex with a GTP analog (PDB: 3nkv), which served as the 

start structure. The switch regions are highlighted in green, the conserved G-motifs in magenta and serine 

111 in blue. The GNP atoms are represented as sticks and the Mg2+ ion as a green sphere. b, root-mean-

square deviation (RMSD, of all non-hydrogen atoms) during the 2 μs continuous MD simulations. 

Snapshots taken form the final parts of the simulations of the GDP-bound Rab1b variants (wild type left, 

pS111-Rab1b right) taken at different RMSD values indicate small conformational changes but no sign 

of unfolding in the switch regions. 
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GTP but no unfolding of the segments. The deviations in the switch regions seen in the 

simulations are significantly smaller compared to experimentally observed conformational 

differences of the switch regions in inactive (GDP-bound) vs. active (GTP-bound) Rab1b 

(150,152). It indicates that due to the presence of energy barriers, the timescale of 2 μs of the 

present MD simulations might be insufficient to sample the expected structural transitions 

observed experimentally for the active and inactive forms.   

5.2.2 DIA-REMD simulations to enhance sampling of transitions 

in switching regions  

Next, we performed DIA-REMD simulations of GTP- and GDP-bound Rab1b. In this technique 

a number of replica simulations with increasing levels of a specific biasing potential are 

employed to promote transitions of dihedral angles. The biasing potential encourages 

conformational transitions of the switch segments especially in the higher replicas. 

Conformations can then exchange to the reference replica upon frequent exchanges between 

replica runs. All analysis of the trajectories in the following sections were performed only on 

the data obtained from the reference replica.  

The simulation of the wild type Rab1b in the presence of bound GTP indicates minor deviation 

of the switch I and II regions (< 4 Å) during the entire 200 ns of DIA-REMD, similar to the 

results obtained with MD simulations (Figure 5-2). In contrast, in the GDP-bound Rab1b 

variant, after 50-100 ns significant conformational transitions were observed in both switch I 

and II regions that reach 6-15 Å, beyond what was observed in the MD simulations. During the 

first 50 ns, the biasing potential-adjustment algorithm updates the potential levels to optimize 

the exchange acceptance (more details in Methods). Therefore, only the last 2/3 of the 

trajectories were used for further analysis. The overall RMSD distribution remained unchanged 

throughout the last 2/3 of the simulation. Cluster analysis of the trajectories based on switch I 

and II conformations in Figure 5-4 reveals the most populated states adopted during the 

simulations. While the free MD frames, regardless of the nucleotide bound, were clustered in 

only one batch (for the selected clustering threshold of 2 Å root mean square deviation 

(RMSD)), the DIA-REMD trajectories yielded entirely different results depending on the type 

of nucleotide. For the GTP-bound complexes, there is only one dominant state found, which is 

characterized by a well-ordered arrangement of the switches, similar to the start structure. 

However, the GDP-bound Rab1b adopted a total of 41 states, 18 of which represent at least 1 

% of the simulation time. The superimposition of the representative frames in Figure 5-4  clearly 

indicates the disordered switch regions as well as the localization of the deformations in these 

two segments.  
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Figure 5-2. DIA-REMD results from wild type (left) and S111-phosphorylated (right) variants. 

RMSD (non-hydrogen atoms) of the switch I (upper panel) and switch II (lower panel) segments with 

respect to the native Rab1b conformation in the active state during the DIA-REMD simulations 

(reference replica). Amino acid residues involved in the RMSD calculation of switch I and switch II are 

residues 31-43 and 68-79, respectively. Data points are taken in 20 ps intervals. 

  

 

Figure 5-3. Per-residue RMSF of the Rab1b variants during DIA-REMD simulations. 

The S111-phosphorylation of the GDP-bound Rab1b resulted in stabilization of the protein in switch 

regions, while it did not cause any significant change in the GTP-bound variant fluctuations. 
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5.2.3 Structural changes in S111-phosphorylated Rab1b.  

In the next step, we studied the structural changes caused by the phosphorylation of Rab1b on 

S111 employing exactly the same DIA-REMD simulations. Similar to the wild type Rab1b the 

RMSD values of the pS111-Rab1b:GTP variant remained close to the start structure (Figure 

5-2). The DIA-REMD simulation of the pS111-Rab1b:GDP complex indicated enhanced 

deviations and fluctuations of the switch I and II regions compared to the GTP-bound form. 

However, the RMSDs of the sampled switch I and switch II in the pS111-Rab1b:GDP remained 

below 9 Å and 6 Å respectively. Moreover, per-residue root-mean-square fluctuations (RMSF) 

plots indicated a reduced flexibility in these two regions compared to the wild type (see Figure 

5-3). Hence, the simulations indicate that S111-phosphorylation has a stabilizing influence on 

the switch I and II conformations compared to the wild type Rab1b. A cluster analysis based 

on the sampled switch I and II conformations indicates fewer clusters (only five) and smaller 

conformational deviation from the start structure observed within those clusters (Figure 5-4). 

Interestingly, the cluster analysis of the pS111-Rab1b:GDP complex revealed new hydrogen 

bonds involving the pS111 mainly formed between pS111 and the neighboring arginines (see 

Figure 5-5). In particular R79 is located in the switch II segment. In the (by far) most populated 

conformational cluster the phosphate group of pS111 forms hydrogen bonds both to R79 and 

R172. The additional H-bond attractions and interactions of the helix dipole with pS111 may 

stabilize the switch II region and in turn also the switch I segment, resulting in a decreased 

population of unfolded switch I and II even in the presence of bound GDP. 
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Figure 5-4. Cluster analysis of the simulation trajectories.  

The representatives of all clusters obtained from unrestrained MD (a, wild type Rab1b, b, pS111-Rab1b) 

and DIA-REMD (c, Rab1b, d, pS111- Rab1b) for all Rab1b variants. Clustering was performed based 

on the pairwise RMSD of the switch I (residues 31-43) and switch II (residues 68-79) regions (cyan). 

The rest of the proteins are in grey cartoon, nucleotides are represented in sticks and the Mg2+ ion as 

green sphere. 

 

Figure 5-6 shows the probability distribution of the switch I & II RMSDs based on a kernel 

density estimator. The plots were obtained from the DIA-REMD simulations of wild type and 

S111- phosphorylated Rab1b in the presence of GTP and GDP. In the wild type variants and in 

the presence of GDP, the RMSD distribution covers a broad range, indicating a significant 

deviation from the conformation found in the active GTP-bound state. In contrast, for the GTP- 
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Figure 5-5. Representative conformations of the most populated clusters obtained from the 

simulations of the pS111-Rab1b:GDP complex.  

In each case (a-d) the percentage of the frames represented by the cluster is also indicated. The yellow 

dashed lines represent hydrogen bonds. 

 

 

Figure 5-6. Probability distribution of Rab1b switch regions RMSD.  

Switch I and switch II amino acid residues deviations from the active Rab1b conformation for wild type 

(left) and S111-phosphorylated (right) variants. Probability density levels are given in 1/20 fractions of 

the maximum probability. 

 

bound Rab1b the distribution of RMSDs throughout the simulation was limited to a region near 

the GTP-bound start structure. A similar distribution was obtained in the GTP-bound complex 

when S111 was phosphorylated, while in the GDP-bound pS111-Rab1b variant, we observed a 

contraction in comparison to the wild type. Overall, our data suggests that the phosphorylation 

of S111 may stabilize the switch regions and reduces the flexibility of the GDP-bound Rab1b.  
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5.3. Discussion 

GTPases such as Rab1b alternate between active (GTP-bound) and inactive (GDP-bound) states 

which involves structural changes mainly in the switch I and II regions. Rab1b is a member of 

the Rab branch of GTPases and can undergo post-translational modifications modulating its 

function. Phosphorylation of S111 is frequently found in several Rab members (e.g. Rab1b and 

the closely related Rab8a) and in the case of Rab8a, experimental structures of both active and 

inactive forms with and without S111 phosphorylation are known (152). Our simulation study 

demonstrates that even during relatively long MD simulations of 2 μs, no transitions to the 

inactive Rab1b conformation are observed. It indicates the presence of energy barriers for the 

necessary dihedral transitions that cannot be overcome on the time scale of these simulations. 

They are attributed to the interactions between the Mg2+ ion and conserved residues on switch 

I and II, namely T35 and G60 in the Ras subfamily (155). However, the application of the DIA-

REMD method to specifically enhance the sampling of dihedral transitions in the switch regions 

allowed the sampling of switch I and II conformational transitions. The large conformational 

changes were observed in case of a bound GDP, but not in the GTP-bound cases.  

Other enhanced sampling techniques have been used previously to sample conformational 

states of GTPases. It includes enhanced sampling along specific reaction coordinates to drive 

the switch folding and unfolding transition using Umbrella sampling (157) or Metadynamics 

(160). Alternatively, accelerated MD simulations using a biased/deformed force field have also 

been used (161). The disadvantage in the former approach is the necessity of defining a reaction 

co- ordinate prior the simulation and in the latter case it is the likely oversampling of irrelevant 

conformations, due to the altered force field. In contrast, in the present approach no definition 

of a reaction coordinate is necessary and only relevant conformations fully compatible with the 

original reference force field are considered–no re-weighting of sampled states is necessary. 

The technique could also be useful in case of other signaling proteins that include multiple 

conformational states of flexible switching elements.  

The DIA-REMD simulations still indicate a free energy minimum near the Rab1b conformation 

representing the active state in the presence of bound GDP, but also significant sampling of 

partially unfolded switch I and II segments. The experimental structures of GDP bound Rab 

GTPases indicate largely disordered switch I and II segments as the dominant conformational 

state. Hence, insufficient sampling may still be an issue for the DIA-REMD simulations. 

However, it has been demonstrated that much broader sampling is achieved on the 200 ns time 

scale compared to 2 μs during the MD simulations (note, however, that the total demand of the 

DIA-REMD simulations is 8 × 200 ns= 1.6 μs). The much broader sampling of the DIA-REMD 

simulations at approximately the same total simulation time indicates that it can be very helpful 
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to overcome energy barriers and to identify flexible protein segments. In addition to sampling 

issues, current force fields may over-stabilize folded structures relative to disor- dered 

conformational states (162,163). Indeed, it has been demonstrated that current force fields yield 

varying results for disordered segments of proteins and this could also explain the significant 

sampling of the active state in the presence of bound GDP. In the future, the DIA-REMD 

approach might be helpful to systematically test force field improvements for modeling 

disordered segments in proteins.  

Our results suggest that the phosphorylation of S111 leads to a stabilization of the closed form 

in both switch regions of the GDP-bound Rab1b complex, while it has no significant effect on 

the GTP-bound variant. The RMSD plots from the switch regions in Figure 5-6 show a limited 

range of sampling of open conformations in the presence of phosphorylated serine 111 in Rab1b 

bound to GDP compared to the wild-type variant. However, the X-ray crystal structures of the 

closely related inactive and active Rab8a states do not change significantly upon S111 

phosphorylation. It is important to emphasize that our simulations do not exclude the possibility 

that the pS111-Rab1b switch I and II adopt disordered conformations also in solution but 

indicate an ensemble of structures that is influenced by the pS111 modification. S111 resides 

in the vicinity of the switch II and once phosphorylated, it forms an intra-molecular bond with 

the sidechain of R79 on the switch II and the R172 sidechain. This arrangement was found in a 

large fraction of the entire simulation time (Figure 5-5) and can be interpreted as a likely reason 

for the reduced flexibility and stabilization of the structure in the presence of pS111. It is 

important to note, that such hydrogen bonding between pS111 and R79 was also found in the 

X-ray structure of the closely related pS111-Rab8a GTPase (152). Furthermore, the pS111-

Rab1b exhibits an enhanced thermal stability compared to the wild-type, which can be 

explained qualitatively by the additional pS111-mediated hydrogen bonding (152). In addition 

to a possible stabilization of the switch region the appearance of a hydrogen bonded salt bridge 

between pS111 and R79 can also directly interfere with Rab-effector binding (152,164).  

5.4. Methods 

5.4.1 Simulation protocol 

All Rab1b simulations started from the crystal structure of Rab1b (PDB: 3nkv); the 

adenylylation modification at Y77 was removed (150). The nitrogen atom between the 𝛽- and 

𝛾-phosphates in GppNHp was exchanged with an oxygen atom to model the Rab1b:GTP 

structure. The 𝛾-phosphate was removed to generate a start model of the Rab1b:GDP complex. 

T72 and S111 residues were replaced with unprotonated phosphothreonine and phosphoserine 

to form the phosphorylated Rab1b structures. Amber ff14SB force field was used for the 
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proteins (137). Additional parameters for GDP, GTP, phosphothreonine and phosphoserine 

were taken from Amber parameter database at their fully unprotonated states (138,139). An 

experimental study by Mann et al. confirmed the unprotonated state of 𝛾-GTP as the dominant 

protonation state (140). For Rab1b:GDP simulations, a Mg2+ ion with two bound water 

molecules was placed next to GDP 𝛽-phosphate. Using sodium and chloride ions the salt 

concentrations were adjusted to 0.1 M and the complexes were solvated with TIP3P water 

model (141). The solvated complexes were equilibrated by energy minimization (2500 steps of 

steepest descent) followed by heating to 300 K (100 ps) and 1 ns of density equilibration at 

constant pressure (1 bar) and a temperature of 300 K. During heating and equilibration the 

protein heavy backbone and nucleotide atoms as well as magnesium ions were restraint with a 

harmonic potential at force constant of 5.0 kcal mol-1Å-2. All data gathering continuous MD 

simulations and replica-exchange (REMD) simulations were performed without any restraints. 

The pmemd.cuda module of the Amber 16 software package (143) with a time-step of 2 fs, 

periodic boundary conditions and the particle mesh Ewald (PME) method to account for long 

range interactions was employed. Trajectories were processed and analyzed using cpptraj 

program (165) of Amber16. Hierarchical clustering using complete-linkage with a minimum 

distance of 2 Å RMSD was performed on all frames of the continuous simulations and on the 

sampling in the reference replica in case of the DIA-REMD technique. The figures were 

generated using PyMol software package (145).   

5.4.2 DIA-REMD technique  

The DIA-REMD technique includes a biased potential that promotes transitions from low-

energy backbone and sidechain dihedrals states. The starting setup is composed of eight parallel 

MD simulations–referred to as “replicas”–of the solvated Rab GTPase systems. Favorable 

dihedral angle combinations of the protein backbone (such as α-helices, β-sheets and left-

handed α-helical regimes in the Ramachandran plot) as well as the first sidechain dihedral 

angles of a preset peptide segment are penalized by adding a penalty potential along the replica 

simulations. An advantage of the approach is the possibility to limit the biasing to certain 

peptide segments in the protein structure (only the flexible switch I, residues 31-43, and switch 

II, residues 68-79, were included in the dihedral angle biasing). The first reference replica, 

however, runs under the control of the unmodified force field. Every 1000 steps an exchange 

was attempted between the neighboring replicas and it was allowed or rejected based on the 

Metropolis criterion. For the biasing potential on the backbone dihedral angles two-dimensional 

potentials that depend on the 𝜙 and 𝜓 backbone dihedral angles were employed. The potentials 

have a maximum at the favorable states (𝜙c, 𝜓c)) in the Ramachandran plot and fall off 

smoothly (parameters given in Table 5-1) . Let xi be the shortest distance between the position 
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of residue i on the 𝜙-𝜓 diagram (Ramachandran plot) and an energetically stable conformation, 

R(𝜙c, 𝜓c); 

𝑥𝑖  = √(𝜙𝑖  −  𝜙𝑐)
2
 +  (𝜓

𝑖
 −  𝜓

𝑐
)
2
   . 

 

The penalty force is a circular plateau with radius 𝑟1 centered at R with the maximum potential 

(𝐸𝑚𝑎𝑥 ), which continuously decreases down to zero at 𝑟2 . Moreover, a one-dimensional 

potential was applied to promote sidechain rotations. Hence, the total potential was calculated 

by summing the 2D backbone and the 1D sidechain dihedral-angles penalty force.   

 

{
 

 
𝑖𝑓   𝑥𝑖  <  𝑟1                                                                                        𝑉(𝑥𝑖)  =  𝐸𝑚𝑎𝑥  

𝑖𝑓  𝑟1  <  𝑥𝑖  <  𝑟2            𝑉(𝑥𝑖)  =  
𝐸𝑚𝑎𝑥

(𝑟2  − 𝑟1)4
((𝑥𝑖  −  𝑟1)

2  − (𝑟2  −  𝑟1)
2)2 

𝑖𝑓   𝑟2  <  𝑥𝑖                                                                                               𝑉(𝑥𝑖)  =  0

 

 

Test simulations showed that with eight replicas sufficient “mixing” between the windows was 

achieved. In order to assure high rates of replica exchange, the heights of the potentials were 

adjusted on the fly based on an evaluation of the acceptance ratio during the last 100 exchange 

attempts; if any of the eight average rates fell below 20 %, the difference in the energy potential 

between replicas were reduced by 10 %. If all windows show 60 % of average successful 

exchange, then the difference was increased by 10 %. Typically, after less than 20 ns the biasing 

levels reached stable levels. Adjustment was therefore stopped after 50 ns and only data 

gathering beyond 50 ns was used for analysis.  

 

Table 5-1. Energetically favourable regions on the Ramachandran plot that were penalized 

during the replica-exchange simulations. 

 R (𝜙
C
, 𝜓

C
) r1 r2 

𝛼-helix (-57, -47) 22.5 40 

𝛽-sheet (80, 150) 30 40 

Left-handed 𝛼-helix (45, 45) 17.5 10 
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6. Structural Insight From a Self-learning 

Accelerated-Sampling Algorithm Into 

Domain Flexibility and Activation 

Mechanism of Argonaute 

6.1. Introduction 

The Argonautes constitute a family of proteins that are involved in both transcriptional and 

post-transcriptional gene regulatory mechanisms. They are present in all forms of life, sharing 

a well conserved tertiary structure, despite their limited sequence similarity. Prokaryotic 

Argonautes participate in gene regulation by binding to single-stranded DNAs that guide them 

towards target DNAs or RNAs that are either cleaved or repressed (166). Moreover, bacterial 

Argonaute protects its host against invasive genomic elements through directly targeting 

foreign DNA molecules (167,168). 

The overall structure of most Argonautes features four characteristic domains. The N-terminal 

domain (N) functions as a wedge to unwind guide-target duplexes (169,170). The P-element-

induced wimpy testis (PIWI)-Argonaute-Zwille (PAZ) domain hosts the binding pocket for the 

3' region of the guide strand. The phosphorylated 5' end of the guide is stabilized at the interface 

between the middle (MID) and PIWI domains via interaction with a Mg2+ cation. The four 

domains are distributed in two lobes with PAZ and N in one lobe and MID and PIWI in the 

other lobe. The lobes are connected by two linker domains, L1 and L2. 

In a series of structural and biochemical studies Patel and coworkers have determined the 

structure of the Thermus Thermophilus Argonaute (TtAgo) in several guide-bound (binary) and 

guide/target-bound (ternary) complexes–varying in duplex length and level of duplex 

complementarity (167,169,171,172). These structural snapshots portrayed a glimpse of the 

protein in various stages of the silencing process. The structures of Argonaute proteins from 

other organisms have also been studied (166,173), however, not as extensively as TtAgo. The 
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structural studies reveal that both 5' and 3' ends of the 21-mer guide DNA strand are anchored 

in corresponding binding pockets in the MID and PAZ domains respectively. The 3’ end 

binding to the PAZ domain is characteristic of the inactive domain arrangement, which is 

stabilized in the presence of complementary target strands with a length below 15 nucleotides. 

Upon target binding followed by base pairing beyond position 16 of the guide strand, a switch 

to the cleavage-compatible conformation–known as the active state occurs, in which the 3’ end 

is dissociated from PAZ. The active state is distinguished by a tetrad of DEDD amino-acids 

residues in the PIWI domain that attacks the cleavage site between positions 10 and 11 of the 

target strand (174). Moreover, with the detachment of the 3' end of the guide, a pivot-like 

movement of the PAZ domain towards the MID domain is observed (169,171,172,174). Single-

molecule fluorescence resonance energy transfer (smFRET) studies of the active-complex 

formation demonstrated the dynamic rearrangements of PAZ and the 3'-end of the nucleic acid 

bound to it (175,176). Based on the structural, biochemical and biophysical studies a 

mechanistic stepwise scheme has evolved with an initial binding of the guide strand to TtAgo, 

anchoring of the 5’ and 3’ ends followed by binding of a complementary RNA or DNA strand 

that–if long enough–leads to dissociation of the guide's 3’ end from the PAZ domain, enzyme 

activation and finally, cleavage of the target. The dissociation of the cleaved target and 

rebinding of the 3’ end to PAZ leads again to the initial inactive guide-bound state. The critical 

role of the PAZ domain anchoring of the 3’ end of the guide strand to inactivate the enzyme is 

further supported by experiments employing short guide DNA or RNA molecules (169,172). 

Even guide RNAs as short as 9 nucleotides which do not allow the anchoring of the 3’ end at 

the PAZ domain result in efficient cleavage of target RNA/DNA strands (172).  Furthermore, 

kinetic observations of guide and target RNAs binding to human Argonaute-2 (hAgo2), a 

homolog of TtAgo, revealed that the 3' end's release from PAZ is the rate-limiting step during 

the activation process (177). Despite previous structural and biochemical studies, a detailed 

atomistic view of the extension of the base pairing between guide and target strands leading to 

the dissociation of the 3’ end and subsequent domain rearrangements and enzyme activation 

has remained elusive. 

TtAgo adopts at least two conformational states (i.e., inactive and active) that involve domain 

rearrangements, but it is likely that there are additional intermediate states. The available crystal 

structures of TtAgo in complex with different guide and/or target strands give an excellent 

overview on stable domain arrangements but do not give insight into the accessible global states 

for apo TtAgo, or binary and ternary complexes. In principle, Molecular Dynamics (MD) 

simulations can provide a dynamic high-resolution view on possible structural arrangements of 

TtAgo. However, crossing the energy barriers separating metastable conformational states, 

especially when it involves an interplay between a multidomain protein and nucleic acids, may 

require simulations times well beyond currently accessible MD timescales. Most previous MD 
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simulation studies of Ago proteins were focused on the nucleic acid recognition and binding 

process and the corresponding structural changes in hAgo2 (178) and TtAgo (179). In another 

study, combination of MD with bias-exchange metadynamics and protein-DNA docking 

methods revealed the induced-fit mechanism of the guide-strand loading in TtAgo (180). In 

hAgo2, however, a two-step mechanism RNA loading was suggested, based on a study that 

employed Markov State Models and protein-RNA docking (181).  

In the present study we employ a replica-exchange based enhanced-sampling MD method to 

specifically accelerate domain motions in the TtAgo system in different DNA-bound states and 

in the absence of any substrates (apo state). In our approach a biasing potential is constructed 

by a mixture of Gaussians–similar to a Metadynamics simulation–along center-of-mass 

distance variables. The form and level of biasing in each replica is rapidly adjusted during an 

equilibration phase and integrated in the force field of the Hamiltonian replica-exchange MD 

(H-REMD) simulation. It allows exploration of regions in the global conformational landscape 

that are not sampled in regular MD simulations. In addition to characterizing the domain 

mobility in the apo state, in the binary and in the ternary complexes, we also apply the 

methodology to reveal the structural transitions that steer the protein from an inactive to an 

active conformation. In agreement with the experimental observations, we detect the 

dissociation of the guide strand's 3’ end from the PAZ domain when extending the target/guide 

duplex beyond a critical length of 14 base pairs, due to sterical strain. The dissociated 3’ end 

ultimately settles in a cleft between N and PIWI domains but remains conformationally highly 

mobile. The associated conformational substates and intermediates are also investigated. 

6.1.1 Brief description of the self-learning algorithm  

The bias potential is constructed by a mixture of Gaussians, each of which correspond to a low 

free energy region of the chosen collective variable (CV). The local free energy minima are 

dynamically identified by analyzing the trajectory using a clustering algorithm. Cluster analysis 

of the CVs are performed at regular intervals of 1 ns. The probability distribution of the visited 

configurations is reconstructed using a function that is comprised of three Gaussian functions. 

The algorithm provides the centers and weights of the Gaussians. Moreover, the maximum 

width of each Gaussian hill is determined by the distance between cluster's outermost data-

point and its center. Ultimately, the Gaussians shape the adaptive bias potential energies that 

promote the system to wander in the unexplored regions of configuration space. Every CV is 

treated separately. This allows for a rapid flattening of the free-energy surface along each CV, 

which accelerates the escape from the basin. In the initial stages, where the system is 

energetically trapped in one basin, the Gaussian centers might be adjacent. As the system starts 

visiting other regions, the centers diverge accordingly. Our choice of CVs in the replica-
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exchange simulations is aimed for individual domain deformations. We assumed three CVs, 

defined by COM distances between i) PAZ and N, ii) MID and PIWI and iii) the upper and 

lower lobes (see Figure 6-3). More details in Methods. 

 

 

Figure 6-1. Overview of the start structure of Argonaute simulations. 

a, crystal structure of prokaryotic Argonaute from Thermus Thermophilus bacterium (TtAgo, PDB: 4n41) 

bound to 21-mer guide (blue) and 15-mer target (red) DNA strands. The orange spheres show the 

presumed location of the missing bases. b, in silico removal of the DNAs causes a rapid rearrangement 

of the domains. The angles Θ and Φ describe each domain's rotation around the protein and around itself, 

respectively. c, The domains' RMSDs with respect to the initial structure. The last frame of the 90 ns-

long free simulation served as the start structure in the following simulations of TtAgo in apo form. 

 

6.2. Results 

6.2.1 Structural flexibility of the Argonaute protein during 

continuous MD simulations 

TtAgo is one of the best studied Argonaute proteins and, like other Argonautes, consists of PAZ, 

N, MID and PIWI domains that undergo domain rearrangements during the enzyme functional 

cycle (Figure 6-1). A goal of our study is to characterize the accessible domain geometries in 

the apo TtAgo, the binary (TtAgo bound to 21-mer guide DNA) and the ternary (TtAgo bound 

to 21-mer guide and 14-mer target DNA) complex. To examine the global domain dynamics, 

we first examined Argonaute's structural flexibility using extensive regular unbiased MD 

simulations. Since the crystal structure of TtAgo in apo form is not available, the start structure 

was generated by removing the DNA from the inactive structure of TtAgo bound to 21-mer 
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guide and 15-mer target DNA strands (PDB: 4n41) (174). Within ~90 ns of MD simulation 

time, both PAZ and N domains moved towards MID and PIWI, thereby closing the substrate 

binding channel–also known as the central cleft. This arrangement is considered as a closed 

conformation and is in accordance with Argonaute's "rubber band" model. In this model, the 

substrate loading to the Ago protein is supported by the Hsp70/Hsp90 chaperone machinery 

that uses ATP to convert Argonaute from a closed to a more open structure that can 

accommodate the bulky strands (182). Such opening induces structural strain in the protein, 

analogous to a stretched rubber band. Release of this tension drives the strand separation 

without consuming any ATP. During unwinding, the guide strand that has the 5' end stably 

anchored in the pocket between MID and PIWI domains will remain in the protein, whereas the 

other unanchored strand–known as the passenger strand–will be discarded (182,183). The 

protein and the guide strand form a functional silencing complex. The motion of PAZ is both 

translational and rotational–it translates relative to the other domains (or rotates as a whole body 

relative to the center of TtAgo) and also rotates around itself–, while the N domain rotates only 

around the protein's axis (Figure 6-1b).  

Extending the MD simulation up to 2 µs yielded an even further downward shift of the PAZ 

domain (Figure 6-2). This pivotal movement is reminiscent of the ones observed in the active 

TtAgo crystal structures, in which the PAZ has moved downwards and the 3' end of the guide 

is detached from it (PDB: 3hjf & 4nca) (169,174). It indicates that a motion of PAZ towards 

the active-like geometries even in the absence of guide and target DNAs is possible. We also 

performed unrestrained MD simulation of the binary (21-mer guide DNA) and ternary (21-mer 

guide and 14-mer target DNA) complexes starting from the inactive state (PDB: 4n41, after 1 

ns equilibration). Contrary to the apo form, in the binary and ternary complexes the initial 

domain arrangements were largely preserved during the 2 µs simulations, indicated by low root-

mean-square-deviation (RMSD) values. In particular the PAZ domain remained in an inactive 

arrangement bound to the 3’-end of the guide strand (Figure 6-2). The overall stability observed 

in these two variants is also attributed to the hydrogen-bond network formed between the guide 

strand and the protein's backbone atoms (179). 
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Figure 6-2. Unrestrained MD simulation results. 

a, heavy-atom RMSD versus time for three TtAgo structures; apo, binary (21-mer guide DNA) and 

ternary (guide & 14-mer target DNA) structures. b, superimposition of two frames from the apo form 

simulation. c, superimposition of the frames in b based on the PAZ domain amino-acid residues. The 

conformational changes within the domain are negligible. The start and end structures of the binary and 

ternary complex simulations are shown in d and e respectively. 

 

 

Figure 6-3. Three center-of-mass distances served as collective variables. 

Each CV was independently biased by a potential to promote domain motions. The CVs were defined as 

the distance between centers-of mass of the two lobes (a), PAZ & N (b), and MID & PIWI (c). 
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6.2.2 Replica-exchange simulation of TtAgo in apo, binary and 

ternary complexes 

During regular MD simulations only limited domain motions of TtAgo were observed. Even in 

the apo form, after it rapidly reached a closed conformation, the protein remained stuck in that 

domain arrangement. It might be an artefact due to a limited sampling of relevant 

conformational states on the time scale of the MD simulations. To sample putative domain 

arrangements more exhaustively, we employed H-REMD technique coupled with adaptive 

biasing potentials along pre-selected global collective variables (CVs). 

The added biasing potentials act separately on each CV, and therefore it is advantageous that 

the coupling between the domain movements they promote be limited. Otherwise, in the higher 

replicas they may lead to sampling of conformations that are of low probability or relevance 

for the reference replica, which runs with the original force field. To this end, we selected 

center-of-mass (COM) distances between domains as global variables in a hierarchal manner 

(Figure 6-3). In TtAgo, the PIWI and MID domains are in close contact but do not directly 

interact with the PAZ and N domains. Hence, in the first CV we considered PIWI and MID as 

one unit, and PAZ and N as another unit, and the CV was defined as the distance between the  

 

 

Figure 6-4. Free-energy profiles of the PAZ domain motion in TtAgo variants. 

Comparison of the two-dimensional free-energy profiles of the apo protein along with the binary (middle) 

and ternary (right) complexes, as a function of ⍺-carbon atoms distances d1 and d2 for the PAZ domain, 

which describe motion with respect to MID and PIWI. The red contours represent the data from 2 µs free 

MD simulations. Each contour represents an increase of 0.53 kcal/mol in free energy. Snapshots in a-f 

show the corresponding conformations on the free-energy profiles. The PAZ domain in shown in cyan 

colour, the guide and target strands in blue and red respectively. 
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COM of each of these two units (CV1). The next two variables were defined as the COM 

distance between the N and PAZ domains (CV2) and the COM distance between MID and PIWI 

domains (CV3). For the bias force we employed one-dimensional potentials in the replicas that 

acted independently along the CVs (see Methods for details). During an equilibration phase of 

the H-REMD simulations the bias potentials were adjusted to accelerate the sampling along the 

collective variables and the exchanges among replicas. 

The H-REMD simulation of the apo TtAgo protein started from the last frame of the 90 ns 

unrestrained MD simulation, in which the protein had adopted a closed conformation. The 

binary (21-mer guide DNA) and ternary (21-mer guide and 14-mer target DNA) variants started 

from the same structure as in the unrestrained MD runs. Evaluation of the sampled states and 

the free-energy calculations were done solely based on the sampling in the unbiased reference 

replica. A comparison of the conformational landscape of the PAZ domain in the three variants 

is illustrated in Figure 6-4. The plot reflects PAZ's movements relative to MID and PIWI 

domains, which–based on physical intuition–are measured by two ⍺-carbon (C⍺) distances, d1 

and d2. The distance between S229 and E416 (d1) represents PAZ's motion relative to MID, 

while the distance between S229 and E552 (d2) represents PAZ's motion relative to PIWI. In 

all the three variants, a much broader range of the PAZ domain motion was sampled during the 

H-REMD simulation with an adaptive biasing potential compared to the unrestrained MD 

simulation. Snapshots obtained from the H-REMD simulations indicated that the apo TtAgo, 

in addition to the closed state, adopts conformations that are distinguished by large PAZ-MID 

distances (d1≈50 Å). Interestingly, in the open states, the PAZ domain's position relative to 

MID and PIWI is similar to the low-energy states of the guide-bound TtAgo complex. The 

similarity in PAZ arrangements between the apo protein and the binary complex reflects the 

capability of the TtAgo protein to rearrange the domains and widen the central cleft in order to 

accommodate the bulky DNA strands. Such conformations in the apo protein, however, are 

energetically not favorable, due to the absence of the guide's hydrogen-bond network. 

The clustering results in Figure 6-5 indicate that in the guide- and guide/target-bound TtAgo, 

both 3’ and phosphorylated 5' end of the guide remained stably anchored in their binding 

pockets. Importantly, the coordination of the magnesium ion with the first phosphates of the 5' 

end–whose phosphorylation is critical for the cleavage activity–and the sidechain of V685 of 

the PIWI domain was also unaltered (166,172). Additionally, the seed region of the guide strand 

(position 2-8) exhibits the lowest flexibility and remained constantly solvent exposed. This 

arrangement reduces the energy barrier involved in base pairing with target strands (184).  
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Figure 6-5. Superimposition of the cluster analysis results shows that the seed region of the 

DNA strand has the lowest flexibility. 

Cluster representatives obtained from the simulation trajectories in the binary (a) and ternary (b) complex 

shows a non-uniform level of rigidity along the DNA strands. The seed region remained solvent-exposed 

in all clusters of the guide-bound complex. The guide and target strands are displayed in blue and red 

cartoon respectively. c, the interactions between the Mg ion (green sphere), V685 and the phosphates of 

the first and the third base remained stable during the simulations. 

 

6.2.3 Extending the target length to position 16 triggers guide's 

3'-end release from PAZ.  

Next, we performed H-REMD simulations of TtAgo bound to 5'-phosphorylated 21-mer guide 

DNA and fully complementary 15- and 16-mer target DNAs. The 15th and 16th bases of the 

target strand were added to the previous ternary complex (PDB: 4n41) to form the start structure, 

while maintaining the Watson-Crick hydrogen bonds with the opposing base on the guide strand.  

Comparing the simulation results of the 15-mer and 16-mer complexes with the previous 14-

mer complex led to interesting observations. Firstly, with the extension of the DNA duplex, the 

N-PIWI gap was found to be wider. The gap was measured as the distance between the ⍺-

carbon atoms of M82 from N and D552 from PIWI and was increased from 26 Å in the 14-mer 

target complex to 32 Å in the 15-mer and 46 Å in the 16-mer target complex (Figure 6-7). 

Secondly, the cluster analysis of the 14-mer target complex indicated that in 64% of the 

simulation time, the duplex bases at positions 12-14 had lost base pairing and were unstacked 

from their neighbors–a phenomena called fraying (Figure 6-6). On the contrary, we observed 

no faying events in the 15-mer and 16-mer target complex. The occurrence of fraying in the 14-

mer target complex is further evident from high values of root mean-square atomic fluctuations 

(RMSF) in the bases 10 to 14 (Figure 6-7e). Overall, there seems to exist an interplay between 

the N domain and the DNA duplex. With 14-mer target, the duplex is weak and frayed due to 

the N domain's sterical interactions. With 15- and 16-mer targets, the duplex gains stability, and 

pushes back the N domain, which widens the gap between N and PIWI.  
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Figure 6-6. Clustering of the TtAgo ternary complex simulations. 

Cluster populations (pie charts) along with the cluster representatives of three guide/target-bound TtAgo 

proteins with varying target length: 14 (a), 15 (b) and 16 (c) nucleotide bases. Cluster analysis in the 14-

mer target complex was performed based on the RMSD of the PAZ and N domains. In the 15-mer and 

16-mer target complexes the clustering was based on the 3'-end - PAZ distance (OP2 phosphate atom of 

the 3'end and hydroxyl group of Y226).  
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Figure 6-7. Widening in the N-PIWI cleft with extension of the DNA duplex base pairing. 

a, distribution of the N-PIWI distances in three variants of Argonaute with varying target length. The 

distances are measured between 𝛼-carbons of the two residues M82 from N and D552 from PIWI domain, 

shown in magenta spheres. The distance distributions indicate a shift towards N-PIWI opening as the 

target length is increased to 16 bases. This is also evident in the representative structures taken from the 

simulations of 14, 15, and 16-mer target DNA ternary complex are shown in b-d respectively. The guide 

and target strands are shown in blue and red cartoons). e, root mean square fluctuations (RMSF) of each 

base for all the DNA duplexes. The RMSF values were calculated with respect to the average structure. 

 

In the inactive TtAgo structures, the 3’ end of the guide strand is bound to the PAZ domain. It 

is known that with the extension of the guide/target duplex beyond position 15, the TtAgo 

protein adopts an active conformation in which the 3’ end is released from the PAZ domain and 

PAZ has moved towards the MID domain (174). Interestingly, we observed the dissociation of 

the 3' end when proceeding to 15- and 16-mer target strands. Cluster analysis showed that in 3% 

of the frames of the 15-mer-bound simulation the 3' end was released from PAZ, nevertheless 

still present in the gap between PAZ and N domains (Figure 6-6b). This fraction was increased 

to 6% in the 16-mer target-bound complex. The release of the 3' end observed in 15-mer and 

16-mer complexes explains the increased RMSF values in the guide's 3'-end region in Figure 

6-7e compared to the 14-mer target complex. Restarting the 16-mer-bound simulation from one 

of these frames resulted in a complete transition of the 3' end towards the N-PIWI gap. 

Snapshots of the 3' end's release from the PAZ domain are illustrated in Figure 6-8. The stacking 

of the aromatic rings of Y43 and P44 over the duplex bases at position 16 was strikingly 
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persistent throughout the release. We postulate that this stacking interaction is a prerequisite for 

the push back on the N domain, release of the 3' end from PAZ and the activation of the 

Argonaute protein.  

The conformation with the released 3' end is a cleavage-incompatible conformation, as the 

catalytic tetrad in the PIWI domain was not formed. Nevertheless, it superimposes well with 

the active TtAgo complex structure (Figure 6-8e). Next, we measured the distance between a 

phosphate atom of the 3' end (OP2) and its interacting partner on PAZ (hydroxyl group of Y226). 

While in the 14-mer target DNA complex, the distance was consistently short (~2.8 Å), it 

drastically increased in the 15- and 16-mer target variants during the H-REMD simulations 

(Figure 6-8f). The associated free-energy calculations in Figure 6-8f shows that with the 

extension of the guide/target duplex to position 15 and 16, the energy landscape changes in 

favor of the 3'-end release.  

 

 

Figure 6-8. Release of the 3'-end from the PAZ domain in ternary structure with 16-mer target.  

a-d, simulation results showing four dynamical states of the release of guide 3’-end from the PAZ domain 

in the ternary complex of TtAgo with 21-mer guide and 16-mer target DNA strands. The guide is 

represented in blue, the target in red and the PAZ and N domains in cyan and pink respectively. The 

stacking interactions between Y43 & P44 (green sticks) and guide and target strands at position 16 are 

persistent throughout the release process. e, superimposition of a simulated structure (cluster 

representative with 17 % population) shown in grey cartoon, on the catalytically active TtAgo structure 

shown in pink. f, the distance between the hydroxyl group of Y226, located on PAZ, and the guide 3’-

end (OP2) is plotted for TtAgo in complex with three different target lengths.  
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6.3. Discussion 

The molecular mechanism of the Argonaute's transition from inactive to active conformation 

has not been addressed previously. Here, we proposed an accelerated-sampling scheme 

combining replica-exchange method with a self-learning algorithm for introducing a bias that 

rapidly explores the conformational space. The algorithm uses the Gaussian mixture model to 

detect low free-energy minima and adds the bias force along the CVs to fill the minima to avoid 

getting trapped. Since they are treated independently, any number of CVs can be simultaneously 

probed with no performance loss.  

The accelerated-sampling scheme was demonstrated on the Argonaute protein, using center-of-

mass (COM) distances between domains in a hierarchical manner as CVs. In the 2 µs-long 

unrestrained MD simulations, the apo protein immediately transitioned to a closed 

conformation, and afterwards its overall structure was only minimally changed. The 

accelerated-sampling results showed that the nucleic acid-free TtAgo protein has a broader 

conformational space available to it, which includes conformations characterized by an open 

substrate binding channel. The opening of the channel is necessary as the protein cannot readily 

accommodate the bulky nucleic acid duplexes. The energy required to impose the opening is 

compensated by the ATP hydrolysis, while the internal tension caused by it drives the 

subsequent duplex unwinding without consuming ATP (182).  

The accelerated-sampling trajectories also provide considerable insight into the guide- and 

guide/target-bound complex structures. Notably, in the binary complex direct contacts between 

the PAZ and MID and PIWI domains are formed, which bury the bases 13-17 of the guide DNA 

in the central cleft. Nevertheless, the seed region of the guide remains exposed to the solvent, 

which allows probing the target candidates, while adopting a low-energy conformation. In the 

14-mer target ternary complex, the cluster analysis results showed that the DNA duplex is 

frayed in the majority of the times, which is attributed to steric repulsive force coming from the 

N domain. With a frayed duplex, the guide strand lacks the required strain to dissociate from 

the PAZ pocket. This explains the observations that in the cleavage assays the truncation of the 

target strand from its 5' end to positions 15 and 14 (relative to the guide strand) sharply reduces 

the cleavage activity (169). 

Duplex propagation in the 15-mer and 16-mer ternary complexes improves its stability, as 

indicated by the absence of transient fraying events, and more importantly, by the increased 

tendency of the guide 3' end to dissociate from PAZ and transition towards adopting the active 

conformations. In the crystal structure of the 19-mer ternary complex it has been revealed that 

the N domain blocks the DNA duplex by stacking the aromatic rings of Y43 and P44 on the 

DNA bases at position 16 (169). Based on our observations, the stacking interactions seem to 
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form a lever for the duplex to open the N-PIWI channel. In addition, stacking of Y43 on base 

16 of the guide strand creates an anchor point for the dissociation of the 3'-end from PAZ and 

its rotation around the N domain. The structures with the released 3' end appeared to represent 

cleavage-incompatible conformations as the catalytic tetrad of DEDD amino-acids residues in 

the PIWI were not transitioned to the active arrangement. Such transition requires additional 

rearrangements in loops that were not included in our choice of the CVs, but are facilitated by 

higher temperatures (185).  

Our results suggest that domain-domain COM distances are general, yet relevant metrics that 

drive specific biological processes in the Argonaute proteins. The technique can be also useful 

for a rapid investigation of conformational changes in any protein of interest that has similar 

domain structure.  

 

6.4. Methods 

6.4.1 Thermos Thermophilus Argonaute starting structure  

The protein structure was taken from PDB 4n41 corresponding to the ternary TtAgo complex 

with 21-mer guide DNA and 15 nucleotides of target DNA (174). The DNA duplex in the 

crystal structure is resolved in positions 1-14 and 20, 21 in the guide strand and 1-14 in the 

target strands. All structurally resolved nucleotides were kept and restrained during the 

equilibration phases of the simulations. The missing bases–position 15-19 of the guide and 15 

& 16 of the target strands–were added to the structures and the Watson-Crick base pairings 

were imposed using distance restraints during an equilibration phase of simulations. The 

missing residues were added partly from other TtAgo structures and partly using the 

MODELLER software (186). The ff14SB force field and TIP3P water model were used to 

model proteins and the explicit solvent molecules (141,187). The parameters for the 

phosphorylated 5' end of the guide strand were generated using the generalized Amber force 

field (gaff) (188). The OL15 force field refinements were employed for nucleic acids  (189). 

The solvated box was then energy minimized (500 steps), followed by 25 ps of heating and 50 

ps of density equilibration in an NPT ensemble with the pressure kept at 1 bar and temperature 

adjusted to 300 K. During these phases, the protein’s heavy atoms, the nucleotide and the 

magnesium ions were restrained at their initial positions using a harmonic potential with a 

decreasing force constant, starting at 5.0 kcal∙mol∙Å-2 and ending with 1.0 kcal∙mol∙Å-2. The 

solvated box was equilibrated further in a restraint-free NPT ensemble at 300 K and1 bar for 1 

ns. The temperature for the actual data-gathering production run was 315 K. The GPU-

accelerated pmemd version of the Amber 18 software package was used implementing the 
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hydrogen mass repartitioning feature of the Parmed tool, which allows a simulation time step 

of 4 fs (7). Long range interactions were included using the particle mesh Ewald (PME) method 

combined with periodic boundary conditions and an 8.5 Å cut-off for non-bonded interactions. 

Figures were generated using the PyMol software package (145). 

6.4.2 Replica-exchange simulation protocol 

The simulation setup employed version 18 of the Amber software package and a python library. 

The Amber code was modified to accommodate a Gaussian-shaped bias potential between 

COM distances in the GPU version. The replica-exchange simulations were initialized using a 

batch file that contained all the input parameters, including the number of replicas, timesteps 

and exchange attempts per window, the residue IDs involved in CVs and the overall number of 

windows. The term “window” here refers to a cycle of i) replica-exchange sampling, ii) analysis 

of the CVs and iii) update of the biasing forces. Simulations started with eight structurally 

identical replicas. The first 1 ns of simulations ran without any added bias potentials, with the 

aim to have an initial approximation of the CV values in equilibrium. The trajectory files were 

updated every 8 ps, and the exchanges were attempted with the same time intervals. A 

Metropolis criterion was used to allow or reject the exchange attempts. The trajectories of the 

previous 10 ns from all eight replicas were read by the python library in 1 ns intervals to 

calculate the CV values. The calculation of the COM distances that define the CVs and other 

trajectory analysis were performed using Pytraj python library (165). Next, the library fitted the 

data to a Gaussian mixture model (GMM) using the scikit-learn machine learning package (190). 

The GMM assumes that the datapoints are collected from a mixture of K Gaussian 

distributions–called components–with unknown means, variances, and mixture component 

weights. Initial test runs indicated that using three components along each CV can efficiently 

reconstruct the arbitrary shape of the distribution i.e., K = 3. For a univariate GMM with K 

components, the k-th component has a mean of 𝜇𝑘 and variance of 𝜎𝑘. The mixture component 

weights are defined as 𝜙𝑘 , with the condition that ∑ 𝜙𝑖 = 1
𝑘
𝑖=1 , i.e., the total probability 

distribution sums up to one. Our implementation of the GMM fits the distribution of the CVs 

to a weighted sum of a three-component Gaussian density, given by the equation, 

 

𝑝(𝑥)  =  ∑ 𝜙𝑖 𝒩(x | μ𝑖 , σ𝑖)
𝐾

𝑖 = 1
, 

𝒩(x | μ𝑖 , σ𝑖)  =  
1

σ𝑖√2𝜋
 𝑒𝑥𝑝 (− 

(𝑥 −  μ𝑖)
2

2𝜎𝑖
2 ). 
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The output of the GMM–the components means, variances, and weights–shapes the next 

window’s biasing forces. The bias potential was incremented by 4 kcal∙mol-1 in the replicas 2-

8 while the reference replica ran without any added potential. 

 

∑ 𝐵𝑟(CV)  =  (𝑟 − 1)  ∗  4 𝑘𝐶𝑎𝑙/𝑚𝑜𝑙 ∗  𝑝(𝑥)
8

𝑟 = 1
 

 

In doing so, each simulation is biased by an external potential 𝐵𝑟(CV) that is built iteratively 

based on the sampling of the previous 10 ns in all replicas. This cycle goes on until the 

maximum number of windows is reached. The simulation procedure is illustrated in the figure 

below. 

 

 

Figure 6-9. Illustration of the advanced sampling algorithm. 

a, the accelerated-dynamics simulation algorithm. The python library and the Amber MD package are 

initialized using a batch file that contains input parameters. There is no biasing force inserted to the 

system in the first window. At the end of each window the trajectories are passed to the library and CVs 

are calculated. Based on their values in the previous runs the biasing force is updated. The accelerated-

dynamics simulation then continues with the updated biasing forces introduced in the replicas. The cycle 

goes on until the simulation is stopped. b, an illustration of the biasing potential acting on an exemplary 

CV vs. time. The value of CV is coloured based on the simulation window. In the first two windows the 

CV is trapped, while in the third and fourth window with the addition of the biasing potential it moves 

to higher values. The overall bias potential (solid black line) is the sum of three Gaussians (dashed grey 

lines), each of which represents an energy minimum. 

 

 

Clustering analysis. Trajectories were processed and analyzed to find similar conformations 

using the CPPTRAJ tool and the DBSCAN clustering algorithm (24). We used RMSD of the 

protein's heavy atoms as the distance metric and used every fifth frame of the trajectories to 

reduce memory consumption. A minimum of 4 conformations with the distance cutoff of 1.25 
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Å were required to form a cluster. The initial "sieve" value was set to 10 random frames to form 

the initial clusters. The sieved frames were then added to the clusters as an additional step. 
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7. Conclusion and Perspective 

Protein-docking platforms and accelerated molecular dynamics simulations are two powerful 

tools that offer a deep understanding of the biomolecular assemblies, as described in this work. 

In Chapter 3, a thorough overview of the current physics-based methods used to predict protein-

protein complex structures was presented. We saw how the protein-docking tools account for 

flexibility of the components and take advantage of the available experimental data to refine 

and score the predicted results. A possible future direction in this field would be to develop 

models for predicting larger protein complex structures and protein assemblies that are 

composed of multiple components. 

Chapter 4 illustrated that covalent modification of a single amino-acid residue, Ser111, in small 

GTPase Rab8a protein can influence the interaction with the exchange factor Rabin8. It was 

shown that the modification perturbs a favorable intermolecular salt-bridge contact between 

R79 in Rab8a and aspartate 187 in Rabin8 and therefore, decreases the binding affinity. The 

results indicated that post-translational modifications of the residues that are not directly part 

of the protein-protein interface, can interfere with the sidechain networks of the interacting 

residues and thereby, influence the complex formation. 

In Chapter 5, a dihedral-angle-biasing enhanced-sampling technique was presented and used to 

study the conformational transitions in Rab1b proteins triggered by GTP/GDP loading. The 

technique successfully enhanced the sampling and captured events that are rarely observed 

using conventional MD methods, namely unfolding of the switch regions. Provided the 

enhanced sampling, the influence of phosphorylation of Ser111 in Rab1b was scrutinized and 

it was found that it stabilizes the active state in the presence of GDP but has negligible influence 

on the GTP-bound complex. The technique can be further applied to other PTMs and GTPase 

proteins as it enhances the sampling at a limited computational cost. 

Finally, in Chapter 6, an enhance-sampling algorithm coupled with the replica-exchange 

methodology was presented, which identifies and compensates for low-energy conformations 

using a bias potential in a self-learning manner. As the test case, the method was successfully 

tested on investigation of large domain motions in bacterial Argonaute protein and its 

conformational changes upon activation. This algorithm could be further used for other large 

multi-domain proteins and in the specific case of Argonaute protein, it can be coupled with 
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quantum mechanics/molecular mechanics (QM/MM) methods to fully capture the activation of 

the bacterial Argonaute and the cleavage of the target strand, which would complete the 

description of the Argonaute gene-silencing activity.  

For decades, experimental and computational scientists studying biological systems have been 

driven by the classical structural biology paradigm, which states that molecular structure 

prompts biological function. Structures reveal the three-dimensional organization of the 

components and the molecular composition of the complex surface. Additionally, they help 

identify structural motifs or amino-acid residue arrangements that underpin certain functions of 

the protein aggregate. In spite of the advancements in the experimental characterization 

methods, a comprehensive study of protein assemblies still remains a challenging task, not only 

due to their startling abundance and variety, but also owing to the transient nature of some 

interactions, which hinders a high atomic resolution. Molecular dynamic simulations have a 

significant advantage in this respect. 

Both hardware and software developments, such as supercomputers and graphics processing 

unit (GPU)-based acceleration algorithms, have increased the reliability and efficiency of 

biomolecular simulations and have expanded the system size and timescales within their reach. 

Microsecond simulation of 12-base pair B-DNA (191), millisecond simulation of protein 

folding (192) and massive all-atom simulation of HIV-1 capsid (193) are among the landmark 

achievements of the past 20 years that reflect those advancements. The merits of MD 

simulations became even more evident during the recent global pandemic by severe acute 

respiratory syndrome coronavirus 2 (SARS-CoV-2), as it provided a detailed mechanistic 

insight into the spike protein as a target for vaccine and therapeutic agents (194,195). Today, 

scientists routinely use computer simulations in combination with other experimental methods 

to investigate various aspects of biological systems, in the same way the light microscopes were 

used in the seventeenth century.  

The previous advances of computational biology offer overwhelming and undeniable evidence 

of its brighter future. Refinement, parametrization, and validation of the force fields will 

continue and constantly improve their accuracy in the future. Moreover, their applicability to 

various biomolecular systems will be enhanced. Novel algorithmic developments will 

contribute to solve insufficient sampling of large macromolecules. Finally, artificial 

intelligence platforms will continue to incorporate the growing body of experimentally gathered 

data to predict structures, mechanisms, and functions of these incredibly important systems.  

What a privilege to have glimpsed at the universe within the living cell.  
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