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Abstract

Understanding the role of turbulence in the edge and scrape-off layer (SOL) of magnetic con-

finement fusion devices is key to predict their heat exhaust and energy confinement time. Tur-

bulence is commonly studied with computer simulations based on the gyrokinetic equations,

a five-dimensional, nonlinear, integro-partial differential system that describes the evolution

of the distribution of particles in phase space.

Performing gyrokinetic simulations of edge and SOL plasmas is particularly difficult. First,

the plasma density and temperature is low and the turbulent fluctuations are of the same

size as the background plasma. This requires a so-called full-f treatment of the gyrokinetic

equations. Second, the magnetic geometry of the edge and SOL is complex. It contains

regions of open magnetic flux surfaces, X-points and, in stellarator fusion experiments, even

regions where field lines are oriented stochastically. This renders flux-coordinates, commonly

used in gyrokinetic turbulence simulations of the plasma core, ineffective.

To tackle these issues, we present a new gyrokinetic turbulence code, GENE-X, in this work.

GENE-X implements a full-f version of the gyrokinetic system that includes electromagnetic

effects and can handle turbulence with large fluctuation amplitudes. Furthermore, GENE-X

can perform simulations in realistic magnetic geometries by implementing the so-called flux-

coordinate independent approach. In this work, we detail the equations implemented in the

code, the coordinate system, the discretisation scheme and careful numerical and physical

verifications. In addition, we present the first application of GENE-X to ASDEX Upgrade

(AUG). The simulations of AUG are performed with realistic and reduced electron-to-ion

mass ratio, with and without collisions over a time of 1ms, studying profile evolution. We

compare the results to previous simulations with the Braginskii fluid code GRILLIX and

experimental measurements. Furthermore, we discuss the influence of the electron-to-ion

mass ratio and collisions on the profiles and the heat exhaust.
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1. Introduction

1.1. Motivation

The climate of our planet is changing – with dramatic effects. Glaciers melt, sea levels rise

and, as a consequence, the natural habitat of many species is destroyed [1]. It is scientific

consensus that this trend cannot be explained by natural climate variability and is caused

by the anthropogenic emission of greenhouse gases [2]. To limit global warming and its

tremendous effects, it is therefore vital to reduce the emission of greenhouse gases by using

and developing new, environmentally friendly, energy sources.

Inspired by the energy production of stars, fusion energy offers a unique pathway to achieve

that goal. Energy produced by fusion power plants would be CO2-free, safe and sustainable

for generations to come. Consequently, developing net energy-producing fusion experiments,

as a first step towards a fusion power plant, has been a dream since the 1950s.

1.1.1. Nuclear fusion

Many stars, like our sun, produce energy by fusing hydrogen via the Bethe-Weizäcker cycle

or the proton-proton chain [3]. These reactions have a low cross section at temperatures and

densities producible in the laboratory. Therefore, they are not suited for fusion reactors on

earth. In the most promising fusion experiments today, hydrogen is replaced by its isotopes

deuterium and tritium (D-T). The D-T fusion process has the highest known cross section at

experimentally relevant parameters and is therefore the easiest to access [4]. The products

of the fusion reaction have a slightly lower mass than the inputs. This difference in mass

is converted into kinetic energy by the phenomenon known as mass defect. During the D-T

fusion process, visualised in Fig. 1.1, a neutron with 14.1 MeV energy and a helium atom

with 3.5 MeV energy is released.

4He + 3.5 MeV

n + 14.1 MeV

2H

3H

Figure 1.1.: Figure displaying the fusion reaction of deuterium and tritium to helium and a
neutron. The reaction releases a total of 17.6 MeV energy.
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However, making atoms fuse is not simple. Due to the Coulomb force, nuclei repel each other.

To make fusion reactions possible, the two nuclei need to get close enough such that quantum

tunnelling through the Coulomb barrier is likely to happen. This can either be achieved by

high temperatures or high pressures. In these conditions, the atoms are ionised and form

the state of a plasma. Part of the energy, produced in the fusion process, stays within the

plasma and makes, in theory, a self-sustained fusion reaction possible. To obtain such an

energy producing, also called burning, plasma, the product of its temperature T , density n

and energy confinement time τE must exceed the threshold [5]

nTτE > 3 · 1021KeVsm−3 . (1.1)

1.1.2. Confinement and plasma stability

In stars the plasma is confined with the help of gravity. Temperatures and densities are large

and energy confinement times long. As a result, the fusion reaction in stars sustains itself and

produces energy. While different confinement strategies exist on earth, the most promising

experiments use magnetic fields to confine the plasma. Due to the Lorentz force, charged

particles are trapped to a spiral like motion around magnetic field lines. To avoid particle

losses at the end of field lines, they are bend into a toroidal shape. The two most promising

concepts for fusion power plants are the tokamak and the stellarator [6]. In tokamaks densities

around 1019/m3 − 1020/m3, Temperatures of 1KeV − 40KeV and energy confinement times

of τE = 0.1s− 1s can be achieved [5, 7].

In first approximation, the plasma and its interaction with the magnetic field B, in these

fusion devices, can be described as a fluid within magnetohydrodynamics (MHD). The equi-

librium state of the plasma is classified by the force balance [8]

j ×B = c∇p, (1.2)

between the Lorentz force j×B, caused by the plasma current j, and the plasma pressure p.

The variable c denotes the speed of light. In axisymmetric devices, like the tokamak, every

magnetic field line generates a magnetic flux surface. On a magnetic flux surface the pressure

is constant and particles stream freely along magnetic field lines. An MHD equilibrium for

the tokamak ASDEX Upgrade (AUG) is visualised in Fig. 1.2.

1.1.3. Transport and turbulence

The confinement of the plasma is limited by radial transport perpendicular to magnetic flux

surfaces, leading to particle and energy loss. The first component of radial transport is caused

by diffusive processes due to collisions in the plasma. However, the radial transport measured

in experiments cannot be explained by collisional transport alone. The second component is

given by transport due to turbulent fluctuations within the plasma and commonly referred to

as anomalous transport [9, 7]. The turbulence is driven by microinstabilities that are caused

by density and temperature fluctuations. They grow by extracting energy from gradients
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1.00 1.25 1.50 1.75 2.00 2.25 2.50

-1.0

-0.5

0.0

0.5

1.0

#36190 3.3 s
Equilibria:
AUGE:EQH(1)

Divertor

Scrape-off layer

Edge

Core

Figure 1.2.: Figure visualising the magnetic equilibrium of a tokamak at the example of
AUG [10]. Magnetic flux surfaces are drawn in blue and the last closed flux
surface, also known as separatrix, is drawn in red. This plot has been generated
with the tool diaggeom from the AUG experiment.

within the plasma. The turbulence transports the energy from the microstabilities, in a

cascade like way, to different spatial scales, where it is dissipated.

1.1.4. The edge and scrape-off layer

Inevitably, the plasma comes into contact with the main wall in the boundary region of the

fusion device. To avoid damage, the plasma needs to be cooled by orders of magnitude before

it hits the wall. Consequently, the boundary region of magnetic confinement fusion devices

is characterised by steep density and temperature gradients, driving microinstabilites and

turbulence.

In the fusion community, the boundary region is conventionally divided into two parts. The

first is the so-called scrape-off layer (SOL). In the SOL magnetic field lines are open and the

plasma is in contact with the device wall. The second is the so-called edge of the device. It

represents the region just before the last closed flux surface. For visualisation, the different

regions are shown at the example of AUG in Fig. 1.2.

In recent years, it has become apparent that understanding turbulent transport in the edge

and SOL is important for the energy confinement time and the feasibility of fusion energy.

The reason is given in the following two subsections.
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1.1.5. Understanding the L-H transition

To achieve long energy confinement times, most fusion experiments operate in high confine-

ment regimes, like the H-mode [11]. These operating modes are characterised by a transport

barrier in the edge that limits turbulence and, as a consequence, increases the energy con-

finement time. The goal of the upcoming fusion experiment ITER [12], to achieve a burning

plasma and produce more than ten times the energy injected, is based on the H-mode [13].

Measurements at different experiments have shown that the transport barrier is accompanied

by a drop in the radial electric field just before the separatrix [14]. This drop induces a

poloidal rotation of the plasma through the E × B drift that shears turbulent vortices and,

consequently, suppresses turbulent transport [14]. As a result of the transport barrier, the

temperature and density in plasma core increase and the gradients, close to the edge of the

device, are steepened.

Over the last decades, tremendous efforts have been undertaken to understand the formation

of the transport barrier and the shift into the high confinement regime, also referred to as the

L-H transition [15]. Experimentally, the transition into H-Mode is triggered when the plasma

heating power exceeds a critical value [11]. There exist many different models that try to

explain the L-H transition. A popular choice, that can explain some of the experimentally

measured features of the L-H transition, are predator-prey models [16, 17, 18]. We explain

them at the example of [17]. The turbulence takes the position of the prey. With increasing

heating power the turbulence increases. After it has reached a certain threshold, it excites

zonal flows, the predator, that regulate the turbulence. As soon as the drive of the zonal flows

becomes stronger than their damping, they grow exponentially and annihilate the turbulence.

At the same time a steep pressure profile with a poloidal flow builds that takes over the role

of the zonal flow in damping the turbulence. The result is a quiescent H-mode with a steep

pressure profile, a large poloidal flow, no zonal flow and no turbulence.

Some of these results have been reproduced with fluid turbulence simulations [19, 20, 21].

Additionally, simulations with the gyrokinetic turbulence code XGC1 showed that effects due to

ion-orbit losses, that are not resolved within fluid codes, are important in the L-H transition

[22]. The scientific evidence suggests that turbulence plays an integral part in the L-H

transition and predictive, first principle modelling is needed to understand it.

1.1.6. Limiting the particle and heat exhaust of fusion devices

To avoid damage to the fusion device by hot particles hitting the wall, limiting the particle and

heat exhaust poses an important problem. Particles are transported over the separatrix and

stream along magnetic field lines onto the wall. This generates heat fluxes up to 500MW/m2

in present tokamaks and is expected to reach 1GW/m2 in ITER [23]. To avoid damage

to the wall, the heat flux must be reduced to 10MW/m2 normal to the plates for actively

cooled materials in steady-state operation [23]. The heat flux onto the divertor is commonly

reduced by using shallow incident angles between the magnetic field lines and the divertor

plates [24, 25], which effectively distributes the heat flux onto a wider area. The mechanism
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that describes the width of the scrape-off layer heat flux, commonly called λq, has not been

understood and predictions of λq yield vastly different results for different plasma models.

At the example of ITER, predictions from scaling laws constructed out of measurements of

present experiments suggest λq ≈ 1mm [26]. Calculations performed with the transport code

SOLPS yield λq = 3.6mm [27] and recent studies with the gyrokinetic turbulence code XGC1

showed that electron turbulence can lead to a broadening of λq to 5.9mm [28]. The heat flux

onto the divertor is also reduced by inserting a neutral gas into the SOL. The neutral gas gets

ionised from the particles in the plasma. Free electrons recombine with the ions and emit

gamma radiation. This provides an efficient mechanism to transport energy out of the plasma

before it hits the wall. It is even possible to radiate all the excess energy of the plasma before

it comes into contact with the wall. This state is also known as detachment [29]. In order to

understand and accurately describe the particle and heat exhaust of a fusion experiment, all

processes involved and their interrelation need to be understood. This includes the turbulent

transport of heat from the core over the separatrix into the SOL, the dynamics of the plasma

in the SOL itself and its interaction with the wall.

1.1.7. Turbulence simulation

As we have established so far, turbulence plays integral part in the feasibility of fusion energy.

Due to the limited number of analytical results, numerical methods are employed to study

turbulence in fusion experiments.

High fidelity simulations of turbulent fusion plasmas are based on the gyrokinetic equations,

a set of nonlinear, integro-partial differential equations that describe the evolution of the dis-

tribution of particles in a five-dimensional phase space [30]. The first gyrokinetic simulations

were performed in the 80s and 90s based on many simplifying assumptions [31, 32, 33, 34, 35].

Around the turn of the millennium, the simulations became more realistic and were able to

provide quantitative insights into the properties of plasma turbulence in the core of fusion

devices [36, 37, 38, 39, 40, 41, 42, 43, 44, 45].

Expanding the simulations from the core to the edge and SOL is difficult. In the boundary

region the gradients are steep and the temperature and density is low. As a result, the am-

plitude of the turbulent fluctuations is comparable to the plasma background and a so-called

full-f treatment of the equations is necessary. Furthermore, the geometry of the magnetic

equilibrium is complex. We explain this challenge in more detail in the next subsection.

Due to the high computational demand of gyrokinetic simulations and the increased collsion-

ality in the edge and SOL, fluid and gyrofluid models are often used [46, 47, 48, 49, 50, 51].

They assume that collisions move the velocity distribution of particles close to a Maxwellian

that can be described with a few moments like density and temperature. They are either

based on the drift reduced Braginskii equations [52, 53] or on gyrofluid models [54]. However,

kinetic effects are known to be important in the edge and SOL [55, 56, 57]. Consequently, sev-

eral different projects have been launched to simulate gyrokinetic turbulence in the edge and

SOL, namely XGC [58], COGENT [59], GKEYLL [60], GENE [61], GYSELA [62, 63] and PICLS [64].

The codes are based on different numerical approaches with their respective advantages and
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disadvantages. The different approaches are split into three categories.

The particle-in-cell approach

The first gyrokinetic plasma simulations were based on the so-called particle-in-cell (PIC)

approach [31, 32, 33]. Therein, a sample of so-called markers are integrated along the char-

acteristics of the gyrokinetic Vlasov equation, and the electromagnetic fields are solved on

a three-dimensional grid in position space. Particle-in-cell codes are straightforward to im-

plement and have shown good scalability on modern supercomputers [28]. Due to the prob-

abilistic nature of these algorithms, the results contain statistical noise which has shown to

be problematic for certain applications [65, 66, 67]. From the gyrokinetic edge and SOL

codes presented, XGC and PICLS implement the PIC method. To resolve the full distribution

function in SOL plasmas and keep the numerical noise at a manageable level, many markers

are needed which may require larger computational resources than comparable continuum

codes.

The Eulerian approach

In continuum or Eulerian schemes the gyrokinetic Vlasov-Maxwell system is discretised on a

five-dimensional position-velocity space grid. They were first introduced around the year 2000

[68, 39, 38, 56, 40] and use a variety of numerical methods available for partial differential

equations. This includes finite difference, finite volume, finite element and discontinuous

Galerkin methods with explicit and implicit time stepping schemes. Compared to PIC codes,

continuum codes are free of numerical noise at the expense of introducing a velocity space

grid. From the gyrokinetic edge and SOL codes mentioned above, COGENT, GKEYLL and GENE

implement a continuum method. GKEYLL uses an energy conservative discontinuous Galerkin

discretisation, COGENT discretises the gyrokinetic system with a high order finite volume

method and GENE features a mixed shock stable finite-volume, finite difference discretisation

scheme.

The semi-Lagrangian approach

In the semi-Lagrangian approach the gyrokinetic Vlasov-Maxwell system is, similar to Eule-

rian schemes, discretised on a five-dimensional position-velocity space grid. Therefore, they

are also free of numerical noise. Semi-Lagrangian schemes are commonly divided into three

categories: (i) The (standard) backward [69], (ii) the forward [70] and (iii) the conserva-

tive [71] semi-Lagrangian method. We explain them at the example of the backward method.

The distribution function is evolved by following the characteristics of the gyrokinetic Vlasov

equation from a given grid point, on the five-dimensional position-velocity space grid, back-

wards in time for one timestep. The new value of the distribution function at the grid point

is the interpolated value at the foot of that characteristic curve, using the values of the

distribution function at the previous timestep [69]. Semi-Lagrangian schemes can allow for

larger timesteps than comparable Eulerian schemes, which makes them, next to fusion appli-

cations, also attractive for numerical weather predictions and atmospheric models [72]. The

gyrokinetic edge and SOL code GYSELA implements the semi-Lagrangian approach.
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1.1.8. Handling X-point geometries

Especially challenging for turbulence simulations in the edge and SOL is the complex mag-

netic geometry. There are regions of open and closed magnetic field lines, and, in stellarator

fusion experiments, even regions, where field lines are oriented stochastically. Many gyroki-

netic codes present in the community implement so-called flux-coordinate systems [73]. While

these allow for efficient simulations in regions with regular magnetic flux surfaces, they be-

come ill-defined at the separatrix or in stochastic regions [74]. To allow for predictive edge

and SOL simulations, coordinate systems free of singularities that can treat realistic magnetic

geometries must be used. XGC1 has demonstrated that PIC codes can perform simulations

in X-point geometries by using a cylindrical coordinate system. PIC codes follow the tra-

jectories of marker particles in continuous real space and therefore parallel structures in the

plasma are well represented. However, coordinate systems agnostic of the magnetic field are

suboptimal for continuum codes. They use a five-dimensional phase space grid and a fine

toroidal resolution is needed to represent structures that are aligned to magnetic field lines.

This increases the cost of the simulation significantly because more grid points and, in case

of explicit time stepping, a smaller timestep is needed. To allow for efficient simulations

in X-point geometry with continuum codes, locally field-aligned methods based on the flux-

coordinate independent approach (FCI) [75, 76] have been developed and tested in fluid codes

[48, 77, 51, 78]. Within the fluid community, they have shown to be effective for studying

edge and SOL turbulence. Recently, the use of FCI has enabled the simulation of turbulence

in the diverted geometry of AUG [79, 80]. In the gyrokinetic community, locally field-aligned

methods have been implemented in COGENT [81] and used to perform five-dimensional simu-

lations in a geometry with one X-point. Further, field-aligned interpolation has been used to

accelerate semi-Lagrangian codes [82, 83].

1.2. Overview

Predictive, first principle modelling of turbulence is essential to understand the plasma prop-

erties in the boundary of fusion devices. To this end, we present a new gyrokinetic turbulence

code that is tailored towards edge an SOL simulations in this work. The code is based on

the continuum approach to resolve the full distribution in regions in the SOL where the

plasma density is low. We put a special focus on handling the geometric complexities. For

this reason, we employ a locally field-aligned coordinate system based on the FCI approach.

By using the FCI approach, we are not limited by the magnetic geometry and are able to

perform simulations in geometries with a single and even multiple X-points. This will en-

able the investigation of advanced divertor concepts [84, 85] within gyrokinetic theory in the

future. Furthermore, the coordinate system is well-defined in stochastic regions, and a gener-

alisation of the code to stellarator geometries is straightforward. The implementation follows

the example of the Braginskii fluid code GRILLIX [74, 48, 86] and uses unstructured, locally

Cartesian grids. These grids allow for a high flexibility regarding the geometry while ensuring

good numerical properties and a high computational efficiency [87]. The discretisation follows
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the example of the GENE code [38, 45] and uses explicit time stepping with a mixed order

finite difference scheme. The numerical solution of the gyrokinetic Vlasov-Maxwell system on

modern supercomputers is resource intensive. To maximize the performance of the code and

prepare it for the heterogeneous architectures of future exascale machines, we put a special

emphasis on software engineering and performance. Based on its scientific ancestor, GENE,

we call the code GENE-X.

The major scientific contributions of this work are threefold. First, next to GENE-X, only

XGC1 and COGENT can perform gyrokinetic turbulence simulations in X-point geometry. To

ensure good scientific practice, it is vital to have multiple codes, using different numerical

techniques, that can reproduce each others findings. Second, we demonstrate that the FCI

approach together with the presented numerical scheme works well with a gyrokinetic model.

Third, we present gyrokinetic turbulence simulations of the edge and SOL of ASDEX Upgrade

that include a magnetic X-Point.

This work is structured as follows. In Chapter 2, we give an introduction into gyrokinetic

theory and derive the full-f , electromagnetic model implemented in the code. We continue

with the rigorous derivation of the FCI coordinate system and the metric coefficients in

Chapter 3. In Chapter 4, we discuss the normalisation of the equations and present the

finite difference discretisation scheme implemented. In Chapter 5, we detail the software

engineering of the GENE-X code and demonstrate the performance of the software design. We

present thorough verification benchmarks in different magnetic geometries, including a full

order analysis with the method of manufactured solutions, in Chapter 6. We finish this work

with presenting electromagnetic, gyrokinetic simulations of the edge and SOL of ASDEX

Upgrade in Chapter 7.
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2. Gyrokinetic theory

We start the discussion of gyrokinetic theory at the example of a single particle with mass m

and charge q that moves in a homogeneous magnetic field with field strength B. We denote

the unit vector of the magnetic field with b = B/B. Due to the Lorentz force, the particle

gyrates around a magnetic field line with the cyclotron frequency

Ω =
qB

mc
. (2.1)

The speed of the particle on the gyroorbit, v⊥ = |v − (b · v)b|, is constant and the magnetic

moment of the particle,

µ =
mv2
⊥

2B
, (2.2)

is conserved. Therefore, the constant gyromotion can be neglected. In a fusion device the

conservation of the magnetic moment is violated. First, the magnetic field is non-uniform.

Second, the plasma produces density and current fluctuations which produce electromagnetic

fields themselves. In the following, we denote the perturbed electrostatic potential with φ1

and the perturbed electromagnetic vector potential with A1. These fields alter the trajectory

of particles via the Lorentz force, which ultimately leads to turbulence.

The plasma in a fusion device is a collection of particles of different species, like electrons,

ions or impurities. The phase space distribution of all particles of a given species, denoted

by σ, is described with their distribution function fσ. The time evolution of the distribution

function is given by the Vlasov equation that is coupled to Maxwell’s equations to provide

the electromagnetic fields φ1 and A1. This system contains a multitude of physical effects,

including the full gyroorbits of particles, Debye shielding and Langmuir waves. While these

are interesting phenomena, they act on significantly smaller time scales than turbulence.

Numerical solutions of the full Vlasov-Maxwell system at the scale of medium size fusion

experiments and on turbulence time scales are not even possible on the largest supercomputers

available today. Consequently, it is necessary to derive a simplified model that removes the

fast timescales from the system and makes the simulation possible. This is the goal of

gyrokinetic theory.

In gyrokinetic theory the goal is achieved by introducing a new set of phase space coordinates,

called gyrocentre coordinates. They include a generalised magnetic moment µgy that is an

exact invariant of the motion of the particle. In addition, the dynamics associated to the fast

gyromotion of the particle, called θgy, are decoupled from the other gyrocentre coordinates

[88]. This removes the fast timescales from the system and reduces the dimensionality from

six to five.
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The reduction from the full kinetic system to the gyrokinetic subset is controlled with so-called

ordering parameters. They express the spatial and temporal scales of different phenomena

and are used to control their size. In the following, we define the ordering parameters used

in standard gyrokinetic theory [88].

1. We call the length scale of perturbations in the magnetic field LB = B/|∇B| and define

the ordering parameter εB = ρT /LB, where

ρT =
mcvT,⊥
|q|B

(2.3)

is the gyroradius and vT,⊥ is the perpendicular velocity of a thermal ion. We assume

that the length scale of the magnetic fluctuations is much larger than the gyroradius of

a thermal ion, i.e. εB � 1.

2. We define ordering parameter for electrostatic perturbations as εδ = k⊥ρT qφ1/Ti, where

k⊥ represents the wavenumber of the electrostatic fluctuation perpendicular to the

magnetic field and Ti the ion temperature. We assume that εδ � 1 and that fluctuations

of the magnetic vector potential A1 are of the order φ1c/vT .

3. We call the wavevector of fluctuations parallel to the background magnetic field k‖. In

strongly magnetised plasmas parallel perturbations act on larger scales than perpen-

dicular ones. We reflect this property by assuming that ε‖ = k‖/k⊥ � 1.

4. We call the characteristic frequency of fluctuations in the plasma ω and assume that

the frequency is much smaller than the ion cyclotron frequency Ωi, i.e. εω = ω/Ωi � 1.

For the derivation of the gyrokinetic model, different orderings between the four different

parameters can be used. In this work, we employ the standard ordering used by gyrokinetic

codes in the community [36, 37, 38, 40, 41, 42, 43, 44, 45]. It is assumed that fluctuations

in the background magnetic field are smaller than fluctuations in the electrostatic potential,

i.e. εB ∼ ε2δ . Further, it is assumed that ε‖ ∼ εδ and εω ∼ εδ. The projects mentioned above

study plasma turbulence in the core of fusion devices. At the point of writing it is an area of

active research whether this ordering and the resulting gyrokinetic theory is also applicable

in the edge and SOL. Different studies with hybrid and fully kinetic models indicate that the

standard gyrokinetic model is still useful [89, 90, 91, 92].

In the remainder of this chapter, we present the gyrokinetic Vlasov-Maxwell system that is

implemented in the GENE-X code. As gyrokinetic theory is fundamentally linked to coordinate

transformations on manifolds, we start by discussing the basics of Hamiltonian mechanics.

We proceed by giving an overview of the gyrokinetic reduction and present the gyrokinetic

Vlasov-Maxwell system. Finally, we simplify the system to a self-consistent subset, suitable

for the first implementation in the GENE-X code and discuss conservation laws.
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2.1. Hamiltonian mechanics

The plasma in a fusion device is formally described by a manifold which we callM. This man-

ifold carries a differentiable structure inherited from differentiable coordinate charts (ϕ,U)

or a collection of coordinate charts (ϕα, Uα), called an atlas†. Charts assign a coordinate

q ∈ V = ϕ(U) to every point on the manifoldM. What is commonly known as a coordinate

map is the inverse of the chart ϕ−1 : V → M, assigning a point on the manifold to every

coordinate. As the charts are diffeomorphic, the coordinate map is always well-defined. In

the application of fusion physics the manifold is embedded in R3 and a natural Cartesian co-

ordinate system exists. We call the Cartesian coordinates of the three dimensional manifold

q = (xc, yc, zc) ∈ V . Particles in the plasma have a velocity. The velocity space at position q

is modelled by the tangent space of the manifold TqM. The inverse of the coordinate chart

ϕ−1 provides a natural basis for the tangent space TqM by

ei :=
∂ϕ−1

∂qi
. (2.4)

The basis of the cotangent space T ∗qM, denoted by ei = dqi, is defined by the condition

ei · ej = δij . (2.5)

We denote the Cartesian coordinates in velocity space, induced by the Cartesian coordinates

in real space, with (vx, vy, vz). In the Lagrangian formulation of classical mechanics the state

of a particle is described by its position on the manifold q ∈ M and its generalised velocity

q̇ ∈ TqM. The equations of motion are determined by the so-called Lagrangian

L : (q, q̇, t) 7→ L(q, q̇, t) (2.6)

through the Euler-Lagrange equations

d

dt

∂L

∂q̇i
=
∂L

∂qi
. (2.7)

In the Lagrange formalism arbitrary coordinate transformations of the coordinates q are

possible with a transformation to a different coordinate chart. In Hamiltonian mechanics the

generalised velocity q̇ is replaced by the generalised momentum

pi :=

(
∂L

∂q̇i

)
(q, q̇, t) . (2.8)

The generalised momentum p is a cotangent vector and contained in the cotangent space

T ∗qM. The vector bundle of the cotangent spaces at all the points in the manifoldM defines

the phase space. We denote it with P := T ∗M. The phase space is a six-dimensional,

differentiable manifold and different charts can be used to define coordinate systems. The

phase space P carries a symplectic structure given by the closed, non-degenerate differential

†We construct an atlas of M in Chapter 3 when we introduce a locally field-aligned coordinate system.
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2-form

ω2 = dp ∧ dq = dp1 ∧ dq1 + · · ·+ dp3 ∧ dq3 . (2.9)

The 2-form ω2 can be interpreted as a skew-symmetric scalar product on TP. Like a normal

scalar product, Eq. (2.9) introduces a natural isomorphism between differential forms and

vector fields on the manifold. A vector ξ ∈ TP is mapped to a differential form via [93,

pp. 203–204]

I : ξ 7→ ω1 =
(
η 7→ ω2(η, ξ)

)
. (2.10)

In the coordinate system (p, q) the isomorphism I can be represented as a simple matrix

multiplication with [93, p. 203]

I =

(
0 13

−13 0

)
. (2.11)

A coordinate transformation τ on the phase space P is called canonical if it preserves the

2-form ω2 [93, p. 206]. The volume element of the phase space is given by ω2 ∧ ω2 ∧ ω2

and therefore canonical transformations preserve the volume element in phase space. The

Hamiltonian H is a function on the phase space. With the inverse of the isomorphism I, a

vector field can be associated to the Hamiltonian via I−1 dH. In the coordinates (p, q) the

Hamiltonian vector field reads [93, p. 203]

I−1 dH =

(
∂H
∂p

−∂H
∂q

)
. (2.12)

The Hamiltonian flow gλH : P → P is defined as a 1-parameter group of diffeomorphisms on

the manifold P such that the rate of change of the flow, contained in the tangent space TP,

is given by the Hamiltonian vector field, i.e. [93, p. 204]

d

dλ

∣∣∣∣
λ=0

gλH = I−1 dH . (2.13)

In the coordinates (p, q), Eq. (2.13) gives rise to Hamilton’s equations [93, p. 204]

q̇i =
∂H

∂pi

ṗi = −∂H
∂qi

. (2.14)

They describe the trajectories of the Hamiltonian flow in phase space. The Hamiltonian orbit

parameter λ can be interpreted as the time. The Poisson bracket {f, h} of two functions on

the manifold P is defined as the derivative of the function f in the direction of the Hamiltonian
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flow of h [93, pp. 214–215]

{f, h} :=
d

dλ

∣∣∣∣
λ=0

f(gλh)

= df(I−1 dh)

=ω2(I−1 dh, I−1 df) (2.15)

and yields the well-known form in the coordinates (p, q) [93, p. 215]

{f, h} =
3∑
i=1

∂f

∂qi

∂h

∂pi
− ∂f

∂pi

∂h

∂qi
. (2.16)

In simple words, Eq. (2.15) shows that the rate of change of a function along the Hamiltonian

flow is given by the Poisson bracket. It can be shown that a transformation is canonical if

and only if it preserves the structure of the Poisson bracket [93, p. 216]. After this formal

discussion of Hamiltonian mechanics on symplectic manifolds, we introduce the Lagrangian

1-form that connects Hamiltonian to Lagrangian mechanics and is used in the presentation

of the gyrokinetic model in the next section. In the following, the phase space is extended

by the Hamiltonian orbit parameter λ [30]. The Lagrangian 1-form reads

ω1 := p dq −H dλ . (2.17)

The part pdq is often referred to as the symplectic part and H dλ as the Hamiltonian

part of the 1-form. The symplectic 2-form ω2 is obtained by taking the exterior derivative

ω2 = d(p dq) of the symplectic part of ω1. Using Eq. (2.15), ω1 gives rise to the Poisson

bracket and therefore Hamiltonian mechanics. Further, the 1-form ω1 allows for a straight-

forward connection to Lagrangian mechanics. The integral over ω1 along a trajectory γ in

the extended phase space starting from (p0, q0, λ0) and going to (p1, q1, λ1) has an extremal

under variations of γ. The extremum is given by the integral curves of Hamilton’s equations

[93, pp. 243–244]. The connection to the Lagrangian, as the Legendre transformation of the

Hamiltonian, is given by∫
γ
p dq −H dλ =

∫ λ1

λ0

(pq̇ −H) dλ =

∫ λ1

λ0

Ldλ . (2.18)

In the following sections, we give an overview of the derivation of the gyrokinetic equations.

The starting point is the form ω1 of a charged particle in an electromagnetic field. The

coordinate transformation into gyrocentre coordinates is non-canonical and therefore results

in a non-canonical expression for the symplectic part of ω1 and the Poisson bracket [30].

2.2. Common coordinate systems for fusion plasmas

Before we start with the derivation of the gyrokinetic Vlasov-Maxwell system, we intro-

duce different coordinate systems that are more suited to describe fusion plasmas than the

13



(xc, yc, zc, vx, vy, vz) coordinate system introduced above. In magnetic confinement fusion de-

vices the shape of the plasma is formed by the magnetic field. Therefore, it is convenient to

use a cylindrical and cylindrical-toroidal coordinate system that reflects its structure. The

cylindrical coordinate system is given by

R =
√
x2
c + y2

c (2.19)

ϕ = atan2(yc, xc) (2.20)

Z = zc (2.21)

and the cylindrical-toroidal coordinate system by [73]

r =

√
(
√
x2
c + y2

c −R0)2 + z2
c (2.22)

θ = atan2(zc,
√
x2
c + y2

c −R0) (2.23)

ϕ = atan2(yc, xc) , (2.24)

where R0 denotes the major radius of the torus. As the plasma is magnetised, charged parti-

cles follow magnetic field lines. Therefore, it is useful to also introduce different coordinates

in velocity space. Given an orthonormal basis (b1, b2, b) in the tangent space TqM at the

point q ∈M and the vector v ∈ TqM, we define the coordinates (v1, v2, v‖) by the coordinate

transformation

v1 = b1 · v (2.25)

v2 = b2 · v (2.26)

v‖ = b · v (2.27)

and the coordinates
(
v‖, µ, θ

)
by the coordinate transformation

µ =
mσ

(
v2

1 + v2
2

)
2B

(2.28)

θ = atan2(v2, v1) . (2.29)

The new coordinates in velocity space can be interpreted in a simple way. The coordinate v‖

denotes the velocity of a charged particle along the field line, µ the magnetic moment and θ

the angle of the gyromotion. The kinetic energy of the particle is given by E = µB+ 1
2mσv

2
‖.

Further, we define the gyromotion vectors

ρ(θ) = b1 cos θ − b2 sin θ (2.30)

⊥(θ) = −b1 sin θ − b2 cos θ (2.31)

forming a second orthonormal basis set (⊥(θ),ρ(θ), b)†. As the magnetic field in general

changes for every point q ∈M, so do the coordinates in velocity spaces.

†The set (b1, b2, b) is also known as the fixed frame and (⊥(θ),ρ(θ), b) as the rotating frame [94].

14



2.3. Derivation of the gyrokinetic Vlasov-Maxwell system

The derivation of the gyrocentre coordinates starts with a charged particle moving in the

background magnetic field B under the influence of time dependent perturbed electromag-

netic fields A1 and φ1. In the presence of time dependent electromagnetic fields, the energy

k of the particle is not conserved and changes according to the additional equation of mo-

tion [30]
dk

dt
= qσ

(
∂φ1

∂t
− v
c
· ∂A1

∂t

)
. (2.32)

To account for the change of energy, the phase space is expanded by the canonically con-

jugate pair (t, k), where k is constrained to the conserved energy in the time independent

case [30]. This allows the formulation of Hamilton’s equations of motion with time dependent

electromagnetic fields [30].

2.3.1. The gyrokinetic Lagrangian 1-form

The 1-form ω1, introduced in Eq. (2.17), describing the trajectory of the charged particle in

the extended phase space coordinates (R,ϕ,Z, t, v‖, µ, θ, k, λ) reads

ω1 =
(qσ
c
A(R) + εδ

qσ
c
A1(R, t) +mσv

)
· dR− k dt−H dλ , (2.33)

with the Hamiltonian

H =
1

2
mσv

2 + εδqσφ1(R, t)− k . (2.34)

The physical motion of the particle takes place on the subspace H = 0, and Hamilton’s

equation of motion for the time, ṫ = 1, can be used to replace the Hamiltonian orbit parameter

λ with the time t [30].

Both the symplectic and Hamiltonian part of the Lagrangian 1-form depend on the ve-

locity and therefore have a dependence on the gyroangle θ. The symplectic part of ω1

depends on the perturbed magnetic vector potential A1 and the Hamiltonian part on the

perturbed electrostatic potential φ1. The derivation of the gyrokinetic 1-form comprises of

two steps. First, the perturbed fields A1 and φ1 are removed from ω1 and a transforma-

tion into so-called guiding-centre coordinates (Rgc, ϕgc, Zgc, v‖gc, µgc, θgc) is performed. The

guiding-centre transformation removes the fast gyromotion time scales that are associated

with the magnetic background A. In a second step, the perturbed fields A1 and φ1 are

added to the guiding-centre 1-form again and a transformation into gyrocentre coordinates

(Rgy, ϕgy, Zgy, v‖gy, µgy, θgy) is performed. The gyrocentre transformation removes the fast

gyromotion time scales caused by the perturbed electromagnetic fields. In this work, we

employ the so-called symplectic gyrocentre model [95, 30]. The symplectic gyrocentre model

retains explicit time derivatives in the Poisson bracket and has been shown to be well suited

for gyrokinetic continuum simulations [96, 97]. In contrast, so-called Hamiltonian gyrocen-

tre models [95, 30] are often used in particle-in-cell codes [43]. They have the advantage

that they are free of explicit time derivatives of the perturbed electromagnetic vector po-

15



tential, but can lead to the so-called Ampère cancellation problem in gyrokinetic turbluence

simulations [98, 99, 100].

We start with the discussion of the guiding-centre coordinates. For brevity, we state and

interpret the result of the transformation. For an explicit calculation we refer to [101, 102,

103, 88]. In guiding-centre coordinates, the form ω1 reads

ω1
gc =

(
1

εB

qσ
c
A(Rgc) + εBmσv‖gcb(Rgc)− εB

mσc

qσ
µgcR

∗
)
· dRgc + εB

mσc

qσ
µgc dθgc

− k dt−Hgc dλ+O(ε2B) , (2.35)

where the expression R∗ =∇b1 · b2 + (b ·∇× b) b/2 and the Hamiltonian

Hgc =
1

2
mσv

2
‖gc + µgcB(Rgc)− k (2.36)

were used. As a result of the guiding-centre transformation, the symplectic and Hamiltonian

part of ω1 are independent of the gyroangle θgc. The Poisson bracket of the system is calcu-

lated from the symplectic part of ω1 by deriving the matrix representation of the isomorphism

I, its inverse I−1 and using Eq. (2.15). It reads [30, 88]

{f, g}gc =
1

εB

qσ
mσc

(
∂f

∂θgc

∂g

∂µgc
− ∂f

∂µgc

∂g

∂θgc

)
+

B∗gc

mσB∗‖gc

·
(
∇∗gcf

∂g

∂v‖gc
− ∂f

∂v‖gc
∇∗gcg

)
− εB

cb

qσB∗‖gc

·
(
∇∗gcf ×∇∗gcg

)
+

(
∂f

∂k

∂g

∂t
− ∂f

∂t

∂g

∂k

)
, (2.37)

where the definitions

∇∗gc =∇+R∗
∂

∂θgc
(2.38)

B∗gc = B + εB
mσc

qσ
v‖gc∇× b− ε2B

mσc
2

q2
σ

µgc∇×R∗ (2.39)

were used. The parallel component of B∗gc is called B∗‖gc = b · B∗‖gc. The Jacobian of the

transformation from laboratory coordinates (R,ϕ, µ, v‖, µ, θ) into guiding-centre coordinates

(Rgc, ϕgc, Zgc, v‖gc, µgc, θgc) is given by Jgc = m2
σB
∗
‖
†. Although the guiding-centre coordi-

nates are already quite involved, they have a straightforward interpretation: The relation

between the particle and its guiding-centre position is given by R = Rgc + ρgc(Rgc, µgc, θgc)

with the guiding-centre displacement

ρgc(Rgc, µgc, θgc) =
mσc

qσB(Rgc)

√
2µgyB(Rgy)

m
ρ(θgc,Rgc) +O(εB) . (2.40)

We only present the guiding-centre displacement ρgc up to order εB. For the full expression

†The guiding-centre Jacobian is often also given as Jgc = mσB
∗
‖ . The difference originates from the use

of p‖ instead of v‖ in the guiding-centre coordinates.
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we refer to [88, Appendix A]. The guiding-centre position can be interpreted as the centre

of the gyromotion of the particle given the non-uniform magnetic field. We continue with

the discussion of gyrocentre coordinates. To perform the transformation, the perturbed

electromagnetic fields are added to ω1 again. The 1-form is transformed into

ω1
gc → ω1

gc +
qσ
c
A1 (Rgc + ρgc, t) · d (Rgc + ρgc)− qσφ1 (Rgc + ρgc, t) dλ (2.41)

and regains an explicit dependence on the fast gyroangle θgc through the guiding-centre

displacement vector ρgc. Before we present the 1-form in gyrocentre coordinates, we introduce

further notation that is used throughout this chapter. We define the well-known gyroaverages

by

G : ψ 7→
(

(R, v‖, µ) 7→ 1

2π

∫ 2π

0
ψ(R, v‖, µ, θ)dθ

)
(2.42)

and the fluctuating part of a function g, called g̃, by g̃ := g − G[g]. We define the parallel

and orthogonal components of the electromagnetic vector potential by

A1‖(Rgy, t) := b(Rgy) ·A1(Rgy, t) (2.43)

A1⊥(Rgy, t) := A1(Rgy, t)−A1‖(Rgy, t)b , (2.44)

and we introduce the effective electrostatic potential

ψ1(Rgy, v‖gy, µgy, θgy, t) = φ1(Rgy + ρgc, t)

−
√

2µgyB(Rgy)

mc2
⊥(θgy,Rgy + ρgc) ·A1⊥(Rgy + ρgc, t) . (2.45)

The transformation to gyrocentre coordinates and, in the process, the elimination of the fast

gyroangle in the electromagnetic fields is done with the help of Lie transformations [104].

Methods free of Lie transformations based on variational averaging have been used for the

derivation as well [105]. Similar to the gyrocentre reduction, we state the results. For a

detailed derivation we refer to [106, 30, 88]. In gyrocentre coordinates, the 1-form reads

ω1
gy =

(
qσ
c

(A(Rgy) + εδA1(Rgy + ρgy)) +mσv‖gyb(Rgy)− mσc

qσ
µR∗

)
· dRgy

+
mσc

qσ
µgy dθgy − k dt−Hgy dλ+O(ε3δ) , (2.46)

with the gyrocentre Hamiltonian [30]

Hgy = Hgc + εδqσG[ψ1] + ε2δ

(
q2
σ

2mc2

(
G
[
|A1(Rgy + ρgy, t)|2

]
−G

[
A1‖(Rgy + ρgy, t)

]2)

− q2
σ

2B(Rgy)

∂G
[
ψ̃1

2
]

∂µgy
− mc2

2B(Rgy)2
b(Rgy) ·G

[
∇ψ̃1 ×

∫
∇ψ̃1 dθgy

]
+G [A1⊥(Rgy + ρgy, t)] ·

qσ
B
b×∇G [ψ1]

)
+O(ε3δ) . (2.47)
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Analogous to Eq. (2.37), the Poisson bracket in gyrocentre coordinates is obtained by deriving

the matrix representation of the isomorphism I, calculating I−1 and using Eq. (2.15). It

reads [30]

{f, g}gy =
qσ
mσc

(
∂f

∂θgy

∂g

∂µ∗gy

− ∂f

∂µ∗gy

∂g

∂θgy

)
+

B∗

mσB∗‖
·
(
∇∗gyf

∂g

∂v‖gy
− ∂f

∂v‖gy
∇∗gyg

)
− cb

qσB∗‖
·
(
∇∗gyf ×∇∗gyg

)
+

(
∂f

∂k

∂g

∂t
− ∂f

∂t

∂g

∂k

)
, (2.48)

where the definitions

∇∗gyf =∇∗gcf − εδ
qσ
c

(
∂G[A1(Rgy + ρgc, t)]

∂t

∂f

∂k
− qσ
mσc

∂G[A1(Rgy + ρgc, t)]

∂µgy

∂f

∂θgy

)
(2.49)

∂f

∂µ∗gy

=
∂f

∂µgy
− ε2δ

(
qσ
c

∂G[A1(Rgy + ρgc, t)]

∂t
·
(
∂G[A1(Rgy + ρgc, t)]

∂µgy
× b
))

∂f

∂k
(2.50)

and

B∗ = B∗gc + εδG[∇×A1] (2.51)

were used. With Eqs. (2.47) and (2.48), Hamilton’s equations of motion in gyrocentre coor-

dinates read [30]

Ṙgy =
B∗

mσB∗‖

∂Hgy

∂v‖gy
+

c

qσB∗‖
b×

(
∇Hgy + εδ

qσ
c

∂G[A1(Rgy + ρgc, t)]

∂t

)
(2.52)

v̇‖gy = − B∗

mσB∗‖
·
(
∇Hgy + εδ

qσ
c

∂G[A1(Rgy + ρgc, t)]

∂t

)
(2.53)

µ̇gy = 0 (2.54)

ṫ = 1 . (2.55)

For brevity, we omitted the equations of motion for θ and k. As required at the beginning

of the section, the equations of motion for Rgy, v‖gy and µgy are independent of the fast

gyroangle θgy. With the gyrokinetic Lagrangian 1-form the dynamics of charged particles in

the plasma is specified. We proceed by deriving the gyrokinetic Vlasov-Maxwell system to

obtain equations for the distribution function as well as the perturbed electromagnetic fields.

From now on, we drop the gy annotation on the gyrocentre coordinates and assume that we

work in gyrocentre coordinates unless explicitly specified otherwise. In addition, we omit the

ordering parameters εδ and εB.

2.3.2. The Vlasov equation in gyrocentre coordinates

The particle follows a trajectory through the eight-dimensional extended phase space. The

path is denoted with γ : λ 7→ γ(λ) = (R(λ), t(λ), v‖(λ), µ(λ), θ(λ), k(λ)) such that γ(0)

represents the initial state of the particle. According to Liouville’s theorem in Hamiltonian
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mechanics, the distribution function in extended phase space, denoted by Fσ, is constant

along the trajectories γ of the system, i.e.

Fσ(γ(λ)) = Fσ(γ(0)). (2.56)

Differentiating Eq. (2.56) with respect to the orbit parameter yields the Vlasov equation in

extended phase space

dFσ
dt

= Ṙ ·∇Fσ + ṫ
∂Fσ
∂t

+ v̇‖
∂Fσ
∂v‖

+ µ̇
∂Fσ
∂µ

+ θ̇
∂Fσ
∂θ

+ k̇
∂Fσ
∂k

= 0 . (2.57)

As mentioned in the beginning, the physical motion of the particle takes place on the hy-

persurface H = 0. The extended phase space is reduced to six dimensions by projecting

it onto the hypersurface defined by H = 0 and using Hamilton’s equations of motion for t

to replace the orbit parameter λ. To meet these physical requirements, the extended dis-

tribution function Fσ is related to the six-dimensional, physical distribution function fσ via

Fσ = fσδ(H(k)), where δ is the Dirac delta function [30]. The Vlasov equation on the

six-dimensional hypersurface is obtained by integrating Eq. (2.57) over k. It reads

dfσ
dt

=
∂fσ
∂t

+ Ṙ ·∇fσ + v̇‖
∂fσ
∂v‖

+ µ̇
∂fσ
∂µ

+ θ̇
∂fσ
∂θ

= 0 . (2.58)

Similar to the last section, the particle distribution function fσ can be split into a gyroaver-

aged part G[fσ] and a fluctuating part f̃σ such that fσ = G[fσ] + f̃σ. By construction of the

gyrocentre coordinates, both parts evolve independently in time according to [105]

∂G[fσ]

∂t
+ Ṙ ·∇G[fσ] + v̇‖

∂G[fσ]

∂v‖
+ µ̇

∂G[fσ]

∂µ
= 0 (2.59)

∂f̃σ
∂t

+ Ṙ ·∇f̃σ + v̇‖
∂f̃σ
∂v‖

+ µ̇
∂f̃σ
∂µ

+ θ̇
∂f̃σ
∂θ

= 0 . (2.60)

In gyrokinetic theory the fluctuating part f̃σ is discarded and only the gyroaveraged part

G[fσ] is retained. This removes the fast time scales associated with the gyroangle θ from the

system and, therefore, reduces the phase space from six to five dimensions. The equation

of motion for the gyroaveraged distribution function is known as the gyrokinetic Vlasov

equation. In slight abuse of notation we denote the gyroaveraged distribution function G[fσ]

with fσ and the gyroaveraged extended distribution function G[Fσ] with Fσ for the remainder

of this work. The gyrokinetic Vlasov equation reads

∂fσ
∂t

+ Ṙ ·∇fσ + v̇‖
∂fσ
∂v‖

= 0 , (2.61)

where the time derivative of the gyrocentre trajectories γ̇ are given by Hamilton’s equation

of motion presented in Eqs. (2.52) and (2.53).
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2.3.3. The gyrokinetic action functional

To solve the dynamics of the plasma self consistently, additional equations for the perturbed

electromagnetic fields φ1 and A1 are needed. They are commonly derived via variational

methods from the total gyrokinetic action functional of the plasma. We start with the particle

Lagrangian, which is obtained from ω1 via Eq. (2.18). Expressed in gyrocentre coordinates,

the particle Lagrangian reads

L(γ, γ̇, λ) =

(
qσ
c

(A+A1) +mσv‖b−
mσc

qσ
µR∗

)
· Ṙ+

mσc

qσ
µθ̇ − kṫ−H . (2.62)

From Eq. (2.62) the total gyrokinetic Lagrangian can be derived [107, 106]. It yields

L(γ, γ̇, φ1,A1, λ) =
∑
σ

∫
Fσ(γ(0), t)L(γ(0), γ̇(0), t) dΩ +

∫
E2 −B2

tot

8π
dV dt , (2.63)

where we used the volume element of the extended phase space dΩ = dW dk dV dt, the

volume element of velocity space dW = 2πJgy/m
3
σ dv‖ dµ, the gyrocentre Jacobian Jgy =

Jgc + m2
σG[b ·∇×A1], the volume element of real space dV , the electric field E = −∇φ1

and the magnetic field Btot =∇×(A+A1). In the following, we use cylindrical coordinates

(R,ϕ,Z) in real space such that dV = R dR dϕdZ. The gyrokinetic action functional is

defined as the time integral of the total gyrokinetic Lagrangian

I(γ, φ1,A1, λ) :=

∫ λ

0
L(γ(λ̃), γ̇(λ̃), φ1(γ(λ̃), λ̃),A1(γ(λ̃), λ̃), λ̃) dλ̃ . (2.64)

The equations of motion for the particle in gyrocentre coordinates as well as the gyrokinetic

field equations can be derived from the action functional with variational calculus [106, 88, 30].

To perform the calculation, we define the functional derivative. Let I : V → R be a functional

defined on a suitable vector space V . The functional derivative δI : V → R for ζ ∈ V is the

functional defined by

δI(ψ; ζ) := lim
ε→0

I(ψ + εζ)− I(ψ)

ε
. (2.65)

By requiring δI(φ1; δφ1) = 0 the gyrokinetic Poisson equation is derived, by requiring

δI(A1; δA1) = 0 the gyrokinetic Ampère’s law is derived and by requiring δI(γ; δγ) = 0

the Euler-Lagrange equations for the particle Lagrangian

d

dt

∂L

∂γ̇i
=
∂L

∂γi
(2.66)

are derived, which are equivalent to Hamilton’s equation of motion presented in Eqs. (2.52),

(2.53), (2.54) and (2.55). For simplicity, we perform the variation with respect to φ1 and A1

after we have simplified the model. For a derivation of the field equations of the full system,

represented by Eq. (2.64), we refer to [30, 88].
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2.3.4. Simplification of the gyrokinetic Vlasov-Maxwell system

In order to focus on the development of a gyrokinetic turbulence code targeted for the edge

and SOL, it is beneficial to further simplify the gyrokinetic Vlasov-Maxwell system. The

physics in the edge and SOL is not only described by the gyrokinetic interaction of the

plasma with the electromagnetic fields, but also by collisions and neutral physics, which are

not covered by gyrokinetic theory. If needed, the approximations made can be lifted step by

step in the future. We think that it is very important to understand the nature and origin

of the approximations made. Therefore, we explain and justify the simplifications in this

section in detail. In order to satisfy precise conservation laws with self-consistent equations,

we simplify the system such that the Hamiltonian structure of the equations is retained. We

start by neglecting all orthogonal fluctuations of the electromagnetic vector potential A1, i.e.

A1⊥ = 0 . (2.67)

Orthogonal fluctuations in the electromagnetic vector potential give rise to parallel fluctua-

tions in the magnetic field. They have shown to be important in the simulations of kinetic

ballooning modes in the core of fusion devices [108]. We focus on the implementation of paral-

lel electromagnetic fluctuations that already model finite β effects and decrease the frequency

of kinetic shear Alfv́en waves, which has a positive effect on the timestep of the simulation

and is discussed further in Section 6.4. With this simplification the electromagnetic vector

potential is solely given by its parallel component

A1 = A1‖b . (2.68)

We neglect the O(εB) term R∗. Further, we employ a long wavelength limit k⊥ρ � 1 [109]

simplifying the gyrocentre displacement

g(R+ ρ) ≈ g(R) + ρ · (∇⊥g)(R) . (2.69)

With this simplification gyroaverages of functions of the form G[g(R + ρ)] reduce to the

function g itself. Terms of the form G[g̃] vanish. With the long wavelength approximation

and the vanishing of A⊥, the second order part of the Hamiltonian, H2, is greatly simplified

and reads [109]

H2 ≈ −
q2
σ

2B(R)

∂G
[
ψ̃1

2
]

∂µ

≈ −mσc
2

2B2
|∇⊥φ1|2. (2.70)

The long wavelength limit is often referred to as the drift-kinetic limit of the gyrokinetic

equations [57, 59, 60]. Although most gyroaverage operations vanish, the second order,

finite-Larmor radius effect in Eq. (2.70) is retained. It gives rise to the polarisation that

is used to calculate the electrostatic potential φ1 in the gyrokinetic Poisson equation. The
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simplified Hamiltonian reads H = H0 +H1 +H2 with

H0 =
1

2
mσv

2
‖ + µB − k (2.71)

H1 = qσφ1 (2.72)

H2 = −mσc
2

2B2
|∇⊥φ1|2 (2.73)

and the simplified Poisson bracket in gyrocentre coordinates is given by

{f, g} =
qσ
mσc

(
∂f

∂θ

∂g

∂µ
− ∂f

∂µ

∂g

∂θ

)
+

B∗

mσB∗‖
·
(
∇f ∂g

∂v‖
− ∂f

∂v‖
∇g
)

− qσ
mσc

∂A1‖

∂t

(
∂f

∂k

∂g

∂v‖
− ∂f

∂v‖

∂g

∂k

)
− cb

qσB∗‖
· (∇f ×∇g) +

∂f

∂t

∂g

∂k
− ∂f

∂k

∂g

∂t
, (2.74)

with the guiding-centre magnetic field

B∗ = B +
mσc

qσ
v‖∇× b+∇×

(
A1‖b

)
. (2.75)

In this form B∗ depends on A1‖. Next, we simplify the free field part of the Lagrangian. We

employ the quasi-neutrality approximation and neglect the E2 term in Eq. (2.63) [106]. We

linearise the polarisation by assuming that H2 acts on the initial distribution F0σ [110, 106].

The gyrokinetic Lagrangian with the described simplifications is given by

L =
∑
σ

∫ ((qσ
c

(
A+A1‖b

)
+mσv‖b

)
· Ṙ

+
mσc

qσ
µθ̇ − kṫ− 1

2
mσv

2
‖ − µB − qσφ1 + k

)
Fσ dΩ

+

∫ (∑
σ

mσc
2

2B2
|∇⊥φ1|2F0σ −

1

8π
|∇×

(
A1‖b

)
|2
)

dV dt . (2.76)

Hamilton’s equations of motion read

Ṙ = v‖
B∗

B∗‖
+

c

qσB∗‖
b× (µ∇B + qσ∇φ1) (2.77)

v̇‖ = − B∗

mσB∗‖
· (µ∇B + qσ∇φ1)− qσ

mσc

∂A1‖

∂t
, (2.78)

where we have omitted the second order term, generated by H2, to ensure energetic consis-

tency due to the linearisation of the quasi-neutrality equation [110]. Finally, we assume that
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the magnetic field created by A1‖ is orthogonal to b by simplifying

∇×
(
A1‖b

)
=∇A‖ × b+A1‖∇× b

≈∇A1‖ × b . (2.79)

This approximation cannot be made on the Lagrangian entirely. The field part of the La-

grangian can be simplified 1/(8π)|∇×
(
A1‖b

)
|2≈ 1/(8π)|∇⊥A1‖|2. Nevertheless, the modifi-

cation of the symplectic part is not straightforward. Therefore, we perform the simplification

on the Poisson bracket of the system, where B∗, presented in Eq. (2.75), is modified to

B∗ ≈ B +mσv‖
c

qσ
∇× b+∇A1‖ × b . (2.80)

This simplification removes the A1‖ dependence of B∗‖ because b ·
(
∇A1‖ × b

)
= 0. Conse-

quently, Jgy = Jgc and the velocity space volume element, dW , is independent of A1‖, which

decouples the gyrokinetic field equations.

2.3.5. The gyrokinetic field equations

The quasi-neutrality equation is derived by requiring that the variation of the action func-

tional with respect to φ1 vanishes. The variation reads

δI(φ1; δφ1) = −
∑
σ

qσ

∫
Fσδφ1 dΩ +

∑
σ

∫
mσc

2

B2
F0σ∇⊥φ1 ·∇⊥δφ1

2π

mσ
B∗‖ dv‖ dµ dk dV dt

= 0∀δφ1 . (2.81)

This is also known as the weak formulation of the quasi-neutrality equation and can be used

directly in a finite element discretisation scheme [111]. We are interested in a finite difference

discretisation and derive a strong formulation of the quasi-neutrality equation. We use the

product rule to modify the integrand

F0σ

B2
B∗‖∇⊥φ1 ·∇⊥δφ1 =∇ ·

(
δφ1
F0σ

B2
B∗‖∇⊥φ1

)
−∇ ·

(
F0σ

B2
B∗‖∇⊥φ1

)
δφ1 (2.82)

and apply the divergence integral theorem, where we assume that the boundary integral

vanishes

−
∑
σ

qσ

∫
Fσδφ1 dΩ−

∑
σ

∫
1

B∗‖
∇ ·

(
mσc

2

B2
F0σB

∗
‖∇⊥φ1

)
δφ1 dΩ = 0 ∀δφ1 . (2.83)

By applying the fundamental lemma of variational calculus, we obtain the strong form of the

quasi-neutrality equation

−∇ ·
(∑

σ

mσc
2

B2
n0σ∇⊥φ1

)
=
∑
σ

qσ

∫
fσ dW , (2.84)
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with the initial density n0σ =
∫
f0σ dW . Similar to the quasi-neutrality equation, we derive

Ampère’s law by requiring that the variation of the action functional with respect to A1‖

vanishes

δI(A1‖; δA1‖) =
∑
σ

qσ
c

∫
v‖FσδA1‖ dΩ− 1

4π

∫
∇⊥A1‖ ·∇⊥δA1‖ dV dt = 0∀δA‖ . (2.85)

After applying the divergence theorem and requiring that boundary terms vanish, we obtain

Ampère’s law

−∆⊥A1‖ = 4π
∑
σ

qσ
c

∫
fσv‖ dW , (2.86)

where we have used the definition ∆⊥ := ∇ · ∇⊥. In the symplectic formulation of the

gyrokinetic Vlasov equation, presented above, explicit time derivatives of A1‖ appear. To

allow for a straightforward temporal discretisation in Section 4.2, we derive a generalised

Ohm’s law by taking the time derivative of Eq. (2.86) and solving for ∂A1‖/∂t directly

[98, 96, 97]

−∆⊥
∂A1‖

∂t
= 4π

∑
σ

qσ
c

∫
∂fσ
∂t

v‖ dW . (2.87)

We write the Vlasov equation as

∂fσ
∂t

=

(
∂fσ
∂t

)?
+

qσ
mσc

∂fσ
∂v‖

∂A1‖

∂t
, (2.88)

where (∂fσ/∂t)
? denotes the part excluding explicit time derivatives. Inserting Eq. (2.88)

into Eq. (2.87) yields the generalised Ohm’s law

−

(
∆⊥ + 4π

∑
σ

q2
σ

mσc2

∫
∂fσ
∂v‖

v‖ dW

)
∂A1‖

∂t
= 4π

∑
σ

qσ
c

∫ (
∂fσ
∂t

)?
v‖ dW . (2.89)

Eqs. (2.61), (2.77), (2.78), (2.80), (2.84), (2.86) and (2.89) describe the system implemented

in the GENE-X code.

2.3.6. Conservation laws

The gyrokinetic Vlasov-Maxwell system, presented in the last section, fulfils multiple conser-

vation laws. On the one hand, conservation laws are important to ensure numerical stability,

on the other hand, they can serve as a method of verification of the numerical scheme. In this

section, we discuss the conservation of the particle number, momentum and energy of the

gyrokinetic system. As we performed the approximation in Eq. (2.75) on the Poisson bracket

and not on the Lagrangian of the system, we proof the conservation by direct calculation.

We start with the energy

E = EH − Eφ + EA , (2.90)
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with the contributions

EH =
∑
σ

∫
Hσfσ dV dW =

∑
σ

∫ (
1

2
mσv

2
‖ + µB + qσφ

)
fσ dV dW (2.91)

EA =

∫
1

8π
|∇⊥A1‖|2dV (2.92)

Eφ =

∫
mσc

2

2B2
n0σ|∇⊥φ1|2dV . (2.93)

We assume that the domain is periodic and boundary terms vanish. The time derivative of

the Hamiltonian part of the energy reads

∂EH
∂t

=
∑
σ

∫ (
∂Hσ

∂t
fσ +Hσ

∂fσ
∂t

)
dV dW

=
∑
σ

∫ [
qσ
∂φ1

∂t
fσ +Hσ

(
{fσ, Hσ}? +

qσ
mσc

∂A‖

∂t

∂fσ
∂v‖

)]
dV dW

=
∑
σ

∫ [
qσ
∂φ1

∂t
fσ −

qσ
c

∂A‖

∂t
v‖fσ

]
dV dW , (2.94)

where we used the integral property of the Poisson bracket∫
Hσ{fσ, Hσ}? dV dW = 0 , (2.95)

proved in Appendix A.4, and partial integration in v‖. The Poisson bracket { , }? is given by

Eq. (2.74) without the ∂A1‖/∂t term. We continue with the energy contribution of the elec-

tromagnetic vector potential. The rate of change of the electromagnetic energy is simplified

with Ampère’s law to

∂EA
∂t

=

∫
1

8π

∂

∂t
|∇⊥A‖|2dV =

∫
1

4π
∇⊥A‖ ·∇⊥

∂A‖

∂t
dV

= −
∫

1

4π
∆⊥A‖

∂A‖

∂t
dV =

∑
σ

qσ
c

∫
∂A‖

∂t
v‖fσ dV dW , (2.96)

and the rate of change of the electrostatic energy is simplified with the quasi-neutrality

equation to

∂Eφ
∂t

=
∑
σ

∫
mσc

2

2B2
n0σ

∂

∂t
|∇⊥φ1|2dV =

∑
σ

∫
mσc

2

B2
n0σ∇⊥φ1 ·∇⊥

∂

∂t
φ1 dV

= −
∑
σ

∫
∇ ·

(
mσc

2

B2
n0σ∇⊥

)
∂φ1

∂t
dV =

∑
σ

∫
qσ
∂φ1

∂t
fσ dV dW . (2.97)

Combining Eqs. (2.94), (2.96) and (2.97) yields

∂E

∂t
=
∂EH
∂t
−
∂Eφ
∂t

+
∂EA
∂t

= 0. (2.98)
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The expression for the energy is further simplified by using the weak form of the quasi-

neutrality equation, presented in Eq. (2.81), with δφ1 = φ1

E =
∑
σ

∫ (
1

2
mσv

2
‖ + µB +

1

2
qσφ1

)
fσ dV dW +

∫
1

8π
|∇⊥A1‖|2dV . (2.99)

Liouville’s theorem states that the characteristics of the system satisfy the conservation

law [30, 42]

∇ ·
(
JgyṘ

)
+

∂

∂v‖

(
Jgyv̇‖

)
= 0 . (2.100)

This property can be used to write the gyrokinetic Vlasov equation in the form of a conser-

vation law
∂ (Jgyfσ)

∂t
+∇ ·

(
JgyfσṘ

)
+

∂

∂v‖

(
Jgyfσv̇‖

)
= 0 . (2.101)

Integrating Eq. (2.101) over phase space and assuming that boundary terms vanish yields

the conservation of the number of particles

nσ =

∫
fσ dV dW . (2.102)

Finally, we discuss the conservation of canonical toroidal momentum. For a complete dis-

cussion of momentum conservation of the gyrokinetic Vlasov-Maxwell system we refer to

[110, 112]. The canonical toroidal momentum of a particle is defined as

pϕ :=
∂L

∂ϕ̇
, (2.103)

where ϕ denotes the toroidal angle in a cylindrical coordinate system. We use the canonical

toroidal momentum in Section 4.5 to construct an initial condition for the simulations. The

canonical toroidal momentum of a particle is conserved under the assumption of an axisym-

metric equilibrium B = B(R,Z) and a time independent electromagnetic vectorpotential

A1‖. In the following, we assume that A1‖ = 0. The conservation of the canonical toroidal

momentum follows directly from the Euler-Lagrange equations and the independence of the

particle Lagrangian L of ϕ, i.e.
∂L

∂ϕ
= 0 . (2.104)

Using R = ReR + ZeZ and Ṙ = ṘeR + Rϕ̇eϕ + ŻeZ , the canonical toroidal momentum

reads

pϕ =
(qσ
c
A+mσv‖b

)
Reϕ

=
qσR

c
Aϕ +mσv‖bϕR . (2.105)

26



We simplify the expression by using the poloidal flux function defined as†

ψp :=
1

2π

∫
DR(0)

B · dF =
1

2π

∫
DR(0)

∇×A · dF =
1

2π

∫
∂DR(0)

A · dl = RAϕ , (2.106)

where the axisymmetry of the electromagnetic vector potential and Stokes theorem were used.

The set DR(0) denotes a disk of radius R with the origin at the magnetic axis in the R,Z

plane. With the poloidal flux function, the canonical toroidal momentum simplifies to

pϕ =
qσ
c
ψp +mσv‖bϕR . (2.107)

The conserved canonical toroidal momentum of the total gyrokinetic system reads [112]

Pϕ :=
∑
σ

∫ (qσ
c
ψp +mσv‖bϕR

)
fσ dV dW . (2.108)

2.4. Conclusion and outlook

In this chapter, we presented an overview of gyrokinetic theory and introduced the gyrokinetic

model implemented in the GENE-X code. The model presented is consistent, evolves the full

distribution function and fulfils multiple exact conservation laws. We put a special emphasis

on a precise presentation of the gyrokinetic theory and a rigorous simplification from the full

second order theory to the model implemented. This makes the generalisation of the model

straightforward in the future.

The model implemented uses a long wavelength limit, a linearisation of the polarisation

density and neglects perpendicular electromagnetic fluctuations.

For the application of GENE-X to the edge and SOL, the linearisation of the polarisation

density should be lifted first. Next to a nonlinear quasi-neutrality equation, this generates

additional terms in the gyrokinetic Vlasov equation as the second order part of the Hamil-

tonian H2, generating the polarisation, acts on the full distribution function fσ and not the

linearisation f0σ [110, 106]. Furthermore, the implementation of gyroaverages and, conse-

quently, further second order terms would be interesting.

Next to the gyrokinetic plasma model, other physical effects like collisions and neutral physics

are important in the edge and SOL. In Chapter 7, we present first simulations that use a

simplified Bhatnagar-Gross-Krook (BGK) collision operator [113]. The implementation of

more sophisticated collision operators, like a full-f Lennard-Bernstein/Dogherty operator

[114, 115], is work in progress [116]. To study the effect of neutrals on gyrokinetic edge and

SOL turbulence, implementing the simple fluid neutral model used in the GRILLIX code [80]

is a good starting point for future developments.

†Note that the poloidal flux function defined here contains a factor of 1/(2π), as it appears in the Grad-
Shafranov equation. It is also common to define the poloidal flux without the factor of 1/(2π), e.g. in [8].
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3. Coordinate systems

Due to the strong magnetic field in fusion devices, structures in the plasma are homogeneous

along and heterogeneous perpendicular to magnetic field lines. This property is also referred

to as the flute-like character of the plasma and produces small gradients parallel to magnetic

field lines. It can be exploited in turbulence simulations by choosing a coordinate system in

which parallel gradients resolve to a partial derivative in one of the coordinate variables. This

enables the use of a reduced resolution in the corresponding direction, sufficient to resolve

the small gradients, and spares computational resources.

For predictive edge and SOL simulations it is further important that the chosen coordinate

system is well-defined in realistic magnetic geometries, including the separatrix and one or

even multiple X-points.

In this chapter, we discuss coordinate systems suitable for turbulence simulations in magnetic

confinement fusion devices†. We discuss the advantages and disadvantages of established flux-

coordinate systems and introduce the locally field-aligned coordinate system based on the

flux-coordinate independent approach [76], implemented in the GENE-X code. This coordinate

system is free of coordinate singularities while still being aligned to the magnetic field. It can

handle general fusion device geometries including multiple X-points and stochastic regions.

3.1. Flux coordinate systems

In the gyrokinetic community so-called flux-coordinate systems are common. In these mag-

netic field lines are straight and one coordinate, we call it ζ, can be chosen such that the

desired property

b ·∇f ∝ ∂f

∂ζ
(3.1)

is fulfilled. We start the discussion of flux-coordinate systems from the cylindrical-toroidal

coordinates introduced in Chapter 2. For simplicity, we assume that the magnetic field is

axisymmetric and given as a function of (r, θ, ϕ). The first coordinate ψ of the flux-coordinate

system is a label for the flux surfaces. It can for example be realised with the toroidal flux

function, the poloidal flux function, the volume of a flux surface or the pressure on a flux

surface. [73]. Consider a magnetic field line on a given flux surface. The rotational transform

angle ι of the magnetic field line is defined as the poloidal angle θ travelled by a field line

†The coordinate transformations presented in this chapter affect the gyrocentre position R and not the
velocity space.
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after one poloidal transit [73]. It can be expressed as [73]

ι :=
ι

2π
:=

dψp
dψt

, (3.2)

where ψp represents the poloidal flux function, defined in Eq. (2.106), and

ψt :=
1

2π

∫
At

B · dF (3.3)

the toroidal flux function. The set At is given by the part of a ϕ = const surface that lies

within the magnetic flux surface under consideration [73]. The q factor is defined as the

reciprocal of ι, i.e.

q :=
1

ι
. (3.4)

The two remaining coordinates of the flux-coordinate system are chosen such that magnetic

field lines are described by straight lines on a flux surface. Such a coordinate system can

be constructed by replacing either the toroidal angle or the poloidal angle with a new flux-

coordinate, or both at the same time [73]

ϕ→ ϕf (3.5)

θ → θf . (3.6)

The choice of ϕf and θf is not unique and many different flux coordinate systems can be

constructed. Often used are for example the coordinates implemented in the PEST code [117]

and the coordinate systems described by Hamada [118] and Boozer [119]. For the further

discussion, we assume generic flux angles θf and ϕf . The flux-coordinate system can be

modified such that the magnetic field is represented as a Clebsch form

B =∇ψ ×∇ν , (3.7)

with the new coordinate [73]

ν =
1

2π

∂ψt
∂ψ

θf −
1

2π

∂ψp
∂ψ

ϕf . (3.8)

In the Clebsch form ψ and ν identify a magnetic field line on a magnetic flux surface. The

position on a magnetic field line is then provided by the additional coordinate ζ. As∇ψ·b = 0

and ∇ν · b = 0, the magnetic field vector b is proportional to ∇ζ and parallel derivatives

resolve to partial derivatives in ζ. In tokamaks it is common to use the poloidal flux function

as a flux surface label such that [73]

ψ =
ψp
2π

(3.9)

ν = qθf − ϕf (3.10)

ζ = θf , (3.11)
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and in stellarators it is common to use the toroidal flux function as a flux surface label such

that [73]

ψ =
ψt
2π

(3.12)

ν = θf − ιϕf (3.13)

ζ = ϕf . (3.14)

Nevertheless, these coordinate systems have two major drawbacks making them unsuitable

for the simulation of edge and SOL turbulence. We explain the first problem at the example

of the coordinates given in Eqs. (3.9), (3.10) and (3.11). The term qθf in the coordinate

ν increases with the poloidal angle θf . This introduces a distortion in the grid for large

poloidal angles and large magnetic shear [120]. This problem can be partially solved by using

the so-called shifted-metric approach [120]. The manifold M of the plasma, introduced in

Chapter 2, is divided over the variable θf into a family of overlapping sectors, labelled by

{θk}. Within each sector the coordinate transformation is given by

ψ =
ψp
2π

(3.15)

ν = q(θf − θk)− ϕf (3.16)

ζ = (θf − θk) . (3.17)

If the number of sectors is chosen equal to the number of grid points in θf , the grid in ψ, ν is

orthogonal. Second, flux-coordinates are generally ill-defined at the separatrix. The reason

is the following. In flux coordinates magnetic field lines are straight and their equation can

be written as [73]

θf = ιϕf + θ0 . (3.18)

This implies that the flux-coordinates need to fulfil the relation

dθf
dϕf

= ι . (3.19)

At the X-point the toroidal transform vanishes and the angle θf reduces to a constant θ0

θf = θ0 . (3.20)

Hence, the coordinate transformation into flux-coordinates cannot be bijective [74] and is

ill-defined. To visualise the behaviour of flux coordinates close to the separatrix, we present

the lines of constant ψ and θf of the PEST coordinate system in Fig. 3.1. In summary, it is

not possible to use flux coordinate systems to simulate turbulence across the separatrix.
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Figure 3.1.: Figure displaying the lines of constant ψ and θf for the PEST coordinate system
in the magnetic geometry of AUG, used for simulations in Chapter 7. For ψ → 1
and θ 6= 0, the symmetry angle θf converges to the poloidal angle of the X-point.
This demonstrates visually that the PEST coordinate system is ill-defined on the
separatrix.

3.2. A locally field-aligned coordinate system

Including the separatrix and handling large magnetic shear is important for edge and SOL

plasmas. Therefore, we introduce a locally field-aligned coordinate system following the

flux-coordinate independent (FCI) approach [76] in this section. This coordinate system

retains the property that parallel gradients can be expressed as a partial derivative in one

of the coordinate variables while being able to handle the separatrix and large shear. The

coordinate system is similar to the one used in the GRILLIX code [86]. We introduce the

coordinate transformation and express the gyrokinetic Vlasov-Maxwell system in the new

coordinates.

3.2.1. Coordinate transformation

The results presented in this subsection have been published in [87]. For the completeness

of the presentation the inverse coordinate transformation, presented in Eq. (3.27), has been

added.

Consider a family of poloidal planes located at the angles ϕk. We define the locally field-

aligned coordinate system in a region [ϕk − ∆ϕ,ϕk + ∆ϕ] around the poloidal plane. For

linear fusion devices or calculations with a large aspect ratio assumption, the toroidal angle

ϕ is interpreted as a Cartesian coordinate labelling poloidal planes. For every k we define a

different coordinate system. Hence, the coordinate system is local to every poloidal plane.
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We choose ∆ϕ large enough that the coordinate systems for different poloidal planes overlap

and the collection of all these coordinate systems, or charts respectively, form an atlas of the

manifoldM. In the following, we assume without loss of generality that the poloidal plane is

located at ϕk = 0. It is always possible to rotate the cylindrical (R,ϕ,Z) coordinate system

such that ϕk = 0 is fulfilled. To derive the coordinate transformation, we use a Cartesian

reference frame (xc, yc, zc) on the poloidal plane such that xc points in the direction of the

cylindrical R coordinate, zc points in the direction of the cylindrical Z coordinate and yc out

of the poloidal plane. The magnetic field line is a curve γ : [0, 1]→M on the configuration

space manifold M and defined by the differential equation

dγ

dλ
= b ◦ γ . (3.21)

Let γcart = (γxc , γyc , γzc) be the curve of the magnetic field line expressed in the Cartesian

reference frame. Eq. (3.21) reads

dγxc
dλ

= bxc ◦ γcart (3.22)

dγyc
dλ

= byc ◦ γcart (3.23)

dγzc
dλ

= bzc ◦ γcart . (3.24)

We define the locally field-aligned coordinate system (x, y, z) by giving the coordinate trans-

formation τ from the locally field-aligned coordinate system to the Cartesian reference frame

τ :


x

y

z

 7→

xc

yc

zc

 =


x+

∫ y
0 bxc(γcart(u)) du∫ y

0 byc(γcart(u)) du

z +
∫ y

0 bzc(γcart(u)) du

 . (3.25)

Next, we construct the inverse τ−1. The function γyc assigns the yc coordinate of the magnetic

field line to its orbit parameter λ and is invertible in a region around the poloidal plane. In

this region the coordinate transformation can be inverted by substituting the orbit parameter

u, in the integral, with the function γyc(u) and using the derivative rule of the inverse function

dγ−1
yc

du
(u) =

1
dγyc
du (γ−1

yc (u))
=

1

byc(γ
−1
yc (u))

. (3.26)

The inverse reads

τ−1 :


xc

yc

zc

 7→

x

y

z

 =


xc −

∫ yc
0

bxc (γcart(γ−1
yc (u)))

byc (γcart(γ−1
yc (u)))

du∫ yc
0

1
byc (γcart(γ−1

yc (u)))
du

zc −
∫ yc

0
bzc (γcart(γ−1

yc (u)))

byc (γcart(γ−1
yc (u)))

du

 . (3.27)

The new coordinate system can be interpreted in a simple way. The y coordinate corresponds

to the length of the magnetic field line starting at the point (xc, yc = 0, zc). The x and z
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ϕ
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yc
xc

zc
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Figure 3.2.: Figure displaying the cylindrical (R,ϕ,Z) coordinate system, the Cartesian refer-
ence frame (xc, yc, zc) and the unit vectors (ex, ey, ez) of the locally field-aligned
(x, y, z) coordinate system. The locally field-aligned coordinate system is non-
orthogonal and coincides with the cartesian reference frame on the poloidal plane.
This figure has been published in [87].

coordinates correspond to the xc and yc coordinates of the point the field line is originating

from. On the poloidal plane, i.e. yc = ϕ = y = 0, the locally field-aligned coordinates coincide

with the Cartesian reference frame. The Jacobian matrix of the coordinate transformation

evaluated at y = 0 reads

J(x, 0, z) =

((
∂τ

∂x

)
(x, 0, z),

(
∂τ

∂y

)
(x, 0, z),

(
∂τ

∂z

)
(x, 0, z)

)

=


1 bxc 0

0 byc 0

0 bzc 1

 , (3.28)

and its inverse is given by

J−1(xc, 0, zc) =

((
∂τ−1

∂xc

)
(xc, 0, zc),

(
∂τ−1

∂yc

)
(xc, 0, zc),

(
∂τ−1

∂zc

)
(xc, 0, zc)

)

=


1 − bxc

byc
0

0 1
byc

0

0 − bzc
byc

1

 . (3.29)

For clarity, we omit the dependence of bxc , byc and bzc on x and z. The basis of the tangent

space at yc = 0 is given by the columns of the Jacobian matrix

ex =


1

0

0

 ey =


bxc

byc

bzc

 ez =


0

0

1

 . (3.30)

The basis is non-orthogonal. The basis vector ey is equal to the unit vector of the magnetic

field. The coordinate system is depicted in Fig. 3.2. We continue by introducing the metric

tensor and the dual basis of the coordinate system to set the stage for the derivation of the

differential operators.
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3.2.2. Metric coefficients

The results presented in this subsection have been published in [87]. For the completeness

of the presentation the inverse metric, presented in Eq. (3.33), and a discussion about the

orthogonal projection operator, presented in Eqs. (3.41)–(3.44), have been added.

The components of the metric tensor read

gij = JTJ (3.31)

=


1 bxc 0

bxc 1 bzc

0 bzc 1

 , (3.32)

the inverse reads

gij =
1

b2yc


b2xc + b2yc −bxc bxcbzc

−bxc 1 −bzc
bxcbzc −bzc b2zc + b2yc

 (3.33)

and the Jacobian determinant is given by

Jfci :=
√

det (gij) = byc . (3.34)

As gradients correspond to 1-forms, they are contained in the dual of the tangent space. The

basis of the dual space can be expressed as

ei = gijej , (3.35)

where the basis vectors ei of the tangent space, presented in Eq. (3.30), were used. Evaluating

Eq. (3.35) yields

ex =

(
1,−bxc

byc
, 0

)
(3.36)

ey =

(
0,

1

byc
, 0

)
(3.37)

ez =

(
0,−bzc

byc
, 1

)
. (3.38)

We derive the basis expansion of the covariant b vector

b = bie
i .

Remembering that b = ey, due to the alignment of the y coordinate line with the magnetic

field line, and using the relation between reciprocal sets of basis vectors ei = gije
j , we find

that

b = ey = g2je
j = bxce

x + ey + bzce
z . (3.39)
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This expression provides us with covariant components of the magnetic unit vector in the

chosen coordinate system

(bi) = (bxc , 1, bzc) . (3.40)

Finally, we derive two new basis vectors e1⊥ and e2⊥ that form an orthogonal basis system

(ey, e1⊥, e2⊥) with the magnetic field unit vector ey. By using the Gram-Schmidt process

on the basis vectors (ey, ez, ex) and rescaling the third output vector of the Gram-Schmidt

process, we obtain

e1⊥ =


−bxcbzc
−bzcbyc
1− b2zc

 e2⊥ =


1

− bxc
byc

0

 . (3.41)

We use Eq. (3.41) to construct a projection operator into the two-dimensional plane orthog-

onal to ey. Given a vector v = vxex + vyey + vzez in the locally field-aligned coordinate

system. We perform a change of basis into (ey, e1⊥, e2⊥)

v =
(
vy + bxcv

x + bycv
z
)
ey

+
(
vz +

bxcbzc
1− b2zc

vx
)
e1⊥

+
(
vx −

b2xc
1− b2zc

vx
)
e2⊥ (3.42)

and calculate the orthogonal projection v⊥ by setting the component parallel to ey to zero.

Reverting the change of basis to (ex, ey, ez) yields v⊥ expressed in the locally field-aligned

coordinate system

v⊥ = vxex − (bxcv
x + bzcv

z) ey + vzez . (3.43)

Formally, we define the orthogonal projection operator via

P⊥ : v → vxex − (bxcv
x + bzcv

z) ey + vzez . (3.44)

With these we are set to derive differential operators in the new coordinate system.

3.2.3. Differential operators

The results presented in this subsection have been published in [87]. For the completeness of

the presentation a discussion about the operator∇ ·(h∇⊥f), presented in Eqs. (3.56)–(3.60),

has been added.

There are four types of differential operators in the gyrokinetic Vlasov-Maxwell system which

need to be expressed in the locally field-aligned coordinate system

b ·∇f, (∇× b) ·∇f, (b×∇h) ·∇f and ∇ · (h∇⊥f) , (3.45)

where b = ey and f , h are arbitrary scalar functions. The first operation corresponds to the
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parallel derivative and is given by

b ·∇f = ey · ei
∂f

∂xi
=
∂f

∂y
. (3.46)

Eq. (3.46) shows that parallel derivatives are given by derivatives in the y coordinate. Due

to the flute-like property of the plasma, mentioned in the first section of this chapter, it

is, similar to flux-coordinates, possible to use a much coarser resolution in toroidal than in

poloidal direction. This saves computational resources. For the second and third operator we

express the curl and cross product in the new coordinate system. The curl of the magnetic

field unit vector b is given by

∇× b =
1

Jfci

3∑
k=1

εijk

(
∂bj
∂xi
− ∂bi
∂xj

)
ek,

=
1

byc

[
∂bzc
∂y

ex −
∂bxc
∂y

ez +

(
∂bxc
∂z
− ∂bzc

∂x

)
ey

]
, (3.47)

where the covariant components bi, presented in Eq. (3.40), were used. The gradient of a

function f in a curvilinear coordinate system can be expressed as

∇f =
∂f

∂xi
ei. (3.48)

We obtain the second operation by combining Equations (3.47) and (3.48) and considering

that ei · ej = δji

(∇× b) ·∇f =
1

byc

(
∂bzc
∂y

∂f

∂x
− ∂bxc

∂y

∂f

∂z
+

(
∂bxc
∂z
− ∂bzc

∂x

)
∂f

∂y

)
. (3.49)

The third operation is a triple vector product of the magnetic unit vector and two gradients

of scalar functions. The gradients of the functions h and f are given by

∇h =
∂h

∂xi
ei ∇f =

∂f

∂xj
ej . (3.50)

The vector product in the curvilinear coordinate system takes the form

A×B =
1

Jfci

3∑
k=1

εijk (AiBj −AjBi) ek (3.51)

By combining Eqs. (3.39), (3.50) and (3.51), we obtain the vector product of the magnetic

field unit vector with the gradient of h

b×∇h =
1

byc

[(
∂h

∂z
− bzc

∂h

∂y

)
ex +

(
bxc

∂h

∂y
− ∂h

∂x

)
ez

+

(
bzc
∂h

∂x
− bxc

∂h

∂z

)
ey

]
. (3.52)
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Taking the dot product of the last expression with the gradient of the function f yields the

third operation

(b×∇h) ·∇f =
1

byc

[(
∂h

∂z
− bzc

∂h

∂y

)
∂f

∂x
+

(
bxc

∂h

∂y
− ∂h

∂x

)
∂f

∂z

+

(
bzc
∂h

∂x
− bxc

∂h

∂z

)
∂f

∂y

]
. (3.53)

We continue by rewriting Eq. (3.53) in terms of canonical Poisson brackets

{h, f}x,y =
∂h

∂x

∂f

∂y
− ∂h

∂y

∂f

∂x
. (3.54)

This rewriting is used in the discretisation, presented in Chapter 4, where we employ the

Arakawa scheme for discretising Poisson brackets [121]

(b×∇h) ·∇f =
bxc
byc

(
∂h

∂y

∂f

∂z
− ∂h

∂z

∂f

∂y

)
+
bzc
byc

(
∂h

∂x

∂f

∂y
− ∂h

∂y

∂f

∂x

)
+

1

byc

(
∂h

∂z

∂f

∂y
− ∂h

∂x

∂f

∂z

)
=
bxc
byc
{h, f}y,z +

bzc
byc
{h, f}x,y +

1

byc
{h, f}z,x . (3.55)

The fourth operation is the divergence of a scalar function times the orthogonal gradient.

The orthogonal gradient of the scalar function f is defined with the orthogonal projection

operator P⊥, presented in Eq. (3.44), as

∇⊥f · v :=∇f · P⊥(v) (3.56)

and yields in the locally field-aligned coordinate system

∇⊥ = ex
(
∂

∂x
− bxc

∂

∂y

)
+ ez

(
∂

∂z
− bzc

∂

∂y

)
. (3.57)

The divergence of a vector field v in general curvilinear coordinate system reads

∇ · v =
1

Jfci

3∑
i=1

3∑
j=1

∂

∂xi
(
gijviJfci

)
. (3.58)

Combining Eqs. (3.57) and (3.58) yields the fourth operation in locally field-aligned coordi-

nates

∇ · (h∇⊥f) =
1

Jfci

3∑
i=1

3∑
j=1

∂

∂xi
(
gijh(∇⊥f)jJfci

)
. (3.59)

In Eqs. (3.32) and (3.57) the metric tensor and the perpendicular gradient are evaluated

on the poloidal plane at y = 0. As Eq. (3.59) contains y derivatives of the metric tensor

and the perpendicular gradient, the full expressions of both are needed. As a result of the
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y derivatives, the field equations on different poloidal planes are coupled and need to be

solved at once. To save computational resources, we decouple the field equations on different

poloidal planes by assuming that

∇ · (h∇⊥f) ≈
(

1

Jcyl

∂

∂x

(
Jcylh

∂f

∂x

)
+

∂

∂z

(
h
∂f

∂z

))
. (3.60)

In simulations of linear fusion devices or with a large aspect ratio assumption, the toroidal

angle ϕ is interpreted as a Cartesian coordinate labelling poloidal planes and the Jacobian

Jcyl is given by Jcyl = 1. In toroidal geometries it reads Jcyl = x. This approximation can

be performed on the field part of the Lagrangian by replacing the orthogonal gradient with

the gradient in cylindrical coordinates

∇⊥ ≈∇R,Z := eR
∂

∂R
+ eZ

∂

∂Z
. (3.61)

By performing the approximation on the Lagrangian, the gyrokinetic Vlasov-Maxwell systems

remains consistent. In summary, Eqs. (3.46), (3.49), (3.53) and (3.59) provide an explicit

form of the operations in the gyrokinetic Vlasov-Maxwell system in the locally field aligned

coordinate system. In GENE-X we replace Eq. (3.59) with Eq. (3.60).

3.2.4. Explicit form of the Vlasov-Maxwell system

The gyrokinetic Vlasov equation given by Eqs. (2.61), (2.77), (2.78) and (2.80) reads in the

new coordinates

∂f

∂t
+ v‖

B∗

B∗‖
·∇fσ︸ ︷︷ ︸

(a)

+
c

qσB∗‖
b× (µ∇B + qσ∇φ1) ·∇fσ︸ ︷︷ ︸

(b)

− B∗

mσB∗‖
· (µ∇B + qσ∇φ1)

∂fσ
∂v‖︸ ︷︷ ︸

(c)

− qσ
mσc

∂A1‖

∂t

∂fσ
∂v‖

= 0 (3.62)

with the components

(a) = v‖
B

B∗‖

∂fσ
∂y

+mσv
2
‖

c

qσB∗‖

1

byc

(
∂bzc
∂y

∂fσ
∂x
− ∂bxc

∂y

∂fσ
∂z

+

(
∂bxc
∂z
− ∂bzc

∂x

)
∂fσ
∂y

)

+
v‖

B∗‖

(
bxc
byc

(
∂A1‖

∂z

∂fσ
∂y
−
∂A1‖

∂y

∂fσ
∂z

)
+
bzc
byc

(
∂A1‖

∂y

∂fσ
∂x
−
∂A1‖

∂x

∂fσ
∂y

)

+
1

byc

(
∂A1‖

∂x

∂fσ
∂z
−
∂A1‖

∂z

∂fσ
∂x

))
, (3.63)
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(b) =
c

qσB∗‖

[
µ

(
bxc
byc

(
∂B

∂y

∂fσ
∂z
− ∂B

∂z

∂fσ
∂y

)
+
bzc
byc

(
∂B

∂x

∂fσ
∂y
− ∂B

∂y

∂fσ
∂x

)
+

1

byc

(
∂B

∂z

∂fσ
∂x
− ∂B

∂x

∂fσ
∂z

))
+ qσ

(
bxc
byc

(
∂φ1

∂y

∂fσ
∂z
− ∂φ1

∂z

∂fσ
∂y

)
+
bzc
byc

(
∂φ1

∂x

∂fσ
∂y
− ∂φ1

∂y

∂fσ
∂x

)
+

1

byc

(
∂φ1

∂z

∂fσ
∂x
− ∂φ1

∂x

∂fσ
∂z

))]
and (3.64)

(c) =
1

mσB∗‖

[
µ

(
B
∂B

∂y
+mσv‖

c

qσ

1

byc

(
∂bzc
∂y

∂B

∂x
− ∂bxc

∂y

∂B

∂z
+

(
∂bxc
∂z
− ∂bzc

∂x

)
∂B

∂y

)

+

(
bxc
byc

(
∂A1‖

∂z

∂B

∂y
−
∂A1‖

∂y

∂B

∂z

)
+
bzc
byc

(
∂A1‖

∂y

∂B

∂x
−
∂A1‖

∂x

∂B

∂y

)

+
1

byc

(
∂A1‖

∂x

∂B

∂z
−
∂A1‖

∂z

∂B

∂x

))

+ qσ

(
B
∂φ1

∂y
+mσv‖

c

qσ

1

byc

(
∂bzc
∂y

∂φ1

∂x
− ∂bxc

∂y

∂φ1

∂z
+

(
∂bxc
∂z
− ∂bzc

∂x

)
∂φ1

∂y

)

+

(
bxc
byc

(
∂A1‖

∂z

∂φ1

∂y
−
∂A1‖

∂y

∂φ1

∂z

)
+
bzc
byc

(
∂A1‖

∂y

∂φ1

∂x
−
∂A1‖

∂x

∂φ1

∂y

)

+
1

byc

(
∂A1‖

∂x

∂φ1

∂z
−
∂A1‖

∂z

∂φ1

∂x

))]
∂fσ
∂v‖

. (3.65)

In the new coordinate system, employing Eq. (3.60), the quasi-neutrality equations reads

−

(
1

Jcyl

∂

∂x

(
Jcyl

∑
σ

mσc
2n0σ

B2

∂

∂x

)
+

∂

∂z

(∑
σ

mσc
2n0σ

B2

∂

∂z

))
φ1 =

∑
σ

qσ

∫
fσ dW ,

(3.66)

Ampère’s law reads

−
(

1

Jcyl

∂

∂x

(
Jcyl

∂

∂x

)
+

∂2

∂z2

)
A1‖ = 4π

∑
σ

qσ
c

∫
fσv‖ dW (3.67)

and the generalised Ohm’s law reads

−

((
1

Jcyl

∂

∂x

(
Jcyl

∂

∂x

)
+

∂2

∂z2

)
+ 4π

∑
σ

q2
σ

mσc2

∫
∂fσ
∂v‖

v‖ dW

)
∂A1‖

∂t

= 4π
∑
σ

qσ
c

∫ (
∂fσ
∂t

)?
v‖ dW . (3.68)

3.2.5. Field line tracing

To calculate parallel y derivatives in practice, it is necessary to trace the position of magnetic

field lines from one poloidal plane to another. In this subsection, we show how to perform
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the field line tracing in the cylindrical coordinate system. We call the curve of the field line

expressed in cylindrical coordinates γcyl = (γR, γϕ, γZ). In cylindrical coordinates, Eq. (3.21)

reads

dγR
dλ

= bR ◦ γcyl (3.69)

dγϕ
dλ

= bϕ ◦ γcyl (3.70)

dγZ
dλ

= bZ ◦ γcyl . (3.71)

The length of the curve γcyl starting at the point γcyl(0) = R0 = (R0, ϕ0, Z0) is given by

l : R0 7→
∫ a

0
|b(γcyl(λ))|dλ = a , (3.72)

which demonstrates that the orbit parameter λ of the curve labels the length of the field line.

To follow the position of a magnetic field line, starting at R0, around the fusion device, we

parametrise the curve of the magnetic field line with its poloidal angle instead of its length.

We define the function that assigns the poloidal angle of the field line to its length as

s : ϕ 7→
∫ a

0
|b(γcyl(λ)|dλ = a = γ−1

ϕ (ϕ) , (3.73)

where a is chosen such that γϕ(a) = ϕ. The function s can be simplified

s(ϕ) =

∫ a

0
|b(γcyl(λ)|dλ

=

∫ γ−1
ϕ (ϕ)

0
1 dλ

=

∫ ϕ

ϕ0

dγ−1
ϕ

du
(u) du

=

∫ ϕ

ϕ0

1

bϕ(γcyl(γ
−1
ϕ (u))

du , (3.74)

where we have used Eq. (3.26). By taking the derivative of Eq. (3.74), we obtain an expression

for the derivative of the field line length(
ds

dϕ

)
(ϕ) =

1

bϕ(γcyl(γ
−1
ϕ (ϕ))

. (3.75)

Similar to the function s(ϕ), parametrising the field line length by the toroidal angle ϕ, it is

possible to derive functions Z(ϕ) and R(ϕ). They parametrise the R and Z coordinates the
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magnetic field line visits by the poloidal angle ϕ. Their derivatives read(
dR

dϕ

)
(ϕ) =

bR(γcyl(γ
−1
ϕ (ϕ)))

bϕ(γcyl(γ
−1
ϕ (ϕ)))

(3.76)(
dZ

dϕ

)
(ϕ) =

bZ(γcyl(γ
−1
ϕ (ϕ)))

bϕ(γcyl(γ
−1
ϕ (ϕ)))

(3.77)(
dϕ

dϕ

)
(ϕ) = 1 . (3.78)

Eqs. (3.75), (3.76), (3.77) and (3.78) provide the position of the magnetic field line and its

length in cylindrical coordinates given a starting position of the field line R0 and a poloidal

angle ϕ travelled. We solve the system numerically with an explicit Runge-Kutta method

of order eight called DOP853 [122, II. 5]†. The integration is implemented in the library

PARALLAX. For more details on PARALLAX we refer to Chapter 5.

3.3. Conclusion and outlook

When performing turbulence simulations of the edge and SOL, it is important to use a co-

ordinate system that (i) is aligned to the magnetic field and (ii) is well-defined for realistic

magnetic geometries, including the separatrix and multiple X-points. Flux-coordinate sys-

tems, which have been successfully used in fusion theory for decades, suffer from a coordinate

singularity at the separatrix that renders them inapplicable for predictive edge and SOL

simulations.

In this chapter, we presented a locally field-aligned coordinate system that is based on the

FCI approach. This coordinate system is not restricted by the magnetic geometry and al-

lows for the simulation in geometries with single and even multiple X-points. Furthermore,

the coordinate system is still aligned to the magnetic field such that derivatives along the

magnetic field line are represented as a derivative in the coordinate y. This respects the flute

like structure of plasma turbulence and allows to reduce the toroidal resolution needed for

simulations.

As the coordinate system is not limited by the magnetic geometry, it would be interesting

to generalise the code to 3D geometries in the future. This would enable the exploration

of turbulence in the SOL of stellarator fusion experiments as well as stochastic regions and

magnetic islands.

†In the code, the toroidal component of the magnetic field is given with respect to the normalised basis
vector eyc = eϕ/|eϕ|= eϕ/Jcyl. Therefore, the right-hand side of Eqs. (3.75), (3.76) and (3.77) is multiplied
with and additional factor of Jcyl and bϕ is replaced with byc .
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4. Numerical scheme

For a stable, long-time integration of the gyrokinetic Vlasov-Maxwell system it is important

to select a numerical scheme that reflects the properties of the equations. In this chapter, we

present the numerical scheme that is used in the GENE-X code. We start with the derivation

of a dimensionless form of the gyrokinetic Vlasov-Maxwell system, appropriate for numerical

discretisation. Next, we discuss which discretisation strategies are suited for the locally field

aligned coordinate system, presented in the last chapter, and detail the discretisation scheme

implemented in the GENE-X code. Finally, we discuss numerical diffusion and boundary as

well as initial conditions for the simulations.

4.1. Normalisation

For the numerical implementation it is useful to renormalise the equations. With the nor-

malisation different physical quantities can be scaled to numerical values of order O(1). This

is beneficial because floating point numbers are most dense around 1 and therefore smaller

differences between numbers can be resolved. Furthermore, it is possible to choose different

normalisations for different species. This is for example useful for the representation of the

distribution function in velocity space. Due to their lower weight, electrons move faster than

ions. By adjusting the normalisation of the velocity coordinate of the electron species, it is

possible to use the same velocity space grid for ions and electrons.

The following paragraph has been published in [87]. As the gyrokinetic model has been

generalised to include electromagnetic effects, the normalisation of the parallel component of

the electromagnetic vector potential has been added.

We use the normalisation from the GENE code [45]. We denote reference quantities with a

ref subscript and renormalised quantities with a hat, i.e. for the mass mσ = m̂σmref. The

reference values, defining the scales of the simulation, are given in Tab. 4.1. With the reference

quantities from Tab. 4.1, we normalise the gyrocentre coordinates as

x = x̂Lref z = ẑLref ϕ = ϕ̂

v‖ = v̂‖vTσ(ψ0) µ = µ̂
T0σ(ψ0)

Bref
t = t̂

Lref

cref
,

(4.1)

where T0σ(ψ0) = TrefT̂0σ(ψ0) denotes the initial plasma temperature at a given flux surface ψ0

and vTσ(ψ0) =
√

2T0σ(ψ0)/mσ = crefv̂Tσ(ψ0) the corresponding thermal velocity. Similarly,

n0σ(ψ0) = nrefn̂0σ(ψ0) denotes the initial plasma density. Finally, we normalise the distribu-

tion function, the electrostatic potential and the parallel component of the electromagnetic
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Elementary charge e s.t. qσ = q̂σe
Reference mass mref s.t. mσ = m̂σmref

Reference temperature Tref

Reference length Lref

Reference magnetic field strength Bref

Reference density nref

Reference velocity cref =
√
Tref/mref

Reference gyrofrequency Ωref = eBref/(mrefc)
Reference gyroradius ρref = cref/Ωref

Reference β βref = 8πnrefTref/B
2
ref

Table 4.1.: Elementary reference values for mass, temperature, length, magnetic field strength
and density and derived reference values for velocity, gyrofrequency, gyroradius
and thermal to magnetic pressure ratio. This table has been published in [87]. To
account for the electromagnetic model, the reference β has been added.

vector potential according to

fσ =
n0σ(ψ0)

vTσ(ψ0)3
f̂σ (4.2)

φ1 =
Tref

e
φ̂1 (4.3)

A1‖ = ρrefBrefÂ1‖ . (4.4)

4.1.1. Normalisation of the gyrokinetic Vlasov-Maxwell system

We normalise the gyrokinetic Vlasov-Maxwell system in parts. We start with the normalisa-

tion of B∗

B∗ = B +
mσv‖c

qσ
∇× b+∇A1‖ × b

= Bref

(
B̂ +

√
2m̂σT̂0σ(ψ0)

v̂‖

q̂σ

ρref

Lref
∇̂× b+

ρref

Lref
∇̂Â1‖ × b

)
= BrefB̂

∗ . (4.5)

As a corollary of Eq. (4.5), the parallel component of B∗ is normalised in the same way, i.e.

B∗‖ = BrefB̂
∗
‖ . The partial derivatives of the distribution function fσ are normalised as

∂fσ
∂t

=
n0σ(ψ0)

v3
Tσ

(ψ0)

cref

Lref

∂f̂σ

∂t̂
(4.6)

∇fσ =
n0σ(ψ0)

v3
Tσ

(ψ0)

1

Lref
∇̂f̂σ (4.7)

∂fσ
∂v‖

=
n0σ(ψ0)

v3
Tσ

(ψ0)

1

vTσ(ψ0)

∂f̂σ
∂v̂‖

. (4.8)
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We proceed by normalising the equations of motion of the gyrocentres. The change of the

gyrocentre position reads

Ṙ =
v‖B

∗

B∗‖
+

cb

qσB∗‖
× (µ∇B + qσ∇φ1)

= cref

√2T̂0σ(ψ0)

m̂σ
v̂‖
B̂∗

B̂∗‖
+
ρref

Lref

b

q̂σB̂∗‖
×
(
T̂0σ(ψ0)µ̂∇̂B̂ + q̂σ∇̂φ̂1

) , (4.9)

and the change of the parallel velocity reads

v̇‖ = − B∗

mσB∗‖
· (µ∇B + qσ∇φ1)− qσ

mσc

∂A1‖

∂t
(4.10)

= −
c2

ref

Lref

B̂∗

m̂σB̂∗‖
·
(
T̂0σ(ψ0)µ̂∇̂B̂ + q̂σ∇̂φ̂1

)
−
c2

ref

Lref

q̂σ
m̂σ

∂Â1‖

∂t̂
. (4.11)

By collecting the normalised parts and dividing by the factor cref/Lref n0σ(ψ0)/v3
Tσ

(ψ0) we

obtain the normalised Vlasov equation

∂f̂σ

∂t̂
+

√
2T̂0σ(ψ0)

m̂σ
v̂‖
B̂∗

B̂∗‖
· ∇̂f̂σ +

ρref

Lref

b

q̂σB̂∗‖
×
(
T̂0σ(ψ0)µ̂∇̂B̂ + q̂σ∇̂φ̂1

)
∇̂f̂σ

− B̂∗√
2m̂σT̂0σ(ψ0)B̂∗‖

·
(
T̂0σ(ψ0)µ̂∇̂B̂ + q̂σ∇̂φ̂1

) ∂f̂σ
∂v̂‖
− q̂σ√

2m̂σT̂0σ(ψ0)

∂Â1‖

∂t̂

∂f̂σ
∂v̂‖

= 0 . (4.12)

We continue with the normalisation of the quasi-neutrality equation, given in Eq. (2.84). We

start with the right-hand side

∑
σ

qσ

∫
fσ dW =

∑
σ

qσ

∫ ∞
0

∫ ∞
−∞

2π
B∗‖

mσ
fσ dv‖ dµ

= enref

∑
σ

n̂0σ(ψ0)q̂σ

∫ ∞
0

∫ ∞
−∞

πB̂∗‖ f̂σ dv̂‖ dµ̂ . (4.13)

The left-hand side reads

−∇ ·
(∑

σ

mσc
2n0σ

B2
∇⊥φ

)
= −enref

(
ρref

Lref

)2

∇̂ ·
(∑

σ

m̂σn̂0σ

B̂2
∇̂⊥φ̂1

)
. (4.14)

Combining both sides and multiplying by (nrefe)
−1 yields the normalised quasi-neutrality

equation

−
(
ρref

Lref

)2

∇̂ ·
(∑

σ

m̂σn̂0σ

B̂2
∇̂⊥φ̂1

)
=
∑
σ

n̂0σ(ψ0)q̂σ

∫ ∞
0

∫ ∞
−∞

πB̂∗‖ f̂σ dv̂‖ dµ̂ . (4.15)
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The normalisation of Ampère’s law is similar to the quasi-neutrality equation. We start with

the right-hand side

4π
∑
σ

qσ
c

∫
fσv‖ dW = 4π

∑
σ

qσ
c

∫ ∞
0

∫ ∞
−∞

2π
B∗‖

mσ
fσv‖ dv‖ dµ

=
Bref

ρref

βref

2

∑
σ

n̂0σ(ψ0)q̂σ

√
2T̂0σ(ψ0)

m̂σ

∫ ∞
0

∫ ∞
−∞

πB̂∗‖ f̂σv̂‖ dv̂‖ dµ̂ .

(4.16)

The left-hand side reads

−∆⊥A1‖ = −ρrefBref

L2
ref

∆̂⊥Â1‖ . (4.17)

Combining Eqs. (4.16), (4.17) and dividing by Bref/ρref yields the normalised Ampère’s law

−
(
ρref

Lref

)2

∆̂⊥Â1‖ =
βref

2

∑
σ

n̂0σ(ψ0)q̂σ

√
2T̂0σ(ψ0)

m̂σ

∫ ∞
0

∫ ∞
−∞

πB̂∗‖ f̂σv̂‖ dv̂‖ dµ̂ . (4.18)

The normalised form of the generalised Ohm’s law can either be derived explicitly or by

taking the normalised time derivative of Eq. (4.18). It reads

−

((
ρref

Lref

)2

∆̂⊥ +
βref

2

∑
σ

n̂0σ(ψ0)
q̂2
σ

m̂σ

∫ ∞
0

∫ ∞
−∞

πB̂∗‖
∂f̂σ
∂v̂‖

v̂‖ dv̂‖ dµ̂

)
∂Â1‖

∂t̂

=
βref

2

∑
σ

n̂0σ(ψ0)q̂σ

√
2T̂0σ(ψ0)

m̂σ

∫ ∞
0

∫ ∞
−∞

πB̂∗‖

(
∂f̂σ

∂t̂

)?
v̂‖ dv̂‖ dµ̂ . (4.19)

The explicit form of the normalised gyrokinetic Vlasov-Maxwell system, expressed in the

locally field-aligned coordinate system, is given in Appendix A.2.

4.1.2. Normalisation of the local and canonical Maxwellian

In order to initialise the simulation or set radial boundary conditions, it is useful to have

a normalised Maxwellian distribution function at our disposal. We denote the Maxwellian

distribution function with F0σ and normalise it in the same way as fσ. It reads as a function

of the flux surface label ψ, v̂‖ and µ̂

F̂0σ(ψ, v̂‖, µ̂) =
n̂pσ(ψ)(

πT̂pσ(ψ)
)3/2

e
−
v̂2‖+µ̂B̂

T̂pσ(ψ) , (4.20)

where the normalised temperature and density profiles T̂pσ(ψ) = T0σ(ψ)/T0σ(ψ0) and n̂pσ(ψ) =

n0σ(ψ)/n0σ(ψ0) were used. Next to the local Maxwellian, we make use of a so-called canon-

ical Maxwellian. The canonical Maxwellian is defined in terms of constants of motion and

will be discussed in detail in Section 4.5. It uses the canonical toroidal momentum pϕ as a

replacement for the flux surface label ψ. The new modified radial coordinate ψC is defined
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by

ψC =
c

qσ
pϕ

= ψp +
c

qσ
mσv‖bϕR , (4.21)

and normalised as

ψC = ψp +
ρref

Lref

√
2m̂σT̂0σ(ψ0)q̂σv̂‖bϕR̂ . (4.22)

4.2. Discretisation

We use the method of lines to construct the discretisation scheme. The gyrokinetic Vlasov-

Maxwell system can be written in the form

∂f

∂t
= L[f ] , (4.23)

where L is a nonlinear, integro-partial differential operator acting on f †. In the method of

lines the operator L acting on phase space is discretised first. This yields a system of ordinary

differential equations
d(fi)

dt
= LD[(fi)] , (4.24)

where (fi) corresponds to a vector containing the values of the distribution function at the

phase space grid points i, and LD denotes the discretised differential operator. The initial

value problem in Eq. (4.24) can then be solved with a method of choice. In the following, we

discuss different spatial and temporal discretisation strategies.

4.2.1. Spatial discretisation

There are multiple different strategies to construct a spatial discretisation of an integro-

partial differential operator. Most schemes fall in the class of finite difference, finite volume

or finite element schemes. There are also schemes in between these classes. A good example

are schemes developed in the area of geometric discretisations and mimetic finite differences

[123, 124, 125]. Therein, differential operators are discretised based on the preservation

of mathematical properties of the continuous system. Further, spectral methods based on

Fourier decomposition in real space [68, 44] or an expansion in orthogonal Hermite and

Laguerre polynomials in velocity space [126, 127, 128] are often used to exploit symmetries

of magnetically confined fusion plasmas.

Spatial discretisation of the gyrokinetic Vlasov equation

We discuss different spatial discretisation schemes in the language of differential forms to

explicitly clarify the structure and properties of the quantities and operators involved. As

†In this form the function f is a multi-dimensional function with a component for each species and
the nonlinear, integro-partial differential operator L represents the whole gyrokinetic Vlasov-Maxwell system
including the quasi-neutrality equation, Ampère’s law and the generalised Ohm’s law.
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ϕ

Figure 4.1.: Figure displaying the overlap of flux boxes originating from two poloidal planes
at ϕ = 0 and ϕ = π/2. In a conservative finite volume or finite element discreti-
sation, fluxes are exchanged between different boxes. In the locally field-aligned
coordinate system, the flux boxes overlap in a non-trivial way demonstrated on
a staggered poloidal plane at ϕ = π/4.

discussed in Chapter 2, the gyrokinetic Vlasov equation can be written in advective and

conservative form. On the continuous level both formulations are equivalent. Which one is

chosen makes a difference for the discretisation. Let Λn(P) be the space of the differential n-

forms on the phase space P. In the conservative form of the Vlasov equation the distribution

function corresponds to a six-form on the manifold, f (6) ∈ Λ6(P), that can be integrated to

obtain the particle number in a given volume. The Vlasov equation can be written as

∂f (6)

∂t
= −dζ(5) (4.25)

ζ(5) = ιuf
(6) , (4.26)

where the five-form ζ(5) corresponds to the five-dimensional flux out of a six dimensional unit

volume and ιu denotes the interior product. The vector field u represents the drift velocities

and is itself a nonlinear function of f . This form of the Vlasov equation is well suited for finite

volume or finite element discretisation schemes because the distribution function corresponds

to volume averages and ζ(5) to fluxes. In the locally field-aligned coordinate system it is

difficult to correctly calculate fluxes because flux boxes from different poloidal planes do not

align. They overlap in a non-trivial way and sophisticated book keeping would be needed to

correctly handle the fluxes at the intersection points and ensure conservation. Exemplarily,

the overlap of flux boxes is demonstrated in Fig. 4.1.

In the advective form the distribution function corresponds to a scalar function or zero form
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Figure 4.2.: Figure displaying the grid in the x and z coordinates at the example of AUG, used
for simulations in Chapter 7. The grid is unstructured, such that the boundary
of fusion devices can be modelled, and Cartesian in the neighbourhood of every
point. For a clear presentation only every 20th grid point is shown.

f (0) ∈ Λ0(P). The Vlasov equation can be written as

∂f (0)

∂t
= −ιuζ(1) (4.27)

ζ(1) = df (0) , (4.28)

where ζ(1) is a one form corresponding naturally to the gradient of f . The advective form

of the Vlasov equation is well suited for a finite difference discretisation because gradients

correspond to differences of scalar function values.

Due to the non-conformal overlap of flux boxes, we discretise the advective form of the Vlasov

equation with a finite difference discretisation scheme. As the coordinate system is defined in

regions around a family of poloidal planes, we choose a Cartesian grid in the toroidal angle

ϕ. In the coordinates x and z in the poloidal plane we use an unstructured grid that is

Cartesian in the neighbourhood of every point. The grid is constructed such that ∆x = ∆z.

We label each grid point by a one-dimensional index i and store the x and z coordinates in

one-dimensional arrays x[i] and z[i]. This makes the implementation flexible because one

can remove points from and add points to the grid and thus model the complex shape of

the fusion device. Requiring that the grid is Cartesian in the neighbourhood of every point

allows us to use efficient numerical schemes for Cartesian grids [87]. The grid is visualised at

the example of an AUG equilibrium in Fig 4.2. In the velocity space coordinate v‖ we use

a Cartesian grid. We discretise the first derivatives in x, z and v‖ direction, apart from the
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nonlinear Poisson brackets

{Â1‖, f̂σ}ẑ,x̂ =
∂Â1‖

∂ẑ

∂f̂σ
∂x̂
−
∂Â1‖

∂x̂

∂f̂σ
∂ẑ

(4.29)

{φ̂1, f̂σ}ẑ,x̂ =
∂φ̂1

∂ẑ

∂f̂σ
∂x̂
− ∂φ̂1

∂x̂

∂f̂σ
∂ẑ

, (4.30)

with a fourth order centred finite difference scheme(
∂f̂σ
∂x̂

)
(x̂i) =

1

12∆x̂

(
f̂σ(x̂i−2)− 8f̂σ(x̂i−1) + 8f̂σ(x̂i+1)− f̂σ(x̂i+2)

)
+O

(
(∆x̂)4

)
. (4.31)

For the terms in Eqs. (4.29) and (4.30), we use the second order scheme introduced by

Arakawa [121]

{φ̂1, f̂σ}x̂,ẑ(x̂i, ẑj) =

−1

12(∆x̂)2

[(
f̂σ(x̂i, ẑj−1) + f̂σ(x̂i+1, ẑj−1)− f̂σ(x̂i, ẑj+1)− f̂σ(x̂i+1, ẑj+1)

)
(
φ̂1(x̂i+1, ẑj)− φ̂1(x̂i, ẑj)

)
+
(
f̂σ(x̂i−1, ẑj−1) + f̂σ(x̂i, ẑj−1)− f̂σ(x̂i−1, ẑj+1)− f̂σ(x̂i, ẑj+1)

)
(
φ̂1(x̂i, ẑj)− φ̂1(x̂i−1, ẑj)

)
+
(
f̂σ(x̂i+1, ẑj) + f̂σ(x̂i+1, ẑj+1)− f̂σ(x̂i−1, ẑj)− f̂σ(x̂i−1, ẑj+1)

)
(
φ̂1(x̂i, ẑj+1)− φ̂1(x̂i, ẑj)

)
+
(
f̂σ(x̂i+1, ẑj−1) + f̂σ(x̂i+1, ẑj)− f̂σ(x̂i−1, ẑj−1)− f̂σ(x̂i−1, ẑj)

)
(
φ̂1(x̂i, ẑj)− φ̂1(x̂i, ẑj−1)

)
+
(
f̂σ(x̂i+1, ẑj)− f̂σ(x̂i, ẑj+1)

)(
φ̂1(x̂i+1, ẑj+1)− φ̂1(x̂i, ẑj)

)
+
(
f̂σ(x̂i, ẑj−1)− f̂σ(x̂i−1, ẑj)

)(
φ̂1(x̂i, ẑj)− φ̂1(x̂i−1, ẑj−1)

)
+
(
f̂σ(x̂i, ẑj+1)− f̂σ(x̂i−1, ẑj)

)(
φ̂1(x̂i−1, ẑj+1)− φ̂1(x̂i, ẑj)

)
+
(
f̂σ(x̂i+1, ẑj)− f̂σ(x̂i, ẑj−1)

)(
φ̂1(x̂i, ẑj)− φ̂1(x̂i+1, ẑj−1)

)]
+O

(
(∆x̂)2

)
. (4.32)

The y direction follows magnetic field lines originating on a poloidal plane. We define the

grid in the y direction by the intersection points of magnetic field lines, originating from

the x, z grid points, with neighbouring poloidal planes. The intersection points in general

do not fall on a grid point. We use bicubic interpolation to approximate the value of the

distribution function on the intersection points. The intersection of the magnetic field line

with neighbouring poloidal planes and the bicubic interpolation is visualised in Fig. 4.3.

The intersection points are calculated during the initialisation step of GENE-X by solving

Eqs. (3.75), (3.76), (3.77) and (3.78). As the length of the magnetic field line differs between

different positions on the poloidal plane, the grid in y direction is non-uniform. Similar to

Eq. (4.31), we discretise the first derivatives in the y direction with a fourth order centred

finite difference scheme. We construct the scheme on the non-uniform y grid with the help of

Lagrange polynomials. Let (ŷ−2, ŷ−1, ŷ0, ŷ1, ŷ2) describe the grid points in y direction local

to a poloidal plane and (f̂σ(x̂i, ŷ−2, ẑj), f̂σ(x̂i, ŷ−1, ẑj), f̂σ(x̂i, 0, ẑj), f̂σ(x̂i, ŷ1, ẑj), f̂σ(x̂i, ŷ2, ẑj))

the corresponding interpolated values of the distribution function. The polynomial interpo-
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Figure 4.3.: Figure displaying a magnetic field line originating at the poloidal plane at ϕ = 0
and hitting different poloidal planes at ϕ ∈ {−π/2,−π/4, π/4, π/2}. The points
where the field line intersects a poloidal plane are denoted by red dots. The
value of the distribution function is obtained via bicubic interpolation around
the intersection point. The area included in the interpolation on every poloidal
plane is shaded in blue.

lation of the distribution function along the field line is given by

f̂σ,int(x̂i, ŷ, ẑj) =

2∑
k=−2

f̂σ(x̂i, ŷk, ẑj)`k(ŷ) , (4.33)

where `k denotes the Lagrange polynomial

`k(ŷ) =
∏

−2≤m≤2
m6=k

ŷ − ŷm
ŷk − ŷm

. (4.34)

The first derivative in ŷ direction is discretised as(
∂f̂σ
∂ŷ

)
(x̂i, 0, ẑj) =

2∑
k=−2

f̂σ(x̂i, ŷk, ẑj)

(
d`k
dŷ

)
(0)

+O
(
(∆ŷ)4

)
+O

(
(∆x̂)3

∆ŷ

)
+O

(
(∆ẑ)3

∆ŷ

)
. (4.35)

The derivative of the Lagrange polynomials can be evaluated analytically and stored in an

array for every grid point in x̂, ẑ at initialisation of the code such that the evaluation of

Eq. (4.35) is fast during time stepping. The explicit form of the derivatives of the Lagrange

polynomials is given in Appendix A.1.
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Spatial discretisation of the field equations

The quasi-neutrality equation, Ampère’s law and the generalised Ohm’s law can be written

in the general form

− ξ̂

(
1

Ĵcyl

∂

∂x̂

(
Ĵcylĉ

∂φ̂1

∂x̂

)
+

∂

∂ẑ

(
ĉ
∂φ̂1

∂ẑ

))
+ λ̂φ̂1 = b̂ , (4.36)

with the coefficients ξ, c, λ and b. The latter of the two coefficients consist out of velocity

space integrals over the distribution function. The velocity space integrals are discretised as

∫
f̂σ dv̂‖ dµ̂ ≈

Nv̂‖∑
l=1

wl

Nµ̂∑
m=1

wmf̂σ(v̂‖l, µ̂m) , (4.37)

with the weights wl and wm for the v‖ and µ integration respectively. For the weights and the

µ grid different options exist. In the v‖ direction the grid is, as discussed above, Cartesian

and integration weights corresponding to trapezoidal and Simpson integration are available.

The trapezoidal weights read

wl =
∆v̂‖

2
(1, 2, . . . , 2, 1)) (4.38)

and the Simpson weights read [129, Section 4.1]

wl =
∆v̂‖

48
(17, 59, 43, 49, 48, . . . , 48, 49, 43, 59, 17) . (4.39)

In the µ direction also two options are available. The first option is a quadratic grid in µ

µ̂m =

(
(m− 1) +

1

2

)2 Lµ̂
N2
µ̂

, (4.40)

with trapezoidal weights wm according to

wm =


1
2 (µ̂2 − µ̂1) for m = 1

1
2 (µ̂N − µ̂N−1) for m = Nµ̂

1
2 (µ̂m+1 − µ̂m−1) otherwise

. (4.41)

The second option are grid points and weights implementing Gaussian quadrature on the

interval [0,∞). As there is no differentiation in µ, the grid can be optimized regarding

numerical integration. The grid nodes µ̂m are formed by the roots of the Laguerre polynomials

Lm and the integration weights are given by [130]

wm =
µ̂me

µ̂m

(m+ 1)2Lm+1(µ̂m)2
. (4.42)

The default options are Simpson quadrature in v‖ and Gauss-Laguerre quadrature in µ.

Equipped with a discrete expression for λ and b, we discretise the left-hand side of Eq. (4.36)
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with second order centred finite differences

−ξ̂

(
1

Ĵcyl

∂

∂x̂

(
Ĵcylĉ

∂φ̂1

∂x̂

)
+

∂

∂ẑ

(
ĉ
∂φ̂1

∂ẑ

))
+ λ̂φ̂1 =

− ξ̂(x̂i, ẑj)

Ĵcyl,i∆x̂

[(
Ĵcyl,i+1ĉ(x̂i+1, ẑj) + Ĵcyl,iĉ(x̂i, ẑj)

2

)(
φ̂1(x̂i+1, ẑj)− φ̂1(x̂i, ẑj)

∆x̂

)

−

(
Ĵcyl,iĉ(x̂i, ẑj) + Ĵcyl,i−1ĉ(x̂i−1, ẑj)

2

)(
φ̂1(x̂i, ẑj)− φ̂1(x̂i−1, ẑj)

∆x̂

)]

− ξ̂(x̂i, ẑj)

Ĵcyl,i∆ẑ

[(
Ĵcyl,iĉ(x̂i, ẑj+1) + Ĵcyl,iĉ(x̂i, ẑj)

2

)(
φ̂1(x̂i, ẑj+1)− φ̂1(x̂i, ẑj)

∆ẑ

)

−

(
Ĵcyl,iĉ(x̂i, ẑj) + Ĵcyl,iĉ(x̂i, ẑj−1)

2

)(
φ̂1(x̂i, ẑj)− φ̂1(x̂i, ẑj−1)

∆ẑ

)]
+ λ̂(x̂i, ẑi)φ̂1(x̂i, ẑi)

+O
(
(∆x̂)2

)
+O

(
(∆ẑ)2

)
(4.43)

Due to the elliptic operator and the Arakawa scheme, the spatial discretisation is of order

two.

4.2.2. Temporal discretisation

We solve the remaining initial value problem, presented in Eq. (4.24), with an explicit Runge-

Kutta method of order four [122, pp. 132–140] specified by the Butcher tableau

0

1
2

1
2

1
2 0 1

2

1 0 0 1

1
6

1
3

1
3

1
6

. (4.44)

According to [131], the fourth order Runge-Kutta method combined with centred finite dif-

ferences of fourth order, as introduced above, is a stable and efficient scheme to solve multi-

dimensional linear advection equations. The timestep remains constant throughout the sim-

ulation. The size of the timestep is typically limited by either the Courant-Friedrichs-Lewy

condition of the parallel electron advection or the frequency of kinetic shear Alvén waves

[132, 133]. The timestep restriction due to the parallel electron advection can be estimated

as [134, Section II 1.4]

∆t̂ . 2.82

√
m̂e

2T̂0σ(ψ0)

∆ŷmin

v̂‖max
. (4.45)
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4.3. Numerical diffusion

The discretisation scheme presented in the last section is almost free of numerical diffusion.

This is desirable because it mimics the property that the gyrokinetic Vlasov-Maxwell system

is purely advective and free of diffusion on the continuous level. However, numerical diffusion

is useful to stabilise the simulations and remove spurious effects caused by the discretisation

scheme. As mentioned above, the chosen numerical scheme can integrate multi-dimensional

linear advection problems stably and efficiently. Nevertheless, the gyrokinetic Vlasov-Maxwell

system solved by the GENE-X code is significantly more complicated than a multi-dimensional

linear advection problem and involves bicubic interpolation as well as the evaluation of inte-

grals. Instabilities are typically caused by modes with a high wavenumber such that the scale

of their oscillation is close to the spacing of the numerical grid. High wavenumber modes can

be damped with the help of a diffusion operator. We explain the effect of the diffusion oper-

ator without loss of generality at the example of the parallel y direction. A general diffusion

operator of order n, in the direction y and with strength ε is given by [135]

Dn = (−i)nε (∆ŷ)n
∂n

∂ŷn
. (4.46)

Applying the diffusion operator Dn to a Fourier mode in y yields

Dne
ik̂ŷ ŷ = −εk̂nŷ eik̂ŷ ŷ . (4.47)

As can be seen from Eq. (4.47), the diffusion operator reproduces the mode with a negative

prefactor resulting in effective damping. The damping strength εkny is stronger for high ky

and weaker for low ky modes. Therefore, the high frequency waves are efficiently damped

while low frequency waves remain relatively unperturbed. The higher the derivative in the

diffusion operator, the better the damping of high frequency and the preservation of low

frequency modes. In numerical simulations a compromise between the order of the derivative

and the cost of the evaluation must be found. With a centred finite difference scheme the

evaluation of the second, fourth, sixth and eighth derivative to second order accuracy requires

a stencil of size three, five, seven and nine respectively. As explained in the last section, we

use centred finite difference stencils of order four with a stencil size of five to evaluate the first

derivative. Similarly, we use a five-point stencil, comprising the fourth derivative evaluated

up to second order accuracy, for the numerical diffusion operator.

Unstable, high wavenumber modes appear in all spatial and in the v‖ direction. In the x, z

direction the main driver of grid scale oscillations is caused by Runge’s phenomenon due to

the bicubic interpolation used to calculate parallel derivatives. We use the two-dimensional
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biharmonic operator discretised as [136]

εx̂,ẑ∆̂x̂
4∆2

x̂,ẑ f̂σ = εx̂,ẑ

(
f̂σ(x̂i−2, ẑj) + f̂σ(x̂i, ẑj−2) + f̂σ(x̂i, ẑj+2) + f̂σ(x̂i+2, ẑj)

+ 2
(
f̂σ(x̂i−1, ẑj−1) + f̂σ(x̂i−1, ẑj+1) + f̂σ(x̂i+1, ẑj−1) + f̂σ(x̂i+1, ẑj+1)

)
− 8

(
f̂σ(x̂i−1, ẑj) + f̂σ(x̂i+1, ẑj) + f̂σ(x̂i, ẑj−1) + f̂σ(x̂i, ẑj+1)

)
+ 20f̂σ(x̂i, ẑj)

)
+O(∆x̂2) (4.48)

to smooth the interpolation. For the diffusion coefficient εx̂,ẑ we use values between εx̂,ẑ = 1

and εx̂,ẑ = 5 in typical simulations.

In the parallel direction the discretisation scheme destabilises high wavenumber modes that

are stable in the non-discrete system [135]. The diffusion operator in the y direction is

discretised, similarly to Eq. (4.35), as(
∂4f̂σ
∂ŷ4

)
(x̂i, 0, ẑj) =

2∑
k=−2

f̂σ(x̂i, ŷk, ẑj)

(
d4`k
dŷ4

)
(0)

+O
(
(∆ŷ)4

)
+O

(
(∆x̂)3

∆ŷ

)
+O

(
(∆ẑ)3

∆ŷ

)
. (4.49)

The explicit form of the derivatives of the Lagrange polynomials is given in Appendix A.1.

Due to the non-uniform grid in y direction, the grid spacing is not multiplied to the operator

as in Eq. (4.48). Therefore, the diffusion coefficient must be adapted when the number of

poloidal planes is increased. In typical simulations with 32 poloidal planes we choose values

between εŷ = 5 · 10−3 and εŷ = 1 · 10−2.

Finally, we introduce numerical diffusion in the v‖ direction. Solutions of the Vlasov equation

develop filament structures superimposed over a smooth part of the distribution function

over time [137]. Similar to studying Fourier modes on periodic domains, the mode structure

on the domain (−∞,∞) in v‖ can be studied by expanding the distribution function in

Hermite polynomials. The filamentation process causes excitations of higher and higher

mode numbers. When the largest mode in the discrete system gets excited, the truncation

acts as a reflecting boundary and the perturbation travels back towards lower mode numbers

[138]. As a result, recurrence occurs and the distribution function is restored to a state close

to the initial condition. Recurrence can be prevented by introducing an entropy producing,

diffusive term that prevents the filamentation of the velocity space to scales that are not

resolved by the grid resolution [135]. We discretise the numerical diffusion operator in v‖

with centred finite differences as

εv̂‖∆v̂
4
‖

(
∂f̂σ
∂v̂‖

)
(v̂‖l) = εv‖

(
f̂σ(v̂‖l−2)− 4f̂σ(v̂‖l−1) + 6f̂σ(v̂‖l)− 4f̂σ(v̂‖l+1) + f̂σ(v̂‖l+2)

)
+O

(
(∆v̂‖)

2
)
. (4.50)

According to the analysis presented in [135], we typically choose a diffusion coefficient of

εv̂‖ = 0.0125.
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4.4. Boundary conditions

For the simulations presented in this work we use Dirichlet boundary conditions. We set

the distribution function to zero on the v‖ boundary and equal to the initial distribution f0σ

on the x, z boundary. In the y direction we apply the same Dirichlet boundary condition

when a magnetic field line hits the x, z boundary in between two planes. In µ there is

no differentiation and therefore no boundary conditions is needed. We apply the Dirichlet

boundary condition for both the advective inflow and outflow through the boundary. As

the Vlasov equation is advective, only a boundary condition for the inflow is needed. To

avoid spurious effects due to the boundary condition for the advective outflow, we include

the option to apply diffusion in a small buffer zone around the x, z boundary†. The diffusion

operator is discretised with a second order finite difference scheme

−εbuffer(x̂i, ẑj) (∆x̂)2 ∆x̂,ẑ f̂σ = −εbuffer(x̂i, ẑj)
(

f̂σ(x̂i−1, ẑj) + f̂σ(x̂i+1, ẑj) + f̂σ(x̂i, ẑj−1)

+ f̂σ(x̂i, ẑj+1)− 4f̂σ(x̂i, ẑj)
)

+O(∆x̂2) .

(4.51)

We set the strength of the diffusion in the buffer zone as large as the timestep of the simulation

permits. The electrostatic potential φ1 as well as the parallel component of the magnetic

vector potential A1‖ are set to zero on the x, z boundary. This corresponds to a grounded,

perfectly conducting wall.

4.5. Initial conditions

In order to study the behaviour and evolution of turbulence, a suitable initial condition for the

simulation must be selected. The initial condition should fulfil two properties. First, it should

be close to experimental input parameters, which are usually present in the form of density

and temperature profiles for different species. Second, it should be an equilibrium of the

gyrokinetic Vlasov-Maxwell system. If the initial condition fulfils both properties, instabilities

can be triggered by adding a small perturbation to the initial condition. These instabilities

grow exponentially and develop turbulence. The property that the initial condition without

the added perturbation is an exact equilibrium of the gyrokinetic Vlasov-Maxwell system is

crucial for the development of turbulence. If this property is not met, dynamics generated

from the initial condition are present from the start and might hide, alter or even prevent

the generation of turbulence in the system.

We generate the initial condition with the help of constants of motion of the particle trajec-

tories. The kinetic energy of a particle, E = 1/2mσv
2
‖ +µB, and the magnetic moment µ are

conserved. The conservation of µ can be broken, if additional terms like a collision operator

are added to the gyrokinetic Vlasov-Maxwell system. The presence of additional conserved

quantities is dependent on the magnetic geometry used. In the following, we discuss suitable

†By adding a diffusion term, the Vlasov equation turns from a hyperbolic to a parabolic problem. For the
parabolic problem Dirichlet boundary conditions can be set consistently for the in- and outflow boundary.
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initial conditions for different geometries. The first is a slab geometry, where the magnetic

field is given by

B̂ = B̂eϕ (4.52)

and the second is a circular geometry with concentric flux surfaces, where the magnetic field

is given by

B̂ = B̂

(
eϕ +

r̂

q(r̂)
eθ

)
. (4.53)

The function q(r̂) denotes the q profile. For both the slab and circular geometry we use a

large aspect ratio assumption such that ϕ represents a Cartesian coordinate labelling poloidal

planes. In slab and circular geometry the gradient and curvature drift of a particle are

confined to a flux surface. Therefore, the poloidal flux function ψp is a constant of motion.

The poloidal flux function is converted into a flux surface label ψ by normalising it with

the value of the poloidal flux function at the separatrix ψsep and the magnetic axis ψax. In

addition, we take the square root of the normalised result

ψ(ψ̂p) :=


√

ψ̂p−ψ̂ax

ψ̂sep−ψ̂ax
for ψ̂p > 0

0 for ψ̂ ≤ 0

. (4.54)

The case distinction is needed to account for negative values of the normalised flux surface

label. In slab and circular geometry we initialise the simulation with local Maxwellians with

given normalised temperature and density profiles T̂pσ and n̂pσ, defined in Section 4.1.2,

F̂0σ(ψ(ψp), v̂‖, µ) =
n̂pσ(ψ(ψp))(

πT̂pσ(ψ(ψp))
)3/2

e
−

v̂2‖+µ̂B̂

T̂pσ(ψ(ψp)) . (4.55)

For toroidal geometries with a background magnetic field B̂ ∝ 1/R̂ = 1/(R̂0 + r̂ cos(θ))

the ∇B̂ drift points out of a flux surface and, consequently, the flux surface label is no

constant of motion anymore. For the following discussion we assume that the equilibrium is

axisymmetric, that the model contains no electromagnetic fluctuations and that the initial

condition is free of an electrostatic potential. We discuss the implications of the assumptions

at the end of this section. Under the assumption of axisymmetry and the absence of an

electromagnetic vector potential, the canonical toroidal momentum, defined in Section 2.3.6,

is conserved. Following [139, 140, 42], we define a modified poloidal flux function with the

help of the canonical toroidal momentum. The corrected flux function is given by Eq. (4.21)

and in normalised units by Eq. (4.22). The so-called canonical Maxwellian is obtained by

replacing the poloidal flux function ψ̂p with the corrected poloidal flux function ψ̂C , i.e.

F̂Cσ := F̂0σ(ψ(ψ̂C), v̂‖, µ). (4.56)

The canonical Maxwellian is a function of constants of motion and therefore conserved. Due

to the
√

2mσ dependence of Eq. (4.22), the correction to the local Maxwellian is by a factor
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of 60 larger for deuterium than for electrons.

The corrected flux function ψC has an explicit dependence on v‖ and therefore introduces a

mean flow, similar to the Pfirsch-Schlüter current [8], in parallel direction to the magnetic

field. This flow has been investigated in detail in previous studies [139, 140] and has been

mentioned to be problematic for the onset and the properties of turbulence. To overcome the

flow, a correction to ψC has been defined that is a constant of motion for passing particles.

It reads [139, 140]

ψC,s = ψC +
mσc

qσ
R0v‖ , (4.57)

with

v‖ = sign(v‖)
√

2 (E − µBmax)H(E − µBmax) , (4.58)

and in normalised units

ψ̂C,s = ψ̂C +
ρref

Lref

√
2m̂σT̂0σ(ψ0) sign(v̂‖)

√
Ê − µ̂B̂maxH(Ê − µ̂B̂max) . (4.59)

In the following, we call the canonical Maxwellian constructed with ψ̂C,s instead of ψ̂C shifted

canonical Maxwellian. To visualise the difference between the local Maxwellian, canonical

Maxwellian and shifted canonical Maxwellian, we display the ion distribution function for

all three Maxwellians, for the cyclone base case setup described in Section 6.5, in Fig. 4.4.

The distribution function is shown for the first µ̂ = 0.044 grid point and at the outboard

mid-plane at ψ = 0.62. The shape of the canonical Maxwellian is different from the local

Maxwellian. Due to the sign function in Eq. (4.58), the shifted canonical Maxwellian is non-

differentiable close to v̂‖ = 0. This can cause stability and convergence problems based on

the discretisation scheme chosen. The density at the outboard mid-plane, resulting from an

initialisation of the distribution function with a given density profile n̂pσ, is shown for the

different Maxwellians in Fig. 4.5.

Initialising ions and electrons with canonical Maxwellians results in good conservation of the

initial condition if the assumptions above are met. Particularly, the electrostatic potential

and the induced electromagnetic vector potential need to vanish. It has also been shown

that initialising the ions with a canonical Maxwellian works well in the limit of an adiabatic

electron response [139].

With both kinetic ions and electrons, the situation changes. It is not possible to initialise

both ions and electrons with canonical Maxwellians and achieve exact quasi-neutrality at the

same time. As mentioned above, electrons are lighter than ions and therefore their canonical

Maxwellian is close to a local Maxwellian. As shown in Fig. 4.5, this results in different

density profiles which generate a non-zero charge density. Further, the canonical Maxwellian

is not constant on magnetic flux surfaces due to the explicit dependency on bϕ. The variation

of the canonical Maxwellian on a flux surface is again different for ions and electrons. We

have tried different approaches to solve this problem.

1. The canonical Maxwellian for electrons is close to a local Maxwellian. Therefore, it is

reasonable to initialise the ions with a canonical Maxwellian, calculate the resulting ion
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Figure 4.4.: Figure displaying a slice of the ion distribution initialised with a local Maxwellian,
a canonical Maxwellian and a shifted canonical Maxwellian for the cyclone base
case configuration described in Section 6.5. The distribution function is shown
for the first grid point in µ̂ = 0.044 and at the outboard mid-plane at ψ = 0.62.
Due to the sign function in Eq. (4.58), the shifted canonical Maxwellian is non-
differentiable close to v̂‖ = 0.
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Figure 4.5.: Figure displaying the ion density profile calculated from an ion distribution func-
tion initialised with a local Maxwellian, a canonical Maxwellian and a shifted
canonical Maxwellian for the cyclone base configuration described in Section 6.5.
The density of both the canonical and shifted canonical Maxwellian differ from
the local Maxwellian. The shifted canonical Maxwellian is closer to the local
Maxwellian than the canonical Maxwellian.
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density and initialise the electrons with a local Maxwellian and the given ion density.

While this initial state is quasi-neutral per construction, we find that the conservation of

the electron distribution is so bad that quickly after initialisation large charge densities

and, consequently, a radial electric field is generated.

2. In the second approach, ions and electrons are initialised with a canonical Maxwellian.

As this state is not quasi-neutral, we calculate the ion density ni and electron density ne

after loading the distribution function and correct the electron distribution function by

the factor ni/ne. This ensures exact quasi-neutrality of the initial condition because ion

and electron densities are equal. Nevertheless, the correction breaks the conservation

of the initial electron distribution. The correction factor ni/ne is a function of the

coordinates R,Z, which are no constants of motion. If the correction factor ni/ne

is small enough, the charge density generated by the electron dynamics is small and

turbulence can develop freely. We find that this is not the case for realistic profiles.

The reason is simple. As shown in Fig. 4.4 and Fig. 4.5, the distribution function of the

ions is significantly different from a local Maxwellian. Consequently, the ion density is

different from the initial profile and different from the electron density. This results in

a large difference between ion and electron density and a large correction factor ni/ne,

which effectively breaks the conservation.

3. The third approach proceeds similarly to the second one with the only difference that

the shifted instead of the standard canonical Maxwellian is used. Consequently, the

ion distribution function is closer to a Maxwellian and the resulting ion density profile

is closer to the profile generated by a local Maxwellian. As a result, ion and electron

density are approximately equal and the correction factor ni/ne is smaller than in the

second approach. This is the standard initial condition implemented in the GENE-X

code for toroidal equilibria. It works for a lot of profiles and geometries and allows for

the stable simulation of turbulence. Nevertheless, the solution is still dependent on the

right parameters.

The above analysis holds true in the limit of vanishing electromagnetic vector potential

A1‖. As soon as electromagnetic fluctuations are activated, the situation changes. First,

the canonical toroidal momentum and the canonical Maxwellian are modified and obtain a

dependence on A1‖. Let us call the electromagnetic vector potential entering the canonical

Maxwellian A1‖init. As discussed above, the canonical Maxwellian introduces a mean flow,

which leads to an electromagnetic vector potential A1‖generated. The canonical Maxwellian is

only conserved if A1‖init = A1‖generated, which is in general not fulfilled. Therefore, the initial

condition implemented in the GENE-X code for toroidal equilibria is only stable for small βref.

In addition, the conservation is broken in non-axisymmetric equilibria.
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4.6. Conclusion and outlook

In this chapter, we presented the numerical scheme implemented in the GENE-X code. The

numerical scheme was based on centred finite differences and motivated by the use of the

locally field-aligned coordinate system, presented in Chapter 3. The chosen numerical scheme

contains little numerical diffusion and therefore respects the property that the gyrokinetic

Vlasov-Maxwell system is free of diffusion on the continuous level. The total scheme is of order

two, although multiple operators are implemented to fourth order accuracy. Furthermore, we

explained why it is difficult to construct a stable initial condition for the full-f gyrokinetic

Vlasov-Maxwell system and detailed the initial condition for our simulations.

In the future, three upgrades to the numerical scheme would be advantageous. First, the

elliptic operators and the nonlinear Poisson brackets should be discretised with numerical

schemes that are fourth order accurate. Consequently, this would render the discretisation of

the complete gyrokinetic Vlasov-Maxwell system accurate to fourth order. Second, the scheme

in its current form does neither preserve the number of particles, energy or momentum to

machine precision nor the positivity of the distribution function. It would be interesting to

construct a conservative numerical scheme within the framework of mimetic finite differences

that preserves the particle number and if possible even momentum and energy. For the

inclusion of collisions into the simulations it is necessary to take roots of the moments of the

distribution function. This is only well-defined if the moments remain positive. It will be

important to explore schemes that preserve the positivity of the distribution function in the

future. Third, it would be desirable to develop and implement a numerical solver that can

calculate an initial condition for the simulations that is stable to machine precision.
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5. Implementation

Our goal is to create a scientific code that is both fast and extensible. These two requisites

contradict each other to a certain degree. For a code being extensible data encapsulation,

well-structured interfaces and code abstraction is necessary. For execution speed it is best to

work on raw data such that capabilities of modern hardware, like vectorisation, can be used

efficiently. In the following chapter, we present and discuss our code design and prove that it

provides excellent performance while being extensible. We start by presenting the combined

project structure with the GRILLIX code. Next, we discuss the software engineering of GENE-X

and introduce the data structures and algorithms, called operators. In addition, we discuss

the structure of the time stepping and the main program. We validate the performance of

the implementation with the help of the roofline model [141] and the measurement of strong

[142] as well as weak scaling [143] up to 20480 CPU cores.

5.1. Project structure

As detailed in the last two chapters, GENE-X uses the FCI approach and unstructured, locally

Cartesian grids. Consequently, it shares a lot of technology with the Braginskii fluid code

GRILLIX. To strengthen the collaboration between both codes, we created a library based on

GRILLIX, called PARALLAX, that contains the functionality to generate the grid for different

magnetic equilibria, trace magnetic field lines using dop853, perform bicubic polynomial

interpolation and solve elliptic equations within poloidal planes. The library is now used by

both GRILLIX and GENE-X and allows us to join forces and reduce maintenance work in both

codes.

5.2. Software engineering

GENE-X is written in Fortran 2008. We decided to choose Fortran 2008 over C++ because it

combines modern software engineering concepts, like object orientation, with powerful array

handling capabilities.

5.2.1. Data structures

We store the data of the distribution function as a five-dimensional and the data of the

electromagnetic fields as two-dimensional contiguous arrays†. As all performance demand-

†As explained in Section 4.2, the dimensions x and z are stored as an unstructured grid in a one-dimensional
array. Therefore, the distribution function is stored as a five-dimensional instead of a six-dimensional array
consisting out of the unstructured grid, ϕ, v‖, µ and σ. The electromagnetic fields are stored as two-dimensional
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ing operations are performed on this data, it is crucial to store it in contiguous memory

and such allow for vectorisation, cache line optimisation and optimisations by the compiler.

The five-dimensional array is stored in the data storage 5d t class and the two-dimensional

arrays in the data storage 2d t class respectively. The data is distributed over different

Message Passing Interface (MPI) [144] processes. The exchange of ghost cells, necessary for

the calculation of stencil operations, is encapsulated in the classes. The MPI ghost exchange

is implemented via non-blocking communication and is performed automatically by calling

start exchange and finish exchange. The arrays themselves are not encapsulated and a

pointer is retrieved by calling get pointer. These design decisions allow for the efficient im-

plementation of operators acting on the fields. The array storing the data is either allocated

on CPU or GPU. CPU allocation is implemented in the child class data storage 5d cpu t

and GPU allocation in data storage 5d gpu t. GPU and CPU implementations are instan-

tiated and chosen at runtime. The design of the data structures is depicted as an Unified

Modelling Language (UML) diagram in Fig. 5.1.

5.2.2. Operators

The calculation of the right-hand side of the Vlasov equation, the solution of the field equa-

tions as well as diagnostics are implemented as operators acting on raw data. The interface

of the operators is defined in a base operator class. Different realisations of the operator are

implemented as children of the base class. A good example is the operator evaluating the part

(∂fσ/∂t)
?, independent of explicit time derivatives, of the right-hand side of the Vlasov equa-

tion, called op rhs vlasov eq static t in GENE-X. The class op rhs vlasov eq static t

defines the interface of the operator and the children op rhs vlasov eq static cpu t or

op rhs vlasov eq static gpu t contain CPU or GPU implementations of the operator.

This way of selecting different execution schemes is known as the strategy design pattern

[145, pp. 315–323]. The operators receive contiguous pointers to raw data as input. As dif-

ferent operators require different inputs, each operator is implemented as its own class. Next

to the operator for evaluating the right-hand side, there are for example operators to obtain

scalar and multi-dimensional moments of the distribution function called op mom 0d t and

op mom 2d t. The design of the operators is depicted as UML diagrams in Fig. 5.2.

5.2.3. The state vector and time stepping

After having introduced the data structures and operators, we describe how they interact

in the code. The state of the electromagnetic model, often called state vector, is defined

by the distribution function, the electrostatic potential and the parallel component of the

electromagnetic vector potential. They are encapsulated in the state vector t class. With

that also the raw data, accessible by the get pointer method of the data storage types, is

encapsulated. The operators need access to the raw data. This is achieved in an encapsulated

way by passing the operator as a visitor [145, pp. 331–344] to the state vector by the apply

instead of three-dimensional arrays consisting out of the unstructured grid and ϕ.
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method. Within the apply method the operator instance has access to all private data in the

state vector and can perform operations on the raw data. This design is depicted as an UML

diagram in Fig. 5.3. With this software structure it is simple to extend the state vector by

introducing more fields or extend operators acting on the state vector. The interface of the

operators is likely to change in the future when additional phenomena, like the perpendicular

component of the electromagnetic vector potential, is included in the model. As the operators

are implemented as their own class, further fields and effects can be added by modifying the

operator locally.

data_storage_gpu_2d_tdata_storage_cpu_2d_tdata_storage_gpu_5d_tdata_storage_cpu_5d_t

state_vector_t

+apply(operator)

Figure 5.3.: UML diagram representing the structure of the state vector. The state vector
contains multiple instances of the data storage types to store the electrostatic
potential, the electromagnetic vectorpotential, the distribution function or other
fields. Operators are applied to the state vector by passing them as a visitor to
the apply method. This ensures that the raw data, stored in the data structure,
remains in the state vector and is not accessible from the outside.

In order to the evolve the physical system, we need to apply operators to the state vector

in a way specified by the time stepping scheme. For simulations of different models and

geometries, it might be beneficial to have multiple time stepping schemes at our disposal.

The interface of the time stepping is defined in the abstract time step t class. It contains one

or more different state vectors, depending on the specific time stepping scheme implemented.

A time step is calculated by calling step, diagnostics are written by calling diagnose and the

state vector is saved to disk as a checkpoint by calling save. Our workhorse time stepping

scheme is, as presented in Section 4.2, the fourth order Runge-Kutta method implemented

as a child of time step t in rk4 t. The time stepping is controlled from the main program

genex. The time stepping design is once again depicted as an UML diagram in Fig. 5.4.

5.2.4. Continuous integration

Next to the actual software design, automating and optimising the development process is

an important issue for us. We employ the software engineering practice called Continous

Integration (CI) [146] in the development process.

Due to the modular software design, presented in the last subsections, the code consists

out of many independent and flexible units with well-defined interfaces which are simple to

test. We test the functionality of the interfaces with the help of the Fortran unit test library

pFUnit[147]. pFUnit allows to automatically execute tests for a different amount of MPI

processes and OpenMP threads making the unit tests comprehensive.
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..._t

+step()

genex

rk4_t

+step()

«abstract»
time_step_t

+step()
+diagnose()
+save()

state_vector_t

1

1..*

Figure 5.4.: UML diagram representing the structure of the main program. The time step is
handled by the time step t class. time step t is responsible for storing one or
multiple instances of the state vector t representing the state of the simulation.
It evolves the simulation one time step by calling step, it writes diagnostics by
calling diagnose and it saves the current state of the simulation as a checkpoint
to disk by calling save.

The build process is automatized with CMake and supports the GNU as well as Intel Fortran

compiler. Upon integration of new implementations in the master branch, the code is built

automatically with both the GNU and Intel compiler for debug and release configurations.

Furthermore, the unit tests and fast integration tests are run for all configurations. New

functionality can only be incorporated into the master branch when all tests succeed.

5.3. Parallelisation and performance

The implementation is parallelised with a hybrid approach using both OpenMP [148] and

MPI [144]. Currently, no GPU implementation of the operators and datastructures is available.

The reason for choosing a hybrid approach is twofold.

First, modern supercomputers are heterogeneous. CPU based machines usually consist out of

compute nodes with one or multiple sockets each. The nodes themselves are connected with

a fast network. With a hybrid approach it is straightforward to adjust the parallelisation to

the hardware needs. OpenMP is well suited to parallelise tasks within a node because it makes

use of the shared memory architecture. MPI is used to exchange information over the network

connecting the nodes.

Second, by separating intra- and inter-node parallelisation it is easier to optimise for the
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use of accelerators in the future. For instance, OpenMP can be replaced with OpenACC [149]

or a specific CUDA [150] implementation can be written for the datastructures and operators

introduced in Section 5.2.

We use OpenMP to parallelise over the x, z direction within the poloidal plane. Therefore, no

inter node communication is necessary during the solution of the elliptic field equations. We

employ a domain decomposition with MPI over the v‖, µ, ϕ and species dimensions.

All benchmarks are performed on the supercomputer Cobra of the Max-Planck Computing

and Data Facility. All compute nodes of Cobra feature two Intel Xeon Gold 6148 processors

with 20 cores and 27.5Mib L3 Cache each. The software is compiled with the Intel Fortran

Compiler Version 19.1.1.

5.3.1. Node level performance

We analyse the node level performance with the roofline model [141]. The goal of the roofline

model is to calculate the maximal attainable rate of floating-point operations per second

(Flop/s) for a given program. Before we discuss the model, we introduce the terminology

needed. The arithmetic intensity I is the quotient of floating-point operations per bytes

loaded. We explain the term at the example of the saxpy operation

do i = 1, N

y(i) = y(i) + sa * x(i)

enddo .

The arithmetic intensity is I = 2/24 = 1/12 ≈ 0.083 because in each iteration there are

two floating-point operations, two eight-byte loads and one eight-byte store. Further, we call

the maximal memory bandwidth of the hardware B and the hardware limit of the rate of

floating-point operations F . The theoretically achievable flop rate, or roofline, of a program

is then given by

R = min {B · I, F} . (5.1)

In order to apply the roofline model to our implementation, we measure the maximum mem-

ory bandwidth with a stream benchmark provided by the likwid [151, 152] toolkit†. The

measured maximum main memory bandwidth is B = 150Gb/s and the maximum L3 Cache

memory bandwidth is B = 660Gb/s. For the hardware limit of the rate of floating-point

operations we use the specifications by Intel. The maximum rate of scalar addition oper-

ations is F = 190GFlop/s and of vectorised addition operations is F = 1400GFlop/s. All

our operators are bound by memory bandwidth such that the hardware limit of the rate of

floating-point operations is not of high significance. For the saxpy example the roofline rate

of floating-point operations evaluates to R = 12.5GFlop/s.

We perform the roofline analysis for the operators consuming major parts of the computation

time in GENE-X. The operators are given in Tab. 5.1. We select a problem size with 677000

grid points in the poloidal plane, nϕ = 1, nv‖ = 16, nµ = 8 that reflects a typical load for

†We found that the theoretical memory bandwidth specified by Intel for the Intel Xeon Gold 6148 dual
socket system is not achievable in real applications.
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Operator Arithmetic intensity Performance / (GFlop/s)

op saxpy cpu t 0.083 11.9
op lin comb cpu t 0.13 14.8
op diag mom 0d cpu t 0.10 121
op diag mom 2d cpu t 0.12 163
op rhs vlasov eq static cpu t 0.092 28.3
op rhs vlasov eq dynamic cpu t 0.19 51.9

Table 5.1.: Table displaying the arithmetic intensity and the measured performance of oper-
ators consuming major parts of the computation time in GENE-X. op saxpy cpu t

and op lin comb cpu t are used to combine the stages of the RK4 time
stepping scheme. op diag mom 0d cpu t and op diag mom 2d cpu t repre-
sent diagnostic operators with scalar and two-dimensional output. Finally,
op rhs vlasov eq static cpu t and op rhs vlasov eq dynamic cpu t evaluate
the right-hand side of the Vlasov equation.

one compute node after domain decomposition via MPI. The total number of grid points for

one node is 173 · 106†.

We measure the arithmetic intensity as well as the flop rate of the operations with Intel

Advisor 2020. Intel Advisor reports the arithmetic intensity of the L1 Cache. That means

all loads and stores from and to L1 cache are counted in the calculation of the arithmetic

intensity. The result of the roofline analysis is shown in Fig. 5.5. The op saxpy cpu t

and op lin comb cpu t operators perform close to the main memory bandwidth roofline.

This is expected and a nice validation of the model because there is no possibility for cache

reuse. The diagnostic operators op diag mom 0d cpu t and op diag mom 2d cpu t fall above

the L3 cache roofline. As they load the distribution function once to calculate six dif-

ferent moments a high amount of cache reuse is expected. The operators evaluating the

right-hand side of the gyrokinetic Vlasov equation, op rhs vlasov eq static cpu t and

op rhs vlasov eq dynamic cpu t, fall in between the DRAM and L3 cache roofline indi-

cating a decent amount of cache reuse. It is difficult to estimate the maximal theoretical

performance of these more sophisticated operators because the cache reuse is unknown.

5.3.2. Strong scaling

After discussing the intra-node performance, we proceed by testing the MPI scaling of the

implementation. We start with the strong scaling that was first described by Amdahl [142].

In strong scaling a problem with a fixed size is selected and the speedup of the execution time

is measured as a function of the number of compute nodes [153]. We use the AUG example,

presented in Chapter 7, with a resolution of ∆x = ∆z = 1.91 · 10−4mm resulting in 223000

grid points in the poloidal plane, nϕ = 24, nv‖ = 64 and nµ = 16. The resolution has been

reduced such that we are able to fit the simulation onto 1 node. The memory usage with 1

node is approximately 700GB exhausting the available 768GB of main memory on the fat

partition on Cobra. The total number of grid points is equal to 11.0 · 109. We start with 1

node and scale up to 512 nodes. We first fill the µ and species communicator with nodes as

†The number of grid points includes a factor of two from the two species.
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Figure 5.5.: Figure displaying the roofline analysis of the operators presented in Tab. 5.1.
The operators op_lin_comb_t and op_saxpy_t are bound by the main memory
bandwidth and show optimal performance. For the more involved operators, we
observe a higher performance, demonstrating efficient cache reuse.

minimal MPI communication is needed in these directions. After they are filled, we use the

ϕ, and v‖ communicator that require a ghost exchange via MPI. We measure the wall clock

time per time step averaged over 100 iterations. For the run with only 1 node, we average the

execution time over 50 timesteps to be able to run the benchmark within the time limit of

24h imposed by our supercomputing centre. The time of the first iteration is discarded due

to the presence of memory allocations and initialisations. The results are shown in Fig. 5.6.

The times are given in Appendix B.1. We define the efficiency of the strong scaling by

η := log2

(
tn
t2n

)
(5.2)

where tn and t2n denote the time per timestep with n nodes and 2n nodes respectively. We

measure an average reduction of execution time by a factor of 1.9 upon doubling the number

of nodes. This corresponds to an efficiency of η = 0.93, demonstrating excellent strong

scaling.

5.3.3. Weak scaling

We continue with the weak scaling that was first described by Gustafson [143] as a re-

evaluation of Amdahl’s work. In weak scaling the number of compute nodes is increased

while keeping the problem size per node constant [153]. This results in larger problems the

more nodes are chosen. Similar to the strong scaling, we select the problem based on the

AUG simulation presented in Chapter 7. As we have more memory per node available than

in the strong scaling, we choose a higher resolution of ∆x = ∆z = 9.54 · 10−4mm resulting

in 892000 points in the poloidal plane. We start the scaling measurement with 1 node and
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Figure 5.6.: Figure displaying the strong scaling analysis of the GENE-X code over different
MPI communicators. For reference, the ideal scaling with an efficiency of η = 1
and the scaling with an efficiency of η = 0.93 is shown. On average, GENE-X

shows an efficiency of η = 0.93, demonstrating excellent strong scaling.

nϕ = 2, nv‖ = 8, nµ = 2 and fill the MPI communicators one after another up to 512 nodes

and nϕ = 16, nv‖ = 64 and nµ = 16. The number of grid points is equal to 57.1 · 106 per

node. Again, we measure the time per timestep by averaging the execution time over 100

timesteps. The results are shown in Fig. 5.7. We observe that the time per timestep is almost

constant from 1 to 512 nodes, demonstrating excellent weak scaling.

5.4. Conclusion and outlook

We started this chapter with the goal to create a scientific code that is fast and extensible.

We achieved both by implementing a software design that is focused around data structures

and operators, acting on raw data. Both are encapsulated in classes and implementations,

specialised to different compute architectures, can be provided. We demonstrated that the

implemented software design is fast by validating the intra-node performance against the

roofline model and the inter-node performance by measuring the strong and weak scaling

from 1 to 512 compute nodes. The strong scaling showed an efficiency of 93% and the weak

scaling was nearly ideal.

Many supercomputers today feature accelerated compute nodes with GPUs [154]. To make

use of these architectures, it will be important to exploit the modular code structure of GENE-X

and provide a GPU implementation of the data structures and operators in the future.

72



1 2 4 8 16 32 64 128 256 512
Number of Nodes

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Re
la

ti
ve

 t
im

e 
pe

r 
ti

m
es

te
p

Measured scaling  communicator
Measured scaling  communicator
Measured scaling v|| communicator
Ideal scaling

Figure 5.7.: Figure displaying the weak scaling analysis of the GENE-X code. The measured
time per timestep is almost constant from 1 to 512 nodes, demonstrating excellent
weak scaling.
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6. Verification

With the help of good software engineering practices, presented in Chapter 5, we ensure that

the implementation of the numerical scheme is correct. The next step is to show that the

numerical scheme converges and returns approximate solutions of the gyrokinetic Vlasov-

Maxwell system.

To this end, we present different tests of the GENE-X code in this chapter. We start with

purely numerical tests and analyse the accuracy of the field line tracing, which is central

for calculating derivatives in the locally field-aligned coordinate system, and perform a con-

vergence order analysis of the whole gyrokinetic Vlasov-Maxwell system with the Method of

Manufactured Solutions (MMS) [155]. Next, we test different physical properties of the sys-

tem. Each of the physical tests probes a different aspect of the code. We start with testing

the linear regime of the gyrokinetic system in the limit of no electromagnetic fluctuations,

i.e. A1‖ = 0, by calculating and comparing ion temperature gradient growth rates in screw

pinch geometry against analytical predictions. This test is well suited to compare the per-

formance of the locally field-aligned coordinate system to standard flux-coordinates. We test

the nonlinear phase by checking the conservation of energy during a turbulence simulation.

We proceed with testing the electromagnetic implementation by measuring and comparing

the frequency and damping rate of Alfv́en waven in slab geometry. Finally, we perform a

well studied electromagnetic Cyclone Base Case (CBC) benchmark [156] that tests the full

gyrokinetic Vlasov-Maxwell system in toroidal geometry.

6.1. Accuracy of the field line tracing

As explained in Chapter 3, the length of a magnetic field line as well as the intersection points

with neighbouring poloidal planes is calculated by solving a system of ordinary differential

equations. We use the algorithm dop853 for solving the system. dop853 is an embedded

Runge-Kutta method of order eight that uses a fifth order error estimator with a third order

correction [122, II. 10]. The local approximation error is controlled by providing relative and

absolute error tolerances. It is kept roughly below rtol*abs(sol)+atol [122, Appendix],

where rtol and atol represent the relative and absolute error tolerance and sol the value

of the solution. In the following, we test the convergence and precision of the integrator for

our application.

We choose a circular geometry with the magnetic field specified in Eq. (4.53) and a large

aspect ratio assumption such that ϕ represents a Cartesian coordinate labelling poloidal

planes. The q profile is given by

q(r̂) = q0 + ŝ · r̂. (6.1)
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For this geometry the system of equations presented in Eqs. (3.75), (3.76), (3.77) and (3.78)

can be solved analytically. The position and the length of a magnetic field line starting at

(r̂0, θ0, ϕ0), parametrised as a function of the poloidal angle ϕ, read

r̂(ϕ) = r̂0 (6.2)

θ(ϕ) = θ0 +
(ϕ− ϕ0)

q(r̂)
(6.3)

ŝ(ϕ) =

√
1 +

(
r̂

q(r̂)

)2

(ϕ− ϕ0) . (6.4)

First, we analyse the accuracy of the position of the field line. We compare the coordinate

ẑ = Ẑ = R̂0 + r̂ sin(θ), obtained from the numerical solution with dop853, against the

analytical solution for the angles ϕ ∈ {π/8, π, 100π}, corresponding to 1/16, 1/2 and 50

toroidal turns. For the z coordinate the absolute error

ε = |ẑdop − ẑ| (6.5)

is measured. We set the relative tolerance of dop853 to machine precision and scale the

absolute tolerance. The results are shown in the upper image in Fig. 6.1. For ϕ = π/8 the

field line tracing is precise to machine precision for every tolerance. For larger trace angles we

observe a convergence with decreasing tolerance. The measured error is always larger than

the provided tolerance. This is expected because the tolerance limits the local and not the

global approximation error of the numerical solution.

Next, we analyse the accuracy of the calculation of the field line length. As the field line

length increases with increasing trace angle ϕ, we measure the relative numerical error

ε =
|ŝdop − ŝ|
|ŝ|

(6.6)

for the angles ϕ ∈ {π/8, π, 100π}. We set the absolute tolerance to machine precision and

scale the relative tolerance. The results are shown in the lower image in Fig. 6.1. We observe

a similar behaviour as for the z coordinate. For ϕ = π/8 the numerical integration is exact

to machine precision. For larger trace angles we observe convergence. In the simulations

presented in this work, we use 16 or more poloidal planes. The trace angle required to

calculate parallel derivatives with the fourth order scheme, presented in Chapter 4, is equal

to π/8 or smaller. Therefore, the accuracy of the tracing close to machine precision.
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Figure 6.1.: Figure displaying the accuracy of the field line tracing with the dop853 algorithm.
We test three different trace angles ϕ ∈ {π/8, π, 100π}. Above the absolute error
of the z coordinate of the field line and below the relative error of the field line
length is shown. With increasing tolerance the field line tracing converges. For
clarity, the convergence is highlighted with a dashed line.
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6.2. Method of manufactured solutions

In this section, we present a full convergence order analysis of the numerical scheme in slab,

circular and toroidal geometry with MMS. The explanation and introduction into MMS have

been published in [87]. In this section, the results published in [87] are generalised from

the electrostatic to the electromagnetic model, detailed in Chapter 2, with the improved

numerical scheme described in Chapter 4.

The gyrokinetic Vlasov-Maxwell system is a complicated integro-partial differential system of

equations and exact solutions are only known for special cases. Therefore, it is not possible

to comprehensively check the convergence of the numerical solution by comparing it against

exact solutions. Nevertheless, it is possible to add extra terms to the Vlasov-Maxwell system

such that it obtains any solution. This is known as the method of manufactured solutions

(MMS) [155]. In order to explain it in more detail, we rewrite the gyrokinetic Vlasov-Maxwell

system in a different form. Consider the integro-partial differential operators L(φ), N(f) and

A(f) such that

L(φ1, A1‖)[f ] = 0 (6.7)

N(f)[φ1] = 0 (6.8)

A(f)[A1‖] = 0 (6.9)

represents the gyrokinetic Vlasov-Maxwell system. L represents the Vlasov operator which

depends on the electrostatic potential and the parallel component of the electromagnetic

vector potential, N represents the operator that forms the quasi-neutrality equation and A

the operator that forms Ampère’s law. In the method of manufactured solutions a modified

system of equations

L(φ1, A1‖)[f ] = Sf (6.10)

N(f)[φ1] = Sφ1 (6.11)

A(f)[A1‖] = SA1‖ (6.12)

is solved, where the sources Sf , Sφ1 and SA1‖ are included in the right-hand side of the

equations such that the given functions fMMS, φ1MMS and A1‖MMS are a solution to the

system. The functions fMMS, φ1MMS and A1‖MMS can be chosen arbitrarily. The sources

Sφ1 , Sf and SA1‖ are calculated by plugging the solutions into Eqs. (6.7), (6.8) and (6.9). As

the solutions are known this is a straightforward process and can be done with a computer

algebra system. We use Mathematica [157]. The functions fMMS, φ1MMS and A1‖MMS are

called the manufactured solutions.

Numerical solutions of the modified Vlasov-Maxwell system, presented in Eqs. (6.10), (6.11)

and (6.12), can be compared to the exact solutions fMMS, φ1MMS and A1‖MMS. This makes

it possible to calculate relative errors of the numerical solution and to study the order of

convergence of the numerical scheme.
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ω̂ npol ntor nrad q0 α m̂i m̂e

2π 1 1 1 0.86 2.12 1 1

Table 6.1.: Table displaying the parameters used in the MMS analysis. This table has been
published in [87].

As manufactured solutions we choose the functions

fMMS(r̂, ϕ, θ, v̂‖, µ̂, t̂) := cos2(ω̂t̂) cos2(ntorϕ) sin2(npolθ)

× sin2(πnrad(r̂ − r̂min)/(r̂max − r̂min))e
−
(
v̂2‖+µ̂B̂

)
,

A1‖MMS(r̂, ϕ, θ, t̂) := φ1MMS(r̂, ϕ, θ, t̂) := 2 cos2(ω̂t̂) cos(ntorϕ) sin(2npolθ)

× sin(2πnrad(r̂ − r̂min)/(r̂max − r̂min)),

(6.13)

representing a mode. We run the verification in three different magnetic geometries testing

different aspects of the implementation. For the first test we choose a slab geometry with the

magnetic field specified in Eq. (4.52). In slab geometry multiple terms in the Vlasov equations

like the curvature or ∇B drift vanish. Furthermore, the magnetic field is uniform and points

in the ϕ direction. Therefore, the magnetic field is automatically aligned to the coordinate

system and the locally field-aligned coordinate system coincides with the intrinsic coordinate

system of the manifold. This renders the field line tracing trivial and thus enables us to test

the implementation without complications arising from the locally field-aligned coordinate

system. For the second test we choose a circular geometry with the magnetic field specified

in Eq. (4.53) and a constant q profile q(r̂) = q0. In the circular geometry the magnetic field

lines are twisted and the field line tracing as well as the interpolation is tested. For both the

slab and circular geometry we use a large aspect ratio assumption such that ϕ represents a

Cartesian coordinate labelling poloidal planes. Third, we test a toroidal magnetic equilibrium

that incorporates all terms in the gyrokinetic Vlasov equation. The magnetic field is given

by

B̂ =
B̂

R̂0 + r̂ cos(θ)

(
eϕ +

r̂

q(r̂)
eθ

)
, (6.14)

with the q profile

q(r̂) = q0 + α

(
r̂

â

)2

, (6.15)

minor radius a and major radius R0. We run the MMS analysis with the parameters given in

Table 6.1 with four different resolutions presented in Table 6.2. The radial box size is limited

to r̂min = 0 and r̂max = 1 in slab geometry and r̂min = 0.1 and r̂max = 0.5 in both circular and

toroidal geometry. In velocity space (v̂‖, µ̂), we choose a domain size of [−3, 3]× [0, 9] and in

the toroidal angle ϕ of [0, 2π). We calculate one period of the manufactured solution up to

t̂ = 1. We analyse the results by calculating the relative L2 and L∞ error of the numerical

solution given by ||f−fMMS||p/||fMMS||p where p ∈ {2,∞}. The results are shown in Fig. 6.2.

We observe that the numerical scheme converges to second order for all three geometries.

Initially, the convergence is faster than second order because the linear advection terms in the
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Nϕ ∆x̂ = ∆ẑ Nv‖ Nµ ∆t̂

16 0.025 10 5 0.01
32 0.0125 20 10 0.005
64 0.00625 40 20 0.0025
128 0.003125 80 40 0.00125

Table 6.2.: Table displaying the different resolutions used for the method of manufactured
solutions.

gyrokinetic Vlasov equation are discretised with a fourth order scheme. For higher resolutions

the numerical error introduced by the second order discretisation of the field equations and

the nonlinear Poisson brackets starts to dominate, and we observe the expected second order

convergence.

6.3. Screw pinch studies

After having demonstrated the convergence of the numerical scheme, we verify if the code

reproduces the correct physical results. The starting point is a physical test where we measure

growth rates of an ion temperature gradient mode in a screw pinch geomety. This section

has been published in [87].

We use a setup similar to the work in [158, 83]. We model the screw pinch with the circular

geometry, described in the last section, with a constant q profile q(r) = q0. We simulate two

different cases. In the first case we choose q0 → ∞, corresponding to a slab like geometry†,

and in the second case we choose a finite q. This allows us to compare the performance

of ordinary field-aligned coordinates, in the slab case, to the locally field-aligned coordinate

system with interpolation for the finite q case. We choose the reference length parameters

Lref = 7.74 · 10−1 m, Bref = 1 T, mref = 1 u and Tref = 1 keV such that the ion gyroradius

ρref = 3.23 · 10−3 m and Lref/ρref = 239. The simulation box ranges from r̂min = 4.17 · 10−3

to r̂max = 6.05 ·10−2 spanning over 14.5ρref. In velocity space (v̂‖, µ̂) we choose a domain size

of [−4, 4] × [0, 16] and in the toroidal angle ϕ of [0, 2π). We use the trapezoidal integration

weights and the quadratic grid in µ, described in Section 4.2, and no hyperdiffusion as well

as no buffer zone. We use a realistic mass ratio with me = 1/3600mi.

We initialise the simulation with local Maxwellians, presented in Eq. (4.20), and given tem-

perature T̂0σ and density profiles n̂0σ. Maxwellians are an exact equilibrium of the gyrokinetic

Vlasov equation in the given geometry and thus provide a stable initial condition. In order

to study growth rates, we initialise a mode as a perturbation of the Maxwellian

f̂σ(t̂ = 0, r̂, θ, ϕ, v̂‖, µ̂) = F̂0σ(r̂, θ, ϕ, v̂‖, µ̂)

×

(
1 + ε exp

(
−
(
r̂ − r̂mid

δr̂mode

)2
)

cos (mθ + nϕ)

)
. (6.16)

We choose the profiles T̂0i, T̂0e, n̂0i and n̂0e, appearing in the Maxwellian distribution function,

†Numerically we implement q0 → ∞ by setting q0 = 108.
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Figure 6.2.: Figure displaying the relative L2 (top) and L∞ (bottom) error of the numerical
solution in the MMS test as a function of the resolution. The resolution is repre-
sented by the number of poloidal planes. The complete resolutions are specified
in Tab. 6.2. The test is performed for a slab, circular and toroidal geometry. For
reference a dashed line representing second order convergence is drawn in black.
The numerical scheme converges to second order for all geometries.
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Figure 6.3.: Figure showing the normalised initial temperature and density profile. The profile
is the same for ions and electrons. This figure has been published in [87].

according to

P (r̂) = CP exp

(
−κP δ r̂P tanh

(
r̂ − r̂mid

δr̂P

))
. (6.17)

The parameters for the profile and the initial condition are given in Table 6.3. The initial

density profile is chosen to be constant by setting κn = 0. The profiles are depicted in

Figure 6.3.

In order to compare the growth rates to analytical predictions, we use an approximate dis-

persion relation derived in [83, Appendix]. The dispersion relation has been derived with the

assumption of adiabatic electron response and large aspect ratio, i.e. r/(qR0) → 0. Both

approximations are valid for the parameters chosen and hence we expect the numerical results

to be close to the prediction of the dispersion relation. In order to present the dispersion

relation, we need to define a single Fourier mode of φ̂1:

φ̂1 = φ̂1,m,n,ω̂ exp
(
i(mθ + nϕ− ω̂t̂)

)
. (6.18)

ε 1.00 · 10−4

r̂mid 3.05 · 10−2

δr̂mode 5.90 · 10−3

Cni = Cne 1.65 · 101

CTi = CTe 1.00
δr̂Ti = δr̂Te 6.05 · 10−3

δr̂ni = δr̂ne 1.21 · 10−2

κTi = κTe 6.62 · 101

κni = κne 0

Table 6.3.: Table defining the parameters for the screw pinch profile for ions and electrons
specified in Equation (6.17). This table has been published in [87].
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The dispersion relation reads [83, Appendix]

−
(
ρref

Lref

)2 [ ∂2

∂r̂2
+

(
1

r̂
+

1

n̂0

∂n̂0

∂r̂

)
∂

∂r̂
− m2

r̂2

]
φ̂1,m,n,ω̂(r̂) ={

− 1

T̂0i

(1 + zZ(z))− 1

T̂0e

+
m

k̂∗r̂B̂0L

ρref

Lref[
Z(z)

(
1

n̂0

∂n̂0

∂r̂
− 1

2T̂0i

∂T̂0i

∂r̂

)
+ z(1 + zZ(z))

1

T̂0i

∂T̂0i

∂r̂

]}
× φ̂1,m,n,ω̂(r̂), (6.19)

with z = ω̂/k̂∗, k̂∗ = k̂‖
√

2T̂0i and the parallel wavenumber k̂‖ = (m/q+ n)bϕ. Furthermore,

we used the plasma dispersion function

Z(u) =
1√
π

∫ ∞
−∞

exp
(
−x2

)
x− u

dx = i
√
π exp

(
−u2

)
(1 + erf(iu))

erf(x) =
2√
π

∫ x

0
exp
(
−t2
)

dt . (6.20)

The dispersion relation is a nonlinear, differential eigenvalue problem that has to be solved for

the radial electrostatic profile φ̂1,m,n,ω and the complex eigenvalue ω̂ simultaneously. As we are

not aware of methods to solve the equation analytically, we employ a numerical method. First,

we discretise the differential operators to obtain an ordinary nonlinear eigenvalue problem.

Similar to the numerical scheme presented in Chapter 4, we choose fourth order centred

finite differences to discretise the r derivative. At the boundary, we implement Dirichlet

boundary conditions and set φ̂1,m,n,ω(r̂min) = φ̂1,m,n,ω(r̂max) = 0. We choose 128 points for

the discretisation.

The remaining nonlinear eigenvalue problem can be solved by calculating the roots of the

characteristic polynomial. We use a determinant free method based on the Newton iteration

described in [159, pp. 28–29]. As an initial guess for the Newton iteration we choose ωinit =

−2 + 4i. The calculation is done with Mathematica [157]. The results are presented in

Appendix B.2.

The dispersion relation and thus the eigenvalues ω̂ are a function of the poloidal mode number

m and the parallel wavenumber k̂‖. Hence, the eigenvalues ω̂ do not depend on q explicitly.

For a given poloidal mode number m, we can select two toroidal mode numbers nslab and

nscrew, for the q = ∞ and q 6= ∞ case respectively, such that the parallel wavenumbers

and, consequently, the growth rates are equal. For the slab case the poloidal magnetic field

vanishes, and the parallel wavenumber reads k̂‖slab = nslab. For the q 6= ∞ case we choose

the toroidal mode number nscrew such that k‖screw = k‖slab, i.e.

nscrew = k‖slab −
bθm

r

= nslab −
m

q
.

(6.21)
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q m n k̂‖
∞ 5 1 1
∞ 10 1 1
∞ 15 1 1
∞ 20 1 1

q m n k̂‖
5/3 5 −2 1
10/3 10 −2 1
15/3 15 −2 1
20/3 20 −2 1

Table 6.4.: Table displaying the different initial mode configurations for the simulation. On
the left, the mode numbers for the q = ∞ case and on the right, the mode
numbers for the q 6=∞ case are shown. The poloidal and toroidal mode numbers
are constructed such that the parallel mode number k‖ is equal to one in all cases.
This table has been published in [87].

Having two setups with the same growth rates allows us to compare the performance of field-

aligned coordinates in the q = ∞ case to the locally field-aligned coordinates in the q 6= ∞
case.

The q factors and mode numbers chosen for the simulation are shown in Table 6.4. They are

selected such that a broad range of modes and q factors are tested.

6.3.1. Growth rates

We measure the growth rate from the L2 norm of the electrostatic potential. The L2 norm

is calculated numerically with the trapezoidal quadrature rule similar to the charge density

in the quasi-neutrality equation. We determine the growth rate by performing a linear fit of

log‖φ̂1‖ between the times t̂ = 1 and t̂ = 3.5. This is shown exemplarily in Fig. 6.4.

We use a resolution of ∆x̂ = ∆ẑ = 6.46 · 10−4, corresponding to 0.2 ρref, nϕ = 16, nv‖ = 256,

nµ = 16 and a timestep of ∆t = 1.4 · 10−3 tref = 3.5ns. The timestep is constant throughout

the simulation and limited by the parallel electron streaming. We study the convergence of

the simulation at the example of the q = 15/3 case. Upon doubling the resolution in each

dimension, ∆x̂ → 0.5∆x̂, ∆ẑ → 0.5∆ẑ, nϕ → 2nϕ, nv‖ → 2nv‖ and nµ → 2nµ, the growth

rate of the q = 15/3 mode changes less than 1%. Therefore, we assume a 1% error on the

growth rates obtained from our simulations.

The growth rates obtained from the simulation as well as the solution of the approximate

dispersion relation are shown in Fig. 6.5. The simulations for q = ∞ and q 6= ∞ agree

well with each other within the 1% error margin, as predicted by the dispersion relation.

Furthermore, the numerical results are close to the solution of the dispersion relation. They

agree within the 1% numerical error margin for the poloidal mode numbers m = 15 and

m = 20. For the poloidal mode numbers m = 5 and m = 10 the measured growth rates

are slightly higher than growth rates obtained from the dispersion relation. As discussed

above, the dispersion relation approximates the growth rates and thus exact agreement is not

expected.

6.3.2. Energy and particle conservation

In order to study the behaviour of the nonlinear phase of the simulation, we investigate the

conservation of the particle number and energy during the onset of turbulence. We choose
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Figure 6.4.: Figure displaying the L2 norm of the electrostatic potential as a function of time.
The growth rate is obtained by performing a linear fit of log‖φ̂1‖2 between the
times t̂ = 1 and t̂ = 3.5. The fit is drawn in a blue dashed line. Shown are the
results from the simulation with q = 15/3 and m = 15. This figure has been
published in [87].
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Figure 6.5.: Figure displaying the growth rates obtained from the approximate dispersion re-
lation and the simulations with different q factors and mode numbers specified
in Table 6.4. Vertical lines through the markers represent the error of the simu-
lation. The measured growth rates are close to the prediction of the dispersion
relation. This figure has been published in [87].

85



the same screw pinch setup as presented in the last section and run the q = 15/3 case. We

use a resolution of ∆x̂ = ∆ẑ = 3.23 · 10−4, corresponding to 0.1 ρref, nϕ = 32, nv‖ = 64 and

nµ = 16. We run the simulation until t̂ = 10, when the turbulence starts to hit the wall. The

chosen Dirichlet boundary conditions allow an energy flux through the domain boundaries,

which becomes effective when eddies hit the wall. As an example, the ion density is depicted

in the linear and nonlinear phase in Fig. 6.6. The energy of the ions and electrons is shown

in Fig. 6.7. The number of particles is conserved up to a precision of 10−7. The energy is

conserved up to a precision of 10−8†. In the linear phase the conservation is improved. As

soon as the nonlinear phase starts energy gets transferred between electrons and ions.

6.4. Alfv́en waves in slab geometry

We continue with the physical verification of the electromagnetic part of the model. In this

section, we compare the frequency and damping rate of Alfv́en waves in slab geometry between

numerical simulation with GENE-X and analytical estimates, following the work [132, 97].

6.4.1. Derivation of the dispersion relation

We start by deriving a dispersion relation that provides the analytical estimates for the

frequencies and damping rates of the Alfv́en waves. The dispersion relation is similar to the

one used in [132, 97]. We perform the derivation explicitly in order to control the assumptions

made and obtain the correct equation in our normalisation. Electrons are, due to their light

weight, more mobile than ions and the main generator of electromagnetic fields. Therefore,

we assume that the ions are stationary, i.e. the frequency of the Alfv́en waves fulfils ωAlfv́en �
k‖vTi . Further, we employ a δf splitting such that f̂e = δf̂e + f̂M with

f̂M (v̂‖) =
1√
π
e
−v̂2‖ . (6.22)

We neglect all nonlinear terms. We choose two spatial dimensions x and y. In compliance

with the locally field aligned coordinate system presented in Chapter 3, y labels the direction

parallel to the magnetic field. The normalisation is chosen, as introduced in Section 4.1, such

that m̂i = 1 and q̂e = −1. The normalised gyrokinetic Vlasov equation for the electrons, only

taking the parallel dynamics into account, reads

∂δf̂e

∂t̂
= −

√
2

m̂e
v̂‖

(
∂δf̂e
∂ŷ

+ q̂e

(
∂φ̂1

∂ŷ
+
∂Â1‖

∂t̂

)
F̂M

)
, (6.23)

†The energy conservation of 10−8, presented here, is significantly better than the result published in [87].
The reason is that the factor 1/2 in front of the qσφ1 term in Eq. (2.99) was missing in the energy diagnostic of
the GENE-X code. This resulted in an overestimation of the electrostatic energy contribution and, consequently,
an incorrect energy measurement.
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Figure 6.6.: Figure displaying the ion density in the poloidal plane located at ϕ = π in the
linear phase at t̂ = 3.5 and the nonlinear phase at t̂ = 6.5 of a screw pinch
simulation with q = 15/3. The simulation is initialised with the temperature
and density profile shown in Fig. 6.3 and perturbed with an unstable m = 15,
n = −2 mode. This figure has been published in [87]. For a unified presentation,
the color bars and font sizes have been adapted.
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Figure 6.7.: Figure displaying the normalised energy E(t)/E(0) for electrons and ions of a
simulation in screw pinch geometry with q = 15/3. The simulation is initialised
with the temperature profile shown in Figure 6.3 and perturbed with an unstable
m = 15, n = −2 mode. The simulation develops turbulence at approximately
t̂ = 4. The total energy is conserved to a precision of 10−8. This figure has been
published in a similar form in [87]. The origin of the difference is explained in
the footnote on page 86.

with the corresponding field equations

−
(
ρref

Lref

)2 ∂2φ̂1

∂x̂2
= q̂e

∫ ∞
−∞

δf̂e dv̂‖ (6.24)

−
(
ρref

Lref

)2 ∂2Â1‖

∂x̂2
=
βref

2
q̂e

√
2

m̂e

∫ ∞
−∞

v̂‖δf̂e dv̂‖. (6.25)

Similar to Eq. (6.18), we switch to a Fourier representation of a single mode

δf̂e(x̂, ŷ, v̂‖, t̂) = δf̂k̂y ,ω̂(x̂, v̂‖)e
i(k̂y ŷ−ω̂t̂) (6.26)

φ̂1(x̂, ŷ, t̂) = φ̂k̂x,k̂y(t̂)e
i(k̂xx̂+k̂y ŷ) (6.27)

Â1‖(x̂, ŷ, t̂) = Âk̂x(ŷ, t̂)eik̂xx̂ . (6.28)

Inserting Eqs. (6.26), (6.27) and (6.28) into Eqs. (6.23), (6.24) and (6.25) gives the linear

system

−iω̂δf̂e = −
√

2

m̂e
v̂‖

(
ik̂yδf̂e − q̂e

(
ik̂yφ̂1 +

∂Â1‖

∂t̂

)
F̂M

)
(6.29)

−
(
ρref

Lref

)2

k̂2
xφ̂1 = q̂e

∫ ∞
−∞

δf̂e dv̂‖ (6.30)(
ρref

Lref

)2

k̂2
x

∂Â1‖

∂t̂
= iω̂

βref

2
q̂e

√
2

m̂e

∫ ∞
−∞

v̂‖δf̂e dv̂‖ . (6.31)
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We define ω̄ =
√
m̂e/2ω̂/k̂y and rewrite Eq. (6.29)

δf̂e = −
v̂‖q̂e

(
i
k̂y

∂Â1‖
∂t̂
− φ̂1

)
FM

v̂‖ − ω̄
. (6.32)

Inserting Eq. (6.32) into Eq. (6.30) yields

φ̂1 =

(
Lref

ρref

)2 1

k̂2
x

(∫ ∞
−∞

v̂‖FM (v̂‖)

v̂‖ − ω̄
dv̂‖

)(
i

k̂y

∂Â1‖

∂t̂
− φ̂1

)

=

(
Lref

ρref

)2 1

k̂2
x

(1 + ω̄Z(ω̄))

(
i

k̂y

∂Â1‖

∂t̂
− φ̂1

)
, (6.33)

where we have used the plasma dispersion function and Eq. (A.19). Similarly, we insert

Eq. (6.32) into Eq. (6.31)

∂Â1‖

∂t̂
= −iω̂

(
Lref

ρref

)2 1

k̂2
x

βref

2

√
2

m̂e

(∫ ∞
−∞

v̂2
‖FM (v‖)

v̂‖ − ω̄
dv̂‖

)(
i

k̂y

∂Â1‖

∂t̂
− φ̂1

)

= −iω̂
(
Lref

ρref

)2 1

k̂2
x

βref

2

√
2

m̂e
(ω̄(1 + ω̄Z(ω̄))

(
i

k̂y

∂Â1‖

∂t̂
− φ̂1

)
, (6.34)

where we used Eq. (A.20). Subtracting Eq. (6.33) from i/k̂y times Eq. (6.34) gives the final

dispersion relation

k̂2
x

(
ρref

Lref

)2

+ (1 + ω̄Z(ω̄))

(
1− βref

m̂e
ω̄2

)
= 0 . (6.35)

We solve the dispersion relation numerically with the FindRoot function of Mathematica [157].

We choose ω̄ = 1−0.1i as the starting value of the iterative algorithm. The results for different

mode numbers and plasma beta are given in Appendix B.4.

6.4.2. Numerical simulation

We continue with describing the setup of the numerical simulation with GENE-X. We choose

the reference parameters Lref = 1.0m, Tref = 1.0KeV and Bref = 3.231 · 10−3T such that

ρref = Lref = 1m. We choose a realistic mass ratio with m̂i = 1 and m̂e = 1/3600. We

simulate in slab geometry and use the magnetic field described in Eq. (4.52). In slab geometry,

the toroidal angle ϕ is interpreted as a Cartesian coordinate and coincides with the locally

field-aligned y coordinate. We choose a box size of (x̂, ŷ, ẑ, v̂‖, µ̂) ∈ [0, 2π]× [0, 2π)× [0, 2π)×
[−3, 3]× [0, 9]. The initial condition is given by

f̂i(t̂ = 0, x̂, ŷ, ẑ, v̂‖, µ̂) = π−3/2e
−(v̂2‖−µ̂)

(6.36)

f̂e(t̂ = 0, x̂, ŷ, ẑ, v̂‖, µ̂) = π−3/2e
−(v̂2‖−µ̂) ·

(
1 + ε cos

(
k̂yŷ
)

sin
(
k̂xx̂
))

. (6.37)

We choose the strength of the mode perturbation as ε = 10−2. We simulate with a con-

stant parallel mode number k̂y = 1. The orthogonal mode number is varied from k̂x ∈
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Figure 6.8.: Figure displaying the time trace of the logarithm of the L2 norm of the electro-
static potential for βref/m̂e = 0.2 and k̂x = 1/4. The red crosses indicate local
maxima and the green crosses local minima. The damping rate is determined by
a linear fit through the local maxima, drawn as a red dashed line.

{1/128, 1/64, 1/32, 1/16, 1/8, 1/4, 1/2, 1}. The distribution function is constant along z and

constant on the boundary. For the electromagnetic fields we choose periodic boundary con-

ditions in z and Dirichlet boundary conditions in x. We set the electromagnetic fields to

zero for x = 0 and x = 2π. Due to the periodic boundary condition, there is no dynamic

in the z direction and the system is effectively two dimensional, as in Eq. (6.35). With the

mode perturbation in x we set the perpendicular mode in the electrostatic field φ̂1. We use

a resolution of ∆x̂ = ∆ẑ = 0.05, nϕ = 32, nv̂‖ = 64, nµ̂ = 16 and a constant timestep of

∆t̂ = 1 · 10−3. We use no hyperdiffusion and no buffer zone.

We measure the frequency and damping rate of the Alfv́en wave at the L2 norm of the

electrostatic potential. An example of the time trace of the L2 norm is shown in Fig. 6.8. To

determine the damping rate and frequency, we search for local minima and maxima of the

oscillatory time trace. We define a local maximum as a point t̂i such that is (‖φ̂1‖2)(t̂i) >

(‖φ̂1‖2)(t̂j)∀j ∈ {i − 2, i − 1, i + 1, i + 2}, i.e. (‖φ̂1‖2)(t̂i) has to be larger than all of its

four nearest neighbours. In a similar fashion, we define a local minimum by the condition

(‖φ̂1‖2)(t̂i) < (‖φ̂1‖2)(t̂j) ∀j ∈ {i−2, i−1, i+1, i+2} such that the L2 norm is smaller than its

four nearest neighbours. The matched local maxima and minima of the example are shown in

Fig. 6.8 as crosses. We determine the growth rate of the oscillation as the slope of the linear

fit through the local maxima. For the kinetic shear Alfv́en waves the growth rate is always

negative and the waves are damped via Landau damping. Let {t̂min,i | i ∈ {1, . . . Nmin}} label

the position of the minima. We determine the frequency of the oscillation as

Re ω̂ ≈ 1

Nmin − 1

Nmin−1∑
i=1

π

t̂min,i+1 − t̂min,i

. (6.38)
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6.4.3. Results

The results from the numerical simulation with GENE-X as well as from the solution of the

dispersion relation are shown in Fig. 6.9. The numerical results agree well with the prediction

of the dispersion relation for all plasma beta and mode numbers tested. For low perpendicular

mode numbers and large plasma beta the damping of the Alfv́en waves is very weak. In that

case the induced electric field ∂Â1‖/∂t̂ is determined by the two integrals in Eq. (2.89).

These integrals need to be discretised consistently such that numerical errors arising from

the discretisation cancel and the physics is correctly resolved [97, Appendix. A]. This is

also known as the Ampère cancellation problem [98, 99, 100]. As shown by the results, the

consistent discretisation scheme used in GENE-X does not suffer from the cancellation problem.

6.5. Cyclone base case

We close this chapter by performing a well-studied CBC benchmark [156] that probes the

full electromagnetic model in toroidal geometry. Following [156], we measure the growth

rate and frequency of different toroidal modes at a fixed plasma β. We choose the reference

parameters Lref = 1.67m, Bref = 2.0T, mref = 1u, Tref = 2.14keV and nref = 4.66 · 1019 m−3

such that the plasma β is given by βref = 1%. The reference ion gyroradius reads ρref =

3.34 · 10−3m. The minor radius is given by a = 0.60m = 0.36Lref. We choose a radial extent

of r̂min = 3.60 · 10−2 = 0.1â to r̂max = 3.24 · 10−1 = 0.9â. The magnetic field is given by the

toroidal geometry described in Eq. (6.14) with the q profile

q(r̂) = 0.86− 0.16

(
r̂

â

)
+ 2.52

(
r̂

â

)2

. (6.39)

In velocity space (v̂‖, µ̂) we choose a domain size of [−4, 4]× [0, 16] and in the toroidal angle

ϕ of [0, 2π). We use a realistic mass ratio of me = 1/3600mi. Similar to the screw pinch

benchmark, we initialise the simulation with local Maxwellians, presented in Eq. (4.20), with

the profiles T̂0i, T̂0e, n̂0i and n̂0e, chosen according to Eq. (6.17). The parameters for the

profiles are given in Tab. 6.5 and the profiles are shown in Fig. 6.10. This test poses

challenges for GENE-X. As discussed in Section 4.5, the initial condition constructed with

local Maxwellians is unstable and prevents us from studying the growth rate and frequency

r̂mid 5.00 · 10−1

Cni = Cne 1.00
CTi = CTe 1.00
δr̂Ti = δr̂Te 3.00 · 10−1

δr̂ni = δr̂ne 3.00 · 10−1

κTi = κTe 2.49
κni = κne 8.00 · 10−1

Table 6.5.: Table defining the parameters for the CBC profile for ions and electrons specified
in Equation (6.17).
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Figure 6.9.: Figure displaying the frequency Re ω̂ and the damping rate − Im ω̂ for different
perpendicular mode numbers and different βref/m̂e. The results obtained with the
numerical calculation from GENE-X agree well with the results from the dispersion
relation for all parameters tested.
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Figure 6.10.: Figure showing the normalised initial temperature and density profiles. The
profiles are the same for ions and electrons.

of specific toroidal modes. Therefore, we remove the dynamics of the initial condition from

the system by evaluating the right-hand side of the gyrokinetic Vlasov-Maxwell system on

the initial condition and subtracting the result every timestep. Using this filtering process

is similar to using the assumption that the ∇B drift of the background vanishes, which is

usually made in δf codes [139]. To trigger the growth of unstable modes, we perturb the

initial distribution function with a sample x from the uniform distribution on the interval

[0, 10−6] according to

f̂σ → f̂σ + x . (6.40)

We select modes with a fixed toroidal mode number by using a toroidal Fourier filter on the

electrostatic potential and the parallel component of the electromagnetic vector potential.

The dominant unstable modes in the prescribed system are either ion temperature gradient

(ITG) or trapped electron modes (TEM) [156]. They are aligned to the magnetic field and

obtain part of their toroidal structure through the poloidal rotation of the magnetic field.

Using the FCI approach, the parallel dynamics is resolved via field line tracing and a high

resolution within the poloidal plane. The toroidal resolution is usually sparse and of the order

of nϕ = 16. This makes toroidal Fourier filtering difficult because the highest resolvable mode

number is nϕ/2
†. To filter higher toroidal mode numbers, the number of poloidal planes needs

to be increased. The computational demand of the simulations increases quadratically with

†At this point we would like to emphasise that only the Fourier filter and not the code itself is limited to
modes with a mode number nϕ/2. In the simulation ITGs and TEMs of significantly higher mode numbers
are resolved. The reason for this is that the modes are field-aligned and most of the toroidal structure of the
mode is generated by the poloidal rotation of the magnetic field. This rotation and the parallel structure of
the modes along the field line is well resolved because the coordinate system is aligned to the magnetic field.
For instance, in a simulation with nϕ = 20 and a toroidal Fourier filter of n = 5 we obtain the mode n = 15.
The mode n = 15 is not covered by the filter because the number of poloidal planes is too low. It is still
present in the system due to the high parallel resolution of FCI and grows faster than the mode n = 5.
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nϕ because, in addition to the increase in number of grid points, the timestep decreases

proportional to the increase in nϕ. Therefore, we restrict the analysis to the toroidal mode

numbers n = 5, 10 and 15. As discussed in Chapter 2, we solve the gyrokinetic Vlasov-

Maxwell system in a long wavelength limit. The modes n = 5, 10 and 15 correspond to

perpendicular mode numbers k⊥ = nq(a/2)/(a/2) of k⊥ρref = 0.078, 0.157 and 0.235. These

are significantly smaller than k⊥ρref = 1 such that a good agreement between the literature

and the simulations performed with GENE-X can be expected.

We measure the growth rate and the frequency from the maximum of the parallel component

of the electromagnetic vector potential on the poloidal plane located at ϕ = π. Similar

to the screw pinch benchmark, we determine the growth rate by performing a linear fit of

log maxx̂,ẑ(Â‖1(x̂, ẑ, ϕ = π)). We calculate the frequency by subtracting the fit from the

signal, measuring the position of two minima of the oscillations {t̂min,1, t̂min,2} and using

Re ω̂ = 2π/(t̂min,2 − t̂min,1). As GENE-X is a nonlinear code and the frequency is small in

relation to the growth rate, we are in general not able to measure the position of more than

two minima before the nonlinear phase starts.

Growth rates and frequencies

We use a resolution of ∆x̂ = ∆ẑ = 3.34 · 10−3 corresponding to 1.67ρref, nv‖ = 48 and

nµ = 12. For simulations with the n = 5 toroidal filter we use nϕ = 32, for the n = 10

toroidal filter we use nϕ = 48 and for the n = 15 toroidal filter we use nϕ = 64. The timestep

is constant throughout the simulation and reads ∆t = 1 · 10−3tref, ∆t = 0.5 · 10−3tref and

∆t = 0.25 · 10−3tref for the three different toroidal filters.

We study the convergence of the simulation at the example of the simulations with the n = 10

and n = 15 toroidal filters. A higher toroidal mode number leads to a higher poloidal mode

number and therefore requires a higher resolution within the poloidal plane. We increase the

resolution of the two simulations to ∆x̂→ 0.7∆x̂, ∆ẑ → 0.7∆ẑ and nϕ → 2nϕ and measure

the growth rate and frequency. We do not observe significant changes in the frequency upon

increasing the resolution. The error of the frequency is limited by the measurement error of

the minima of the oscillations. We observe significant changes in the growth rate. The growth

rate for the n = 10 simulation increases by 10% from 0.186 to 0.205 and the growth rate of

the n = 15 simulation by 30% from 0.271 to 0.356. Therefore, we assume an error of 10%

on the growth rate of the n = 5 and n = 10 simulations and an error of 30% on the growth

rate of the n = 15 simulation. To obtain more precise results for the n = 15 simulation, a

higher resolution is needed, which is expensive due to the specific properties of the locally

field-aligned coordinate system discussed above. The measured growth rates and frequencies

are shown in Fig. 6.11. Both the growth rates and frequencies agree well with the reference

results obtained with the GENE code [156].

Exemplarily, a cross section of the electrostatic potential and the parallel component of the

electromagnetic vector potential for the simulations with a Fourier filter of the mode n = 10

are shown in Fig. 6.12. The structure of the n = 10 mode is clearly visible in both fields.
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Figure 6.11.: Figure displaying the measured growth rate (top) and frequency (bottom) of
modes with a different toroidal mode number. For reference, the results obtained
with the GENE code [156] are drawn as a dashed line. The measured growth rates
and frequencies agree well.
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Figure 6.12.: Figure displaying the electrostatic potential (top) and the parallel component of
the electromagnetic vector potential (bottom) on the poloidal located at ϕ = π
at the time t = 80tref for the simulation with a toroidal Fourier filter of n = 10.
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6.6. Conclusion and outlook

In this chapter, we presented thorough tests of the GENE-X code. The test were designed

to comprehensively probe different parts of the numerical scheme and their implementation

in the code. We started by performing precise numerical tests to demonstrate that the

chosen numerical scheme, in combination with the locally field-aligned coordinate system, is

capable of solving the gyrokinetic Vlasov-Maxwell system. This included the measurement

of the accuracy of the field line tracing and a comprehensive convergence order analysis with

MMS. We demonstrated that the numerical scheme converges to second order accuracy. We

proceeded with physically motivated benchmarks and probed the electrostatic part of the

model by comparing growth rates in a screw pinch geometry against analytical predictions

and tested the nonlinear regime by studying the conservation of energy. We tested the

electromagnetic implementation by calculating the damping rates and frequencies of Alfv́en

waves in slab geometry. Finally, we tested the whole gyrokinetic Vlasov-Maxwell system in

toroidal geometry by performing a well studied CBC benchmark. GENE-X passed all tests.

In the future, it would be beneficial to perform further tests that probe the nonlinear regime.

A suitable candidate would be a nonlinear version of the CBC benchmark [160]. Furthermore,

it would be interesting to study the damping of zonal flows with the Rosenbluth-Hinton

test [161, 160].

97





7. Simulations of the edge and scrape-off

layer of ASDEX Upgrade

In this chapter, we demonstrate the full capability of the GENE-X code by performing sim-

ulations of the edge and SOL of ASDEX Upgrade. The simulations are performed in the

diverted X-point geometry of the L-mode discharge #36190.

We present the results from three simulations at different physical parameters. The first

simulation uses a reduced electron-to-ion mass ratio of µ = me/mi = 1/400, the second

simulation a realistic electron-to-deuterium mass ratio of µ = 1/3600 and the third simulation

a realistic mass ratio and a collision operator. This allows us to study the effect of the mass

ratio and collisions on edge and SOL turbulence. The simulations presented are performed

over a timescale of 1ms until profile saturation. This chapter is structured as follows. First,

we describe the setup of the simulation and discuss the parameters used. We proceed by

presenting the final plasma density and temperature profiles and the radial electric field.

The results are compared to Braginskii fluid [52] simulations, performed with the GRILLIX

code [79, 80], and experimental measurements. Finally, we look at the power balance of the

simulations and study the E×B heat flux over the separatrix and the parallel heat flux in the

SOL. In particular, we measure the parallel heat flux onto the divertor and the SOL fall-off

length λq by performing an Eich fit [26] of the parallel heat flux profile.

7.1. Simulation setup

We use the magnetic equilibrium of the AUG discharge #36190 at the time t = 3.3s for

the simulations. The simulations are performed in the edge and SOL ranging from the flux

surface ψ = 0.9 to ψ = 1.05. We use the canonical Maxwellian described in Section 4.5 to

initialise the simulations. The initial condition is constructed to allow for comparison with

previous Braginskii fluid simulations with GRILLIX [79, 80]. The profiles for electrons and

ions, entering the canonical Maxwellian, are equal. The form of the profiles is given by the

function

P (ψ) =


Pmax if ψ ≤ ψmin

c1 sin(c2ψ + c3) + c4 if ψmin < ψ < ψmax

Pmin else

, (7.1)
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Figure 7.1.: Figure displaying the initial temperature and density profiles for the simulations.
Ion and electron temperatures are equal. The functional for of the profile is
a sine function described in Eq. (7.1). The measured initial profile, presented
here, differs slightly from the analytical form, described in Eq. (7.1), because a
canonical Maxwellian is used.

with the coefficients

c1 = (Pmax − Pmin)/2 (7.2)

c2 = π/(ψmax − ψmin) (7.3)

c3 = π/2− c2ψmin (7.4)

c4 = (Pmax + Pmin)/2 . (7.5)

For both the temperature and density profile, we choose ψmin = 0.92 and ψmax = 0.995.

In order to obtain a stable initial condition, it is important that the distribution function

is constant in regions with ψ > 1 at the start of the simulation. On the core boundary

ψmin = 0.90 we choose a temperature of Tmax = 350eV and a density of nmax = 2 · 1019m−3,

coinciding with the experimental measurements of the ion temperature and density at AUG

and the GRILLIX simulations. On the SOL boundary ψmax = 1.05 we choose a density of

nmin = 0.2 · 1019m−3 and a temperature of Tmin = 35eV. The density is selected according

to experimental measurements. The temperature boundary value of 35eV is motivated by

the available velocity space resolution. In gyrokinetic simulations the velocity information

about the distribution function is retained. In the plasma core, the temperature is by orders

of magnitude larger than in the SOL. Consequently, the dynamics of fast particles in the

plasma core and slow particles in the SOL need to be resolved on the velocity space grid. In

order to reduce the computational demand of the simulations, we limit the factor between the

temperature at the core boundary and the SOL boundary to ten. To trigger the growth of

unstable modes, we perturb the initial condition, according to Eq. (6.40), with a sample x from
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the uniform distribution on the interval [0, 10−3]. The plasma profiles after initialisation with

the canonical Maxwellian are depicted in Fig. 7.1. The initial ion density of the simulation

in the poloidal plane is shown in Fig. 7.2.

As explained in Section 4.4, we use Dirichlet boundary conditions in the simulations. The

boundary value of the distribution function in real space is equal to the initial condition and

remains constant throughout the simulation. This implies that the temperature and density

on the core boundary are fixed to 350eV and 2.0 · 1019m−3, and the core boundary functions

as heat and particle source. On the SOL boundary the temperature and density is fixed to

35eV and 0.2 · 1019m−3, and the boundary functions as a heat and particle sink. By fixing

the temperature at the SOL boundary to 35eV, we ensure that the temperature in the SOL

does not reach values significantly below 35eV, and the dynamics is well resolved within the

available velocity space resolution.

We choose the reference length Lref = 1.65m, corresponding to the major radius, the ref-

erence magnetic field Bref = 2.5T , corresponding to the on-axis magnetic field, mref = 1u,

corresponding to the mass of a hydrogen ion and Tref = 0.050keV, corresponding to the

ion temperature in the near SOL. The reference gyroradius reads ρref = 2.89 · 10−4m and

Lref/ρref = 5.71 · 103. We use a resolution of ∆x = ∆z = 1.43mm in the poloidal plane

which corresponds to roughly 1.9 ion gyroradii at a (separatrix) temperature of 100eV and a

(outboard mid-plane) magnetic field of 2T. As the temperature and magnetic field vary over

the device, so does the resolution in terms of local gyroradii. In velocity space (v̂‖, µ̂) we

use different resolutions for the simulations with and without collisions. For the conservation

of energy, particles and momentum in the simulations with collision operator, it is vital to

increase the domain size in velocity space such that larger parts of the tail of distribution

function are included. In the simulations without collisions, we use a resolution of nv‖ = 72

and nµ = 16 and a domain size of [−7, 7] × [0, 49]. In the simultions with collisions, we use

a resolution of nv‖ = 80 and nµ = 16 and a domain size of [−8, 8] × [0, 81]. In the toroidal

angle ϕ, we use a resolution of nϕ = 24 and a domain size of [0, 2π), covering the whole

torus. To study the convergence of the numerical results, we performed simulations at an in

plane resolution of ∆x̂→ 0.7∆x̂, ∆ẑ → 0.7∆ẑ. We did not observe significant changes of the

results.

The timestep is ∆t = 6 · 10−4tref = 14.3ns and constant throughout the simulation. The

simulation is run for 42 time units corresponding to 1ms of plasma evolution.

Close to the boundary and before the divertor plates we apply diffusion in a buffer zone.

We set the parameter controlling the strength of the diffusion, introduced in Section 4.2,

to εbuffer = 200, which is close to the maximum value allowed by the CFL condition and

the chosen timestep. Furthermore, we use hyperdiffusion in the dimensions x, y, z and v‖.

The parameters controlling the strength of the hyperdiffusion, introduced in Section 4.2, are

chosen as εx̂,ẑ = 5, εŷ = 0.06 and εv̂‖ = 0.025. The strength of the hyperdiffusion in x, y, z is

estimated via trial and error. We use the estimation presented in [135] for the value of the

hyperdiffusion in v‖. It is worth discussing the computational cost of the simulations. The

simulations presented in this work were performed on the supercomputer Cobra of the Max-
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Figure 7.2.: Figure displaying the ion density of the initial state of the simulation on the
poloidal plane at ϕ = π. The separatrix is drawn in green, the device wall
in blue and the divertor legs in grey. The distribution function is initialised
according to Eq. (7.1) and constant in the SOL.
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Planck Computing and Data Facility (MPCDF) and the A3 partition of the supercomputer

Marconi of Cineca. Both systems feature compute nodes with Intel SkyLake Processors with

40 and 48 cores respectively. The cost for one simulation at the resolution presented is 2.5·106

CPU hours. We used 256 nodes for the simulations which required a runtime of approximately

9 days. Doubling the resolution within the poloidal plane quadruples the computational cost

because the resolution is increased uniformly in the x and z direction. This means that a

resolution of ∆x = ∆z = 7.53 · 10−4mm, corresponding to resolving one thermal ion Larmor

radius on the separatrix, increases the computational demand by a factor of roughly 3.6. Of

further interest is a higher resolution in velocity space to reduce the temperature in the SOL.

Upon decreasing the temperature by a factor of 2, the resolution requirement in v‖ and µ

increases by a factor of
√

2, and the total computational cost increases by a factor of
√

2
2

= 2.

Doubling the resolution in the ϕ direction leads to a quadrupling of the computational cost

because the number of points increase and the timestep needs to be reduced at the same

time. This means that an increase of the number of poloidal planes from nϕ = 24 to nϕ = 32

leads to increase in the computational demand by roughly 1.8.

Collision model

For the simulations with collisions, we use a simple collision model based on the Bhatnagar-

Gross-Krook (BGK) collision operator [113]. The collision operator supports multi-species

collisions and reads

Ĉαβ f̂α = ν̂αβ

(
B̂

B̂∗‖
M̂αβ − f̂α

)
(7.6)

M̂αβ =
n̂α(

πT̂αβ

)3/2
exp

(
−
(
v̂‖ − ûαβ

)2
+ µ̂B̂

T̂αβ

)
, (7.7)

where α, β denote the different species and n̂α the current plasma density. The coefficients

ûαβ, T̂αβ are chosen such that the collision operator conserves the particle number, parallel

momentum, energy and Boltzmann’s H-Theorem on the continuous level [162]. In addition,

the collision frequency ν̂αβ is chosen such that the temperature relaxation rates match the

rates of the Boltzmann collision operator [162]. They read

ûαβ =
m̂αûα +

√
m̂βm̂αûβ

m̂α + m̂β
(7.8)

T̂αβ =
T̂α + T̂β

2
+

m̂αm̂β

3 (m̂α + m̂β)

(
ûα√
m̂α
−

ûβ√
m̂β

)2

(7.9)

ν̂αβ =
nrefLref

T 2
ref

16n̂β
√

2πm̂αm̂β

(
ZαZβe

2
)2

3
(
m̂αT̂β + m̂βT̂α

)3/2
ln Λ . (7.10)

The Coulomb logarithm ln Λ is calculated at the beginning of the simulation according to

model number four described in [163] and varies over the computational domain. For more
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details on the collision operator in GENE-X we refer to [116]. The numerical scheme, presented

in Section 4.2, does not preserve the positivity of the distribution function. The temperature

T̂ can become negative and cause the collision operator to become imaginary. As the tem-

perature and density get closer to zero, the collision frequency ν̂ diverges. This requires the

timestep of the simulation to go to zero. To prevent these problems, we use a density floor

in the collision operator of n = 0.1 · 1019m−3 for the ion and electron density and T = 21eV

for the ion and electron temperature.

7.2. Plasma profiles and fluctuation amplitudes

We start the analysis of the AUG simulations by looking at the plasma density and the

electrostatic potential of the final state at t = 1ms. We present the analysis at the example

of the simulation with realistic mass ratio. The plasma density is shown in Fig. 7.3 and

the electrostatic potential in Fig. 7.4. Compared to the initial condition, shown in Fig. 7.2,

plasma density has been transported out radially and populates the whole confined region.

Turbulent structures are dominant on the low field side and most prominent in the confined

region. Turbulent streamers start close to the core boundary and end at the separatrix.

The density in the SOL is significantly lower than in the confined region. On the outboard

mid-plane (OMP) small density blobs are visible that have passed the separatrix and entered

the SOL. The electrostatic potential in the confined region is dominated by zonal flows [164].

There is a rapid drop in the electrostatic potential close to the separatrix giving rise to a

radial electric field that generates a poloidal rotation of the plasma along the separatrix. In all

simulations there is little dynamics in the private flux region. This finding is consistent with

the simulations of the discharge performed with GRILLIX. There are two possible explanations

for the findings. First, the private flux region is cold and the Larmor radius of thermal ions

small. Therefore, the in-plane resolution could not be high enough to resolve the small scale

dynamics in the private flux region. A second explanation could be the absence of physical

effects related to neutral gases in the simulation. Recent simulations performed with GRILLIX

demonstrated turbulent structures in the private flux region when a neutral gas model was

added [80].

In the following, we analyse different plasma profiles at the OMP. The profile data at the

OMP is measured by interpolating the results along a line that starts at the magnetic axis and

is orthogonal to the magnetic flux surfaces via cubic spline interpolation. The data for the

density and temperature profiles is taken at t = 1ms and averaged over all 24 poloidal planes.

The fluctuation amplitude shown is calculated as the standard deviation of the profiles over

the 24 poloidal planes. The average and standard deviation of the radial electric field is

calculated including the last 100µs of the simulation. This averages over the fluctuations in

the radial electric fields due to oscillations of the geodesic acoustic mode (GAM) [165].
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Figure 7.3.: Figure displaying the ion density of the final state of the simulation on the
poloidal plane at ϕ = π. Similar to Fig. 7.2, the separatrix, wall and diver-
tor is shown. Compared to the initial condition presented in Fig. 7.2, plasma
density populates the whole confined region, and the dynamics is dominated by
turbulence. In the SOL on the low field side density blobs are visible that have
been transported over the separatrix.
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Figure 7.4.: Figure displaying the electrostatic potential of the final state of the simulation
on the poloidal plane at ϕ = π. Similar to Fig. 7.2, the separatrix, wall and
divertor is shown. In the confined region the dynamics is dominated by zonal
flows that change their structure over time. Upon crossing the separatrix there
is a significant drop in the electrostatic potential giving rise to a radial electric
field.
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Figure 7.5.: Figure displaying the mean density profiles measured at the outboard mid-plane
of the three different GENE-X simulations performed. In addition, the fluctuation
amplitude is drawn as a shaded area around the mean. For comparison, the
density profile of GRILLIX simulations with and without neutrals and the exper-
imental density measurements are shown.

7.2.1. Density

The density profiles are shown in Fig. 7.5. The measured average value of the density profile

is similar for all three simulations performed. We observe a significantly larger fluctuation

amplitude in the simulation with reduced mass ratio indicating a stronger turbulent drive.

The density in the far SOL of the GENE-X simulations is limited by the boundary condition.

The shape of density profiles is similar to the shape of density profile obtained with GRILLIX

without neutral physics. The slope of the density profiles is shallower. The density in

the SOL in the GRILLIX simulations is lower. This is because the density in the GRILLIX

simulations is not fixed by the boundary condition. The shape of the measured density

profile of the experiment differs significantly. GRILLIX simulations with neutrals reproduce

the experimental measurement quite well. This could be a hint that neutrals are important

for the formation of the density profile and should be included in gyrokinetic edge and SOL

simulations.

7.2.2. Temperature

Following [52], we define the temperature of the species σ as the kinetic energy of the plasma

in a coordinate system in which the parallel flow uσ = 0, i.e.

Tσ :=
2

3nσ

∫ ∞
0

∫ ∞
−∞

(
1

2
mσ

(
v‖ −

uσ
nσ

)2

+ µB

)
fσ dW , (7.11)
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Figure 7.6.: Figure displaying the mean ion temperature profiles measured at the outboard
mid-plane of the three different GENE-X simulations performed. In addition, the
fluctuation amplitude is drawn as a shaded area around the mean. For com-
parison, the ion temperature profile of GRILLIX simulations with and without
neutrals is shown.

0.90 0.92 0.94 0.96 0.98 1.00 1.02 1.04
0

50

100

150

200

250

300

350

El
ec

tr
on

 t
em

pe
ra

tu
re

 / 
eV

Experimental
GRILLIX with neutrals
GRILLIX without neutrals

e = 1/400
e = 1/3600
e = 1/3600 with collisions

Figure 7.7.: Figure displaying the mean electron temperature profiles measured at the out-
board mid-plane of the three different GENE-X simulations performed. In addi-
tion, the fluctuation amplitude is drawn as a shaded area around the mean. For
comparison, the electron temperature profile of GRILLIX simulations with and
without neutrals is shown.
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where the expression for the density

nσ :=

∫ ∞
0

∫ ∞
−∞

fσ dW (7.12)

and parallel flow

uσ :=

∫ ∞
0

∫ ∞
−∞

v‖fσ dW (7.13)

were used. The ion temperature profiles are shown in Fig. 7.6 and the electron temperature

profiles in Fig. 7.7. We start with the analysis of the ion temperature profiles. In the con-

fined region the ion temperature profiles of the simulations with realistic mass ratio and the

GRILLIX simulation without neutrals agree well. The density of the simulation with reduced

mass ratio is slightly increased. Similiar to the density profile, we observe that the fluctuation

amplitude of the simulation with reduced mass ratio is increased. In the SOL we observe dif-

ferences in the profiles. In the simulations with realisitic mass ratio the temperature is slightly

reduced. Collisions do not seem to have an impact on the ion temperature. Nevertheless,

the ion temperature of all three simulations is in the range of 100eV–250eV and significantly

larger than the temperature floor of 35eV. We proceed with analysing the electron tempera-

ture profile. In contrast to the ion temperature, none of the measured electron temperature

profiles agree with the GRILLIX simulations. The profiles of the simulations without collision

are close to each other. Again, the temperature of the simulation with reduced mass ratio is

slightly increased and the fluctuation amplitude is larger. The electron temperature profile

with collisions differs significantly from the simulations without collisions. It is significantly

lower and reaches values close to the temperature boundary value of 35eV in the SOL. Its slope

agrees well with the experimental measurement. Comparing the velocity space of the simu-

lations with and without collisions, we observe that the electrons are efficiently de-trapped.

The perpendicular kinetic energy is transferred to the parallel kinetic energy and efficiently

absorbed by the divertor plates. As observed above, this process is not as efficient for the

ions because the collision frequency is lower. A possible explanation for this finding is the

temperature boundary condition of 35eV that limits the temperature in the SOL. The ion-ion

collision frequency scales as T
−3/2
i and the ion-electron collision frequency approximately as

T
−3/2
e . This implies that decreasing the ion and electron temperature boundary condition to

more realistic values of 2eV would allow both the ion-ion and ion-electron collisionality to

increase by a factor 73. Hence, the energy transfer between ions and electrons would become

more efficient resulting in lower SOL temperatures for the ions. These findings demonstrate

that collisions are essential for efficient heat transport in the SOL.

7.2.3. Radial electric field

The profiles of the radial electric field are shown in Fig. 7.8. The profiles are approximately

flat in the confined region. The main generator of the radial electric field in the confined

region is given by GAMs. They change their structure over time and average out over longer
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Figure 7.8.: Figure displaying the mean radial electric field measured at the outboard mid-
plane of the three different GENE-X simulations performed. In addition, the fluc-
tuation amplitude is drawn as a shaded area around the mean. For comparison,
the radial electric field of GRILLIX simulations with and without neutrals and the
experimental measurements is shown. The picture in the bottom excludes the
GRILLIX simulations such that a close comparison between the GENE-X results
and the experiment is possible.
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time periods [165]. Consequently, the profiles in the confined region are flat after averaging

over 100µs. Close to the separatrix we observe a well in the radial electric field in the confined

region, and a hill in the SOL. This leads to an opposite poloidal rotation of the plasma inside

and outside of the separatrix. The fluctuation amplitude of the radial electric field is large and

on the same order of magnitude as the value of the field itself. The simulations performed

with GENE-X reproduce the shape and amplitude of the experimental measurement better

than the simulations performed with GRILLIX.

7.3. Power exhaust

Next, we analyse the power balance of the simulations. As we solve for the full-f Vlasov

equation, we do not prescribe any input power to the simulations. Plasma density and

energy is transferred into the plasma by the core and SOL boundaries. The plasma evolves

freely and establishes a quasi-steady state. As the plasma β of the simulation is low, the

main driver of cross field heat transport in the confined region is the radial component of the

E ×B heat flux. We define it as

qE×B :=
∑
σ

∫ ∞
0

∫ ∞
−∞

(
1

2
mσv

2
‖ + µB

)(
cb

B∗‖
×∇φ1

)
· eψfσ dW (7.14)

≈
(
cb

B
×∇φ1

)
· eψ

∑
σ

Eσ , (7.15)

where Eσ denotes the kinetic energy of the plasma. In slight abuse of terminology, we call the

radial component of the E×B heat flux the E×B heat flux in the following. The E×B heat

flux of the simulations with realistic mass ratio, measured at t = 1ms, is shown in Fig. 7.9.

The E ×B heat flux is dominant on the low field side. We observe large radial streamers in

the top and bottom of the device ranging from the core boundary to the separatrix. After

crossing the separatrix the E×B heat flux falls off rapidly. We do not observe any significant

E ×B heat flux in the divertor region.

In the SOL the dominant driver of heat transport is the parallel heat flux. We define the

parallel heat flux as

q‖ :=
∑
σ

∫ ∞
0

∫ ∞
−∞

v‖

(
1

2
mσv

2
‖ + µB

)
fσ dW . (7.16)

Compared to the temperature, presented in Eq. (7.11), that is calculated in a frame where

uσ = 0, Eqs. (7.15) and (7.16) account for the total energy flux via E × B and parallel

transport and can therefore be used to calculate the transport of power through the device.

We measure the power transported over the separatrix via the E × B drift by performing a

surface integral of the E×B heat flux over the flux surface at ψ = 0.999. Like the electrostatic

potential, the E × B heat flux fluctuates over time. Therefore, we average the result over

the 24 poloidal planes and the last 100µs of the simulation and calculate the fluctuation

amplitude as the standard deviation. The results are shown in Tab. 7.1. We observe that
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Figure 7.9.: Figure displaying the radial component of the E×B heat flux of the final state of
the simulation on the poloidal plane at ϕ = π. Similar to Fig. 7.2, the separatrix,
wall and divertor is shown. The E × B heat flux is dominant on the low field
side and falls off rapidly after crossing the separatrix. We do not observe any
significant E ×B heat flux in the divertor region.
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Separatrix power Divertor power

µ = 1/400 5.8MW± 0.4MW 2.3MW
µ = 1/3600 1.8MW± 0.3MW 0.7MW
µ = 1/3600 with collisions 1.4MW± 0.3MW 1.1MW

Table 7.1.: Table displaying the total power flowing over the separatrix and onto the divertor
for the three simulations performed.

Figure 7.10.: Figure displaying the line of measurement of the parallel heat flux onto the
divertor. The separatrix is drawn in green, the device wall in blue, the divertor
legs in grey and the boundary line of the divertor in red. The line of measure-
ment, drawn in purple, is calculated by following the points on the boundary
line of the divertor in opposite direction of the magnetic field by a toroidal angle
of π/8. This moves the line of measurement away from the divertor such that
the heat flux is not given by the chosen boundary condition.

the power transported over the separatrix is the largest for the simulation with reduced mass

ratio. This finding is consistent with the increased level of turbulence that we discussed in

the analysis of the plasma profiles. For the simulations with realistic mass ratio the power

fluctuates around 1.4MW–1.8MW. The heating power in the experiment, determined by the

power balance, is equal to 475 kW. After crossing the separatrix and leaving the confined

region, the energy is transported along the field lines onto the divertor. We measure the heat

flux and total power hitting the divertor. This process is not straightforward as the plasma at

the divertor is set by the boundary conditions, the divertor has a complicated shape and the

magnetic field lines hit the divertor at a shallow incidence angle. We solve the first problem

by measuring the heat flux on a line in front of the divertor. The line is generated by following

the points on the divertor along the magnetic field lines by a toroidal angle of π/8. The line

of measurement is shown in Fig. 7.10. On the line of measurement we interpolate the parallel
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heat flux with cubic spline interpolation. To solve the last problem and account for the

reduction of heat flux onto the divertor due to the shallow incident angle, we calculate the

normalised normal vector n to the line of measurement and reduce the interpolated parallel

heat flux by the factor sin θ = n ·b, where θ denotes the incidence angle of the magnetic field

line. The measured sin θ varies between 0.03 on the lower part of the divertor and 0.01 on

the upper part of the divertor. To measure the SOL fall-off length λq, we fit the function

q(s) =
q0

2
exp

((
s

2λq

)2

− s

λq

)
erfc

(
s

2λq
− s

s

)
+ qBG , (7.17)

described in [26], to the electron heat flux.

erfc(x) = 1− erf(x) =
2√
π

∫ ∞
x

e−t
2

dt (7.18)

denotes the complementary error function [166]. q0 denotes the peak heat flux, s the power

spreading factor and qBG the background heat flux. To remove the influence of the flux ex-

pansion from the OMP to the line of measurement, we perform the fit with the OMP mapped

distance s instead of the length of the line of measurement. The OMP mapped distance is

calculated by following the points on the line of measurements along the magnetic field lines

until they hit the OMP. The OMP mapped distance is measured as the distance of the inter-

section points to the separatrix. The measured heat flux profiles and the corresponding fit

for the divertor at the low field side are shown for the simulation with reduced mass ratio in

Fig. 7.11, for the simulation with realistic mass ratio in Fig. 7.12 and for the simulation with

realistic mass ratio and collisions in Fig. 7.13. We observe that the electron heat flux is much

larger than the ion heat flux and more peaked close to the separatrix. The measured shape

of the electron and total heat flux profile is well described by the Eich model presented in

Eq. (7.17). The measured λq reads 12mm for the run with reduced mass ratio, 1.9mm for the

run with realistic mass ratio and 6.7mm for the run with realistic mass ratio and collisions.

The increase in λq for the simulations with reduced mass ratio agrees well with the observa-

tion of increased turbulence in the profile analysis above. The stronger the turbulence, the

further the particles are transported into the SOL. In addition, the reduced mass ratio de-

creases the electron heat conductivity which slows the parallel heat transport in comparison

to the radial E × B transport and leads to a further broadening of λq. The reason for the

increase in λq for the simulation with collisions is similar. Due to collisions, fast electrons

are decelerated which reduces the parallel heat conductivity and leads to a broadening of λq

by the same mechanism [80]. The measured λq from the experiment is around 3mm–4mm

and lies in between the results of our simulations with and without collisions. It seems that

collisions have an important influence on the broadening of the λq, and further investigations

with a more sophisticated collision operator are needed. The measured peak heat flux from

the experiment is around 0.6MW/m2 − 0.65MW/m2 and approximately by a factor of 2–3

smaller than the results of our simulations. This finding is consistent with the input power of

the experiment, mentioned above, that is approximately by a factor of 2.9–3.8 smaller than
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Figure 7.11.: Figure displaying the ion, electron and total heat flux onto the divertor for the
simulation with reduced mass ratio. Furthermore, the Eich fit of the total heat
flux is drawn. The heat flux is measured as a function of the OMP mapped
distance to account for the flux expansion between the OMP and the divertor.
The measured SOL fall-off length is λq = 12mm.
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Figure 7.12.: Figure displaying the ion, electron and total heat flux onto the divertor, anal-
ogous to Fig. 7.11, for the simulation with realistic mass ratio. The measured
SOL fall-off length is λq = 1.9mm.
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Figure 7.13.: Figure displaying the ion, electron and total heat flux onto the divertor, anal-
ogous to Fig. 7.11, for the simulation with realistic mass ratio and collisions.
The measured SOL fall-off length is λq = 6.7mm.

in the simulation.

The total power absorbed by the divertor on the low and high field side is displayed in

Tab. 7.1. The measurements are consistent with the E ×B heat flux. Between 40%–80% of

the power crossing the separatrix is absorbed by the divertor. The rest part is transported

to the divertor via different mechanisms or is absorbed by the main wall.

7.4. Conclusion and outlook

In this chapter we presented the first GENE-X simulations in diverted geometry including a

magnetic X-point. We performed the simulations with three different configurations. The first

configuration used a reduced electron-to-ion mass ratio of µ = me/mi = 1/400, the second a

realistic electron-to-deuterium mass ratio of me/mi = 1/3600 and the third a realistic mass

ratio with a BGK collision operator. All simulations were performed over a timescale of 1ms

in the magnetic equilibrium and at the parameters of the ASDEX Upgrade discharge #36190.

We compared the profiles of density, temperature and the radial electric field to experimental

measurements and simulations with the Braginskii fluid code GRILLIX. We found that col-

lisions have an impact on the temperature but not on the density profile. The simulations

with collisions were able to reproduce aspects of the experimental temperature profiles. The

radial electric field, obtained with GENE-X, agreed well with the experimental measurement.

We analysed the power balance of the simulations by measuring the E ×B heat flux flowing

over the separatrix and the parallel heat flux onto the divertor. In addition, we calculated

λq by performing an Eich fit to the parallel heat flux profile in front of the divertor. The

shape of the measured heat flux profile agreed well with the theoretical prediction by the Eich

model. We observed that collisions broaden λq. In the simulations with reduced mass ratio
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the fluctuation amplitude was increased and λq broadened. This indicated that a realistic

mass ratio is important for realistic edge and SOL simulations.

As collisions have shown to have a significant effect on the plasma temperature and λq, it

will be important to use a more realistic collision model in the future. As mentioned in

the outlook of Chapter 2, implementing a Fokker-Planck type Lennard-Bernstein/Dogherty

collision operator [114, 115] is current work in progress [116]. The SOL profiles for the ions

seemed to be significantly affected by the temperature boundary condition of 35eV. For future

studies it is vital to reduce the SOL temperature to more realistic values around 2eV and

find solutions to efficiently represent temperature differences of two orders of magnitude on

the velocity space grid. One possible candidate to achieve this could be the implementation

of block structured grids in GENE-X [167, 168]. Finally, it would be interesting to study the

effect of neutral physics, similar to [80], on the plasma profiles and the heat exhaust.
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8. Summary and outlook

Understanding and predicting the effects of turbulence in the edge and SOL belongs to one

of the most challenging problems on the path towards a magnetic confinement fusion power

plant. Turbulence is characterised by a, cascade like, transport of energy between different

scales and is believed to play a crucial role in the L-H transition and the particle and heat

exhaust of fusion devices.

In this work, we presented a new gyrokinetic turbulence code, GENE-X, that is tailored towards

edge and SOL simulations. Developing such a code is a difficult task and multiple challenges

had to be overcome. We presented detailed conclusions and outlooks at the end of each

chapter. In the following, we summarise the highlights of this work and provide a unified

outlook.

8.1. Summary

We started this work, in Chapter 2, with a precise discussion of gyrokinetic theory and the

derivation of the self-consistent model implemented in the GENE-X code. The model included

the full distribution function of ions and electrons and is, therefore, capable of handling large

fluctuation amplitudes in SOL plasmas. The model was consistently derived from the second

order gyrokinetic Lagrangian and conserves energy as well as the number of particles on the

continuous level.

We continued, in Chapter 3, by discussing the coordinate system used for the simulations.

The magnetic geometry of the edge and SOL is complex. Magnetic field lines are not confined

to flux surfaces and can intersect with the device wall. In addition, there is a transition from

closed to open magnetic flux surfaces which renders flux-coordinate systems, that have been

used in fusion theory for decades, ineffective. We solved this problem by implementing

a locally field-aligned coordinate system based on the FCI approach. We discussed the

coordinate transformation, derived expressions for the differential operators and expressed

the gyrokinetic Vlasov-Maxwell system in the new coordinate system. Using this technology

we are able to perform simulations without restrictions by the magnetic geometry. This

includes magnetic geometries with single and even multiple magnetic X-points.

In Chapter 4 we described the discretisation scheme used. The choice of the discretisation

scheme was motivated by the locally field-aligned coordinate system and constructed with the

method of lines. The spatial discretisation featured centred finite differences and the solution

of the remaining, temporal initial value problem was done with a Runge-Kutta method of

order four.
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As the implementation of scientific codes is complex and their execution resource intensive,

we put, in Chapter 5, a special emphasis on the software design and the computational

performance of the implementation. The design principles behind the code were explained

in detail and visualised with the help of UML diagrams. The analysis of the performance

comprised two steps. First, we analysed the intra-node performance of the implementation

and verified it against the roofline model. Second, we demonstrated that the inter-node

performance is excellent by measuring the strong and weak scaling at the example of a

real application. Finally, we described the continuous integration workflow with automatic

testing that is used extensively in the GENE-X code and ensures that the implementation of

the gyrokinetic Vlasov-Maxwell system is correct.

In Chapter 6, we ensured that the numerical scheme, using the FCI approach, solves the gy-

rokinetic Vlasov-Maxwell system correctly. We performed a comprehensive list of benchmarks

testing different aspects of the code. First, we used the method of manufactured solution to

demonstrate that the numerical scheme converges to second order accuracy. The tests were

performed in slab, circular and screw pinch geometry. Second, we measured the growth rates

of ITG modes in a screw pinch geometry. This test allowed for a precise comparison between

standard flux coordinates and the locally field-aligned coordinate system. Third, we verified

the electromagnetic part of the model by measuring the frequency and Landau damping of

Alfv́en in slab geometry. Finally, we probed the complete gyrokinetic Vlasov-Maxwell system

in toroidal geometry by measuring the frequency and growth rates of ITG modes in a cyclone

base case simulation.

To close this work, we presented simulations of the edge and SOL of AUG in Chapter 7

that included the separatrix and the X-point. The simulations were performed over 1ms of

plasma evolution until profile saturation. We compared the profiles of density, temperature

and the radial electric field to experimental measurements and previous GRILLIX simulations.

We found that simulation performed with a BGK collision operator were able to reproduce

aspects of the experimental profiles quite well. Further, we calculated the power exhaust

of the simulation and measured λq. The overall shape of the heat flux profile, measured

close to the divertor, agreed well with the theoretical prediction. We observed that collisions

broaden λq. The simulations performed with a reduced mass ratio of me/mi = 1/400 showed

an increased fluctuation level and a significantly broader λq, which makes the application of

reduced mass ratio simulations for edge and SOL plasmas questionable.

8.2. Outlook

With the development of the GENE-X code, we have taken a first step towards a predictive tool

to study turbulence in the edge and SOL of fusion devices. There are numerous interesting

ways to improve and apply the code in the future. We split the future work into three

categories: (i) Improvements of the plasma model, (ii) improvements of the numerical scheme

and (iii) future applications of the GENE-X code.

120



8.2.1. Improvements of the gyrokinetic model

To improve the predictability of the code, it is important to model effects specific to the SOL

more precisely. This includes:

• The implementation of a more sophisticated Fokker-Planck type collision operator. Cur-

rently, the implementation of an energy conservative, full-f Lennard-Bernstein/Dogherty

collision operator [114, 115] is work in progress [116].

• The implementation of a neutral physics model. A solid starting point could be the

simple neutral model implemented in the GRILLIX code recently [80].

• The implementation of sheath boundary conditions [169].

• Removing the linearisation of the quasi-neutrality equation, made in Eq. (2.76), to

further improve the full-f capabilities of the code.

8.2.2. Improvements of the discretisation scheme

While the discretisation scheme chosen has been shown to work well, major improvements to

the discretisation scheme can still be done on two fronts:

• The implementation of a new grid in velocity space that allows to represent the velocity

structure of plasmas with temperatures that vary over multiple orders of magnitude. A

possible candidate are block-structured grids, introduced in [167, 168].

• The development and implementation of a numerical scheme based on mimetic finite

differences that conserves the particle number and if possible even the momentum and

energy of the discrete system.

8.2.3. Future applications of the GENE-X code

Finally, there are many interesting ways to use the GENE-X code in the future. This includes:

• Performing simulations of H-mode plasmas to investigate the L-H transition.

• Performing a validation of the GENE-X code in X-point geometry. This could for instance

be achieved by following the recent validation of Braginskii fluid codes presented in [170].

• Generalising the GENE-X code to 3D geometries to investigate turbulence in the edge and

SOL of stellarator fusion devices – including magnetic islands and stochastic regions.

• Performing whole device turbulence simulations of a medium size tokamak, like the

Tokamak à Configuration Variable (TCV) [171], that range all the way from the mag-

netic axis, over the separatrix into the scrape-off layer.
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A. Supplemental derivations

A.1. Explicit form of the discretised parallel derivatives

In this section, we provide the explicit form of the derivatives of the Lagrange polynomials

used in Eqs. (4.35) and (4.49). Consider five grid points in y direction

(y−2, y−1, y0, y1, y2). The first derivatives of the Lagrange polynomials read(
d`−2

dy

)
(0) =

−(y−1 − y0)(y0 − y1)(y0 − y2)

(y−2 − y−1)(y−2 − y0)(y−2 − y1)(y−2 − y2)
(A.1)(

d`−1

dy

)
(0) =

(y−2 − y0)(y0 − y1)(y0 − y2)

(y−2 − y−1)(y−1 − y0)(y−1 − y1)(y−1 − y2)
(A.2)(

d`0
dy

)
(0) =

y−1(3y2
0 + y1y2 − 2y0(y1 + y2)) + y0(−4y2

0 − 2y1y2 + 3y0(y1 + y2))

(y−2 − y0)(−y−1 + y0)(y0 − y1)(y0 − y2))

+
y−2(3y2

0 + y1y2 − 2y0(y1 + y2) + y−1(−2y0 + y1 + y2))

(y−2 − y0)(−y−1 + y0)(y0 − y1)(y0 − y2)
(A.3)(

d`1
dy

)
(0) =

(y−2 − y0)(−y−1 + y0)(y0 − y2)

(y−2 − y1)(−y−1 + y1)(−y0 + y1)(y1 − y2)
(A.4)(

d`2
dy

)
(0) =

(y−2 − y0)(−y−1 + y0)(y0 − y1)

(y−2 − y2)(−y−1 + y2)(−y0 + y2)(−y1 + y2)
(A.5)

and the fourth derivatives of the Lagrange polynomials read(
d4`−2

dy4

)
(0) =

24

(y−2 − y−1)(y−2 − y0)(y−2 − y1)(y−2 − y2)
(A.6)(

d4`−1

dy4

)
(0) =

−24

(y−2 − y−1)(y−1 − y0)(y−1 − y1)(y−1 − y2)
(A.7)(

d4`0
dy4

)
(0) =

−24

(y−2 − y0)(−y−1 + y0)(y0 − y1)(y0 − y2)
(A.8)(

d4`1
dy4

)
(0) =

−24

(y−2 − y1)(−y−1 + y1)(−y0 + y1)(y1 − y2)
(A.9)(

d4`2
dy4

)
(0) =

24

(y−2 − y2)(y−1 − y2)(y0 − y2)(y1 − y2)
. (A.10)

These relations can be used together with Eqs. (4.35) and (4.49) to calculate the first and

fourth derivative on the unstructured y grid via a stencil operation.
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A.2. Explicit form of the gyrokinetic Vlasov-Maxwell system

In this section, we present the explicit form of the normalised gyrokinetic Vlasov-Maxwell

system, expressed in the locally field-aligned coordinate system, that is implemented in the

GENE-X code. The gyrokinetic Vlasov equation reads

∂f̂σ

∂t̂
+

√
2T̂0σ(ψ0)

m̂σ
v̂‖
B̂∗

B̂∗‖
· ∇̂f̂σ︸ ︷︷ ︸

(a)

+
ρref

Lref

b

q̂σB̂∗‖
×
(
T̂0σ(ψ0)µ̂∇̂B̂ + q̂σ∇̂φ̂1

)
∇̂f̂σ︸ ︷︷ ︸

(b)

− B̂∗√
2m̂σT̂0σ(ψ0)B̂∗‖

·
(
T̂0σ(ψ0)µ̂∇̂B̂ + q̂σ∇̂φ̂1

) ∂f̂σ
∂v̂‖︸ ︷︷ ︸

(c)

− q̂σ√
2m̂σT̂0σ(ψ0)

∂Â1‖

∂t̂

∂f̂σ
∂v‖

= 0 , (A.11)

with the components

(a) =

√
2T̂0σ(ψ0)

m̂σ
v̂‖
B̂

B̂∗‖

∂f̂σ
∂ŷ

+
2v̂2
‖T̂0σ(ψ0)

B̂∗‖ q̂σ
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1

byc

(
∂bzc
∂ŷ
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∂ŷ
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∂ẑ

+

(
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∂ẑ
− ∂bzc

∂x̂
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∂ŷ

)
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∂Â1‖

∂ŷ

∂f̂σ
∂ẑ
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∂Â1‖

∂x̂

∂f̂σ
∂ŷ

)

+
1

byc

(
∂Â1‖
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, (A.12)

(b) =
1

B∗‖ q̂σ

ρref

Lref

[
T̂0σ(ψ0)µ̂

(
bxc
byc

(
∂B̂

∂ŷ

∂f̂σ
∂ẑ
− ∂B̂

∂ẑ

∂f̂σ
∂ŷ

)
+
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(
∂B̂

∂x̂
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∂ŷ
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∂ŷ
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∂x̂
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1

byc
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∂B̂

∂ẑ
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∂x̂
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∂x̂
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∂ẑ
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+ qσ

(
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(
∂φ̂1

∂ŷ

∂f̂σ
∂ẑ
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∂ẑ

∂fσ
∂ŷ

)
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1
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∂ẑ
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− ∂φ̂1

∂x̂
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∂ẑ
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and (A.13)
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(c) =
1√

2m̂σT̂0σ(ψ0)B̂∗‖
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(
B̂
∂B̂

∂ŷ
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∂Â1‖

∂ẑ
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∂Â1‖

∂ŷ
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∂ŷ

)

+
1

byc

(
∂Â1‖
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∂ŷ
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∂ŷ
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∂ŷ
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∂ŷ
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∂ŷ
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∂Â1‖

∂ẑ
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∂v‖

. (A.14)

The quasi-neutrality equation reads

−
(
ρref

Lref

)2
(

1

Ĵcyl

∂

∂x̂

(
Ĵcyl

∑
σ

m̂σn̂0σ

B̂2

∂

∂x̂

)
+

∂

∂ẑ

(∑
σ
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B̂2

∂

∂ẑ

))
φ̂1

=
∑
σ

n̂0σ(ψ0)q̂σ

∫ ∞
0

∫ ∞
−∞

πB̂∗‖ f̂σ dv̂‖ dµ̂ , (A.15)

Ampère’s law reads

−
(
ρref

Lref

)2
(

1

Ĵcyl

∂

∂x̂

(
Ĵcyl

∂

∂x̂

)
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√
2T̂0σ(ψ0)
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0

∫ ∞
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πB̂∗‖ f̂σv̂‖ dv̂‖ dµ̂ (A.16)
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and the generalised Ohm’s law reads

−

[(
ρref

Lref

)2
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1

Ĵcyl
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]
∂Â1‖
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=
βref

2

∑
σ

n̂0σ(ψ0)q̂σ

√
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∫ ∞
0

∫ ∞
−∞

πB̂∗‖

(
∂fσ
∂t

)?
v̂‖ dv̂‖ dµ̂ . (A.17)

In the implementation we set T̂0σ(ψ0) = 1 and n̂0σ(ψ0) = 1.
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A.3. Identities of the plasma dispersion function

The plasma dispersion function is defined as [172]

Z : ω 7→ Z(ω) =
1√
π

∫ ∞
−∞

e−t
2

t− ω
dt . (A.18)

It fulfils the identities

1√
π

∫ ∞
−∞

te−t
2

t− ω
dt =

1√
π

∫ ∞
−∞

1e−t
2

+
ω

t− ω
e−t

2
dt

= 1 + ωZ(ω) (A.19)

and

1√
π

∫ ∞
−∞

t2e−t
2

t− ω
dt =

1√
π

∫ ∞
−∞

(t+ ω)e−t
2

+
ω2

t− ω
e−t

2
dt = ω + ω2Z(ω)

= ω(1 + ωZ(ω)) . (A.20)
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A.4. Proof of an integral identity of the Poisson bracket

In this section, we prove ∫
Hσ{fσ, Hσ}? dV dW = 0 (A.21)

under the assumption that boundary integrals vanish. The gyrokinetic Poisson bracket { , }?,
defined in Subsection 2.3.6, evaluated on the two functions f and g, can be written as

{f, g}? =
6∑

a=1

6∑
b=1

Jab
∂f

∂za

∂g

∂zb
, (A.22)

where Jab is a skew-symmetric matrix. Inserting Eq. (A.22) into Eq. (A.21) yields

∫
g{f, g}? dV dW =

6∑
a=1

6∑
b=1

∫
Jabg

∂f

∂za

∂g

∂zb
dV dW

=
6∑

a=1

6∑
b=1

∫
1

2
JabB

∗
‖

(
g
∂f

∂za

∂g

∂zb
+ g

∂f

∂za

∂g

∂zb

)
1

mσ
dV dθ dµdv‖

=

6∑
a=1

6∑
b=1

∫
1

2

(
∂

∂zb

(
JabB

∗
‖g

2 ∂f

∂za

)
− JabB∗‖g

2 ∂2f

∂za∂zb

− g2 ∂f

∂za

∂

∂zb

(
JabB

∗
‖

)) 1

mσ
dV dθ dµdv‖

= 0 , (A.23)

where we performed a partial integration over zb, assumed that boundary integrals vanish,

used the skew-symmetry of Jab and Liouville’s theorem
∑6

b=1
∂
∂zb

(JabB
∗
‖) = 0 [94]. Setting

g = Hσ and f = fσ proves Eq. (A.21).
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B. Supplemental results

B.1. Results of the scaling analysis

In this section, we give the measured times for the evaluation of one timestep in the analysis

of the strong and weak scaling, presented in Chapter 5. The measured times for the strong

scaling are contained in the first and for the weak scaling in the second table.

Number of nodes Time per timestep

1 884s
2 454s
4 229s
8 115s
16 63.2s
32 34.8s
64 17.5s
128 9.00s
256 5.05s
512 2.98s

Number of nodes Time per timestep

1 8.17s
2 7.38s
4 7.57s
8 7.50s
16 6.77s
32 7.30s
64 6.91s
128 7.23s
256 7.43s
512 7.62s
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B.2. Solution of the electrostatic dispersion relation in screw

pinch geometry

In this section, we give the results for the complex frequency ω̂ obtained from the dispersion

relation in Eq. (6.19) up to four significant digits. They are contained in the following table.

m ω̂

5 −1.725 + 1.689i
6 −1.740 + 1.760i
7 −1.744 + 1.800i
8 −1.742 + 1.819i
9 −1.735 + 1.823i
10 −1.725 + 1.817i
11 −1.713 + 1.804i
12 −1.700 + 1.786i
13 −1.686 + 1.764i
14 −1.671 + 1.740i
15 −1.657 + 1.714i
16 −1.643 + 1.688i
17 −1.629 + 1.661i
18 −1.615 + 1.634i
19 −1.601 + 1.607i
20 −1.588 + 1.580i

B.3. Numerical results for the growth rate Im ω̂ in screw pinch

geometry

In this section, we give the numerical results for the growth rate Im ω̂ obtained from simula-

tions with GENE-X described in Section 6.3. They are contained in the following table.

m Im ω̂ for q =∞ Im ω̂ for q 6=∞
5 1.74 1.73
10 1.85 1.84
15 1.73 1.72
20 1.58 1.58
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B.4. Solution of the electromagnetic dispersion relation in slab

geometry

In this section, we give the results for the complex frequency ω̂ obtained from the disper-

sion relation Eq. (6.35) for the parallel mode number k̂y = 1, different perpendicular mode

numbers k̂x and different plasma beta β̄ = βref/m̂e up to four significant digits. They are

contained in the following table.

k̂xρref/Lref ω̂ for β̄ = 0.2 ω̂ for β̄ = 2 ω̂ for β̄ = 20

1/128 189.7− 6.095 · 10−3i 60.00− 2.130 · 10−3i 18.97− 2.279 · 10−4i
1/64 189.6− 2.440 · 10−2i 60.00− 8.517 · 10−3i 18.98− 9.114 · 10−4i
1/32 189.7− 9.789 · 10−2i 60.01− 3.405 · 10−2i 18.98− 3.646 · 10−3i
1/16 187.5− 3.960 · 10−1i 60.05− 1.360 · 10−1i 19.01− 1.458 · 10−2i
1/8 181.6− 1.635 · 100i 60.19− 5.399 · 10−1i 19.11− 5.827 · 10−2i
1/4 164.8− 6.687 · 100i 60.73− 2.010 · 100i 19.52− 2.324 · 10−1i
1/2 136.1− 2.192 · 101i 62.40− 7.584 · 100i 21.04− 9.187 · 10−1i
1 107.6− 4.826 · 101i 65.37− 2.239 · 101i 25.87− 3.512 · 100i

B.5. Numerical results for the complex frequency ω̂ in slab

geometry

In this section, we give the numerical results for the complex frequency ω̂ obtained from

simulations with GENE-X described in Section 6.4. They are contained in the following table.

k̂xρref/Lref ω̂ for β̄ = 0.2 ω̂ for β̄ = 2 ω̂ for β̄ = 20

1/64 189.6− 2.343 · 10−2i 60.00− 8.318 · 10−3i 18.98− 8.450 · 10−4i
1/16 187.5− 3.852 · 10−1i 60.00− 1.362 · 10−1i 19.04− 1.418 · 10−2i
1/4 164.2− 6.680 · 100i 60.81− 2.110 · 100i 19.51− 2.271 · 10−1i
1 108.3− 4.773 · 101i 65.00− 2.223 · 101i 25.89− 3.475 · 100i
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B.6. Numerical results for the complex frequency ω̂ in toroidal

geometry

In this section, we give the numerical results for the complex frequency ω̂ obtained from

simulations with GENE-X described in Section 6.5. They are contained in the following table.

n ω̂

5 0.180 + 6.79 · 10−2i
10 0.419 + 2.05 · 10−1i
15 0.661 + 3.56 · 10−1i
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