
Fakultät für Informatik

Online Algorithms for Scheduling and Data
Management

Maximilian M. Janke

Vollständiger Abdruck der von der Fakultät für Informatik der Technischen
Universität München zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzende/-r: Prof. Dr.-Ing. Pramod Bhatotia

Prüfende der Dissertation:

1. Prof. Dr. Susanne Albers

2. Assistant Prof. Dr. Antonios Antoniadis

Die Dissertation wurde am 26.10.2021 bei der Technischen Universität
München eingereicht und durch die Fakultät für Informatik am 06.04.2022
angenommen.

To my parents.

Abstract
Online Makespan Minimization and List Update are two of the most basic
online problems. Both problems have been studied since the sixties and are
employed in scheduling and data management.

Online problems conceptualize interactive settings where online algo-
rithms make decisions without knowing the whole input in advance. This
prevents optimal performance on general instances. Instead, online algo-
rithms are judged by their competitive ratio, the maximum ratio by which
their performance strays from being optimal due to not knowing the future.

The first online problem, List Update, studies the linear linked list. Lists
are often-used data structures for managing requests to a small number of
items. Frequently requested items are served faster at the front of the list.
Moving them there requires paid exchanges. The costs of paid exchanges,
when compared to practical list implementations, are underestimated in
the standard model. This led to the P d model, which considers a general
exchange cost of d.

In the Makespan Minimization problem, one is tasked to assign jobs to
identical and parallel machines. Preemption is not allowed. The objective is
to minimize the time it takes to process all jobs, called the makespan. The
dual problem, Machine Covering, asks to maximize the time all machines
are busy.

Classical analyses, on the one hand, optimistically omit and neglect
errors in the input. They are, on the other hand, too pessimistic in that
they present online algorithms with worst-case inputs arranged in worst-case
orders. Considering uniformly random orders instead, gives the recently
popular random-order model. A stronger model of ours considers nearly worst-
case orders. To model errors in the input, budgeted uncertainty assumptions
are used.

This thesis presents the currently best upper and lower bounds for five
online problems. For the List Update problem in the P d model, the main
result is a 2.2442-competitive online algorithm and a lower bound of 2. For
Makespan Minimization in the random-order model, a 1.8478-competitive
algorithm is provided, which beats prior adversarial lower bounds already
on 24 machines [145]. In another random-order model, the input length n is
known in advance. Here, a 1.535-competitive online algorithm beats even
the pessimistic adversarial lower bounds for randomized algorithms. For
Makespan Minimization under budgeted uncertainty, an upper bound of
2.9052 is complemented by a lower bound of 2. For Machine Covering in the
random-order model, an improved algorithm is Õ(4√m)-competitive while a
lower bound of Ω̃(log(m)) is provided.

Zusammenfassung
List-Update und Online-Makespan-Minimierung sind zwei grundlegende
Online-Probleme mit wichtigem Anwendungsbezug zu Scheduling und Daten-
management.

In Anwendungen mit interaktiven Komponenten treffen Algorithmen
Entscheidungen, ohne bereits die gesamte Eingabe zu kennen. Solche Algo-
rithmen, Online-Algorithmen genannt, können im Allgemeinen keine opti-
malen Resultate für sämtliche Eingaben garantieren. Stattdessen bewertet
man sie nach dem maximalen Faktor, um den sie schlechter als das Optimum
abschneiden, dem sogenannten kompetitiven Faktor.

Im List-Update-Problem werden linear verkettete Listen betrachtet. Lis-
ten werden oft verwendet um Zugriffe auf eine kleine Anzahl von Einträgen zu
verwalten. Um Kosten zu sparen, lohnt es sich Einträge, auf die oft zugegriffen
wird, vorne in der Liste anzuordnen. Hierfür verwendet man bezahlte Täusche.
Die Kosten eines solchen Tausches werden im Standardmodell unterschätzt.
Deswegen betrachtet das P d-Modell allgemeine Tauschkosten d.

Beim Makespan-Minimierungs-Problem sind Aufgaben identischen und
parallelen Maschinen zuzuweisen. Präemption ist nicht erlaubt. Ziel ist es,
die Zeit bis alle Aufgaben fertiggestellt sind, auch Makespan genannt, zu
minimieren. Im dualen Machine-Covering-Problem ist stattdessen die Zeit,
die alle Maschinen gleichzeitig beschäftigt sind, zu maximieren.

Traditionell werden Online-Algorithmen auf Worst-Case-Eingaben be-
trachtet. Diese Eingaben bearbeiten sie in einer Worst-Case-Reihenfolge.
Ist die Reihenfolge stattdessen uniform zufällig gewählt, erhält man das
optimistischere Random-Order-Modell. Für ein pessimistischeres Modell,
auf der anderen Seite, betrachten wir Budgeted-Uncertainty-Annahmen, die
Fehler und Fehlfunktionen in der Eingabe berücksichtigen. Solche Fehler
können die Ausführungszeiten einzelner Aufträge verlängern.

Diese Arbeit enthält die derzeit besten oberen und unteren Schranken
für fünf Probleme. Für das List-Update-Problem im P d-Modell trifft ein
2,2442-kompetitiver Online-Algorithmus auf eine untere Schranke von 2. Für
Makespan-Minimierung schlägt ein 1,8478-kompetitiver Algorithmus bereits
die untere Worst-Case-Schranke für 24 Maschinen [145]. Im dazu verwandten
Random-Order-Modell, in dem die Auftragszahl n von Anfang an bekannt ist,
unterbietet ein 1,535-kompetitiver Algorithmus die als pessimistisch geltende
allgemeine untere Schranke für randomisierte Algorithmen. Für Makespan-
Minimierung mit Budgeted-Uncertainty-Annahmen findet sich eine obere
Schranke von 2,9052 und eine untere Schranke von 2. Für Machine-Covering
im Random-Order-Modell präsentieren wir einen Õ(4√m)-kompetitiven Algo-
rithmus und eine untere Schranke von Ω̃(log(m)).

Acknowledgments
This thesis would not have existed without the generous support, help and
assistance of many people.

I foremost thank my supervisor Prof. Dr. Susanne Albers for her advice
during my time as a PhD student at the Technical University of Munich.
Without her, I would not be the independent researcher I am today.

Special thanks go to my colleagues, Prof. Dr. Harald Räcke, the post-docs,
Dr. Arindam Khan, Dr. Kevin Schewior, Dr. Waldo Gàlvez and Dr. Kelin Luo,
fellow and former doctoral students Dr. Richard Stotz, Alexander Eckl, Jens
Quedenfeld, Luisa Peter, Leon Ladewig, Gunther Bidlingmaier, Sebastian
Schraink and all others. The time spent and discussions had, during and
after work, contributed to this thesis as well as my general well-being. My
only regret is that none of them picked up the game of Go.

I thank 吕扬帆 and my friends. They keep me sane, help me in trying
times and fill my life with cheer.

Deep thanks go to my family, my three brothers, Jonathan, Philipp and
Florian and, above all, my parents Stephanie and Martin on whose trust,
encouragement and patience I could always count. Year by year, I grow more
grateful of their support and the family environment they create.

Contents

Abstract

German Abstract (Zusammenfassung)

Acknowledgements

Table of Contents

1 Introduction 1
1.1 Brief Problem Overview . 3
1.2 Brief Literature Overview . 4
1.3 Summary of Contributions . 5
1.4 Publication Summary . 6
1.5 Outline of the Thesis . 7

2 Literature 9

3 List Update in the P d Model 21

4 Scheduling in the Random-Order Model 41

5 Scheduling in the Secretary Model 59

6 Scheduling with Budgeted Uncertainty 67

7 Machine Covering in the Secretary Model 73

A Randomized List Update in the Paid Exchange Model 95

B Scheduling in the Random-Order Model 111

C Scheduling in the Secretary Model 143

D Online Makespan Minimization w. Budgeted Uncertainty 167

E Machine Covering in the Secretary Model 187

Chapter 1

Introduction
Makespan Minimization and List Update are long-standing problems studied
since the sixties [94, 133]. Both have applications in scheduling and data
management. In the List Update problem, the task is to dynamically maintain
an unordered list of items at minimum cost. Unordered item lists are sensible
dictionary structures for managing up to a few dozens of entries. The
Makespan Minimization problem, on the other hand, studies one of the most
basic scheduling problems where jobs have to be assigned to many parallel and
identical machines. The goal is to minimize the time it takes to process all jobs,
called the makespan. Preemption is not allowed. Makespan Minimization
is used in Manufacturing Planning, Multiprocessor Scheduling and Load
Balancing. The latter is a key process in big data centers distributing requests
to numerous servers. The dual problem of Makespan Minimization is Machine
Covering. For Machine Covering, jobs represent resources that machines
consume in order to run. The goal is to keep the whole system running as
long as possible. Machine Covering has applications in the sequencing of
maintenance actions for aircraft engines and in storage area networks.

In theoretical research, problems that stem from such applications are
modeled using precise mathematical language and definitions. This, while
required for the thorough and comprehensive treatment expected from theo-
retical results, by necessity diminishes applicability to real-world settings.
In the real world, we encounter open problems—rarely completely clear-cut
ones as studied in theory. Theoretical research adapts to the ever rising
needs in practical settings by refining and developing ever more realistic
models that improve applicability.

An example central to this thesis are online algorithms. Traditionally,
algorithms are analyzed in the offline paradigm where the whole problem data
arrives and is processed at once. Contrary to that, real-world programs often
contain interactive components and serve requests one by one. Neither does
a website know who its next visitor will be, nor does a search engine receive
all its questions at once in one gigantic chunk. To study requests that arrive
one by one the online paradigm was introduced. An online algorithm needs
to treat each request before the next one is revealed. Such treatment involves
permanent and irreversible decisions. It makes mistakes in the beginning
unavoidable and irrevocable and it rules out optimal results on general inputs.
Thus, online algorithms are measured in terms of competitive analysis. They
are judged by how far their solutions deviate from the optimum.

2 CHAPTER 1. INTRODUCTION

Nowadays, the area of online algorithms is well established. Online
Makespan Minimization, Online Machine Covering and (Online) List Update
have been studied in depth. Many relevant and exciting variants were discov-
ered. Despite this, some assumptions and simplifications common in theory
still do not completely translate to practical situations. This diminishes their
transferability to real-world applications. Such diminishing transferability
may result from too simple a cost-charging scheme; too pessimistic worst-case
analyses; or too much optimism signified by the fact that practical input
data is rarely free of errors and uncertainty. For each of these issues, we
explore new models that mitigate them.

A more realistic cost-charging scheme for List Update leads to the
P d model. In any realistic list implementation, swapping items, an ac-
tion which reassigns several memory pointers, takes vastly more time than
simply following a single pointer. This difference in cost has been neglected
in the standard model. The standard model indifferently charges a cost of
1 for each of both operations. Considering a more general exchange cost
of d ≥ 1 gave rise to the P d model, or paid exchange model.

To go beyond worst-case analyses, we consider the recently popular
random-order model. Inputs are randomly permuted before being presented to
the online algorithm. In this setting, we study Machine Covering and Online
Makespan Minimization. For Online Makespan Minimization, we consider a
stricter version of the random-order model. This stricter model considers
“nearly worst-case” sequences. Only a tiny fraction of extremely badly ordered
sequences is excluded. This caters to typical real-world applications that
need to be robust against bad scenarios but do not confront a single malicious
actor that conjures up absolute worst-case inputs.

It is unclear in the random-order model whether online algorithms should
know the input length n in advance. This information is not profitable to
algorithms facing adversarial inputs but has been, so far, crucial knowledge
of every prior algorithm designed with random-order arrival in mind. We
call the model where input size n is known in advance the secretary model.
On the other hand, in our random-order model input size n is not revealed.
The secretary model allows for vastly superior performance guarantees.

With regards to errors and uncertainty, we study Online Makespan
Minimization with budgeted uncertainty. Budgeted uncertainty is popular
in the analysis of offline algorithms but has, to the best of my knowledge,
never been considered in an online problem before. A recently popular line
of online algorithm research, which studies explorable uncertainty, is thus
complemented by a model of unexplorable budgeted uncertainty.

In total we explore three models. The P d model provides a more gen-
eral and realistic cost-charging scheme. The random-order model provides
more optimistic performance guarantees that go beyond worst-case analysis.
Budgeted uncertainty assumptions prohibit overmuch optimism by including
uncertainty and the possibility of errors in the input.

1.1. BRIEF PROBLEM OVERVIEW 3

1.1. Brief Problem Overview

This section gives a brief overview over the problems studied in this thesis.
A more comprehensive introduction then follow in Chapter 2.

For the List Update problem in the P d model, or paid exchange model,
one is given a linear item list L. Then, a sequence σ = σ(1), . . . , σ(m) of
requests to items in L arrives. Request σ(t), 1 ≤ t ≤ m, is served by linearly
searching through the list until the requested item is found. If σ(t) asks for
the ith item in the current list, serving the request incurs cost i. In order
to reduce this cost, items can be moved to the front of the list using paid
exchanges. A paid exchange swaps two neighboring items in the current list.
Each such swap incurs cost d, for some real number d ≥ 1. The standard
model sets d = 1, which underestimates exchange costs compared to realistic
list implementations. Traditionally, the standard model also allows certain
free exchanges, discussed in Chapter 3.

To an online algorithm A, requests σ(1), . . . , σ(m) are revealed one by
one and each has to be served permanently and irrevocably before the next
one is shown. Let us denote the cost incurred by algorithm A on request
sequence σ by A(σ), while OPT(σ) is the cost of an optimal offline algorithm
that knows the whole request sequence σ in advance. Online algorithm A
is said to be c-competitive if A(σ) ≤ c OPT(σ) + α. The constant α has to
be independent of request sequence σ but may depend on the list size n. A
randomized online algorithm A is c-competitive if E[A(σ)] ≤ c OPT(σ) + α
for all inputs σ. Here, the expectation is taken over all of A’s random choices.

For Makespan Minimization and Machine Covering, a job set
J = {J1, . . . , Jn} of size n has to be assigned to m parallel and identical
machines. Job Ji has processing time pi and runs on precisely one machine.
In particular, preemption is not allowed. The load of a machine is the total
processing time of jobs assigned to it. For Makespan Minimization, the goal
is to minimize the maximum load of a machine, also called the makespan.
For the dual problem, called Machine Covering, the goal is to maximize the
minimum load of a machine.

An online algorithm A receives job set J in some order σ. Formally,
order σ is a permutation of the integers 1 to n. Algorithm A then treats
job sequence J σ = Jσ(1), Jσ(2), . . . , Jσ(n) in order. Only after it assigns job
Jσ(i), 1 ≤ i < n, permanently and irrevocably will the next job Jσ(i+1) be
revealed. Let A(J σ) denote the resulting makespan and let OPT(J) be
the optimum makespan. OPT(J) does not depend on the input order σ.
Classically for Makespan Minimization, the adversarial competitive ratio
c = supJ ,σ

A(J σ)
OPT(J) is considered. If A is randomized, c = supJ ,σ

E[A(J σ)]
OPT(J) .

For Machine Covering, which is a maximization problem, the adversarial
competitive ratio is defined as the inverse value c = supJ ,σ

OPT(J)
A(J σ) , or

c = supJ ,σ
OPT(J)
E[A(J σ)] if randomization is involved.

4 CHAPTER 1. INTRODUCTION

One focus of this thesis is on the random-order model. Herein, the input
order σ is picked uniformly at random among all n! possible choices. One
important variant, which we call the secretary model, reveals the input
length n to the online algorithm in advance. In adversarial settings, such
knowledge is not useful, but for random-order arrival it makes a big difference.
For Makespan Minimization, the competitive ratio in the random-order (or
secretary) model is c = supJ Eσ[A(J σ)

OPT(J)] = supJ
1
n!

∑
σ

A(J σ)
OPT(J) . Inversely,

for Machine Covering the competitive ratio in the random-order (or secretary)
model is c = supJ

OPT(J)
Eσ [A(J σ)] .

We also study budgeted uncertainty assumptions, where the processing
time of each job Jt consists of a regular processing time p̃t and an additional
processing time ∆pt. Up to Γ jobs may fail and require an extended processing
time p̃t + ∆pt while all other jobs are processed in time p̃t. The number
Γ ∈ N ∪ {0,∞} of failing jobs is part of the input. The maximum possible
makespan if the up to Γ jobs fail is called the uncertain makespan. This
uncertain makespan should be minimized. For Γ ∈ {0,∞}, the problem is
equivalent to the old problem of Makespan Minimization; for general Γ, this
problem is, as we show, strictly harder.

1.2. Brief Literature Overview
A very brief overview of results most relevant to our work is provided. A
more comprehensive literature review then follows in Chapter 2.

For List Update in the standard model, the best competitive ratio
of deterministic algorithms is 2 cf. [1, 71, 153]. This cannot be improved
further [115]. Using randomization, competitive ratios as small as 1.6 are
possible [20]. Better ratios are only possible for so called non-projective
algorithms [25]. Analyzing non-projective algorithms is considered extremely
difficult and even for these algorithms, a lower bound of 1.5 holds [156]. The
best deterministic algorithm in the P d model achieves a competitive ratio
of 5+

√
17

2 ≈ 4.5616 [21]. Moreover, a general lower bound of 3 holds [143].
Using randomization, a competitive ratio of 5+

√
17

4 ≈ 2.2808 is possible [143].
Prior to our work, no lower bound for randomized algorithms was known.

For Makespan Minimization, the deterministic Greedy strategy is(
2 − 1

m

)
-competitive [94]. This ratio is tight. Even in the random-order

model, Greedy still remains 2-competitive for m → ∞ [139]. The best
known adversarial competitive ratio of any deterministic online algorithm is
1.9201 [84]. No ratio below 1.88 is possible [145]. The role of randomization is
poorly understood. The best randomized online algorithm barely outperforms
deterministic guarantees with a competitive ratio of 1.916 [3]. Opposed to
that, the best randomized lower bound is only 1

e−1 ≈ 1.581 [51, 151]. All
algorithms currently developed for random-order arrival [8,15,91,97] fall into
what we call the secretary model. They know the input size n in advance.

1.3. SUMMARY OF CONTRIBUTIONS 5

For Machine Covering, no deterministic online algorithm can be better
than m-competitive, where m is the number of machines [157]. This compet-
itive ratio is already obtained by the Greedy strategy. Using randomization,
the best competitive ratio is Õ(

√
m) [33]. Recall that the notation Õ hides

logarithmic factors in the parameter function, here
√

m. The upper bound
of Õ(

√
m) is optimal up to this hidden logarithmic factor [157].

1.3. Summary of Contributions

For the List Update problem, this thesis provides an improved randomized
algorithm, which beats prior performance guarantees with its competitive
ratio of 2.2442. To establish this competitive ratio, we develop new analysis
methods that allow to use the advanced randomized TIMESTAMP algorithm
from [1] together with COUNTER-strategies developed for the P d model
from [143]. We moreover establish first lower bounds. No online algorithm
can be better than 1.8654-competitive in the full cost model. For the partial
cost model, we can even prove a lower bound of 2 − 1

2d . To the best of
my knowledge, there is no algorithm for general size lists that is known to
perform better in the partial cost model than the full cost model.

Three additional new results on the List Update problem not contained
in my prior publications follow. We first discuss formal reasons why it
is difficult to improve deterministic results using COUNTER-strategies,
something which we successfully do in randomized settings. Then, a simple
and efficient description of the optimum offline algorithm on two-item-lists
provides intuition for our lower bounds. We finally recover and verify the
bounds of RANDOM RESET from [143]. These bounds and their proofs
were known to the authors but are only partially published. Our analysis
uses and exemplifies the new techniques required to derive our main upper
bound, the competitive ratio of 2.2442.

For Makespan Minimization in the random-order model, we
provide a deterministic 1.8478-competitive algorithm. For deterministic
algorithms, this result separates the random-order model from the adver-
sarial model. In fact, we use a stronger performance measure called nearly-
competitiveness that considers nearly worst-case orders. Only a vanishing
fraction of input permutations is excluded. For this, our analysis classifies
stable sequences. These sequences can be interpreted as the kernel of the
problem: other sequences are either trivially treated well by any sensible
online algorithm or are extremely rare. The main challenge becomes to
obtain good results on stable sequences. Here, an intricate adversarial anal-
ysis leads to the desired competitive ratio of 1.8478. Next to this upper
bound, we establish first lower bounds. No algorithm can be better than
4/3-competitive in the random-order model and no algorithm can be better
than nearly 1.5-competitive for our stronger model of nearly-competitiveness.

6 CHAPTER 1. INTRODUCTION

For Makespan Minimization in the secretary model, a simple
adaption of the algorithm LightLoad from the literature [10] is nearly 1.75-
competitive. We show that its competitive ratio in the random-order model
is less than 1.75 + 4.4√

m
+ O

(1
m

)
. Next, a more sophisticated algorithm is

nearly 1.535-competitive, which even beats the pessimistic randomized lower
bound of 1

e−1 ≈ 1.581. These results are complemented by first lower bounds.
No online algorithm, deterministic or randomized, can be better than 1.043-
competitive in the secretary model, neither can it be better than nearly
1.257-competitive.

For Makespan Minimization with budgeted uncertainty, we first
analyze the Greedy strategy and prove that it is

(
3− 2

m

)
-competitive. This

result is tight and nicely complements Graham’s classical competitive ratio
of

(
2− 1

m

)
. We then consider an improved strategy, which has competitive

ratio approaching 2.9052. On the other side, a lower bound of 2 separates
this problem from classical Makespan Minimization.

For Machine Covering in the secretary model, we again analyze
the Greedy strategy and prove that it is O

(
m

log(m)
)
-competitive. This ratio is

tight up to a factor of 2 + o(1). We then develop a randomized algorithm
whose competitive ratio of Õ(4√m) beats adversarial upper and lower bounds.
We complement this result by a general lower bound of Ω̃(log(m)) in the
secretary model. The lower bound follows from results on a new variant of the
famous Secretary Problem, called the Talent Contest Problem. This problem
might be of independent research interest. Intuitively, the Talent Contest
Problem formalizes the main algorithmic challenge in Machine Covering—the
challenge of distinguishing small and large jobs.

1.4. Publication Summary

This publication-based dissertation is based on the following five papers [8,
12–15]. Each paper is published or accepted for publication in peer-reviewed
computer science conferences and journals.

Makespan Minimization in the Secretary Model. S. Albers, M. Janke. To
appear in: 41st Annual Conference on Foundations of Software Technology
and Theoretical Computer Science (FSTTCS) 2021

Machine Covering in the Random-Order Model. S. Albers, W. Gálvez,
M. Janke. To appear in: The 32nd International Symposium on Algorithms
and Computation (ISAAC) 2021

Online Makespan Minimization with Budgeted Uncertainty. S. Albers, M. Janke.
17th Algorithms and Data Structures Symposium (WADS) 2021

1.5. OUTLINE OF THE THESIS 7

Scheduling in the Random-Order Model. S. Albers, M. Janke. Algorithmica
(2021): 1-30.
A preliminary version appeared in: The 47th International Colloquium on
Automata, Languages and Programming (ICALP) 2020

The List-Update Problem in the Paid Exchange Model. S. Albers, M. Janke.
37th Symposium on Theoretical Aspects of Computer Science (STACS) 2020

All papers can be found in the appendix.

1.5. Outline of the Thesis
Chapter 2 introduces the fundamental notions of online algorithms and
competitive analysis, as well as the basic problems studied in this thesis:
Online Makespan Minimization, its dual problem Online Machine Covering
and the List Update problem. Each problem description is followed up with
a detailed literature review.

Five chapters follow, which provide a technical overview over each contri-
bution. Every chapter describes one of the five papers. Chapter 3 studies
the List Update problem in the paid exchange model. Chapter 4 investigates
Makespan Minimization in the random-order model. Chapter 5 discusses
Makespan Minimization in the secretary model. Chapter 6 explores Makespan
Minimization under budgeted uncertainty. And Chapter 7 considers Machine
Covering in the secretary model. Each chapter recalls the problem definition
in a brief introduction. The main contributions are named, and followed
by proof sketches and, possibly, additional results that did not make it into
publication. We end each chapter with a brief summary of open problems
and possible future research directions.

A final appendix contains the five papers underlying this publication
based thesis.

Chapter 2

Literature
Online algorithms are central to this thesis. We begin with a brief recollec-
tion of their definition and introduce competitive analysis. Then the three
problems of interest, the List Update problem, Online Makespan Minimiza-
tion and its dual problem, Online Machine Covering, are discussed. These
problems are studied in three models: the P d model, or paid exchange model
for the List Update problem, the secretary model for Makespan Minimization
and Machine Covering, as well as additionally the random-order model and
budgeted uncertainty assumptions for Makespan Minimization.

2.1. Online Algorithms

The area of online algorithms studies the impact of “not knowing the future”.
Traditional analyses consider what we call offline algorithms. These follow
the Input-Process-Output-Paradigm. Offline algorithms first receive the
whole input, then perform some computations and finally return an output.
Opposed to this, practical applications often do not allow full knowledge of
the whole input in advance. Instead, a sequence σ = σ(1), σ(2), . . . , σ(m) of
requests arrives, and each request has to be served by an online algorithm A
permanently and irrevocably before the next one is revealed. This typically
prevents optimal performance on general input sequences. Instead, one
judges online algorithms in terms of competitive analysis, which measures
how well the online algorithm adapts to the changing requirements of new
requests or, equivalently, by how far the online solution may stray from the
optimum offline one.

Let us first consider a minimization problem. We denote the cost of
a deterministic online algorithm A on input sequence σ by A(σ) and the
optimum, i.e. minimal, cost on σ by OPT(σ). The competitive ratio c of A

is defined as c = lim supOPT(σ)→∞
A(σ)

OPT(σ) . Equivalently, c is chosen minimal
such that for every input σ there holds A(σ) ≤ c OPT(σ) + α for some
constant α independent of σ. If the online algorithm A is randomized,
one considers E[A(σ)] instead of A(σ) where the expectation is taken over
all random choices of online algorithm A. Again, the competitive ratio
(against oblivious adversaries) is c = lim supOPT(σ)→∞

E[A(σ)]
OPT(σ) . Historically,

other types of adversaries were considered, cf. [41], but they do not receive
much attention in the recent literature. For maximization problems, the

10 CHAPTER 2. LITERATURE

competitive ratio is defined inversely. It is c = lim supOPT(σ)→∞
OPT(σ)

A(σ) for
deterministic and c = lim supOPT(σ)→∞

OPT(σ)
E[A(σ)] for randomized algorithms.

The area of online algorithms is too vast to be reviewed fully in this thesis.
Famous online problems include Ski Rental [113,114], List Update [108,143],
Paging [82,153], Bin Packing [37,105], Scheduling [5,141], Matching [92,116]
and the k-Server Problem [38, 125]. The survey [4] and the books [46, 83]
contain more information on this topic.

2.2. The List Update Problem

y x z . . .

Figure 2.1: Example of an unordered list. Serving a request to item z
requires linearly searching through the list starting from the beginning at y.
Searching item z incurs cost 3 given by its list position.

In the List Update problem the goal is to dynamically manage an linear
list of items to minimize access cost. The List Update problem is one of the
most basic online problems [46,153] and has been studied since the 1960s [133]
leading to a vast body of literature, see [1,19,25,27,46,49,65,103,108,143,153]
and references therein.

Formally, a list L of n items is given. A sequence σ = σ(1), σ(2), . . . , σ(m)
of requests to the items in L then has to be served in order. To serve the
item requested by σ(t), 1 ≤ t ≤ m, one has to start at the beginning of the
list L and search linearly until it is found. Therefore, requests to the ith
item incur cost i. In the standard model, the item, immediately after being
requested, may be moved to any position closer to the front of the list free
of charge. Such exchanges are called free exchanges. Moreover, at any time,
two neighboring items in L can be swapped at cost 1. These exchanges are
called paid exchanges. List Update in the standard model is well researched
and further progress is considered extremely difficult. [25]

Additional list operations, in particular insertion and deletions of items,
can be implemented without incurring meaningful extra cost using accesses
and are thus typically not included in the problem formulation [21,23,153].

To an online algorithm A, requests σ(1), . . . , σ(m) arrive one by one.
Upon arrival, each request has to be served before the next one is revealed.
Online algorithm A is called c-competitive if it satisfies the previous definition
for every list size n. For deterministic online algorithms, this is equivalent to
A(σ) ≤ c OPT(σ) + α for every input sequence σ. The constant α may be
used to initialize the list and can depend on the list size n but not on the
input σ. A randomized online algorithm A is c-competitive if there exists a
constant α such that E[A(σ)] ≤ cOPT(σ) + α for all inputs σ.

2.2. THE LIST UPDATE PROBLEM 11

Related Work: The offline List Update problem is NP-complete [22] but
polynomial algorithms exist for any fixed list size n [142]. Almost all of the
literature focuses on the online problem. Since results are numerous, we only
review the ones most relevant to this thesis. Sleater and Tarjan [153] first
have shown that their MOVE-TO-FRONT strategy is 2-competitive. MOVE-
TO-FRONT uses free exchanges to move every request to the front of its list
after serving. This is best possible. No deterministic online algorithm can
have competitive ratio below 2 [115]. Many other 2-competitive deterministic
algorithms were discovered subsequently [1, 71].

Using randomization, the first improvement has been made by Irani [103].
Her algorithm SPLIT is 1.9375-competitive. Next, Reingold et al. [143]
introduced their 1.75-competitive algorithm BIT. In the same paper, they
generalize their approach to a family of COUNTER algorithms. The best
COUNTER algorithm has a competitive ratio of 1.7346. They also included
the even more general family of RANDOM RESET algorithms for ratios up to√

3 ≈ 1.731. Albers [1] presented a family of TIMESTAMP algorithms whose
optimal competitiveness reaches the golden ratio 1+

√
5

2 ≈ 1.6180. Albers,
Stengel and Werchner [20] later devised the online algorithm COMB, which
combines BIT and the TIMESTAMP algorithm, to achieve the currently
best competitive ratio of 1.6.

In terms of lower bounds, Teia [156] has established that no randomized
online algorithm can be better than 1.5-competitive. Ambühl et al. [24] and
Ambühl [23] improved this ratio to 1.50115 in the partial cost model. In this
model the cost of serving each request is reduced by 1. Ambühl et al. [25]
also show that no projective algorithm in the partial cost model is better
than 1.6-competitive. Intuitively, an algorithm is projective if it suffices to
consider two-item-lists. All aforementioned upper bounds hold in the partial
cost model, too, and all but Irani’s algorithm SPLIT-algorithm are projective.
Improving the best competitive ratio of 1.6 is thus considered extremely
difficult and intractable by techniques developed so far.

More recent research exonerates paid exchanges. Early work conjectured
them unnecessary [153], which has later been disproven [129]. The optimal
offline algorithm does not need free exchanges [142].

Recent research has proposed models for locality of reference [19, 27,
65], advice [49], untrusted advice [26], access model tailored to specific
forms of memory management [138] or reduced cost models relevant to data
compression [107, 109]. In the strongest such model [107], the whole list
can be rearranged free of charge and the serving the ith item only costs
a⌊log(i)⌋+ b for some a, b > 0. This cost corresponds to the number of bits
required to encode the access costs of a deterministic List Update algorithm
in binary. Fotakis et al. [85] study a more general version of the List Update
problem, where sets of items are requested. The cost of serving a request to
set S is the smallest position any element of S has in list L.

12 CHAPTER 2. LITERATURE

y x z . . .

Figure 2.2: Swapping items x and z in Figure 2.1. Rearranging six pointers
should be more expensive than simply traversing a single one.

We refer to the excellent surveys [21,108] for further results.

The P d Model

The P d model, or paid exchange model, was introduced by Manasse, McGeoch
and Sleator [131] and Reingold, Westbrook and Sleator [143]. In the P d

model, only free exchanges are prohibited and each paid exchange incurs
general cost d, for some real number d ≥ 1.

Reingold, Westbrook and Sleator [143] introduced COUNTER and RAN-
DOM RESET algorithms. Deterministic COUNTER algorithms achieve
competitive ratios up to 5+

√
17

2 ≈ 4.5616 for large values of d [21] while, again
for large d, no deterministic algorithm can be better than 3-competitive [143].
Reingold et al. [143] show that randomized COUNTER algorithms have half
the competitive ratio of their deterministic counterparts, namely 5+

√
17

4 ≈
2.2808. Their RANDOM RESET algorithms allow further improvements for
small d by mitigating the integer rounding required for counter values.

2.3. Makespan Minimization
For Makespan Minimization a set of n jobs J is given. Each job is defined
by its non-negative processing time (or size). One is tasked to assign these
jobs J to m parallel and identical machines. Preemption is not allowed. The
goal is to minimize the makespan, that is the time it takes to complete them
all. Formally, the sum of processing times of jobs assigned to a machine is
called its load; the maximum load is then the makespan.

To an online algorithm A, jobs arrive one by one and each has to be
scheduled immediately and irrevocably before the next one is revealed. A de-
terministic online algorithm A is called c-competitive if A(J σ) ≤ c OPT(J σ)
holds for every job set J and every order σ jobs can be presented to the
online algorithm. The constant term α in the original definition is superfluous
since scaling processing times by a factor λ allows for arbitrarily large values
of OPT(J) without changing the behavior of sensible online algorithms.

Related Work: Makespan Minimization is one of the most basic scheduling
problems and has been studied extensively both in its online and offline

2.3. MAKESPAN MINIMIZATION 13

4
2

3.5

2.5
1
1
1

1.5
versus

4

1

3.5

1

2.5

1

2

1.5

Figure 2.3: Two possible schedules of a job set with makespan 5.5 on the left,
and optimum makespan 4.5 on the right. If an online algorithm produces
the left schedule, it cannot be better than 11/9-competitive.

variant. The offline variant is NP-complete and admits an EPTAS [52,100,
104]. It has received considerable research interest, see [52, 100, 104] and
references therein. For the remainder of this section we focus on the online
variant. Even here, we restrict ourselves to the work most relevant to this
thesis.

Already in the 1960s, Graham [94] established that his famed Greedy
strategy is (2 − 1

m)-competitive. It took nearly thirty years for Galambos
and Woeginger [89] to develop techniques that improve upon this result by
some ϵm > 0 where ϵm → 0 for m → ∞. Their result first uses the new
bound 2Pm+1, twice the (m + 1)th largest processing time of a job, and
the idea of avoiding flat schedules fundamental to every work further on.
Building on that, Bartal et al. [40] established their competitive ratio of
1.986. This was improved by Karger et. al [112] to 1.945 and by Albers [2]
to 1.923. Finally, Fleischer and Wahl [84] provided a competitive ratio of
1 +

√
1+ln(2)

2 < 1.9201, which remains the state of the art since 2000.
Günther et al. [96] and later Chen et al. [53] devise algorithms whose

competitive ratio is 1 + ε times the best possible one by searching through a
suitably pruned game tree of the corresponding request answer game. No
further explicit bounds on the optimum competitive ratio are provided.

The first general lower bound is 1 +
√

2
2 ≈ 1.707 [78]. It has later been

improved to 1.837 [40], 1.852 [2] and 1.853 [93]. Rudin III [145] established
the currently best bound of 1.88.

For classical Online Makespan Minimization randomization is poorly
understood. The best randomized algorithm by Albers [3] requires involved
combinatorial arguments to barely outperform the best deterministic result.
Its competitive ratio is 1.916. Opposed to that, the best general lower bound
is only 1

e−1 ≈ 1.581 [51,151].
Better results are possible for small numbers of machines. The optimum

deterministic competitive ratio is 1.5 for m = 2 and 5/3 for m = 3 machines,
see [78, 94]. It lies between

√
3 ≈ 1.732 [146] and 1.7333 [89] on m = 4

machines. Already on m = 24 machines, no competitive ratio below 1.8566

14 CHAPTER 2. LITERATURE

is possible [145]. The best randomized competitive ratio is 4/3 on m = 2
machines [40].

Other variants of the Online Makespan Minimization problem cover
more general machines. Related machines have different speeds. A job of
processing time p assigned to a machine with speed s requires processing
time p/s. Upper bounds are presented in [30, 42], the best being 5.828
for deterministic algorithms [30] and 2e ≈ 5.436 using randomization [42].
Lower bounds are provided in [42] and [70]. The currently best is 2.564. On
unrelated machines, jobs have machine dependent processing times (pM). A
special case is the Restricted Assignment problem, where all processing times
pM are either 0 or 1. For both variants, the optimum competitive ratio is
logarithmic in the number of machines m [29, 34]. Other variants generalize
the makespan objective, the l∞-norm of the machine loads, to lp-norms with
general p, see [31,75,102]. The area of Vector Scheduling considers jobs with
multidimensional sizes representing diverse resource requirements. For any
fixed vector dimension d, constant competitive ratios are possible [56,101].
In particular in dimension d = 2, an 8/3-competitive algorithm was recently
provided by Cohen et al. [56].

We now return to the main problem of Online Makespan Minimization on
many parallel and identical machines. Since there has been no improvement
in the pure online setting for the last twenty years, semi-online models have
been considered where the online algorithm is given extra resources. A
highly popular model is Bin Stretching where the optimum makespan is
known in advance. A prolific line of research [35, 45, 88, 117] lead to an
upper bound of 1.5. Interestingly, only an almost trivial lower bound of
4/3 is known for general m [35, 119]. If instead of the optimum makespan
the total processing volume is known in advance, the problem is solved. A
line of papers [10,54,118,119] conclude that the optimum competitive ratio
is 1.585 [10, 118]. In advice complexity settings, algorithms are allowed to
receive a certain number of advice bits in advance. Albers and Hellwig [11] as
well as Dohrau [64] show, seemingly independently, that a constant number
of advice bits allows competitive ratios arbitrarily close to 4/3, while O(m)
advice bits allow competitive ratios arbitrarily close to 1. Moreover, it is
shown in [11] that Ω(m) advice bits are, in fact, required for competitive
ratios below 4/3.

In the bounded migration model, whenever a job of processing time p
arrives, jobs of total processing time up to β · p can be reassigned to different
machines. The factor β is called the migration factor. This allows to retro-
actively righten mistakes made in the past. Sanders et al. [148] provide a
competitive ratio of 1.5 for β = 4/3 and a ratio of 1 + ε for β = 2Õ(1/ε).
If preemption is allowed, Epstein and Levin [75] design a best-possible
online algorithm, which has β = 1 − 1

m . As long as the processing times
involved are small, bounded migration allows to perform any number of

2.3. MAKESPAN MINIMIZATION 15

migrations. Albers and Helwig [9] study limited migration. For limited
migration, only a bounded number of jobs can be reassigned after all jobs
are treated. Albers and Helwig [9] provide a 1.4659-competitive algorithm
migrating O(m) jobs and show that no better algorithm is possible using
o(n) migrations. Englert et al. [72] extend this model to uniform machines.
They provide a 1.7992-competitive algorithm migrating O(m) jobs. They
also show that no ratio below 2 is possible using o(m) migrations.

There are two semi-online models that pertain the input order. Quite early,
Graham [95] established that his Greedy strategy is

(4
3 − 1

3m

)
-competitive if

jobs are presented by decreasing processing times. A better algorithm for
such orders is 1.25-competitive [55]. Lower bounds are provided in [150],
namely 7/6 for m = 2 and 1+

√
37

6 for m = 3. For these numbers of machines
matching upper bounds are presented in [95] respectively [55]. “The power
of reordering” is further studied by Englert, Özmen and Westermann [73],
who equip the online algorithm with a buffer, which can be used for the dual
purpose of lookahead and reordering the sequence “on the fly”. They show
that a buffer of size O(m) suffices for a competitive ratio approaching 1.4659
for m→∞. No sensible buffer size can improve upon their result. The ratio
of 1.4659 is the same one obtained in the limited migration setting [9].

For more results on semi-online scheduling consult the surveys [6, 74].

Machine Covering
The dual problem to Makespan Minimization is known as Machine Covering.
Here, the goal is to maximize the minimum load of a machine. Machine
Covering is relevant to applications where jobs represent resources. These
resources are consumed by the machines in order to work. The goal is to
keep all machines running for as long as possible. Machine Covering has
applications in the sequencing of maintenance actions for aircraft engines [87]
and in storage area networks [149].

Related Work: The offline problem, also known as Santa-Claus and Max-
Min Allocation Problem, is strongly NP-hard but admits a PTAS [157]. For
further research in this setting consult [28,39,157] and references therein.

General results for Online Machine Covering are extremely restrictive.
Recall that an online algorithm A receives jobs one by one. Each job has
to be assigned permanently and irrevocably before the next one is revealed.
Since Machine Covering is a maximization problem, the competitive ratio is
c = supJ σ

OPT(J)
A(J σ) . This uses the convention 0/0 = 0 and r/0 =∞ for r > 0.

The goal is to find online algorithms obtaining small competitive ratios c. For
deterministic algorithms, the best competitive ratio is m, which is achieved
by the Greedy strategy [157]. The lower bound is depicted in Figure 2.4.
First, m jobs of processing time 1 have to be assigned by a competitive
deterministic online algorithm A to different machines. Then, subsequent

16 CHAPTER 2. LITERATURE

versus

Figure 2.4: The lower bound for deterministic Machine Covering shows that
classical adversarial analyses are extremely pessimistic. A competitive online
algorithm, depicted on the left, may only achieve minimum load 1, while
load m is possible on the right.

m− 1 jobs of processing time m make online algorithm A perform poorly.
Using randomization, a better bound of Õ(

√
m) is possible. This bound is

optimal up the logarithmic term hidden in the Õ-notation [33]. The lower
bound again uses that no online algorithm is able to schedule a prefix of m
jobs correctly; at least not with probability exceeding 1/

√
m.

These pessimistic guarantees have motivated the study of various semi-
online models that enhance the online algorithm with extra resources or
provide extra information. Azar et al. [33] provide a (2 − 1

m)-competitive
algorithm, if OPT is known in advance. They also show that no competitive
ratio better than 1.75 is possible. Ebenlendr et al. [69] improve the upper
bound to 11/6 ≈ 1.833 and the lower bound to 1.791. Recall that in the
bounded migration model, for some β > 0, jobs of total processing volume
up to β · p can be reassigned after a job of processing time p arrives. The
algorithm of Sanders et al. [149] is 2-competitive for β = 1. Gálvez et al. [90]
provide an algorithm with competitive ratio 4/3+ε for β = O(ε−3) and show
that no competitive ratio below 17/16 is possible with constant migration.
Epstein et al. [76] study Machine Covering with a reordering buffer, which
can store and rearrange a fixed amount jobs. They provide a competitive
ratio of Hm−1 + 1, where Hm−1 is the (m− 1)th harmonic number. They
require buffer size m− 1 and show that this result cannot be improved for
any sensible buffer size.

Random-Order Models

The goal of the classical Secretary Problem is to pick the best secretary out
of a linearly ordered set of n candidates. To the online algorithm, candidates
are presented one by one and have to be hired immediately and irrevocably.
Once a candidate is hired, all remaining ones are automatically rejected.
The online algorithm fails unless it manages to hire the best candidate. It is
impossible for deterministic algorithms to pick the best candidate on worst-
case arrival orders. Instead, the arrival order is picked uniformly randomly.
The goal is to maximize the probability of finding the correct candidate.

2.3. MAKESPAN MINIMIZATION 17

versus

Figure 2.5: Lower bounds in the literature order jobs by increasing processing
time. Here, the lower bound from [2] is depicted in the original and a random
order.

This classical problem gave rise to the random-order model, a popular
tool to combat the pessimism inherent in worst-case orders. Given an
online algorithm A, its random-order cost on input set J is Arom(J) =
Eσ[A(J σ)] = 1

n!
∑

σ A(J σ) where σ ranges over all n! possible orders of
input set J . If online algorithm A is randomized, the expected value also
includes its random choices. The competitive ratio of online algorithm A
in the random-order model is c = lim supOPT(J)→∞

Arom(J)
OPT(J) , or respectively

the inverse if a maximization problem is considered. Recall our convention
that 0/0 = 1 and r/0 = ∞ for r > 0. Then we consider for Makespan
Minimization c = sup Arom(J)

OPT(J) , and for Machine Covering c = sup OPT(J)
Arom(J) .

Related Work: The Secretary Problem has already been studied by
Lindley [128] and Dynkin [68] in the 1960s. They show independently that
the optimum strategy finds the best secretary with probability approaching 1

e
as the number n of candidates goes to infinity. Later research focused on
the surprisingly non-trivial difference between secretaries being ordered via
an abstract linear order or via valuations in the real numbers. The latter is
also known as the game of Googol. A prolific line of papers [140, 147, 154]
has shown that both versions are equivalent unless n = 2 candidates are
considered. Modern work generalizes the traditional problem in many ways,
including picking several secretaries [18, 123] possibly including matroid
constraints [36,63,80,126], prior sampling [58,110] or even prophet inequalities
and the game of Googol [32, 57, 59]. Consult the surveys [63, 81, 86] and
references therein for a more thorough literature review.

Coming from the Secretary Problem, the random-order model became
recently popular for online problems such as Matching [92, 111, 116, 130],
Knapsack [16,36], Bin Packing [17,120,127], Facility Location [134], Packing
LPs [121], Convex Optimization [97], Welfare Maximization [124], Budgeted
Allocation [135] and Scheduling [8, 14, 15, 91, 136, 139]. See also [98] for a
survey chapter on random-order models.

For Scheduling in the random-order model little is known so far. Osborn
and Torng [139] prove that Graham’s Greedy strategy is still not better
than 2-competitive for m → ∞. Molinaro [136] studies a very general
scheduling problem where jobs have different machine dependent processing
times bounded by 1. His algorithm has expected makespan (1 + ε)OPT +

18 CHAPTER 2. LITERATURE

O(log(m)/ε) but no further guarantees on the random-order competitive
ratio are given. Göbel et al. [91] study Scheduling on a single machine where
the goal is to minimize weighted completion times. They provide a constant
competitive ratio for unit-sized jobs and a competitive ratio of O(log(n))
for general job sizes. They also show that no sublinear competitive ratio is
possible if worst-case orders are considered.

Results in the literature differ depending on whether the input length n is
known in advance. For the Secretary Problem, such information is essential.
For Online Matching, such information is implicit and hence not required.
Any algorithm developed for Scheduling in the random-order model [8,15,91,
97] excluding ours in [14] needs to know the input size n in advance. As far
as traditional worst-case orders are involved, knowing n is of no help. For
random-order arrival, knowing n most likely poses a strong advantage albeit
no formal proof is known yet. To distinguish both models, we use the term
secretary model when n is known and the term random-order model else.

Budgeted Uncertainty

1
1

6

1

5

1

1.5

4
2.5

2

2.5

2.5
1

1.5

2

3.5
leads to

1.5

44
2.5

2

3.5

2.52.5

2.5

1
1
1

1.5

1

6

1
1.5

Figure 2.6: The first schedule from Figure 2.3 (left) if jobs can fail. Failing
jobs requires additional job-specific processing time depicted on the right.
Here, Γ = 1 jobs fail per machine in the worst possible way. If only the job
on the right-most machine failed, the makespan would not change.

For Makespan Minimization with budgeted uncertainty, jobs have both a
regular processing time and an additional processing time. Normally, a job
requires the former regular processing time to be executed. Unfortunately,
up to Γ jobs may fail and require the sum of both processing times. The
uncertain makespan of a schedule is then the makespan obtained if these
Γ jobs are chosen worst possible. Equivalently, up to Γ jobs may fail per
machine. The resulting uncertain makespan does not change in this more
general setting. For Makespan Minimization with budgeted uncertainty, the
goal is again to minimize the uncertain makespan.

In general, budgeted uncertainty equips each input parameter, such as
job processing times, with an interval of uncertainty. Up to Γ parameters
may fail and may be reset to any value in the uncertainty interval. All other
parameters retain their original value. The goal is to give guarantees if these
failing parameters and their values are chosen worst possible. The prior

2.3. MAKESPAN MINIMIZATION 19

formulation of Makespan Minimization with budgeted uncertainty arises
since it is always worst to choose processing times of failing jobs maximally.

Related Work: Offline models incorporating uncertainty date back to
the 1950s [61]. Earliest models consider stochastic settings where scenarios
eventualize according to a probability distribution. The more recent bud-
geted uncertainty setting from [43] considers worst-case scenarios. It has
been applied to many offline problems such as Scheduling [47,48,155], Bin
Packing [144] and Linear Optimization [43,44]. In particular, for the offline
variant of Makespan Minimization under budgeted uncertainty, which we
study as an online problem, an EPTAS has been provided by Bougeret et.
al [47].

Budgeted uncertainty has, to the best of my knowledge, never been
studied in online settings. This is surprising since uncertainty forms the
core area of study for online algorithms. To date, a complementary line
of research already introduced explorable uncertainty. The key difference
to unexplorable budgeted uncertainty is that explorable uncertainty only
impacts the online algorithm, who can resolve it at a certain extra cost. In
1991, Kahan [106] investigated the number of queries necessary to determine
median and maximum element of a set of “uncertain numbers”. Later
work generalized this to finding general rank-k-elements [79, 99, 106, 122],
Caching [137] and recently Makespan Minimization [7, 66, 67]. Confer to the
survey by Erlebach et. al [77] and references therein for more results on this
topic.

Chapter 3

The List Update Problem in the
P d Model
We revisit the List Update problem in the paid exchange model P d. An
unordered item list L has to be maintained dynamically so that a sequence σ
of requests to these items can be served with minimum cost. Serving each
item request requires linearly searching through L and thus incurs cost given
by the item’s list position. In order to reduce cost, frequently requested items
should be moved closer to the front. For such movement, paid exchanges are
used. Paid exchanges may, at any time, swap neighboring items in the list L
at a given cost d ≥ 1 per exchange. The goal is to serve input σ at minimum
total cost.

The List Update problem is one of the most basic online problems and
has applications to data compression schemes. For example, the compression
program bzip2 applies the Burrows-Wheeler transform together with linear
list encoding [50,60,132,152].

The most studied model of the List Update problem is the standard
model where d, the cost for exchanging neighboring items, is 1. Traditionally,
free exchanges are allowed. Their usefulness depends on minutiae in the
model description discussed in Paragraph 3.1. The paid exchange model, or
P d model, introduced by Manasse, McGeoch and Sleator [131] as well as
Reingold, Westbrook and Sleator [143] never included free exchanges and
considers general exchange cost d, for d ≥ 1 a real-valued constant. This
is motivated by the fact that in practice one iteration of the traversal loop
for servicing an item will be much cheaper than swapping two neighboring
items, compare Figure 2.1 and 2.2.

3.1. Preliminaries

Problem Definition

Formally, one is given a list L of n items and a sequence σ(1), . . . , σ(m) of
requests to items in L that must be served in order. To serve a request
to item σ(t), 1 ≤ t ≤ m, one needs to traverse list L from the beginning
until item σ(t) is found. If item σ(t) is the ith item in the list, a cost of i
is incurred. This is called the full cost model. In the literature, there is a

22 CHAPTER 3. LIST UPDATE IN THE P d MODEL

second prominent model where the cost for serving a request to the ith item
in L is only i − 1. This is called the partial cost model. While the partial
cost model is not sensible in practical applications, there is, to the best of
my knowledge, no upper bound for arbitrary-sized item lists that does not
hold in both models. At any time, the algorithm is allowed to perform paid
exchanges. These swap two neighboring items at cost d where d ≥ 1 is a
given real-valued constant. The goal is to minimize the total cost incurred.

Online Algorithms

To an online algorithm, item requests arrive one by one and each has to
be served without knowledge of future requests. When presented with a
request σ(t), online algorithm A can make arbitrary paid exchanges before
serving the requested item. Given a request sequence σ and an online
algorithm A, we denote the cost of A on σ by CA(σ). Let OPT denote the
optimum offline algorithm and let COPT(σ) denote its cost on σ. Then a
deterministic online algorithm A is called c-competitive, for some real number
c ≥ 1, if CA(σ) ≤ c · COPT(σ) + α for some constant α that is independent
of input σ but may depend on the list size n. Similarly, a randomized online
algorithm A is c-competitive (against an oblivious adversary) if E[CA(σ)] ≤
c · COPT(σ) + α. The expectation is taken over the random choices of A.

Almost all analyses in the literature are carried out in the partial cost
model. They carry over to the full cost model due to the following observation.

Lemma 3.1
If an online algorithm, deterministic or randomized, is c-competitive in
the partial cost model, then it is also c-competitive in the full cost model.

Proof. By passing over to the full cost model, the cost of serving each request
increases by precisely 1. In particular, CA(σ) and COPT(σ), the cost of
A and OPT, increase by precisely the length m of σ. The ratio CA(σ)

COPT(σ)

becomes CA(σ)+m
COPT(σ)+m when passing over to the full cost model. It can only

decrease.

Exchanges in Between

Assume a request σ(t) is revealed and has to be served. Is request σ(t) served
immediately leaving no time for paid exchanges? Or, can an online algorithm
quickly make some paid exchanges moving the requested item closer to the
front before serving it? The latter is called an exchanges in between.

In the standard model, exchanges in between can be replaced by exchanges,
free or paid, after request σ(t) is served. The total cost does not increase.
Ambühl et al. [23–25] argue conversely that free exchanges are unnecessary
in the standard model. They can be replaced by paid exchanges right before
serving the request. Such paid exchanges would be in between. This is

3.1. PRELIMINARIES 23

evidence that earlier authors did not consider exchanges in between possible
but also gives a reason to include such exchanges for a simpler problem
definition.

Reingold, Westbrook and Sleator on the one hand state, quoting from [143],
“We can think of any algorithm as servicing each request as follows: first
some number of paid exchanges are performed, then the request is satisfied,
and then any number of free exchanges are done. An on-line list update
algorithm must service each request without knowledge of future requests.”
This indicates that exchanges in between are allowed. On the other hand,
their COUNTER-algorithm for the P d model only moves items to the front
of the list after serving them. This would be insensible if moving them before
serving, i.e. in between, was also an option.

In our work, we explicitly allow exchanges in between. For the standard
model, this has no major impact besides simplifying the model by making
free exchanges unnecessary [23–25]. For the P d model, this leads to slightly
better competitive ratios. Moreover, the standard model is equivalent to the
P 1 model with exchanges in between.

Projective Algorithms

An online algorithm A is projective if the relative order of any two items x, y
in its list is fully determined by prior requests to x and y. The popularity of
projective algorithms for List Update results from the following proposition.

Proposition 3.1
Consider the partial cost model. A projective online algorithm A is
c-competitive if and only if it is c-competitive on request sequences
referencing only two items, which are served on a two-item-list.

The result has been long known and holds in both the standard and the
P d model. Reducing to two-item-lists seems central to current List Update
analyses. Every algorithm besides Irani’s SPLIT algorithm [103] is projective.
Early results, such as [143], do not use Proposition 3.1 explicitly. Irani [103]
uses different techniques to reduce to two-item-lists. The result of Ambühl
et al. [25] establishes that competitive ratios smaller than 1.6 cannot rely on
Proposition 3.1 anymore, explaining the lack of progress since the projective
algorithm COMB [20] obtained that ratio.

COUNTER-Algorithms

A blueprint for algorithms in the P d model are COUNTER-algorithms.
Consider a well performing online algorithm A from the standard model,
respectively the P 1 model. In the P d model, exchanges become expensive
and should be performed less often. To achieve this, COUNTER-algorithms
thin out the input sequence via a mod l counter. Ignoring requests with

24 CHAPTER 3. LIST UPDATE IN THE P d MODEL

positive counter value slows down A.
Formally, the COUNTER analogue of online algorithm A, denoted by

A(l), maintains a mod l counter for each item x in the list. Whenever a
request σ(t) asks for item x with counter value c(x) > 0, the corresponding
counter value c(x) is decremented by 1. Request σ(t) is a minor request.
Once the counter c(x) reaches 0 on request σ(t′) it gets reset to l−1. Request
σ(t′) is a master request. The modified algorithm A(l) simulates A on the
sequence of master requests. It serves minor requests without rearranging its
list. When faced with a master request σ(t), algorithm A(l) feeds σ(t) to A.
Algorithm A thus only “sees” the master requests. Algorithm A(l) makes
exchanges according to A’s behavior. If algorithm A uses a free exchange
on request σ(t), there are two possibilities for A(l). Preferably, the free
exchange is replaced by a paid exchange right before serving request σ(t).
This would be an exchange in between. If exchanges in between are not
allowed, A(l) has to perform a paid exchange right after serving request σ(t).
This option is slightly more expensive.

Deterministic COUNTER-algorithms will initialize all counters to l − 1
at the beginning of the sequence. Any other initialization value leads to the
same performance. The adversary can always reinitialize counters arbitrarily
by prepending a suitable prefix to input σ. This can be helped using
randomization. Randomized COUNTER-algorithms initialize all counters
independently and uniformly at random. Now, counters cannot be controlled
and predicted by the adversary anymore.

Reingold, Westbrook and Sleator [143] first used the COUNTER-strategy
to adapt the MOVE-TO-FRONT algorithm from [153] to the P d model.
MOVE-TO-FRONT simply moves every item to the front of the list be-
fore serving it. The resulting archetype of COUNTER-algorithms is simply
called COUNTER(l). Important special cases of COUNTER(l)1 are the
randomized COUNTER(2), known as the BIT-algorithm [143], and deter-
ministic COUNTER(1), which, if exchanges in between are used, recovers
the MOVE-TO-FRONT strategy.

For large d and the correct choice of l, the competitive ratio of the
deterministic COUNTER(l) is 5+

√
17

2 ≈ 4.5616. Its randomized counterpart
is 5+

√
17

4 ≈ 2.2808-competitive. In the randomized case, setting the counter
value to l ≈ 2.561 d is optimal. Unfortunately, since l has to be an integer
we need to round 2.561 d. Such rounding is circumvented by a more general
algorithm family called RANDOM RESET [143]. RANDOM RESET is
parameterized with a reset distribution ℓ. Whenever a counter reaches 0,
RANDOM RESET resets it to some value l − 1 where l is drawn from ℓ.
Distribution ℓ’s expected value El∼ℓ[l] can obtain general real values. This

1Another family of COUNTER algorithms, considered in [143], is more general than
COUNTER(l) but less general than RANDOM RESET. In the standard model, it allows
competitive ratios as small as 1.7346. We do not consider this family further in this thesis.

3.2. OUR CONTRIBUTIONS 25

leads to improvements for small values of d where 2.561 d is not close to an
integer, see Figure 3.2. For d = 1, it improves the ratio of BIT, which is 1.75,
to
√

3 ≈ 1.7321. For d→∞ the improvement vanishes.
Thus, our main result, which focuses on large d, uses COUNTER-

strategies instead of “RANDOM RESET-strategies” for a simpler analysis.

3.2. Our contributions

Recall that the classical COUNTER(l) algorithm simply uses the COUNTER-
strategy together with the MOVE-TO-FRONT algorithm. In the next
paragraph, we prove that known sensible deterministic algorithms cannot lead
to better results. Using randomization, algorithms superior to MOVE-TO-
FRONT are known. The second best, TIMESTAMP(p), obtains competitive
ratios up to 1+

√
5

2 ≈ 1.6180. In our work, we consider the COUNTER-version
of TIMESTAMP(p), called TIMESTAMP(l,p).

The algorithm TIMESTAMP(l,p) maintains, for every list item x, a
mod l counter c(x) ∈ {0, . . . , l − 1}. In the beginning, each counter c(x) is
initialized independently uniformly at random.

Given a request σ(t) to item x, there are two possibilities. If c(x) > 0,
request σ(t) is a minor request. Minor requests are served without list
rearrangement. Counter c(x) is then decremented by 1. Once c(x) = 0,
request σ(t) is a master request. For a master request, we proceed according
to the TIMESTAMP(p) strategy from [1]. With probability p, where p is
the second parameter of TIMESTAMP(l,p), Policy 1 moves item x greedily
to the front of the list. With probability 1− p, item x moves according to
the more cautious Policy 2. Consider λ(t), the longest suffix of the current
request sequence ending with σ(t) that contains no master request to x

Algorithm 1 How TIMESTAMP(l,p) serves request σ(t) = x.
1: if c(x) > 0 then // σ(t) is a minor request
2: c(x)← c(x)− 1;
3: else // σ(t) is a master request
4: c(x)← l − 1;
5: With probability p, serve σ(t) using Policy 1 and

with probability 1− p serve it using Policy 2;
6: Policy 1: Move x to the front of the list.
7: Policy 2: Let λ(t) be the longest suffix of the sequence ending with

request σ(t) in which exactly one master request to x occurs. Let z
be the

first item in the current list for which at most one master request
occurs in λ(t) and the possible master request was served using
Policy 2. If z ̸= x move x in front of z in the list.

26 CHAPTER 3. LIST UPDATE IN THE P d MODEL

besides σ(t). Suffix λ(t) begins right after the previous master request to x
or at the beginning of σ if none exists. Policy 2 determines the first item z in
the current list such that either (1) no master request to z occurs in λ(t) or
(2) precisely one master request to z occurs in λ(t) and this master request
has been treated using Policy 2. Then, Policy 2 moves item x in front of z in
the list. Note that x satisfies the conditions for item z. If z = x, item x is not
moved. In particular, item x never moves backwards. Intuitively, Policy 2
only surpasses items that are requested less. In particular, both policies
together reduce needless exchanges on alternating sequences xyxy. Such
useless exchanges are precisely what prevents improvement in deterministic
settings, cf. Definition 3.1.

Our main result is that TIMESTAMP(l,p) is 2.2442-competitive with
the correct choice of parameters for d→∞. This ratio c improves upon the
randomized COUNTER(l)-algorithm. More precise evaluations of the terms
involved reveal that the competitive ratio c improves for small values of d
so that the limit is only a formality. Such more precise ratios are included
in Figure 3.2. If exchanges in between are not allowed, the opposite is true.
TIMESTAMP(l,p) approaches a competitive ratio of 2.2442 from above. One
disadvantage is that in this case the upper bounds become fairly complicated
due to involved additive terms in O(1/d). Of course, for d→∞ the bounds
do not change. If exchanges in between are allowed, these additive terms are
negative. We can thus omit them for a slightly worse but simpler result.

Theorem 3.1
Let φ = l

d . TIMESTAMP(l,p) is c-competitive, where c is the maximum
of the following expressions:

c1 = 1 +
(1

2 + max{1, 2p}(1− p)
)
φ, c2 = 7−3p

4 + 1
φ ,

c3 = 1 + 3p
2 − p2 + 2p

φ , c4 = 3−p+p2

2 + 2(1−2p+2p2)
φ ,

c5 = 3+p−p2

2 + 2p2

φ , c6 = 2− p + 1−p
φ .

In particular, the TIMESTAMP(l,p) algorithm is 2.2442-competitive
for p = 0.45797 and l ≈ 1.19390d.

1 2

0
0.5

1

2

4

φ p

3

4

5

1.15 1.2 1.25
0.440.46

2.25
2.3

2.35

φ p

2.26
2.28
2.3
2.32
2.34

Figure 3.1: The function of Theorem 3.1. (The plot is colored.)

3.2. OUR CONTRIBUTIONS 27

3 4 5 7 10 20 30 40 70 100

2.1

2.2

2.3

c

Lower and Upper Bounds for different exchange cost d.

Figure 3.2: A comparison of TIMESTAMP, COUNTER and RANDOM RE-
SET for different values of d ≥ 3. Exchanges in between are allowed. The plot
is colored and the x-axis is log-scaled. The black lines indicate the competi-
tive ratios of COUNTER and the slightly better ratio of RANDOM RESET
from [143]. Blue lines indicate the competitive ratio of TIMESTAMP from
Theorem 3.1 and a better bound incorporating small improvements in O(1/d)
omitted in the main result. For all algorithms, optimal choice of parameters
is assumed. The lines of COUNTER strategies are jagged due to the integer
rounding involved.

First lower bounds are provided if d is an integer. Our main lower bound
only holds in the partial cost model where the cost of serving the ith item is
i − 1 instead of i. So far, no algorithm is known to perform better in the
partial cost model for arbitrary-size lists. I moreover conjecture that the
lower bound of 2− 1

2 d holds, in fact, for the full cost model, too.

Theorem 3.2
No randomized algorithm for List Update in the partial cost model is
better than

(
2− 1

2 d

)
-competitive.

The main challenge in the proof is to analyze the optimum algorithm
on a certain randomized lower bound sequence. We solve this challenge for
two-item-lists, where it is already quite involved. If the challenge was solved
for lists of general size n, Theorem 3.2 would also hold in the full cost model.
Instead of analyzing the optimum algorithm on general size lists, we consider
the simplified deterministic algorithm Bh. Algorithm Bh moves the current
item to the front of its list if and only if it is requested h times in a row.
From the analysis of Bh, we conclude the following general lower bound.

Theorem 3.3
If A is an online algorithm for List Update in the P d model, then its
competitive ratio is at least 1/

(
1 + 2W

(−1
2e

))−O(1/d) ≈ 1.8654.

For d = 1, we can recover Teia’s lower bound of 1.5 [156].

28 CHAPTER 3. LIST UPDATE IN THE P d MODEL

3.3. Complementary results
In the following, we mention a few results, which did not make it in the main
paper, but should be of interest.

Deterministic COUNTER Strategies

If we look at potential candidates for deterministic COUNTER-strategies,
such as the deterministic TIMESTAMP algorithm [1] or one of the algorithms
mentioned in [71], we observe that these algorithms continuously rearrange
their lists on alternating two-item-sequences xyxy. We call such a behavior
fickle. We show that fickle algorithms cannot improve the state of the art
when plugged into deterministic COUNTER-algorithms. While it is easy to
design non-fickle online algorithms, these are either non-projective or perform
worse in the standard model. When lifted to the P d model, they are unlikely
to make up for this.

Definition 3.1. Consider the infinite sequence (xy)∗ of alternating requests to
items x and y. An online algorithm A for List Update in the standard model
is called fickle if, after possibly excluding a finite prefix of sequence (xy)∗,
algorithm A moves every request to the front of the list before serving it.

Theorem 3.4
If A is a fickle algorithm, then the COUNTER-algorithm A(l) cannot
outperform the classical algorithm COUNTER(l).

Proof. COUNTER(l) has competitive ratio max(1+ l
2 d± 1

2 d , 3
2 + 2 d−1/2

l ± 1
l).

For the ±-term, a − is to be chosen if exchanges in between are used to
move each requested element to the front before serving. A + is chosen if
these exchanges have to occur after serving. The latter bound is published
in [143]. Both bounds are presented in Corollary 3.1 stated later.

Consider any algorithm A that behaves like MOVE-TO-FRONT on the
sequence (xy)∗. One can verify that the COUNTER-algorithm A(l) has
(strict) competitive ratio at least 1 + l

2 d ± 1
2 d on input xlyl. Also, A(l) has

(strict) competitive ratio at least 3
2 + 2 d−1/2

l ± 1
l on input xl−1ylxy2l−1xlyxl.

Therefore, algorithm A(l) does not outperform COUNTER(l).
These two bounds also hold for the non-strict competitive ratio since

we can repeat these sequences arbitrarily often. For the same reason, the
bounds still hold if algorithm A deviates on a finite prefix of (xy)∗. Such
deviation can only improve the cost by a constant.

Although the randomized TIMESTAMP(l,p) family outperforms the
COUNTER(l) family, the opposite holds true with regards to the determin-
istic TIMESTAMP(l,1) algorithm. It performs worse than the deterministic
COUNTER(l) family. Recall that the deterministic COUNTER(l) algorithm
achieves competitive ratios approaching 4.5616.

3.3. COMPLEMENTARY RESULTS 29

Proposition 3.2
Deterministic TIMESTAMP(l,1) is at most 5-competitive for d→∞.

Proof Sketch. Evaluate the cost of OPT and TIMESTAMP(l,1) on input
sequence

(
xl−1ylxy3lxly2l−1xlyx3lylxl

)N
for general N .

Remark 3.1
Based on my analyses, I know that deterministic TIMESTAMP(l,p) is,
in fact, 5-competitive for d→∞.

OPT on Two-Item-Lists

Assume that in the two-item-list of OPT item y is currently at the front
and x at the back. If the next request goes to y, it is optimal to serve this
request at minimum cost. Hence, consider the case that the next request
goes to x. Should OPT move item x to the front to reduce serving cost?
In the standard model, the following rule applies [142]: move item x to the
front if and only if it has to be served twice in a row. In other words, OPT
is close to being an online algorithm. It does only need to know the next two
requests. For d > 1 the optimum algorithm is fully offline and might need to
know the whole input sequence in advance.

Given an input sequence σ, let the first element in the two-item-list of
OPT be y and the last one x. The optimum algorithm will serve any leading
requests to y without rearrangements till it encounters a request to x. The
first sequence λ starts with this request. For z ∈ {x, y}, let |λ|z denote the
number of requests to z in λ. We run through the following requests in σ
and add them to λ. We stop once one of the following events occurs: Either
(1) |λ|x = |λ|y, or (2) |λ|x ≥ |λ|y + 2 d, or (3) the end of input σ is reached.
In case (1) we call λ a zero-sequence; in case (2) it is called an up-sequence;
else, in case (3), it is called the final sequence. If λ is a zero-sequence, OPT
serves it without rearranging its list. Following λ, more requests to item y
may follow, which are served free of charge. These requests form what we
call a post-sequence. After the post-sequence—that is at the next request
to x—we repeat this process to define a new sequence λ′. Sequence λ′ will be
again an up-, zero- or the final sequence. If λ is an up-sequence, OPT moves
item x to the front of its list before serving λ. Afterwards, a post-sequence
of requests to x may be served free of charge. After these are served, the
following sequence λ′ begins with a request to y. It is defined analogously
with the roles of x and y reversed. If λ is the final sequence, we check whether
|λ|x ≥ |λ|y + d holds. If so, we move item x to the front before serving λ.

Theorem 3.5
The previously described algorithm is optimal.

30 CHAPTER 3. LIST UPDATE IN THE P d MODEL

Proof. Assume that the proposition was untrue. Let OPT′ be an optimal
offline algorithm and consider the first sequence λ = λi in which OPT′ does
not behave like the previously described algorithm. An exchange belongs
to λi if it is performed right before serving a request in this sequence. We
choose OPT′ among all optimal algorithms such that i is maximal. In other
words, the diverging sequence λ = λi occurs latest possible in σ. Let x again
denote the first element requested in λ and let y be the other element in the
list L. Element y will be at the front and x at the back of the lists of OPT
and OPT′ before treating λ.

First, observe that OPT′ can make at most one exchange in λ. For this,
one needs to verify that any proper contiguous subsequence λ′ of λ satisfies
||λ′|x−|λ′|y| < 2 d. If OPT′ were two make two exchanges in λ, let λ′ denote
the sequence of requests served in between. Removing these two exchanges
would reduce the cost of OPT′ by 2 d− (|λ′|x − |λ′|y) > 0. This contradicts
optimality.

Next, observe that if OPT′ makes one exchange in λ, this exchange occurs
right at the beginning of λ. For this, verify that for any non-empty prefix λ′

of λ there holds |λ′|x > |λ′|y. If OPT′ did make an exchange after such a
non-empty prefix, moving this exchange to the front would reduce the total
cost by |λ′|x − |λ′|y > 0. This would again contradict optimality.

We now derive a contradiction to the fact that OPT′ is chosen such that
the critical sequence λi occurs latest possible. There are three cases. Case 1)
Sequence λ is a zero-sequence and OPT′ makes an exchange right at the
beginning of λ. Moving this exchange to the back of λ would not change
the cost of OPT′ since |λ|x = |λ|y. Further moving said exchange past the
post-sequence would, in fact, decrease the cost unless said post-sequence is
empty. We thus found a way to modify OPT′ without increasing its cost
and the critical sequence λi on which OPT′ does not behave similar to OPT
now occurs later. This is the desired contradiction to λi occurring latest
possible. Case 2) Sequence λ is an up-sequence and OPT′ does not make
an exchange right at the beginning. We now add one exchange right at
the beginning of λ and another one right after all elements in λ and the
post-sequence are served. These exchanges incur cost 2 d on the one hand
but, on the other hand, the serving cost for the elements in λ decreases. This
decrease is |λ|x − |λ|y = 2 d plus the length of the post-phase. It makes up
for the cost 2 d of adding these two exchanges. We again reached the desired
contradiction to λi being latest possible. Case 3) If sequence λ is the final
sequence, verify that it is optimal to perform an exchange at the beginning
if and only if |λ|x ≥ |λ|y + d. The theorem follows.

RANDOM RESET

Recall that RANDOM RESET is initialized with a random variable ℓ taking
values in the natural numbers. Whenever a counter value reaches 0, we pick

3.3. COMPLEMENTARY RESULTS 31

an element l ∼ ℓ and reset the counter to l − 1. Each counter needs to be
initialized the following way. First pick l with probability P[ℓ=l]l

El∼ℓ[l] . Then pick
the counter value uniformly among the integers 0, 1, . . . , l− 1. One can verify
that this describes a stationary distribution. This distribution of counter
values does not change, as counters are decremented and randomly reset.
Let r = El∼ℓ[l] be the expected reset value. Then the expected counter value
at any time is R = El∼ℓ[1

El∼ℓ[l]
∑l−1

i=1 i − 1] = El∼ℓ[l(l−1)
r]. The competitive

ratio of RANDOM RESET depends on these two values r and R.

Proposition 3.3
The competitive ratio of RANDOM RESET is max

(
1+ R

d , 1+ R+(2 d−1)
r

)
.

If requests in between are not allowed, R has to be replaced by R + 1
and 2 d− 1 by 2 d in the previous term.

For simplicity, our proof will focus on the setting with exchanges in
between. Proposition 3.3 was likely known to the authors of [143] but to the
best of my knowledge never published. We will prove it in the next section.
This proof exemplifies the techniques required for our more involved analysis
of the TIMESTAMP(l,p)-algorithm.

Corollary 3.1
The COUNTER(l) algorithm in the P d model has competitive ratio
max(1 + l

2 d ± 1
2 d , 3

2 + 2 d−1/2
l ± 1

l). For the ±-term, a − is to be chosen
if exchanges in between are used to move each requested element to the
front of the list before serving. A + needs to be chosen if these exchanges
have to occur after serving.

Proof. For the special case of COUNTER(l), the (expected) reset value is r =
l and the expected counter value is R = l−1

2 . Now, apply Proposition 3.3.

Remark 3.2
Using Proposition 3.3, we verified the results for RANDOM RESET in
the P d model and the standard model from [143].

1 2 3 4
1.8

2
2.2
2.4

r = El∼ℓ[l]

d = 1.

2 4 6 8
2

2.5
3

3.5
4

r = El∼ℓ[l]

d = 2.

5 10
2

2.5
3

3.5
4

r = El∼ℓ[l]

d = 3.

5 10 15
2

2.5
3

3.5
4

r = El∼ℓ[l]

d = 4.

Figure 3.3: The competitive ratios of RANDOM RESET for d = 1, 2, 3, 4.
Reset distribution ℓ is chosen optimal with given expected value r = El∼ℓ[l].

32 CHAPTER 3. LIST UPDATE IN THE P d MODEL

3.4. Summary of Techniques and Proof Sketches

3.4.1. Upper Bound

We are going to prove the upper bound on RANDOM RESET, Proposi-
tion 3.3. The proof allows us to showcase a simplified version of our analysis
of TIMESTAMP(l,p). The result may also be of independent interest. Propo-
sition 3.3 has, to the best of my knowledge, never been published, although
it was known to the authors of [143].

Proof of Proposition 3.3. Observe that RANDOM RESET, or RR for short,
is projective. Its behavior on any request only depends on the current
counter value, but not on any prior request. In particular, by Proposition 3.1,
we only need to analyze RANDOM RESET in the partial cost model on
two-item-lists. The first item in the list can be served free of charge. The
last item incurs service cost 1. Let σ be an input sequence and let c =
max

(
1 + R

d , 1 + R+2 d−1
r

)
be the desired competitive ratio. We have to

show that CRR(σ), the cost of RANDOM RESET, satisfies E[CRR(σ)] ≤
cCOPT(σ) + α with α independent of σ.

Phase partitioning: We partition input sequence σ into phases. The
first phase starts with the first requests in σ. Whenever OPT exchanges
the two items in its list, the current phase ends and a new one begins. The
request before OPT’s exchange is the last one of the current phase. The next
request starts the new phase. Let λ1, . . . , λk be the resulting phases. Then
it suffices to show that E[CRR(λi)]

COPT(λi) ≤ c for every phase λi.
Consider now an arbitrary phase λ = λi during which OPT does not

rearrange its list. In OPT’s list, let y denote the first item and let x be the
last one. Then OPT incurs cost 1 for serving requests to x while serving
requests to element y free of charge, at cost 0. Next to this, OPT pays
exchange cost d for the exchange at the beginning of the phase. We also
charge this cost in the first phase, which technically does not begin with an
exchange. This overestimates OPT’s cost on σ by d in total but, due to the
constant α in the definition, does not affect the competitive ratio. The cost
of OPT is thus d plus the number of requests to element x in phase λ.

Counter fixing for x: We wish to evaluate the algorithms’ cost CRR
and COPT on λ by only focusing on master requests. First, consider a request
σ(t) to x. The probability of σ(t) being a master request is precisely 1/r
where r = El∼ℓ[l]. Let us switch to a pre-refined cost scheme. We charge
cost r at any master requests to x and cost 0 else. Then the expected costs
of OPT at any request to x remain 1

r · r = 1. Since RANDOM RESET
moves item x to the front at a master request to x, it only incurs cost at
minor requests. We thus only need to charge RANDOM RESET cost r − 1
at master requests to x and cost 0 at minor requests to x. The expected
costs of RANDOM RESET can only increase.

3.4. SUMMARY OF TECHNIQUES AND PROOF SKETCHES 33

For item x, these new costs only depend on master requests. These master
requests are fully determined by the random choices of RANDOM RESET,
namely by the initial counter value of x at the beginning of σ and the
reset values at each master request to x. Consider a possible way b these
choices could have been made by RANDOM RESET and let Cb

OPT(λ) re-
spectively Cb

RR(λ) denote the resulting pre-refined cost of OPT respectively
RANDOM RESET. We previously argued that Eb[E[Cb

RR(λ)]] = E[CRR(λ)]
and Eb[Cb

OPT(λ)] = COPT(λ). Now, using Jensen’s inequality

E[CRR(λ)]
COPT(λ) = Eb[E[Cb

RR(λ)]]
Eb[Cb

OPT(λ)]
≤ Eb

[
E[Cb

RR(λ)]
Cb

OPT(λ)

]
≤ max

b

[
E[Cb

RR(λ)]
Cb

OPT(λ)

]
.

In the following, we thus consider a set of choices b where the maximum on
the right is obtained. Once these choices b are fixed, all master requests to x

become fixed, too. It suffices to show that E[Cb
RR(λ)]

Cb
OPT(λ) ≤ c for these choices b.

Counter fixing for y: Unlike OPT, algorithm RANDOM RESET may
incur cost at requests to y. These costs are only incurred precisely if the
master request preceding y in λ was to x or if there was no preceding master
request in λ. We will pay the cost incurred at y in advance.

Consider a master request X to x. Let Y be the next master request
to y. We now charge the cost for all minor requests to y in between X and
Y ahead of time. RANDOM RESET will already pay them at the master
request X to x. This number of minor requests is precisely cy, where cy is the
counter value of y at master request X. Instead of cost cy, we may as well
charge RANDOM RESET the expected cost R = E[cy]. In expectation, the
charged cost stays the same. We similarly charge cost R at the beginning of
the phase for minor requests to y that are not preceded by a master request
X to x in phase λ. At these minor requests no further cost is incurred. Our
refined cost scheme will thus charge no cost at requests to y but makes up
for this by charging additional cost R at any master request to x and at the
beginning of the phase.

Finally, we have to consider exchange costs of RANDOM RESET. We
simply charge cost 2 d at any master request to x for a possible exchange
made here and another one made at the next master request to y. Moreover,
we charge cost d at the beginning of the phase for a possible exchange made
at the first master request to y, which might not be preceded by a master
request to x. These refined costs are now fully independent of the counters
of y, which is convenient. Most importantly, passing over to refined cost
cannot reduces RANDOM RESET’s cost in expectation.

Refined costs: Summarizing the preceding changes in the cost scheme,
we obtain the following refined cost scheme:

• At the beginning of the phase, OPT incurs cost d while RANDOM RE-
SET incurs cost R + d.

34 CHAPTER 3. LIST UPDATE IN THE P d MODEL

• At any master request to x, the optimum algorithm OPT pays cost r
while RANDOM RESET incurs cost r − 1 + R + 2 d.

• No costs are incurred at other requests.
• The counter values of x at the beginning of the phase and the reset

value of the counter at any master request are chosen worst-possible.
In particular, the sequence of master requests to x is fixed.

Recall that we argued that passing over to this cost scheme will not improve
the ratio E[Cb

RR(λi)]
Cb

OPT(λi)
. Now, let K be the number of master requests to x in λ.

Then we have shown that E[CRR(λ)]
COPT(λ) ≤

E[Cb
RR(λ)]

Cb
OPT(λ) is at most

R + d + K · (r − 1 + R + 2 d)
d + K · r ≤ max

(
1 + R

d
, 1 + R + 2 d− 1

r

)
.

Analyzing TIMESTAMP(l,p) is much more difficult than analyzing RAN-
DOM RESET. The main challenge is that TIMESTAMP’s decisions on
a given master request depend on preceding ones. This introduces quite
a few special cases that need to be considered. Refined costs need to be
charged at master requests to both x and y. Moreover, the behavior of
TIMESTAMP(l,p) at a master request X to x depends on the counter value
of y at this request. Thus, introducing refined costs becomes more challenging.
We briefly sketch how to modify the proof of Proposition 3.3 to analyze
TIMESTAMP(l,p).

Projectivity and phase partitioning: These steps work similar to
the previous proof. Again, projectivity reduces us to two-item-lists while
phases are subdivided according to the behavior of OPT. From now on, a
single phase λ is considered.

Pre-refined cost: The goal is to shift all the costs of TIMESTAMP(l,p)
to master requests. We move the costs of each request to the next master
request. We need to be more careful with requests that are not followed by a
master requests in λ. For this, pre-refined costs are introduced. Pre-refined
costs charge for these requests in a roundabout manner. We rigorously guar-
antee that no cost is lost. It is crucial to ensure that we do not undercharge
TIMESTAMP in expectation when passing over to pre-refined cost.

Counter fixing for x: Let y denote the item at the front of OPT’s list
in phase λ, while x is at the back. For item x, we shift the cost of OPT to
master requests similar to the proof of Proposition 3.3.

Refined costs: These cost form the crux of the analysis. The costs
of the online algorithm are changed such that they are fully determined
by the sequence of master requests. Again, it is important that passing
over to refined cost does not, in expectation, increase the cost of the online
algorithm.

The definition of refined costs is quite subtle and involved. To illus-
trate this, we will discuss several options regarding the following previously
encountered scenario. We are right before a master request X to x. Let

3.4. SUMMARY OF TECHNIQUES AND PROOF SKETCHES 35

Y denote the next master request to y. We want to pay the cost for all
minor requests to y before Y in advance. These costs are cy where cy is the
counter of y at X. Previously, for RANDOM RESET, we would have simply
charged cost R = E[cy] = l−1

2 at the master request X. A crucial feature
of TIMESTAMP(l,p) is that it may keep item x at the back of its list if
master request X is preceded by many master requests to y. It is important
to capitalize on this and not charge costs if item x is kept at the back. In
other words, always charging cost l−1

2 at master requests to x will not work.
Instead, we could try charging cost l−1

2 only if x is moved to the front of
the list at X. This undercharges the TIMESTAMP. Consider the infinite
sequence (xly)∗. Whenever item x is moved to the front at a given master
request X to x the preceding request to y has been a master request. Thus,
the counter cy at X is l − 1. Note that RANDOM RESET has the same
problem. In the proof of Proposition 3.3, it is important to charge cost E[cy]
independent of whether item x has been moved to the front at this request.

The correct charging scheme is the following. We charge cost l−1
2 if item

x is at the front of the list after serving master request X. This cost is also
charged, if the item was already moved at an earlier master request. The
counter cy is still not independent of this event. It requires a careful analysis
to see that the expected value of cy conditioned on x being at the front
after master request X is at most l−1

2 . Formally, we establish a negative
correlation between this event and the counter value cy.

Counter fixing for y: After introducing the refined costs, we can fix
the counter of y in a way maximizing the refined cost of TIMESTAMP(l,p).
The refined costs only depend on the sequence of master requests. On
this sequence TIMESTAMP(l,p) behaves like the original TIMESTAMP(p)
from [1].

Patterns and Subphases: We now need to analyze TIMESTAMP(p)
on the sequence of master requests using our refined costs. This requires a
subdivision of the phase. First, a pre-phase is cut off. In this phase, OPT
only pays exchange cost d. If the pre-phase is not degenerated, this results
in a competitive ratio of c1 from Theorem 3.1. The requests following the
pre-phase form the post-phase.

The post-phase is further divided into two types of subphases. These
types broadly follow the patterns XX · · ·Y Y respectively X · · ·Y Y . We use
capital letters to highlight the fact that these are master requests. Minor
requests, do not matter at this point in the analysis. The “· · · ” may be filled
with an arbitrary numbers of repetitions of the pattern Y X. Zero repetitions
are also allowed. Intuitively, the bound c2 in Theorem 3.1 corresponds to
XX · · ·Y Y , the bound c3 in Theorem 3.1 corresponds to X · · ·Y Y and the
bound c4 to the pattern Y X inserted into “· · · ”. We previously mentioned
degenerated pre-phases. These are covered by the additional bounds c5 and c6
in Theorem 3.1. We only include them to make sure that our analysis covers

36 CHAPTER 3. LIST UPDATE IN THE P d MODEL

degenerate pre-phases, too. Technically, the maximum is always obtained
at c1 to c4. Similarly, the max{1, 2p}-term in the definition of c1 could be
replaced by 1. This requires more thorough case distinctions and a different
definition of pre-refined cost. It also does not lead to better competitive
ratios for d ≥ 7. Getting rid of the max(1, 2p)-term is interesting for small
values of d and if one were to analyze a COUNTER-version COMB(l) of
COMB from [20]. Algorithm COMB(l) is a combination of a COUNTER(2l)
and a TIMESTAMP(l,1) algorithm.

3.4.2. Lower Bound
The crux of the lower bound is the randomized sequence SN on which all
sensible online algorithms perform equally good. To sample an element from
SN , one cyclically moves through the initial list L starting with the last
element and proceeding to the front. Once the first element is reached, one
again continues with the last one and repeats the process until N items
have been considered in total. While cycling through L, an input sequence
σ ∼ SN is sampled the following way: Initially σ is empty. When an
item z from L is considered, i request to z are appended. The value i is
drawn from a one-based geometric distribution with parameter p = 1

2 d , i.e.
P[i = j] = p(1− p)j−1 for j ≥ 1 and zero else.

We establish the following result, which can be easily generalized to lists
containing more than two items.

Lemma 3.2
Consider two-item-lists in the partial cost model. If σ is sampled according
to SN , the expected cost of any online algorithm on σ are at least dN .

Proof Sketch. Consider the following situation. An online algorithm en-
counters two segments xiyj where x is at the back of its list and i, j are
independently sampled from a one-based geometric distribution with pa-
rameter 1

2 d . We consider different strategies that could be applied by the
online algorithm. On the one extreme, proactive online algorithm MOVE-
TO-FRONT would move x to the front immediately paying cost d. On the
other extreme, apathetic online algorithm STAY-BACK would wait for the
segment xi to pass by without additional rearrangements. Even if segment
length i turns out to be large, STAY-BACK does not budge. STAY-BACK’s
expected cost on segment xi are E[i] = 2 d. To make up for this, segment yj

can now be served free of charge. Similar to MOVE-TO-FRONT, algorithm
STAY-BACK still pays cost d when averaged over two segments xi and yi.

A moderate online algorithm A may try to strike a balance between
STAY-BACK and MOVE-TO-FRONT. After serving the first request to
x without list rearrangement, algorithm A decides how to proceed on the
remaining sequence. On the first request to x, an initial cost 1 is payed.
Algorithm A’s choice to wait would definitely be correct if this first request

3.4. SUMMARY OF TECHNIQUES AND PROOF SKETCHES 37

was the only request to x. In other words, if i = 1. If i = 1, algorithm A
saves cost 2 d ignoring the initial cost 1. Since i = 1 with probability 1

2 d ,
algorithm A saves cost 1

2 d · 2 d in expectation. This saving cancels out with
the initial cost of 1 payed on the first request to x. On the other hand, if
i > 1, we use that geometric distributions are forgetful: i − 1 conditioned
on i > 1 is again geometrically distributed with parameter 1

2 d . Online
algorithm A has not learned anything new and cannot achieve better cost on
the remaining suffix than it could have achieved on the initial sequence xiyj .
Thus, the moderate algorithm A cannot outperform the extreme strategy
MOVE-TO-FRONT in expectation. Every strategy incurs, in expectation,
cost dN .

This informal reasoning is easily made formal in the full paper, see
Appendix A.

In order to make the following results more intuitive, we consider the
randomized STAY-BACK algorithm. At the beginning, STAY-BACK picks a
uniform permutation of its starting list. We waive the constant costs required
here, which can only improve STAY-BACK’s performance. After the initial
exchanges, STAY-BACK simply serves each request without further list
rearrangements. The previous lemma implies that STAY-BACK is optimal
on sequences sampled according to SN . We again restrict ourselves to
two-item-lists for simplicity.

Corollary 3.2
Consider two-item-lists. After waiving the initial rearrangement cost,
STAY-BACK pays (expected) cost 1/2 on each request and is an optimal
online algorithm for sequences σ ∼ SN .

Proof. Since STAY-BACK has every item at the front of its list with probabil-
ity 1/2, it serves each request, no matter which of the two items is requested,
with expected cost 1/2. Its total cost on any input σ accumulate to |σ|

2 . The
lemma follows by observing that Eσ∼SN

[|σ|] = 2 d ·N . The expected cost of
STAY-BACK are thus dN . By Lemma 3.2, no online algorithm surpasses
this.

Now, proving Theorem 3.2 and Theorem 3.3 comes down to analyzing
OPT on the randomized sequence SN for N →∞.

Proof sketch of Theorem 3.2. We focus on d → ∞ so that we can ignore
terms that vanish in the limit. The main paper in Appendix A considers
general integer values d. It suffices to evaluate OPT on sequences σ sampled
from SN with regards to two-item-lists in the partial cost model. For this,
we compare OPT against the STAY-BACK.

The optimal algorithm OPT, as defined in Section 3.3, subdivides input
sequence σ into up-phases, zero-phases, post-phases and possibly one final

38 CHAPTER 3. LIST UPDATE IN THE P d MODEL

phase. We can show that STAY-BACK and OPT incur the same (expected)
cost on zero-phases and up-phases. Since there is at most one final phase,
the advantage that OPT gains here over STAY-BACK is irrelevant. We are
left to consider post-phases. The length of each post-phase is geometrically
distributed with parameter p = 1

2 d . This geometric distribution is zero-
based and thus the expected length of each post-phase is 2 d − 1. Each
post-phase is served by OPT free of charge and while STAY-BACK pays
expected cost 2 d−1

2 ≈ d. The number of post-phases can be determined by
a Markov analysis. In the main paper, we implicitly show that σ contains
in expectation N

2 − o(N) post-phases. Thus, for d → ∞ and N → ∞
the expected competitive ratio of STAY-BACK on σ ∼ SN is at most

dN
dN−dN/2 = 2.

The main paper requires more notation to make these arguments formal.
It also introduces a simplified variant of OPT that omits the final phase. All
computations in the paper work for general values of d, not only for d→∞.
For general d, the lower bound of 2− 1

2 d is obtained.

Proof sketch of Theorem 3.3. Lower bounds in the full-cost model are chal-
lenging since one has to consider general sized lists. In the full cost model,
algorithm STAY-BACK for example is 1.5-competitive on two-item-lists. We
need to consider lists L of general size n. On arbitrary lists L, it is extremely
challenging to understand the behavior of OPT on σ ∼ SN . Instead, we
consider the simplified offline algorithm Bh, which only moves the current
element to the front if it is requested for the next h times. The number h is a
variable, which we optimize later. For offline algorithm Bh, the relative order
of two items only depends on prior requests to these items. This resembles
the projective property of online algorithms. The same techniques as in
Proposition 3.1 can be used to reduce the analysis of Bh to two-item-lists
in the partial cost model. This reduction holds without loss of generality.
On two-item-lists, a Markov analysis shows that the cost of algorithm Bh

are k(h)N − o(N) for k(h) =
1−(1−p)h

p
−h(1−p)h−1+(1−p)h−1d

2−(1−p)h−1 where p = 1
2 d .

By Lemma 3.2, this establishes a lower bound of 2 d
k(h) on the competitive

ratio of any online algorithm. Theorem 3.3 follows for d → ∞ by setting
h = W (−1/2e) 2 d.

3.5. Open Problems
The following are prime open problems for List Update, which are highly
interesting even in the standard model.

Conjecture 3.1
If an online algorithm is c-competitive in the full-cost model, then there
exists a, possibly different, online algorithm that is c-competitive in the

3.5. OPEN PROBLEMS 39

partial cost model.

Note that this conjecture is obviously untrue when we consider small list
sizes. The previously introduced STAY-BACK algorithm is 1.5-competitive
when restricted to two-item-lists in the full cost model. But STAY-BACK
will not have any constant competitive ratio in the partial cost model. The
advantage of the full cost model seems to vanish as the list size n increases.
This is why I conjecture it not to matter in the grand scope of arbitrary
sized lists.

Proving or disproving the following hypothesis is the major open problem
concerning List Update algorithms. Since non-projective algorithms are
poorly understood, I cannot fathom whether it is false or true.

Hypothesis 3.1 (Projectivity-Hypothesis)
If an online algorithm is c-competitive in the full-cost model, then there
exists a projective online algorithm that is c-competitive in the partial
cost model.

We now proceed with special conjectures for the P d model. Consider our
randomized lower bound sequence SN for general size n lists.

Conjecture 3.2
There holds Eσ∼SN

[OPT(σ)] = n(n−1)d2

4d−1 N + o(N), where n denotes the
size of list L.

Using a generalization of Lemma 3.2 to general list sizes n, this conjecture
implies the following.

Conjecture 3.3
No algorithm for List Update in the full cost P d model is better than(
2− 1

2 d

)
-competitive.

Naturally, the previous conjecture would also be a consequence of our
lower bound and the more general Conjecture 3.1.

The work of Ambühl et al. [25] develops advanced techniques to prove
lower bounds for projective algorithms in the standard model. These tech-
niques can be generalized to the P d model. It is easy to recreate a lower
bound of 2−1/d, a weaker statement than Theorem 3.2, using the techniques
of [25]. Their techniques though, allow further improvement. It would be
particularly interesting to see if these techniques can lead to lower bounds
exceeding 2.

Problem 3.1
Do the techniques of Ambühl et al. [25] allow for lower bounds exceeding 2
for d large enough?

For d→∞ our results establish a lower bound of 2 in the full cost model,
a bound of 1.8654 in the partial cost model and an upper bound of 2.2442 in

40 CHAPTER 3. LIST UPDATE IN THE P d MODEL

both models. A final obvious open problem would be to close these gaps.

Problem 3.2
Tighten the bounds on the competitive ratio, in particular for d→∞.

I conclude with a simple observation that has been puzzling me. If we com-
pare deterministic and the randomized COUNTER(l) algorithms for d→∞,
the latter has half the competitive ratio of the former cf. [21, 143]. From my
own analyses, I know that the same holds for the TIMESTAMP(l,1) family.
Namely for d→∞ and optimum choice of l, deterministic TIMESTAMP(l,1)
is 5-competitive where as Theorem 3.1 implies that randomized TIMESTAMP(l,1)
is 2.5-competitive. To date, I could not find a simple and convincing expla-
nation why these competitive ratios halve when counter values are randomly
initialized.

Chapter 4

Makespan Minimization in the
Random-Order Model
4.1. Preliminaries

Problem Definition

We study Online Makespan Minimization in the random-order model. A
set of n jobs J = {J1, . . . , Jn}, where each job Ji is fully defined by its
processing time pi, has to be assigned to m parallel and identical machines.
Each job runs on precisely one machine. In particular, preemption is not
allowed. Given such an assignment, the load lM of machine M is the sum
of all processing times of jobs assigned to it. The goal is to minimize the
makespan, that is the time it takes to process all jobs or, formally, max(lM),
the maximum load of a machine.

To an online algorithm A, jobs arrive one by one and each has to be
assigned permanently and irrevocably before the next one is revealed. Input
size n is not known in advance. One typically measures online algorithm A’s
performance in terms of competitive analysis. Each element σ of Sn, the
permutation group of the integers 1 to n, describes a way to order the
elements in J resulting in job sequence J σ = Jσ(1), . . . , Jσ(n). The makespan
of online algorithm A, denoted by A(J σ), depends on both job set J
and job order σ. The optimum makespan OPT(J) only depends on the
former. Traditionally, the goal is to minimize the adversarial competitive ratio
c = supJ ,σ

A(J σ)
OPT(J) . This classic performance measure considers worst-case

sequences. In the literature, these are highly ordered. They arrange jobs
by increasing processing times. Our results imply that general worst-case
sequences are extremely unlikely after random input permutation.

To accommodate less order-sensitive applications, the random-order model
was introduced. One still considers worst-case input sets J but job order σ
is chosen uniformly at random. Each possible job order σ ∈ Sn is picked with
probability 1

n! . This turns the set of job orders Sn into a Laplace space. The
competitive ratio (in the random-order model) of an online algorithm A is
then c = supJ Eσ∼Sn

[A(J σ)
OPT(J)

]
= supJ

1
n!

∑
σ∈Sn

A(J σ)
OPT(J) . While worst-case

orders are often criticized for being highly pessimistic, random orders may
be considered rather optimistic. We thus propose the nearly competitive
ratio, which considers nearly worst-case orders on large numbers of machines.

42 CHAPTER 4. SCHEDULING IN THE RANDOM-ORDER MODEL

Only a vanishing fraction of particularly bad orders is omitted.
An online algorithm A is nearly c-competitive if it has a constant adver-

sarial competitive ratio and limm→∞ Pσ∼Sn [A(J σ)
OPT(J) > c + ε] = 0 for every

ε > 0. In other words, for every ε > 0, there exists a number of machines m0
such that on m ≥ m0 machines Pσ∼Sn [A(J σ)

OPT(J) > c + ε] < ε. This is a much
stronger condition than the random-order competitive ratio. In particular,
the following holds.

Proposition 4.1
If an online algorithm A is nearly c-competitive, then it is c-competitive
in the random-order model for m→∞, i.e. if its competitive ratio in the
random-order model on m machines is cm, then limm→∞ cm ≤ c.

In this chapter, we assume that online algorithms do not know the number
of jobs n in advance. This information cannot help improve the adversarial
competitive ratio but allows vastly more powerful results in the random-order
model. The random-order model where n is known in advance is called the
secretary model. Makespan Minimization in the secretary model is discussed
in Chapter 5.

4.2. Our contributions
We provide a new online algorithm ALG, which is nearly c-competitive.
Here, c is the unique real root of the polynomial Q[x] = 4x3− 14x2 + 16x− 7,

c = 7+ 3√28−3
√

87+ 3√28+3
√

87
6 < 1.8478.

This result is significant. Even for m = 24 machines, no adversarial
competitive ratio below 1.856 is possible. For m → ∞, the best possible
competitive ratio cannot lie below 1.88 [145].

Consider an ordered input sequence J σ = Jσ(1), Jσ(2), . . . , Jσ(n). After
online algorithm ALG has assigned the first t jobs Jσ(1) . . . , Jσ(t) for some
0 ≤ t ≤ n, we denote the m machines by M t

1, . . . , M t
m. The ordering is

chosen such that machine loads are non-increasing. In other words, if ltj
denotes the load of machine M t

j at time t, then lt1 ≥ . . . ≥ ltm. In particular,
lt1 is the makespan of the current schedule.

In order to assign an incoming job Jσ(t), algorithm ALG considers up
three machines: the least loaded machine M t−1

m , an almost least loaded
machine M t−1

m−h and a medium loaded machine M t−1
i . There is some freedom

in the choice of parameter h = h(m). We only require that h(m) ∈ ω(1)
and h(m) ∈ o(

√
m); reasonable choices are h(m) = ⌊ 3√m⌋, h(m) = ⌊ 4√m⌋ or

h(m) = ⌊log m⌋. We set i = ⌈(2c− 3)m⌉+ h ≈ 0.6956m for the index of the
medium machine M t−1

i .
Assigning job Jt to one of the machines M t−1

i or M t−1
m−h risks creating

a particularly high makespan. This would be hazardous. Whenever online

4.2. OUR CONTRIBUTIONS 43

algorithm ALG uses any machine besides the least loaded one, it has to
ensure that its makespan is at most c OPT(J). This requires an estimate
Ot ≤ OPT, which only depends on jobs Jσ(1) . . . , Jσ(t). Previous algorithms
estimate the optimum makespan OPT(J) by the average load Lt of the
current schedule, a well-known lower bound. Online algorithm ALG is the
first approach that requires a more sophisticated lower bound. Its bound Ot

incorporates, in addition to Lt, the currently largest processing time pt
max

and 2P t
m+1, twice the processing time of the (m + 1)th largest job seen so far.

These are well known lower bounds but do not allow improved performance
guarantees when combined with prior approaches [2, 40,84,89,112].

Formally, for j = 1, . . . , m, let Lt
j be the average load of the m− j + 1

least loaded machines M t
j , . . . , M t

m, i.e. Lt
j = 1

m−j+1
∑m

r=j ltr. In particular,
we let Lt = Lt

1 = 1
m

∑t
r=1 pr be the average load of all the machines. Let P t

j ,
for 1 ≤ j ≤ n, be the processing time of the jth largest job among the first t
jobs Jσ(1), . . . , Jσ(t) in J σ. If t < j, we set P t

j = 0. We let pt
max = P t

1 be the
processing time of the largest job among the first t jobs in J σ. Finally, let
L = Ln, Pj = P n

j and pmax = pn
max.

Proposition 4.2
OPT (J) ≥ max{L, pmax, 2Pm+1} for any input J .

Proof. Even the optimum algorithm cannot have all machine loads below
average. Thus, L ≤ OPT(J). Neither can OPT avoid scheduling job Jmax of
processing time pmax on some machine. Its load will be at least pmax. Thus,
pmax ≤ OPT(J). By the pigeonhole principle, one machine holds two of the
m + 1 largest jobs. Its load is at least 2Pm+1. Thus, 2Pm+1 ≤ OPT.

Hence, Ot = max{Lt, pt
max, 2P t

m+1} ≤ OPT(Jσ(1), . . . , Jσ(t)) ≤ OPT(J)
provides a lower bound for OPT(J) that ALG can use to schedule job Jσ(t).
Note that online algorithm ALG can compute Lt = 1

m

∑t
r=1 pr and hence Ot

right before job Jσ(t) is scheduled.

versus

Figure 4.1: The lower bound for Graham’s Greedy strategy [94] (on the left)
presents many tiny jobs that create an extremely flat schedule. A follow-up
large job Jn′ creates a large makespan. OPT may “sink down” job Jn′ to
schedule it efficiently. It is hence paramount to avoid flat schedules. On the
right, another instance shows that flat schedules are sometimes unavoidable.
For m jobs of equal processing time, no sensible online algorithm can avoid
a flat schedule. Fortunately, even OPT cannot handle a follow-up job Jn′

that uses the flat schedule to create a high makespan.

44 CHAPTER 4. SCHEDULING IN THE RANDOM-ORDER MODEL

k i

Figure 4.2: A steep schedule. ALG only considers the least loaded machine.
k i

Figure 4.3: A flat schedule. The three machines considered by ALG are
marked for h = 2.

The left of Figure 4.1 depicts the main deficiency of the Greedy-Strategy,
which always uses a least loaded machine: very flat schedules. Lower bounds
exploit such schedules by following up with a single large job Jn′ that causes
a particularly high makespan but may be effectively handled by the offline
algorithm. To avoid this, Algorithm ALG follows the tried and tested
approach of creating steep schedules and avoiding flat ones. Such avoidance
is impossible on particularly difficult inputs, cf. the right side of Figure 4.1.
The main part of the analysis establishes that inputs exploiting very flat
schedules of ALG are inherently difficult. They contain m + 1 big jobs that
cannot be handled effectively. A high offline makespan thus ameliorates the
high online makespan of ALG.

Formally, consider the schedule at time t, which is the schedule just
before job Jσ(t) has to be assigned. The schedule is flat if lt−1

k < αLt−1
i+1

where α =
(
1 − 1

2(c−1)
)−1 ≈ 2.7376 and k = 2i −m. It is steep otherwise.

Job Jσ(t) is scheduled flatly (steeply) if the schedule at time t is flat (steep).
A steep schedule, on the one hand, allows ALG to safely use the least

loaded machine. It will indeed simply do so. For a flat schedule on the
other hand, algorithm ALG desires to use a higher loaded machine in order
to make the schedule steep again. For this purpose, algorithm ALG first
samples medium machine M t−1

i . If the resulting makespan is at most c Ot,
formally lt−1

i + pσ(t) ≤ c Ot, medium machine M t−1
i is used. Else, the close

to least loaded machine M t−1
m−h is sampled. Machine M t−1

m−h is, again, used
if the resulting makespan is at most c Ot, or formally lt−1

m−h + pσ(t) ≤ c Ot.
Else, algorithm ALG shelves its ambition for a steep schedule and makes
due with the least loaded machine M t−1

m . It is non-obvious that even least
loaded machine M t−1

m is safe to use. In fact, establishing this for our choice
of c comprises the core of the analysis. The job assignment rules are also
illustrated in Figures 4.2 and 4.3.

4.3. SUMMARY OF TECHNIQUES AND PROOF SKETCHES 45

Algorithm 2 How online algorithm ALG schedules current job Jσ(t).
1: if the schedule at time t is steep then
2: Assign job Jσ(t) to the least loaded machine M t−1

m ;
3: else // the schedule is flat
4: if lt−1

i + pσ(t) ≤ c Ot then Assign job Jσ(t) to M t−1
i ;

5: else if lt−1
m−h + pσ(t) ≤ c Ot then Assign job Jσ(t) to M t−1

m−h;
6: else Assign job Jσ(t) to M t−1

m ;

Our main result is Theorem 4.1, which establishes the nearly competitive
ratio of ALG.

Theorem 4.1
ALG is nearly c-competitive with c < 1.8478 defined as above.

Proposition 4.1 implies Corollary 4.1, which gives competitive guarantees
in the random-order model.

Corollary 4.1
ALG is c-competitive in the random-order model for m→∞.

4.2.1. Lower Bounds
We also provide first deterministic lower bounds for Online Makespan Mini-
mization in the random-order model.

Theorem 4.2
Let A be a deterministic online algorithm that is c-competitive in the
random-order model. Then c ≥ 4/3 if m ≥ 8.

Theorem 4.3
Let A be a deterministic online algorithm that is nearly c-competitive.
Then c ≥ 3/2.

These lower bounds make use of the fact that suitably few jobs of
equal processing time have to be scheduled flatly in order to maintain the
competitive ratio 4/3 respectively 3/2. A single large job then creates a high
makespan. In the following, we focus on the upper bound in Theorem 4.1,
which is our main contribution.

4.3. Summary of Techniques and Proof Sketches
The analysis follows three steps. First, simple job sets are introduced. Simple
job sets are easy for the algorithm but defy our general analysis. Think of a
one-job-set. While hardly problematic to any online algorithm there is only
one possible input arrangement. This problem still persists should we add a
second and third job; or many jobs of processing time so small that they are

46 CHAPTER 4. SCHEDULING IN THE RANDOM-ORDER MODEL

stableSn simple
Sn

Figure 4.4: Let ε > 0. Online algorithm ALG is (c + ε)-competitive on
simple and stable sequences and 2-competitive on the problematic unstable
remainder (hashed). Dashes lines mark orbits of input sequences under
permutation. At most a vanishing fraction of each orbit is neither simple
nor stable. Therefore, online algorithm ALG is nearly c-competitive.

negligible. In general, we need to exclude sets where few jobs carry almost all
the load. Establishing that ALG is c-competitive on simple job sets will be
easy but necessary. Focusing from now on non-simple inputs, we introduce
stable sequences. These sequences arise with almost certainty after random
permutation. Stable job sequences require problematic jobs to be evenly
distributed. The m + 1 largest jobs are of particular concern. These jobs
should not be clustered towards the end as was common in prior adversarial
worst-case sequences; neither should the h largest jobs hide at the end of
the sequence. We prove that non-stable sequences are extremely unlikely
for m→∞. For the nearly-competitive ratio, such unlikely sequences are
negligible. Thus, we may focus on stable sequences. A third step poses
the main part of the analysis. An intricate adversarial analysis shows that
algorithm ALG is (c + ε)-competitive on stable sequences.

Simple Job Sets

Figure 4.5: A surprisingly problematic input set J for random-order argu-
ments. A gigantic job carries almost all the processing volume; other jobs
are negligible. All permutations of J look basically the same. Such “simple”
inputs need to be excluded before undertaking a random-order analysis.

For job set J , let R[J] = min(1, L[J]
pmax[J]). Recall that pmax[J] denotes the

largest processing time in J . In particular, L[J] ≤ R[J] max(L[J], pmax[J])
and thus L[J] ≤ R[J] OPT(J). We call job set J simple if it either contains
at most m jobs or if R[J] ≤ (c− 1). Simple job sets are easy to schedule.

Lemma 4.1
Algorithm ALG is 2-competitive in the adversarial model. Moreover, if
job set J is simple ALG(J σ) ≤ c OPT(J) for every job order σ.

Proof. The proof relies on the ancient arguments that Graham uses to analyze
his Greedy strategy. Consider any input set J . First observe that ALG only

4.3. SUMMARY OF TECHNIQUES AND PROOF SKETCHES 47

considers a machine other than the least loaded machine if the resulting load
is less than c Ot ≤ c OPT. If job J t of processing time pt is scheduled on the
least loaded machine M t−1

m , the resulting load becomes lt−1
m + pt. Further

observe that pt ≤ pmax ≤ OPT, cf. Proposition 4.2, and that the smallest
machine load cannot exceed the average load, i.e. lt−1

m ≤ Lt−1 ≤ L. The first
statement of the lemma, lt−1

m + pt ≤ 2 OPT, follows from L ≤ OPT. If input
set J is simple, either L ≤ (c− 1)OPT or there are at most m jobs, in which
case lt−1

m = 0 for t = 1, . . . , m. Either way, lt−1
m + pt ≤ c OPT. The second

statement of the lemma follows.

4.3.1. Stable Sequences

Intuitively, random-order sequences have no concentrations of problematic
jobs. Formally, they are stable with high probability. The properties of stable
sequences satisfies two needs: They are useful in the analysis and they are
extremely likely after random permutation.

The Load Lemma

One crucial result for establishing stable job sequences is the Load Lemma,
which relates two time measures. Our probabilistic arguments, on the one
hand, depend on the fraction t

n of jobs currently scheduled. The arguments
used to analyze our algorithm, on the other hand, only rely on the fraction Lt

Ln

of currently assigned processing volume. The left side of Figure 4.6 indicates
that these measures are essentially unrelated on worst-case sequences that
order jobs by increasing processing time. The Load Lemma establishes the
opposite for random-order sequences.

For any time 0 ≪ t ≤ n we have E
[

Lt

L

]
= t

n . The Load Lemma states
that, in fact, Lt

L ≈ t
n with probability 1− o(1). Here, o(1) denotes a function

vanishing for m→∞ while ≈ hides a small margin of error ε where ε > 0 can
be chosen arbitrarily small. In the sequence in Figure 4.5 such a result does
not hold. The Load Lemma applicable after we to exclude simple sequences
beforehand. In the following, we state a more advanced and more general
result from our next paper found in Appendix C.

Lemma 4.2 (Load Lemma)
Let Rlow = Rlow(m) > 0, 1 ≥ φ = φ(m) > 0 and ε = ε(m) > 0 be
three functions in m such that ε−4φ−1R−1

low = o(m). Then there exists a
variable m(Rlow, φ, ε) depending on these three functions such that we
have for all m ≥ m(Rlow, φ, ε) and all job sets J with R(J) ≥ Rlow and
|J | ≥ m:

Pσ∼Sn

[∣∣∣∣∣
Lφt[J σ]

L[J] − φ

∣∣∣∣∣ ≥ ε

]
< ε.

48 CHAPTER 4. SCHEDULING IN THE RANDOM-ORDER MODEL

versus

Figure 4.6: Comparing t
n and Lt

Ln on Albers’s lower bound sequence [2] in
the original worst-case order (left) and a random order (right). On the top,
processing volume is indicated by the height of a job. On the bottom, it is
indicated by the width. In the worst-case order, t

n and Lt

Ln clearly do not
agree. In the random order, they agree up to some margin of error. For
larger values of m this margin decreases, cf. Figure 4.7and 5.1.

In this chapter, we are only interested in the case where Rlow, φ and ε
are constants. In our case, we set Rlow = c− 1, which implies that the Load
Lemma holds unless job set J is simple. Figure 4.7 shows how the function
FJ ,σ(φ) = Lφt[J σ] approaches the line GJ (φ) = φL[J] for three random
input permutations σ of the lower bound sequence from [2].

50 100 1500
0.2
0.4
0.6
0.8

1

t

Lt

40 machines.

800 1,6000
0.2
0.4
0.6
0.8

1

t

400 machines.

8,000 16,0000
0.2
0.4
0.6
0.8

1

t

4000 machines.

Figure 4.7: The average load Lt over time on the classical lower bound
sequence from [2], depicted in Figure 4.6, for 40, 400 and 4000 machines.
The dashed line shows the original adversarial order. The three solid lines
correspond to random orders. They approximate a straight line.

Formal definition

We provide the formal definition of stable sequences and an informal descrip-
tion why these properties are extremely likely under random-order arrival.
The definition relies on some value ε > 0, which can be picked arbitrarily
small.

Definition 4.1. An (ordered) input sequence J σ = Jσ(1), . . . , Jσ(n) is stable
if set J is not simple and the following conditions hold:

• Once Lt ≥ (c− 1) i
mL, there holds pt

max ≥ Ph.

4.3. SUMMARY OF TECHNIQUES AND PROOF SKETCHES 49

• For every j ≥ i, the sequence ending once we have Lt ≥ (j
m + ε

2)L
contains at least j + h + 2 many of the m + 1 largest jobs in J .

• Consider the sequence ending right before either (a) Lt ≥ i
m(c− 1)εL

holds or (b) one of the h largest job of J is scheduled. This sequence
contains at least h + 1 many of the m + 1 largest jobs in J .

Given ε > 0 and m, let Pε(m) be the minimum probability with which
the permutation of a non-simple job set is stable. Formally

Pε(m) = inf
J not simple

Pσ∼Sn [J σ is stable].

The main result of this section shows that Pε(m) tends to 1 as m→∞.

Main Lemma 4.1
For every ε > 0, there holds lim

m→∞ Pε(m) = 1.

Proof Sketch. Consider a non-simple job set J . Since R[J] ≥ c− 1, we can
use the Load Lemma to conclude that Pσ∼Sn

[∣∣∣Lφt[J σ]
L[J] − φ

∣∣∣ ≥ ε
]

< ε for
any constant choice ε, φ if we choose m large enough. We use the informal,
sketchy term ≳ for inequalities that hold up to an ε-margin of error excluding
an o(1)-fraction of input permutations. Then Lt ≥ φL implies t ≳ φn by the
Load Lemma. The analyses in our main paper provide, of course, a more
rigorous treatment.

The first property of stable job sequences states that one of the h largest
jobs arrives before Lt ≥ (c − 1) i

mL. Using the Load Lemma, this implies
t ≳ (c− 1) i

mn. The probability of a single large job independently arriving
before time (c− 1) i

mn is at least 1− (c− 1) i
m > 1− 0.59. For h jobs, it is at

least 1− 0.59h, which quickly approaches 1 since h = h(m) ∈ ω(1).
For the second property, note that before Lt ≥ (j

m + ε
2)L or, equivalently,

before t ≳ (j
m + ε

2)n, at least ≳ (j
m + ε

2)(m + 1) of the m + 1 largest jobs
arrived. Since ε

2(m + 1) grows faster than h(m) + 2 and the small margin of
error hidden in the ≳-term, ε

2(m + 1) exceeds h + 2 for m large enough. The
second property follows.

The reasoning for part a) of the third property mirrors the reasoning for
the second property only that not only one but h + 1 of the m + 1 largest
jobs are considered. For part b) we have to observe that ≳ m

h+1 of the m + 1
largest jobs arrive before one of the h largest jobs arrives. Since h ∈ o(

√
m),

the term m
h+1 grows asymptotically faster than h + 1 and the result follows

for m large enough.

The main lemma implies that we only have to consider stable sequences
from now on.

Corollary 4.2
If online algorithm ALG is (c + ε)-competitive on stable sequences for
every ε, then it is already nearly c-competitive.

50 CHAPTER 4. SCHEDULING IN THE RANDOM-ORDER MODEL

Proof. Consider an input set J . If J is simple, A(J σ) ≤ c OPT(J) for
all σ ∈ Sn by Lemma 4.1. Else, the condition of the lemma implies that
P[A(J σ) ≤ (c + ε)OPT(J)] ≤ Pε(m). By Main Lemma 4.1, there exists m0
such that Pε(m) ≤ ε for all m ≥ m0. Since ALG has a constant adversarial
competitive ratio of 2, cf. Lemma 4.1, the corollary follows.

4.3.2. The main analysis
Consider any stable input sequence J σ = Jσ(1), . . . , Jσ(n). By Corollary 4.2,
it suffices to show that ALG(J σ) ≤ (c + ε)OPT(J). Let us for contradiction
sake assume that this was not the case. For simplicity, we will without loss
of generality assume that J σ = J1, . . . , Jn. We furthermore simply write
OPT for OPT(J).

Let Jn′ be the first job that caused ALG(J σ) to exceed (c+ε)OPT. Online
algorithm ALG must have scheduled job Jn′ on a least loaded machine, else
the resulting load would be at most c On′ ≤ c OPT. Let b0 = ln

′−1
m be the

load of this least loaded machine Mn′−1
m right before receiving job Jn′ . Since

b0 + pn′ > (c + ε)OPT and pn′ ≤ OPT and b0 ≤ Ln′−1 ≤ OPT, there holds
b0 ≥ (c−1+ε)OPT and pn′ ≥ (c−1+ε)OPT. Let λend = 1

2(c−1+ε) ≈ 0.5898.
Since (c+ε)OPT < b0 +pn′ ≤ (1+ 1

c−1+ε)b0 = (c+ε) b0
c−1+ε = (c+ε)2 λendb0,

we get OPT < 2 λendb0 and hence

Pm+1 ≤ OPT/2 < λendb0. (4.1)

Because p′
n > (c− 1)OPT ≥ (c− 1)b0 > 0.847 b0 > λendb0 ≈ 0.5898 b0 for ε

not too large, we must have in particular

P n′−1
m < λendb0. (4.2)

The main goal of the analysis is to derive a contradiction to either inequality,
Pm+1 < λendb0 or P n′−1

m < λendb0.

Filling jobs

Figure 4.8: Filling jobs if ALG has to schedule large job Jn′ on a very flat
schedule. If we remove all other jobs and only consider the filling jobs and
job Jn′ , the situation becomes similar to the right side of Figure 4.1. In
particular, the optimum algorithm OPT also has a high makespan.

The standard way to derive such a contradiction considers filling jobs. Let
b ≥ b0 such that at least m− h machines reach load b before job Jn′ arrives.

4.3. SUMMARY OF TECHNIQUES AND PROOF SKETCHES 51

We call a job Jt, 1 ≤ t < n′, a filling job (with regards to b) if it causes the
load of a machine to reach or exceed b. Consider the most important special
case b = b0. Since every machine reaches load b0 before job J ′

n is scheduled,
there are m such filling jobs. If we could show that all these filling jobs had
processing time at least λendb0, then we would have achieved the desired
contradiction to P n′−1

m < λendb0, Inequality 4.2. This is the essence of prior
analyses and also our main line of reasoning. Our analysis includes two novel
approaches with regards to filling jobs. In some cases, random-order arrival
allows us to take shortcuts that do not give guarantees on the processing
times of filling jobs. In some other cases, arguments require us to consider
filling jobs for values b > b0.

We number filling jobs according to their arrival order. For 1 ≤ j ≤ m,
let J (j) denote the jth filling job. Choose s maximal such that the sth filling
job is scheduled steeply. If s ≤ i, set s = i + 1. Filling job J (j) with j > i
is called a late filling jobs if it is scheduled flatly. All other filling jobs are
called early filling jobs. We first establish that late filling jobs do exist.

Proposition 4.3
We have s < m − h. In other words, filling jobs J (m−h), as well as
J (m−h+1), . . . , J (m) if they exist, are late filling jobs.

Proof Sketch. The proposition follows by computing the average load of a
steep schedule where all but h machines have load b ≥ (c− 1 + ε)OPT. If the
schedule was steep after m−h machines where full, i.e. s ≥ m−h, this leads
to a high lower bound of αm−i−h

m−i b on the k highest machine loads. Using
these observations, we can compute the total average load of such a steep
schedule. It is at least 1.32 OPT and, in particular, exceeds OPT. This is
impossible by Proposition 4.2.

4.3.3. Early filling jobs

The most difficult argument in prior analyses provides a lower bound on the
processing times of early filling jobs. The goal is to establish that early filling
jobs have processing time at least λendb0, contradicting Inequality 4.2. In our
case the argument becomes significantly simpler. Whenever the key statement
in prior arguments does not hold, we can conclude P n′−1

m+1 ≥ min(λb, λendb)
using the properties of stable sequences.

To comply with arguments in the next section, we need a more general
statement. This statement includes general values λ < λend. Note that this
inequality for λ = λend gives us a desired contradiction to Inequality 4.1.

Proposition 4.4
Assume that all late filling jobs have processing time at least λb. Then
P n′−1

m+1 ≥ min(λb, λendb).

52 CHAPTER 4. SCHEDULING IN THE RANDOM-ORDER MODEL

The main technical ingredient for proving this proposition is the following
Lemma 4.3. After it is established, the previous proposition follows by
techniques known from the literature.

Lemma 4.3
Consider the time t(s) when the sth filling job J (s) arrived, i.e. J (s) = Jt(s).
One of the following holds: a) the average load of the machines M

t(s)−1
s

to M
t(s)−1
m−h at time t(s)− 1 is at most α−1b or b) P n′−1

m+1 ≥ λb.

Let us first sketch why Lemma 4.3 is crucial to proving Proposition 4.4.

Proof Sketch of Proposition 4.4. Let us assume that part a) of Lemma 4.3
holds, else the conclusion is immediate. One can now observe that filling
jobs J (k+1), J (k+2), . . . , J (i) are scheduled steeply. Indeed, the smallest m− i
machines will have average load less than α−1b = (1 − λend)b while the k
most loaded machines have load at least b. Jobs J (k+1), . . . , J (i) and later
filling jobs are thus scheduled on a least loaded machine. Its load was at
most (1 − λend)b. By definition, this machine reached load b afterwards.
Filling jobs J (k+1), . . . , J (i) thus had processing time at least λendb. Consider
a time t before jobs J (k+1), . . . , J (i) arrived. At this time, i − k = m − i
machines had load at most (1− λend)b. In particular, the medium machine
M t−1

i did not have load exceeding (1 − λend)b. Hence, jobs J (1), . . . , J (k)

also caused machines of load at most (1− λend)b to reach load b. Again, we
conclude that these filling jobs have processing time at least λendb, too.

Previously, proving Lemma 4.3 required a clever and sophisticated analysis
using exponential functions. This line of reasoning was not only involved,
it also cannot be improved beyond the currently best competitive ratio of
about 1.9201 from [84]. Our approach not only simplifies the proof using the
properties of stable sequences. It also vastly lowers the competitive ratio c.
This proof is also the reason why we chose the index of the medium machine
to be i ≈ (2c− 3)m different to prior work.

Proof Sketch Lemma 4.3. Assume that at time t(s) − 1 machines M
t(s)−1
s

to M
t(s)−1
m−h had average load exceeding α−1b. It then suffices to show that

P n′−1
m+1 ≥ λb.

By definition, the full machines M
t(s)−1
k+1 to M

t(s)−1
s−1 had load at least b.

Moreover, the schedule was steep, which leads to better bounds on the
loads of M

t(s)−1
1 to M

t(s)−1
k . From these bounds we can compute that

Lt(s)−1 ≥ (
s
m + ε

2
)
. The computation is long but straight-forward. Since

Lt(s)−1 ≥ (
s
m + ε

2
)
, the second property of stable sequences establishes that

at most m + 1− (s + h + 2) = m− s− h− 1 of the largest m + 1 jobs came
after time t(s)− 1. In particular, one of the m− h− s late filling jobs J (j)

arrived after time t(s)− 1 was not among the m + 1 largest jobs. Since this
filling job J (j) had processing time at least λb we have that Pm+1 ≥ λb.

4.3. SUMMARY OF TECHNIQUES AND PROOF SKETCHES 53

To conclude P n′−1
m+1 ≥ λb, observe that s+h+2 of the largest m+1 jobs ar-

rived before time t(s) while the m−h−s late filling jobs J (s+1), . . . , J (m−h−1)

came after time t(s). These are more than m + 1 jobs, each of which had
processing time at least λb. Thus, P n′−1

m+1 ≥ λb.

4.3.4. Late filling jobs

In the following we attempt an intuitive explanation to help with the subtle
and interwoven proofs in the main paper cf. Appendix B. We first describe
the easiest way one could profit from the random-order model before coming
to our main argument, which forms a reciprocity between Ph the processing
time of the hth largest job and Pm+1 the processing time of the (m + 1)th
largest job.

The analysis of late filling jobs hinges on analyzing Omid, the best lower
bound Ot available for OPT once i machines are full. Formally, Omid = Ot,
where t is the time after the ith machine became full. At this time t, there
holds Lt ≥ (c− 1) i

mL ≈ 0.721L. Intuitively, if we can give better guarantees
on Omid our online algorithm will perform better. In fact, this has already
been leveraged in [10]. We first describe a simple way to do so in the classical
random-order model before explaining how this idea can be improved and
lifted to the new model of nearly-competitiveness.

A simple approach

Take the algorithm from [84] and plug in max(Lt, pt
max) for Lt. Then, redo

its analysis assuming that the following condition holds: pt
max ≥ (c− 1)OPT

whenever Lt ≥ 0.721L. If this condition holds, one can show that the
algorithm achieves competitive ratio c∗ ≈ 1.890. We now adapt the arguments
at the beginning of the section to observe that a makespan above c∗ OPT
is only possible if the following holds: No job Jn′ of processing time pn′ ≥
(c∗−1)OPT arrives once all machines reached load at least (c∗−1)OPT. This
condition is impossible if a) no such job Jn′ arrived after Lt ≥ (c∗− 1)L, if b)
L ≤ (c∗ − 1)OPT or c) if the input set J consisted of less than m jobs. We
again ignore “simple” sets that fulfill the latter two conditions b) or c). This
allows us to apply the Load Lemma. The condition Lt ≥ 0.721 L becomes
t ≥ 0.721 n. Also the condition a) Lt ≥ (c∗ − 1)L becomes t ≥ (c∗ − 1)n.

We now call input permutation J σ semi-stable if either a large job of
processing time at least (c∗ − 1)OPT arrived before time 0.721n or no such
job arrived after time (c∗− 1)n. We argued before that the algorithm then is
c∗-competitive on semi-stable sequences. On general sequences, the makespan
is at most 2 OPT. For this, we need to adapt the proof Lemma 4.1.

Let P = P [J] be the probability that an input permutation of input set
J is not semi-stable. Then, on input set J our algorithms has makespan at
most ((1− P)c∗ + P · 2)OPT. Probability P only depends on the number h̃

54 CHAPTER 4. SCHEDULING IN THE RANDOM-ORDER MODEL

of large jobs of processing time at least (c∗ − 1)OPT in J . Using some
basic probability theory, one can show that P is maximal if h̃ = 1. Here,
P = 1−(c∗−1) = 2−c∗. In expectation, this approach leads to a competitive
ratio of c∗ + (2− c∗)2 ≈ 1.9021.

Figure 4.9: An adversary looking to thwart our approach needs to place
a large job at time t ≥ (c∗ − 1)n = 0.89n but no such job must appear at
time t ≤ 0.721n. This, of course, is depends on the random job order. For
the adversary it is best to only include one large job J in input J . The
adversary is lucky if job J arrives after t ≥ 0.89n.

The ratio of c∗ +(2− c∗)2 can be improved by further observations, which
lead to several case distinctions. For example, the worst-possible competitive
ratio of 2−1/m is only achieved if a job of processing time OPT arrives right
at the end, after all machines have reached load (1 − 1/m)OPT. Further
improvements require case distinctions. They allow competitive ratios down
to 1.896. My results still fell short of the adversarial lower bound of 1.88
from [145].

In the next section, we will see a way of forcing the input sequence
to contain at least h̃ ≥ h = h(m) large jobs of processing times at least
(c− 1)OPT. Thus, a job of processing time at least (c− 1)OPT is observed
with almost certainty once i machines are full. This not only improves the
competitive ratio in the random-order model, it also fulfills to the more strict
requirements of nearly-competitiveness.

Oracle-Like properties

Recall that our long-term goal is to obtain a good lower bound on Omid,
the estimate on OPT once i machines are full. More precisely, we require
Omid ≥ (1 − ε)b0. In our previous example, h̃ > 0 large jobs of processing
times at least (c− 1)OPT work as an unreliable oracle that reveals a value
v, where (c − 1)OPT ≤ v ≤ OPT. The probability P of v being revealed
depends on h̃, the number of jobs of size (c − 1)OPT. In the worst-case,
h̃ = 1. If we could force h̃ to be high, say h̃ ≥ h for the value h = h(m) we
introduced in the definition of the algorithm for this sake, the probability
P approaches 1 for m→∞. In fact, the first property of stable sequences
conveniently guarantees that once Lt ≥ (c − 1) i

mL there holds Ph ≤ pt
max

and, in particular, Ph ≤ Omid. Our long-term goal becomes to show that
Ph ≥ (1− ε)b0.

In order to force the adversary to include at least h large jobs of processing
times at least (1− ε)b0 in input J or, equivalently, in order to perform well

4.3. SUMMARY OF TECHNIQUES AND PROOF SKETCHES 55

on sequences that contain less than h large jobs, ALG samples the (m−h)th
least loaded machine. Consider the time tend when precisely m− h machines
were full. Filling jobs after time tend were necessarily scheduled flatly on the
least loaded machine, cf. Proposition 4.3. In particular, they were too large
to fit on the (m− h)th least loaded machine. This gives a lower bound on
their processing times, which is determined by the value of Otend . We write
Otend = Oend for short. Thus, a good lower bound on Oend leads to a good
lower bound on the processing time of the h last filling jobs, thus on Ph and
thus on Omid. In order to prove our long-term goal Ph ≥ (1− ε)b0, we now
need to establish a good lower bound on Oend.

Recall that Ot = max(Lt, pt
max, 2P t

m+1). The bound pt
max was used to get

a lower bound Omid. In order to get a lower bound on Oend, we use P t
m+1

at time t ≥ tend. Assume for contradiction sake that the long-term goal
Ph ≥ (1− ε)b0 did not hold. Using our current techniques and our current
bound on Omid, we have, for some λ > 0, shown a lower bound of λ · b0 on
the m− h filling jobs that arrived so far. We can then use the third property
of stable sequences to show that P tend

m+1 ≥ λb0.

Till Ph is huge,
i.e. Ph ≥ (1 − ε)b0.

Ph

Omid

P tend
m+1

Oend

Figure 4.10: The reciprocity if Omid and Oend. The bound Omid leads
to a good bound on the processing time of the m + 1 largest job Pm+1. If
Ph ≥ (1−ε)b0, we can derive a contradiction to Inequality 4.1, Pm+1 ≥ λendb0,
and thus to the assumption that our algorithm was not c-competitive. If
Ph < (1−ε)b0, this leads to a good bound on P tend

m+1 and thus on Oend. Bound
Oend in turn, can be used to derive a lower bound on the processing times of
the h last filling jobs and thus on Ph. Since on stable sequence Ph ≤ Omid,
we obtain an improved bound on Omid, which is higher than the bound we
started with. The cycle repeats. We can either conclude Pm+1 ≥ λendb0 or
take another round of improvements.

56 CHAPTER 4. SCHEDULING IN THE RANDOM-ORDER MODEL

Proposition 4.5
If Ph < (1− ε)b0, then h + 1 of the m + 1 largest jobs arrived all filling
jobs.

Proof. Consider the first filling job J (1) and let t(1) be the time of its arrival,
that is J (1) = Jt(1). If the first filling job J (1) was among the h largest
jobs, the proposition follows from part b) of the third property of stable
sequences. Else, the first filling job J (1) had load at most Ph < (1 − ε)b0.
Therefore, the machine M

t(1)−1
j it was scheduled on must have had load at

least l
t(1)−1
j ≥ εb0 > ε(c− 1) for it to reach load b0 after receiving job J (1).

By the definition of algorithm ALG, we have j ∈ {i, m−h, m}. In particular,
at least i machines had load at least l

t(1)−1
j ≥ ε(c− 1) at time t(1)− 1. We

conclude that the average load reached i
m(c− 1)ε before the first filling job

J (1) arrived. The proposition follows from part a) of the third condition of
stable sequences.

In total, we argued that a good lower bound on Omid leads to a good
lower bound on the b0-filling jobs and thus on Pm+1. If Ph < (1 − ε)b0,
we get a good bound on P tend

m+1 ≤ Oend. Earlier, we showed the reciprocal,
how a good bound Oend helps us improve the bound Omid. We can now
subsequently improve Oend and Omid until Omid ≥ Ph ≥ (1− ε)b0. We chose
our competitive ratio c such this in turn implies Pm+1 ≥ λendb0, the desired
contradiction to our algorithm being c-competitive, cf. Inequality 4.1. This
idea of proof is also depicted in Figure 4.10.

The previous informal arguments swept some technicalities under the
rug, which are required in our main paper. We draw attention to the two
most important aspects.

First, we need an initial lower bound on Omid. For this, we use the
remaining term in Ot = max(Lt, pt

max, 2P t
m+1), the average load Lt. This

resembles prior analyses in the literature. They choose their competitive
ratio c minimal such that bound Lt suffices to establish Pm+1 ≥ λendb0. For
our choice of c we only establish Pm+1 ≥ λstartb0 where λstart ≈ 0.5426 falls
short of λend ≈ 0.5898. The previous sections are used to bridge this gap.

Second, we previously sketched how a lower bound on the processing
times of filling jobs J (1), . . . , J (m−h) can lead to a lower bound on Oend. This
is useful, since it gives a lower bound on the processing time of filling job J (j),
for m− h < j ≤ m. The argument is the following: Since job J (j) was not
scheduled on machine M t−1

m−h, it had processing time exceeding c Oend − b1.
Here, b1 was the load of machine M t−1

m−h. Our previous bound Oend is only
sufficient for b1 = b0. For b1 > b0, we need to use our bound Omid to obtain
an even better bound on the filling jobs with respect to b1. Only then do we
obtain a sufficiently good lower bound on Oend.

4.4. OPEN PROBLEMS 57

4.4. Open Problems

The main problem is, of course, to improve the upper bound here.

Problem 4.1
Find an algorithm that is nearly c-competitive for some c ≤ 1.8477.

After having thought about the problem for quite a while, I know that such
an improvement is possible if one considers the classical random-order model.
So far, the goal was to use Ph ≥ (1− ε)b0 as an oracle. A close look at the
analysis reveals that worst-case guarantees only occur if b0 = (c− 1 + ε)OPT.
In this case though, job Jn′ must have had processing time OPT. One could
now combine the prior approach of betting on a large job to arrive before i
machines are full with the current approach of considering the h largest jobs.
Given the complexity of our current analysis, I do not recommend pursuing
this approach. It requires quite involved calculations and case distinctions
without adding new ideas. Still, it leads to a better competitive ratio in
expectation. In particular, it solves the following problem.

Problem 4.2
Find an algorithm that is better than c-competitive in the random-order
model for c ≤ 1.8477 and m→∞.

In our paper Appendix C, discussed in Chapter 5, we introduce the
secretary model. This is the random-order model but additionally online
algorithm knows n, the number of jobs in the input, in advance. I am
convinced that knowing n is highly advantageous but proving so is difficult.
The main difficulty arises since it is generally hard to obtain lower bounds in
random-order models. In particular, our lower bounds of 1.5 respectively 4/3
should be considered quite pessimistic. Formally separating the random-order
model from the secretary model would be interesting.

Conjecture 4.1
Knowing n, the number of jobs, in advance is an advantage and allows
better competitive ratios. Proving this requires improving either the
lower bound for the random-order model where online algorithms do not
know n or the upper bound for the secretary model where they do.

A common benchmark algorithm for Makespan Minimization is Graham’s
Greedy strategy. For any job, it simply uses a least loaded machine. Let cm

be its competitive ratio on m machines in the random-order model. Osborn
and Torng [139] have shown that limm→∞ cm = 2. On the other hand, it
is easy to see that cm < 2 − 1/m. The Greedy strategy improves in the
random order model. Estimating competitive ratios for small numbers of
machines is challenging in the random-order model. As one of the simplest
online algorithms, Graham’s Greedy strategy should be a good start for such
analyses.

58 CHAPTER 4. SCHEDULING IN THE RANDOM-ORDER MODEL

Problem 4.3
Provide tight ratios cm for the Greedy strategy for explicit values of m.

Through my analyses, I know that the competitive ratio c2 of Graham’s
Greedy strategy in the random-order model on m = 2 machines is strictly
smaller than 1.4 but at least 1.25. For the lower bound, consider a sequence
that has one job of processing time 1 and ε−1 jobs of processing time ε. I
conjecture that this lower bound is tight.

Conjecture 4.2
Graham’s Greedy strategy has competitive ratio c2 = 1.25 in the random-
order model on m = 2 machines.

Furthermore, the lower bound in [139] can be used to observe that
cm = 2−O(

√
m). I conjecture that this is asymptotically tight.

Conjecture 4.3
Graham’s Greedy strategy has competitive ratio cm = 2−Θ(

√
m) in the

random-order model on m machines.

Chapter 5

Makespan Minimization in the
Secretary Model
This section studies Online Makespan Minimization in the secretary model.
The problem is the same as in Chapter 4, only that online algorithms know
the input size n in advance. In the adversarial model, such knowledge is
useless but together with random-order arrival it vastly improves algorithmic
performance, as we will show. Formally, the secretary model is the random-
order model where n is known in advance.

For Makespan Minimization, the task is to assign n jobs J = {J1, . . . , Jn}
to m parallel and identical machines. Preemption is not allowed. The goal is
to minimize the makespan, which is the time it takes to process them all.

An online algorithm A receives jobs one by one. Only after one job is
scheduled permanently and irrevocably will the next one be revealed. This
prevents optimal performance on arbitrary input sequences. Instead, one
judges online algorithm A by how far its makespan may stray from being
optimal. The makespan of A depends on both input set J and input order
σ. We denote this makespan by A(J σ). Let OPT(J) be the optimum
makespan, which does not depend on an input order. Then the adversarial
competitive ratio of online algorithm A is c = supJ ,σ

A(J σ)
OPT(J) . Classically, it

has been the standard performance measure and was studied in depth.
The adversarial competitive ratio, which relies on worst-case orders,

is oftentimes considered pessimistic. Thus, the secretary model has been
introduced. In the secretary model, the input order σ is instead chosen
uniformly at random. The competitive ratio of online algorithm A in the
secretary model is thus c = supJ Eσ∼Sn

[A(J σ)
OPT(J)

]
= supJ

1
n!

∑
σ∈Sn

A(J σ)
OPT(J) .

All algorithms in the literature on random-order scheduling excluding ours
in Chapter 4, know the input length n in advance, which certainly allows for
better performance guarantees.

We use the performance measure of nearly competitiveness, which consid-
ers nearly worst-case input orders. Online algorithm A is nearly c-competitive,
for c ≥ 1, if for every ε > 0 there exists a number of machines mε such that if
m ≥ mε machines are considered, Pσ∼Sn [A(J σ)

OPT(J) > c + ε] < ε. Additionally,
online algorithm A needs to achieve a constant competitive ratio C in the
adversarial model. Nearly competitiveness is a much stronger condition than
the classical notion of random-order competitiveness.

60 CHAPTER 5. SCHEDULING IN THE SECRETARY MODEL

Proposition 5.1
If an online algorithm A is nearly c-competitive, then it is c-competitive
in the secretary model for m → ∞. Formally, if cm is A’s competitive
ratio in the secretary model on m machines, then limm→∞ cm ≤ c.

5.1. Our contributions

LightLoad
The general Load Lemma, Lemma 4.2, allows us to adapt algorithm LightLoad
from the literature [10]. The original algorithm LightLoad was developed for
the semi-online setting where the average load L is known in advance. In
the secretary model, where n is known to the online algorithm, the average
load L can be guessed after any fixed fraction of the input sequence has been
treated. Unfortunately, compared to the pure semi-online setting, there are
three more challenges to overcome.

The three challenges are the following. First, one needs to exclude certain
simple sequences and provide adversarial guarantees. In the worst case, the
sampling estimate of L is completely wrong. Second, one needs to account
for a margin of error. This is no problem in the limit case but becomes
quite tricky when small numbers of machines m are of interest. Third,
the average load L = L[J] cannot be known right from the start. A few
jobs have to be scheduled without such knowledge. This third challenge
prohibits adapting almost all semi-online algorithms [54,118,119] that know
L in advance to the secretary model. In fact, the only remaining semi-
online algorithm that does not need to know average load L right from
the start is the algorithm LightLoad [10]. We now state the adaptation
LightLoadROM of this algorithm to the secretary model. It estimates L by
the guess L̂[J σ] = 4Ln/4[J σ], four times the average load after a fourth of the
sequences has been scheduled. Note that the guess L̂ is a good approximation
of L by Lemma 4.2.

Algorithm 3 The algorithm LightLoadROM
1: Let Jt be the current job and let pt be its processing time.
2: Determine the least loaded machine M t−1

low and the
⌊

m
2

⌋
least loaded

machine M t−1
mid . Let lt−1

low be lt−1
mid their respective loads.

3: if t < n/4 or lt−1
low ≤ 0.25 L̂ or lt−1

mid + pt > 1.75,̧L̂ then
4: Schedule job Jt on least loaded machine M t−1

low ;
5: else schedule job Jt on

⌊
m
2

⌋
least loaded M t−1

mid ;

We obtain the original algorithm LightLoad from [10] if we replace
guess L̂ with L and remove the condition t < n/4 in the if -statement.
Condition t < n/4 is technically superfluous. Indeed, for t < n/4 we have

5.1. OUR CONTRIBUTIONS 61

lt−1
low ≤

n/4
low≤ Ln/4[J σ] = 0.25 L̂[J σ]. We include the condition t < n/4 so

that it is clear that algorithm LightLoadROM is an online algorithm that
only knows L̂ after n/4 jobs have arrived.

Theorem 5.1
Consider any (ordered) input sequence J σ. The makespan of algorithm
LightLoadROM on J σ is at most 1.75(1 + |L̂[J σ]−L|

L)OPT(J).

About the Proof. For L = L̂, this is the main result from [10]. For L ≥ L̂, we
can easily reduce ourselves to the case L = L̂ by adding a few extra jobs at
the end of the sequence. We can add these jobs in a way that the optimum
makespan does not increase beyond L̂. Then, the main result from [10] for
L = L̂ is applicable. For L̂ < L, the statement of the theorem still holds but
cannot be easily deducted using the results in [10] as a black box. Instead,
the proof requires redoing and adapting their analysis.

Recall that the mean absolute deviation of a random variable X is
MD[X] = E

[|X −E[X]|]. If random variable X has positive expected value,
its normalized mean absolute deviation is NMD[X] = MD[X]

E[X] . Let us for
simplicity assume that input size n is divisible by 4. Then E[L̂] = L and
NMD[L̂] = E

[|L̂−L|
L

]
. We obtain the following corollary to Theorem 5.1.

Corollary 5.1
Let J be any job set and pick σ ∼ Sn uniformly at random. The expected
makespan of LightLoadROM is at most 1.75 (1 + NMD(L̂))OPT(J).

In order to establish the nearly competitive ratio of LightLoadROM, we
also need to provide adversarial performance guarantees and guarantees on
simple job sets. Simple sets are defined using the value R(J) = min(L

pmax
, 1).

Formally, a job set J is simple if n = |J | ≤ m or if R(J) ≤ 3
8 .

Proposition 5.2
The makespan of online algorithm LightLoadROM on any (ordered) job
sequence J σ is at most (1 + 2R(J))OPT(J). In particular, it is at most
3 OPT(J) and if R(J) ≤ 3

8 it is at most 1.75 OPT(J).

From now on, we only need to consider non-simple input sets J with
R(J) ≥ 3

8 . The Load Lemma, Lemma 4.2, then ensures that for every ε > 0
there exists mε such that on m ≥ mε machines Pσ∼Sn [NMD(L̂) ≥ ε] < ε.
From this we can conclude the following main result on LightLoadROM.

Theorem 5.2
LightLoadROM is nearly 1.75-competitive.

We obtain bounds for small values of m by further estimating NMD(L̂) on
sequences with R(J) ≥ 3

8 . In our main paper in Appendix C, we show that
we can replace L̂ first by a (scaled) hypergeometric variable Y and then by

62 CHAPTER 5. SCHEDULING IN THE SECRETARY MODEL

a binomial variable X. Formally, we show that NMD(L̂) ≤ m
R(J)NMD(Y) ≤

m
R(J)NMD(X) ≤ 10.02+om(1)√

m
. This leads to the following result.

Theorem 5.3
LightLoadROM is at most

(
1.75 + 18√

m
+ O(1

m)
)
-competitive in the secre-

tary model .

We also evaluate NMD(L̂) on actual input sequences, indicating that
the previous result can still be improved, see Figure 5.1. One possible way
of improvement would be to analyze NMD(Y) directly using techniques
from [62].

1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000 10,0000
0.02
0.05

0.1

250
number of machines m

An approximation of NMAD[L̂pre] for different numbers of machines.

Figure 5.1: The graph shows an estimation of NMD(L̂) on the lower bound
sequence from [2] based on 10, 000 random samples.

Theorem 5.1 can be further improved. In general, LightLoadROM will
be 1.75 (1 + δ)-competitive, where δ = d(L̂, [L, OPT]), the distance of L̂ from
the non-empty, compact interval [L, OPT]. This can be used to improve the
competitive ratio LightLoadROM. Besides the estimate L̂ also consider p

n/4
max,

the largest job processing times seen in the first fourth of the input. Formally,
we replace the estimate L̂ in Algorithm 3 by B̂ = max(4Ln/4, p

n/4
max). Due

to the p
n/4
max-term, the resulting algorithm automatically performs well on

sequences that contain many jobs of processing times exceeding L. On the
remaining sequences, the impact of these large jobs becomes negligible. We
thus can reduce ourselves to the case R(J) = 1. Recall that NMD(L̂) ≤

m
R(J)NMD(X). Considering R(J) = 1 instead of R(J) = 3

8 thus significantly
improves performance guarantees. We could, so far, derive the following.

Theorem 5.4
The competitive ratio of LightLoadROM in the secretary model is at
most 1.75 + 4.4√

m
+ 7

m + O
(1

m3/2

)
.

I believe that even this result is far from optimal and can be improved
further.

5.1. OUR CONTRIBUTIONS 63

Main Algorithm

principal machines reserve

Sampling Phase

principal machines reserve

Critical-Job-Strategy

principal machines reserve

Least-Loaded-Strategy

Figure 5.2: An overview over the main algorithm. First, a sampling phase
learns about a certain set of critical jobs. Depending on what is learned
either the Least-Loaded-Strategy is chosen or the Critical-Job-Strategy. The
Critical-Job-Strategy is more sophisticated and tries to schedule critical
jobs efficiently. It may still turn out to be the wrong choice. In this most
troublesome case, we have to switch back to the Least-Loaded-Strategy.

In the previous section, a small sample of the input is used to estimate
the average load L and to observe the close-to-largest processing time pφn

max
for φ = 1/4. Our main algorithm takes this further. It first uses sampling to
estimate B = max(L, pmax) and, depending on the estimate, defines a class C
of critical jobs. It then further uses the sample to estimate these critical jobs.
Afterwards, it has to decide between two strategies. The Critical-Job-Strategy
focuses on handling critical jobs best possible. The Least-Loaded-Strategy
simply enhances Graham’s Greedy strategy by keeping a few machines in
reserve to accommodate particularly large jobs.

The Sampling Phase.

In the sampling phase the first φn jobs, for suitable choice of φ > 0, are
assigned greedily to least loaded principal machines. Principal machines
exclude a few reserve machines, which need to stay empty for the following
phases. After the sampling phase, we estimate L by L̂ = 1

φLφn. The estimate
L̂ provides a good approximation of the average load L. Technically, the
general statement of the Load Lemma, Lemma 4.2, is required since the
terms involved decrease as the number of machines m increases. We estimate
the processing time of the largest job pmax by pφn

max. This might not be a close
estimate to pmax but we are guaranteed that only few, φ−1 in expectation,
particularly large job processing times exceed this guess. We thus use the
estimate B̂ = max(L̂, pφn

max). Jobs of processing time at most (c−1)B̂ always
safely fit on a least loaded machine. We thus focus on critical jobs, which
have processing times exceeding (c− 1)B̂.

In order to estimate the set C of these critical jobs, we geometrically
round their processing times to powers of (1+ε) for a suitable choice of ε > 0.

64 CHAPTER 5. SCHEDULING IN THE SECRETARY MODEL

principal machines reserve machines

Figure 5.3: The sampling phase simply assigns each job to a least loaded
principal machine. A few reserve machines are kept empty for they will be
needed later. After the sampling phase, we can estimate the input set.

Consider a possible rounded job size p = (1 + ε)i with (c − 1)B̂ < p ≤ B̂.
We now use the sampling phase to estimate the number np of jobs of
processing time p. This gives us an estimate over the set of critical jobs
C = {Jt | (c− 1)B̂ < pt}. Using our estimations of pmax, L and C, we decide
whether it is safe to use the Least-Loaded-Strategy. If so, it is employed.
Else, the Critical-Job-Strategy focuses on assigning critical jobs correctly.

The Least-Loaded-Strategy.

principal machines reserve machines

Figure 5.4: The Least-Loaded-Strategy keeps few machine in reserve to
accommodate huge jobs. Such huge jobs are assigned to any least loaded
machine and will, on random-order sequences, almost always find an empty
reserve machine. These reserve machines are kept empty for precisely these
huge jobs . Other jobs are always placed on a least loaded principal machine.

The Least-Loaded-Strategy first determines if a given job Jt is huge, i.e.
if job Jt has processing time pt > B̂. As mentioned earlier, such jobs are few.
There are only φ−1 in expectation. The number of huge jobs is, with high
probability, less than the number of reserve machines. In particular, with
high probability, an empty machine is available for every huge job. If a job is
not huge, it will simply be scheduled onto a least loaded principal machine.
Using Graham’s arguments, one may observe that the Least-Loaded-Strategy
causes a makespan of approximately max(pmax, 2B̂)—baring negligible terms.
The Least-Loaded-Strategy is thus a good choice whenever 2B̂ ≤ cOPT.

The Critical-Job-Strategy.

The Critical-Job-Strategy conservatively estimates the set C of critical jobs.
It tries to predict them as well as possible but avoids overestimations at all
cost. According to these predictions, fictional placeholder jobs are scheduled
in advance. These jobs will be replaced once their real counterparts arrive.

5.2. OPEN PROBLEMS 65

principal machines reserve machines

Figure 5.5: The Critical-Job-Strategy schedules critical jobs “in advance”.
Formally, placeholder jobs are maintained that are later exchanged with their
real counterparts. Reserve machines are kept aside to accommodate huge
jobs and critical jobs that could not be predicted. The Critical-Job-Strategy
is fragile. If this is not possible to assign critical jobs correctly, the algorithm
finds out very late and has to switch to the Least-Loaded-Strategy.

Formally, placeholders jobs are assigned right after the sampling phase but
before the actual Critical-Job-Strategy begins.

Small jobs are simply assigned to a least loaded principal machine where
the load takes placeholder jobs into account. A critical job Jt replaces a
matching placeholder job if there still is one available. Else, we try to assign
it to a reserve machine, still respecting that each machine contains either a
big job or at most two medium ones. If this fails, we have to switch from
the Critical-Job-Strategy to the Least-Loaded-Strategy. Showing that this
switch is possible is the crux of the analysis.

Lower Bounds.

We complement our main result by first lower bounds.

Theorem 5.5
No online algorithm, deterministic or randomized, has competitive ratio
better than

√
73+29
36 ≈ 1.043 in the secretary model.

Theorem 5.6
No online algorithm, deterministic or randomized, is better than nearly
c-competitive for c <

√
73−1
6 ≈ 1.257.

5.2. Open Problems

The obvious problem is to improve the upper and lower bounds described in
this chapter. In particular, a better upper bound is desirable.

Problem 5.1
Find an algorithm, which is better than nearly 1.535-competitive.

More open problems related to the random-order model are listed in
Chapter 4. It would be particularly interesting to show Conjecture 4.1,

66 CHAPTER 5. SCHEDULING IN THE SECRETARY MODEL

that the secretary model allows better performance guarantees than the
random-order model.

Chapter 6

Online Makespan Minimization
with Budgeted Uncertainty
6.1. Preliminaries

We study Online Makespan Minimization with budgeted uncertainty. A
sequence of jobs J σ = J1, . . . , Jn has to be assigned to m parallel and
identical machines. Each job has both a regular processing time p̃i and
an additional processing time ∆pi. Most jobs only require their regular
processing times in order to be processed. Unfortunately, up to Γ jobs fail
and require processing time pi = p̃i + ∆pi. The value of Γ, the number of
failing jobs, is part of the input. The resulting makespan if these up to Γ
failing jobs are chosen worst-possible, is called the uncertain makespan. This
uncertain makespan should be minimized.

Budgeted Uncertainty models errors and malfunctions that arise in prac-
tical applications. For example, machines may represent servers that run
programs. A fraction of these programs exhibits bugs that require costly
restarts and clean-up operations. In other applications actual machines are
considered that produce physical products and equipment. Such machines
may jam or malfunction. There are even schedules made for humans. Jobs
represent tasks that are to be performed. There are always a few tasks that
take longer than estimated.

Parameter Γ determines the amount of bugs we have to prepare for. The
naive case Γ = 0 recovers the old problem of Makespan Minimization where
processing times p̃i are well-known once an assignment takes place. Bugs
simply do not happen. Similarly, the paranoid case Γ =∞ where we expect a
bug in every program and a failure in every endeavor also recovers the original
problem of Makespan Minimization with processing times pi = p̃i + ∆pi. For
general Γ, the problem becomes, as we show, strictly harder.

We consider online algorithms. An online algorithm A schedules jobs
J1, . . . , Jn one by one, immediately and irrevocably, without knowing future
ones. Its performance is measured by its competitive ratio c, the ratio by
which its uncertain makespan approximates the optimum one. Formally
c = supJ σ

A(J σ)
OPT(J) where A(J σ) denotes the makespan of online algorithm A

on input sequence J σ while OPT(J) denotes the optimum makespan. The
goal is to find online algorithms exhibiting small competitive ratios.

68 CHAPTER 6. SCHEDULING WITH BUDGETED UNCERTAINTY

Notation

In order to be compatible with other sections we use J to denote the job set
{J1, . . . , Jn}, while J σ = J1, . . . , Jn denotes the ordered sequence in which
an online algorithm treats these jobs. This order has no impact on the
optimum offline algorithm OPT, which is why we simply write OPT(J).

6.1.1. Problem Definition
We are given a sequence of jobs J σ = J1, . . . , Jn where job Ji has regular
processing time p̃i and an additional processing time ∆pi. These jobs have to
be assigned to a setM of m machines. Given such an assignment σ : J →M,
the regular load l̃M of machine M is the total processing time of jobs assigned
to it if none fails. Formally, l̃M = ∑

Jt∈σ−1(M) p̃t, where σ−1(M) is the set of
jobs scheduled on M . The additional load ∆lM of M is the maximum total
additional processing time on M if up to Γ jobs fail in the worst-possible
way. Formally, ∆lM = maxS⊆σ−1(M),|S|≤Γ

∑
Jt∈S ∆pt. Let us fix a set SM

for machine M where the previous maximum is obtained. We then say job
Jt fails machine M if Jt ∈ S. The robust load lM of machine M , is the
maximum time M may take to process all its jobs if up to Γ fail. Formally,
lM = l̃M + ∆lM . The uncertain makespan, which we wish to minimize, is
then maxM∈M lM .

The previous definitions do not change, if we do not only allow Γ jobs to
fail in total but instead allow Γ to fail per machine. Hence, both problems
are equivalent. The latter problem may, additionally to covering more failing
scenarios, also yield a better intuition in the analysis.

6.2. Our contributions
We study Online Makespan Minimization with budgeted uncertainty in
depth. We first analyze the Greedy strategy, which places each job such that
the resulting uncertain makespan is minimized. The Greedy strategy is a
common benchmark strategy, which performs quite well. For general Γ, we
show that the it is precisely (3− 2

m)-competitive, which nicely complements
Graham’s [94] well known upper bound of 2− 1

m for Γ ∈ {0,∞}. We also
provide a tight lower bound of 3 − 2

m that even holds in the special case
where p̃i = 0 for all i. We call this the debugging model, which may be
applicable to settings where normal running times of programs, measured in
milliseconds, are negligible. Bugs on the other hand require time-intensive
debugging, which takes hours, days and weeks.

After establishing Greedy as a benchmark, we provide an improved
deterministic algorithm, which is particularly suited for large values of m
and Γ. It adapts prior approaches to obtain a competitive ratio of 2.9052
for m, Γ → ∞. Precise competitive ratios for general m and Γ ≥ 10 are

6.2. OUR CONTRIBUTIONS 69

given in Figure 6.2. We complement this result by a lower bound of 2 for
the competitive ratio achieved by deterministic algorithms for Γ = 2. This
shows that the problem with budgeted uncertainty is strictly more difficult
than the classical setting. For Γ ∈ {0,∞}, even the Greedy strategy beats
this bound [94].

6.2.1. The Greedy Strategy

The first result on Makespan Minimization is due to Graham [94] who in
the 1960s showed that his famed Greedy strategy is (2− 1

m)-competitive. In
general, the scheduling literature differentiates between Pre-Greedy strategies
and Post-Greedy strategies. Pre-Greedy strategies assign each job to a
machine of minimum load. Post-Greedy strategies pick a machine such that
the resulting load is minimized. For classic Online Makespan Minimization
both definitions are equivalent. Under budgeted uncertainty assumptions
this is not the case anymore. Post-Greedy strategies perform slightly better.
We can establish the following.

Theorem 6.1
The Post-Greedy has competitive ratio 3− 2

m . This bound is tight.

The main technical result concerns the average robust load. Consider
the schedule of online algorithm A on input sequence J σ = J1, . . . , Jn. Let
L[A,J σ] = 1

m

∑
M lM be the average robust load of the schedule. The core

argument of Graham is based on the fact that L[A,J σ] is independent of
the algorithm A considered. With budgeted uncertainty, this does not hold
anymore. We thus need a different way to relate L[A,J σ] to OPT(J).

Proposition 6.1
The average robust load L[A,J σ] of algorithm A on input J σ is at most
L[OPT,J]+

(
1− 1

m

)
OPT(J). In particular, L[A,J σ] ≤ (

2− 1
m

)
OPT(J).

Proof Sketch. We only show L[A,J σ] ≤ L[OPT,J]+OPT(J) for simplicity.
Let T be the set of jobs that fail in the schedule of A but not in the schedule
of OPT. Then L[A,J σ] ≤ L[OPT,J] + 1

m

∑
Jt∈T ∆pt. It suffices to show

that ∑
Jt∈T ∆pt ≤ mOPT. Consider a job J ∈ T with additional processing

time ∆p. Job J must be on a machine in OPT’s schedule where Γ machines
of processing time at least ∆p fail. In particular, Γ · ∆p ≤ OPT. Thus,∑

Jt∈T ∆pt ≤ |T | · OPT/Γ ≤ mOPT. For the last inequality we use that
|T | ≤ Γm since at most Γ machines fail on each of the m machines. Thus,
L[A,J σ] ≤ L[OPT,J] + 1

m

∑
Jt∈T ∆pt ≤ L[OPT,J] + OPT(J).

For the full result, L[OPT,J] +
(
1− 1

m

)
OPT(J) one also considers the

set S of jobs that fail in OPT’s but not in A’s schedule.

Now, Theorem 6.1 follows almost immediately from Graham’s analysis.

70 CHAPTER 6. SCHEDULING WITH BUDGETED UNCERTAINTY

Figure 6.1: The lower bound for Post-Greedy. All regular processing times p̃
are 0. Tiny jobs fill the greedy schedule (left) to a height of almost 1. Small
jobs increase it to 2− 2

m . A final job of size 1 causes a makespan 3− 2
m . The

optimum schedule (right) places the tiny jobs on a single machine. Since
at most Γ additional processing times count, the resulting load is 1. The
large job goes onto another machine, while the remaining m− 2 machines
are filled with small jobs.

Proof Sketch of Theorem 6.1. By Proposition 6.1, the least loaded machine
in Post-Greedy’s schedule has load at most

(
2− 1

m

)
OPT. Since it receives

a job Jt of size pt = p̃t + ∆pt ≤ OPT, the load of any machine can reach at
most

(
3− 1

m

)
OPT. In order to establish the tight bound of

(
3− 2

m

)
OPT, we

apply Proposition 6.1 to the schedule obtained by assigning Jt preliminary on
some machine. Here, it is important to consider a Post-Greedy strategy.

The lower bound for Greedy even holds if all jobs have regular processing
time p̃ = 0. This models jobs, such as computer programs, that produce
an output within milliseconds but, should that output be incorrect, require
hours to be debugged. Since this setting may be of particular interest, we
propose the name debugging model.

Remark 6.1
The Greedy strategy does not improve when restricted to the special case
of the debugging model, where jobs have regular processing time p̃ = 0.

6.2.2. General bounds
We adapt improved strategies for Online Makespan Minimization to the
setting of budgeted uncertainty. The algorithm is parameterized with a
competitive ratio c = cΓ,m, depending on both Γ and m. This ratio will
be specified later. For input sequence J σ = J1, . . . , Jn, let Jt, 1 ≤ t ≤ n,
be the current job that the online algorithm has to assign to a machine.
We order machines by increasing robust loads at time t − 1 breaking ties
arbitrarily. The d =

⌊
c−2

c m
⌋

least loaded machines are called small; the next
d machines are medium and the remaining m − 2d most-loaded machines
are large. Let M t−1

small denote the machine of least robust load and M t−1
med be

6.2. OUR CONTRIBUTIONS 71

Algorithm 4 How to schedule job Jt with processing time pt.

1: if Lt−1
small >

(
1− 1

2(c−1)

)
Lt−1

large and lt−1
med + pt ≤ c

2Lt−1 then
2: Schedule job Jt on the least loaded medium machine M t−1

med;
3: else Schedule job Jt on the least loaded machine M t−1

small.

the medium machine of least robust load or, equivalently, the machine of
(d + 1)th smallest robust load. Let Lt−1

small denote the average robust load
of the small machines, Lt−1

large the average robust load of large machines and
Lt−1 the average load of all machines.

We call the schedule at time t− 1 ≥ 0 flat if Lt−1
small >

(
1− 1

2(c−1)

)
Lt−1

large
and steep else. Steep schedules are desirable. We can simply assign job Jt to a
least loaded machine. Else, given a flat schedule, the online algorithm aspires
to make it steeper again by using a machine of higher load. The medium
machine M t−1

med is considered. Medium machine M t−1
med is risky since it has

potentially a very high load. It thus is only chosen if the online algorithm can
ensure that the resulting load will not exceed cOPT(J). Formally, the online
algorithm schedules job Jt on the medium machine M t−1

med if the schedule is
flat, Lt−1

small >
(
1− 1

2(c−1)

)
Lt−1

large, and if lt−1
med + pt ≤ c

2Lt−1. Here, lt−1
med is the

load of medium machine M t−1
med at time t − 1. Note that 1

2Lt−1 is a lower
bound for OPT by Proposition 6.1.

The values of c.

Recall that d =
⌊

c−2
c m

⌋
. Let Γ ≥ 2. The competitive ratio c = cΓ,m is

chosen minimally such that c ≥ 7+
√

17
4 ≈ 2.7808 and the following holds:

(
1− d

2(c− 1)m − 2Γ + 1
cΓ

) (
1 + c

2m

)d

+ 2Γ + 1
cΓ ≥

(
1− 1

m

)
.

2
c− 1 . (6.1)

Unless m is chosen extremely small, competitive ratio c is determined by
Inequality (6.1) and fulfills it with equality. We can show that the competitive
ratio c is below 2.9052 for Γ→∞.

The following is the main result of this paper.

Theorem 6.2
The algorithm is c-competitive with c < 2.9052 for Γ large.

We establish a lower bound of 2, which shows that the general problem in-
volving budgeted uncertainty is strictly harder than classic Online Makespan
Minimization.

Theorem 6.3
No deterministic algorithm is better than 2-competitive for general m
and Γ = 2.

72 CHAPTER 6. SCHEDULING WITH BUDGETED UNCERTAINTY

10 20 50 100 200 500
2.78
2.8

2.82
2.84
2.86
2.88
2.9

2.92
2.94

m

c

Dependency on m.

Γ = 20
Γ = 30
Γ = 50
Γ = 100
Γ = 200
Γ = 1000

10 20 50 100 200 500

2.86

2.88

2.9

2.92

2.94

2.96

Γ

Dependency on Γ.

m = 20 m = 30
m = 50 m = 100
m = 200 m = 500

Figure 6.2: The competitive ratios for different m and Γ. The ratio c
is monotonously decreasing in Γ and tends to increase in m. The latter
improvement is not monotonous due to the rounding involved in d. The
x-axes are log-scaled. The graphs are colored.

6.3. Open Problems
The main open problem is to improve the bounds for m, Γ→∞.

Problem 6.1
Improve the competitive ratios in Figure 6.2, in particular for m, Γ→∞.

Of course, it would also be interesting to improve the lower bounds and
generalize them to larger Γ.

Problem 6.2
Provide lower bounds for general Γ or generalize the bound of 2 to Γ > 2.

Finally, we introduced the debugging model, which might be of indepen-
dent interest. Here, jobs only have additional processing time ∆p. The
regular processing time p̃ are all set to zero. Thus, only the Γ largest on
each machine count. Maybe, this model allows for improved performance
guarantees. One weakness of the Greedy strategy as well as our improved
strategy is that they do not try to cluster “debugging jobs”. These jobs have
large additional processing times but no, or small, regular processing times.
Finding ways to cluster such jobs seems like a sensible avenue to further
improvement.

Problem 6.3
Find improved strategies in the debugging model where p̃ = 0 for all jobs.

Chapter 7

Machine Covering in the Secre-
tary Model
For Online Machine Covering a set of n jobs J = {J1, . . . , Jn} has to be
assigned to m parallel and identical machines. Preemption is not allowed.
Each job Ji has a non-negative processing time pi. The load lM of machine M
is the sum of all processing times of jobs assigned to it. The goal is to minimize
the smallest machine load or, equivalently, the time all machines are busy.
Machine Covering is applicable when jobs represent resources that allow
machines to run. The goal is then to keep the whole system working for as
long as possible.

An online algorithm A has to schedule jobs one by one. Only after a
job is assigned permanently and irrevocably will the next one be revealed.
Not knowing the future prevents optimal performance on arbitrary input
sequences. Instead, one measures online algorithm A by how well it approxi-
mates the optimum result. Each element σ of Sn, the permutation group of
the integers 1 to n, describes a way to order the elements in J = {J1, . . . , Jn}.
The resulting job sequence is J σ = Jσ(1), . . . , Jσ(n). After online algorithm
A treats job sequence J σ in this order, the minimum load of a machine is
denoted by A(J σ). Let OPT(J) be the minimum machine load an optimal
offline algorithm achieves. Traditionally, the goal is to minimize the adversar-
ial competitive ratio c = supJ ,σ

OPT(J)
A(J σ) respectively c = supJ ,σ

OPT(J)
E[A(J σ)] for

randomized algorithms. Here, we use the conventions 0/0 = 1 and r/0 =∞
for r > 0. This adversarial competitive ratio is extremely pessimistic. In
a classical lower bound sequence depicted in Figure 2.4, m jobs of size 1
arrive. These jobs have to be assigned to m different machines, otherwise the
deterministic online algorithm A has competitive ratio ∞. Subsequent m− 1
jobs of size m do not allow online algorithm A to improve its minimum load
of 1. The optimum offline algorithm, on the other hand, achieves minimum
load m. In general, adversarial guarantees are abysmal due to an online
algorithm’s inability to schedule the first m jobs correctly. This also afflicts
randomized algorithms [33]. On the worst-case sequence in [33], the first m
jobs are treated correctly with probability at most 1/

√
m.

This quagmire of impossibility results furthered the study of various semi-
online models that enhance the online algorithm or reveal extra information
to provide better performance guarantees. We instead propose a pure online
setting, the secretary model. The worst-case input set J is presented to the

74 CHAPTER 7. MACHINE COVERING IN SECRETARY MODEL

online algorithm in a uniformly random order. Each possible job order σ ∈ Sn

is picked with equal probability 1
n! . An online algorithm A is now measured

by its random-order cost Arom(J) = Eσ∼Sn [A(J σ)] = 1
n!

∑
σ∈Sn

A(J σ).
The competitive ratio of online algorithm A in the secretary model is c =
supJ

OPT(J)
Arom(J) , respectively c = supJ

OPT(J)
E[Arom(J)] if A is randomized. Again,

we try to find online algorithms with small competitive ratios.
Throughout this chapter, the number n of jobs is known to the online

algorithm in advance. The model studied is thus a secretary model under
the naming proposed in Section 2.3.

7.1. Our contributions

We first analyze Greedy, a sensible benchmark strategy for many Scheduling
problems. Greedy simply assigns each job to a least loaded machine. In
adversarial settings, Greedy is m-competitive [157], which is optimal as far
as deterministic online algorithms are concerned. For random-order arrival
the competitive ratio of Greedy improves slightly down to Θ

(
m

log(m)
)
. This

result is tight up to a factor of 2 + o(1).

Theorem 7.1
Greedy is

(
2 + o(1)

)
m

Hm
-competitive in the secretary model. Here, Hm

denotes the mth harmonic number. This bound cannot be improved up
to the factor 2 + o(1).

Following the analysis of Greedy, we provide an improved algorithm A,
which beats adversarial lower bounds using the secretary model. The im-
proved algorithm is Õ(4√m)-competitive.

The key challenge for online algorithms is to distinguish small and large
jobs. In adversarial deterministic settings, such distinction is simply impossi-
ble. For adversarial randomized settings, Azar and Epstein [33] developed
a scheme that maintains a random threshold τ to separate small and large
jobs. Large jobs are classified correctly with constant probability. An up-
per bound on the total processing volume of incorrectly labeled small jobs
leads their competitive ratio of Õ(

√
m). Our Õ(4√m)-competitive approach

enhances their strategy by adding a sampling phase. After the sampling
phase, most large jobs can be correctly determined without relying on the
random threshold τ . This threshold τ can subsequently be updated more
aggressively, which in turn improves our ability to identify small jobs.

A more precise description of the Õ(4√m)-competitive algorithm A follows
in the next section.

Theorem 7.2
Algorithm A is O(4√m log(m))-competitive in the secretary model.

We finally conclude with a new lower bound. For the lower bound, a

7.2. SUMMARY OF TECHNIQUES AND PROOF SKETCHES 75

novel version of the Secretary Problem, called the Talent Contest Problem,
is introduced. The goal is to pick the Kth best among n candidates. Each
candidate arrives k times. The arrival order is chosen uniformly at random.
Upon each arrival of a candidate, we may make a hiring decision. In
particular, information about the candidates increases at later arrivals and
hiring decisions become easier. We can prove that good hiring decisions
relate to the smallest machine load in a certain Machine Covering instance.
Analyzing the Talent Contest Problem therefore allows us to derive a lower
bound for Machine Covering in the secretary model.

Theorem 7.3
No deterministic or randomized online algorithm for Machine Covering
in the secretary model is better than O

(
log(m)

log log(m)

)
-competitive.

7.2. Summary of Techniques and Proof Sketches

Analysis of Greedy
For any j = 1, . . . , n, let Pj denote the jth largest processing time of a job.
Let Li = ∑

j≥i Pi be the total processing time of jobs smaller than Pi. This
notation uses an implicit tie breaker if there are jobs of equal sizes.

Lemma 7.1
The minimum load achieved by Greedy is at least Pm.

Proof. If the m largest jobs get assigned to different machines, the lemma is
immediate. Else, consider the time at which one of the m largest jobs Jt gets
assigned to a machine M that already contained another of the m largest
jobs Js, where job Js has processing time Pj , j ≤ m. Upon arrival of job Jt,
machine M had load at least Pj ≥ Pm. Per definition, this was the minimum
load. The lemma follows as the minimum load cannot decrease later on.

Lemma 7.2
Let 1 ≤ i ≤ m. Then Greedy has minimum load at least Li

m − Pi.

Proof Sketch. Consider the schedule formed by Greedy and let l be the
minimum load. For any machine M , let Jlast(M) denote the last job it
received. Consider Jlast = {Jlast(M)}M , the set of all last jobs, and remove
these last jobs Jlast from Greedy’s schedule. After this removal, no machine
load exceeds l. Now, add back the m− i + 1 smallest jobs in Jlast. Each of
these jobs had processing time at most Pi. The total load L̃ of the resulting
schedule is thus at most m · l +(m− i+1)Pi. The resulting schedule contains,
on the other hand, all but i − 1 jobs. Thus, L̃ ≥ Li. Altogether, we have
shown that Li ≤ L̃ ≤ m · l + (m− i + 1)Pi ≤ m · l + mPi. Rearranging this
inequality shows that the Greedy strategy achieved minimum load at least
l ≥ Li

m − Pi.

76 CHAPTER 7. MACHINE COVERING IN SECRETARY MODEL

We now conclude Theorem 7.1. We show that the Greedy strategy is(
2 + o(1)

)
m

Hm
-competitive in the secretary model.

Proof Sketch of Theorem 7.1. We call a job large if its processing time is at
least Hm

2m OPT, else it is small. Let k be the number of large jobs. If k ≥ m,
we have Pm ≥ Hm

2m OPT and the result follows from Lemma 7.1. Let us thus
assume that k < m. Since in the optimum schedule at most k machines
receive large jobs, Lk+1 ≥ (m− k)OPT.

We subdivide the ordered input sequence J σ into chunks according to the
large jobs. The first chunk J σ

0 starts at the beginning of J σ and ends right
before the first large job J (1) arrived. The ith chunk J σ

i , 1 ≤ i ≤ k, starts
right after the ith large job J (i) arrived and ends right before the (i + 1)th
large job arrived J (i+1), or at the end of the input if i = k. Let Si(J σ) denote
the total processing time of the jobs in J σ

i . We show next that the minimum
load in Greedy’s schedule is at least min

(∑k
j=0

Sj(J σ)
m−j − Hm

2m OPT, Hm
2m OPT

)
.

Order J σ:

load S0(J σ) load S1(J σ) load Sk(J σ)

Figure 7.1: The k large jobs (blue) partition the small jobs into segments J σ
i

of different total loads Si(J σ). Segment J σ
i contributes Si(J σ)

m−i to Greedy’s
minimum load.

A machine is full once it receives a large job. We may assume that no
machine receives another job, once it is full. Otherwise, the minimum load
would already be at least Hm

2m OPT. Now, consider the situation right after
sequence J σ

i+1, 0 ≤ i ≤ k, has been scheduled and let L̃i be the average
load of the non-full machines. First, consider the case i = 0. No machine
is full, and the total processing volume is S0(J σ). The average load L̃0 is
thus S0(J σ)

m−0 . Job J (1) is scheduled on a least loaded machine. Hence, the
average load of the non-full machines does not decrease. Now, the m − 1
non-full machines receive the jobs J σ

1 . Their average load increases by S1(J σ)
m−1 .

We see that L̃1 ≥ S1(J σ)
m−1 + L̃0 = S1(J σ)

m−1 + S0(J σ)
m−0 . Repeating this argument

shows that L̃k ≥
∑k

j=0
Sj(J σ)

m−j . Consider the most-loaded non-full machine M

after all jobs are scheduled. Its load l is at least L̃k ≥
∑k

j=0
Sj(J σ)

m−j . Let
J = Jlast(M) be the last job scheduled onto machine M . Recall that job
J had processing time less than Hm

2m OPT. Hence, right before receiving it
machine M had load at least l− Hm

2m OPT ≥∑k
j=0

Sj(J σ)
m−j − Hm

2m OPT. Machine
M was also the least loaded machine at this time. Thus, the minimum is
load at least ∑k

j=0
Sj(J σ)

m−j − Hm
2m OPT.

7.2. SUMMARY OF TECHNIQUES AND PROOF SKETCHES 77

Pick σ ∼ Sn uniformly at random and consider any fixed small job J .
Job J falls into each of the k + 1 chunks J σ

0 ,J σ
1 , . . .J σ

k with equal proba-
bility 1

k+1 . Since the total processing time of small jobs is Lk+1, we have
Eσ∼Sn [Sj(J σ)] = Lk+1

k+1 . As mentioned in the beginning, Lk+1 ≥ (m−k)OPT.
We conclude Eσ∼Sn [∑k̃

j=0
Sj(J σ)

m−j − Hm
2m OPT] ≥ Hm

2m OPT.
Unfortunately, this does not immediately lead to a lower bound for

min
(∑k̃

j=0
Sj(J σ)

m−j − Hm
2m OPT, Hm

2m OPT
)
. In the full proof, we also need to

consider the variance of ∑k̃
j=0

Sj(J σ)
m−j − Hm

2m OPT and apply Chebyshev’s
inequality.

versus

Figure 7.2: The lower bound. Comparison of the Greedy solution (left) and
the optimum solution (right) for a random input permutation σ. Large jobs
have size 1, small jobs have size ε > 0.

For the lower bound, consider m− 1 large jobs of processing time 1 and
1
ε small jobs of tiny processing time ε > 0. Here, OPT = 1. Greedy’s
schedule contains precisely one machine Msmall that does not contain a large
job. We can adapt the previous arguments to see that machine Msmall
has load at most ∑m−1

i=0
Si(J σ)

m−i + εm. Again, Eσ∼Sn [Si(J σ)] = Lm
m = 1

m .
Thus, machine Msmall has expected load ∑m−1

i=0
1

m(m−i) + εm = Hm
m + εm.

Greedy’s competitive ratio is at most 1/(Hm
m + εm), which approaches m

Hm

for ε→ 0.

Main Algorithm

Classical algorithms perform bad due to their inability to distinguish small
and large jobs. The approach of Azar and Epstein [33] ameliorates this
by providing a scheme, which allows to pessimistically estimate large jobs.
We improve this approach via sampling. The algorithm first considers the
number of large jobs k. If there are at least m large jobs or if there are less
than m−

4√
m3

50 large jobs, we use Lemma 7.1 and 7.2 to conclude that Greedy
is O(4√m)-competitive.

Else, if 1 ≤ m − k ≤
4√

m3
50 , the algorithm tries to guess the number

m− k of machines that need to be filled with small jobs. The algorithm’s
guess 2t for m − k is correct if 2(m − k) > 2t ≥ m − k. In general, there

78 CHAPTER 7. MACHINE COVERING IN SECRETARY MODEL

τ

P ↑

sampling

Figure 7.3: The classification of large (blue) and small (light or dashed) jobs
forms the main part of the algorithm. During a sampling phase, all small
jobs are misclassified (dashed). Afterwards, parameter P ↑ classifies large
jobs and parameter τ classifies small jobs. Normally, jobs in between are
conservatively classified as large. Sometimes, with a certain small probability,
threshold τ is updated on such jobs and they will be considered small. We
need to ensure that this is unlikely to happen at large jobs.

are O(log(m)) possible choices for the integer t, namely 0, 1, . . . ,
⌈

3
4 log(m)

⌉
.

Thus, the algorithm can guess correctly with probability O
(1

log(m)
)
. Using

such a guess 2t, the machines are subdivided into 2t machines Mlarge that
only receive large jobs. The remaining machines Msmall receive small jobs.
The online algorithm now has to decide for every arriving job Jt whether it
is large or small. If job Jt is considered large, it will be assigned greedily to
the least loaded machine inMlarge. Else, if job Jt is small, it will be assigned
to the least loaded machine in Msmall.

Misclassifying large jobs can be disastrous. It may cause one of the
machines in Mlarge to remain empty. The algorithm will thus ensure that
such misclassification is unlikely. It happens with probability less than 5

9 .
The main work goes into classifying as many small jobs correctly as possible.
The first n

8 jobs of the input are sampled in order to obtain a bound of P ↑

that classifies all but
√

m of the large jobs. During sampling, all jobs need
to be cautiously classified as large. Afterwards, we run a more aggressive
version of the scheme of Azar and Epstein [33] to classify small jobs correctly.

After the sampling phase, threshold τ < P ↑ is maintained. Jobs of
processing time at most τ are considered small, jobs of processing time
at least P ↑ are considered large. When a job J has processing time p in
between these values, τ < p < P ↑, threshold τ is updated to p with a
certain probability Pr. If τ is updated, p ≤ τ becomes satisfied and job J
is considered small; else we cautiously treat it as a large job. Extra care
has to be taken in choosing the correct update probability Pr. The correct
value, 1

9·2t
√

m
, depends on both m and t. For this value, we establish that

7.2. SUMMARY OF TECHNIQUES AND PROOF SKETCHES 79

the algorithm is O(4√m) competitive if its guess t for m− k is correct, i.e. if
2(m− k) > 2t ≥ m− k. From such an observation, Theorem 7.2 follows.

Algorithm 5 An Online Algorithm for Random-Order Machine Covering
Input: Job sequence J σ, input length n = |J | and m identical machines.

1: Guess t ∈ {−1, 0, 1, . . . ,
⌈

3
4 log(m)

⌉
} uniformly at random;

2: if t = −1 then Run the Greedy and return the computed solution;
3: Partition the machines into 2t small and m− 2t large machines;

Phase 1 – Sampling.
4: Schedule the first n/8 jobs iteratively into a least loaded large machine;
5: Let P ↑ be the

(
m−2t

8 −
√

m
2

)
th largest processing see so far;

Phase 2 – Partition.
6: τ ← 0;
7: for j = n

8 + 1, . . . , n do
8: if τ < pσ(j) < P ↑ then Update τ to pσ(j) with probability 1

9·2t
√

m
;

9: if pσ(j) ≤ τ then, Assign job Jσ(j) to a least loaded small machine;
10: else Schedule job Jσ(j) onto a least loaded large machine;
11: return the computed solution;

We end in a note on rounding processing times. Our description in the
main paper in Appendix E rounds job processing times to powers of two
before treating the input sequence. Unlike in adversarial settings [33], this
is not strictly necessary. We thus did not include such rounding in the
algorithm’s description here.

Lower Bound
The main challenge Online Machine Covering algorithms face is to tell apart
small and large jobs. On earlier adversarial sequences, such information is
hidden. Lower bound sequences simply place the critical jobs at the end of
the sequence where the online algorithm only discovers them when it is too
late. For random-order arrival this is impossible. Instead of withholding
such information, we rather obscure it by adding noise. The algorithm sees
the large jobs but cannot safely tell them apart from small ones. This is
formalized in the Talent Contest Problem.

The Talent Contest Problem

To a yearly talent show contest n candidates apply. To increase entertainment
value one wants to exclude perfect candidates, on the one hand. On the
other hand, one needs a suitable candidate to present as a winner. Thus, the
Kth best candidate, for some K, should be invited but no better one. Worse

80 CHAPTER 7. MACHINE COVERING IN SECRETARY MODEL

candidates may be invited as one pleases. Each candidate will participate in
precisely k trials. Each trial is considered an arrival. Upon every arrival, we
must decide if we mark the candidate or not. If we mark a candidate, we
consider her to be the Kth best or worse. The order of arrivals is uniformly
randomly distributed. The goal is to maximize the number of trials for which
the Kth best candidate has been marked but none of the better ones.

Formally, the Talent Contest Problem is specified by the rank of the
winner K, the number of arrivals k and the number of candidates n, where
n ≥ K, as well as positive candidate valuations v1, v2, . . . , vn. Each candidate
arrives k times. The arrival order is chosen uniformly at random. When a
candidate arrives for the first time, her valuation is revealed. We may decide
to mark each arrival or not, though the next candidate only arrives once such
a marking decision has been made permanent and cannot be changed later
on. Consider all the hth arrivals of candidates, 1 ≤ h ≤ k. If we successfully
marked the hth arrival of the Kth candidate but no hth arrival of a better
candidate, we win a point. In total, we can win up to h points. Let P (K, k, n)
be the expected number of points an optimal online algorithm scores for
the three values K, k and n on general valuations v1, . . . , vn. Similar to
the classical Secretary Problem, we are mostly interested in the limit value
P (K, k) = limn→∞ P (K, k, n).

In order to ensure transferability to Machine Covering, we require an
extra technicality. Given λ ≥ 1, we call the valuations v1, v2, . . . , vn of
candidates λ-steep if they all differ by a factor of at least λ, i.e. there exist
no i, j such that vi < vj < λvi.

We can establish the following hardness result for the Talent Contest
Problem.

Lemma 7.3
P (K, k) ≤ ζ(k/2)·(k+1)k/2

2π
√

K
where ζ is the Riemann Zeta Function. This

bound even holds when restricted to λ-steep valuations for any λ ≥ 1.

Proof Sketch. We first show that any online algorithm, which performs well
in the Talent Contest Problem can be used to predict the value of a binomial
distributed random variable. For the latter problem the best strategy is to
guess the mode and a hardness result can be obtained. For the reduction
to work, we need to first pass over to a “stable” set of input orders. These
exclude certain malformed orders. The property of λ-steepness can be ensured
by applying the transformation v 7→ µv, for µ sufficiently high, to the initial
valuations.

Reduction to Machine Covering

Our primary reason to study the talent contest Problem is that it relates to
Machine Covering.

7.3. OPEN PROBLEMS 81

Lemma 7.4
Let m = (K−1) ·k +1 for some K and k. Then no (possibly randomized)
algorithm for Machine Covering on m machines is better than k

P (K,k)+1 -
competitive in the secretary model.

Setting K = (k + 1)k and combining Lemma 7.3 and 7.4, we can show
that no algorithm for Machine Covering in the secretary model, deterministic

or randomized, is better than
⌈

eW (ln(m))
⌉

−1
1.16+o(1) -competitive. Here, W (x) is the

upper branch of the Lambert W-function, the inverse of x 7→ xex. The main

result, Theorem 7.3, follows by observing that
⌈

eW (ln(m))
⌉

−1
1.16+o(1) ∈ Θ

(log(m)
log log(m)

)
.

7.3. Open Problems
The natural open problem is to improve the bounds from our result.

Problem 7.1
Find an algorithm that is better than Õ(4√m)-competitive or a lower
bound better than O

(log(m)
log log(m)

)
.

A second problem could be to consider the pure random-order setting
where the number n of jobs is not known in advance.

Problem 7.2
Find an algorithm that is better than Õ(

√
m)-competitive without know-

ing the total number n of jobs in advance.

Finally, the Talent Contest Problem may be of independent interest.

Problem 7.3
Find better bounds on the number P (K, k) defined above for the Talent
Contest Problem.

Bibliography
[1] S. Albers. Improved randomized on-line algorithms for the list update

problem. SIAM Journal on Computing, 27(3):682–693, 1998.

[2] S. Albers. Better bounds for online scheduling. SIAM Journal on
Computing, 29(2):459–473, 1999.

[3] S. Albers. On randomized online scheduling. In 24th annual ACM
symposium on Theory of computing, pages 134–143, 2002.

[4] S. Albers. Online algorithms. In Interactive Computation, pages
143–164. Springer, 2006.

[5] S. Albers. Online scheduling. In Introduction to scheduling, pages
71–98. CRC Press, 2009.

[6] S. Albers. Recent advances for a classical scheduling problem. In
International Colloquium on Automata, Languages, and Programming,
pages 4–14, 2013.

[7] S. Albers and A. Eckl. Explorable uncertainty in scheduling with
non-uniform testing times. In Workshop on Approximation and Online
Algorithms 2020, 2020.

[8] S. Albers, W. Gálvez, and M. Janke. Machine covering in the random-
order model. In 32nd International Symposium on Algorithms and
Computation, 2021.

[9] S. Albers and M. Hellwig. On the value of job migration in online
makespan minimization. In European Symposium on Algorithms, pages
84–95, 2012.

[10] S. Albers and M. Hellwig. Semi-online scheduling revisited. Theoretical
Computer Science, 443:1–9, 2012.

[11] S. Albers and M. Hellwig. Online makespan minimization with parallel
schedules. Algorithmica, 78(2):492–520, 2017.

[12] S. Albers and M. Janke. New bounds for randomized list update in the
paid exchange model. In 37th International Symposium on Theoretical
Aspects of Computer Science, 2020.

[13] S. Albers and M. Janke. Online makespan minimization with budgeted
uncertainty. In 17th Algorithms and Data Structures Symposium, 2021.

84 BIBLIOGRAPHY

[14] S. Albers and M. Janke. Scheduling in the random-order model. Algo-
rithmica, pages 1–30, 2021.

[15] S. Albers and M. Janke. Scheduling in the secretary model. In 41st an-
nual Conference on Foundations of Software Technology and Theoretical
Computer Science, 2021.

[16] S. Albers, A. Khan, and L. Ladewig. Improved online algorithms
for knapsack and gap in the random order model. In Approxima-
tion, Randomization, and Combinatorial Optimization. Algorithms and
Techniques, 2019.

[17] S. Albers, A. Khan, and L. Ladewig. Best fit bin packing with random
order revisited. Algorithmica, pages 1–26, 2021.

[18] S. Albers and L. Ladewig. New results for the k-secretary problem.
Theoretical Computer Science, 863:102–119, 2021.

[19] S. Albers and S. Lauer. On list update with locality of reference.
Journal of Computer and System Sciences, 82(5):627–653, 2016.

[20] S. Albers, B. von Stengel, and R. Werchner. A combined BIT and
TIMESTAMP algorithm for the list update problem. Information
Processing Letters, 56(3):135–139, 1995.

[21] S. Albers and J. Westbrook. Self-organizing data structures. In Online
Algorithms, The State of the Art, Springer LNCS 1442, pages 13–51,
1998.

[22] C. Ambühl. Offline list update is np-hard. In European Symposium on
Algorithms, pages 42–51, 2000.

[23] C. Ambühl. On the list update problem. PhD thesis, ETH Zurich, 2002.

[24] C. Ambühl, B. Gärtner, and B. Von Stengel. A new lower bound for the
list update problem in the partial cost model. Theoretical Computer
Science, 268(1):3–16, 2001.

[25] C. Ambühl, B. Gärtner, and B. von Stengel. Optimal lower bounds for
projective list update algorithms. ACM Transactions on Algorithms,
9(4):31:1–31:18, 2013.

[26] S. Angelopoulos, C. Dürr, S. Jin, S. Kamali, and M. Renault. Online
computation with untrusted advice. In 11th annual Innovations in
Theoretical Computer Science, 2020.

[27] S. Angelopoulos and P. Schweitzer. Paging and list update under
bijective analysis. Journal of the ACM, 60(2):7:1–7:18, 2013.

BIBLIOGRAPHY 85

[28] A. Asadpour and A. Saberi. An approximation algorithm for max-
min fair allocation of indivisible goods. SIAM Journal on Computing,
39(7):2970–2989, 2010.

[29] J. Aspnes, Y. Azar, A. Fiat, S. Plotkin, and O. Waarts. On-line load
balancing with applications to machine scheduling and virtual circuit
routing. In 25th annual ACM symposium on Theory of computing,
pages 623–631, 1993.

[30] J. Aspnes, Y. Azar, A. Fiat, S. Plotkin, and O. Waarts. On-line routing
of virtual circuits with applications to load balancing and machine
scheduling. Journal of the ACM, 44(3):486–504, 1997.

[31] A. Avidor, Y. Azar, and J. Sgall. Ancient and new algorithms for load
balancing in the lp norm. Algorithmica, 29(3):422–441, 2001.

[32] P. Azar, R. Kleinberg, and S. Weinberg. Prophet inequalities with
limited information. 24th annual ACM-SIAM Symposium on Discrete
Algorithms, 07 2013.

[33] Y. Azar and L. Epstein. On-line machine covering. Journal of Schedul-
ing, 1:67–77, 1998.

[34] Y. Azar, J. Naor, and R. Rom. The competitiveness of on-line assign-
ments. Journal of Algorithms, 18(2):221–237, 1995.

[35] Y. Azar and O. Regev. On-line bin-stretching. Theoretical Computer
Science, 268(1):17–41, 2001.

[36] M. Babaioff, N. Immorlica, D. Kempe, and R. Kleinberg. A knapsack
secretary problem with applications. In Approximation, randomization,
and combinatorial optimization. Algorithms and techniques, pages 16–
28. Springer, 2007.

[37] J. Balogh, J. Békési, G. Dósa, L. Epstein, and A. Levin. A new
and improved algorithm for online bin packing. arXiv preprint
arXiv:1707.01728, 2017.

[38] N. Bansal, N. Buchbinder, A. Madry, and J. Naor. A polylogarithmic-
competitive algorithm for the k-server problem. In 2011 IEEE 52nd
annual Symposium on Foundations of Computer Science, pages 267–276,
2011.

[39] N. Bansal and M. Sviridenko. The santa claus problem. In Jon M. Klein-
berg, editor, 38th annual ACM Symposium on Theory of Computing,
pages 31–40, 2006.

86 BIBLIOGRAPHY

[40] Y. Bartal, A. Fiat, H. Karloff, and R. Vohra. New algorithms for
an ancient scheduling problem. In 24th annual ACM symposium on
Theory of computing, pages 51–58, 1992.

[41] S. Ben-David and A. Borodin. A new measure for the study of on-line
algorithms. Algorithmica, 11(1):73–91, 1994.

[42] P. Berman, M. Charikar, and M. Karpinski. On-line load balancing
for related machines. Journal of Algorithms, 35(1):108–121, 2000.

[43] D. Bertsimas and M. Sim. Robust discrete optimization and network
flows. Mathematical programming, 98(1-3):49–71, 2003.

[44] D. Bertsimas and M. Sim. The price of robustness. Operations research,
52(1):35–53, 2004.

[45] M. Böhm, J. Sgall, R. Van Stee, and P. Veselỳ. A two-phase algorithm
for bin stretching with stretching factor 1.5. Journal of Combinatorial
Optimization, 34(3):810–828, 2017.

[46] A. Borodin and R. El-Yaniv. Online computation and competitive
analysis. Cambridge University Press, 1998.

[47] M. Bougeret, K. Jansen, M. Poss, and L. Rohwedder. Approximation
results for makespan minimization with budgeted uncertainty. In
International Workshop on Approximation and Online Algorithms,
pages 60–71, 2019.

[48] M. Bougeret, A. Pessoa, and M. Poss. Robust scheduling with budgeted
uncertainty. Discrete Applied Mathematics, 261:93–107, 2019.

[49] J. Boyar, S. Kamali, K.S. Larsen, and A. López-Ortiz. On the list
update problem with advice. Information and Computation, 253:411–
423, 2017.

[50] M. Burrows and D. Wheeler. A block sorting lossless data compression
algorithm. Technical Report 124, 1994.

[51] B. Chen, A. van Vliet, and G. Woeginger. A lower bound for ran-
domized on-line scheduling algorithms. Information Processing Letters,
51(5):219–222, 1994.

[52] L. Chen, K. Jansen, and G. Zhang. On the optimality of approximation
schemes for the classical scheduling problem. In 25th annual ACM-
SIAM symposium on Discrete algorithms, pages 657–668, 2014.

[53] L. Chen, D. Ye, and G. Zhang. Approximating the optimal algorithm
for online scheduling problems via dynamic programming. Asia-Pacific
Journal of Operational Research, 32(01):1540011, 2015.

BIBLIOGRAPHY 87

[54] T. Cheng, H. Kellerer, and V. Kotov. Semi-on-line multiprocessor
scheduling with given total processing time. Theoretical computer
science, 337(1-3):134–146, 2005.

[55] T. Cheng, H. Kellerer, and V. Kotov. Algorithms better than lpt for
semi-online scheduling with decreasing processing times. Operations
Research Letters, 40:349–352, 2012.

[56] I. Cohen, S. Im, and D. Panigrahi. Online two-dimensional load
balancing. In 47th International Colloquium on Automata, Languages,
and Programming, 2020.

[57] J. Correa, A. Cristi, B. Epstein, and J. Soto. The two-sided game of
googol and sample-based prophet inequalities. In 14th annual ACM-
SIAM Symposium on Discrete Algorithms, pages 2066–2081, 2020.

[58] J. Correa, A. Cristi, L. Feuilloley, T. Oosterwijk, and A. Tsigonias-
Dimitriadis. The secretary problem with independent sampling. In
32th ACM-SIAM Symposium on Discrete Algorithms, pages 2047–2058,
2021.

[59] J. Correa, P. Dütting, F. Fischer, and K. Schewior. Prophet inequalities
for iid random variables from an unknown distribution. In 20th ACM
Conference on Economics and Computation, pages 3–17, 2019.

[60] M. Crochemore, R. Grossi, J. Kärkkäinen, and G.M. Landau. Com-
puting the Burrows-Wheeler transform in place and in small space.
Journal of Discrete Algorithms, 32:44–52, 2015.

[61] G. Dantzig. Linear programming under uncertainty. Management
science, 1(3-4):197–206, 1955.

[62] P. Diaconis and S. Zabell. Closed form summation for classical distri-
butions: variations on a theme of de moivre. Statistical Science, pages
284–302, 1991.

[63] M. Dinitz. Recent advances on the matroid secretary problem. ACM
SIGACT News, 44(2):126–142, 2013.

[64] J. Dohrau. Online makespan scheduling with sublinear advice. In
International Conference on Current Trends in Theory and Practice
of Informatics, pages 177–188, 2015.

[65] R. Dorrigiv, M.R. Ehmsen, and A. López-Ortiz. Parameterized analysis
of paging and list update algorithms. Algorithmica, 71(2):330–353,
2015.

88 BIBLIOGRAPHY

[66] C. Dürr, T. Erlebach, N. Megow, and J. Meißner. Scheduling with
explorable uncertainty. In 9th Innovations in Theoretical Computer
Science Conference, 2018.

[67] C. Dürr, T. Erlebach, N. Megow, and J. Meißner. An Adversarial
Model for Scheduling with Testing. Algorithmica, pages 1–46, 2020.

[68] E. B. Dynkin. The optimum choice of the instant for stopping a Markov
process. Soviet Mathematics, 4:627–629, 1963.

[69] T. Ebenlendr, J. Noga, J. Sgall, and G. Woeginger. A note on semi-
online machine covering. In Approximation and Online Algorithms,
Third International Workshop, volume 3879, pages 110–118, 2005.

[70] T. Ebenlendr and J. Sgall. A lower bound on deterministic online
algorithms for scheduling on related machines without preemption.
Theory of Computing Systems, 56(1):73–81, 2015.

[71] R. El-Yaniv. There are infinitely many competitive-optimal online list
accessing algorithms. Hebrew University of Jerusalem, 1996.

[72] M. Englert, D. Mezlaf, and M. Westermann. Online makespan schedul-
ing with job migration on uniform machines. Algorithmica, pages 1–30,
2021.

[73] M. Englert, D. Özmen, and M. Westermann. The power of reordering
for online minimum makespan scheduling. In 2008 49th annual IEEE
Symposium on Foundations of Computer Science, pages 603–612, 2008.

[74] L. Epstein. A survey on makespan minimization in semi-online envi-
ronments. Journal of Scheduling, 21(3):269–284, 2018.

[75] L. Epstein and A. Levin. Robust algorithms for preemptive scheduling.
Algorithmica, 69(1):26–57, 2014.

[76] L. Epstein, A. Levin, and R. van Stee. Max-min online allocations
with a reordering buffer. SIAM Journal on Discrete Mathematics,
25(3):1230–1250, 2011.

[77] T. Erlebach, M. Hoffmann, and F. Kammer. Query-competitive al-
gorithms for cheapest set problems under uncertainty. Theoretical
Computer Science, 613:51–64, 2016.

[78] U. Faigle, W. Kern, and G. Turán. On the performance of on-line
algorithms for partition problems. Acta cybernetica, 9(2):107–119,
1989.

BIBLIOGRAPHY 89

[79] T. Feder, R. Motwani, R. Panigrahy, C. Olston, and J. Widom. Com-
puting the median with uncertainty. In 32nd annual ACM symposium
on Theory of computing, pages 602–607, 2000.

[80] M. Feldman, O. Svensson, and R. Zenklusen. A simple O (log log
(rank))-competitive algorithm for the matroid secretary problem. In
26th annual ACM-SIAM symposium on Discrete algorithms, pages
1189–1201, 2014.

[81] T. S. Ferguson. Who solved the secretary problem? Statistical science,
4(3):282–289, 1989.

[82] A. Fiat, R. Karp, M. Luby, L. McGeoch, D. Sleator, and N. Young.
Competitive paging algorithms. Journal of Algorithms, 12(4):685–699,
1991.

[83] A. Fiat and G. Woeginger. Online algorithms: The state of the art.
Springer, 1998.

[84] R. Fleischer and M. Wahl. On-line scheduling revisited. Journal of
Scheduling, 3(6):343–353, 2000.

[85] D. Fotakis, L. Kavouras, G. Koumoutsos, S. Skoulakis, and M. Var-
das. The online min-sum set cover problem. In 47th International
Colloquium on Automata, Languages, and Programming, 2020.

[86] PR Freeman. The secretary problem and its extensions: A review.
International Statistical Review/Revue Internationale de Statistique,
pages 189–206, 1983.

[87] D. Friesen and B. Deuermeyer. Analysis of greedy solutions for a
replacement part sequencing problem. Mathematics of Operations
Research, 6(1):74–87, 1981.

[88] M. Gabay, V. Kotov, and N. Brauner. Online bin stretching with bunch
techniques. Theoretical Computer Science, 602:103–113, 2015.

[89] G. Galambos and G. Woeginger. An on-line scheduling heuristic with
better worst-case ratio than Graham’s list scheduling. SIAM Journal
on Computing, 22(2):349–355, 1993.

[90] W. Gálvez, J. A Soto, and J. Verschae. Symmetry exploitation for
online machine covering with bounded migration. ACM Transactions
on Algorithms, 16(4):1–22, 2020.

[91] O. Göbel, T. Kesselheim, and A. Tönnis. Online appointment schedul-
ing in the random order model. In 23rd European Symposia on Algo-
rithms, pages 680–692. Springer, 2015.

90 BIBLIOGRAPHY

[92] G. Goel and A. Mehta. Online budgeted matching in random input
models with applications to Adwords. In 19th annual ACM-SIAM
symposium on Discrete algorithms, volume 8, pages 982–991, 2008.

[93] T. Gormley, N. Reingold, E. Torng, and J. Westbrook. Generating
adversaries for request-answer games. In 11th annual ACM-SIAM
symposium on Discrete algorithms, pages 564–565, 2000.

[94] R. L. Graham. Bounds for certain multiprocessing anomalies. Bell
System Technical Journal, 45(9):1563–1581, 1966.

[95] R. L. Graham. Bounds on multiprocessing timing anomalies. SIAM
Journal of Applied Mathematics, 17:416–429, 1969.

[96] E. Günther, O. Maurer, N. Megow, and A. Wiese. A new approach to
online scheduling: Approximating the optimal competitive ratio. In
24th annual ACM-SIAM Symposium on Discrete Algorithms, pages
118–128, 2013.

[97] A. Gupta, R. Mehta, and M. Molinaro. Maximizing profit with convex
costs in the random-order model. In 45th International Colloquium on
Automata, Languages, and Programming, page 71, 2018.

[98] A. Gupta and S. Singla. Random-order models. In T. Roughgarden,
editor, Beyond worst-case analysis. Cambridge University Press, 2020.

[99] M. Gupta, Y. Sabharwal, and S. Sen. The update complexity of selec-
tion and related problems. Theory of Computing Systems, 59(1):112–
132, 2016.

[100] D. Hochbaum and D. Shmoys. Using dual approximation algorithms
for scheduling problems theoretical and practical results. Journal of
the ACM, 34(1):144–162, 1987.

[101] S. Im, N. Kell, J. Kulkarni, and D. Panigrahi. Tight bounds for online
vector scheduling. SIAM Journal on Computing, 48(1):93–121, 2019.

[102] S. Im, N. Kell, D. Panigrahi, and M. Shadloo. Online load balancing
on related machines. In 50th annual ACM SIGACT Symposium on
Theory of Computing, pages 30–43, 2018.

[103] S. Irani. Two results on the list update problem. Information Processing
Letters, 38(6):301–306, 1991.

[104] K. Jansen, K. Klein, and J. Verschae. Closing the gap for makespan
scheduling via sparsification techniques. Mathematics of Operations
Research, 45(4):1371–1392, 2020.

BIBLIOGRAPHY 91

[105] D. Johnson. Fast algorithms for bin packing. Journal of Computer
and System Sciences, 8(3):272–314, 1974.

[106] S. Kahan. A model for data in motion. In 23rd annual ACM symposium
on Theory of computing, pages 265–277, 1991.

[107] S. Kamali, S. Ladra, A. López-Ortiz, and D. Seco. Context-based
algorithms for the list-update problem under alternative cost models.
In 2013 Data Compression Conference, IEEE, pages 361–370, 2013.

[108] S. Kamali and A. López-Ortiz. A survey of algorithms and models
for list update. In Space-Efficient Data Structures, Streams, and
Algorithms - Papers in Honor of J. Ian Munro on the Occasion of his
66th Birthday, pages 251–266, 2013.

[109] S. Kamali and A. López-Ortiz. Better compression through better
list update algorithms. In 2014 Data Compression Conference, IEEE,
pages 372–381, 2014.

[110] H. Kaplan, D. Naori, and D. Raz. Competitive Analysis with a Sample
and the Secretary Problem. In 14th annual ACM-SIAM Symposium
on Discrete Algorithms, pages 2082–2095, 2020.

[111] C. Karande, A. Mehta, and P. Tripathi. Online bipartite matching with
unknown distributions. In 23rd annual ACM symposium on Theory of
computing, pages 587–596, 2011.

[112] D. Karger, S. Phillips, and E. Torng. A better algorithm for an ancient
scheduling problem. Journal of Algorithms, 20(2):400–430, 1996.

[113] A. Karlin, M. Manasse, Lyle A. McGeoch, and S. Owicki. Competi-
tive randomized algorithms for nonuniform problems. Algorithmica,
11(6):542–571, 1994.

[114] A. Karlin, M. Manasse, L. Rudolph, and D. Sleator. Competitive
snoopy caching. Algorithmica, 3(1):79–119, 1988.

[115] R. Karp and P. Raghavan. Personal communication cited in [143].

[116] R. Karp, U. V. Vazirani, and V. V. Vazirani. An optimal algorithm
for on-line bipartite matching. In 22nd annual ACM symposium on
Theory of computing, pages 352–358, 1990.

[117] H. Kellerer and V. Kotov. An efficient algorithm for bin stretching.
Operations Research Letters, 41(4):343–346, 2013.

[118] H. Kellerer, V. Kotov, and M. Gabay. An efficient algorithm for
semi-online multiprocessor scheduling with given total processing time.
Journal of Scheduling, 18(6):623–630, 2015.

92 BIBLIOGRAPHY

[119] H. Kellerer, V. Kotov, M. Speranza, and Tuza Z. Semi on-line al-
gorithms for the partition problem. Operations Research Letters,
21(5):235–242, 1997.

[120] C. Kenyon. Best-Fit Bin-Packing with Random Order. In 7th annual
ACM-SIAM symposium on Discrete algorithms, volume 96, pages 359–
364, 1996.

[121] T. Kesselheim, A. Tönnis, K. Radke, and B. Vöcking. Primal beats
dual on online packing LPs in the random-order model. In 26th annual
ACM symposium on Theory of computing, pages 303–312, 2014.

[122] S. Khanna and W. Tan. On computing functions with uncertainty. In
20th ACM SIGMOD-SIGACT-SIGART symposium on Principles of
database systems, pages 171–182, 2001.

[123] R. Kleinberg. A multiple-choice secretary algorithm with applications
to online auctions. In 16th annual ACM-SIAM symposium on Discrete
algorithms, volume 5, pages 630–631, 2005.

[124] N. Korula, V. Mirrokni, and M. Zadimoghaddam. Online submodular
welfare maximization: Greedy beats 1/2 in random order. SIAM
Journal on Computing, 47(3):1056–1086, 2018.

[125] E. Koutsoupias and C. Papadimitriou. On the k-server conjecture.
Journal of the ACM, 42(5):971–983, 1995.

[126] O. Lachish. O (log log rank) competitive ratio for the matroid secretary
problem. In 2014 IEEE 55th annual Symposium on Foundations of
Computer Science, pages 326–335, 2014.

[127] L. Ladewig. Online Algorithms for Packing Problems in the Random-
Order Model. PhD thesis, Universität München, 2021.

[128] D. Lindley. Dynamic programming and decision theory. Journal of
the Royal Statistical Society: Series C (Applied Statistics), 10(1):39–51,
1961.

[129] A. López-Ortiz, M.P. Renault, and A. Rosén. Paid exchanges are worth
the price. In 32nd International Symposium on Theoretical Aspects of
Computer Science, LIPIcs 30, pages 636–648, 2015.

[130] M. Mahdian and Q. Yan. Online bipartite matching with random
arrivals: an approach based on strongly factor-revealing lps. In 43rd
annual ACM symposium on Theory of computing, pages 597–606, 2011.

[131] M. Manasse, L. McGeoch, and D. Sleator. Competitive algorithms for
on-line problems. In Proc. 20th annual ACM Symposium on Theory of
Computing, pages 322–333, 1988.

BIBLIOGRAPHY 93

[132] G. Manzini. An analysis of the Burrows-Wheeler transform. Journal
of the ACM, 48(3):407–430, 2001.

[133] J. McCabe. On serial files with relocatable records. Operations Research,
12:609–618, 1965.

[134] A. Meyerson. Online facility location. In 42nd IEEE Symposium on
Foundations of Computer Science, pages 426–431, 2001.

[135] V. Mirrokni, S. Gharan, and M. Zadimoghaddam. Simultaneous ap-
proximations for adversarial and stochastic online budgeted allocation.
In 23rd annual ACM-SIAM symposium on Discrete Algorithms, pages
1690–1701, 2012.

[136] M. Molinaro. Online and random-order load balancing simultaneously.
In 28th annual ACM-SIAM Symposium on Discrete Algorithms, pages
1638–1650, 2017.

[137] C. Olston and J. Widom. Offering a precision-performance tradeoff for
aggregation queries over replicated data. Technical report, Stanford,
2000.

[138] Neil Olver, Kirk Pruhs, Kevin Schewior, René Sitters, and Leen Stougie.
The itinerant list update problem. In Approximation and Online Algo-
rithms: 16th International Workshop, WAOA 2018, Helsinki, Finland,
August 23-24, 2018, Revised Selected Papers, pages 310–326. Springer,
2018.

[139] C. Osborn and E. Torng. List’s worst-average-case or WAC ratio.
Journal of Scheduling, 11(3):213–215, 2008.

[140] J. Petruccelli. Best-choice problems involving uncertainty of selection
and recall of observations. Journal of Applied Probability, 18(2):415–425,
1981.

[141] K. Pruhs, J. Sgall, and E. Torng. Online scheduling. CRC Press, 2003.

[142] N. Reingold and J. Westbrook. Off-line algorithms for the list update
problem. Information Processing Letters, 60(2):75–80, 1996.

[143] N. Reingold, J. Westbrook, and D. Sleator. Randomized competitive
algorithms for the list update problem. Algorithmica, 11(1):15–32,
1994.

[144] A. Roy, M. Bougeret, N. Goldberg, and M. Poss. Approximating robust
bin packing with budgeted uncertainty. In Workshop on Algorithms
and Data Structures, pages 71–84, 2019.

94 BIBLIOGRAPHY

[145] J. Rudin III. Improved bounds for the on-line scheduling problem. PhD
thesis, University of Phoenix, 2001.

[146] J. Rudin III and R. Chandrasekaran. Improved bounds for the online
scheduling problem. SIAM Journal on Computing, 32(3):717–735,
2003.

[147] S. Samuels. Minimax stopping rules when the underlying distribution is
uniform. Journal of the American Statistical Association, 76(373):188–
197, 1981.

[148] P. Sanders, N. Sivadasan, and M. Skutella. Online scheduling with
bounded migration. Mathematics of Operations Research, 34(2):481–
498, 2009.

[149] P. Sanders, N. Sivadasan, and M. Skutella. Online scheduling with
bounded migration. Mathematics of Operations Research, 34(2):481–
498, 2009.

[150] S. Seiden, J. Sgall, and G. Woeginger. Semi-online scheduling with
decreasing job sizes. Operations Research Letters, 27:215–221, 2000.

[151] J. Sgall. A lower bound for randomized on-line multiprocessor schedul-
ing. Information Processing Letters, 63(1):51–55, 1997.

[152] J. Sirén. Burrows-Wheeler transform for terabases. In 2016 Data
Compression Conference, IEEE, pages 211–220, 2016.

[153] D. Sleator and R. Tarjan. Amortized efficiency of list update and
paging rules. Communications of the ACM, 28(2):202–208, 1985.

[154] T. Stewart. Optimal selection from a random sequence with learning
of the underlying distribution. Journal of the American Statistical
Association, 73(364):775–780, 1978.

[155] B. Tadayon and J. Smith. Algorithms and complexity analysis for
robust single-machine scheduling problems. Journal of Scheduling,
18(6):575–592, 2015.

[156] B. Teia. A lower bound for randomized list update algorithms. Infor-
mation Processing Letters, 47(1):5–9, 1993.

[157] G. Woeginger. A polynomial-time approximation scheme for maxi-
mizing the minimum machine completion time. Operation Research
Letters, 20:149–154, 1997.

Appendix A

Randomized List Update in the
Paid Exchange Model
Bibliographic Information The List-Update Problem in the Paid Ex-
change Model. S. Albers, M. Janke. 37th Symposium on Theoretical Aspects
of Computer Science (STACS) 2020

Summary of Contributions The List Update problem in the paid
exchange model, or P d model, is studied in depth. A given item list has to
be maintained using paid exchanges. Each exchange incurs general cost d.
Free exchanges are not allowed. This resembles realistic list implementations,
where rearrangement is more expensive than simple traversal.

A generalization of the TIMESTAMP algorithm from [1] is analyzed,
which is 2.2442-competitive. The analysis introduces a novel approach of
phase subdivision and cost shifting to master requests.

This result is complemented by new lower bounds for randomized algo-
rithms. Such bounds were not known before. All algorithms in the literature
are analyzed, in fact, in the partial cost model, where the cost for serving
each request is reduced by 1. We provide a general lower bound of 2 for
randomized algorithms in the partial cost model. We also show that no
randomized algorithm can be better than 1.8654-competitive.

Individual Contributions
• Development of the upper bound. In particular, proposal to study

TIMESTAMP(l,p) in randomized settings, introduction of refined costs
and analysis leading to the upper bound.

• Development of the lower bound. In particular, the creation of the
randomized sequence SN , as well as evaluation of OPT on two-item-lists
and of algorithm family Bh for general lists.

• Composition of the first draft of the manuscript excluding introduction
and abstract. Included are all other technical and non-technical parts
(later significantly revised and improved by S. Albers).

Nearly Tight Bounds for Randomized List Update1

in the Paid Exchange Model2

Susanne Albers3

Department of Computer Science, Technical University of Munich4

albers@in.tum.de5

Maximilian Janke6

Department of Computer Science, Technical University of Munich7

maximilian.janke@in.tum.de8

Abstract9

We study the fundamental list update problem in the paid exchange model P d. This cost model10

was introduced by Manasse, McGeoch and Sleator [17] and Reingold, Westbrook and Sleator [22].11

Here the given list of items may only be rearranged using paid exchanges; each swap of two adjacent12

items in the list incurs a cost of d. Free exchanges of items are not allowed. The model is motivated13

by the fact that, when executing search operations on a data structure, key comparisons are less14

expensive than item swaps.15

We develop a new randomized online algorithm that achieves an improved competitive ratio16

against oblivious adversaries. For large d, the competitiveness tends to 2.2442. Technically, the17

analysis of the algorithm relies on a new approach of partitioning request sequences and charging18

expected cost. Furthermore, we devise lower bounds on the competitiveness of randomized algorithms19

against oblivious adversaries. No such lower bounds were known before. Specifically, we prove20

that no randomized online algorithm can achieve a competitive ratio smaller than 2 in the partial21

cost model, where an access to the i-th item in the current list incurs a cost of i− 1 rather than22

i. All algorithms proposed in the literature attain their competitiveness in the partial cost model.23

Furthermore, we show that no randomized online algorithm can achieve a competitive ratio smaller24

than 1.8654 in the standard full cost model. Again the lower bounds hold for large d.25

2012 ACM Subject Classification Theory of computation → Online algorithms26

Keywords and phrases self-organizing lists, online algorithm, competitive analysis, lower bound27

Digital Object Identifier 10.4230/LIPIcs.STACS.2020.28

© S. Albers, M. Janke;
licensed under Creative Commons License CC-BY

37th International Symposium on Theoretical Aspects of Computer Science (STACS 2020).
Editors: Markus Bläser and Christophe Paul; Article No. ; pp. :1–:36

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

XX:2 Nearly Tight Bounds for Randomized List Update in the Paid Exchange Model

1 Introduction29

In this paper we revisit the list update problem, one of the most basic problems in the theory30

of online algorithms [7, 24]. The goal is to maintain an unsorted linear linked list of items so31

that a sequence of accesses to these items can be served with low total cost. Unsorted linear32

lists are sensible when one has to store a small dictionary consisting of a few dozen items.33

Moreover, they have interesting applications in data compression. In fact, the standard34

compression program bzip2 relies on a combination of the Burrows-Wheeler transform and35

linear list encoding [9, 10, 18, 23].36

Early work on the list update problem dates back to the 1960s [20]. Over the past decades37

an extensive body of literature has been developed, see e.g. [1, 2, 5, 6, 7, 8, 11, 12, 22, 24] and38

references therein. List update in the standard model is well understood. In this setting the39

cost of an access is equal to the depth of the referenced item in the current list. Immediately40

after an access the requested item may be moved at no extra cost to any position closer41

to the front of the list (free exchanges). Any other swap of two adjacent items in the list42

incurs a cost of 1 and is called a paid exchange. During the last years, research on the list43

update problem has explored (1) alternative cost models [13, 14, 19, 21], (2) refined input44

models capturing locality of reference [2, 6, 11], and (3) the value of algorithmic service45

abilities [8, 14, 16].46

We investigate the list update problem in the P d model, i.e. the paid exchange model,47

introduced by Manasse, McGeoch and Sleator [17] as well as Reingold, Westbrook and48

Sleator [22]. In this model there are no free exchanges and each paid exchange, swapping a49

pair of adjacent items in the list, incurs a cost of d, where d ≥ 1 is a real-valued constant.50

The model is motivated by the fact that the execution time of a program swapping a pair51

of adjacent items in the list is typically much higher than that of the program doing one52

iteration of the search loop. Moreover, bringing a referenced element closer to the front of53

the list does incur cost. As main result we develop nearly tight upper and lower bounds on54

the competitive ratio achieved by randomized online algorithms.55

Problem formulation: In the list update problem we are given an unsorted linear56

linked list L of n items. An algorithm is presented with a sequence σ = σ(1), . . . , σ(m) of57

requests that must be served in the order of occurrence. Each request σ(t), 1 ≤ t ≤ m,58

specifies an item in the list. In order to serve a request, an algorithm has to access the59

requested item, i.e. it has to start at the front of the list and search linearly through the60

items until the referenced item is found. Hence an access to the i-th item in the list incurs a61

cost of i. In the standard model, immediately after a request, the referenced item may be62

moved at no extra cost to any position closer to the front of the list. These exchanges are63

called free exchanges. Moreover, at any time, two adjacent items in the list may be swapped64

at a cost of 1. Such exchanges are called paid exchanges.65

In contrast, in the paid exchange model P d, there are no free exchanges. The list can66

only be rearranged using paid exchanges. Each paid exchange incurs a cost of d, where d ≥ 167

is an arbitrary, real-valued constant. Following Reingold, Westbrook and Sleator [22] we68

assume that the service of a request σ(t), 1 ≤ t ≤ m, proceeds as follows: First an algorithm69

performs a number of paid exchanges; then the item referenced by σ(t) is accessed. In general,70

in both the standard and the P d model, the goal is to serve a request sequence so that the71

total cost is as small as possible.72

An online algorithm has to serve each request without knowledge of any future requests.73

Given a request sequence σ, let CA(σ) and COPT(σ) denote the costs incurred by an online74

algorithm A and an optimal offline algorithm OPT in serving σ. A deterministic online75

S. Albers, M. Janke XX:3

algorithm A is called c-competitive if there exists an α such that CA(σ) ≤ c · COPT(σ) + α76

holds for all request sequences σ. The value α must be independent of the input σ but77

may depend on the list length n. A randomized online algorithm A is c-competitive against78

oblivious adversaries if there exists an α such that E[CA(σ)] ≤ c · COPT(σ) + α holds for79

all σ. Here the expectation is taken over the random choices made by A.80

Previous work: Due to the wealth of results on the list update problem, we only mention81

the most important contributions relevant to our work. First we focus on the standard model.82

In their seminal paper [24], Sleator and Tarjan showed that the deterministic MOVE-TO-83

FRONT algorithm is 2-competitive. This is the best competitiveness a deterministic online84

strategy can attain [15]. Subsequent research developed randomized online algorithms against85

oblivious adversaries. Irani [12] gave a SPLIT algorithm that is 1.9375-competitive. Reingold86

et al. [22] devised a family of COUNTER algorithms and showed that the best of these87

achieve a competitive ratio of 85/49 ≈ 1.7346. In the same paper a generalized RANDOM88

RESET algorithm attains a competitive ratio of
√

3 ≈ 1.7321. A family of TIMESTAMP89

algorithms was developed in [1]. They attain a competitiveness equal to the Golden Ratio90

(1 +
√

5)/2 ≈ 1.6180. The best randomized algorithm currently known is 1.6-competitive [3].91

The algorithm is a combination of specific instances of the COUNTER and TIMESTAMP92

families.93

As for lower bounds, Teia [25] showed that no randomized online algorithm can be94

better than 1.5-competitive against oblivious adversaries. Ambühl et al. [5] showed that no95

projective randomized online algorithm can be better than 1.6-competitive against oblivious96

adversaries in the partial cost model. In the partial cost model an access to the i-th item in97

the list incurs a cost of i− 1 rather than i. Moreover, an algorithm is projective if it suffices98

to consider pairs of items. Specifically, the relative order of any two items in the list only99

depends on the previous requests to those elements. All the algorithms mentioned above,100

except for SPLIT, are projective.101

Recent research on the standard model has proposed models capturing locality of reference102

in request sequences [2, 6, 11]. Furthermore, Lopez-Ortiz et al. [16] analyzed the value of103

paid exchanges. They showed a lower bound of 12/11 on the worst-case ratio between the104

performance of an offline algorithm that uses only free exchanges and that of an offline105

algorithm that uses both paid and free exchanges. Boyar et al. [8] analyzed the list update106

problem with advice, where an online algorithm has partial information on future requests.107

We next consider the P d model. So far only COUNTER and RANDOM RESET108

algorithms have been studied. The best deterministic online algorithm currently known109

achieves a competitive ratio of (5 +
√

17)/2 ≈ 4.5616 [4]. No deterministic online algorithm110

can be better than 3-competitive [22]. Reingold et al. [22] gave a randomized COUNTER111

algorithm. For d = 1, the algorithm is 2.75-competitive against oblivious adversaries. For112

increasing d, the competitiveness decreases and tends to (5 +
√

17)/4 ≈ 2.2808. For small113

values of d, their RANDOM RESET algorithm achieves competitive ratios that are slightly114

smaller than those of the COUNTER algorithm. No lower bounds on the performance of115

randomized online algorithms against oblivious adversaries are known.116

As for other cost models, Munro [21] and Kamali et al. [13] proposed settings that are117

interesting in data compression applications. Specifically, after an access to the i-th item in118

the list, all items up to position i can be rearranged at a cost proportional to i. In an even119

stronger model of theirs the whole list can be rearranged free of charge.120

Our contribution: We present a comprehensive study of the list update problem121

in the P d model. First in Section 3 we develop a new randomized online algorithm122

STACS 2020

XX:4 Nearly Tight Bounds for Randomized List Update in the Paid Exchange Model

TIMESTAMP(l, p), which is defined for any positive integer l and any probability p, 0 ≤ p ≤ 1.123

The strategy incorporates features of the TIMESTAMP algorithm in the standard model124

and the COUNTER algorithm in the P d model. In the P d model one cannot afford to move125

a referenced item closer to the front of the list on every request to that item. Therefore, for126

every item in the list, TIMESTAMP(l, p) maintains a mod l counter. These counters are127

initialized independently and uniformly at random. When an item is requested, its counter128

value is decremented by 1. If the counter switches from 0 to l − 1, we say that a master129

request to that item occurs. On a master request to x, with probability p, item x is moved130

to the front of the list. Otherwise, with probability 1− p, item x is inserted in front of the131

first item y in the list such that (a) at most one master request to y occurred since the last132

master request to x and (b) the possible master request to y was also handled according to133

this latter policy, i.e. y was not moved to the front.134

TIMESTAMP(l, p) achieves an improved competitive ratio of c < 2.2442 against oblivious135

adversaries, as d grows. A main contribution of this paper is a new analysis technique.136

TIMESTAMP(l, p) is projective so that it can be analyzed on pairs of items. However in the137

P d model, in contrast to the standard model, it is hard to keep track of the optimal offline138

algorithm. Specifically, it does not hold true anymore that after two consecutive requests to139

the same item, that item precedes the other item in the optimum list. Therefore we define a140

more general phase partitioning of request sequences. A phase ends whenever the optimum141

offline algorithm OPT changes the relative order of the two considered items in the list.142

Hence the analysis is guided by OPT’s moves. In particular, each phase can be assigned143

the cost of one paid exchange performed by OPT. The challenge is to estimate the cost of144

TIMESTAMP(l, p) without making any assumptions on the request pattern at the end of a145

phase. In order to analyze any phase, we also devise a new framework to charge expected146

service cost.147

In Section 4 we develop lower bounds. We prove that, against oblivious adversaries148

and as d goes to infinity, no randomized online algorithm can achieve a competitive ratio149

smaller than 1.8654. Furthermore, we show that no randomized online algorithm can attain a150

competitiveness smaller than 2− 1/2d against oblivious adversaries in the partial cost model,151

for general d.No lower bound against oblivious adversaries was known before.152

In order to establish our lower bounds, we devise a probability distribution on request153

sequences: The items of a given list are requested in cyclic order. The number of consecutive154

requests to the same item is distributed geometrically with mean 2d. We then compare155

expected online and offline cost. The analysis of the expected cost incurred by OPT is quite156

involved. In the partial cost model we partition a request sequence into phases, each ending157

with a certain surplus of requests to the same item, so that OPT will move that item to158

the front of its list. As for the lower bound in the full cost model, we prove that we may159

restrict ourselves to the partial cost model and request sequences referencing two items,160

provided that we consider projective offline algorithms. Unfortunately, OPT is not projective.161

Therefore, we define a family of projective offline algorithms and analyze their cost using a162

Markov chain.163

2 Preliminaries164

Given any algorithm A for list update in the P d model, let CA(σ) denote its costs incurred in165

serving a request sequence σ. We will consider both the full cost model and the partial cost166

model. Again, in the former model, an access to the i-th item in the current list incurs a cost167

of i. In the latter one the access cost is i− 1 only. We use the notation Cfull
A (σ) and Cpart

A (σ)168

S. Albers, M. Janke XX:5

to refer to the respective costs when this is needed. Observe that Cfull
A (σ) = Cpart

A (σ) +m,169

where m = |σ| is the length of σ. Hence, if an online algorithm is c-competitive in the170

partial cost model, it is also c-competitive in the full cost model. Therefore, we will analyze171

TIMESTAMP(l, p) in the partial cost model.172

We will prove in Section 3 that TIMESTAMP(l, p) is projective so that it can be analyzed173

using item pairs. An algorithm is projective if, for any request sequences σ and any pair x, y174

of items, the relative order of x and y in the list is always the same as if only references175

to x and y were served on the respective two-item list. Formally consider an algorithm A,176

a list L and two distinct items x, y ∈ L. Let σ be an arbitrary request sequence. Starting177

from an initial list configuration L(0), let LA(σ) be the list state immediately after A has178

served σ. Let LA(σ)xy be the list obtained from LA(σ) by deleting all items other than x179

and y. Next consider the projected request sequence σxy, obtained from σ by deleting all180

requests that are neither to x nor to y. Moreover, let L(0)xy be the list derived from L(0) by181

removing all items, except for x and y. Finally, starting with L(0)xy, let LA(σxy) be the list182

immediately after A has served σxy. If A is a randomized algorithm, its random choices on183

σxy are identical to those on the requests to x and y in σ.184

I Definition 1. An algorithm A is projective if, for any request sequence σ and any pair x, y185

of distinct items of a list L, there holds LA(σ)xy = LA(σxy).186

The following proposition states that projective algorithms can be analyzed by focusing on187

item pairs. The proof is standard and given in Appendix A.188

I Proposition 2. Consider the partial cost model. A projective online algorithm A is c-189

competitive if and only if it is c-competitive on request sequences referencing only two items,190

which are served on a two-item list.191

We call an algorithm A strictly c-competitive on σ if we have CA(σ) ≤ c · COPT(σ). We192

will also apply this notion to subsequences λ = σ(t) . . . σ(t′) of σ. It is an obvious but193

very useful fact that A is strictly c-competitive on a sequence σ if we can divide σ into194

subsequences σ = λ1 . . . λh such that A is strictly c-competitive for each λi, 1 ≤ i ≤ h.195

Here we assume that OPT serves the entire sequence σ and evaluate OPT’s cost on each196

subsequence λ1, . . . , λh.197

3 The TIMESTAMP(l, p)-algorithm198

3.1 The algorithm199

Our new algorithm TIMESTAMP(l, p), we refer to it by TS(l, p) or TS for short, is the200

generalization of TIMESTAMP(p) for the standard cost model [1]. In the P d model item201

exchanges are expensive and one can afford them only once in a while. Therefore, for every202

item x in the given list L, our algorithm maintains a mod l counter c(x), taking values in203

{0, . . . , l − 1}, for some positive integer l. The counter is initialized uniformly at random204

and independently of other items.205

Consider a request σ(t), referencing item x. There are two cases. If c(x) > 0 before the206

request, then c(x) is decremented by 1 and the position of x remains unchanged in the current207

list. On the other hand, if c(x) = 0, then a master request occurs. TIMESTAMP(l, p) resets208

c(x) to l − 1 and moves x closer to the front of the list, choosing among two policies. With209

probability p, item x is simply moved to the front of the list (Policy 1). With probability210

1− p, item x is moved more reluctantly (Policy 2). Specifically, the algorithm determines the211

longest suffix λ(t) of the request sequence ending with σ(t) such that λ(t) contains exactly212

STACS 2020

XX:6 Nearly Tight Bounds for Randomized List Update in the Paid Exchange Model

one master request to x, namely the one at σ(t). The algorithm then identifies the first item213

z in the current list such that at most one master request to z occurs in λ(t) and the possible214

master request was also served using Policy 2. The algorithm TIMESTAMP(l, p) moves x in215

front of z in the list. Observe that x satisfies the conditions formulated for item z so that x216

does not move backward in the list. The intuition of Policy 2 is to pass items whose request217

frequency, measured in terms of master requests, is not higher than that of x. A pseudo-code218

description of TIMESTAMP(l, p) is given in Algorithm 1.219

Note that, for any item x, two master requests are separated by l − 1 regular requests to220

x so that the item is not moved too often. Since c(x) is initialized uniformly at random, the221

cycles consisting of a master request followed by l − 1 regular requests to x are shifted in222

a random fashion in σ. In particular, with probability 1/l a request to x happens to be a223

master request.224

Algorithm 1 TIMESTAMP(l, p)
1: Let σ(t) = x;
2: if c(x) > 0 then
3: c(x)← c(x)− 1;
4: else // σ(t) is a master request
5: c(x)← l − 1;
6: With probability p, serve σ(t) using Policy 1 and

with probability 1− p serve it using Policy 2;
7: Policy 1: Move x to the front of the list.
8: Policy 2: Let λ(t) be the longest suffix of the sequence ending with σ(t) in which

exactly one master request to x occurs. Let z be the first item in the current list for
which at most one master request occurs in λ(t) and the possible master request was
served using Policy 2. Move x in front of z in the list.

Theorem 3 gives the competitive ratio of TS(l, p), which is the maximum of six expressions.225

Nonetheless, the maximum can be determined exactly and truly optimal, algebraic values for226

p, l and hence the competitive ratio c can be computed. Details are given in Appendix B.1.227

By plugging in p = 0.45787 and ϕ = l/d = 1.19390, the reader can verify that indeed228

c < 2.2442. For the optimal choice of p and ϕ, there holds c1 = c2 = c3 while the other ratios229

are smaller.230

I Theorem 3. Let ϕ = l
d . TS(l, p) is c-competitive, where c is the maximum of the following231

expressions.232

233

c1 = 1 +
(1

2 + max{1, 2p}(1− p)
)
ϕ c2 = 7−3p

4 + 1
ϕ c3 = 1 + 3p

2 − p2 + 2p
ϕ

c4 = 3−p+p2

2 + 2(1−2p+2p2)
ϕ c5 = 3+p−p2

2 + 2p2

ϕ c6 = 2− p+ 1−p
ϕ

As d goes to infinity, there holds c < 2.2442, when choosing p ≈ 0.45787 and l such that234

ϕ ≈ 1.19390.235

3.2 The analysis236

We will prove that TS(l, p) is c-competitive in the partial cost model, for the ratio c stated237

in Theorem 3. As explained in Section 2 this immediately implies c-competitiveness in the238

full cost model. It is easy to verify that TS(l, p) is projective. A proof of the following239

proposition in given in Appendix B.2.240

I Proposition 4. The algorithm TS(l, p) is projective.241

S. Albers, M. Janke XX:7

Therefore, we may consider an arbitrary request sequence σ, referencing two items x and y,242

that is served on a two-item list. We will compare the expected cost incurred by TS(l, p) to243

the cost of OPT on σ.244

A simple observation is that at any time while TS(l, p) serves σ, the counter value of245

any item is uniformly distributed over {0, . . . , l − 1}, independently of the counters of other246

items. This holds true because the counter value of an item, at any time, is equal to its247

initial value minus the number of requests to that item served so far modulo l. We will use248

this fact repeatedly.249

The analysis of TS(l, p) crucially relies on a new phase partitioning of σ, together with250

a sophisticated cost charging scheme. More precisely, the service cost of a request to an251

item is paid at the next master request to that item, provided it occurs in the current phase.252

Moreover, specific cost will be assigned to master requests so that expected service cost253

within a phase can be analyzed independently of counter values at the beginning or during254

the phase.255

Phases and pre-refined cost256

Phase partitioning: Given an arbitrary request sequence σ, we partition it into phases.257

The first phase starts with the first request in σ. Whenever OPT exchanges the two items x258

and y, the current phase ends and a new phase starts. Recall that in response to a request,259

an algorithm may first exchange items. Then the request is served. Hence, when OPT swaps260

x and y, the most recent request served is the final one of the current phase. The upcoming261

request is the first one in the new phase. The last phase ends with the last request in σ.262

Suppose that σ has been partitioned into phases λ1, . . . , λk. We will prove that, for any263

phase λi, TS(l, p)’s expected cost is upper bounded by c times the cost paid by OPT, where264

c is the ratio given in Theorem 3. This establishes the theorem. In analyzing a phase, we265

charge OPT a cost of d for the item swap done at the beginning of the phase, in addition266

to the service cost. We will charge this cost of d also in the first phase λ1. This way we267

overestimate OPT’s cost on σ by d, which does not affect the competitive ratio.268

Now consider an arbitrary phase λ = λi. In the following y denotes the item stored at269

the first position in OPT’s list. Item x is the one stored at the second position, behind y.270

Thus OPT incurs a service cost of 1 for each reference to x. Requests to y cost 0. Item x271

will be the good item because its service cost can be used to balance TS(l, p)’s cost. Item y272

will be the bad item.273

Pre-refined cost: We wish to evaluate the algorithms’ cost in λ without considering274

neighboring phases and by focusing on master requests. Therefore, in a series of two steps,275

we will pass over to a refined cost setting. First, we define pre-refined cost for TS(l, p). The276

service cost incurred by TS(l, p) on a request to an item z ∈ {x, y} is charged at the next277

master request to z in the phase, if it exists. This charging scheme is applied even if the278

reference to z itself is a master request. We have to take care of service cost incurred on279

requests that are not followed by a master request in the phase.280

For the item y, we simply append l requests to y at the end of the phase. Then an281

additional master request to y occurs at the end of the phase and the service cost of previous,282

unpaid requests to y is covered. Indeed we will add 2l requests to y so that any phase ends283

with two master requests to y. This will be convenient in the further phase analysis. The284

service cost of OPT does not increase by the addition of requests to y. We remark that in285

analyzing a phase, we will make no assumptions regarding TS(l, p)’s list configuration at the286

beginning of the phase.287

As for the requests to x that are not followed by a master request to x in the phase, we288

STACS 2020

XX:8 Nearly Tight Bounds for Randomized List Update in the Paid Exchange Model

have to be more careful. By adding additional requests to x at the end of a phase or at289

the beginning of the next phase, thereby creating new master requests to x, we can in fact290

lower TS(l, p)’s cost incurred for paid exchanges on subsequent requests. This would not be291

feasible. Therefore, regarding requests to x that are not followed by a master request to x in292

a given phase, we ignore their cost. Instead, at the first master request to x in the phase, if it293

exists, we charge TS(l, p) a cost of l no matter how many non-master requests have occured294

so far. We will show in Lemma 6 below that TS(l, p)’s expected cost does not decrease when295

changing over to the pre-refined cost setting. For further reference, the following definition296

summarizes this cost charging scheme.297

I Definition 5. In the pre-refined cost setting, 2l requests to the bad item y are appended at298

the end of a given phase. TS(l, p)’s cost incurred at a request to z ∈ {x, y} is charged to the299

next master request to z in the phase, if such a request exists. At the first master request to300

the good item x in the phase, if it exists, a cost of l is charged to TS(l, p).301

I Lemma 6. TS(l, p)’s expected cost in a phase does not decrease when passing over to the302

pre-refined cost setting.303

The proof is given in Appendix B.3. The main idea is to show that, for item x, the expected304

extra cost charged at the first master request covers expected cost ignored at the end of the305

phase. From now on we evaluate TS(l, p)’s cost in the pre-refined cost setting.306

Counter fixing for x and refined cost307

Given a phase λ, we split OPT’s cost so that OPT also incurs service cost at the master308

requests to x, in addition to the cost for the paid exchange. In particular, this will allow309

us to fix the counter value of x at the beginning of λ and compare the cost of TS(l, p) to310

that of OPT. Let E[CTS(λ)] denote TS(l, p)’s expected cost in λ. Moreover, let cx be the311

counter value of x at the beginning of λ. Finally E[CcTS(λ)] denotes TS(l, p)’s expected cost312

conditioned on cx = c. Since cx takes any value in {0, . . . , l − 1} with equal probability 1/l,313

there holds E[CTS(λ)] = 1/l ·∑l−1
c=0 E[CcTS(λ)].314

Assume that λ contains kl + j requests to x, for some k ≥ 0 and 0 ≤ j ≤ l − 1. Then315

OPT’s cost in λ is equal to COPT(λ) = d+ kl + j. Let kc be the number of master requests316

to x in λ conditioned on cx = c. If c < j, then kc = k + 1; otherwise kc = k.317

Define CcOPT(λ) := d + kcl. Then 1/l ·∑l−1
c=0 C

c
OPT(λ) = d +

∑l−1
c=0 kc = d + j(k + 1) +318

(l − j)k = d+ kl + j = COPT(λ). This implies319

E[CTS(λ)]
COPT(λ) = 1/l ·∑l−1

c=0 E[CcTS(λ)]
1/l ·∑l−1

c=0 C
c
OPT(λ)

≤ max
c

{
E[CcTS(λ)]
CcOPT(λ)

}
.320

Hence in the following we consider a fixed cx = c and upper bound E[CcTS(λ)]/CcOPT(λ). We321

emphasize that CcOPT(λ) charges service cost l to every master request to x.322

We next partition a given phase λ into a prephase and a postphase, i.e. λ = λpreλpost. The323

prephase λpre starts at the first request in λ and ends right before the first master request324

to x in the phase. If no master request to x exists in λ, then λpre ends with the last request325

in λ and the postphase is empty. The cost of d the algorithm OPT incurs due to the paid326

exchange made at the beginning of the phase counts for the prephase, while the cost of l the327

optimum algorithm pays at any master request to x is charged in the postphase.328

The remainder of this section is devoted to evaluating TS(l, p)’s expected cost on λpre329

and λpost. For the analysis on λpost, in a second step, we change over to a refined cost330

setting that applies in λpost. In this framework TS(l, p) is charged a pessimistic cost of l at331

S. Albers, M. Janke XX:9

every master request to x if item x is not at the front of the list when the request occurs.332

Moreover, master requests to x are charged the service cost of requests to item y: If after a333

master request to x algorithm TS(l, p) has item x at the front of the list, then the request334

is charged an additional cost of l/2 to pay the service cost of references to y until the next335

master request to y occurs. A master request to y is assigned a cost of l if item y has been336

at the back of TS(l, p)’s list since the last master request to y. This covers the remaining337

cost for requests to y. Lemma 8 below shows that TS(l, p)’s expected cost does not decrease338

when passing over to the refined cost.339

I Definition 7. In the refined cost setting for TS(l, p) in λpost, a master request to x is340

charged a base cost of l if the master request is the first one to x in λpost (and hence λ) or if341

x is not at the front of TS(l, p)’s list when the request is presented. An additional cost of342

l/2 is charged at the master request to x if, after service of the request, x is at the front of343

TS(l, p)’s list. A master request to y in λpost is charged a bad cost of l if y has been at the344

back of TS(l, p)’s list since the last master request to y.345

I Lemma 8. The expected cost of TS(l, p) in λpost does not decrease when passing over to346

the refined cost.347

The cost analysis of a phase348

Consider an arbitrary phase λ. Let λpost be its postphase, which starts with a master request349

to x and ends with at least two master requests to y, according to the phase adjustment350

we did when changing over to the pre-refined cost. We next modify λpost so that we can351

partition it into subphases, each ending with at least two master requests to y. For this352

purpose consider two consecutive master requests to x that are preceded by a single master353

request to y. The next proposition shows that we can insert l new requests to y, thereby354

generating a new master request to y, without decreasing the strict competitiveness on λpost.355

The proof is given in Appendix B.3.356

I Proposition 9. In a subsequence of master requests x0y1x1x2 in λpost, add l new requests357

to y before x1. TS(l, p)’s expected refined cost on the resulting sequence of master requests358

x0y1y2x1x2 is at least as high as that on the former sequence. OPT’s cost does not change.359

Hence in λpost, whenever two master requests to x are preceded by exactly one master360

request to y, we insert l new requests to y. Again, this creates a second master request to y.361

We then partition λpost into subphases, each ending with two master requests to y. More362

precisely, the first subphase starts with the first master request in λpost. A subphase ends363

immediately before a master request to x that is preceded by at least two master requests364

to y. Observe that whenever two consecutive master requests to x occur, they start a new365

subphase. We obtain two types of subphases, specified by their master requests.366

Type 1: x(yx)ky2+i for some i, k ≥ 0.367

Type 2: x2+j(yx)ky2+i for some i, j, k ≥ 0.368

In the following four lemmas we analyze TS(l, p) on any subphase. If the subphase is the369

first one in λ, we analyze it jointly with the preceding prephase λpre. Together the four lemmas370

imply Theorem 3. The cost ratios ci, 1 ≤ i ≤ 6, stated in the lemmas are identical those371

of Theorem 3. In Lemma 10 we first consider Type 2 subphases as TS(l, p)’s performance372

ratio is independent of the master requests preceding those subphases. Then Lemmas 11, 12373

and 13 address Type 1 subphases with the preceding master requests. Lemma 11 assumes374

that a Type 1 subphase is preceded by two master requests to y. It applies, in particular,375

STACS 2020

XX:10 Nearly Tight Bounds for Randomized List Update in the Paid Exchange Model

to any Type 1 subphase that is not the first subphase in the given λ. Lemmas 12 and 13376

address a Type 1 subphase that is preceded (a) by master requests to x and y, in this order,377

or (b) by a master request to x. In both cases the subphase must be the first one in λ.378

Moreover, λpre consists of less than two master requests to y. In fact in case (b), there is no379

master request in λpre. Full proofs of all the lemmas are presented in Appendix B.3.380

I Lemma 10. TS(l, p) is strictly max{c1, c2, c4}-competitive on any subphase of Type 2,381

including a possible preceding prephase.382

I Lemma 11. TS(l, p) is strictly max{c1, c3, c4}-competitive on any subphase of Type 1,383

including a possible prephase, if the subphase is preceded by two master requests to y.384

I Lemma 12. TS(l, p) is strictly max{c1, c4, c5}-competitive on any subphase of Type 1 and385

its leading prephase if the subphase is preceded by master requests to x and y in this order.386

I Lemma 13. TS(l, p) is strictly max{c1, c4, c6}-competitive on any subphase of Type 1 and387

its leading prephase if the subphase is preceded by a master request to x.388

At the end of Appendix B.3 we conclude with some remarks on our cost and service389

models.390

4 Lower bounds391

We develop lower bounds in the partial cost and the full cost P d models.392

I Theorem 14. Let A be a randomized online algorithm for list update in the partial cost393

P d model. If A is c-competitive against oblivious adversaries, then c ≥ 2− 1
2d . This holds394

even for request sequences referencing only two items.395

We conjecture that a lower bound of 2 − 1
2d also holds for the full cost P d model. The396

difficulty is to upper bound the cost of OPT on request sequences referencing a general set397

of n items. We can establish the following lower bound in the full cost P d model.398

I Theorem 15. Let A be a randomized online algorithm for list update in the full cost P d399

model. If A is c-competitive against oblivious adversaries, then c is at least400

1
1 + 2W

(−1
2e
) −O

(
1
d

)
≈ 1.8654.401

Here W is the upper branch of the Lambert-W-function, i.e. W
(−1

2e
)
is largest value x402

satisfying 2xex+1 = −1.403

Table 1 presents the values of the lower bound of Theorem 15, for small values of d, up to404

d = 100. For d = 1, i.e. the standard cost model, our bound matches the one by Teia [25].

d c(d)
1 1.5
2 1.8036
3 1.8270
4 1.8337
5 1.8420

d c(d)
6 1.8438
7 1.8485
10 1.8531
20 1.8594
100 1.8642

Table 1 The lower bound in the full cost P d model for various d.

S. Albers, M. Janke XX:11

405

A probability distribution on request sequences: For the proof of the two theorems406

above we use Yao’s minimax principle [26]. We define a probability distribution on request407

sequences and compare the expected cost incurred by any (deterministic) online algorithm A408

to that of OPT. For the definition of our probability distribution, we describe how to sample409

a request sequence according to it. Let L(0) = [x0 . . . xn−1] be a starting list of n items; xi410

precedes xi+1 for i = 0, . . . , n− 2. Throughout the sampling process the list is static, i.e. no411

rearrangement of items is done. The items will be requested in a cyclic fashion, in decreasing412

order of index. Each item will be referenced a certain number of times.413

Formally, in addition to L(0), the sampling process takes as input a number N ∈ N and a414

starting item x ∈ L(0). Typically, the starting item is equal to the last item xn−1 in the list415

but the process is defined for any x ∈ L(0). The sampling process produces a request sequence416

consisting of N segments. Throughout this section a segment is a maximal subsequence of417

requests to the same item. Moreover, to simplify notation, we set xi = xi mod n, for all i ∈ Z.418

Initially, the request sequence σ to be produced is equal to the empty string. In each419

step of the sampling procedure, if N > 0, a request to the current item x is appended at the420

end of σ. Then with probability p = 1/(2d), the item x and the value N are decremented,421

i.e. x = xi is replaced by xi−1 and N is reduced by 1. Hence in this event the segment of422

requests to xi ends and a segment of references to xi−1 starts. Note that the length of a423

segment is geometrically distributed with p = 1/(2d) and thus equal to 2d in expectation.424

The process stops when N = 0. A pseudo-code description of the sampling process is given425

in Algorithm 2. Let SN [x] denote the resulting probability distribution on request sequences426

with starting item x. Furthermore, let SN = SN [xn−1].427

The lower bound construction in the full cost model will work with sequences generated428

according to this particular process. In the partial cost model we will have to extend the429

process so that the request sequences admit a phase partitioning and end with a complete430

phase.

Algorithm 2 SampleRequestSequence
1: Input: L(0) = [x0 . . . xn−1], N ∈ N and x ∈ L(0).
2: σ := empty string;
3: while N > 0 do
4: Append x to σ; With probability p = 1

2d , decrement x and N ;
5: Return σ;

431

We next introduce the notion of an algorithm being uncompetitive. It will be particularly432

useful when deriving our lower bound in the full cost model. Nonetheless, the notion applies433

to both the partial and the full cost models and it will always be clear from the context434

which model is used.435

I Definition 16. Let c ≥ 1. An online algorithm A is c-uncompetitive against an offline436

algorithm B if, for every ε > 0, there exists an initial list L(0) such that437

lim
N→∞

Eσ∼SN
[CA(σ)]

Eσ∼SN
[CB(σ)] ≥ c− ε.438

If B = OPT, algorithm A is simply c-uncompetitive. Finally, A is c-uncompetitive on439

two-item sequences (against B) if the above condition holds with ε = 0, for lists consisting of440

two items.441

STACS 2020

XX:12 Nearly Tight Bounds for Randomized List Update in the Paid Exchange Model

The terminology is relevant due to the following fact, whose proof is given in Appendix C.1.442

I Lemma 17. If a (possibly randomized) online algorithm A is c-uncompetitive, then its443

competitive ratio is not smaller than c.444

In a first step we lower bound the expected cost incurred by any online algorithm A on445

request sequences generated according to SN . In Theorem 14 we consider the partial cost446

model and request sequences referencing two items. In the proof of Theorem 15 we show that447

we may restrict ourselves to the partial cost model and, again, may focus on two-item request448

sequences. Therefore, the following Lemma 18 will be essential in the proofs of Theorems 14449

and 15. Let L(0) = [xy] be a list consisting of two items x and y; where x is initially stored450

in front of y. Consider the distribution SN = SN [y]. The proof of the next lemma is given in451

Appendix C.2.452

I Lemma 18. Let L(0) = [xy]. For every online algorithm A and every N , we have

Eσ∼SN

[
Cpart
A (σ)

]
≥ dN.

The challenging part in the proofs of Theorems 14 and 15 is to upper bound the expected453

cost incurred by OPT on sequences drawn according to SN . In the following we sketch some454

of the main ideas. Full analyses are presented in Appendix C.3 and C.4, respectively.455

Proof sketch for Theorem 14: We focus on request sequences referencing two items456

x and y, and hence on sequences σ ∼ SN with initial list L(0) = [xy]. Such sequences consist457

of N segments that in turn reference y and x. Given a sequence σ′ and an item z ∈ {x, y},458

let |σ′|z be the number of requests to z in σ′.459

Instead of OPT we analyze an offline algorithm O that, loosely speaking, processes a460

request sequence σ ∼ SN as follows. Algorithm O moves item z, where z ∈ {x, y}, to the front461

of its list whenever there is a prefix σ′ of future requests with |σ′|z = |σ′|z′ + 2d and no prefix462

σ′′ of σ′ satisfies |σ′′|z < |σ′′|z′ . Here z′ is the other item of the pair {x, y}. Additionally,463

we will consider the algorithm Ō that always keeps its list in opposite order, compared to464

the list of O. On each request in a given sequence, exactly one of the two algorithms has a465

service cost of 1.466

Given any sequence σ, let C̃O(σ) and C̃Ō(σ) be the pure service cost of O and Ō.467

Furthermore, let DO(σ) be the cost incurred by O for paid exchanges. Define K(σ) =468

C̃Ō(σ) − C̃O(σ) − 2DO(σ). For σ ∼ SN , K(σ) is a random variable, which we denote by469

EN . We will show that Eσ∼SN
[CO(σ)] = dN − E[EN]/2. The heart of the analysis is470

to prove that limN→∞E[EN]/N ≥ 2d(2d − 1)/(4d − 1). Together with Lemmas 17 and471

18, this implies that the competitive ratio of any online algorithm is lower bounded by472

c ≥ dN/(dN − N
2

2d(2d−1)
4d−1) = 2− 1

2d .473

For the analysis of E[EN], we partition a request sequence σ ∼ SN into phases. Each474

phase λ consists of a series of subphases µ1, . . . , µl. We describe how to obtain µ1. At the475

beginning of λ, let z ∈ {x, y} be the current item in the sampling process, i.e. the first476

segment in λ consists of requests to z. Let z′ ∈ {x, y}, z′ 6= z, be the other item. Starting477

at the beginning of λ we scan the generated requests, adding them to µ1 until one of the478

following events occurs. (1) |µ1|z = |µ1|z′ or (2) |µ1|z = |µ1|z′ + 2d. In case (1) we call µ1 a479

zero-subphase; in case (2) µ1 is an up-subphase. When event (1) or (2) occurs, the remaining480

requests of the current segment are appended to µ1. These requests form the post-subphase.481

Then µ1 ends. Each following subphase µi, for i > 1, is obtained in the same way, starting at482

the end of µi−1. Phase λ ends when, for the first time, an up-subphase is obtained. Formally,483

algorithm O moves item z to the front of the list right before the up-subphase.484

S. Albers, M. Janke XX:13

We extend the sampling process so as to obtain sequences ending with a complete phase.485

This induces a slightly related probability distribution of request sequences, which is not486

critical though. For any λ, let C = K(λ) and let R = R(λ) be the number of segments487

in λ. At the heart of the analysis, using a recurrence relation, we prove limN→∞E[EN]/N ≥488

E[C]/E[R]. We argue that E[C] is the total length of all post-subphases in λ. Then we show489

E[C] = (2d− 1)/(1−P0) and E[R] = (4d− 1)/(2d(1−P0)), where P0 is the probability that490

a subphase happens to be a zero-subphase. This yields the desired bound.491

Proof sketch for Theorem 15: In this setting we are given a list L = L(0) with n492

items. Again, we focus on request sequences generated according to SN (Algorithm 2). We493

first prove that we may restrict ourselves to the partial cost model and two-item request494

sequences if we focus on projective offline algorithms: If every deterministic online algorithm495

is c-uncompetitive on two-item sequences against a projective offline algorithm B in the496

partial cost model, then every deterministic online algorithm is c-uncompetitive against B in497

the full cost model. Nonetheless, the analysis of the offline algorithm O developed for the498

proof of Theorem 15 cannot be employed because O and OPT are not projective.499

Therefore, we define a family of projective offline algorithms Bh, for 0 < h < 2d. Consider500

a request sequence to be served on a list L consisting of n items. When presented with501

any request, Bh works as follows: If the next h requests reference the same element z ∈ L,502

algorithm Bh moves z to the front of its list. Otherwise it does not change the list. Algorithm503

Bh is projective, for sequences σ generated by SN , because items are requested in cyclic504

order in σ and a projection to item pairs does not create longer subsequences of the same505

item.506

Given the result for projective offline algorithms stated above, it suffices to analyze Bh507

on two-item sequences. Let L(0) = [xy] be the starting list. Technically, the main step is to508

show that, for any σ ∼ SN , the expected cost incurred by Bh is509

Eσ∼SN
[CBh

(σ)] =

(
1−(1−p)h

p − h(1− p)h−1
)

+ (1− p)h−1d

2− (1− p)h−1 N + o(N), (1)510

where p = 1/(2d). In order to establish this equation, given σ ∼ SN , we write σ =511

zα1
1 zα2

2 . . . zαN

N , where z1 = y and z2 = x. If we consider the algorithm Bh at the beginning512

of the subsequence zαt
t , there can be three cases.513

If zt is at the back of the list of Bh and αt ≥ h holds, we say the sequence zαt
t is of type h.514

The algorithm Bh will incur a cost d on it because it immediately moves zt to the front.515

If zt is at the back of the list of Bh and αt = j < h, we say the sequence zαt
t is of516

type (j, 1). The algorithm Bh will incur cost j on it.517

If zt is at the front of the list of Bh, the algorithm will incur no cost on it. Further we518

have t > 1 and αt−1 = j < h, for some j. We say the sequence zαt
t is of type (j, 2).519

For a type w ∈ Wh = {1, . . . , h − 1} × {1, 2} ∪ {h}, let P (t)w be the probability that the520

sequence zαt
t is of this type if we sample σ ∼ SN . The process forms a Markov chain:521

From type (j, 1), for j < h, we pass to the type (j, 2) with probability 1. From every other522

type w we pass to type (j, 1), for j < h, with probability p(1 − p)j−1 and to type h with523

probability (1−p)h−1. Using basic Markov analysis we evaluate limt→∞ P (t)w, for w = (j, 1),524

w = (j, 2) and w = h. Using the respective expressions, we obtain (1). If we set h = b2h̃dc,525

then Eσ∼SN
[CBh

(σ)] is of the form (1 + 2h̃e−h̃

e−h̃−2 + O
(1
d

)
)dN + o(N). Lemma 18 implies526

that every online algorithm A is c-uncompetitive against the algorithm Bh in the full cost527

model, where c is at least (1 + 2h̃e−h̃/(e−h̃ − 2))−1 as d→∞. Lemma 17 ensures that the528

competitive ratio of A is not smaller than the above expression. Theorem 15 follows if we set529

h̃ = W (−1/(2e)) + 1.530

STACS 2020

XX:14 Nearly Tight Bounds for Randomized List Update in the Paid Exchange Model

References531

1 S. Albers. Improved randomized on-line algorithms for the list update problem. SIAM J.532

Comput., 27(3):682–693, 1998.533

2 S. Albers and S. Lauer. On list update with locality of reference. J. Comput. Syst. Sci.,534

82(5):627–653, 2016.535

3 S. Albers, B. von Stengel, and R. Werchner. A combined BIT and TIMESTAMP algorithm536

for the list update problem. Inf. Process. Lett., 56(3):135–139, 1995.537

4 S. Albers and J. Westbrook. Self-organizing data structures. In Online Algorithms, The State538

of the Art, Springer LNCS 1442, pages 13–51, 1998.539

5 C. Ambühl, B. Gärtner, and B. von Stengel. Optimal lower bounds for projective list update540

algorithms. ACM Trans. Algorithms, 9(4):31:1–31:18, 2013.541

6 S. Angelopoulos and P. Schweitzer. Paging and list update under bijective analysis. J. ACM,542

60(2):7:1–7:18, 2013.543

7 A. Borodin and R. El-Yaniv. Online computation and competitive analysis. Cambridge544

University Press, 1998.545

8 J. Boyar, S. Kamali, K.S. Larsen, and A. López-Ortiz. On the list update problem with advice.546

Inf. Comput., 253:411–423, 2017.547

9 M. Burrows and D. Wheeler. A block sorting lossless data compression algorithm. Technical548

Report 124, 1994.549

10 M. Crochemore, R. Grossi, J. Kärkkäinen, and G.M. Landau. Computing the Burrows-Wheeler550

transform in place and in small space. J. Discrete Algorithms, 32:44–52, 2015.551

11 R. Dorrigiv, M.R. Ehmsen, and A. López-Ortiz. Parameterized analysis of paging and list552

update algorithms. Algorithmica, 71(2):330–353, 2015.553

12 S. Irani. Two results on the list update problem. Inf. Process. Lett., 38(6):301–306, 1991.554

13 S. Kamali, S. Ladra, A. López-Ortiz, and D. Seco. Context-based algorithms for the list-update555

problem under alternative cost models. In Proc. 2013 Data Compression Conference (DCC),556

IEEE, pages 361–370, 2013.557

14 S. Kamali and A. López-Ortiz. Better compression through better list update algorithms. In558

Proc. 2014 Data Compression Conference (DCC), IEEE, pages 372–381, 2014.559

15 R. Karp and P. Raghavan. Personal communication cited in [22].560

16 A. López-Ortiz, M.P. Renault, and A. Rosén. Paid exchanges are worth the price. In Proc.561

32nd International Symposium on Theoretical Aspects of Computer Science (STACS15), LIPIcs562

30, pages 636–648, 2015.563

17 M.S. Manasse, L.A. McGeoch, and D.D. Sleator. Competitive algorithms for on-line problems.564

In Proc. 20th Annual ACM Symposium on Theory of Computing, pages 322–333, 1988.565

18 G. Manzini. An analysis of the Burrows-Wheeler transform. J. ACM, 48(3):407–430, 2001.566

19 C. Martínez and S. Roura. On the competitiveness of the move-to-front rule. Theor. Comput.567

Sci., 242(1-2):313–325, 2000.568

20 J. McCabe. On serial files with relocatable records. Operations Research, 12:609–618, 1965.569

21 J.I. Munro. On the competitiveness of linear search. In Proc. 8th Annual European Symposium570

on Algorithms (ESA00), Springer LNCS 1879, pages 338–345, 2000.571

22 N. Reingold, J. Westbrook, and D.D. Sleator. Randomized competitive algorithms for the list572

update problem. Algorithmica, 11(1):15–32, 1994.573

23 J. Sirén. Burrows-Wheeler transform for terabases. In Proc. 2016 Data Compression Conference574

(DCC), IEEE, pages 211–220, 2016.575

24 D.D. Sleator and R.E. Tarjan. Amortized efficiency of list update and paging rules. Commun.576

ACM, 28(2):202–208, 1985.577

25 B. Teia. A lower bound for randomized list update algorithms. IPL, 47(1):5–9, 1993.578

26 A.C.C. Yao. Probabilistic computations: Toward a unified measure of complexity. In Proc.579

18th IEEE Annual Symposium on Foundations of Computer Science, pages 222–227, 1977.580

Appendix B

Scheduling in the Random-Order
Model
Bibliographic Information Scheduling in the Random-Order Model. S.
Albers, M. Janke. Algorithmica (2021): 1-30.
A preliminary version appeared in: The 47th International Colloquium on
Automata, Languages and Programming (ICALP) 2020

Summary of Contributions We study Online Makespan Minimiza-
tion in the random-order model. Jobs, defined by their processing times,
have to be assigned to parallel and identical machines. Preemption is not
allowed. The goal is to minimize the time it takes to process them all, called
the makespan. Opposed to the traditional adversarial model that considers
worst-case orders, the recently popular random-order model presents jobs to
an online algorithm in a uniformly random order.

A novel online algorithm is developed, which has competitive ratio 1.8478
in the random-order model. In the adversarial model such competitive ratio
is impossible. The competitive ratio of 1.8478 holds, in fact, not only in
expectation but on almost all input permutations. Worst-case sequences are
thus extremely rare and unlikely to occur after random permutation.

This upper bound is complemented by first lower bounds. We show that
no deterministic online algorithm can be better than 4/3-competitive in
the random-order model. Moreover, no deterministic online algorithm can
guarantee a competitive ratio below 1.5 with high probability.

Individual Contributions
• Discovered and developed the upper bound including the notion and

analysis of stable sequences and the adversarial analysis.
• Discovered and developed the lower bounds.
• Composed the first manuscript excluding abstract and introduction. In-

cluded are all other technical and non-technical parts (later significantly
revised and edited by S. Albers).

Vol.:(0123456789)

Algorithmica
https://doi.org/10.1007/s00453-021-00841-8

1 3

Scheduling in the Random‑Order Model

Susanne Albers1 · Maximilian Janke1 

Received: 7 November 2020 / Accepted: 21 May 2021
© The Author(s) 2021

Abstract
Makespan minimization on identical machines is a fundamental problem in online
scheduling. The goal is to assign a sequence of jobs to m identical parallel machines
so as to minimize the maximum completion time of any job. Already in the 1960s,
Graham showed that Greedy is (2 − 1∕m)-competitive. The best deterministic online
algorithm currently known achieves a competitive ratio of 1.9201. No deterministic
online strategy can obtain a competitiveness smaller than 1.88. In this paper, we
study online makespan minimization in the popular random-order model, where
the jobs of a given input arrive as a random permutation. It is known that Greedy
does not attain a competitive factor asymptotically smaller than 2 in this setting.
We present the first improved performance guarantees. Specifically, we develop a
deterministic online algorithm that achieves a competitive ratio of 1.8478. The result
relies on a new analysis approach. We identify a set of properties that a random per-
mutation of the input jobs satisfies with high probability. Then we conduct a worst-
case analysis of our algorithm, for the respective class of permutations. The analysis
implies that the stated competitiveness holds not only in expectation but with high
probability. Moreover, it provides mathematical evidence that job sequences lead-
ing to higher performance ratios are extremely rare, pathological inputs. We com-
plement the results by lower bounds, for the random-order model. We show that
no deterministic online algorithm can achieve a competitive ratio smaller than 4/3.
Moreover, no deterministic online algorithm can attain a competitiveness smaller
than 3/2 with high probability.

Keywords  Scheduling · Makespan minimization · Online algorithm · Competitive
analysis · Lower bound · Random-order

A preliminary version of this paper has appeared in the 47th International Colloqium on Automata,
Languages and Programming (ICALP), 2020. Work supported by the European Research Council,
Grant Agreement No. 691672, project APEG.

 *	 Maximilian Janke
	 maximilian@janke.tech

Extended author information available on the last page of the article

	 Algorithmica

1 3

1  Introduction

We study one of the most basic scheduling problems. Consider a sequence of jobs
J = J1,… , Jn that has to be assigned to m identical parallel machines. Each job Jt
has an individual processing time pt , 1 ≤ t ≤ n . Preemption of jobs is not allowed.
The goal is to minimize the makespan, i.e. the maximum completion time of any
job in the constructed schedule. Both the offline and online variants of this problem
have been studied extensively, see e.g. [4, 11, 14, 19, 21, 34] and references therein.

We focus on the online setting, where jobs arrive one by one. Whenever a job Jt
is presented, its processing time pt is revealed. The job has to be scheduled imme-
diately on one of the machines without knowledge of any future jobs Js , with s > t .
Given a job sequence J  , let A(J) denote the makespan of an online algorithm A
on J  . Let OPT(J) be the optimum makespan. A deterministic online algorithm
A is c-competitive if A(J) ≤ c ⋅ OPT(J) holds for all J [39]. The best competi-
tive ratio that can be achieved by deterministic online algorithms is in the range
[1.88, 1.9201], see 14, 35. No randomized online algorithm is known that beats
deterministic ones, for general m.

In this paper we investigate online makespan minimization in the random-order
model. Here an input instance/job sequence is chosen by an adversary. Then a ran-
dom permutation of the input elements/jobs arrives. The random-order model was
considered by Dynkin [10] and Lindley [29] for the secretary problem. Over the
last years the framework has received quite some research interest and many fur-
ther problems have been studied. These include generalized secretary problems [2,
3, 13, 28, 29], the knapsack problem [2, 28], bin packing [26], facility location [31],
matching problems [17, 22, 30], packing LPs [27] and convex optimization [20].

We present an in-depth study of online makespan minimization in the random-
order model. As a main contribution we devise a new deterministic online algorithm
that achieves a competitive ratio of 1.8478. After almost 20 years this is the first
progress for the pure online setting, where an algorithm does not resort to extra
resources in handling a job sequence.

1.1 � Previous Work

We review the most important results relevant to our work and first address the stand-
ard setting where an online algorithm must schedule an arbitrary, worst-case job
sequence. Graham in 1966 showed that the famous Greedy algorithm, which assigns
each job to a least loaded machine, is (2 − 1

m
)-competitive. Using new determinis-

tic strategies the competitiveness was improved in a series of papers. Galambos and
Woeginger [15] gave an algorithm with a competitive ratio of (2 − 1

m
− �m) , where

�m tends to 0 as m → ∞ . Bartal et al. [4] devised a 1.986-competitive algorithm. The
bound was improved to 1.945 [23] and 1.923 [1]. Fleischer and Wahl [14] presented
an algorithm that attains a competitive ratio of 1.9201 as m → ∞ . Chen et al. [7] gave
an algorithm whose competitiveness is at most 1 + � times the best possible factor, but
no explicit bound was provided. Lower bounds on the competitive ratio of determin-
istic online algorithms were shown in [1, 5, 12, 18, 35, 36]. For general m, the bound

1 3

Algorithmica	

was raised from 1.707 [12] to 1.837 [5] and 1.854 [18]. Rudin [35] showed that no
deterministic strategy has a competitiveness smaller than 1.88.

For randomized online algorithms, there is a significant gap between the best
known upper and lower bounds. For m = 2 machines, Bartal et al. [4] presented an
algorithm that achieves an optimal competitive ratio of 4/3. To date, there exists
no randomized algorithm whose competitiveness is smaller than the deterministic
lower bound, for general m. The best known lower bound on the performance of ran-
domized online algorithms tends to e∕(e − 1) ≈ 1.581 as m → ∞ [6, 38].

Recent research on makespan minimization has examined settings where an
online algorithm is given extra resources when processing a job sequence. Specifi-
cally, an algorithm might have a buffer to reorder the incoming job sequence [11,
25] or is allowed to migrate jobs [37]. Alternatively, an algorithm has information
on the job sequence [8, 9, 24, 25], e.g. it might know the total processing time of the
jobs or even the optimum makespan.

In the random-order model only one result is known for makespan minimization
on identical machines. Osborn and Torng [33] showed that Greedy does not achieve
a competitive ratio smaller than 2 as m → ∞ . Recently Molinaro [32] studied online
load balancing with the objective to minimize the lp-norm of the machine loads. He
considers a general scenario with machine-dependent job processing times, which
are bounded by 1. For makespan minimization he presents an algorithm that, in
the worst case, is O(logm∕�)-competitive and, in the random-order model, has an
expected makespan of (1 + �)OPT(J) + O(logm∕�) , for any � ∈ (0, 1] . Göbel et al.
[16] consider a scheduling problem on one machine where the goal is to minimize
the average weighted completion time of all jobs. Under random-order arrival, their
competitive ratio is logarithmic in n, the number of jobs, for the general problem
and constant if all jobs have processing time 1.

1.2 � Our Contribution

We investigate online makespan minimization in the random-order model, a sensible
and widely adopted input model to study algorithms beyond the worst case. Spe-
cifically, we develop a new deterministic algorithm that achieves a competitive ratio
of 1.8478 as m → ∞ . This is the first improved performance guarantee in the ran-
dom-order model. The competitiveness is substantially below the best known ratio
of 1.9201 in the worst-case setting and also below the corresponding lower bound of
1.88 in that framework.

A new feature of our algorithm is that it schedules an incoming job on one of
three candidate machines in order to maintain a certain load profile. The best strate-
gies in the worst-case setting use two possible machines, and it is not clear how to
take advantage of additional machines in that framework. The choice of our third,
extra machine is quite flexible: An incoming job is placed either on a least loaded,
a heavily loaded or—as a new option—on an intermediate machine. The latter one
is the (h + 1) st least loaded machine, where h may be any integer with h ∈ �(1) and
h ∈ o(

√
m).

	 Algorithmica

1 3

When assigning a job to a machine different from the least loaded one, an algo-
rithm has to ensure that the resulting makespan does not exceed c times the opti-
mum makespan, for the targeted competitive ratio c. All previous strategies in the
literature lower bound the optimum makespan by the current average load on the
machines. Our new algorithm works with a refined lower bound that incorporates
the processing times of the largest jobs seen so far. The lower bound is obvious but
has not been employed by previous algorithms.

The analysis of our algorithm proceeds in two steps. First we define a class of sta-
ble job sequences. These are sequences that reveal information on the largest jobs as
processing volume is scheduled. More precisely, once a certain fraction of the total
processing volume

∑n

t=1
pt has arrived, one has a good estimate on the hth largest

job and has encountered a certain number of the m + 1 largest jobs in the input. The
exact parameters have to be chosen carefully.

We prove that with high probability, a random permutation of a given input of
jobs is stable. We then conduct a worst-case analysis of our algorithm on stable
sequences. Using their properties, we show that if the algorithm generates a flat
schedule, like Greedy, and can be hurt by a huge job, then the input must contain
many large jobs so that the optimum makespan is also high. A new ingredient in the
worst-case analysis is the processing time of the hth largest job in the input. We will
relate it to machine load in the schedule and to the processing time of the (m + 1) st
largest job; twice the latter value is a lower bound on the optimum makespan.

The analysis implies that the competitive ratio of 1.8478 holds with high prob-
ability. Input sequences leading to higher performance ratios are extremely rare. We
believe that our analysis approach might be fruitful in the study of other problems in
the random-order model: Identify properties that a random permutation of the input
elements satisfies with high probability. Then perform a worst-case analysis.

Finally in this paper we devise lower bounds for the random-order model. We
prove that no deterministic online algorithm achieves a competitive ratio smaller
than 4/3. Moreover, if a deterministic online algorithm is c-competitive with high
probability, then c ≥ 3∕2.

2 � Strong Competitiveness in the Random‑Order Model

We define competitiveness in the random-order model and introduce a stronger
measure of competitiveness that implies high-probability bounds. Recall that tradi-
tionally a deterministic online algorithm A is c-competitive if A(J) ≤ c ⋅ OPT(J)
holds for all job sequences J = J1,… , Jn . We will refer to this worst-case model
also as the adversarial model.

In the random-order model a job sequence J = J1,… , Jn is given, which may
be specified by an adversary. (Alternatively, a set of jobs could be specified.) Then
a random permutation of the jobs arrives. We define the expected cost / makespan
of a deterministic online algorithm. Let Sn be the permutation group of the inte-
gers from 1 to n, which we consider a probability space under the uniform distribu-
tion, i.e. each permutation in Sn is chosen with probability 1/n!. Given � ∈ Sn , let

1 3

Algorithmica	

J� = J�(1),… , J�(n) be the job sequence permuted by � . The expected makespan of A
on J in the random-order model is Arom(J) = ��∼Sn

[A(J�)] =
1

n!

∑
�∈Sn

A(J�) . The
algorithm A is c-competitive in the random-order model if Arom(J) ≤ c ⋅ OPT(J)
holds for all job sequences J .

We next define the notion of a deterministic online algorithm A being nearly
c-competitive. The second condition in the following definition requires that the
probability of A not meeting the desired performance ratio must be arbitrarily small
as m grows and a random permutation of a given job sequence arrives. The subse-
quent Lemma 1 states that a nearly c-competitive algorithm is c-competitive in the
random-order model.

Definition 1  A deterministic online algorithm A is called nearly c-competitive if the
following two conditions hold.

–	 Algorithm A achieves a constant competitive ratio in the adversarial model.
–	 For every 𝜀 > 0 , there exists an m(�) such that for all machine numbers m ≥ m(�)

and all job sequences J there holds ��∼Sn
[A(J�) ≥ (c + �)OPT(J)] ≤ �.

Lemma 1  If a deterministic online algorithm is nearly c-competitive, then it is
c-competitive in the random-order model as m → ∞.

Proof  Let C be the constant such that A is C-competitive in the adversarial
model. We may assume that C > c . Given 0 < 𝛿 ≤ C − c , we show that there
exists an m(�) such that, for all m ≥ m(�) , we have Arom(J) ≤ (c + �)OPT(J)
for every job sequences J  . Let � = �∕(C − c + 1) . Since A is nearly c-competi-
tive, there exists an m(�) such that, for all m ≥ m(�) and all inputs J  , there holds
P�(J) = ��∼Sn

[A(J�) ≥ (c + �)OPT(J)] ≤ � . Set m(�) = m(�) . We obtain

	� ◻

3 � Description of the New Algorithm

The deficiency of Greedy is that it tends to generate a flat, balanced schedule in
which all the machines have approximately the same load. An incoming large job
can then enforce a high makespan relative to the optimum one. It is thus crucial to
try to avoid flat schedules and maintain steep schedules that exhibit a certain load
imbalance among the machines.

Arom(J) = ��∼Sn
[A(J�)]

≤ (1 − P�(J))(c + �)OPT(J) + P�(J) ⋅ C ⋅ OPT(J)
≤ ((1 − �)(c + �) + �C)OPT(J)
≤ (c + �(C − c + 1))OPT(J)
= (c + �)OPT(J).

	 Algorithmica

1 3

However, in general, this is futile. Consider a sequence of m identical jobs with a
processing time of, say, Pm+1 (referring to the size of the (m + 1) st largest job in an
input). Any online algorithm that is better than 2-competitive must schedule these
m jobs on separate machines, obtaining the flattest schedule possible. An incoming
even larger job of processing time pmax will now enforce a makespan of Pm+1 + pmax .
Observe that OPT ≥ max{2Pm+1, pmax} since there must be one machine containing
two jobs. In particular Pm+1 + pmax ≤ 1.5OPT . Hence sensible online algorithms do
not perform badly on this sequence.

This example summarizes the quintessential strategy of online algorithms that are
good on all sequences: Ensure that in order to create a schedule that is very flat, i.e.
such that all machines have high load � , the adversary must present m jobs that all
are large relative to � . In order to exploit this very flat schedule and cause a high
makespan the adversary needs to follow up with yet another large job. But with these
m + 1 jobs, the optimum scheduler runs into the same problem as in the example: Of
the m + 1 large jobs, two have to be scheduled on the same machine. Thus the opti-
mum makespan is high, compensating to the high makespan of the algorithm.

Effectively realizing the aforementioned strategy is highly non-trivial. In fact it is
the central challenge in previous works on adversarial makespan minimization that
improve upon Greedy [1, 4, 14, 15, 23]. These works gave us clear notions of how
to avoid flat schedules, which form the basis for our approaches. Instead of simply
rehashing these ideas, we want to outline next how we profit from random-order
arrival in particular.

3.1 � How Random‑Order Arrival Helps

The first idea to profit from random-order arrival addresses the lower bound on
OPT sophisticated online algorithms need. In the literature only the current aver-
age load has been considered, but under random-order arrival another bound comes
to mind: The largest job seen so far. In order for an algorithm to perform badly,
a large job needs to come close to the end of the sequence. Under random-order
arrival, it is equally likely for such a job to arrive similarly close to the beginning
of the sequence. In this case, the algorithm knows a better lower bound for OPT .
The main technical tool will be our Load Lemma, which allows us to relate what a
job sequence should reveal early from an analysis perspective to the actual fraction
of jobs scheduled. This idea does not work for worst-case orders since they tend to
order jobs by increasing processing times.

Recall that the general challenge of our later analysis will be to establish that
there had to be m large jobs once the schedule gets very flat. In classical analyses,
which consider worst-case orders, these jobs appear with increasing density towards
the end of the sequence. In random orders this is unlikely, which can be exploited by
the algorithm.

The third idea improves upon the first idea. Suppose, that we were to modify our
algorithm such that it could handle one very large job arriving close to the end of the
sequence. In fact, assume that it could only perform badly when confronted with h
very large jobs. We can then disregard any sequence which contains fewer such jobs.

1 3

Algorithmica	

Recall that the first idea requires one very large job to arrive sufficiently close to the
beginning. Now, as h grows, the probability of the latter event grows as well and
approaches 1. This will not only improve our competitive ratio tremendously, it also
allows us to adhere to the stronger notion of nearly competitiveness introduced in
Sect. 2. Let us discuss how such a modification is possible: The first step is to design
our algorithm in a way that it is reluctant to use the h least loaded machines. Intui-
tively, if the algorithm tries to retain machines of small load it will require very large
jobs to fill them. In order to force these filling jobs to actually be large enough, our
algorithm needs to use a very high lower bound for OPT . In fact, here it uses another
lower bound for the optimum makespan, 2Pt

m+1
 , twice the (m + 1) st largest job seen

so far at time t. Common analysis techniques can only make predictions about Pt
m+1

at the very end of the sequence. It requires very subtle use of the random-order
model to work around this.

3.2 � Formal Definition

Formally our algorithm ALG is nearly c-competitive, where c is the unique real root
of the polynomial Q[x] = 4x3 − 14x2 + 16x − 7 , i.e.

Given J  , ALG schedules a job sequence/permutation J� = J�(1),… , J�(n) that must
be scheduled in this order. Throughout the scheduling process ALG always main-
tains a list of the machines sorted in non-increasing order of current load. At any
time the load of a machine is the sum of the processing times of the jobs already
assigned to it. After ALG has processed the first t − 1 jobs J�(1),… , J�(t−1) , we also
say at time t, let Mt−1

1
,… ,Mt−1

m
 be any ordering of the m machines according to non-

increasing load. More specifically, let lt−1
j

 denote the load of machine Mt−1
j

 . Then
lt−1
1

≥ … ≥ lt−1
m

 and lt−1
1

 is the makespan of the current schedule.
ALG places each incoming job J�(t) , 1 ≤ t ≤ n , on one of three candidate

machines. The choice of one machine, having an intermediate load, is flexible. Let
h = h(m) be an integer with h(m) ∈ �(1) and h(m) ∈ o(

√
m) . We could use e.g.

h(m) = ⌊ 3
√
m⌋ or h(m) = ⌊logm⌋ . Let1

ALG will assign the incoming job to the machine with the smallest load, the
(h + 1) st smallest load or the ith largest load.

When scheduling a job on a machine that is different from the least loaded one,
an algorithm has to ensure that the resulting makespan does not exceed c∗ times
the optimum makespan, where c∗ is the desired competitiveness. All previous
algorithms lower bound the optimum makespan by the current average machine
load. Algorithm ALG works with a refined lower bound that incorporates the

c =
7+

3
√

28−3
√
87+

3
√

28+3
√
87

6
< 1.8478.

i = ⌈(2c − 3)m⌉ + h ≈ 0.6956m.

1  Note that besides rounding ≈ also hides a small term in o(m).

	 Algorithmica

1 3

processing time of the largest job and twice the processing time of the (m + 1) st
largest job seen so far. These lower bounds on the optimum makespan are imme-
diate but have not been used in earlier strategies.

Formally, for j = 1,… ,m , let Lt
j
 be the average load of the m − j + 1 least

loaded machines Mt
j
,… ,Mt

m
 , i.e. Lt

j
=

1

m−j+1

∑m

r=j
lt
r
 . We let Lt = Lt

1
=

1

m

∑t

s=1
ps be

the average load of all the machines. For any j = 1,… , n , let Pt
j
 be the processing

time of the jth largest job among the first t jobs J�(1),… , J�(t) in J� . If t < j , we set
Pt
j
= 0 . We let pt

max
= Pt

1
 be the processing time of the largest job among the first t

jobs in J� . Finally, let L = Ln , Pj = Pn
j
 and pmax = pn

max
.

The value Ot = max{Lt, pt
max

, 2Pt
m+1

} is a common lower bound on the optimum
makespan for the first t jobs and hence OPT(J) , see Proposition 1 in the next sec-
tion. Note that immediately before J�(t) is scheduled, ALG can compute Lt and
hence Ot because Lt is 1/m times the total processing time of the jobs that have
arrived so far.

We next characterize load imbalance. Let

and

The schedule at time t is the one immediately before J�(t) has to be assigned. The
schedule is flat if lt−1

k
< 𝛼Lt−1

i+1
 , i.e. if lt−1

k
 , the load of the kth most loaded machine,

does not exceed Lt−1
i+1

=
1

m−i

∑m

r=i+1
lt−1
r

 , the average load of the m − i least loaded
machines, by a factor of at least � . Otherwise the schedule is steep. Job J�(t) is
scheduled flatly (steeply) if the schedule at time t is flat (steep).

ALG handles each incoming job J�(t) , with processing time p�(t) , as follows. If
the schedule at time t is steep, the job is placed on the least loaded machine Mt−1

m
 .

On the other hand, if the schedule is flat, the machines Mt−1
i

 , Mt−1
m−h

 and Mt−1
m

 are
probed in this order. If lt−1

i
+ p�(t) ≤ c ⋅ Ot , then the new machine load on Mt−1

i

will not violate the desired competitiveness. The job is placed on this machine
Mt−1

i
 . Otherwise, if the latter inequality is violated, ALG checks if a placement on

Mt−1
m−h

 is safe, i.e. if lt−1
m−h

+ p�(t) ≤ c ⋅ Ot . If this is the case, the job is put on Mt−1
m−h

 .
Otherwise, J�(t) is finally scheduled on the least loaded machine Mt−1

m
 . A pseudo-

code description of ALG is given below in Algorithm 1. The job assignment rules
are also illustrated in Figs. 1 and 2.

k = 2i − m ≈ (4c − 7)m ≈ 0.3912m

� =
2(c − 1)

2c − 3
≈ 2.7376.

k i

Fig. 1   A steep schedule. ALG only considers the least loaded machine

1 3

Algorithmica	

In the next section we will prove the following theorem, Theorem 1, which
uses the notion from Sect. 2. Lemma 1 then immediately gives the main result,
Corollary 1.

Theorem 1  ALG is nearly c-competitive, with c < 1.8478 defined as above.

Corollary 1  ALG is c-competitive in the random-order model as m → ∞.

4 � Analysis of the Algorithm

4.1 � Analysis Basics

We present some results for the adversarial model so that we can focus on the true
random-order analysis of ALG in the next sections. First, recall the three common
lower bounds used for online makespan minimization.

Proposition 1  For any J  , there holds OPT(J) ≥ max{L, pmax, 2Pm+1} . In particu-
lar, O1 ≤ O2 ≤ … ≤ On ≤ OPT(J).

Proof  The optimum makespan OPT(J) cannot be smaller than the average machine
load L for the input, even if all the jobs are distributed evenly among the m machines.
Moreover, the job with the largest processing time pmax must be scheduled non-
preemptively on one of the machines in an optimal schedule. Thus OPT(J) ≥ pmax .
Finally, among the m + 1 largest jobs of the input, two must be placed on the same
machine in an optimal solution. Hence OPT(J) ≥ 2Pm+1 . 	� ◻

k i

Fig. 2   A flat schedule. The three machines considered by ALG are marked for h = 2

	 Algorithmica

1 3

For any job sequence J = J1,… , Jn , let R(J) = min{
L

pmax

,
pmax

L
} . Intuitively, this

measures the complexity of J .

Proposition 2  There holds Alg(J) <= max{1 + R(J), c}OPT(J) for any
J = J

1
,… , J

n
.

Proof  Let J = J1,… , Jn be an arbitrary job sequence and let Jt be the job that
defines ALG ’s makespan. If the makespan exceeds c ⋅ OPT(J) , then it exceeds
c ⋅ Ot . Thus ALG placed Jt on machine Mt−1

m
 , cf. lines 4 and 5 of the algorithm. This

machine was a least loaded one, having a load of at most L. Hence
ALG(J) ≤ L + pt ≤ L + pmax ≤ L+pmax

max{L,pmax}
⋅ OPT(J) = (1 + R(J)) ⋅ OPT(J) . 	� ◻

Since R(J) ≤ 1 we immediately obtain the following result, which ensures
that ALG satisfies the first condition of a nearly c-competitive algorithm, see
Definition 1.

Corollary 2  ALG is 2-competitive in the adversarial model.

We next identify a class of plain job sequences that we do not need to consider
in the random-order analysis because ALG ’s makespan is upper bounded by c
times the optimum on these inputs.

Definition 2  A job sequence J = J1,… , Jn is called plain if n ≤ m or if R(J) ≤ c − 1 .
Otherwise it is called proper.

Let J = J1,… , Jn be any job sequence that is processed/scheduled in this order.
Observe that if it contains at most m jobs, i.e. n ≤ m , and ALG cannot place a job
Jt on machines Mt−1

i
 or Mt−1

m−h
 because the resulting load would exceed c ⋅ Ot , then

the job is placed on an empty machine. Using Proposition 2 we derive the follow-
ing fact.

Lemma 2  There holds ALG(J) ≤ c ⋅ OPT(J) for any plain job sequence
J = J1,… , Jn.

If a job sequence J is plain (proper), then every permutation of it is. Hence,
given Lemma 2, we may concentrate on proper job sequences in the remainder of
the analysis. We finally state a fact that relates to the second condition of a nearly
c-competitive algorithm, see again Definition 1.

Lemma 3  Let J = J1,… , Jn be any job sequence that is scheduled in this order
and let Jt be a job that causes ALG’s makespan to exceed (c + �)OPT(J) , for some
� ≥ 0 . Then both the load of ALG’s least loaded machine at the time of the assign-
ment as well as pt exceed (c − 1 + �)OPT(J).

1 3

Algorithmica	

Proof  ALG places Jt on machine Mt−1
m

 , which is a least loaded
machine when the assignment is done. If lt−1

m
 or pt were upper

bounded by (c − 1 + �)OPT(J) , then the resulting load would be
lt−1
m

+ pt ≤ (c − 1 + �)OPT(J) +max{L, pt} ≤ (c − 1 + �)OPT(J) + OPT(J)
= (c + �)OPT(J) . 	� ◻

4.2 � Stable Job Sequences

We define the class of stable job sequences. These sequences are robust in that they
will admit an adversarial analysis of ALG . Intuitively, the sequences reveal informa-
tion on the largest jobs when a significant fraction of the total processing volume ∑n

t=1
pt has been scheduled. More precisely, one gets an estimate on the processing

time of the hth largest job in the entire sequence and encounters a relevant number
of the m + 1 largest jobs. If a job sequence is unstable, large jobs occur towards the
very end of the sequence and can cause a high makespan relative to the optimum
one.

We will show that ALG is adversarially (c + �)-competitive on stable sequences,
for any given 𝜀 > 0 . Therefore, the definition of stable sequences is formulated for
a fixed 𝜀 > 0 . Given J  , let J� = J�(1),… , J�(n) be any permutation of the jobs. Fur-
thermore, for every j ≤ n and in particular j ∈ {h,m + 1} , the set of the j largest
jobs is a fixed set of cardinality j such that no job outside this set has a strictly larger
processing time than any job inside the set.

Definition 3  A job sequence J� = J�(1),… , J�(n) is stable if the following conditions
hold.

–	 There holds n > m.
–	 Once Lt ≥ (c − 1)

i

m
L , there holds pt

max
≥ Ph.

–	 For every j ≥ i , the sequence ending once we have Lt ≥ (
j

m
+

�

2
)L contains at

least j + h + 2 many of the m + 1 largest jobs in J .
–	 Consider the sequence ending right before either (a) Lt ≥ i

m
(c − 1)�L holds or

(b) one of the hth largest jobs of J arrives; this sequence contains at least h + 1
many of the m + 1 largest jobs in J .

Otherwise the job sequence is unstable.
Given 𝜀 > 0 and m, let P�(m) be the infimum, over all proper job sequences J  ,

that a random permutation of J is stable, i.e.

As the main result of this section we will prove that this probability tends to 1 as
m → ∞.

Main Lemma 1  For every 𝜀 > 0 , there holds lim
m→∞

P�(m) = 1.

P�(m) = inf
J proper

��∼Sn
[J� is stable].

	 Algorithmica

1 3

The Main Lemma 1 implies that for any 𝜀 > 0 there exists an m(�) such that,
for all m ≥ m(�) and all J  , there holds ��∼Sn

[J� is stable] ≥ 1 − � . In Sect. 4.3 we
will show that ALG is (c + �)-competitive on stable job sequences. This implies
��∼Sn

[ALG(J�) ≥ (c + �)OPT(J)] ≤ � on proper sequences. By Lemma 2 this
probability is 0 on plain sequences. We obtain the following corollary to Main
Lemma 1.

Corollary 3  If ALG is adversarially (c + �)-competitive on stable sequences, for
every 𝜀 > 0 and m ≥ m(�) sufficiently large, then it is nearly c-competitive.

In the remainder of this section we describe how to establish Main Lemma 1. We
need some notation. In Sect. 3 the value Lt

j
 was defined with respect to a fixed job

sequence that was clear from the context. We adopt the notation Lt
j
[J�] to make this

dependence visible. We adopt the same notation for the variables L, Pt
j
 , Pj , ptmax

 and
pmax . For a fixed input J and variable � ∈ Sn , we use the simplified notation
Lt
j
[�] = Lt

j
[J�] . Again, we use the same notation for the variables Pt

j
 and pt

max
.

At the heart of the proof of Main Lemma 1 is the Load Lemma. Observe that
after t time steps in a random permutation of an input J  , each job has arrived with
probability t/n. Thus the expected total processing time of the jobs seen so far is
t∕n ⋅

∑n

s=1
ps . Equivalently, in expectation Lt equals t∕n ⋅ L . The Load Lemma proves

that this relation holds with high probability. We set t = ⌊�n⌋.

Load Lemma  Given any 𝜀 > 0 and � ∈ (0, 1] , there exists an m(�,�) such that for
all m ≥ m(�,�) and all proper sequences J  , there holds

Proof  Let us fix a proper job sequence J  . We use the shorthand
L̂[𝜎] = L̂[J𝜎] = L⌊𝜑n⌋[J𝜎] and L = L[J].

Let � =
��

2
 . We will first treat the case that we have pmax[J] = 1 and every job

size in J is of the form (1 + �)−j , for some j ≥ 0 . Note that we have in particular
c − 1 ≤ L ≤ 1

c−1
 because we are working with a proper sequence. For j ≥ 0 let hj

denote the number of jobs Jt of size (1 + �)−j and, given � ∈ Sn , let h�
j
 denote the

number of such jobs Jt that additionally satisfy �(t) ≤ ⌊�n⌋ , i.e. they are among the
⌊�n⌋ first jobs in the sequence J� . We now have

The random variables h�
j
 are hypergeometrically distributed, i.e. we sample ⌊�n⌋

jobs from the set of all n jobs and count the number of times we get one of the hj
many jobs of processing time (1 + �)−j . Hence, we know that the random variable h�

j

has mean

��∼Sn

������
L⌊�n⌋[J�]

�L[J�]
− 1

�����
≥ �

�
≤ �.

L =
1

m

∞∑

j=0

(1 + 𝛿)−jhj and L̂[𝜎] =
1

m

∞∑

j=0

(1 + 𝛿)−jh𝜎
j
.

1 3

Algorithmica	

and variance

In particular,

By Chebyshev’s inequality we have

In particular, by the Union Bound, with probability

we have for all j,

We conclude that the following holds:

In particular, with probability P(m), we have

Hence, if we choose m large enough we can ensure that

�[h�
j
] =

⌊�n⌋
n

hj ≤ �hj

Var[h�
j
] =

hj
�
n − hj

�
⌊�n⌋(n − ⌊�n⌋)

n2(n − 1)
.

Var[h�
j
] ≤ hj ≤ (1 + �)jmL ≤ (1 + �)j

m

c − 1
.

�

[
|||h

�
j
− �hj

||| ≥ (1 + �)3j∕4m3∕4

]
≤ (1 + �)−3j∕2Var[h�

j
]m−3∕2 ≤ (1 + �)−j∕2

m−1∕2

c − 1
.

P(m) = 1 −

∞�

j=0

(1 + �)−j∕2
m−1∕2

c − 1
= 1 −

m−1∕2

�
1 −

√
1 + �

�
(c − 1)

= 1 − O
�
m−1∕2

�

|||h
𝜎
j
− 𝜑hj

||| < (1 + 𝛿)3j∕4m3∕4.

|||L̂[𝜎] − 𝜑L
||| =

||||||

1

m

∞∑

j=0

(1 + 𝛿)−jh𝜎
j
−

𝜑

m

∞∑

j=0

(1 + 𝛿)−jhj

||||||

≤ ∞∑

j=0

(1 + 𝛿)−j

|||h
𝜎
j
− hj ⋅ 𝜑

|||
m

<

∞∑

j=0

(1 + 𝛿)−j∕4m−1∕4

=
m−1∕4

(
1 − (1 + 𝛿)−1∕4

) .

|||||
L̂[𝜎]

𝜑L
− 1

|||||
=

|||L̂[𝜎] − 𝜑L
|||

𝜑L
≤ m−1∕4

𝜑(c − 1)
(
1 − (1 + 𝛿)−1∕4

) = O
(
m−1∕4

)
.

	 Algorithmica

1 3

So far we have assumed that pmax[J] = 1 and every job in J has a processing time
of (1 + �)−j , for some j ≥ 0 . Now we drop these assumptions. Given an arbitrary
sequence J with 0 < pmax[J] ≠ 1 , let ⌊J⌋ denote the sequence obtained from J by
first dividing every job processing time by pmax[J] and rounding every job size down
to the next power of (1 + �)−1 . We have proven that inequality (1) holds for ⌊J⌋ . The
values L and L̂[𝜎] only change by a factor lying in the interval [pmax, (1 + �)pmax)
when passing over from ⌊J⌋ to J  . This implies that

Since L̂[⌊J⌋𝜎] ≤ L[J] we obtain

Combining this with inequality (1) for ⌊J⌋ (and the triangle inequality), we obtain

Thus the lemma follows. 	� ◻

We note that the Load Lemma does not hold for general sequences. A counterex-
ample is a job sequence in which one job carries all the load, while all the other jobs
have a negligible processing time. The proof of the Load Lemma relies on a lower
bound of R(J) , which is c − 1 for proper sequences.

We present two consequences of the Load Lemma that will allow us to prove
that stable sequences reveal information on the largest jobs when a certain process-
ing volume has been scheduled. Consider a proper J  . Given J� = J�(1),… , J�(n) and
𝜑 > 0 , let N(�)[J�] be the number of jobs J�(t) that are among the m + 1 largest jobs
in J and such that Lt ≤ �L.

Lemma 4  Let 𝜀 > 0 and � ∈ (0, 1] . Then there holds

Proof  Fix any proper job sequence J  . For any J� , let N(� + �)[�] = N(� + �)[J�] .
Furthermore, let Ñ

(
𝜑 +

𝜀

2

)
[𝜎] denote the number of the m + 1 largest jobs of J that

appear among the first
⌊(

� +
�

2

)
n
⌋
 jobs in J� . Then we derive by the inclusion-

exclusion principle:

(1)�

[|||||
L̂[𝜎]

𝜑L
− 1

|||||
>

𝜀

2

]
≤ 1 − P(m) ≤ 𝜀.

�����
L̂[J𝜎]

𝜑L[J] −
L̂[⌊J⌋𝜎]
𝜑L[⌊J⌋]

�����
≤ 𝛿

L̂[⌊J⌋𝜎]
𝜑L[J] .

�����
L̂[J𝜎]

𝜑L[J] −
L̂[⌊J⌋𝜎]
𝜑L[⌊J⌋]

�����
≤ 𝛿

𝜑
=

𝜀

2
.

�

������
L̂[J𝜎]

𝜑L[J] − 1
�����
> 𝜀

�
≤ �

������

L̂[⌊J⌋𝜎]
𝜑L[⌊J⌋] − 1

�����
>

𝜀

2

�
≤ 𝜀.

lim
m→∞

inf
J proper

��∼Sn

�
N(� + �)[J�] ≥ ⌊�m⌋ + h + 2

�
= 1.

1 3

Algorithmica	

By the Load Lemma the second summand can be lower bounded for every proper
sequence J by a term approaching 1 as m → ∞ . Hence it suffices to verify that this
is also possible for the term

We will upper bound the probability of the opposite event by a term approaching 0
for m → ∞ . The random variable Ñ

(
𝜑 +

𝜀

2

)
[𝜎] is hypergeometrically distributed

and therefore has expected value

Recall that for proper sequences n > m holds. For the second inequality we require
m and hence in also n to be large enough such that 1

n
≤ �

10
 holds. Again, the variable

Ñ
(
𝜑 +

𝜀

2

)
[𝜎] is hypergeometrically distributed and its variance is thus

Note that we have for m large enough:

Hence, using Chebyshev’s inequality, we have

and this term vanishes as m → ∞ . 	� ◻

Lemma 5  Let 𝜀 > 0 and � ∈ (0, 1] . Then there holds

�𝜎∼Sn

�
N(𝜑 + 𝜀)[𝜎] ≥ ⌊𝜑m⌋ + h + 2

�

≥ �𝜎∼Sn

�
Ñ
�
𝜑 +

𝜀

2

�
[𝜎] ≥ ⌊𝜑m⌋ + h + 2 and L

��
𝜑+

𝜀

2

�
n
�

[𝜎] < (𝜑 + 𝜀)L

�

≥ �𝜎∼Sn

�
Ñ
�
𝜑 +

𝜀

2

�
[𝜎] ≥ ⌊𝜑m⌋ + h + 2

�
+ �𝜎∼Sn

�
L

��
𝜑+

𝜀

2

�
n
�

[𝜎] < (𝜑 + 𝜀)L

�
− 1.

�𝜎∼Sn

�
Ñ
�
𝜑 +

𝜀

2

�
[𝜎] ≥ ⌊𝜑m⌋ + h + 2

�
.

E =

⌊(
� +

�

2

)
n
⌋

n
(m + 1) ≥

(
� +

2

5
�

)
(m + 1).

V =

⌊(
� +

�

2

)
n
⌋(

n −
⌊(

� +
�

2

)
n
⌋)

(m + 1)(n − m − 1)

n2(n − 1)
≤ m + 1.

⌊�m⌋ + h + 2 ≤ �
1 +

1

5
�

�
�(m + 1) ≤ E −

��
√
m + 1

5

√
V .

�𝜎∼Sn

�
Ñ
�
𝜑 +

𝜀

2

�
[𝜎] < ⌊𝜑m⌋ + h + 2

�

≤ �𝜎∼Sn

�
E − Ñ

�
𝜑 +

𝜀

2

�
[𝜎] >

𝜀𝜑
√
m + 1

5

√
V

�

≤ 25

𝜀2𝜑2(m + 1)

	 Algorithmica

1 3

Proof  Let us fix any proper sequence J and set

which is a finite set whose size only depends on � and � . Given 𝜑̃ ≥ 𝜑 , let u(𝜑̃) be
the smallest element in Λ greater or equal to 𝜑̃ . Then

and if we have

there holds

In particular, in order to prove the lemma it suffices to verify that

The latter is a consequence of applying Lemma 4 to all 𝜑̃ ∈ Λ and the Union
Bound. 	� ◻

We can now conclude the main lemma of this section:

Proof of Main Lemma 1  A proper job sequence is stable if the following four proper-
ties hold.

–	 Once Lt ≥ (c − 1)
i

m
⋅ L we have pt

max
≥ Ph.

–	 For every j ≥ i the sequence ending once we have Lt ≥
(

j

m
+

�

2

)
L contains at

least j + h + 2 of the m + 1 largest jobs.
–	 The sequence ending right before Lt ≥ i

m
(c − 1)�L holds contains at least h + 1

of the m + 1 largest jobs.
–	 The sequence ending right before the first of the h largest jobs contains at least

h + 1 of the m + 1 largest jobs.

By the Union Bound we may consider each property separately and prove that it
holds with a probability that tends to 1 as m → ∞.

Let � = (c − 1)
i

m
 and choose 𝜀 > 0 . By the Load Lemma, for m ≥ m(�,�) ,

after t = ⌊�n⌋ jobs of a proper job sequence J� have been scheduled, there holds
Lt ≤ (c − 1)

i

m
⋅ L with probability at least 1 − � . Observe that � is a fixed prob-

lem parameter so that m(�,�) is determined by � . The probability of any particular

lim
m→∞

inf
J proper

�𝜎∼Sn

�
∀𝜑̃≥𝜑 N(𝜑̃ + 𝜀)[J𝜎] ≥ ⌊𝜑̃m⌋ + h + 2

�
= 1.

Λ =
{
1 −

�

2
j ∣ j ∈ ℕ,� ≤ 1 −

�

2
j
}

𝜑̃ ≤ u(𝜑̃) ≤ 𝜑̃ +
𝜀

2

N(𝜑̃ + 𝜀)[J𝜎] < ⌊𝜑̃m⌋ + h + 2

N
�
u(𝜑̃) +

𝜀

2

�
[J𝜎] < ⌊𝜑̃m⌋ + h + 2 ≤ ⌊u(𝜑̃)m⌋ + h + 2.

lim
m→∞

inf
J proper

�𝜎∼Sn

�
∀𝜑̃∈ΛN

�
𝜑̃ +

𝜀

2

�
[J𝜎] ≥ ⌊𝜑̃m⌋ + h + 2

�
= 1.

1 3

Algorithmica	

job being among the first t jobs in J� is ⌊�n⌋∕n . Thus pt
max

≥ Ph holds with prob-
ability at least 1 − (1 − ⌊�n⌋∕n)h . Since J� is proper, we have n > m . Furthermore,
h = h(m) ∈ �(1) . Therefore, the probability that the first property holds tends to 1 as
m → ∞.

The second property is a consequence of Lemma 5 with � =
i

m
 . The third prop-

erty follows from Lemma 4. We need to choose the � in the statement of the lemma
to be i

m
(c − 1)� . Finally we examine the last property. In J� we focus on the posi-

tions of the m + 1 largest jobs. Consider any of the h largest jobs. The probability
that it is preceded by less than h + 1 of the m + 1 largest jobs is (h + 1)∕(m + 1) .
Thus the probability of the fourth property not to hold is at most h(h + 1)∕(m + 1) .
Since h ∈ o(

√
m) , the latter expression tends to 0 as m → ∞ . 	� ◻

4.3 � An Adversarial Analysis

In this section we prove the following main result.

Main Lemma 2  For every 𝜀 > 0 and m ≥ m(�) sufficiently large, ALG is adversari-
ally (c + �)-competitive on stable job sequences.

Consider a fixed 𝜀 > 0 . Given Corollary 2, we may assume that
0 < 𝜀 < 2 − c . Suppose that there was a stable job sequence J� such that
ALG(J𝜎) > (c + 𝜀)OPT(J𝜎) . We will derive a contradiction, given that m is large.
In order to simplify notation, in the following let J = J� be the stable job sequence
violating the performance ratio of c + � . Let J = J1,… , Jn and OPT = OPT(J).

Let Jn′ be the first job that causes ALG to have a makespan greater than
(c + �)OPT and let b0 = ln

�−1
m

 be the load of the least loaded machine Mn�−1
m

 right
before Jn′ is scheduled on it. The makespan after Jn′ is scheduled, called the criti-
cal makespan, is at most b0 + pn� ≤ b0 + OPT  . In particular b0 > (c − 1 + 𝜀)OPT as
well as pn� > (c − 1 + 𝜀)OPT  , see Lemma 3. Let

There holds 𝜆start < 𝜆end . The critical makespan of ALG is bounded by
b0 + OPT < (1 +

1

c−1+𝜀
)b0 = (c + 𝜀)

b0

c−1+𝜀
= (c + 𝜀)2𝜆endb0. Since ALG does not

achieve a performance ratio of c + � on J we have

Our main goal is to derive a contradiction to this inequality.
The impact of the variable Ph:
A new, crucial aspect in the analysis of ALG is Ph , the processing time of the

hth largest job in the sequence J  . Initially, when the processing of J starts, we
have no information on Ph and can only infer Pm+1 ≥ �startb0 . The second prop-
erty in the definition of stable job sequences ensures that pt

max
≥ Ph once the load

�start =
c−1

1+2c(2−c)
≈ 0.5426 and �end =

1

2(c−1+�)
≈ 0.5898.

(2)Pm+1 ≤ OPT∕2 < 𝜆endb0.

	 Algorithmica

1 3

ratio Lt∕L is sufficiently large. Note that ALG then also works with this estimate
because Ph ≤ pt

max
≤ Ot . This will allow us to evaluate the processing time of

flatly scheduled jobs. In order prove that Pm+1 is large, we will relate Pm+1 and Ph ,
i.e. we will lower bound Pm+1 in terms of Ph and vice versa. Using the relation we
can then conclude Pm+1 ≥ �endb0 . In the analysis we repeatedly use the properties
of stable job sequences and will explicitly point to it when this is the case.

We next make the relationship between Ph and Pm+1 precise. Given 0 < 𝜆 , let
f (�) = 2c� − 1 and given w > 0 , let
g(w) = (c(2c − 3) − 1)w + 4 − 2c ≈ 0.2854 ⋅ w + 0.3044 . We set gb(�) = g

(
�

b

)
b

and fb(w) = f
(

w

b

)
b , for any b > 0 . Then we will lower bound Pm+1 by gb0(Ph) and

Ph by fb0(Pm+1) . We state two technical propositions.

Proposition 3  For 𝜆 > 𝜆start , we have g(f (𝜆)) > 𝜆.

Proof  Consider the function

The function F is linear and strictly increasing in � . Hence for the proposi-
tion to hold it suffices to verify that F(�start) ≥ 0 . We can now compute that
F(𝜆start) ≈ 0.04865 > 0. 	� ◻

Proposition 4  For 0 < 𝜀 ≤ 1 , we have g(1 − 𝜀) > 𝜆end.

Note that the following proof determines the choice of our competitive ratio c,
which was chosen minimal such that Q[c] = 4c3 − 14c2 + 16c − 7 ≥ 0.

Proof  We calculate that

Recall that Q[c] = 4c3 − 14c2 + 16c − 7 = 0 . For 0 < 𝜀 ≤ 1 we have

Thus we see that g(1 − 𝜀) − 𝜆end > 0 and can conclude the lemma. 	� ◻

F(�) = g(f (�)) − � = (c(2c − 3) − 1)(2c� − 1) + 4 − 2c − �

= (4c3 − 6c2 − 2c − 1)� − 2c2 + c + 5

≈ 0.05446 ⋅ � + 0.01900.

g(1 − �) − �end = (c(2c − 3) − 1)(1 − �) + 4 − 2c −
1

2(c − 1 + �)

=
2(c − 1 + �)(2c2 − 5c + 3 − (2c2 − 3c − 1)�) − 1

2(c − 1 + �)

=
4c3 − 14c2 + 16c − 7 + (4 − 2c)� − 2(2c2 − 3c − 1)�2

2(c − 1 + �)
.

(4 − 2c)𝜀 − (2c2 − 3c − 1)𝜀2 ≈ 0.3044 ⋅ 𝜀 − 0.2854 ⋅ 𝜀2 > 0.

1 3

Algorithmica	

4.3.1 � Analyzing Large Jobs Towards Lower Bounding P
h
 and P

m+1

Let b > (c − 1 + 𝜀)OPT be a value such that immediately before Jn′ is scheduled at
least m − h machines have a load of at least b. Note that b = b0 satisfies this condi-
tion but we will be interested in larger values of b as well. We call a machine b-full
once its load is at least b; we call a job J a b-filling job if it causes the machine it is
scheduled on to become b-full. We number the b-filling jobs according to their order
of arrival J(1), J(2),… and let t(j) denote the time of arrival of the jth filling job J(j).

Recall that our main goal is to show that Pm+1 ≥ �endb0 holds. To this end we will
prove that the b0-filling jobs have a processing time of at least �endb0 . As there are m
such jobs, the bound on Pm+1 follows by observing that Jn′ arrives after all b0-filling
jobs are scheduled and that its processing time exceeds �endb0 as well. In fact, since
OPT ≥ b0 , we have

We remark that different to previous analyses in the literature we do not solely rely
on lower bounding the processing time of filling jobs. By using the third property of
stable job sequences, we can relate load and the size of the (m + 1) st largest job at
specific points in the time horizon, formally this is done later in Lemma 8.

In the following we regard b as fixed and omit it from the terms filling job and
full. Let � = max{�startb, min{gb

(
Ph

)
, �endb}} . We call a job large if it has a pro-

cessing time of at least � . Let t̃ = t(m − h) be the time when the (m − h) th filling job
arrived. The remainder of this section is devoted to showing the following important
Lemma 6. Some of the underlying lemmas, but not all of them, hold if m ≥ m(�) is
sufficiently large. We will make the dependence clear.

Lemma 6  At least one of the following statements holds:

–	 All filling jobs are large.
–	 If m ≥ m(�) , there holds Pt̃

m+1
≥ 𝜆 = max{𝜆startb, min{gb

(
Ph

)
, 𝜆endb}} , i.e. there

are at least m + 1 large jobs once the (m − h)-th filling job is scheduled.

Before we prove the lemma we derive two important implications towards a
lower bound of Pm+1.

Corollary 4  We have Pm+1 ≥ � = max{�startb0, min{gb0

(
Ph

)
, �endb0}}.

Proof  Apply the previous lemma, taking into account that b ≥ b0 , and use that there
are m many b0-filling jobs followed by Jn′ . The latter has size at least � by inequal-
ity (3). 	� ◻

We also want to lower bound the processing time of the (m + 1) st largest job at
time t̃ . However, at that time only m − h filling jobs have arrived. The next lemma
ensures that, if additionally Ph is not too large, this is not a problem.

(3)pn� > (c − 1)OPT > 0.847 ⋅ OPT > 𝜆endb0 ≈ 0.5898 ⋅ b0.

	 Algorithmica

1 3

Corollary 5  If Ph ≤ (1 − �)b and m ≥ m(�) , the second statement in Lemma 6 holds,
i.e. Pt̃

m+1
≥ 𝜆 = max{𝜆startb, min{gb

(
Ph

)
, 𝜆endb}}.

The proof of the lemma makes use of the fourth property of stable job
sequences. In particular we would not expect such a result to hold in the adver-
sarial model.

Proof  We will show that the first statement in Lemma 6 implies the second one if
Ph ≤ (1 − �)b holds. In order to conclude the second statement it suffices to verify
that at least m + 1 jobs of processing time � have arrived until time t̃ . By the first
statement we know that there were m − h large filling jobs coming before time t̃ .
Hence it is enough to verify that h + 1 large jobs arrive (strictly) before the first fill-
ing job J.

To show that there are h + 1 jobs with a processing time of at least Pm+1 before
the first filling job J, we use the last property of stable job sequences. If J is among
the h largest jobs, we are done immediately by the condition. Else J had size at most
Ph ≤ (1 − �)b . Assume J = Jt was scheduled on the machine Mt−1

j
 , for

j ∈ {i,m − h,m} , and let l = lt−1
j

 be its load before J was scheduled. Because J is a
filling job we have

In particular, before J was scheduled, the average load at that time was at least

Again, by the last property of stable job sequences, at least h + 1 jobs of processing
time at least Pm+1 were scheduled before this was the case. 	� ◻

We introduce late and early filling jobs. We later need a certain condition to
hold, namely the ones stated in Lemma 8, in order to show that the early filling
jobs are large. We show that if this condition is not met, the fact that the given job
sequence is stable ensures that Pt̃

m
≥ 𝜆.

Let s be chosen maximal such that the sth filling job is scheduled steeply.
If s ≤ i , then set s = i + 1 instead. We call all filling jobs J(j) with j > i that are
scheduled flatly late filling jobs. All other filling jobs are called early filling jobs.
In particular the job J(s+1) and the filling jobs afterwards are late filling jobs. The
following proposition implies that the fillings jobs after J(m−h) , if they exist, are
all late, i.e. scheduled flatly.

Proposition 5  We have s ≤ m − h if m ≥ m(�).

Proof of Proposition 5  Let h̃ < h and t = t(m − h̃) be the time the (m − h̃) th filling job
J arrived. We need to see that J was scheduled flatly. Assume that was not the case.

l ≥ b − Ph ≥ �b ≥ �(c − 1)OPT .

jl

m
≥

il

m
≥ �

i

m
(c − 1)OPT .

1 3

Algorithmica	

We know that for j ≤ m − h̃ we have lt−1
j

≥ b > (c − 1 + 𝜀)OPT  . In particular we
have

For the last inequality we need to choose m large enough. If the schedule was steep
at time t, then we had for every j ≤ k

But then the average load at time t − 1 would be:

For the second inequality we need to observe that we have k ≥ (4c − 7)m + 2h and
that the previous term decreases if we decrease k. One also can check that the sec-
ond last term is minimized if h = 0.

But now we have shown Lt−1 > OPT  , which is a contradiction. Hence the sched-
ule could not have been steep at time t − 1 . 	� ◻

We need a technical lemma. For any time t, let L
t

s
=

1

m−h−s+1

∑m−h

j=s
lt
j
 be the

average load on the machines numbered s to m − h.

Lemma 7  If L
t(s)−1

s
≥ �−1b holds and m ≥ m(�) then Lt(s)−1 >

(
s

m
+

𝜀

2

)
⋅ L.

This lemma comes down to a mere computation. While being simple at its
core, we have to account for various small error terms. These arise in three ways.
Some are inherent to the properties of stable sequences. Others arise from the
rounding involved in the definition of certain numbers, i in particular. Finally,
the small number h introduces such an error. While all these errors turn out to be
negligible, rigorously showing so is technical. Note that the following proof also
determines our choice of the value i. For larger values the proof would not hold.

Proof of Lemma 7  Let t = t(s) − 1 . We have lt
j
≥ b for j ≤ s − 1 as the first s − 1

machines are full. Considering the load on the machines numbered up to m − h we
obtain

Lt−1
i+1

=
1

m − i

m∑

j=i+1

lt−1
j

>
m − i − h − 1

m − i
(c − 1 + 𝜀)OPT ≥ (c − 1)OPT .

lt−1
j

≥ lt−1
k

≥ �(c − 1)OPT =
2(c − 1)2

2c − 3
OPT .

Lt−1 =
1

m

m∑

j=1

lt−1
j

>
k
2(c−1)2

2c−3
+ (m − h − k)(c − 1)

m
OPT

≥
((4c − 7)m + 2h)

2(c−1)2

2c−3
+ (m − (4c − 7)m − h)(c − 1)

m
OPT

≈ 1.3247 ⋅ OPT .

	 Algorithmica

1 3

If s > i + 1 , the schedule was steep at time t = t(s) − 1 and hence

Since lt
k
≥ lt

i
≥ b , the previous inequality holds for s = i + 1 , too, no matter whether

J(s) = J(i+1) was scheduled flatly or steeply. We hence get, for all s ≥ i + 1,

In the above difference, we first examine the first term, which is minimized if
s = i + 1 . With this setting it is still lower bounded by

In the second term of the above difference k

m−i
=

2i−m

m−i
 is increasing in i, where

i ≤ (2c − 3)m + h + 1 . We choose m large enough such that

There holds 𝛼−1 < 0.5 . Thus the second term in the difference is upper bounded by
2hb

m
.
Recall that b > (c − 1 + 𝜀)OPT  . Furthermore, 0 < 𝜀 < 2 − c such that

c − 1 + 𝜀 < 1 . Therefore, we obtain

In the previous term we intentionally highlighted three variables. It is easy to check
that if we decrease these variables, the term decreases, too. We do this by setting
� = (4c − 7)m and � = (2c − 3)m (while ignoring the non-highlighted occurrences

Lt
i+1

≥

∑s−1

j=i+1
lt
j
+ (m − h − s + 1)L

t

s

m − i

≥
(s − i − 1)b + (m − h − s + 1)�−1b

m − i

≥ �−1b +
s − i − 1

m − i
(1 − �−1)b −

h

m − i
�−1b

= �−1b +
s − i − 1

m − i

b

2(c − 1)
−

h

m − i
�−1b.

lt
k
≥ 𝛼Lt

i+1
> b +

s − i − 1

m − i

𝛼 ⋅ b
2(c − 1)

−
h ⋅ b
m − i

.

Lt ≥
klt

k
+ (s − k − 1)lt

s−1
+ (m − h − s + 1)L

t

s

m

>

k
(
b +

s−i−1

m−i
⋅ 𝛼⋅b
2(c−1)

−
h⋅b
m−i

)
+ (s − k − 1)b + (m − h − s + 1)

(
b −

b

2(c−1)

)

m

=

(
1 +

1

2(c − 1)

(
k

m

s − i − 1

m − i
⋅ 𝛼 −

m − s + 1

m

))
b −

(
k ⋅ h

m(m − i)
+

h ⋅ 𝛼−1

m

)
b.

(
1 −

m − i

2(c − 1)m

)
b >

(
1 −

2(2 − c)

2(c − 1)

)
b ≈ 0.8205 ⋅ b > 3b

4
.

k

m − i
≤ (4c − 7)m + 2(h + 1)

2(2 − c)m − (h + 1)
≤ 1.5.

Lt >
(
c − 1 +

1

2

(
�

m

s − i − 1

m − �
⋅ 𝛼 −

m − �

m
+

s − i + 1

m

)
+

3

4
𝜀 −

2h

m

)
OPT .

1 3

Algorithmica	

of i). We also assume that m is large enough such that �
4
≥

3h+2

m
 . Then the previous

lower bound on Lt can be brought to the following form:

Using that i+1
m

< 2c − 3 +
h+2

m
 and evaluating the term in front of s−i−1

m
 we get

The lemma follows by noting that OPT ≥ L . 	� ◻

Lemma 8  If the late filling jobs are large, L
t(s)−1

s
≥ �−1b and m ≥ m(�) , we have

Pt̃
m+1

≥ 𝜆.

Proof  Assume that the conditions of the lemma hold. By Lemma 7 we have
Lt(s)−1 >

(
s

m
+

𝜀

2

)
⋅ L. By the third property of stable sequences, at most

m + 1 − (s + h + 2) = m − s − h − 1 of the largest m + 1 jobs appear in the sequence
starting after time t(s) − 1 . However, this sequence contains m − h − s late filling
jobs. Thus there exists a late filling job that is not among the m + 1 largest jobs. As it
has a processing time of at least � , by the assumption of the lemma, Pm+1 ≥ � holds.

Now consider the m + 1 largest jobs of the entire sequence that arrive before
J(s) as well as the jobs J(s+1),… , J(m−h) . There are at least s + h + 2 of the former
and m − h − s of the latter. Thus we have found a set of at least m + 1 jobs arriving
before (or at) time t̃ = t(m − h) . Moreover, we argued that all these jobs have a pro-
cessing time of at least � . Hence Pt̃

m+1
≥ 𝜆 holds true. 	� ◻

We are ready to evaluate the processing time of filling jobs to prove Lemma 6,
which we will do in the following two lemmas.

Lemma 9  Any late filling job’s processing time exceeds max{�startb, gb(Ph)}.

Proof  Let j ≥ i + 1 such that J(j) was scheduled flatly. Set t = t(j) − 1
and l = lt

i
 . Because at least i machines were full, we have have

Lt ≥ b ⋅ i

m
≥ (c − 1)

i

m
OPT ≥ (c − 1)

i

m
L . Hence by Definition 3 we have pt

max
≥ Ph.

Let 𝜆̃ = max{𝜆startb, gb(Ph)} . We need to show that J(j) has a processing time
strictly greater than 𝜆̃ . If we have lt

m−h
< b − 𝜆̃ , then this was the case because J(j)

increased the load of some machine from a value smaller than b − 𝜆̃ to b. Hence let
us assume that we have lt

m−h
≥ b − 𝜆̃ . In particular we have

By the definition of a late filling job, J(j) was scheduled flatly. In particular, it would
have been scheduled on machine Mt

i
 (which was not the case) if any of the following

two inequalities did not hold:

Lt >

(
2c − 3 +

1

2

(
4c − 7

2(2 − c)
⋅ 𝛼 + 1

)
s − i − 1

m
+

h + 2

m
+

𝜀

2

)
OPT

Lt >
(
i + 1

m
+ 1.0666 ⋅

s − i − 1

m
+

𝜀

2

)
OPT >

(
s

m
+

𝜀

2

)
OPT .

Lt ≥
(j − 1)l + (m − j − h + 1)(b − 𝜆̃)

m
.

	 Algorithmica

1 3

–	 pt + l > cpt
max

≥ cPh

–	 pt + l > cLt

If l ≤ cPh − 𝜆̃ held true, we get pt > 𝜆̃ from the first inequality. Thus we only need
to treat the case that l > cPh − 𝜆̃ held true. We also know that we have l ≥ b , because
the ith machine is full. Hence we may assume that

In order to derive the lemma we need to prove that pt − 𝜆̃ > 0 holds. Using the sec-
ond inequality we get

Using that (2c − 3)m + h < i < j − 1 and b − 𝜆̃ < b ≤ l hold, the previous term does
not increase if we replace j − 1 by (2c − 3)m + h . The resulting term is

Now let us observe that we have l ≥ b ≥ 2(b − 𝜆startb) ≥ 2(b − 𝜆̃) . Hence the previ-
ous term is minimized if we set h = 0 . We get

As c(2c − 3) − 1 ≈ 0.2584 > 0 the above term does not increase if we replace l by
either value: b or cPh − 𝜆̃.

If we have 𝜆̃ = 𝜆startb , we choose l = b and get

The third equality uses the definition of �start . The lemma follows if 𝜆̃ = 𝜆startb.
Otherwise, if 𝜆̃ = gb(Ph) , we choose l = cPh − 𝜆̃ and get

Here the last equality follows from the definition of gb . The lemma follows in the
case 𝜆̃ = gb(Ph) . 	� ◻

Lemma 10  If L
t(s)−1

s
< 𝛼−1b holds, the early filling jobs have a processing time of at

least �endb.

l ≥ max{b, cPh − 𝜆̃}.

pt − 𝜆̃ > cLt − l − 𝜆̃ ≥ c
(j − 1)l + (m − j − h + 1)(b − 𝜆̃)

m
− l − 𝜆̃.

pt − 𝜆̃ > c
((2c − 3)m + h)l + (m − (2c − 3)m − 2h + 1)(b − 𝜆̃)

m
− l − 𝜆̃.

pt − 𝜆̃ > c
[
(2c − 3)l + (1 − (2c − 3))(b − 𝜆̃)

]
− l − 𝜆.

pt − 𝜆startb > c
[
(2c − 3)b + (1 − (2c − 3))(b − 𝜆startb)

]
− b − 𝜆startb

= (c − 1)b − (1 + 2c(2 − c))𝜆startb

= (c − 1)b − (c − 1)b

= 0.

pt − 𝜆̃ > c
[
(2c − 3)(cPh − 𝜆̃) + (1 − (2c − 3))(b − 𝜆̃)

]
− (cPh − 𝜆̃) − 𝜆̃

= (c2(2c − 3) − c)Ph + (c(4 − 2c))b − cgb(Ph)

= 0.

1 3

Algorithmica	

Before proving Lemma 10 let us observe the following, strengthening its
condition.

Lemma 11  We have

Proof  Let i + 1 ≤ j < s . It suffices to verify that

The second inequality is obvious because for every r the loads lt
r
 can only increase as

t increases. For the first inequality we note that by definition the job J(j) was sched-
uled steeply and hence on a least loaded machine. This machine became full. Thus it
is not among the m − j least loaded machines at time t(j). In particular Lt(j)

j+1
 , the aver-

age over the m − j smallest loads at time t(j), is also the average of the m − j + 1
smallest loads excluding the smallest load at time t(j) − 1 . Therefore it cannot be less
than Lt(j)−1

j
 . 	� ◻

Proof of Lemma 10  Let i < j ≤ s such that J(j) was an early filling job. By Lemma 11
we have Lt(j)−1

j
≤ Lt(s)−1

s
< 𝛼−1b = b −

b

2(c−1)
< b − 𝜆endb . By definition J(j) was

scheduled on a least loaded machine M
t(j)−1
m which had load less than

L
t(j)−1

j
< b − 𝜆endb before and at least b afterwards because it became full. In particu-

lar J(j) had size �endb.
For k < j ≤ i the job J(j) is scheduled steeply because we have by Lemma 11

Thus for k < j ≤ i the job J(j) is scheduled on the least loaded machine Mt(j)−1
m  , whose

load lt(j)−1m is bounded by

Hence the job J(j) had a size of at least �endb . We also observe that we have

In particular for 1 ≤ j ≤ k any filling job J(j) filled a machine with a load of at most
max{lt(k)

m
, l
t(k)

i
} = l

t(k)

i
< b − 𝜆endb . Hence it had a size of at least �endb . 	� ◻

We now conclude the main lemma of this subsection, Lemma 6.

Proof of Lemma 6  By Lemma 9, all late filling jobs are large. We distinguish two
cases depending on whether or not L

t(s)−1

s
< 𝛼−1b holds. If it does, all filling jobs are

large by Lemma 10 and the first statement in Lemma 6 holds. Otherwise, the second
statement in Lemma 6 holds by Lemma 8. 	� ◻

L
t(i+1)−1

i+1
≤ L

t(i+2)−1

i+2
≤ …Lt(s)−1

s
.

L
t(j)−1

j
≤ L

t(j)

j+1
≤ L

t(j+1)−1

j+1
.

l
t(j)−1

k
≥ b > 𝛼Lt(s)−1

s
≥ 𝛼L

t(i+1)−1

i+1
≥ 𝛼L

t(j)−1

i+1
.

lt(j)−1
m

≤ L
t(j)−1

i+1
≤ Lt(s)−1

s
< 𝛼−1b = b −

b

2(c − 1)
< b − 𝜆endb.

l
t(k)−1

i
≤ l

t(k+1)−1

i+1
≤ … ≤ l

t(k+(m−i))−1

i+(m−i)
= lt(i)−1

m
< b − 𝜆endb.

	 Algorithmica

1 3

4.3.2 � Lower Bounding P
h
 and P

m+1

In this section we establish the following relations on Ph and Pm+1.

Lemma 12  There holds Ph > (1 − 𝜀)b0 or Pm+1 ≥ �endb0 if m ≥ m(�).

For the proof we need a way to lower bound the processing time of a job Jt
depending on Pt

m+1
:

Lemma 13  Let Jt be any job scheduled flatly on the least loaded machine and let
b = lt−1

m−h
 be the load of the (h + 1)-th least loaded machine. Then Jt has a processing

time of at least fb(Pt
m+1

).

Proof  From the fact that Jt was not scheduled on the (h + 1) th least loaded machine
Mt

m−h
 we derive that pt > c ⋅ Ot − b ≥ c ⋅ Pt

m+1
− b = fb(P

t
m+1

) holds. 	� ◻

Proof of Lemma 12  Assume for a contradiction that we had Ph ≤ (1 − �)b0 . Let
J = Jt be the smallest among the h last b0-filling jobs. Then J has a processing time
p ≤ Ph . We want to derive a contradiction to that. Let b1 = lt−1

m−h
 be the load of the

(m − h) th machine right before J was scheduled. Because this machine was b0-full
at that time we know that b1 ≥ b0 > (c − 1 + 𝜀)OPT holds and it makes sense to
consider b1-filling jobs. Let t̃ be the time the (m − h) th b1-filling job arrived. By
Lemma 6 we have Pt̃

m+1
≥ 𝜆 = max{𝜆startb1, min{gb1

(
Ph

)
, 𝜆endb1}}.

If we have � = �endb1 ≥ �endb0 we have already proven Pm+1 ≥ �endb0
and the lemma follows. So we are left to treat the case that we have
Pt̃
m+1

≥ 𝜆 = max{𝜆startb1, gb1

(
Ph

)
}.

Now we can derive the following contradiction:

For the second inequality, we use the monotonicity of gb1(−) . The third inequality
follows from Lemma 13 and the last one from Proposition 3. 	� ◻

4.3.3 � Establishing Main Lemma 2.

Let m ≥ m(�) be sufficiently large. The machine number m(�) is determined
by the proofs of Proposition 5 and Lemma 7, and then carries over to the sub-
sequent lemmas. Let us assume for a contradiction sake that there was a sta-
ble sequence J such that ALG(J) > (c + 𝜀)OPT(J) . As argued in the begin-
ning of Sect. 4.3, see (2), it suffices to show that Pm+1 ≥ �endb0 . If this was not
the case, we would have Ph ≥ (1 − �)b0 by Lemma 12. In particular by Propo-
sition 4 we had gb0

(
Ph

)
= g(1 − 𝜀)b0 > 𝜆endb0. But now Lemma 4 shows that

Pm+1 ≥ max{�startb0, min{gb0

(
Ph

)
, �endb0}} = �endb0.

Pt̃
m+1

≥ gb1

(
Ph

)
≥ gb1(p) ≥ gb1

(
fb1

(
Pt̃
m+1

))
= g

(
f

(
Pt̃
m+1

b1

))
b1 > Pt̃

m+1
.

1 3

Algorithmica	

We conclude, by Corollary 3, that ALG is nearly c-competitive.

5 � Lower Bounds

We present lower bounds on the competitive ratio of any deterministic online algo-
rithm in the random-order model. Theorem 3 implies that if a deterministic online
algorithm is c-competitive with high probability as m → ∞ , then c ≥ 3∕2.

Theorem 2  Let A be a deterministic online algorithm that is c-competitive in the
random-order model. Then c ≥ 4∕3 if m ≥ 8.

Theorem 3  Let A be a deterministic online algorithm that is nearly c-competitive.
Then c ≥ 3∕2.

A basic family of inputs are job sequences that consist of jobs having an identical
processing time of, say, 1. We first analyze them and then use the insight to derive
our lower bounds. Let m ≥ 2 be arbitrary. For any deterministic online algorithm A,
let r(A, m) be the maximum number in ℕ ∪ {∞} such that A handles a sequence con-
sisting of r(A,m) ⋅ m jobs with an identical processing time of 1 by scheduling each
job on a least loaded machine.

Lemma 14  Let m ≥ 2 be arbitrary. For every deterministic online algorithm A, there
exists a job sequence J such that Arom(J) ≥ (1 +

1

r(A,m)+1
)OPT(J) . We use the con-

vention that 1

∞+1
= 0.

Proof  For r(A,m) = ∞ there is nothing to show. For r(A) < ∞ , consider the
sequence J consisting of (r(A,m) + 1) ⋅ m identical jobs, each having a processing
time of 1. It suffices to analyze the algorithm adversarially as all permutations of the
job sequence are identical. After having handled the first r(A,m) ⋅ m jobs, the algo-
rithm A has a schedule in which every machine has load of r(A, m). By the maximal-
ity of r(A, m), the algorithm A schedules one of the following m jobs on a machine
that is not a least loaded one. The resulting makespan is r(A,m) + 2 . The lemma fol-
lows since the optimal makespan is r(A,m) + 1 . 	� ◻

Proof of Theorem 2  Let m ≥ 8 be arbitrary. Consider any deterministic online algo-
rithm A. If r(A,m) ≤ 2 , then, by Lemma 14, there exists a sequence J such that
Arom(J) ≥ 4

3
⋅ OPT(J) . Therefore, we may assume that r(A,m) ≥ 3 . Consider the

input sequence J consisting of 4m − 4 identical small jobs of processing time 1 and
one large job of processing time 4. Obviously OPT(J) = 4.

Let i be the number of small jobs preceding the large job in J� . The random vari-
able i takes any (integer) value between 0 and 4m − 4 with probability 1

4m−3
 . Since

r(A,m) ≥ 3 the least loaded machine has load of at least l =
⌊

i

m

⌋
 when the large job

arrives. Thus A(J�) ≥ l + 4 . The load l takes the values 0, 1 and 2 with probability

	 Algorithmica

1 3

m

4m−3
 and the value 3 with probability m−3

4m−3
 . Hence the expected makespan of algo-

rithm A is at least

For the last inequality we use that m ≥ 8 . 	� ◻

Proof of Theorem 3  Let m ≥ 2 be arbitrary and let A be any deterministic online
algorithm. If r(A,m) = 0 , then consider the sequence J consisting of m jobs with a
processing time of 1 each. On every permutation of J algorithm A has a makespan
of 2, while the optimum makespan is 1. If r(A,m) ≥ 1 , then consider the sequence J
consisting of 2m − 2 small jobs having a processing time of 1 and one large job with
a processing time of 2. Obviously OPT(J) = 2 . If the permuted sequence starts with
m small jobs, the least loaded machine has load 1 once the large job arrives. Under
such permutations A(J�) ≥ 3 =

3

2
⋅ OPT(J) holds true. The probability of this hap-

pening is m−1

2m−1
 . The probability approaches 1

2
 and in particular does not vanish, for

m → ∞ . Thus, if A is nearly c-competitive, then c ≥ 3∕2 . 	� ◻

Funding  Open Access funding enabled and organized by Projekt DEAL.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is
not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission
directly from the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​
ses/​by/4.​0/.

References

	 1.	 Albers, S.: Better bounds for online scheduling. SIAM J. Comput. 29(2), 459–473 (1999)
	 2.	 Babaioff, M., Immorlica, N., Kempe, D., Kleinberg, R.: A knapsack secretary problem with applica-

tions. In: Proceedings of 10th International Workshop on Approximation Algorithms for Combina-
torial Optimization Problems (APPROX). Springer, pp. 16–28 (2007)

	 3.	 Babaioff, M., Immorlica, N., Kempe, D., Kleinberg, R.: Matroid secretary problems. J. ACM 65(6),
1–26 (2018)

	 4.	 Bartal, Y., Fiat, A., Karloff, H., Vohra, R.: New algorithms for an ancient scheduling problem. In:
Proceedings of 24th ACM Symposium on Theory of Computing (STOC), pp. 51–58 (1992)

	 5.	 Bartal, Y., Karloff, H., Rabani, Y.: A better lower bound for on-line scheduling. Inf. Process. Lett.
50(3), 113–116 (1994)

	 6.	 Chen, B., van Vliet, A., Woeginger, G.: A lower bound for randomized on-line scheduling algo-
rithms. Inf. Process. Lett. 51(5), 219–222 (1994)

Arom(J) ≥ m

4m − 3
⋅ (0 + 1 + 2) +

m − 3

4m − 3
⋅ 3 + 4 =

6m − 9

4m − 3
+ 4 > 16

3
=

4

3
OPT(J).

1 3

Algorithmica	

	 7.	 Chen, L., Ye, D., Zhang, G.: Approximating the optimal algorithm for online scheduling problems
via dynamic programming. Asia Pac. J. Oper. Res. 32(01), 1540011 (2015)

	 8.	 Cheng, T., Kellerer, H., Kotov, V.: Semi-on-line multiprocessor scheduling with given total process-
ing time. Theor. Comput. Sci. 337(1–3), 134–146 (2005)

	 9.	 Dohrau, J.: Online makespan scheduling with sublinear advice. In: 41st International Conference
on Current Trends in Theory and Practice of Computer Science (SOFSEM). Springer, pp. 177–188
(2015)

	10.	 Dynkin, E.: The optimum choice of the instant for stopping a Markov process. Sov. Math. 4, 627–
629 (1963)

	11.	 Englert, M., Özmen, D., Westermann, M.: The power of reordering for online minimum makespan
scheduling. In: Proceedings of 49th 676 IEEE Annual Symposium on Foundations of Computer Sci-
ence (FOCS). IEEE, pp. 603–612 (2008)

	12.	 Faigle, U., Kern, W., Turán, G.: On the performance of on-line algorithms for partition problems.
Acta Cybern. 9(2), 107–119 (1989)

	13.	 Feldman, M., Svensson, O., Zenklusen, R.: A simple O (log log (rank))-competitive algorithm for
the matroid secretary problem. In: Proceedings of 26th Annual ACM-SIAM Symposium on Dis-
crete Algorithms (SODA). SIAM, pp. 1189–1201 (2014)

	14.	 Fleischer, R., Wahl, M.: On-line scheduling revisited. J. Sched. 3(6), 343–353 (2000)
	15.	 Galambos, G., Woeginger, G.: An on-line scheduling heuristic with better worst-case ratio than Gra-

ham’s list scheduling. SIAM J. Comput. 22(2), 349–355 (1993)
	16.	 Göbel, O., Kesselheim, T., Tönnis, A.: Online appointment scheduling in the random order model.

In: Algorithms-ESA 2015. Springer, pp. 680–692 (2015)
	17.	 Goel, G., Mehta, A.: Online budgeted matching in random input models with applications to

Adwords. SODA 8, 982–991 (2008)
	18.	 Gormley, T., Reingold, N., Torng, E., Westbrook, J.: Generating adversaries for request-answer

games. In: Proceedings of the Eleventh Annual ACM-SIAM Symposium on Discrete Algorithms,
pp. 564–565 (2000)

	19.	 Graham, R.: Bounds for certain multiprocessing anomalies. Bell Syst. Tech. J. 45(9), 1563–1581
(1966)

	20.	 Gupta, A., Mehta, R., Molinaro, M.: Maximizing Profit with Convex Costs in the Random-Order
Model. arXiv preprint arXiv:​1804.​08172 (2018)

	21.	 Hochbaum, D., Shmoys, D.: Using dual approximation algorithms for scheduling problems theoreti-
cal and practical results. J. ACM 34(1), 144–162 (1987)

	22.	 Karande, C., Mehta, A., Tripathi, P.: Online bipartite matching with unknown distributions. In:
Proceedings of the Forty-Third Annual ACM Symposium on Theory of Computing, pp. 587–596
(2011)

	23.	 Karger, D., Phillips, S., Torng, E.: A better algorithm for an ancient scheduling problem. J. Algo-
rithms 20(2), 400–430 (1996)

	24.	 Kellerer, H., Kotov, V.: An efficient algorithm for bin stretching. Oper. Res. Lett. 41(4), 343–346
(2013)

	25.	 Kellerer, H., Kotov, V., Speranza, M.G., Tuza, Z.: Semi on-line algorithms for the partition problem.
Oper. Res. Lett. 21(5), 235–242 (1997)

	26.	 Kenyon, C.: Best-fit bin-packing with random order. SODA 96, 359–364 (1996)
	27.	 Kesselheim, T., Tönnis, A., Radke, K., Vöcking, B.: Primal beats dual on online packing LPs in the

random-order model. In: Proceedings of the Forty-Sixth Annual ACM Symposium on Theory of
Computing, pp. 303–312 (2014)

	28.	 Kleinberg, R.: A multiple-choice secretary algorithm with applications to online auctions. SODA 5,
630–631 (2005)

	29.	 Lachish, O.: O (log log rank) competitive ratio for the matroid secretary problem. In: 2014 IEEE
55th Annual Symposium on Foundations of Computer Science. IEEE, pp. 326–335 (2014)

	30.	 Mahdian, M., Yan, Q.: Online bipartite matching with random arrivals: an approach based on
strongly factor-revealing lps. In: Proceedings of the Forty-Third Annual ACM Symposium on The-
ory of Computing, pp. 597–606 (2011)

	31.	 Meyerson, A.: Online facility location. In: Proceedings 42nd IEEE Symposium on Foundations of
Computer Science. IEEE, pp. 426–431 (2001)

	32.	 Molinaro, M.: Online and random-order load balancing simultaneously. In: Proceedings of the
Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms. SIAM, pp. 1638–1650
(2017)

	 Algorithmica

1 3

	33.	 Osborn, C., Torng, E.: List’s worst-average-case or WAC ratio. J. Sched. 11(3), 213–215 (2008)
	34.	 Pruhs, K., Sgall, J., Torng, E.: Online scheduling. (2004)
	35.	 Rudin, J., III.: Improved bounds for the on-line scheduling problem (2001)
	36.	 Rudin, J., III., Chandrasekaran, R.: Improved bounds for the online scheduling problem. SIAM J.

Comput. 32(3), 717–735 (2003)
	37.	 Sanders, P., Sivadasan, N., Skutella, M.: Online scheduling with bounded migration. Math. Oper.

Res. 34(2), 481–498 (2009)
	38.	 Sgall, J.: A lower bound for randomized on-line multiprocessor scheduling. Inf. Process. Lett. 63(1),

51–55 (1997)
	39.	 Sleator, D., Tarjan, R.: Amortized efficiency of list update and paging rules. Commun. ACM 28(2),

202–208 (1985)

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

Authors and Affiliations

Susanne Albers1 · Maximilian Janke1 

	 Susanne Albers
	 albers@in.tum.de

1	 Lehrstuhl für Algorithmen und Komplexität, Institut für Informatik, Technische Universität
München, Boltzmannstr. 3, 85748 Garching, Germany

Appendix C

Scheduling in the Secretary Model
Bibliographic Information Makespan Minimization in the Secretary
Model. S. Albers, M. Janke. To appear in: 41st Annual Conference on
Foundations of Software Technology and Theoretical Computer Science
(FSTTCS) 2021

Summary of Contributions We study Online Makespan Minimiza-
tion in the secretary model. Online algorithms treat jobs in a uniformly
random order and know their number n in advance. This knowledge has
been implicitly used by any online algorithm developed for scheduling under
random-order arrival excluding ours in Appendix B. The arriving jobs have
to be scheduled onto parallel and identical machines. Preemption is not
allowed. The goal is to minimize the makespan, which is the time it takes to
process all jobs.

We analyze two deterministic online algorithms. First, a straightforward
adaptation of the algorithm LightLoad [10] from the literature has a com-
petitive ratio of 1.75. This ratio is not only obtained in expectation but on
almost all input permutations. We also analyze LightLoad for small values
of m. A more sophisticated deterministic 1.581-competitive algorithm then
outcompetes even the pessimistic randomized lower bound for adversarial
settings [51, 151]. This competitive ratio holds again for nearly all input
permutations. It provides formal evidence that job sequences leading to
worse competitive ratios are extremely rare. We complement these results by
first lower bounds. No online algorithm, deterministic or randomized, can be
better than 1.043-competitive in the secretary model. Moreover, it cannot
achieve a competitive ratio below 1.257 with high probability.

Individual Contributions
• Initial proposal to study the secretary variant of the random-order

model, where input size n is known in advance.
• Analysis and adaptation of LightLoad, as well as development and

analysis of the improved algorithm and the lower bounds.
• Composition of the manuscript including graphics, graphs, technical

and non-technical parts.

Scheduling in the secretary model∗1

Susanne Albers2

Department of Computer Science, Technical University of Munich3

Maximilian Janke4

Department of Computer Science, Technical University of Munich5

Abstract6

This paper studies online makespan minimization in the secretary model. Jobs, specified by their7

processing times, are presented in a uniformly random order. The input size n is known in advance.8

An online algorithm has to non-preemptively assign each job permanently and irrevocably to one9

of m parallel and identical machines such that the expected time it takes to process them all, the10

makespan, is minimized.11

We give two deterministic algorithms. First, a straightforward adaptation of the semi-online12

strategy LightLoad [4] provides a very simple approach retaining its competitive ratio of 1.75. A new13

and sophisticated algorithm is 1.535-competitive. These competitive ratios are not only obtained in14

expectation but, in fact, for all but a very tiny fraction of job orders.15

Classically, online makespan minimization only considers the worst-case order. Here, no compet-16

itive ratio below 1.885 for deterministic algorithms and 1.581 using randomization is possible. The17

best randomized algorithm so far is 1.916-competitive. Our results show that classical worst-case18

orders are quite rare and pessimistic for many applications.19

We complement our results by providing first lower bounds. A competitive ratio obtained on20

nearly all possible job orders must be at least 1.257. This implies a lower bound of 1.043 for both21

deterministic and randomized algorithms in the general model.22

2012 ACM Subject Classification Theory of computation → Online algorithms23

Keywords and phrases Scheduling, makespan minimization, online algorithm, competitive analysis,24

lower bound, random-order, secretary problem25

Digital Object Identifier 10.4230/LIPIcs...26

1 Introduction27

We study one of the most basic scheduling problems, the classic problem of makespan28

minimization. For the classic makespan minimization problem, one is given an input set J29

of n jobs, which have to be scheduled onto m identical and parallel machines. Preemption is30

not allowed. Each job J ∈ J runs on precisely one machine. The goal is to find a schedule31

minimizing the makespan, i.e. the completion time of the last job. This problem admits a32

long line of research and countless practical applications in both, its offline variant see e.g.33

[31, 34] and references therein, as well as in the online setting studied in this paper.34

In the online setting, jobs are revealed one by one and each has to be scheduled by35

an online algorithm A immediately and irrevocably without knowing the sizes of future36

jobs. The makespan of online algorithm A, denoted by A(J σ), may depend on both the job37

set J and the job order σ. The optimum makespan OPT(J) only depends on the former.38

Traditionally, one measures the performance of A in terms of competitive analysis. The input39

set J as well as the job order σ are chosen by an adversary whose goal is to maximize the40

ratio A(J σ)
OPT(J) . The maximum ratio, c = supJ ,σ

A(J σ)
OPT(J) , is the (adversarial) competitive ratio.41

The goal is to find online algorithms obtaining small competitive ratios.42

∗ Work supported by the European Research Council, Grant Agreement No. 691672, project APEG.

© S. Albers, M. Janke;
licensed under Creative Commons License CC-BY

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

XX:2 Scheduling in the secretary model

In the classical secretary problem, the goal is to hire the best secretary out of a linearly43

ordered set S of candidates. Its size n is known. Secretaries appear one by one in a uniformly44

random order. An online algorithm can only compare secretaries it has seen so far. It has to45

decide irrevocably for each new arrival whether this is the single one it wants to hire. Once46

a candidate is hired, future ones are automatically rejected even if they are better. The47

algorithm fails unless it picks the best secretary. Similar to makespan minimization this48

problem has been long studied, see [21, 24, 25, 35, 44, 46, 47] and references therein.49

This paper studies makespan minimization under the input model of the secretary50

problem. The adversary determines a job set of known size n. Similar to the secretary51

problem, these jobs are presented to an online algorithm A one by one in a uniformly random52

order. Again, A has to schedule each job without knowledge of the future. The expected53

makespan is considered. The competitive ratio in the secretary (or random-order) model is54

c = supJ Eσ

[
A(J σ)

OPT(J)

]
= supJ 1

n!
∑
σ∈Sn

A(J σ)
OPT(J) , the maximum ratio between the expected55

makespan of A and the optimum makespan. The goal is again to obtain small competitive56

ratios.57

We propose the term secretary model to set this result apart from [6] where we provide a58

1.8478-competitive where n, the number of jobs, is not known in advance. Not knowing n is59

quite restrictive and has never been considered in any other scheduling algorithm designed60

with random-order arrival in mind [3, 28, 51, 52]. We hope to raise attention to these two61

surprisingly different models. Even though for the adversarial model such information is62

useless; the secretary-model requires novel and significantly different approaches and leads63

to, as our results show, vastly better performance guarantees.64

Frameworks similar to the secretary model received a lot of recent attention in the65

research community sparking the area of random-order analysis. Random-order analysis has66

been successfully applied to numerous problems such as matching [29, 36, 38, 48], various67

generalizations of the secretary problem [9, 24, 25, 33, 35, 44, 46], knapsack problems [10],68

bin packing [42], facility location [49], packing LPs [43], convex optimization [32], welfare69

maximization [45], budgeted allocation [50] and recently scheduling [3, 6, 28, 51, 52]. We70

refer to the chapter [8] for a general overview over random-order models.71

For makespan minimization, the role of randomization is poorly understood. The lower72

bound of 1.581 from [14, 55] is considered pessimistic and exhibits quite a big gap towards73

the best randomized ratio of 1.916 from [2]. A main consequence of the paper is that74

random-order arrival allows to beat the lower bound of 1.581. This formally sets the secretary75

model apart from the classical adversarial setting even if randomization is involved.76

Previous work: Online makespan minimization and variants of the secretary problem have77

been studied extensively. We only review results most relevant to this work, beginning78

with the traditional deterministic adversarial setting. For m identical machines, Graham79

[31] showed 1966 that the greedy strategy, which schedules each job onto a least loaded80

machine, is
(
2− 1

m

)
-competitive. This was subsequently improved in a long line of research81

[27, 11, 37, 1] leading to the currently best competitive ratio by Fleischer and Wahl [26],82

which approaches 1.9201 for m→∞. Chen et al. [15] presented a deterministic algorithm83

whose competitive ratio is at most (1 + ε)-times the optimum one, although the actual ratio84

remains to be determined. For general m, lower bounds are provided in [23, 12, 30, 53].85

The currently best bound is due to Rudin III [53] who shows that no deterministic online86

algorithm can be better than 1.88-competitive.87

The role of randomization in this model is not well understood. The currently best88

randomized ratio of 1.916 [2] barely beats deterministic guarantees. In contrast, the best89

lower bound approaches e
e−1 > 1.581 for m → ∞ [14, 55]. There has been considerable90

S. Albers, M. Janke XX:3

research interest in tightening these bounds.91

Recent results for makespan minimization consider variants where the online algorithm92

obtains extra resources. In semi-online settings, additional information on the job sequence93

is given in advance, such as the optimum makespan [13, 39] or the total processing time94

of jobs [4, 16, 41, 40]. In the former model, the optimum competitive ratio lies in the95

interval [1.333, 1.5], see [13], while for the latter the optimum competitive ratio is known to96

be 1.585 cf. [4, 40]. Taking this further, the advice complexity setting allows the algorithm97

to receive a certain number of advice bits from an offline oracle [5, 20, 41]. Other algorithms98

can migrate jobs [54] or offer a buffer, which they use to reorder the job sequence [22, 41].99

The secretary problem is even older than scheduling [25]. We only summarize the work100

most relevant to this paper. Lindley [47] and Dynkin [21] first show that the optimum strategy101

finds the best secretary with probability 1/e for n→∞. Recent research focusses on many102

variants, among others generalizations to several secretaries [7, 44] or even matroids [9, 24, 46].103

Amodern version considers adversarial orders but allows prior sampling [18, 35, 8, 33]. Related104

models are prophet inequalities and the game of googol [17, 19].105

So far, little is known for scheduling in the secretary model. Osborn and Torng [52]106

prove that Graham’s greedy strategy is still not better than 2-competitive for m→∞. We107

study makespan minimization in the restricted random-order model where n is not known in108

advance [6] and the dual problem, Machine Covering, in the secretary model [3]. Molinaro109

[51] studies a very general scheduling problem. His algorithm uses n to restart itself after half110

the jobs are seen and has expected makespan (1 + ε)OPT +O(log(m)/ε). Göbel et al. [28]111

study scheduling on a single machine where the goal is to minimize weighted completion112

times. Their competitive ratio is O(log(n)) whereas they show that adversarial models allow113

no sublinear competitive ratios.114

Our contribution: We study makespan minimization for the secretary (or random-order)115

model in depth. We show that basic sampling ideas allow to adapt a fairly simple algorithm116

from the literature [4] to be 1.75-competitive. A more sophisticated algorithm vastly improves117

this competitive ratio to 1.535. Both algorithms are deterministic. This ratio of 1.535 beats118

all lower bounds for adversarial scheduling, including the bound of 1.582 for randomized119

algorithms. [14, 55]120

Our main results focus on large number of machines, m→∞. This is in line with most121

recent adversarial results [3, 2, 26] and all random-order scheduling results [6, 28, 51, 52],122

excluding [28] who study scheduling on one machine. While adversarial guarantees are known123

to improve for small numbers of machines, nobody has ever, to the best of our knowledge,124

explored guarantees for random-order arrival on small number of machines. We prove that125

our simple algorithm is
(
1.75 +O(1√

m
)
)
-competitive. Explicit bounds on the term hidden in126

the O-notation are provided. This result indicates that the focus of contemporary analyses127

on the limit case is sensible and does not hide unreasonably large terms.128

All upper bounds in this paper abide to the stronger measure of nearly competitiveness129

from [6]. An algorithm is required to achieve its competitive ratio not only in expectation but130

on nearly all input permutations. Thus, input sequences where the competitive ratios are not131

obtained can be considered extremely rare and pathological. Moreover, we require worst-case132

guarantees even for such pathological inputs. This is relevant to practical applications, where133

we do not expect fully random inputs. Both algorithms hold up to this stronger measure of134

nearly competitiveness.135

A basic approach in secretary models uses sampling statistics; a small part of the input136

allows to predict the rest. Sampling lets us include techniques from semi-online and advice137

settings with two further challenges. On the one hand, the advice is imperfect and may be,138

XX:4 Scheduling in the secretary model

albeit with low probability, totally wrong. On the other hand, the advice has to be learned,139

rather than being available right from the start. In the beginning “mistakes” cannot be140

avoided. This makes it impossible to adapt better semi-online algorithms than LightLoad,141

namely [33, 16, 41, 40] to our model. These algorithms need to know the total processing142

volume right from the start. The advanced algorithm in this paper out-competes the optimum143

competitive ratio of 1.585 these semi-online algorithms can achieve [1, 40]. We conjecture that144

this is not possible for order oblivious algorithms that solely use sampling. Order oblivious145

algorithms first observe a random sample and then treat the input sequence in an adversarial146

order [8, 33]. Our analysis indicates that LightLoad can be adapted as an order-oblivious147

algorithm. The 1.535-competitive algorithm does not maintain its competitive ratio in such148

a setting.149

The 1.535-competitive main algorithm is based on a modern point of view, which,150

analogous to kernelization, reduces complex inputs to sets of critical jobs. A set of critical151

jobs is estimated using sampling. Critical jobs impose a lower bound on the optimum152

makespan. If the bound is high, an enhanced version of Graham’s greedy strategy suffices;153

called the Least-Loaded-Strategy. Else, it is important to schedule critical jobs correctly.154

The Critical-Job-Strategy, based on sampling, estimates the critical jobs and schedules155

them ahead of time. An easy heuristic suffices due to uncertainty involved in the estimates.156

Uncertainty poses not only the main challenge in the design of the Critical-Job-Strategy. On157

a larger scale, it also makes it hard to decide, which of the two strategies to use. Sometimes158

the Critical-Job-Strategy is chosen wrongly. These cases comprise the crux of the analysis159

and require using random-order arrival in a novel way beyond sampling.160

The analyses of both algorithms follow three steps, which leads to the situation depicted161

in Figure 1. In the first step, adversarial analyses give worst-case guarantees and take care of162

simple job sets. These simple sets lack structure to be exploited via random reordering but163

do not pose problems to online algorithms. We thus are reduced to non-simple inputs. Non-164

simple random sequences have useful properties with high probability. They are ’sampleable’165

and do not have too many problematic jobs clustered at the end of the sequence. A second step166

formalizes this, introducing stable sequences. Non-stable sequences are rare and negligible,167

we are thus reduced to stable sequences. The third step is a classical adversarial analysis168

that uses the properties of stable sequences to again establish worst-case guarantees.169

The paper concludes with lower bounds. We show that no algorithm, deterministic or170

randomized, is better than nearly 1.257-competitive. This immediately implies a lower bound171

of 1.043 in the general secretary model.172

Notation: We use the notation [J] or [J σ] to highlight values that depend on the job set J173

or the ordered job sequence J σ. Such appendage is omitted when the dependency needs not174

be highlighted. In similar vein, we may write OPT for OPT(J).175

stable
Sn simple

Sn

Figure 1 The lay of the land in our analysis. The algorithm is (c + ε)-competitive on simple
and stable sequences. Only the small unstable remainder (hashed) is problematic. Dashed lines
mark orbits under the action of the permutation group Sn. Simple sequences stay simple under
permutation. Non-simple orbits have at most an ε-fraction, which is unstable (hashed). Thus, the
algorithm is (c + ε)-competitive with probability at least 1− ε after random permutation.

S. Albers, M. Janke XX:5

2 A strong measure of random-order competitiveness176

Consider a job set J = {J1, . . . , Jn} of known size n. Each job is fully defined1 by its177

non-negative size (or processing time) p1, . . . , pn. Let Sn be the group of permutations of the178

integers from 1 to n, which we consider a probability space under the uniform distribution.179

We pick each permutation with probability 1/n!. Each permutation σ ∈ Sn, called an order,180

gives us a job sequence J σ = Jσ(1), . . . , Jσ(n). Recall that traditionally an online algorithm181

A is called c-competitive for some c ≥ 1 if we have for all job sets J and job orders σ that182

A(J σ) ≤ cOPT(J). We call this the adversarial model.183

In the secretary model we consider the expected makespan of A under a uniformly random184

job order, i.e. Eσ∼Sn [A(J σ)] = 1
n!
∑
σ∈Sn A(J σ). We use the term secretary model, to185

distinguish this setting from the random-order model in [6] where the input size n is not186

known in advance. The algorithm A is c-competitive in the secretary model if we have187

Eσ∼Sn [A(J σ)] ≤ cOPT(J) for all input sets J .188

The secretary model tries to lower the impact of particularly badly ordered sequences189

by looking at competitive ratios only in expectation. Interestingly, the scheduling problem190

allows for a stronger measure of random-order competitiveness for large m, called nearly191

competitiveness [6]. One requires the given competitive ratio to be obtained on nearly all192

sequences—not only in expectation—as well as a bound on the adversarial competitive ratio193

as well. We recall the definition and the main fact, that an algorithm is already c-competitive194

in the secretary model if it is nearly c-competitive.195

I Definition 1. A deterministic online algorithm A is called nearly c-competitive if the196

following two conditions hold.197

The algorithm A achieves a constant competitive ratio in the adversarial model.198

For every ε > 0, we can find m(ε) such that for all machine numbers m ≥ m(ε) and all199

job sets J there holds Pσ∼Sn [A(J σ) ≥ (c+ ε)OPT (J)] ≤ ε.200

I Lemma 2. If a deterministic online algorithm is nearly c-competitive, then it is c-201

competitive in the secretary model for m → ∞, i.e. for its competitive ratio cm on m202

machines holds lim
m→∞

cm = c.203

3 Basic properties204

Let us fix an input set J . Graham [31] establishes that his greedy strategy is 2-competitive.205

He considers the average load L = L[J] = 1
m

∑m
i=1 pi, which is the same for any schedule206

of the jobs in J , and the maximum size of any job pmax = maxi pi. Both are lower bounds207

for OPT. Indeed, even the best schedule cannot have all machines loads below average, i.e.208

smaller than L, and the machine containing the largest job has load at least pmax. Now,209

Graham observes that the smallest load in any schedule cannot exceed the average load L.210

Greedily using the least loaded machine causes makespan at most L+ pmax ≤ 2OPT. The211

greedy strategy is thus 2-competitive.212

Graham’s argument builds the foundation for subsequent work on scheduling problems.213

The following proposition guarantees a (small) constant adversarial ratio for almost every214

sensible random-order algorithm, which is necessary for obtaining nearly competitiveness.215

1 We propose for completeness that jobs of similar size are indistinguishable. A unique identification, say
the index or a hash value, could in theory be used to derandomize a randomized algorithm. All of the
results in this paper hold independently of whether such identification is possible.

XX:6 Scheduling in the secretary model

I Proposition 3. Assume job J is scheduled on a machineM such that at most i−1 machines216

have strictly smaller load than M . Then load of M is at most
(

m
m−i + 1

)
OPT afterwards.217

Proof. Let l be the load ofM prior to receiving job J . By assumption at least m−i machines218

have load l. Thus L ≥ m−i
m l. We schedule job J of size at most OPT on machine M of load219

at most l ≤ m
m−iL ≤ m

m−iOPT. The resulting load is at most
(

m
m−i + 1

)
OPT . J220

The previous result cannot be improved in general. The most difficult adversarial sequences221

have L ≈ pmax ≈ OPT. Random-order arrival faces further challenges. Certain degenerate222

sequences, where few jobs carry all the load, are not suited for reordering arguments. See223

Figure 2. This “degeneracy” is measured by R(J) = min(L
pmax

, 1). Adapting the previous224

arguments we obtain the following result, which indicates good performance in almost all225

situations if R(J) is small.226

I Proposition 4. Let M be a machine such that at most i− 1 machines have strictly smaller227

load than M . If M receives a job, its load is at most
(

m
m−iR(J) + 1

)
OPT afterwards.228

Proof. Adapt the previous proof using that L ≤ R(J)OPT. J229

Proposition 3 and 4 form the basis of our analyses. They give conditions when to use the230

Least-Loaded-Strategy in the main algorithm, establish most of our worst-case guarantees231

and explain why we can exclude simple sequences like the one in Figure 2. In the full paper,232

we generalize these propositions further, which is required for the main algorithm.233

Figure 2 A surprisingly difficult sequence for random-order arguments. The big job carries most
of the processing volume. Other jobs are negligible. Thus, all permutations look basically the same.
Such ’simple’ job sets need to be excluded before the main analysis.

3.1 Sampling for Scheduling Problems234

We now explain how we use sampling in the secretary model. Consider any input per-235

mutation J σ = Jσ(1) . . . Jσ(n). A standard technique is to sample the ϕ-fraction of jobs,236

Jσ(1) . . . Jσ(dϕne), to make predictions about J σ. The previous section gives two prime237

candidates for sampling which relate to OPT, namely L and pmax. Directly ’sampling’ OPT238

is futile.239

The size pmax is best estimated by pϕtmax = max(pσ(t′) | σ(t′) < ϕn+ 1). This corresponds240

to how we try to estimate the best secretary in the secretary-problem. Of course, pϕtmax241

may vastly underestimate pmax. If the sequence contains only a single huge job, this job242

is unlikely to be observed in the sample. Still, only very few jobs can have size exceeding243

pϕtmax on random-order sequences; only 1/ϕ in expectation. The main algorithm uses reserve244

machines to catch these “exceptional” jobs.245

For L we can get an unbiased2 estimator from the sample: Lϕ = 1
ϕm

∑
σ(t)≤ϕn pi. Of246

course, we still need to determine how close Lϕ is to L. Can we say that with high probability247

2 The estimator is unbiased, i.e. E[Lϕ] = L, if ϕn is a natural number. For general n, we could have
replaced the factor 1

ϕm in the definition of Lϕ by the more complicated expression n
dϕnem .

S. Albers, M. Janke XX:7

50 100 1500
0.2
0.4
0.6
0.8

1

t

Lt

40 machines.

800 1,6000
0.2
0.4
0.6
0.8

1

t

400 machines.

8,000 16,0000
0.2
0.4
0.6
0.8

1

t

4000 machines.

Figure 3 A graphic depicting the average load over time on the classical lower bound sequence
from [1] for 40, 400 and 4000 machines. The dashed line corresponds to the original adversarial
order. The three solid lines, corresponding to random permutations, clearly approximate a straight
line. Thus, sampling allows to predict the (final) average load.

Lϕ ≈ L? For the sequence in Figure 2 such a statement cannot be true. The main observation248

is that these counterexamples tend to have a small value R(J). Given a lower bound Rlow > 0249

on R(J) the following Load Lemma establishes Lϕ ≈ L. We have seen in the previous section250

that sequences with R(J) < Rlow pose no major obstruction. The results in the previous251

section guarantee arbitrarily good performance if we choose Rlow > 0 small enough.252

The Load Lemma is quite potent and thus fundamental to random-order makespan253

minimization. It may be somewhat surprising to researchers on related problems since it254

makes implicit use of having non-small input sizes. Note that for our problem small inputs255

of size less than m are trivially scheduled optimally.256

I Lemma 5. [Load Lemma [6]] Let Rlow = Rlow(m) > 0, 1 ≥ ϕ = ϕ(m) > 0 and257

ε = ε(m) > 0 be three functions in m such that ε−4ϕ−1R−1
low = o(m). Then there exists a258

variable m(Rlow, ϕ, ε), depending on these three functions, such that for m ≥ m(Rlow, ϕ, ε)259

machines and all job sets J with R(J) ≥ Rlow and |J | ≥ m:260

Pσ∼Sn

[∣∣∣∣
Lϕ[J σ]
L[J] − 1

∣∣∣∣ ≥ ε
]
< ε.261

A less general version of the Load Lemma already appeared in [6]. While the Load Lemma262

gives only asymptotic guarantees simulations show that it requires not very large numbers263

of machines. Figure 4 shows the expected value of
∣∣∣L1/4[J σ]

L[J] − 1
∣∣∣ on a suitable benchmark264

sequence.265

For our more sophisticated algorithm we also use sampling to estimate the size of critical266

jobs. Consider a job class C of size nC ∈ O(m). A consequence of Chebyshev’s inequality,267

detailed in the full version, shows that we can estimate nC up to an additive summand of268

m3/4 after sampling a 1
log(m) -fraction of the sequence. In fact the load lemma is proven by269

sampling job classes obtained through geometric rounding.270

4 A simple 1.75-competitive algorithm271

We modify the semi-online algorithm LightLoad from the literature to obtain a very simple272

nearly 1.75-competitive algorithm. For any 0 ≤ t ≤ n, let M t
mid be a machine having the273

bm/2c-lowest load at time t, i.e. right before job Jt+1 is scheduled. Let ltmid be its load and274

let ltlow be the smallest load of any machine.275

Let δ = δ(m) be a certain margin of error our algorithm allows. It is optimal to set δ = 0276

but then the analysis requires a generalization of the result in [4]. In order for our main277

XX:8 Scheduling in the secretary model

result to be self-contained one may set δ = 1
log(m) , which allows to use results from [4] as a278

black box.279

Given an input sequence J σ we know from Section 3 that L̂pre = L̂pre[J σ] = L1/4[J σ]
1−δ280

provides a good estimate of the (final) average load L = 1
m

∑m
i=1 pi. We use the index ’pre’281

since our main algorithm later will use a slightly different guess L̂. Consider the following282

adaptation LightLoadROM of the algorithm LightLoad from Albers and Hellwig [4].283

Algorithm 1 The algorithm LightLoadROM
1: Let Jt be the job to be scheduled and let pt be its size.
2: if t < n/4 or lt−1

low ≤ 0.25L̂pre or lt−1
mid + pt > 1.75L̂pre then

3: Schedule Jt on any least loaded machine;
4: else schedule Jt on M t−1

mid ;

I Remark 6. The first condition in the if -statement, t < n/4, already implies lt−1
low ≤ 0.25L̂pre284

and is thus technically superfluous. We added it to clarify that LightLoadROM can be285

implemented as an online algorithm and only needs to know L̂pre once t ≥ n/4.286

If we replace L̂pre in the previous pseudocode by the average load L, we recover the287

semi-online algorithm LightLoad for makespan minimization, which has been analyzed by288

Albers and Hellwig [4]. They show that the algorithm is 1.75-competitive for L = L̂pre. We289

can show that the algorithm can also be used for general values L̂ ≈ L. The performance290

gracefully decreases with |L− L̂pre|.291

I Theorem 7. Let J σ be any (ordered) input sequence. The makespan of LightLoadROM292

on J σ is at most 1.75
(

1 + |L̂pre[J σ]−L|
L

)
OPT.293

Proof Sketch. For L̂pre = L, this is the main result in [4].294

ItFor L̂pre ≥ L, we can reduce ourselves to the case L̂pre = L. Consider any machine M295

in the optimum schedule of J that has load lM < max(L̂pre,OPT). We assign an additional296

job JM of size pM = max(L̂pre,OPT(J)) − lM to this machine. For the resulting job set297

J ′ clearly OPT(J ′) = L(J ′) = max(L̂pre,OPT). We can apply the main result of [4] to298

see that LightLoad has makespan at most 1.75 max(L̂pre,OPT(J)) if it first schedules the299

jobs J σ (in order σ) followed by the additional jobs. But on the prefix J σ LightLoad300

behaves precisely like LightLoadROM on input J σ. Thus, LightLoadROM has makespan301

at most 1.75 max(L̂pre[J σ],OPT(J)). Then, the theorem follows for L̂pre ≥ L since L̂pre ≤302 (
1 + L̂pre−L

L

)
L ≤

(
1 + |L̂pre[J σ]−L|

L

)
OPT.303

If L̂pre ≤ L, the statement of the theorem still holds. can be derived similar to the304

analysis in [4]. Unfortunately, it cannot be immediately deduced from their results. Instead,305

their proofs need to be adapted. We sketch the necessary adaptations in the full version. J306

The previous theorem already establishes a constant adversarial competitive ratio of 7.307

Use that 0 ≤ L̂pre ≤ L1/4 ≤ 4L implies |L̂pre[J σ] − L| ≤ 3L. We can improve this result,308

most importantly, if R(J) is small.309

I Lemma 8. For any (ordered) job sequence J σ the makespan of LightLoadROM is at310

most (1 + 2R(J))OPT(J). In particular, it is at most 3 OPT(J) in general and at most311

1.75 OPT(J) for R(J) < 3/8.312

Proof. Since LightLoadROM only considers the least or the bm/2c-th least loaded machine,313

the lemma follows from Proposition 4. J314

S. Albers, M. Janke XX:9

We now establish the competitive ratio of LightLoadROM in the strong model of nearly315

competitiveness. Corollary 10 follows immediately by Lemma 2.316

I Theorem 9. The algorithm LightLoadROM is nearly 1.75-competitive.317

I Corollary 10. LightLoadROM is 1.75-competitive in the secretary model for m→∞.318

Proof of Theorem 9. Our analysis forms a triad outlining how we analyze the more soph-319

isticated 1.535-competitive main algorithm. See Figure 1 for an illustration. Since we only320

prove the case L̂ ≥ L of Theorem 7, we will not rely on the case L ≤ L̂ in this proof. For321

this, we need to set δ(m) = 1
log(m) .322

Analysis basics. By Lemma 8 algorithm LightLoadROM is 3-competitive in the ad-323

versarial model. The first condition of nearly competitiveness is satisfied. We call input324

set J simple if |J | ≤ m or R[J] < 3
8 . Observe that LightLoadROM is (adversarially)325

1.75-competitive on simple job sets. Indeed, if |J | < m LightLoadROM assigns every job to326

an empty least-loaded machine, which is obviously optimal. If R[J] < 3
8 , Lemma 8 bounds327

the competitive ratio by 1 + 2R[J] < 1.75. We thus are left to consider non-simple, so called328

proper, job sets.329

Stable job sequences. We call a sequence J σ stable if L ≤ L̂pre ≤ 1+δ(m)
1−δ(m)L. If a330

sequence is proper, it fulfills the conditions of the Load Lemma with ϕ = 1/4, Rlow = 3
8331

and ε(m) = δ(m) = 1/ log(m) ∈ ω(m−1/4). The Load Lemma guarantees that for m332

large enough, Pσ∼Sn
[∣∣∣Lϕ[J σ]

L[J] − 1
∣∣∣ ≥ δ

]
< δ. Note that

∣∣∣Lϕ[J σ]
L[J] − 1

∣∣∣ < δ is equivalent to333

(1− δ)L < Lϕ[J σ] < (1 + δ)L, which in turn implies that L ≤ L̂pre ≤ 1+δ(m)
1−δ(m)L. Thus, the334

probability of the sequence J σ being stable is at least 1− δ for m large enough and J proper.335

Adversarial Analysis. By Theorem 7, the makespan of LightLoadROM on stable336

sequences with L ≤ L̂pre ≤ 1+δ(m)
1−δ(m)L is at most 1.75 · 1+δ(m)

1−δ(m) OPT =
(
1.75+ 3.5·δ(m)

1−δ(m)
)
OPT(J).337

We only require the easy case, L ≤ L̂pre of Theorem 7, which is fully proven in this paper.338

Conclusion. Let ε > 0. Since δ(m) → 0, we can choose m large enough such339

that 3.5δ(m)
1−δ(m) ≤ ε. In particular Pσ∼Sn [LightLoadROM(J σ) ≥ (1.75+ε)OPT (J)] ≤ δ(m) ≤ ε340

since the only sequences where the inequality does not hold are proper but not stable. This341

concludes the second condition of nearly competitivity.342

The δ-term. Setting δ = 0 can increase the |L̂pre[J σ]−L|
L -term in Theorem 7 by at most343

1/ log(m), which vanishes for m → ∞. Of course, in reality LightLoadROM improves for344

δ = 0. J345

Analyzing the algorithm LightLoadROM on small numbers of machines.346

From now on, we consider LightLoadROM with δ = 0. Thus, the average load L is estimated347

by L̂pre = L1/4. The normalized absolute mean deviation of L̂pre = L1/4 is defined as348

NMD(L̂pre) = Eσ∼Sn
[
|L̂pre[J σ]−L|

L

]
. The following is a consequence of Theorem 7 .349

I Theorem 11. On input set J the competitive ratio of LightLoadROM in the secretary350

model is at most 1.75(1 + NMD(L̂pre)).351

In the full version we give an estimation on NMD(L̂pre), which leads to the following352

result.353

I Theorem 12. The competitive ratio of LightLoadROM is 1.75 + 18√
m

+O
(1
m

)
.354

XX:10 Scheduling in the secretary model

The techniques presented in this section can, in theory, be extended to analyze the main355

algorithm in the next section. This is impractical due to the complexity of the analysis at356

hand. We are certain that the error term involved will be of the form m−1/a for a small.357

The constant summand 18√
m

in Theorem 12 is pessimistic. We discuss several avenues of358

further improvement in the full version. The best we are aware of allows for a competitive359

ratio as small as 4.4√
m

+ 7
m +O

(1
m3/2

)
but there are ways to improve even further. The terms360

still hidden in the O-notation result from the Stirling-approximation and are known to be361

tiny. Figure 4 shows NMD(L̂pre) on the lower bound from [1], which is a sensible benchmark.362

1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000 10,0000
0.02
0.05

0.1

250
number of machines m

An approximation of NMAD[L̂pre] for different numbers of machines.

Figure 4 The extra cost for small numbers of machines. The graph shows an estimation of
NMD(L̂pre) on the lower bound sequence from [1] based on 10, 000 random samples. Theorem 11
this indicates good performance of LightLoadROM in practice.

5 The nearly 1.535-competitive algorithm363

The new main algorithm achieves a competitive ratio of c = 1+
√

13
3 ≈ 1.535. It consists of364

three components: a sampling phase, the Least-Loaded-Strategy and the Critical-Job-Strategy.365

We now give a simplified description of the algorithm.366

The sampling phase. A few jobs are sampled to predict the whole sequence. These Jobs367

are scheduled greedily with a some machines kept in reserve. This phase is uninformed and368

“mistakes” are unavoidable. Such mistakes are few, since the processing volume scheduled369

is small—at least if we exclude worst-case sequences. First, we sample B, which tries to370

estimate max(pmax, L) ≤ OPT. We then use sampling to predict critical jobs of size in371

between (c − 1)B and B. Intuitively, jobs smaller than (c − 1)B are too small to pose a372

problem. Jobs larger than B are also critical but cannot be predicted since they did not373

appear during sampling. This in turn means that they are rare. We keep a few reserve374

machines to safely process them.375

The Critical-Job-Strategy. Our plan is to assign critical jobs ahead of time. Formally,376

placeholder jobs are used to reserve space for jobs yet to come. Critical jobs are assigned377

according to an easy heuristic: Each machine gets either one big or two medium jobs. Reserve378

machines handle errors in the predictions and unexpected huge jobs.379

The Least-Loaded-Strategy. Sometimes the Critical-Job-Strategy is not feasible; there380

simply are too many critical jobs. This may already by apparent from sampling predictions,381

but for some job sets this cannot be predicted. The latter input sets form the crux of the382

analysis. Once we find out, we pick the Least-Loaded-Strategy, which enhances a Graham’s383

greedy approach by still maintaining reserve machines for particularly large jobs. Intuitively,384

S. Albers, M. Janke XX:11

many critical jobs make it even for OPT impossible to schedule all jobs efficiently, which is385

why we rely on this less sophisticated strategy.386

Further challenges. Algorithm design and analysis have to deal with three further issues.387

First, the Critical-Job-Strategy needs to take scheduling decisions made during sampling388

into account. Second, a consequence of sampling is that no value is exact, small sources of389

errors are imminent. Third, we need a constant competitive ratio against an adversary. All390

these challenges impact details of the algorithm design in rather subtle ways.391

5.1 Formal Description392

Let δ = δ(m) = 1
log(m) be the margin of error our algorithm allows. Most of the time, it393

is sensible to treat δ as a constant and forget about its dependency on m. Our algorithm394

maintains a set of dδme reserve machines. Their complement are the principal machines.395

Let us fix an input sequence J σ. Let L̂ = L̂[J σ] = Lδ2 [J σ]. For simplicity, we hide the396

dependency on J σ whenever possible. Our online algorithm uses B = max
(
pδ

2n
max, L̂

)
as397

an estimated lower bound for OPT. This bound is known after the first bδ2nc jobs are398

treated. Our algorithm uses geometric rounding implicitly. Given a job Jt of size pt let399

f(pt) = (1 + δ)blog1+δ ptc be its rounded size. We also call Jt an f(pt)-job.400

Using rounded sizes, we introduce job classes. Let psmall = c− 1 =
√

13−2
3 ≈ 0.535 and401

pbig = c
2 = 1+

√
13

6 ≈ 0.768. We call job Jt402

small if f(pt) ≤ psmallB and critical else,403

big if f(pt) > pbigB,404

medium if J is neither small nor big, i.e. psmallB ≤ f(pt) ≤ pbigB,405

huge if its (not-rounded) size exceeds B, i.e. B < pt, and normal else.406

Consider the set P = {(1 + δ)i | psmallB ≤ (1 + δ)i ≤ B} corresponding to rounded sizes407

of critical jobs. Given p ∈ P let np be the total number of p-jobs. We could estimate np by408

δ−2n̂p after sampling where n̂p = |{Jσ(j) | σ(j) ≤ δ2n ∧ Jσ(j) is a p-job}| after sampling. In409

practice we need a more complicated guess: cp = max
(⌊(

δ−2n̂p −m3/4)w(p)
⌋
, n̂p
)
w(p)−1.410

It has two advantages. The value cp is close to np with high probability, but unlikely to411

exceed it. Overestimating np turns out to be far worse than underestimating it. It also412

simplifies the description of the algorithm allowing medium jobs to always “pair up”.413

principal machines reserve machines

Sampling Phase

principal machines reserve machines

Critical-Job-Strategy

principal machines reserve machines

Least-Loaded-Strategy

Figure 5 The 1.535-competitive algorithm. First, few jobs are sampled. Then, the algorithm
decides between two strategies. The Critical-Job-Strategy tries to schedule critical jobs ahead of
time. The Least-Loaded-Strategy follows a greedy approach, which reserves some machines for large
jobs. Sometimes, we realize very late that the Critical-Job-Strategy does not work and have to
switch to the Least-Loaded-Strategy “on the fly”. We never switch in the other direction.

XX:12 Scheduling in the secretary model

Statement of the algorithm: If there are less jobs than machines, each job is placed onto414

a separate machine. This is optimal. Else, a short sampling phase greedily assigns each415

of the first bδ2nc jobs to the least loaded principal machine. Now, B and (cp)p∈P are416

known. We choose the Least-Loaded-Strategy if we predict the Critical-Job-Strategy to be417

infeasible. Formally, if
∑
p∈P w(p)cp > m, where w(p) = 1/2 for p ≤ pbig and 1 > p ≤ pbig. If418 ∑

p∈P w(p)cp ≤ m, we choose the Critical-Job-Strategy. The Critical-Job-Strategy requires a419

one-time preparation. It may later switch to the Least-Loaded-Strategy but it never switches420

the other way around.421

The Least-Loaded-Strategy422

principal machines reserve machines

Figure 6 The Least-Loaded-Strategy schedules jobs greedily. A few machines are reserved for
unexpected huge jobs. For example the largest job, which is unlikely to arrive in the sampling phase.

The Least-Loaded-Strategy places any normal job on a least loaded principal machine.423

Huge jobs are scheduled on a least loaded reserve machine. This reserve machine will be424

empty, unless we consider rare and pathological worst-case orders.425

The Critical-Job-Strategy426

For the Critical-Job-Strategy we introduce p-placeholder-jobs for every size p ∈ P. Sensibly,427

the size of a p-placeholder-job is p. During the Critical-Job-Strategy we treat placeholder-jobs428

similar to real jobs. They are assigned in the Preparation for the Critical-Job-Strategy.429

We try to pair off medium jobs, some of which already arrived during sampling. Moreover it430

is important to assign fewer processing volume to those machines, which have a higher load431

after the sampling phase.432

principal machines reserve machines

Figure 7 The Critical-Job-Strategy. Each machine gets either two medium, one large or no critical
job. Placeholder jobs (dotted) reserve space for critical jobs yet to come. Processing volume of small
jobs (dark) on the bottom arrived during the sampling phase. Reserve machines accommodate huge
jobs or, possibly, jobs without matching placeholders.

The Critical-Job-Strategy places small jobs on least-loaded principal machines taking433

placeholders into account. Critical jobs of rounded size p ∈ P replace p-placeholder-jobs434

whenever possible. If no matching placeholder is found or if the current job is exceptional,435

the reserve machines are used. Again, medium jobs are paired up. If the reserve machines436

are full, the algorithm fails. It switches to the Least-Loaded-Strategy.437

The full description of the main algorithm is provided in Appendix B.438

S. Albers, M. Janke XX:13

6 Analysis of the algorithm439

Theorem 13 is main result of the paper.440

I Theorem 13. Our algorithm is nearly c-competitive. Recall that c = 1+
√

13
3 ≈ 1.535.441

Due to Lemma 2 this competitive ratio also holds in the general secretary model.442

I Corollary 14. Our algorithm is c-competitive in the secretary model as m→∞.443

The analysis of the algorithm proceeds along the same three reduction steps used in444

the proof of Theorem 9. First, we assert that our algorithm has a constant adversarial445

competitive ratio, which approaches 1 as R(J) → 0. Not only does this lead to the first446

condition of nearly competitiveness, it also enables us to introduce simple job sets on which447

we perform well due to basic considerations resulting from Section 3.448

I Definition 15. A job set J is called simple if R(J) ≤ (1−δ)δ2

δ2+1 (c− 1) or if it consists of449

at most m jobs. Else, we call it proper. We call any ordered input sequence J σ simple450

respectively proper if the underlying set J has this property.451

I Main Lemma 1. In the adversarial model our algorithm has competitive ratio 4 +O(δ)452

on general input sequences and c+O(δ) on simple sequences.453

We are thus reduced to treating proper job sets. In the second reduction we introduce454

stable sequences. These have many desirable properties. Most notably, they are suited to455

sampling. Their formal definition can be found later in Definition 19. The second reduction456

shows that stable sequences arise with high probability if the order of a proper job set J is457

picked uniformly randomly.458

Formally, for m the number of machines, let P (m) be the maximum probability by which459

the permutation of any proper sequence may not be stable, i.e.460

P (m) = sup
J proper

Pσ∼Sn [J σ is not stable] .461

The second main lemma asserts that this probability vanishes as m→∞.462

I Main Lemma 2. lim
m→∞

P (m) = 0.463

In other words, non-stable sequences are very rare and of negligible impact in random-464

order analyses. Thus, we only need to consider stable sequences. In the final, third, step465

we analyze our algorithm on stable sequences. This analysis is quite general. In particular,466

it does not rely further on random-order arrival. Instead, we work with worst-case stable467

inputs, i.e. we allow an adversary to present any stable input sequence.468

I Main Lemma 3. Our algorithm is adversarially (c+O(δ))-competitive on stable sequences.469

These three main lemmas allow us to conclude the proof of Theorem 13.470

Proof of Theorem 13. Recall that δ(m) → 0 for m → ∞. By Main Lemma 1, the first471

condition of nearly competitiveness holds, i.e. our algorithm has a constant competitive472

ratio. Moreover, by Main Lemma 1 and Main Lemma 3, given ε > 0, we can pick m0(ε)473

such that our algorithm is (c+ ε)-competitive on all sequences that are stable or simple, if474

there are at least m0(ε) machines. This implies that for m ≥ m0(ε) the probability of our475

algorithm not being (c + ε)-competitive is at most P (m), the maximum probability with476

which a random permutation of a proper input sequence is not stable. By Main Lemma 2,477

we can find m(ε) ≥ m0(ε) such that P (m) ≤ ε for m ≥ m(ε). This choice of m(ε) satisfies478

the second condition of nearly competitiveness. J479

XX:14 Scheduling in the secretary model

Proof sketch of Main Lemma 1480

The anticipated load l̃tM of a machine M at time t denotes its load including placeholder-jobs.481

We can obtain the following two bounds on the average anticipated load L̃ = supt 1
m

∑
M l̃tM .482

I Lemma 16. We have L̃ ≤ L+ 2pmax, as well as L̃ ≤
(
1 + 1

δ2

)
L.483

Thus the average anticipated load L̃ relates to the original values L, pmax. In the full484

version, we generalize Proposition 4 to anticipated loads. We can then use Lemma 16 to485

conclude Main Lemma 1. The only exception are reserve machines, which receives its last job486

using the Critical-Job-Strategy. Their load needs to be bounded using different techniques.487

Formally, we can prove the following two statements, which imply Main Lemma 1.488

I Proposition 17. The main algorithm is adversarially
(

1 + 3
1−δ + 2δ

)
-competitive.489

I Proposition 18. The main algorithm has makespan at most (c + 2δ)OPT on simple490

sequences J σ.491

Stable job sequences and a proof sketch of Main Lemma 2492

We introduce the class of stable job sequences. The first two conditions state that all estimates493

our algorithm makes are accurate, i.e. sampling works. By the third condition there are less494

exceptional jobs than reserve machines and the fourth condition states that these jobs are495

distributed evenly. The final condition is a technicality. Stable sequences are useful since496

they occur with high probability if we randomly order a proper job set.497

I Definition 19. A job sequence J σ is stable if the following conditions hold:498

The estimate L̂ for L is accurate, i.e. (1− δ)L ≤ L̂ ≤ (1 + δ)L.499

The estimate cp for np is accurate, i.e. cp ≤ np ≤ cp + 2m3/4 for all p ∈ P.500

There are at most dδme exceptional jobs in J σ.501

Let t̃ be the time the last exceptional job arrived and let np,t̃ be the number of p-jobs502

scheduled at that time for a given p ∈ P. Then np,t̃ ≤
(
1− δ3)np for every p ∈ P.503

δ3 ⌊(1− δ − 2δ2)m/|P|
⌋
≥ 2|P|m3/4.504

Proof sketch of Main Lemma 2. The first condition follows from Lemma 5. The second505

condition can be derived using Chebyshev’s inequality as discussed at the end of Section 3.1.506

Both conditions require that only proper sequences are considered. The third condition is507

equivalent to demanding one of the dδme largest jobs to occur during the sampling phase.508

This is extremely likely. In expectation the rank of the largest job occurring in the sampling509

phase is δ−2, a constant. The fourth condition states that the exceptional jobs are evenly510

spread throughout the sequence compared to the p-jobs for any p ∈ P . Again, this is expected511

of a random sequence and corresponds to how one would determine randomness statistically.512

For the final condition it suffices to choose the number of machines m large enough. One513

technical problem arises since the set of rounded critical job sizes P = P [J σ] is defined using514

the value B[J σ]. It thus highly depends on the input permutation σ. We rectify this by515

passing over to a larger class P̂ such that P ⊂ P̂ with high probability. J516

Proof sketch of Main Lemma 3517

We first consider the Critical-Job-Strategy. Main Lemma 3 holds as long as it is employed.518

I Lemma 20. The makespan of our algorithm is at most (c + O(δ)) max (B,L, pmax) on519

stable sequences till it employs the Least-Loaded-Strategy (or till the end of the sequence).520

S. Albers, M. Janke XX:15

Proof sketch. Let us only consider critical jobs at any time the Least-Loaded-Strategy is521

not employed. We can then show that a machine contains either one big job or at most522

two medium jobs. In the first case we bound the size of this big, possibly exceptional,523

job by pmax. Else, if the machine contains two medium jobs their total weight is at most524

2(1+δ)pbigB = (1+δ)cB. The factor (1+δ) arises since we use rounded sizes in the definition525

of medium jobs. Thus, critical jobs may cause a load of at most max(pmax, (c+O(δ))B).526

Analyzing the load increase caused by small jobs requires techniques similar to the proof527

of Main Lemma 1. J528

Note that for stable sequences L̂ ≤ (1+δ)L ≤ (1+δ)OPT, in particular max (B,L, pmax) =529

max
(
pδ

2n
max, L̂, L, pmax

)
≤ (1 + δ)OPT. This proves the following corollary to Lemma 20.530

I Corollary 21. Till our algorithm uses the Least-Loaded-Strategy its makespan is less than531

(c+O(δ))OPT on stable sequences.532

Hence, we are left to consider the Least-Loaded-Strategy. We say the algorithm fails if it533

has to switch from the Critical-Job-Strategy to the Least-Loaded-Strategy. The following534

lemma is crucial and relies deeply on the properties of stable sequences, in particular the535

fourth one.536

I Lemma 22. If the algorithm fails, every exceptional job has been scheduled.537

The lemma shows that the Least-Loaded-Strategy only needs to deal with exceptional538

jobs if it is picked immediately. In this case, all reserve machines are empty. The third539

property of stable sequences ensures that there are enough reserve machines so that every540

exceptional job is assigned to an empty machine.541

Non-exceptional jobs, i.e. jobs of size at most B, are scheduled onto a least loaded principal542

machine. This machine was among the δm+ 1 least loaded machines and had load at most543

mL/(m−δm+1) by Proposition 4. Afterwards, its load was at most mL/(m−δm+1)+B ≤544

(2 + O(δ))B since (1 − δ)L ≤ B for stable sequences. The following lemma concludes the545

proof of Main Lemma 3 since it implies that (2 +O(δ))B ≤ (c+O(δ))OPT.546

I Lemma 23. If the Least-Loaded-Strategy is applied on a stable sequence, B ≤ c
2 OPT.547

The proof of Lemma 23 is left to the full version.548

7 Lower bounds549

We establish the following theorem using two lower bound sequences. These results generalize550

to randomized algorithms using appropriate notions of (nearly) competitiveness.551

I Theorem 24. For every online algorithm A, deterministic or randomized, there exists a552

job set J such that Pσ∼Sn
[
A(J σ) ≥

√
73−1
6 OPT(J)

]
≥ 1

6 . If A is randomized the previous553

probability also includes its random choices.554

The lower bound highlights the inability of the main algorithm to decide between the555

Least-Loaded-Strategy and the Critical-Job-Strategy. If we could communicate this decision,556

say through a single advice bit, our main algorithm would become nearly optimal, i.e. nearly557

1-competitive, on the lower bound sets. Theorem 24 implies the following lower bounds.558

I Corollary 25. If an online algorithm A is nearly c-competitive, then c ≥
√

73−1
6 ≈ 1.257.559

I Corollary 26. The best competitive ratio possible in the secretary model is
√

73+29
36 ≈ 1.043.560

The lower bounds are proven in the appendix.561

XX:16 Scheduling in the secretary model

References562

1 S. Albers. Better bounds for online scheduling. SIAM Journal on Computing, 29(2):459–473,563

1999. Publisher: SIAM.564

2 S. Albers. On randomized online scheduling. In Proceedings of the thiry-fourth annual ACM565

symposium on Theory of computing, pages 134–143, 2002.566

3 S. Albers, W. Gálvez, and M. Janke. Machine covering in the random-order model. In 32nd567

International Symposium on Algorithms and Computation (ISAAC 2021). Schloss Dagstuhl-568

Leibniz-Zentrum für Informatik, 2021.569

4 S. Albers and M. Hellwig. Semi-online scheduling revisited. Theoretical Computer Science,570

443:1–9, 2012. Publisher: Elsevier.571

5 S. Albers and M. Hellwig. Online makespan minimization with parallel schedules. Algorithmica,572

78(2):492–520, 2017. Publisher: Springer.573

6 S. Albers and M. Janke. Scheduling in the Random-Order Model. In 47th International574

Colloquium on Automata, Languages, and Programming (ICALP 2020). unpublished, 2020.575

7 S. Albers and L. Ladewig. New results for the k-secretary problem. arXiv preprint576

arXiv:2012.00488, 2020.577

8 Pablo Azar, Robert Kleinberg, and S. Weinberg. Prophet inequalities with limited information.578

Proceedings of the Annual ACM-SIAM Symposium on Discrete Algorithms, 07 2013. doi:579

10.1137/1.9781611973402.100.580

9 M. Babaioff, N. Immorlica, D. Kempe, and R. Kleinberg. Matroid Secretary Problems. Journal581

of the ACM (JACM), 65(6):1–26, 2018. Publisher: ACM New York, NY, USA.582

10 M. Babaioff, N. Immorlica, D. Kempe, and Robert Kleinberg. A knapsack secretary prob-583

lem with applications. In Approximation, randomization, and combinatorial optimization.584

Algorithms and techniques, pages 16–28. Springer, 2007.585

11 Y. Bartal, A. Fiat, H. Karloff, and R. Vohra. New algorithms for an ancient scheduling586

problem. In Proceedings of the twenty-fourth annual ACM symposium on Theory of computing,587

pages 51–58, 1992.588

12 Y. Bartal, H. J. Karloff, and Y. Rabani. A better lower bound for on-line scheduling. Inf.589

Process. Lett., 50(3):113–116, 1994.590

13 Martin Böhm, Jiří Sgall, Rob Van Stee, and Pavel Veselỳ. A two-phase algorithm for bin591

stretching with stretching factor 1.5. Journal of Combinatorial Optimization, 34(3):810–828,592

2017.593

14 B. Chen, A. van Vliet, and G. J. Woeginger. A lower bound for randomized on-line scheduling594

algorithms. Information Processing Letters, 51(5):219–222, 1994. Publisher: Elsevier.595

15 L. Chen, D. Ye, and G. Zhang. Approximating the optimal algorithm for online scheduling prob-596

lems via dynamic programming. Asia-Pacific Journal of Operational Research, 32(01):1540011,597

2015. Publisher: World Scientific.598

16 T.C.E. Cheng, H. Kellerer, and V. Kotov. Semi-on-line multiprocessor scheduling with given599

total processing time. Theoretical computer science, 337(1-3):134–146, 2005. Publisher:600

Elsevier.601

17 J. Correa, A. Cristi, B. Epstein, and J. Soto. The two-sided game of googol and sample-based602

prophet inequalities. In Proceedings of the Fourteenth Annual ACM-SIAM Symposium on603

Discrete Algorithms, pages 2066–2081. SIAM, 2020.604

18 J. Correa, A. Cristi, L. Feuilloley, T. Oosterwijk, and A. Tsigonias-Dimitriadis. The secretary605

problem with independent sampling. In Proceedings of the 2021 ACM-SIAM Symposium on606

Discrete Algorithms (SODA), pages 2047–2058. SIAM, 2021.607

19 J. Correa, P. Dütting, F. Fischer, and K. Schewior. Prophet inequalities for iid random608

variables from an unknown distribution. In Proceedings of the 2019 ACM Conference on609

Economics and Computation, pages 3–17, 2019.610

20 J. Dohrau. Online makespan scheduling with sublinear advice. In International Conference on611

Current Trends in Theory and Practice of Informatics, pages 177–188. Springer, 2015.612

S. Albers, M. Janke XX:17

21 E. B. Dynkin. The optimum choice of the instant for stopping a Markov process. Soviet613

Mathematics, 4:627–629, 1963.614

22 M. Englert, D. Özmen, and M. Westermann. The power of reordering for online minimum615

makespan scheduling. In 2008 49th Annual IEEE Symposium on Foundations of Computer616

Science, pages 603–612. IEEE, 2008.617

23 U. Faigle, W. Kern, and G. Turán. On the performance of on-line algorithms for partition618

problems. Acta cybernetica, 9(2):107–119, 1989.619

24 M. Feldman, O. Svensson, and R. Zenklusen. A simple O (log log (rank))-competitive algorithm620

for the matroid secretary problem. In Proceedings of the twenty-sixth annual ACM-SIAM621

symposium on Discrete algorithms, pages 1189–1201. SIAM, 2014.622

25 T. S. Ferguson. Who solved the secretary problem? Statistical science, 4(3):282–289, 1989.623

Publisher: Institute of Mathematical Statistics.624

26 R. Fleischer and M. Wahl. On-line scheduling revisited. Journal of Scheduling, 3(6):343–353,625

2000. Publisher: Wiley Online Library.626

27 G. Galambos and G. J. Woeginger. An on-line scheduling heuristic with better worst-case ratio627

than Graham’s list scheduling. SIAM Journal on Computing, 22(2):349–355, 1993. Publisher:628

SIAM.629

28 O. Göbel, T. Kesselheim, and A. Tönnis. Online appointment scheduling in the random order630

model. In Algorithms-ESA 2015, pages 680–692. Springer, 2015.631

29 G. Goel and A. Mehta. Online budgeted matching in random input models with applications632

to Adwords. In SODA, volume 8, pages 982–991, 2008.633

30 T. Gormley, N. Reingold, E. Torng, and J. Westbrook. Generating adversaries for request-634

answer games. In Proceedings of the eleventh annual ACM-SIAM symposium on Discrete635

algorithms, pages 564–565, 2000.636

31 R. L. Graham. Bounds for certain multiprocessing anomalies. Bell System Technical Journal,637

45(9):1563–1581, 1966. Publisher: Wiley Online Library.638

32 A. Gupta, R. Mehta, and M. Molinaro. Maximizing Profit with Convex Costs in the Random-639

order Model. arXiv preprint arXiv:1804.08172, 2018.640

33 A. Gupta and S. Singla. Random-order models. In Tim Roughgarden, editor, Beyond641

worst-case analysis. Cambridge University Press, 2020.642

34 D. S. Hochbaum and D. B. Shmoys. Using dual approximation algorithms for scheduling643

problems theoretical and practical results. Journal of the ACM (JACM), 34(1):144–162, 1987.644

Publisher: ACM New York, NY, USA.645

35 H. Kaplan, D. Naori, and D. Raz. Competitive Analysis with a Sample and the Secretary646

Problem. In Proceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete647

Algorithms, pages 2082–2095. SIAM, 2020.648

36 C. Karande, A. Mehta, and P. Tripathi. Online bipartite matching with unknown distributions.649

In Proceedings of the forty-third annual ACM symposium on Theory of computing, pages650

587–596, 2011.651

37 D. R. Karger, S. J. Phillips, and E. Torng. A better algorithm for an ancient scheduling652

problem. Journal of Algorithms, 20(2):400–430, 1996. Publisher: Elsevier.653

38 R. M. Karp, U. V. Vazirani, and V. V. Vazirani. An optimal algorithm for on-line bipartite654

matching. In Proceedings of the twenty-second annual ACM symposium on Theory of computing,655

pages 352–358, 1990.656

39 H. Kellerer and V. Kotov. An efficient algorithm for bin stretching. Operations Research657

Letters, 41(4):343–346, 2013. Publisher: Elsevier.658

40 H. Kellerer, V. Kotov, and M. Gabay. An efficient algorithm for semi-online multiprocessor659

scheduling with given total processing time. Journal of Scheduling, 18(6):623–630, 2015.660

41 H. Kellerer, V. Kotov, M. Grazia Speranza, and Z. Tuza. Semi on-line algorithms for the661

partition problem. Operations Research Letters, 21(5):235–242, 1997. Publisher: Elsevier.662

42 C. Kenyon. Best-Fit Bin-Packing with Random Order. In SODA, volume 96, pages 359–364,663

1996.664

XX:18 Scheduling in the secretary model

43 T. Kesselheim, A. Tönnis, K. Radke, and B. Vöcking. Primal beats dual on online packing665

LPs in the random-order model. In Proceedings of the forty-sixth annual ACM symposium on666

Theory of computing, pages 303–312, 2014.667

44 R. D. Kleinberg. A multiple-choice secretary algorithm with applications to online auctions.668

In SODA, volume 5, pages 630–631, 2005.669

45 N. Korula, V. Mirrokni, and M. Zadimoghaddam. Online submodular welfare maximization:670

Greedy beats 1/2 in random order. SIAM Journal on Computing, 47(3):1056–1086, 2018.671

Publisher: SIAM.672

46 O. Lachish. O (log log rank) competitive ratio for the matroid secretary problem. In 2014673

IEEE 55th Annual Symposium on Foundations of Computer Science, pages 326–335. IEEE,674

2014.675

47 D. V. Lindley. Dynamic programming and decision theory. Journal of the Royal Statistical676

Society: Series C (Applied Statistics), 10(1):39–51, 1961. Publisher: Wiley Online Library.677

48 M. Mahdian and Q. Yan. Online bipartite matching with random arrivals: an approach based678

on strongly factor-revealing lps. In Proceedings of the forty-third annual ACM symposium on679

Theory of computing, pages 597–606, 2011.680

49 A. Meyerson. Online facility location. In Proceedings 42nd IEEE Symposium on Foundations681

of Computer Science, pages 426–431. IEEE, 2001.682

50 V.S. Mirrokni, S. O. Gharan, and M. Zadimoghaddam. Simultaneous approximations for683

adversarial and stochastic online budgeted allocation. In Proceedings of the twenty-third annual684

ACM-SIAM symposium on Discrete Algorithms, pages 1690–1701. SIAM, 2012.685

51 M. Molinaro. Online and random-order load balancing simultaneously. In Proceedings of686

the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 1638–1650.687

SIAM, 2017.688

52 C. J. Osborn and E. Torng. List’s worst-average-case or WAC ratio. Journal of Scheduling,689

11(3):213–215, 2008. Publisher: Springer.690

53 J. Rudin III. Improved bounds for the on-line scheduling problem. PhD thesis, University of691

Phoenix, 2001.692

54 P. Sanders, N. Sivadasan, and M. Skutella. Online scheduling with bounded migration.693

Mathematics of Operations Research, 34(2):481–498, 2009. Publisher: INFORMS.694

55 J. Sgall. A lower bound for randomized on-line multiprocessor scheduling. Information695

Processing Letters, 63(1):51–55, 1997. Publisher: Citeseer.696

A Lower bounds697

We establish the following theorem using two lower bound sequences.698

I Theorem 24. For every online algorithm A, deterministic or randomized, there exists a699

job set J such that Pσ∼Sn
[
A(J σ) ≥

√
73−1
6 OPT(J)

]
≥ 1

6 . If A is randomized the previous700

probability also includes its random choices.701

Theorem 24 implies the following lower bounds.702

I Corollary 25. If an online algorithm A is nearly c-competitive, then c ≥
√

73−1
6 ≈ 1.257.703

I Corollary 26. The best competitive ratio possible in the secretary model is
√

73+29
36 ≈ 1.043.704

Let us now prove these results. For this section let c =
√

73−1
6 be our main lower bound705

on the competitive ratio. We consider three types of jobs:706

1. negligible jobs of size 0 (or a tiny size ε > 0 if one were to insist on positive sizes).707

2. big jobs of size 1− c
3 = 17−

√
37

18 ≈ 0.581.708

3. small jobs of size c
3 = 1+

√
37

18 ≈ 0.419709

S. Albers, M. Janke XX:19

Let J be the job set consisting of m jobs of each type.710

I Lemma 27. There exists a schedule of J where every machine has load 1. Every schedule711

that has a machine with smaller load has makespan at least c.712

Proof. This schedule is achieved by scheduling a type 2 and a type 3 job onto each machine.713

The load of each machine is then 1. Every schedule which allocates these jobs differently714

must have at least one machine M which contains at least three jobs of type 2 or 3 by the715

pigeonhole principle. The load of M is then at least 3 c3 = c. J716

Given a permutation J σ of J and an online algorithm A, which expects 3m+ 1 jobs to717

arrive in total. Let A(J σ, 3m+ 1) denote its makespan after it processes J σ expecting yet718

another job to arrive. Let P = P[A(J σ, 3m+ 1) = 1] be the probability that A achieves the719

optimal schedule where every machine has load 1 under these circumstances. Depending on720

P we pick one out of two input sets on which A performs bad.721

Let j ∈ {1, 2}. We now consider the job set Jj consisting of m jobs of each type plus722

one additional job of type j, i.e. a negligible job if j = 1 and a big one if j = 2. We call an723

ordering J σj of Jj good if it ends with a job of type j or, equivalently, if its first 3m jobs are724

a permutation of J . Note that the probability of J σ being good is m+1
3m+1 ≥ 1

3 for σ ∼ S3m+1.725

I Lemma 28. For job set J1 we have Pσ∼Sn [A(J σ1) ≥ cOPT(J)] ≥ 1−P
3 and for job set J2726

furthermore Pσ∼Sn [A(J σ2) ≥ cOPT(J)] ≥ P
3 .727

Proof. Consider a good permutation of J1. Then with probability 1− P the algorithm A728

does have makespan c even before the last job is scheduled. On the other hand OPT(J1) = 1.729

Thus with probability 1−P
3 we have A(J σ1) = c = cOPT(J1).730

Now consider a good permutation of J2. Then, with probability P , algorithm A has to731

schedule the last job on a machine of size 1. Its makespan is thus 2− c
3 = c2 by our choice732

of c. The optimum algorithm may schedule two big jobs onto one machine, incurring load733

2− 2c
3 < c, three small jobs onto another one, incurring load c and one job of each type onto734

the remaining machines, causing load 1 < c. Thus OPT(J2) = c. In particular we have with735

probability P
3 that A(J σ2) = c2 = cOPT(J2). J736

We now conclude the main three lower bound results.737

I Theorem 24. For every online algorithm A, deterministic or randomized, there exists a738

job set J such that Pσ∼Sn
[
A(J σ) ≥

√
73−1
6 OPT(J)

]
≥ 1

6 . If A is randomized the previous739

probability also includes its random choices.740

Proof. By the previous lemma we get that741

max
j=1,2

(
Pσ∼Sn

[
A(J σj) ≥ cOPT(J)

])
= max

(
1− P

3 ,
P

3

)
≥ 1

6 . J742

I Corollary 25. If an online algorithm A is nearly c-competitive, then c ≥
√

73−1
6 ≈ 1.257.743

Proof. This is immediate by the previous theorem. J744

I Corollary 26. The best competitive ratio possible in the secretary model is
√

73+29
36 ≈ 1.043.745

Proof. Let A be any online algorithm. Pick a job set J according to Theorem 24. Then746

Arom(J) = Eσ∼Sn [A(J σ)] ≥ 1
6 ·
√

73− 1
6 OPT(J) + 5

6OPT(J) =
√

73 + 29
36 OPT(J).J747

XX:20 Scheduling in the secretary model

B Full description of the main algorithm748

Our new algorithm achieves a competitive ratio of c = 1+
√

13
3 ≈ 1.535. Let δ = δ(m) = 1

log(m)749

be the margin of error our algorithm allows. Throughout the analysis it is mostly sensible750

to treat δ as a constant and forget about its dependency on m. Our algorithm maintains751

a certain set Mres of dδme reserve machines. Their complement, the principal machines,752

are denoted by M. Let us fix an input sequence J σ. Let L̂ = L̂[J σ] = Lδ2 [J σ]. For753

simplicity, we hide the dependency on J σ whenever possible. Our online algorithm uses754

B = max
(
pδ

2n
max, L̂

)
as an estimated lower bound for OPT. This bound B is known after the755

first bδ2nc jobs are treated. Our algorithm uses geometric rounding implicitly. Given a job756

Jt of size pt let f(pt) = (1 + δ)blog1+δ ptc be its rounded size. We also call Jt an f(pt)-job.757

Using rounded sizes, we introduce job classes. Let psmall = c − 1 =
√

13−2
3 ≈ 0.535 and758

pbig = c
2 = 1+

√
13

6 ≈ 0.768. Then we call job Jt759

small if f(pt) ≤ psmallB and critical else,760

big if f(pt) > pbigB,761

medium if J is neither small nor big, i.e. psmallB ≤ f(pt) ≤ pbigB,762

huge if its (not-rounded) size exceeds B, i.e. B < pt, and normal else.763

Consider the sets Pmed = {(1 + δ)i | (1 + δ)−1psmallB < (1 + δ)i ≤ pbigB} and Pbig =764

{(1 + δ)i | pbigB < (1 + δ)i ≤ B} corresponding to all possible rounded sizes of medium765

respectively big jobs, excluding huge jobs. Let P = Pmed∪Pbig. This subdivision gives rise to766

a weight function, which will be important later. Let w(p) = 1/2 for p ∈ Pmed and w(p) = 1767

for p ∈ Pbig. The elements p ∈ P define job classes Cp ⊆ J consisting of all p-jobs, i.e. jobs of768

rounded size p. By some abuse of notation, we call the elements in P “job classes”, too. We769

let np = |Cp| and n̂p = |{Jσ(j) | σ(j) ≤ δ2n ∧ Jσ(j) is a p-job}|. We want to use the values770

n̂p, which are available to an online algorithm quite early, to estimate the values np, which771

accurately describe the set of critical jobs. First, δ−2n̂p comes to mind as an estimate for772

np. Yet, we need a more complicated guess: cp = max
(⌊(

δ−2n̂p −m3/4)w(p)
⌋
, n̂p
)
w(p)−1.773

It has three desirable advantages. First, for every p ∈ P the value cp is close to np with774

high probability, but, opposed to δ−2n̂p, unlikely to exceed it. Overestimating np turns out775

to be far worse than underestimating it. Second, w(p)cp is an integer and, third, we have776

cp ≥ n̂pw(p)−1. A fundamental fact regarding the values (cp)p∈P and B is, of course, that777

they are known to the online algorithm once bδ2nc jobs are scheduled.778

Algorithm 2 The complete algorithm: How to schedule job Jt.
1: strat is initialized to Critical, Jt is the job to be scheduled.
2: if n ≤ m then Schedule Jt on any empty machine;
3: else if t ≤ ϕn then schedule Jt on a least loaded machine inM; . Sampling phase
4: else
5: if we have t = bϕnc+ 1 then
6: if

∑
p∈P w(p)cp > m then strat← Least-Loaded

7: else proceed with the Preparation for the Critical-Job-Strategy (Algorithm 4);
8: if strat = Critical then proceed with the Critical-Job-Strategy (Algorithm 5);
9: else proceed with the Least-Loaded-Strategy (Algorithm 3);

Statement of the algorithm: If there are less jobs than machines, i.e. n ≤ m, it is optimal779

to put each job onto a separate machine. Else, a short sampling phase greedily schedules780

each of the first bδ2nc jobs to the least loaded principal machine M ∈M. Now, the values781

S. Albers, M. Janke XX:21

B and (cp)p∈P are known. Our algorithm has to choose between two strategies, the Least-782

Loaded-Strategy and the Critical-Job-Strategy, which we will both introduce subsequently. It783

maintains a variable strat, initialized to Critical, to remember its choice. If it chooses the784

Critical-Job-Strategy, some additional preparation is required. It may at any time discover785

that the Critical-Job-Strategy is not feasible and switch to the Least-Loaded-Strategy but it786

never switches the other way around.787

The Least-Loaded-Strategy places any normal job on a least loaded principal machine.788

Huge jobs are scheduled on any least loaded reserve machine. This machine will be empty,789

unless we consider rare worst-case orders.790

Algorithm 3 The Least-Loaded-Strategy: How to schedule job Jt.
1: if Jt is huge then schedule Jt on any least loaded reserve machine;
2: else schedule Jt on any least loaded principal machine;

For the Critical-Job-Strategy we introduce p-placeholder-jobs for every size p ∈ P . Sensibly,791

the size of a p-placeholder-job is p. During the Critical-Job-Strategy we treat placeholder-jobs792

similar to real jobs. The anticipated load l̃tM of a machine M at time t is the sum of all jobs793

on it, including placeholder-job, opposed to the common load ltM , which does not take the794

latter into account. Note that l̃tM defines a pseudo-load as introduced in Section 3.795

During the Preparation for the Critical-Job-Strategy the algorithm maintains a796

counter c′p of all p-jobs scheduled so far (including placeholders). A job class p ∈ P is called797

unsaturated if c′p ≤ cp. First, we add unsaturated medium placeholder-jobs to any principal798

machine that already contains a medium real job from the sampling phase. We will see in799

Lemma 29 that such an unsaturated medium job class always exists. Now, let mempty be the800

number of principal machines which do not contain critical jobs. We prepare a set Jrep of801

cardinality at most mempty, which we will then schedule onto these machines. The set Jrep802

may contain single big placeholder-jobs or pairs of medium placeholder-jobs. We greedily803

pick any unsaturated job class p ∈ P and add a p-placeholder-job to Jrep. If p is medium, we804

pair it with a job belonging to any other, not necessarily different, unsaturated medium job805

class. Such a job class always exists by Lemma 29. We stop once all job classes are saturated806

or if |Jrep| = mempty. We then assign the elements in Jrep to machines. We iteratively pick807

the element e ∈ Jrep of maximum size and assign the corresponding jobs to the least loaded808

principal machine, which does not contain critical jobs yet. Sensibly, the size of a pair of809

jobs in Jrep is the sum of their individual sizes. We repeat this until all jobs and job pairs in810

Jrep are assigned to some principal machine.811

Algorithm 4 Preparation for the Critical-Job-Strategy.
1: while there is a machine M containing a single medium job do
2: Add a placeholder p-job for an unsaturated size class p ∈ Pmed to M ; c′p ← c′p + 1;
3: while there is an unsaturated size class p ∈ P and |Jrep| < mempty do
4: Pick an unsaturated size class e = p ∈ P with c′p minimal; w(e)← p; c′p ← c′p + 1;
5: if p is medium then pick q ∈ Pmed unsaturated. e← (p, q); w(e)← p+q; c′q ← c′q+1;
6: Add e to Jrep;
7: while Jrep 6= ∅ do
8: Pick a least loaded machine M ∈M, which does not contain a critical job yet;
9: Pick e ∈ Jrep of maximum size w(e) and add the jobs in e to M ;
10: Jrep ← Jrep \ {e};

XX:22 Scheduling in the secretary model

I Lemma 29. In line 2 and 5 of Algorithm 4 there is always an unsaturated medium size812

class available. Thus, Algorithm 4, the Preparation for the Critical-Job-Strategy, is well813

defined.814

Proof. Concerning line 2, there are precisely
∑
p∈Pmed

n̂p machines with critical jobs while815

there are at least
∑
p∈Pmed

(cp − n̂p) ≥
∑
p∈Pmed

n̂p placeholder-jobs available to fill them.816

Here we make use of the fact that for medium jobs p ∈ Pmed we have cp ≥ n̂pw(p)−1 = 2n̂p.817

Concerning line 5, observe that so far every machine and every element in Jrep contains818

an even number of medium jobs. If the placeholder picked in line 4 was the last medium job819

remaining,
∑
p∈Pmed

cp would be odd. But this is not the case since every cp for p ∈ Pmed is820

even. J821

Algorithm 5 The Critical-Job-Strategy.
1: if Jt is medium or big then let p denote its rounded size;
2: if there is a machine M containing a p-placeholder-job J then
3: Delete the p-placeholder-job J and assign Jt to M ;
4: else if Jt is medium and there exists M ∈Mres containing a single medium job then
5: Schedule Jt on M ;
6: else if there exists an empty machine M ∈Mres then schedule Jt on M ;
7: else stat← Least-Loaded; . We say the algorithm fails.
8: use the Least-Loaded-Strategy (Algorithm 3) from now on;
9: else assign Jt to the least loaded machine inM (take placeholder jobs into account);

After the Preparation is done, the Critical-Job-Strategy becomes straightforward.822

Each small job is scheduled on a principal machines with least anticipated load, i.e. taking823

placeholders into account. Critical jobs of rounded size p ∈ P replace p-placeholder-jobs824

whenever possible. If no such placeholder exists anymore, critical jobs are placed onto the825

reserve machines. Again, we try pair up medium jobs whenever possible. If no suitable826

machine can be found among the reserve machines, we have to switch to the Least-Loaded-827

Strategy. We say that the algorithm fails if it ever reaches this point. In this case, it should828

rather have chosen the Least-Loaded-Strategy to begin with. Since all reserve machines are829

filled at this point, the Least-Loaded-Strategy is impeded, too. The most difficult part of830

our analysis shows that, excluding worst-case orders, this is not a problem on job sets that831

are prone to cause failing.832

Appendix D

Online Makespan Minimization
with Budgeted Uncertainty
Bibliographic Information Online Makespan Minimization with Bud-
geted Uncertainty. S. Albers, M. Janke. 17th Algorithms and Data Structures
Symposium (WADS) 2021

Summary of Contributions We study Online Makespan Minimiza-
tion under budgeted uncertainty assumptions. Jobs have to be assigned to
parallel and identical machines. Preemption is not allowed. Each job has
both a regular processing time, as well as an additional processing time.
Commonly, jobs only require the regular time but up to Γ jobs fail and
require the sum of both processing times. One then considers the maximum
makespan that may arise if up to Γ jobs fail, called the uncertain makespan.
This uncertain makespan should be minimized.

We initiate the study of online algorithms for Makespan Minimization
with budgeted uncertainty. We first analyze Graham’s Greedy strategy and
establish that it is

(
3 − 2

m

)
-competitive. This ratio is tight. We then pro-

vide a superior strategy whose competitive ratio approaches 2.9052. Our
lower bound of 2 shows that the general model including budgeted uncer-
tainty is strictly harder than its special case of classical Online Makespan
Minimization.

Individual Contributions
• Initial proposal of the problem.
• Analysis of the Greedy strategy; development and analysis of the

improved algorithm and the lower bound.
• Composition of the manuscript, including graphics, graphs, technical

and non-technical parts.

Online Makespan Minimization With Budgeted
Uncertainty

Susanne Albers and Maximilian Janke

Department of Computer Science, Technical University of Munich

Abstract. We study Online Makespan Minimization with uncertain job
processing times. Jobs are assigned to m parallel and identical machines.
Preemption is not allowed. Each job has a regular processing time while
up to Γ jobs fail and require additional processing time. The goal is to
minimize the makespan, the time it takes to process all jobs if these Γ
failing jobs are chosen worst possible. This models real-world applications
where acts of nature beyond control have to be accounted for.
So far Makespan Minimization With Budgeted Uncertainty has only been
studied as an offline problem. We are first to provide a comprehensive
analysis of the corresponding online problem.
We provide a lower bound of 2 for general deterministic algorithms show-
ing that the problem is more difficult than its special case, classical
Online Makespan Minimization. We further analyze Graham’s Greedy
strategy and show that it is precisely

(
3 − 2

m

)
-competitive. This bound

is tight. We finally provide a more sophisticated deterministic algorithm
whose competitive ratio approaches 2.9052.

Keywords: Scheduling · Makespan Minimization · Online Algorithm ·
Competitive Analysis · Lower Bound · Uncertainty · Budgeted Uncer-
tainty.

1 Introduction

Scheduling is universal in countless areas of computing, decision making and
management: Machines simultaneously produce diverse specialized equipment;
server hubs execute numerous types of programs at the same time; employees
need to perform various tasks in parallel. Innumerous scheduling problems in
the literature are derived from such applications and model fuzzy real-world
problems using precise mathematical language and problem specifications. This
unnatural precision leads to failure when classical approaches are applied to real-
world environments. Real-world settings are less clear-cut with multiple sources
of uncertainty that vastly affect results. Consider acts of nature beyond control
and predictability occurring rarely but regularly: For example, machines mal-
function and need to be repaired; programs exhibit bugs, which require restarts
and debugging; changes in working environment — such as a global pandemic
— require new solutions such as working from home. Most tasks are eventually
adapted to the situation and performed as efficiently as before. Still, a few re-
maining ones suddenly require a lot more time and effort in our daily schedules.

2 S. Albers and M. Janke

Such errors in the expected difficulty of tasks easily render theoretical predictions
void and motivated various models incorporating uncertainty in the literature.

A prolific line of research on online algorithms, [14,15,17,19,23,26,30] and
references therein, considers explorable uncertainty. This type of uncertainty can
be queried and explored by the online algorithm. Such approaches are sensible
for many practical applications but fail if uncertainty is inherently unpredictable
— or unexplorable — even to the offline algorithm.

Offline approaches, dating back to the 1950s [13], propose stochastic models;
more recent approaches, particularly Budgeted Uncertainty, consider worst-case
scenarios, which accustom risk-averse decision makers. To date, many offline
problems, Scheduling [8,9,38], Bin Packing [34] and Linear Optimization [6,7]
among them, have been analyzed under Budgeted Uncertainty assumptions.

Surprisingly, these studies never extended to online settings. Current online
analyses measure the price of not having information regarding the future — an
online algorithm is prepared for whatever may come — but are not the least
skeptical about information once it is “obtained”.

This paper studies the most basic scheduling problem of Online Makespan
Minimization under Budgeted Uncertainty assumptions: Jobs have to be as-
signed to m identical and parallel machines. Preemption is not allowed. The
goal is to minimize the time it takes to process them all, the makespan. Each
job Ji is defined by two processing times. Its regular processing time p̃i is its
time required under normal circumstances. Its additional time ∆pi has to be
added in rare cases of failure for reparation, potential reduced performance or
other application-specific slowdown. Since failures are the exception, it would be
extremely pessimistic to assume that jobs in general take time p̃i+∆pi. Instead,
one only accounts for at most Γ such failures. Given an assignment of jobs, we
consider the maximum time required for processing these jobs in parallel if up
to Γ failures occurred in total. This time is called the uncertain makespan or
simply the makespan. The objective is to minimize this quantity.

For Γ = 0 the problem reduces to classical makespan minimization. Only
regular processing times p̃i matter. Similarly, the “paranoid case” Γ =∞, where
every program has a bug and every machine constantly malfunctions, yields
classical makespan minimization using worst-case processing times pi = p̃i+∆pi.

To an online algorithm A jobs are revealed one by one and each has to
be scheduled immediately and irrevocably before the next one is revealed. In
particular, A never “learns’ ’ which jobs fail and cannot perform optimally on
arbitrary input sequences. The (uncertain) makespan of A, denoted by A(J),
is then compared to the optimum makespan OPT(J). Online algorithm A is
c-competitive, c ≥ 1, if A(J) exceeds OPT(J) by at most a factor c on all input

sequences J . The smallest such factor is the competitive ratio c = supJ
A(J)

OPT(J) .

The goal is to design online algorithms achieving small competitive ratios.

Online Makespan Minimization With Budgeted Uncertainty 3

Related work: Scheduling is a fundamental problem in theoretical computer
science and has been studied extensively in both offline and online variants,
see e.g. [4,16,20,22,24,31] and references therein. We thus only focus on results
most relevant to our work beginning with robust scheduling. Early work stud-
ied arbitrary, mostly finite sets of scenarios, see e.g. [3,28,29,32]. More modern
work [8,9,38] has adapted to the model of Budgeted Uncertainty from [6]. In par-
ticular, Bougeret et. al. [9] habe provided a first 3-approximation for the offline
version of the problem studied in this paper and a PTAS for constant Γ . This
result has been recently improved by the same authors and Jansen [8]. They
provide an EPTAS for general Γ and show that, assuming P 6= NP , the best
possible approximation ratio for unrelated machines lies in the interval [2, 3].

Online Makespan minimization is very thoroughly researched. We again only
review results most relevant for our work. Already in the 1960s Graham [22]
established that his famed Greedy strategy obtains a strong competitive ratio of
precisely 2− 1

m . It took nearly thirty years till a breakthrough of Galambos and
Woeginger [21] sparked a fruitful line of research [4,27,1] leading to the currently
best competitive ratio of 1.9201 from [20]. Chen et al. [10] have given an online
algorithm whose competitiveness is at most 1 + ε times the best possible ratio
but no explicit bounds on this ratio are obtained. For general m, lower bounds
are given in [18,5,1,35]. The currently best lower bound is 1.885 due to [35].

More recent results on Online Makespan Minimization consider semi-online
settings, which equip the online algorithm with additional capabilities or in-
formation ahead of time [11,36,16]; different approaches weaken the adversary’s
ability to determine the job-order [2,16]; yet other settings analyze more involved
objective functions: particularly the model of vector scheduling [12,25] also con-
siders jobs that have two or even more “processing times”. Unlike in our model,
these “times” represent multidimensional resource requirements.

A related line of research on online algorithms considers “explorable uncer-
tainty”. In 1991, Kahan [26] has investigated the number of queries necessary to
determine median and maximum of a set of “uncertain” numbers. This sparked
a long line of research covering many problems, such as finding the median or
general rank-k-elements [19,23,26,30], caching [33] or most recently scheduling
[14,15]. The latter work, in fact, adds the cost of querying to the general cost
paid by the algorithm for performing its task at hand. We refer to the survey
by Erlebach and Hoffmann [17] and references therein for more results on this
topic.

Modern work of Singla [37] introduces the ’price of information’ into classical
stochastic uncertainty settings, which results in a model highly related to the
Budgeted Uncertainty model.

Our contribution: We study online makespan minimization with Budgeted
Uncertainty in depth. First, we give tight bounds on the competitive ratio of the
Greedy strategy under Budgeted Uncertainty, which shows surprising parallels
to the traditional result. It is precisely

(
3− 2

m

)
-competitive. This already beats

the oldest published offline approximation ratio [9], while being a much simpler

4 S. Albers and M. Janke

approach at the same time. The lower bound showing that Greedy is not better
than

(
3− 2

m

)
-competitive can be chosen such that p̃i = 0 for all i raising the

question whether this important special case is as hard the general problem.
Next, we provide a better deterministic algorithm particularly suited for large

values ofm and Γ . Our algorithm adapts the proven strategy from [20] and earlier
work of prioritizing schedules exhibiting a steep load profile. These profiles are
highly desirable and generally pose no problem to the online algorithm. It is then
shown that difficult input sequences leading to less desirable profiles cannot be
efficiently scheduled by any algorithm, including the optimum offline algorithm.
This ameliorates the possibly higher makespan of the online algorithm on these
difficult sequences.

Precise competitive ratios for small m and Γ , Figure 2, attest a strong per-
formance unless Γ is extremely small and m is big. The latter setting is rather
unnatural since one expects the number of errors to scale with the number
of machines (and jobs). For large m and Γ the competitive ratio rapidly ap-
proaches 2.9052. In general, the algorithm outperforms the Greedy strategy.

We end with a lower bound of 2 for the competitive ratio achievable by any
deterministic algorithm. The general model of Budgeted Uncertainty is therefore
strictly more difficult than the classical model without uncertainty where even
Graham’s Greedy strategy is

(
2− 1

m

)
-competitive.

2 Problem definition

Consider any input sequence J = J1, . . . Jn. Job Ji is defined by a pair (p̃i, ∆pi)
of non-negative real numbers where p̃i is the regular processing time of Ji, while
∆pi is its additional time. The time job Ji takes to be processed in the worst
case is pi = p̃i +∆pi, its robust time.

A schedule is simply a function σ : J → M mapping job J ∈ J to the
machine σ(J) = M ∈ M processing it. The regular load of a machine M ∈ M
is l̃M =

∑
σ(Ji)=M

p̃i, the time it takes said machine to process all jobs in the
best-case. The additional times we have to account for in the worst-case is the
additional load ∆lM , the sum of the Γ largest additional times of jobs (or all
additional times, if less than Γ jobs are scheduled on M). Formally ∆lM =
max

(∑
Ji∈J ′ ∆pi | J ′ ⊆ σ−1(M), |J ′| ≤ Γ

)
. Let us fix any set J ′(M) where

the maximum in the previous term is obtained. We break ties by preferring
jobs Ji that came later, i.e. with larger indices i, and by choosing J ′(M) of
minimal size. We say for each job Ji ∈ J ′(M) that Ji fails in σ. This allows
us to write ∆lM =

∑
Ji fails M ∆pi. Finally, the robust load lM of a machine M

is the maximum time machine M may require if up to Γ jobs fail: Formally
lM = l̃M +∆lM =

∑
Ji∈σ−1(M) p̃i +

∑
Ji fails M ∆pi.

Given any algorithm A, which outputs the schedule σ, its (robust) makespan
is then A(J) = maxM lM . The goal is to design algorithms exhibiting low
makespans. Technically, in the classical problem only Γ jobs fail in total. For
the analysis a more general, equivalent version leads to a better intuition: Since
the definition of each ∆lM only makes use of the fact that at most Γ jobs fail on

Online Makespan Minimization With Budgeted Uncertainty 5

M , the problem stays equivalent if we allowed up to Γ jobs to fail per machine.
Let OPT be any (fixed) offline algorithm that on any input sequence J outputs
an optimum schedule. By some abuse of notation we also denote the optimum
makespan OPT(J) by OPT, if the corresponding sequence J is clear.

An Algorithm A is called an online algorithm, if it assigns each job Ji in
J = J1, . . . , Jn independent of future jobs, i.e. Ji+1, . . . , Jn. It’s competitive

ratio is then c = supJ
A(J)

OPT(J) , the quantity we wish to minimize.

3 Graham’s Greedy Strategy

In his seminal work [22] Graham analyzed the greedy strategy and showed that
it is

(
2− 1

m

)
-competitive. In general, the scheduling literature differentiates be-

tween pre-greedy and post-greedy strategies. The former simply choose a least
loaded machine; the latter choose a machine such that the resulting load is min-
imal. Ties can be broken arbitrarily. For classical Makespan Minimization these
notions coincide and all greedy strategies are identical up to permutations of ma-
chines. For our problem, the pre-greedy strategies perform significantly worse,
which is why we focus on post-greedy strategies.

We then are going to establish the following theorem.

Theorem 1. The competitive ratio of the post-greedy strategy is precisely 3− 2
m .

In particular, we will also present a lower bound on which any neither the
post-greedy nor the pre-greedy strategy does perform better. This lower bound,
interestingly, can be chosen such that p̃ = 0 for all jobs, which might be evidence
that this case is not easier than the general case. A bound on which the pre-
greedy strategy performs worse is omitted.

3.1 Upper Bound

Let us consider the case of classical makespan minimization, i.e. we assume that
∆pi = 0 for all jobs Ji. The core idea of Graham [22] was to consider the average
load of any schedule, that is L̃ = 1

m

∑
M l̃M = 1

m

∑
Ji∈J p̃i. The second term

shows that this average load is independent of the schedule considered. This has
two important consequences. First, OPT ≥ L̃ since even the optimal schedule
cannot have all machine loads below average. On the other hand, no scheduler,
not even the worst one, can bring all machine loads above the average load L̃.
Graham thus argues that the least loaded machine considered by his greedy
strategy has load at most L̃ ≤ OPT. Since the job placed on it cannot have
processing time greater than OPT either, it thus cannot cause a load exceeding
2OPT. In other words, for classical makespan minimization the greedy strategy
is 2-competitive.

In our setting, the core argument of Graham does not work anymore. For
∆pi 6= 0, the average robust load L is far from being independent of the schedule
in question. In fact, it may differ by a factor of m. Before giving an example
let us introduce the required notation. Consider the schedule computed by any

6 S. Albers and M. Janke

algorithm A on input sequence J and let L[A] = L[A,J] = 1
m

∑
M lM denote its

average (robust) load. Similarly, let ∆L[A] = ∆L[A,J] = 1
m

∑
M ∆lM = L[A]−

L̃. Consider m · Γ (or more) jobs with processing vector (p̃i, ∆pi) = (0, 1/Γ).
Let A be the strategy that always uses a machine of least load and let B be the
algorithm which only uses one single machine. Then L[A] = 1 while L[B] = 1

m .
The average robust load thus highly depends upon the algorithm considered.
Interestingly, we can bound said average load using the optimum makespan
OPT.

Lemma 1. The average (robust) load L[A,J] of any algorithm A on input J =
J1, . . . , Jn is at most L[OPT,J] +

(
1− 1

m

)
OPT(J).

Proof. Let us fix the sequence J and omit it from the notation. Let T be the set
of jobs that fail A but not OPT. If T is empty, all jobs that fail A also fail OPT
and thus L[A,J] ≤ L[OPT,J]. The lemma follows. Else, consider Jmax ∈ T
of maximum additional processing time ∆pmax. Consider the machine M that
contains Jmax in the optimum schedule. Since Jmax does not fail OPT there
are Γ different jobs of additional processing time at least ∆pmax assigned to M
which fail OPT. Let G be the set of these jobs. We obtain

∆L[A,J]−∆L[OPT,J] ≤ 1

m

∑

Ji∈T
∆pi −

1

m

∑

Ji∈G
∆pi

≤ 1

m
· (|T | − |G|)∆pmax.

At most Γ jobs can fail any machine, therefore |T | ≤ Γm. By definition |G| = Γ .
Finally, ∆pmax ≤ OPT

Γ since the Γ jobs in G all have additional processing time
at least ∆pmax while their total additional processing is at most OPT. Now the
previous inequality yields

∆L[A,J]−∆L[OPT,J] ≤ Γm− Γ
m

· OPT

Γ
=

(
1− 1

m

)
OPT(J).

Recall that the average regular load L̃ = 1
m

∑
Ji
p̃i is the same for every algo-

rithm. Therefore L[A,J]−L[OPT,J] = ∆L[A,J]−∆L[OPT,J]. Together with
the previous inequality this implies L[A,J] ≤ L[OPT,J] +

(
1− 1

m

)
OPT(J).

Lemma 2. The post-greedy strategy incurs makespan at most
(
3− 2

m

)
OPT(J).

Proof. Let J = J1, . . . , Jn. Using induction over n we may assume that the
statement of the lemma holds right before job Jn is scheduled. By definition of
a post-greedy assignment it then suffices to see that there exists a machine M
whose load will not exceed (3− 2/m) OPT(J) if we assign Jn to it.

Let (pn, ∆pn) be the processing vector of Jn. Consider the greedy schedule
of the first n−1 jobs and preliminarily assign job Jn to any machine that causes
it to fail, i.e. contains less than Γ jobs of processing time strictly exceeding ∆pn.

Online Makespan Minimization With Budgeted Uncertainty 7

If no such machine exists, schedule job Jn on an arbitrary machine. Let L be
the average robust load of this schedule. We replace each job Ji by a job Ĵi
whose regular processing time is p̂i = p̃i if the job does not fail this preliminary
schedule and p̂i = pi = p̃i + ∆pi else. Per definition that does not change the
load of any machine. Also, L = 1

m

∑
i p̂i. Now, we remove the last job Ĵn from

the machine it was scheduled on and assign it to a least loaded machine M
(with regards to the processing times p̂i). After removing the job Ĵn the average
load of the schedule is L− 1

m · p̂n. Hence, after assigning Ĵn to the least loaded

machine the makespan is at most L +
(
1− 1

m

)
p̂n. Now, replace the jobs Ĵi by

their original variants Ji. This can only cause the load of M to decrease. Indeed,
by our choice of preliminary assignment we had p̂n = pn unless there was no
machine on which Jn could fail, so job Jn contributes at most p̂n to the load of
M . For other jobs that fail M it is clear that they continue to do so if we remove
Jn. Thus, these jobs contribute processing time pi = p̂i. Jobs that do not fail
only contribute processing time p̃i ≤ p̂i.

We have shown that assigning Jn to machine M causes its load to be at most
L +

(
1− 1

m

)
p̃n ≤ L̃[J ,OPT] +

(
1− 1

m

)
OPT +

(
1− 1

m

)
p̃n ≤

(
3− 2

m

)
OPT.

The first inequality is due to Lemma 1 (there is some algorithm computing
the preliminary schedule), the second due to the fact that the average load
L̃[J ,OPT] of the optimum schedule as well as p̃n, the robust processing time of
any job, are both lower bounds for OPT. By definition a post-greedy strategy
will not cause a makespan exceeding the one it could obtain by choosing M .

3.2 Lower Bound

Lemma 3. Neither pre-greedy nor post-greedy strategy can be better than
(
3− 2

m

)
-

competitive, even when all jobs have regular processing time p̃ = 0.

Figure 1 illustrates the lower bound; the formal proof is left to the full version.

Fig. 1. The lower bound for greedy strategies, where all jobs have regular processing
time p̃ = 0. First, tiny sand-like jobs fill the greedy schedule (on the left) to a height of
almost 1. Small jobs increase the height to 2−2/m. Finally, a large job of size 1 causes
a makespan of size 3− 2/m. The optimum schedule (on the right) places the sand-like
jobs on a single machine. Since only Γ jobs fail the load is 1. The next m− 1 machines
are filled with small jobs to a height of 1. The final machine captures the large job.

8 S. Albers and M. Janke

4 An improved deterministic algorithm

The shortcoming of the Greedy strategy is that it creates ’critically flat’ sched-
ules. Jobs with high additional time tend to be spread thin onto separate ma-
chines when it would be better to cluster them. Moreover, a single large job J
assigned to a flat schedule easily causes a high makespan. OPT commonly can
’sink J down’ profiting a lot. Our algorithm thus tries to avoid flat schedules.
When presented with one, it prefers to use a medium machine to make it steeper.
Of course, recklessly using a medium machine on a dangerous schedule is folly.
Said machine is only used if the algorithm can guarantee c-competitiveness. We
specify the competitive ratio c = cΓ,m, depending on both Γ and m, later.

For any input sequence J = J1, . . . , Jn and any time t consider the schedule
of the algorithm right after after job Jt is scheduled. For t = 0 consider the empty
schedule. We order machines by their robust loads, breaking ties arbitrarily
but consistently. We call the d =

⌊
c−2
c m

⌋
≈ 0.3116m least loaded machines

small ; the following d machines are medium and the remaining m − 2d most-
loaded ones are large. LetMt

med be the set of medium machines and let Ltmed =
1

|Mt
med|

∑
M∈Mt

med
ltM be their average robust load. Let M t

med be the machine

in Mt
med of least robust load ltmed = minM∈Mt

med
ltM . Note that ltmed ≤ Ltmed.

We use similar notation for the small and large machines: Mt
med, Ltmed, ltmed,

Mt
large, etc. with the index chosen accordingly. In particular, M t

small denotes the

least-loaded machine. Finally, let Lt denote the average (robust) load at time t.

We call the schedule at time t ≥ 0 steep if Lt−1
small ≤

(
1− 1

2(c−1)

)
Lt−1

large and

flat else. Steep schedules are highly desirable. Our algorithm can and will always
pick the least loaded machine. If the schedule is flat, our goal should be to make
it steep again. Thus, first the least loaded medium machine M t−1

med is sampled.
If scheduling a job on machine M t−1

med will not cause its load to exceed c
2L

t−1,

i.e. if lt−1
med + pt ≤ c

2L
t−1, we use M t−1

med . This guarantees c-competitiveness, see
Lemma 4. Else, the least loaded machine Msmall has to be used. Seeing that this
does not break c-competitiveness is the main challenge for the analysis.

Algorithm 1 How to schedule job Jt with processing time pt.

1: if Lt−1
small >

(
1 − 1

2(c−1)

)
Lt−1

large and lt−1
med + pt ≤ c

2
Lt−1 then

2: Schedule job Jt on the least loaded medium machine M t−1
med;

3: else schedule job Jt on the least loaded machine M t−1
small.

The values of c. Recall that d =
⌊
c−2
c m

⌋
. Let Γ ≥ 2. The competitive ratio c

is chosen minimally such that c ≥ 7+
√

17
4 ≈ 2.7808 and the following holds:

(
1− d

2(c− 1)m
− 2

Γ + 1

cΓ

)(
1 +

c

2m

)d
+ 2

Γ + 1

cΓ
≥ 2

c− 1
· m− 1

m
. (1)

Online Makespan Minimization With Budgeted Uncertainty 9

Unless m is chosen extremely small c is determined by Inequality (1) and fulfills
it with equality. We show in the full version that c is below 2.9052 for m,Γ →∞.

The following is the main result of this paper.

Theorem 2. The algorithm is c-competitive with c < 2.9052 for Γ large.

Using a suitable data-structure that maintains the values Lt−1
small, L

t−1
large and

lt−1
med the algorithm can schedule each job efficiently in time O(log(m+ Γ)).

10 15 25 50 100 150 250 500 1,000
2.84

2.86

2.88

2.9

2.92

2.94

2.96

Γ

Dependency on the number of errors Γ.

m = 20 m = 30
m = 50 m = 100
m = 200 m = 500

10 15 25 50 100 150 250 500 1,000

2.8

2.85

2.9

m

Dependency on the number of machines m.

Γ = 20
Γ = 30
Γ = 50
Γ = 100
Γ = 200
Γ = 1000

Fig. 2. The competitive ratios for different m and Γ . The ratio c is monotonously de-
creasing in Γ and tends to increase in m albeit not monotoneously due to the rounding
involved in d. The x-axes are log-scaled. The graphs are colored.

Analysis of the algorithm Consider any input sequence J = J1, . . . , Jn and
let OPT = OPT(J1, . . . , Jn). By induction on n the makespan of the online
algorithm did not exceed cOPT before job Jn was scheduled. We need to show
that Jn did not cause the makespan to exceed this value either. Let L = Ln

be the average robust load of the online schedule after all jobs in J have been
scheduled.

Lemma 4. We have L ≤ 2OPT. In particular, if job Jn was scheduled on the
least loaded medium machine Mn−1

med the makespan was at most cOPT.

Proof. The first part follows from Lemma 1. Now, observe that if job Jn was
assigned to machine Mn−1

med its load could not have exceeded c
2L

n−1 ≤ cOPT
afterwards per definition of the algorithm.

We focus for simplicity on the case m→∞. The improvements required for
small values of m are detailed at the end of the paragraph in Remark 1. Consider
the case that Jn is scheduled on a least loaded machine. Let λ be its robust load.
We need to bound λ + pn, its load after receiving job Jn. Since pn ≤ OPT, we
thus need to show that λ ≤ (c − 1)OPT. If λ ≤ c−1

2 L this is a consequence of

10 S. Albers and M. Janke

Lemma 4. Hence, we are left to consider the case where all machines have load
at least λ > c−1

2 L. We call such a schedule critically flat.1 Our algorithm cannot
always prevent such schedules. The main part of our analysis shows that such
schedules exhibit a highly specific structure.

Lemma 5. If a schedule is critically flat, i.e. all machines have load λ > c−1
2 L,

then every machine contains a job of processing time at least λ
2(c−1) .

We are going to prove this lemma in the next section. Let us first use it to
conclude the analysis.

Proof of Theorem 2. By the previous analysis we only need to consider the case
that job Jn is scheduled on a critically flat schedule where the least loaded
machine has load λ. Since λ ≤ L ≤ 2OPT we are done if job Jn has processing
time pn ≤ λ

2(c−1) ≤ OPT
c−1 ≤ (c − 2)OPT. The last inequality uses the condition

c ≥ 2.7808. If pn ≤ λ
2(c−1) job Jn could only cause a makespan of λ + pn ≤

2OPT + (c− 2)OPT = cOPT.
But else, we have shown that the sequence J1, . . . , Jn contains m+ 1 jobs of

processing time λ
2(c−1) . One of them is Jn while the remaining m exist due to

Lemma 5. By the pigeonhole principle OPT needs to place two such jobs on a
single machine, attaining a makespan of at least 2 λ

2(c−1) = λ
c−1 . But this shows

that λ ≤ (c− 1)OPT and thus λ+ pn ≤ (c− 1)OPT + OPT = cOPT.

Remark 1. Our previous definition of critically flat schedules given for m→∞
can be improved if m, the number of machines, is small. We then call the schedule
critically flat if λ > c−1

2
m
m−1L

n−1. Note that both definitions agree for m→∞.
The previous arguments can be generalized to show that we are c-competitive if
job Jn is not assigned to a schedule which is critically flat using this definition.
The proof is left to the full version.

Understanding how critically flat schedules are formed. In our analysis
we have to differentiate between early and late jobs. The latter will be scheduled
on a full and flat schedule. For them to be assigned to a least loaded machine they
will need to be fairly sizable. This requires the adversary to present quite large
jobs constituting a lot of processing volume to achieve a critically flat schedule.
Formally, we call a job Jt late if two conditions are met. We require job Jt to
be scheduled on a flat schedule and we require machine M t−1

med to have load at
least λ before job Jt is scheduled. If a job Jt is not late or followed by a job
which is not late, we call it early. In particular, a job can be both early and late.
We next are going to consider late jobs.

Lemma 6. If job Jt is late and caused a machine to first reach load λ, its
(robust) processing time is at least pt ≥ λ

2(c−1) .

1 The term ’critically flat’ is not a misnomer, by Remark 2 such a schedule is, in
particular, flat.

Online Makespan Minimization With Budgeted Uncertainty 11

Proof. Let l = lt−1
med be the load of M t−1

med. By assumption of Jt being late there
holds l ≥ λ. Since Jt caused a machine to first reach load λ it was not scheduled
on M t−1

med but on the least loaded machine M t−1
small instead. Since the schedule was

flat, job Jt must have had processing time exceeding c
2L

t−1−l, i.e. pt >
c
2L

t−1−l.
If the least loaded machine M t−1

small, which Jt caused to reach load λ, had load
less than λ − λ

2(c−1) , the statement of the lemma follows immediately. Else, all

small machines had load at least λ− λ
2(c−1) and all medium and large machines

had load at least l. Thus Lt−1 ≥ m−d
m l + d

m

(
λ− λ

2(c−1)

)
. In particular

pt >
c

2
Lt−1 − l ≥ c

2

(
m− d
m

l +
d

m

(
λ− λ

2(c− 1)

))
− l.

Note that d was chosen precisely maximal such that d ≤ c−2
c m, or equivalently

c
2
m−d
m − 1 ≥ 0. In fact, this inequality motivates the choice of d. The inequality

implies that the previous term is non-decreasing in l and minimal for l = λ.
Setting l = λ, we get that

pt ≥
c

2

(
1− d

2(c− 1)m

)
λ− λ >

(
c

2
− c− 2

4(c− 1)
− 1

)
λ ≥ 1

2(c− 1)
λ.

The first inequality uses that d < c−2
c m. The second inequality is simply an

algebraic computation which uses that c ≥ 7+
√

17
4 .

The critical machines. We call a time t early or late if job Jt had this property.
So far, we have treated late times. Now, we need to establish a corresponding
result for early times. This requires us to understand a certain set of critical
machines. Given any time t, let Mt−1

crit be the set of d most-loaded machines
whose load has not yet reached λ before job Jt is scheduled. If less than d
machines fulfill the latter condition, then all of them belong toMt−1

crit . Let Lt−1
crit =

1
|Mt−1

crit |
∑
M∈Mt−1

crit
lt−1
M be their average load. We use the convention 1/0 = ∞,

or in other words set Lt−1
crit = ∞ if Mt−1

crit = ∅. The following lemma is fairly
technical and will be proven in the full version.

Lemma 7. Let s be the last early time, i.e. if t > s, then t is late. Then Lscrit ≤(
1− 1

2(c−1)

)
λ.

Remark 2. The lemma implies that Ms
crit 6= ∅. Using that Mn−1

crit = ∅ we get
that s < n− 1 or, equivalently, that critically flat schedules are always flat.

Recall that our algorithm considers certain machines to be small, large and
medium. It turns out that if it was not for the online setting, i.e. if the algorithm
had advance knowledge of the sequence, the critical machines are the true con-
testants for the label “medium”. To be precise we will establish that the critical
machines separate “large” machines of load at least λ from ’small’ ones of load

at most
(

1− 1
2(c−1)

)
λ. The following claim is the first step towards establishing

this result in Lemma 8.

12 S. Albers and M. Janke

Claim. Assume that Ltcrit ≤
(

1− 1
2(c−1)

)
λ. If M t−1

med ∈Mt−1
crit then the schedule

is steep. In particular, our algorithm never uses machine in Mt−1
crit \ {M t−1

small}.
Proof. Assume M t−1

med ∈Mt−1
crit . Since d−1 machines lie strictly in between M t−1

med

and the machines inMt−1
large the latter must be disjoint fromMt−1

crit . Thus, they all

had load λ. In particular, Lt−1
large ≥ λ. Using this, we conclude that the schedule

was steep and, consequently, that the algorithm used M t−1
small:

Lt−1
small ≤ Ltsmall ≤ Ltcrit ≤

(
1− 1

2(c− 1)

)
λ ≤

(
1− 1

2(c− 1)

)
Lt−1

large.

Lemma 8. If t is early, Lt−1
crit ≤

(
1− 1

2(c−1)

)
λ. Moreover job Jt was either

scheduled on a machine of load at least λ or on a machine of load at most(
1− 1

2(c−1)

)
λ.

Proof. Assume for contradiction sake that an early time t existed with Lt−1
crit >(

1− 1
2(c−1)

)
λ. We may wlog. choose t maximal with that property. Then there

holds Ltcrit ≤
(

1− 1
2(c−1)

)
λ either by the maximality of t or by Lemma 7. Thus

job Jt caused Lcrit to decrease. This can only happen if job Jt was assigned to a
machine in Mt−1

crit that was not M t−1
small. But by the previous claim this does not

happen, a contradiction.
For the second part observe that job Jt is either scheduled on a machine

having load λ or on a machine of load at most Lt−1
crit ≤

(
1− 1

2(c−1)

)
λ, which is

either the least loaded machine in Mcrit or a machine of lesser load.

We now conclude our analysis by proving the structural Lemma 5.

Proof of Lemma 5. Given any machine M , we show that job Jt that caused M
to first reach (robust) load λ had processing time at least λ

2(c−1) . If job Jt was

late, this already follows from Lemma 6. Else, by Lemma 8, job Jt was scheduled

on a machine which had (robust) load
(

1− 1
2(c−1)

)
λ before and λ after receiving

job Jt. Thus job Jt had (robust) processing time at least λ
2(c−1) .

4.1 Deterministic Lower Bounds

We can show that no general competitive ratio below 2 is possible unless very
small numbers of machines are considered. We leave the proof to the full version.

Theorem 3. No deterministic algorithm is better than 2-competitive for general
m and Γ = 2.

It may also be interesting to consider the debugging model, where all jobs
have real processing time 0. In this case the classical lower bounds still apply if
Γ is not chosen too small. For example, the lower bound of 1.852 for [1] holds
for Γ ≥ 4. On the other hand it is not clear that any algorithm performs better
in tise case. Lemma 3 shows that Greedy does not.

Online Makespan Minimization With Budgeted Uncertainty 13

References

1. Albers, S.: Better bounds for online scheduling. SIAM Journal on Computing
29(2), 459–473 (1999), publisher: SIAM

2. Albers, S., Janke, M.: Scheduling in the Random-Order Model. In: 47th Inter-
national Colloquium on Automata, Languages, and Programming (ICALP 2020).
Schloss Dagstuhl-Leibniz-Zentrum für Informatik (2020)

3. Aloulou, M.A., Della Croce, F.: Complexity of single machine scheduling prob-
lems under scenario-based uncertainty. Operations Research Letters 36(3), 338–
342 (2008), publisher: Elsevier

4. Bartal, Y., Fiat, A., Karloff, H., Vohra, R.: New algorithms for an ancient schedul-
ing problem. In: Proceedings of the twenty-fourth annual ACM symposium on
Theory of computing. pp. 51–58 (1992)

5. Bartal, Y., Karloff, H.J., Rabani, Y.: A better lower bound for on-line scheduling.
Inf. Process. Lett. 50(3), 113–116 (1994)

6. Bertsimas, D., Sim, M.: Robust discrete optimization and network flows. Mathe-
matical programming 98(1-3), 49–71 (2003), publisher: Springer

7. Bertsimas, D., Sim, M.: The price of robustness. Operations research 52(1), 35–53
(2004), publisher: Informs

8. Bougeret, M., Jansen, K., Poss, M., Rohwedder, L.: Approximation results for
makespan minimization with budgeted uncertainty. In: International Workshop on
Approximation and Online Algorithms. pp. 60–71. Springer (2019)

9. Bougeret, M., Pessoa, A.A., Poss, M.: Robust scheduling with budgeted uncer-
tainty. Discrete Applied Mathematics 261, 93–107 (2019)

10. Chen, L., Ye, D., Zhang, G.: Approximating the optimal algorithm for online
scheduling problems via dynamic programming. Asia-Pacific Journal of Opera-
tional Research 32(01), 1540011 (2015), publisher: World Scientific

11. Cheng, T.E., Kellerer, H., Kotov, V.: Semi-on-line multiprocessor scheduling
with given total processing time. Theoretical computer science 337(1-3), 134–146
(2005), publisher: Elsevier

12. Cohen, I., Im, S., Panigrahi, D.: Online Two-Dimensional Load Balancing. In: 47th
International Colloquium on Automata, Languages, and Programming (ICALP
2020). Schloss Dagstuhl-Leibniz-Zentrum für Informatik (2020)

13. Dantzig, G.B.: Linear programming under uncertainty. Management science 1(3-
4), 197–206 (1955), publisher: INFORMS

14. Dürr, C., Erlebach, T., Megow, N., Meißner, J.: Scheduling with explorable un-
certainty. In: 9th Innovations in Theoretical Computer Science Conference (ITCS
2018). Schloss Dagstuhl-Leibniz-Zentrum für Informatik (2018)

15. Dürr, C., Erlebach, T., Megow, N., Meißner, J.: An Adversarial Model for Schedul-
ing with Testing. Algorithmica pp. 1–46 (2020), publisher: Springer

16. Englert, M., Özmen, D., Westermann, M.: The power of reordering for online mini-
mum makespan scheduling. In: 2008 49th Annual IEEE Symposium on Foundations
of Computer Science. pp. 603–612. IEEE (2008)

17. Erlebach, T., Hoffmann, M., Kammer, F.: Query-competitive algorithms for cheap-
est set problems under uncertainty. Theoretical Computer Science 613, 51–64
(2016), publisher: Elsevier

18. Faigle, U., Kern, W., Turán, G.: On the performance of on-line algorithms for
partition problems. Acta cybernetica 9(2), 107–119 (1989)

19. Feder, T., Motwani, R., Panigrahy, R., Olston, C., Widom, J.: Computing the
median with uncertainty. In: Proceedings of the thirty-second annual ACM sym-
posium on Theory of computing. pp. 602–607 (2000)

14 S. Albers and M. Janke

20. Fleischer, R., Wahl, M.: On-line scheduling revisited. Journal of Scheduling 3(6),
343–353 (2000), publisher: Wiley Online Library

21. Galambos, G., Woeginger, G.J.: An on-line scheduling heuristic with better worst-
case ratio than Grahams list scheduling. SIAM Journal on Computing 22(2), 349–
355 (1993), publisher: SIAM

22. Graham, R.L.: Bounds for certain multiprocessing anomalies. Bell System Techni-
cal Journal 45(9), 1563–1581 (1966), publisher: Wiley Online Library

23. Gupta, M., Sabharwal, Y., Sen, S.: The update complexity of selection and related
problems. arXiv preprint arXiv:1108.5525 (2011)

24. Hochbaum, D.S., Shmoys, D.B.: Using dual approximation algorithms for schedul-
ing problems theoretical and practical results. Journal of the ACM (JACM) 34(1),
144–162 (1987), publisher: ACM New York, NY, USA

25. Im, S., Kell, N., Kulkarni, J., Panigrahi, D.: Tight bounds for online vector schedul-
ing. In: 2015 IEEE 56th Annual Symposium on Foundations of Computer Science.
pp. 525–544. IEEE (2015)

26. Kahan, S.: A model for data in motion. In: Proceedings of the twenty-third annual
ACM symposium on Theory of computing. pp. 265–277 (1991)

27. Karger, D.R., Phillips, S.J., Torng, E.: A better algorithm for an ancient scheduling
problem. Journal of Algorithms 20(2), 400–430 (1996), publisher: Elsevier

28. Kasperski, A., Kurpisz, A., Zieliński, P.: Approximating a two-machine flow shop
scheduling under discrete scenario uncertainty. European Journal of Operational
Research 217(1), 36–43 (2012), publisher: Elsevier

29. Kasperski, A., Kurpisz, A., Zieliński, P.: Parallel machine scheduling under uncer-
tainty. In: International Conference on Information Processing and Management
of Uncertainty in Knowledge-Based Systems. pp. 74–83. Springer (2012)

30. Khanna, S., Tan, W.C.: On computing functions with uncertainty. In: Proceedings
of the twentieth ACM SIGMOD-SIGACT-SIGART symposium on Principles of
database systems. pp. 171–182 (2001)

31. Lenstra, J.K., Shmoys, D.B., Tardos, E.: Approximation algorithms for scheduling
unrelated parallel machines. Mathematical programming 46(1-3), 259–271 (1990),
publisher: Springer

32. Mastrolilli, M., Mutsanas, N., Svensson, O.: Approximating single machine schedul-
ing with scenarios. In: Approximation, Randomization and Combinatorial Opti-
mization. Algorithms and Techniques, pp. 153–164. Springer (2008)

33. Olston, C., Widom, J.: Offering a precision-performance tradeoff for aggregation
queries over replicated data. Tech. rep., Stanford (2000)

34. Roy, A.B., Bougeret, M., Goldberg, N., Poss, M.: Approximating robust bin pack-
ing with budgeted uncertainty. In: Workshop on Algorithms and Data Structures.
pp. 71–84. Springer (2019)

35. Rudin, J.F.: Improved bounds for the on-line scheduling problem (2001)
36. Sanders, P., Sivadasan, N., Skutella, M.: Online scheduling with bounded migra-

tion. Mathematics of Operations Research 34(2), 481–498 (2009), publisher: IN-
FORMS

37. Singla, S.: The price of information in combinatorial optimization. In: Proceedings
of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms. pp.
2523–2532. SIAM (2018)

38. Tadayon, B., Smith, J.C.: Algorithms and complexity analysis for robust single-
machine scheduling problems. Journal of Scheduling 18(6), 575–592 (2015), pub-
lisher: Springer

Online Makespan Minimization With Budgeted Uncertainty 15

A Proof of Lemma 7

The behavior of our algorithm and the statement of the lemma does not change
if we scale all jobs by the same constant factor. We will thus, for ease of notation,
scale all jobs such that λ = 1. Let us now assume for contradiction sake that the
statement of the lemma was false, i.e. that we had

Lscrit > 1− 1

2(c− 1)
. (2)

Given a time t ≥ s, let m(t) denote the number of machines that have yet
to reach load λ = 1 after job Jt was scheduled. Recall that m(s) ≤ d since by
definition no job that caused the machine Mmed to reach load λ = 1 arrived after
time s. Moreover, m(n) = m(n−1) = 0, because all machines reached load λ = 1
before job Jn is scheduled. Given a time t ≥ s, consider the set M̄t of the smallest
m(t) machines whose load reached at least λ. We break ties the same way we did
before in the definition of the algorithm. In particular, none of the large machines
inMt

large lies in M̄t since by assumption the d ≥ |M̄t| smaller machines inMt
med

have also reached load λ. In other words M̄t ⊂ Msmall ∪Mmed. Let L̄t be the
average robust load of all machines if the load of the machines in M̄t is reduced

to λ = 1, that is L̄t = 1
m

(∑
M∈M\M̄t ltM +m(t)

)
. Note that L̄t ≤ Lt with

equality for t ≥ n − 1. We now are going to prove the following inequality via
induction for all t ≥ s.

L̄t >

(
1− d

2(c− 1)m
− 2

Γ + 1

cΓ

)(
1 +

c

2m

)d−m(t)

+ 2
Γ + 1

cΓ
. (3)

Note that this inequality is the motivation for our choice of c. Namely, using
Inequality (1), we see that Ln−1 = L̄n−1 > 2

c−1 · m−1
m .

Claim (Base case). Inequality (3) holds for t = s.

Let us treat the case m(s) = d. One observes that the m(s) = d least loaded
machines have average load at least Lcrit > 1− 1

2(c−1) while all other machines

have load at least λ = 1. Thus

L̄t >
1

m

(
(m− d) + d

(
1− 1

2(c− 1)

))

=

(
1− d

2(c− 1)m
− 2

Γ + 1

cΓ

)(
1 +

c

2m

)0

+ 2
Γ + 1

cΓ
.

For smaller values m(s), one uses the fact that the schedule is steep right before
job Js is scheduled. Using the properties of steepness one then can compute a
lower bound that exceeds the right side of Inequality (3). Since this is merely
computational we leave it to Appendix C.

Claim (Inductive step). Let s < t. If Inequality (3) holds for t− 1, then it holds
for t.

16 S. Albers and M. Janke

Proof. Indeed, consider job Jt. If Jt does not cause the load of a machine to
exceed λ = 1, then this may only increase the left side of Inequality (3) and the
statement of the lemma is obvious.

Else, m(t) = m(t− 1)− 1. Let l ≥ 1 be the load of M t−1
med and pt the (robust)

processing time of Jt. Then L̄t will increase by at least l−1+pt−Γ−1

m . Indeed,
since the size of M̄t decreases by 1 a machine whose load before only counted
as λ = 1 toward L̄ will now count fully. Since its load will be at least l this
causes an increase of l−1

m . Let us provisionally assume that job Jt fails machine
Msmall and that all jobs which do so, continue doing so. Then the load Msmall

will ’provisionally’ increase by pt. Of course this provisional increase may assume
that Γ+1 jobs fail machine Msmall. If this is the case, we have to subtract ∆p the
smallest additional processing time of these Γ + 1 failing jobs. At least Γ jobs of
additional size ∆p already failed M t−1

small. Thus Γ ·∆p ≤ lt−1
small < 1. We therefore

have to subtract at most ∆p < Γ−1 for a job that ceases failing machine M t−1
small

or for job Jt not doing so. This justifies an increase in L̄ by pt−Γ−1

m . Note that

it does not matter if machine M t−1
small enters M̄t after receiving job Jt since this

will cause another machine of at least its load to leave M̄t in its stead. In total,
we have shown that

L̄t ≥ L̄t−1 +
1

m

(
l + pt − 1− Γ−1

)
. (4)

Now let us consider the job Jt. Recall that since t > s this job was scheduled
flatly and M t−1

med already had load λ = 1. Since it caused a machine to first
reach load λ = 1 it was thus scheduled on a least loaded machine although the
current schedule was flat. By definition this implies that l+pt > c

2L
t−1 ≥ c

2 L̄
t−1.

Combining this with Inequality (4) leads to

L̄t > L̄t−1 +
1

m

(c
2
L̄t−1 − 1− Γ−1

)
=
(

1 +
c

2m

)
L̄t−1 − Γ + 1

mΓ
.

The claim follows by plugging the induction hypothesis for L̄t−1 into the previous
term and using that by assumption m(t) + 1 = m(t− 1).

The previous two claims show, using induction, that Inequality (3) holds for
all t > s. In particular it holds for t = n− 1. Now combining Inequality (1) and
Inequality (3) we get that

L̄n−1 >

(
1− d

2(c− 1)m
− 2

Γ + 1

cΓ

)(
1 +

c

2m

)d−0

+ 2
Γ + 1

cΓ
≥ 2

c− 1

m− 1

m
.

But the definition of critically flat schedules in Remark 1 implies the opposite
inequality:

L̄n−1 = Ln−1 <
2

c− 1

m− 1

m
λ =

2

c− 1

m− 1

m
.

This is a contradiction to the assumption that Lemma 7 was not true.

Online Makespan Minimization With Budgeted Uncertainty 17

B Lower Bounds

Proof of Lemma 3. Let Γ = m − 1 + N for some N � 0. Consider the follow-
ing sequence in the debugging model where p = 0. First, N ·m tiny jobs with
processing vector (p,∆p) = (0, Γ−1) arrive. Then, m(m − 2) small jobs with
processing vector (p,∆p) = (0, 1

m) follow. Finally, one large job with processing
vector (p,∆p) = (0, 1) has to be scheduled. The greedy strategy will first assign
precisely N tiny jobs to each machine, then m − 2 small jobs per machine and
finally the large job will arrive. The machine containing the large job then con-
tains precisely N + m − 2 + 1 = Γ jobs. All additional processing times count!

The robust load is N · Γ−1 + (m− 2) · 1
m + 1 = 3− 2

m − m−1
N

N→∞−−−−→ 3− 2
m .

We are left to show that OPT can schedule these jobs having makespan 1.
Indeed, the first machine receives all tiny jobs. Its robust load is Γ · Γ−1 = 1
since at most Γ jobs count towards the load. The next m−2 machines receive m
small jobs of processing time 1

m each; their load is m · 1
m = 1. The last remaining

machine receives the single large job and thus also has load 1.

Proof of Theorem 3. Let m ≥ 9 and Γ = 2. Consider a sequence of m debug-
ging jobs (p,∆p) = (0, 1) followed by 2(m − 1) real jobs with processing vector
(p,∆p) = (1, 0) and 3 final jobs of processing vector (p,∆p) = (3, 0). Consider
the schedule of any (deterministic) online algorithm A after the debugging jobs
are scheduled. Since so far OPT = 1 all debugging jobs need to be on a separate
machine, else A would already cease to be 2-competitive on the prefix consisting
only of debugging jobs. Now, consider the prefix consisting of all the debugging
jobs and the 2(m − 1) real jobs. Here, OPT = 2 (schedule all debugging jobs
on one machine, every other machine gets two real jobs). If A is better than
2-competitive, its makespan must stay below 4 and thus it can only place 2 real
jobs (in addition to the one debugging job) on any machine. By a simple count-
ing argument at most 2 machines can have load strictly below 3 afterwards. In
particular, one of the 3 final jobs needs to be placed on a machine of load 3 and
thus A has a makespan of 6.

We are left to show that OPT can schedule the whole sequence having a
makespan of 3. It first places all debugging jobs on one machine. Then it places
all the final jobs on 3 different machines. Now, it can still schedule 3m− 11 real
jobs while maintaining a makespan of 3. In particular it can schedule 2(m − 1)
real jobs for m ≥ 9.

C Missing Proofs and Computations

Proof of Remark 1. Let A be our algorithm then Ln−1 = L[A, J1, . . . Jn−1] and
set Ln = L[A,J]. Let p̂n be the processing time by which job Jn changes the
total (robust) load of the machine M = Mn−1

small it is scheduled on. This depends
on whether job Jn does fail this machine, and if it does, whether it causes another
job not to fail M anymore. In general p̂n could take any values in between p̃n
and pn. Using this, we see that Ln−1 = Ln − p̂n/m and the load of machine M
after receiving job Jn is λ+ p̂n.

18 S. Albers and M. Janke

Assume that λ ≤ c−1
2

m
m−1L

n−1. We have to show that λ+ p̂n ≤ cOPT.
Using Lemma 1, we see that for our online algorithm A we have Ln =

L[A,J] ≤ L[OPT,J] +
(
1− 1

m

)
OPT[J] ≤

(
2− 1

m

)
OPT. In particular Ln−1 ≤

2m−1
m OPT− p̂n

m . Using this, wee see that

λ+ p̂n ≤
c− 1

2

m

m− 1
Ln−1 + p̂n ≤

c− 1

2

m

m− 1

(
2m− 1

m
OPT− p̂n

m

)
+ p̂n.

Recall that p̂n ≤ pn ≤ OPT. Using that c−1
2

m
m−1

1
m < 1 for m ≥ 2 the previous

term is increasing in p̂n and thus maximized if we set p̂n = OPT. Thus

λ+ p̂n ≤
c− 1

2

m

m− 1

2m− 2

m
OPT + OPT = cOPT.

Lemma 9. For m,Γ → ∞ the competitive ratio c approaches a value slightly
below 2.9052.

Proof. The value c will be the solution of the following equation, assuming that

such a solution with c ≥ 7+
√

17
4 exists.

(
1− d/m

2(c− 1)
− 2

Γ + 1

cΓ

)(
1 +

c

2m

)d
+ 2

Γ + 1

cΓ
=

2

c− 1
· m− 1

m
.

For m→∞, we can replace d
m by c−2

c . We replace
(
1 + c

2m

)d
by e

cd
2m and then

by e
c−2
2 . The term m−1

m simply approaches 1. For Γ → ∞, 2Γ+1
cΓ becomes 2

c .
Using this the previous equation simplifies for m,Γ →∞ to

(
1− c− 2

2c(c− 1)
− 2

c

)
e

c−2
2 +

2

c
=

2

c− 1
.

This term does not have a closed-form solution, but we can numerically approach
its solution to c ≈ 2.905186 where the last digit is rounded up.

Missing part of the proof of the first claim in Appendix A. Observe that at time
s the m(s) smallest machines had average load Lscrit while the next smallest
d−m(s) loads are at least 1. Thus

Lsmall ≥
m(s)Lscrit + (d−m(s))

d
≥ 1− m(s)

2(c− 1)d
.

The second inequality follows from Equation (2). If the schedule was steep after
job Js was scheduled we had

Llarge ≥
(

1− 1

2(c− 1)

)−1

Lsmall ≥
2(c− 1)

2c− 3

(
1− m(s)

2(c− 1)d

)
.

If the schedule was not steep job Js caused Mmed to become full. Thus m(s) = d
and the same inequality follows trivially via

Llarge ≥ λ = 1 =

(
1− 1

2(c− 1)

)−1(
1− 1

2(c− 1)

)
=

2(c− 1)

2c− 3

(
1− m(s)

2(c− 1)d

)
.

Online Makespan Minimization With Budgeted Uncertainty 19

We already in Appendix A that M̄t ∩Mt
large = ∅, thus we obtain:

L̄s >
(m− 2d)Lslarge + (2d−m(s)) +m(s)Lscrit

m

≥m− 2d

m
· 2(c− 1)

2c− 3

(
1− m(s)

2(c− 1)d

)
+

2d−m(s)

m
+
m(s)

m
·
(

1− 1

2(c− 1)

)
.

Let f(m(s)) denote the term on the right side of the previous inequality and

let g(m(s)) =
(

1− d
2(c−1)m − Γ+1

cΓ

) (
1 + c

2m

)d−m(s)
+ Γ+1

cΓ be the right side of

Inequality 3. Then we are left to show the following analytic fact: f(x) ≥ g(x) for
all possible choices x = m(s) = 0, . . . , d. In fact, the definition of the functions f
and g canonically extends to the real numbers, so we will prove f(x) ≥ g(x) for
all 0 ≤ x ≤ d. When defined on the reals the function f(·) is convex, while g(·) is
linear. Using convexity it therefore suffices to prove f(0) ≥ g(0) and f(d) ≥ g(d).
One can readily compute that in the latter case f(d) = g(d) = 1 − d

2(c−1)m .

By the definition of c, as mentioned right before the statement of the lemma
g(0) = 1

c−1 · m+1
m−1 < 1

c−1 while direct computation yields that f(0) > 1
c−1 for

c > 2.52.

Appendix E

Machine Covering in the Secre-
tary Model
Bibliographic Information Machine Covering in the Random-Order
Model. S. Albers, W. Gálvez, M. Janke. To appear in: The 32nd International
Symposium on Algorithms and Computation (ISAAC) 2021

Summary of Contributions We study Online Machine Covering in
the secretary model. Parallel and identical machines process jobs. Each job,
defined by its processing time, runs on precisely one machine. In particular,
preemption is not allowed. The goal is to maximize the minimum load of a
machine or, equivalently, the time all machines are busy.

In the secretary model, jobs are presented to the online algorithm in a
uniformly random order instead of a worst-case order. Moreover, input size n
is known in advance. We first analyze the Greedy strategy whose competitive
ratio improves to Θ

(
m

log(m)
)

under random-order arrival. This bound is tight
up to a factor of 2 + o(1). We then present a more sophisticated algorithm,
which is Õ(4√m)-competitive and outperforms all lower bounds on worst-case
orders. These results are complemented by a first lower bound of Ω̃(log(m)).
This lower bound follows from a novel variant of the Secretary Problem,
called the Talent Contest Problem, which might be of independent research
interest.

Individual Contributions
• Development of the bound for the Greedy strategy.
• Development and analysis of the improved algorithm using sampling

to enhance the scheme of Azar and Epstein [33].
• Development of the lower bound and analysis of the Talent Contest

Problem.
• Composition of some parts of the manuscript, including graphics,

graphs, technical, non-technical parts.

Machine Covering in the Random-Order Model1

Susanne Albers @2

Department of Computer Science, Technical University of Munich, Germany3

Waldo Gálvez @ ORCID4

Institute of Engineering Sciences, Universidad de O’Higgins, Chile5

Maximilian Janke @6

Department of Computer Science, Technical University of Munich, Germany7

Abstract8

In the Online Machine Covering problem jobs, defined by their sizes, arrive one by one and have9

to be assigned to m parallel and identical machines, with the goal of maximizing the load of the10

least-loaded machine. Unfortunately, the classical model allows only fairly pessimistic performance11

guarantees: The best possible deterministic ratio of m is achieved by the Greedy-strategy, and the12

best known randomized algorithm has competitive ratio Õ(
√

m) which cannot be improved by more13

than a logarithmic factor.14

Modern results try to mitigate this by studying semi-online models, where additional information15

about the job sequence is revealed in advance or extra resources are provided to the online algorithm.16

In this work we study the Machine Covering problem in the recently popular random-order model.17

Here no extra resources are present, but instead the adversary is weakened in that it can only18

decide upon the input set while jobs are revealed uniformly at random. It is particularly relevant to19

Machine Covering where lower bounds are usually associated to highly structured input sequences.20

We first analyze Graham’s Greedy-strategy in this context and establish that its competitive21

ratio decreases slightly to Θ
(

m
log(m)

)
which is asymptotically tight. Then, as our main result,22

we present an improved Õ(4√m)-competitive algorithm for the problem. This result is achieved23

by exploiting the extra information coming from the random order of the jobs, using sampling24

techniques to devise an improved mechanism to distinguish jobs that are relatively large from small25

ones. We complement this result with a first lower bound showing that no algorithm can have a26

competitive ratio of O
(

log(m)
log log(m)

)
in the random-order model. This lower bound is achieved by27

studying a novel variant of the Secretary problem, which could be of independent interest.28

2012 ACM Subject Classification Theory of computation → Online algorithms; Theory of compu-29

tation → Scheduling algorithms30

Keywords and phrases Machine Covering, Online Algorithm, Random-Order, Competitive Analysis,31

Scheduling32

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2021.5733

Funding Work supported by the European Research Council, Grant Agreement No. 691672, project34

APEG.35

Waldo Gálvez: This project was carried out when the author was a postdoctoral researcher at the36

Department of Computer Science of the Technical University of Munich in Germany.37

1 Introduction38

We study the Machine Covering problem, a fundamental load balancing problem where39

n jobs have to be assigned (or scheduled) onto m identical parallel machines. Each job40

is characterized by a non-negative size, and the goal is to maximize the smallest machine41

load. This setting is motivated by applications where machines consume resources in order42

to work, and the goal is to keep the whole system active for as long as possible. Machine43

Covering has found additional applications in the sequencing of maintenance actions for44

© Susanne Albers, Waldo Gálvez and Maximilian Janke;
licensed under Creative Commons License CC-BY 4.0

32nd International Symposium on Algorithms and Computation (ISAAC 2021).
Editors: Hee-Kap Ahn and Kunihiko Sadakane; Article No. 57; pp. 57:1–57:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

57:2 Machine Covering in the Random-Order Model

aircraft engines [20] and in the design of robust Storage Area Networks [41]. The offline45

problem, also known as Santa-Claus or Max-Min Allocation Problem, received quite some46

research interest, see [44, 10, 6] and references therein. In particular, the problem is known to47

be strongly NP-hard but to allow for a Polynomial-Time Approximation Scheme (PTAS) [44].48

This paper focuses on the online version of the problem, where jobs arrive one by one49

and must be assigned to some machine upon arrival. Lack of knowledge about future jobs50

can enforce very bad decisions in terms of the quality of the constructed solutions: In a51

classical lower bound sequence, m jobs of size 1 arrive first to the system and they must52

be assigned to m different machines by a competitive deterministic online algorithm. Then53

subsequent m− 1 jobs of size m arrive, which make the online algorithm perform poorly, see54

Figure 1. Indeed, the best possible deterministic algorithm achieves a competitive ratio of55

m [44], and if randomization is allowed, the best known competitive ratio is Õ(
√

m), which56

is best possible up to logarithmic factors [7]. The corresponding lower bound also uses that57

the online algorithm cannot schedule the first m jobs correctly, at least not with probability58

exceeding 1√
m

.59

Figure 1 The instance showing that no deterministic algorithm is better than m-competitive for
Machine Covering. To the left, the best possible solution that an online algorithm can construct
achieves minimum load 1. To the right, the optimal minimum load is m.

Such restrictive facts have motivated the study of different semi-online models that provide60

extra information [7, 14, 34, 37] or extra features [41, 42, 22, 16] to the online algorithm.61

This work studies the Online Machine Covering problem in the increasingly popular62

random-order model. In this model, jobs are still chosen worst possible by the adversary63

but they are presented to the online algorithm in a uniformly random order. The random-64

order model derives from the Secretary Problem [13, 35] and has been applied to a wide65

variety of problems such as generalized Secretary problems [32, 8, 33, 18, 9], Scheduling66

problems [39, 38, 2, 3], Packing problems [30, 31, 5, 4], Facility Location problems [36] and67

Convex Optimization problems [25] among others. See also [26] for a survey chapter. It is68

particularly relevant to Machine Covering, where hard instances force online algorithms to69

make an irredeemable mistake right on the first m jobs due to some hidden large job class at70

the end.71

Indeed, we show that the competitive ratio of Graham’s Greedy-strategy improves from m72

to O
(

m
log(m)

)
, and that this is asymptotically tight. We also develop an Õ(4

√
m)-competitive73

algorithm, providing evidence that known hardness results rely on “pathological” inputs, and74

complement it by proving that no algorithm can be O
(

log(m)
log log(m)

)
-competitive in this model.75

1.1 Related Results76

The most classical Scheduling problem is Makespan Minimization on parallel and identical77

machines. Here, the goal is dual to Machine Covering; one wants to minimize the maximum78

load among the machines. This problem is strongly NP-hard and there exists a PTAS [27].79

The online setting received considerable research attention, and already in 1966 Graham80

S. Albers, W. Gálvez and M. Janke 57:3

showed that his famous Greedy-strategy is (2− 1/m)-competitive. A long line of research [21,81

11, 29, 1, 19] starting in the 1990s lead to the currently best competitive ratio of 1.9201 due to82

Fleischer and Wahl [19]. Regarding lower bounds, again after a sequence of results [17, 12, 24]83

the current best one is 1.88 [40].84

The landscape for Online Machine Covering differs considerably from Online Makespan85

Minimization as discussed before, which has motivated the study of semi-online models to86

deal with the implied hard restrictions. If the value of the optimal minimum load of the87

instance is known in advance, Azar et al. have shown that a simple greedy algorithm already88

is (2− 1/m)-competitive and that no algorithm can attain a competitive ratio better than89

7/4 [7]. These bounds were improved by Ebenlendr et al. to 11/6 and 1.791 respectively [14].90

In the bounded migration model, whenever a job of size p arrives, older jobs of total size at91

most β · p can be reassigned to different machines. Sanders et al. [41] provide a 2-competitive92

algorithm for β = 1. Later results [42, 22] study the interplay between improved competitive93

ratios and larger values of β. Another semi-online model provides the online algorithm with94

a reordering buffer, which is used to rearrange the input sequence “on the fly”. Epstein95

et al. [16] provide a (Hm−1 + 1)-competitive algorithm using a buffer of size m − 1, and96

show that this ratio cannot be improved for any sensible buffer size. These and many more97

semi-online models have also been studied for Makespan Minimization, see the survey in [15]98

and references therein.99

The first Scheduling result in the random-order model is due to Osborn and Torng [39].100

They establish that the Greedy-strategy for Makespan Minimization does not achieve a101

competitive ratio better than 2 for general m. Recently, [2, 3] show that for Makespan102

Minimization the random-order model allows for better performance guarantees than the103

classical model. Molinaro [38] has studied the Online Load Balancing problem with the104

objective to minimize general lp-norms of the machine loads, providing an algorithm that105

returns solutions of expected norm (1 + ε)OPT + O
(

p
ε (m1/p − 1)

)
in the random-order106

model, where OPT denotes the optimal norm. Göbel et al. [23] have studied Average107

Weighted Completion Time Minimization on one machine in the random-order model. Their108

competitive ratio is logarithmic in the input length n for general job sizes and constant if109

all jobs have size 1. To the best of our knowledge, no previous result is known for Online110

Machine Covering in the random-order model.111

1.2 Our Contribution112

We first establish that the Greedy-strategy is Θ
(

m
log(m)

)
-competitive in the random-order113

model. This is only a tiny, albeit significant improvement compared to worst-case orders.114

Since the bound is tight, more refined strategies that make particular use of the characteristics115

of the random-order model are required. The analysis also gives first intuitions about what116

these characteristics are and also about the techniques used to analyze the main algorithm.117

The following theorem summarizes the central result of this paper.118

▶ Theorem 1. There exists a Õ(4
√

m)-competitive algorithm for the online Machine Covering119

problem in the random-order model.120

In the classical online Machine Covering problem, difficult instances are usually related to121

the inability of distinguishing “small” and “large” jobs induced by a lack of knowledge about122

large job classes hidden at the end of the sequence. Figure 1 depicts the easiest example on123

which deterministic schedulers cannot perform well as they cannot know that the first m jobs124

are tiny. Azar and Epstein [7] ameliorate this by maintaining a randomized threshold, which125

is used to distinguish small and large job sizes. They have to correctly classify up to m large126

ISAAC 2021

57:4 Machine Covering in the Random-Order Model

jobs with constant probability while controlling the total size of incorrectly classified small127

jobs, which leads to their randomized competitive ratio of Õ(
√

m). However, their lower128

bound shows that general randomized algorithms are still unable to schedule the first m jobs129

correctly with probability exceeding 1√
m

, again due to relevant job classes being hidden at130

the end of the input.131

Random-order arrival makes such hiding impossible. This already helps the Greedy-132

strategy as now large jobs in the input are evenly distributed instead of being clustered133

at the end. Our Õ(4
√

m)-competitive algorithm enhances the path described previously by134

making explicit use of the no-hiding-feature; it determines those large jobs the adversary135

would have liked to hide. Information about large job sizes is, as is common in Secretary136

problems, estimated in a sampling phase, which returns a threshold distinguishing all except137

for
√

m of the large jobs. This reduction by a square root carries over to the competitive138

ratio: We now can allow to misclassify these remaining
√

m jobs with a higher probability,139

which in turn leads to a better classification of small jobs and a better competitive ratio of140

Õ(4
√

m).141

We complement the upper bound of Õ(4
√

m) with a lower bound of ω
(

log(m)
log log(m)

)
for the142

competitive ratio in the random-order model. Lower bounds in the random-order model are143

usually considered hard to devise since one cannot hide larger pieces of input. Instead of144

hiding large job classes, we figuratively make them hard to distinguish by adding noise. To145

this end, we study a novel variant of the Secretary problem, the Talent Contest problem,146

where the goal is to find a good but not too good candidate (or secretary).147

More in detail, we want to pick the K-th best among a randomly permuted input set of148

candidates. Unlike classical Secretary problems (or the more general Postdoc problem [43]),149

we may pick several candidates as long as they are not better than the K-th candidate.150

Furthermore, we interview candidates t times and make a decision at each arrival. In this151

setting, information gained by earlier interviews helps the decisions required in later ones.152

It can be proven that the expected number of times the desired candidate can be correctly153

identified relates to the ability of distinguishing exactly the m−1 largest jobs from a Machine154

Covering instance in the random-order model, and hence bounding the aforementioned155

expected value allows us to obtain the desired hardness result.156

1.3 Organization of the paper157

In Section 2 we provide the required definitions and tools, and then in Section 3 analyze158

the Greedy-algorithm in the context of random-order arrival. In Section 4 we present our159

main algorithm and its analysis. Section 5 then introduces the Talent Contest Problem and160

concludes with a lower bound for the best competitive ratio in the random-order model. Due161

to space constraints, some proofs from Section 5 are deferred to the full version of the paper.162

2 Preliminaries163

In this section we introduce the main definitions and tools that are used along this work.164

In the Machine Covering problem, we are given n jobs J = {J1, . . . , Jn}, specified by165

their non-negative sizes pi, which are to be assigned onto m parallel and identical machines.166

The load lM of a machine M is the sum of the sizes of all the jobs assigned to it. The goal is167

to maximize the minimum load among the machines, i.e. to maximize minM lM .168

To an online algorithm, jobs are revealed one-by-one and each has to be assigned169

permanently and irrevocably before the next one is revealed. Formally, given the symmetric170

S. Albers, W. Gálvez and M. Janke 57:5

group Sn on n elements, each permutation σ ∈ Sn defines the order in which the elements of171

J are revealed, namely J σ = (Jσ(1), . . . , Jσ(n)). Classically, the performance of an online172

algorithm A is measured in terms of competitive analysis. That is, if we denote the minimum173

machine load of A1 on J σ by A(J σ) and the minimum machine load an optimal offline174

algorithm may achieve by OPT(J) (which is independent on the order σ), one is interested175

in finding a small (adversarial) competitive ratio c = supJ supσ∈Sn

OPT(J)
A(J σ)

2.176

In the random-order model, the job order is chosen uniformly at random. We consider177

the permutation group Sn as a probability space under the uniform distribution. Then,178

given an input set J of size n, we charge A random-order cost Arom(J) = Eσ∼Sn
[A(J σ)] =179

1
n!

∑
σ∈Sn

A(J σ). The competitive ratio in the random-order model of A is c = supJ
OPT(J)
Arom(J) .180

Throughout this work we will assume that n is known to the algorithm; this assumption181

is common in the literature and it can be proven that it does not help in the adversarial182

setting, see the full version of the article for details. When clear from the context, we will183

omit the dependency on J .184

Given 0 ≤ i ≤ n, let Pi = Pi[J] refer to the size of the i-th largest job in J . Given185

i ≥ 1, we define Li :=
∑

j≥i Pj to be the total size of jobs smaller than Pi. Note that the186

terminology ’smaller’ uses an implicit tie breaker since there may be jobs of equal sizes.187

3 Properties and Analysis of the Greedy-strategy188

We now proceed with some useful properties of Graham’s Greedy-strategy. Recall that this189

algorithm always schedules an incoming job on some least loaded machine breaking ties190

arbitrarily. The following two lemmas recall useful standard properties of the algorithm,191

which will help us later to restrict ourselves to simpler special instances.192

▶ Lemma 2. The minimum load achieved by the Greedy-strategy is at least Pm.193

Proof. If the m largest jobs get assigned to different machines, the bound holds directly. On194

the other hand, if one of the m largest jobs Jj gets assigned to a machine that already had195

one of the m largest jobs Jj′ , of size Pj′ , then at the arrival of Jj the minimum load was at196

least Pj′ ≥ Pm, concluding the claim as the minimum load does not decrease through the197

iterations. ◀198

▶ Lemma 3. The minimum load achieved by the Greedy-strategy is, for each i ∈ {1, . . . , m},199

bounded below by Li

m − Pi.200

Proof. For each machine M , let Jlast(M) be the last job assigned to machine M . Let201

Jlast be the set of all these last jobs. If ALG denotes the minimum load achieved by the202

Greedy-strategy, then the load of each machine M in the schedule is at most ALG + Jlast(M)203

as jobs are iteratively assigned to a least loaded machine. Now remove the i− 1 largest jobs204

in Jlast from the solution and let L̃ denote the total size of the remaining jobs in Jlast. Then205

the total size of all remaining jobs is at most m ·ALG + L̃. On the other hand, since we only206

removed i−1 jobs, the total size of the remaining jobs is at least Li. Since L̃ ≤ (m− i+1) ·Pi,207

we have that Li ≤ m · ALG + (m− i + 1) · Pi. Hence, the minimum load achieved by the208

Greedy-strategy is at least Li

m − m−i+1
m Pi ≥ Li

m − Pi. ◀209

1 In case A is randomized, we then refer to the expected minimum load.
2 Using the convention that 0/0 = 1 and a/0 = ∞ for a > 0.

ISAAC 2021

57:6 Machine Covering in the Random-Order Model

Order J σ:

load S0[J σ] load S1[J σ] load Sk̃[J σ]

Figure 2 A possible order J σ for an instance with k̃ < m large (dark) jobs. They partition the
sequence into sets of small (light) jobs, each one having total size Si(J σ), i = 0, . . . , k̃.

With these tools we can now prove that the Greedy-strategy has a competitive ratio of at210

most O
(

m
Hm

)
in the random-order model, where Hm =

∑m
i=1

1
i denotes the m-th harmonic211

number. We also describe a family of instances showing that this analysis is asymptotically212

tight.213

▶ Theorem 4. The Greedy-strategy is (2 +om(1)) m
Hm

-competitive in the random-order model.214

Proof. Thanks to Lemma 2 we can assume that Pm ≤ Hm

2m OPT. We say that a job is large215

if its size is larger than Hm

2m OPT, otherwise it is small. Let k̃ < m be the number of large216

jobs in the instance. Note that Lk̃+1 ≥ (m− k̃)OPT since in the optimal solution at most k̃217

machines receive large jobs. Using Lemma 3 we may assume k̃ ≥ m−Hm, as otherwise we218

are done.219

For a given order J σ and 0 ≤ i ≤ k̃, let Si(J σ) be the total size of small jobs preceded220

by precisely i large jobs with respect to J σ (see Figure 2). We will prove that the minimum221

load achieved by the Greedy-strategy is at least min
{∑k̃

i=0
Si(J σ)

m−i − Hm

2m OPT, Hm

2m

}
OPT.222

A machine is said to be full once it receives a large job, and notice that we can assume223

that no full machine gets assigned further jobs as otherwise the minimum load would be224

already at least Hm

2m OPT. Consider the set of small jobs that arrive to the system before225

the first large job in the sequence. At this point the average load of the machines is exactly226
S0(J σ)

m and, since the upcoming large job gets assigned to a least loaded machine, the average227

load of the remaining machines is still at least S0(J σ)
m . Now the upcoming small jobs that228

arrive before the second large job in the sequence get assigned only to these non-full machines,229

whose average load is now at least S0(J σ)
m + S1(J σ)

m−1 . Since the following large job gets230

assigned to the least loaded of these machines, the average load of the remaining ones is231

still lower-bounded by this quantity. By iterating this argument, it can be seen that the232

average load of the machines containing only small jobs is at least 1
m−k̃

∑k̃
i=0

Si(J σ)
m−i . Since233

in a Greedy-strategy the load of two machines cannot differ by more than the size of the234

largest job assigned to them, we conclude that the minimum load achieved by the algorithm235

is at least
∑k̃

i=0
Si(J σ)

m−i − Hm

2m OPT.236

Now let us understand the random variable S(J σ) =
∑k̃

i=0
Si(J σ)

m−i . If we pick σ ∼ Sn237

uniformly at random and consider the number s(J) of large jobs that precede any fixed238

small job J , this number is uniformly distributed between 0 and k̃. Then we can rewrite239

S(J σ) =
∑k̃

i=0
Si(J σ)

m−i =
∑

J small
pJ

m−s(J) . Since E[1
m−s(J)] =

∑k̃
i=0

1
k̃+1

1
m−i = Hm−Hm−k̃−1

k̃+1240

S. Albers, W. Gálvez and M. Janke 57:7

we get by linearity of expectation that241

E[S(J σ)] =
∑

J small
pJ

Hm −Hm−k̃−1

k̃ + 1
242

=
Hm −Hm−k̃−1

k̃ + 1
Lk̃+1243

≥ (m− k̃)(Hm −Hm−k̃−1)
k̃ + 1

Lk̃+1

m− k̃
.244

245

Notice that Lk̃+1
m−k̃

is a lower bound for OPT, which we will use later. The first factor is246

decreasing as a function of k̃ ≤ m− 1, and consequently the expression is at least Hm

m . Thus247

E[S(J σ)] ≥ Hm

m · Lk̃+1
m−k̃

.248

We also get Var
[

1
m−s(J)

]
≤ E

[(
1

m−s(J)

)2
]

=
∑k̃

i=0
1

k̃+1
1

(m−i)2 ≤ 1
k̃+1

∑
i

1
i2 ≤ 1

k̃+1
π2

6 .249

Using that k̃ ≥ m−Hm, we broadly bound k̃ via k̃ + 1 ≥ m
2 ≥

m(m−k̃)2

2H2
m

. Substituting this250

in the previous bound yields Var
[

1
m−s(J)

]
≤ H2

m

m
1

(m−k̃)2
π2

3 . Moreover, for two small jobs Ji251

and Jj we have Cov
[

1
m−s(Ji) , 1

m−s(Jj)

]
≤

(
Var

[
1

m−s(Ji)

]
Var

[
1

m−s(Jj)

])1/2
≤ H2

m

m
1

(m−k̃)2
π2

3 .252

For i ̸= j this bound is pessimistic. The correlation between s(Ji) and s(Jj) is positive but253

tiny. We use this covariance to bound Var[S(J σ)] =
∑

J small
pJ

m−s(J) .254

Var[S(J σ)] =
∑

Ji,Jj small
pipjCov

[
1

m− s(Ji)
,

1
m− s(Jj)

]
255

≤
∑

Ji small
pi ·

∑

Jj small
pj ·

H2
m

m

1
(m− k̃)2

π2

3256

≤ π2

3
H2

m

m

(
Lk̃+1

m− k̃

)2
.257

The last inequality uses again that Lk̃+1 ≥ (m− k̃)OPT. Hence, the standard deviation258

SD[S(J σ)] is at most C3/2 Lk̃+1
m−k̃

for C = 3
√

π2

3
H2

m

m = Θ
(

3
√

(log(m))2

m

)
. Chebyshev’s inequality,259

which allows to bound the probability of deviating from the mean in terms of the standard260

deviation, yields261

P
[
S(J σ) ≤

(
Hm

m
− C

)
OPT

]
≤ P

[
S(J σ) ≤

(
Hm

m
− C

)
Lk̃+1

m− k̃

]
262

≤ P
[
|E[S(J σ)]− S(J σ)| ≥ C−1/2 · σ[S(J σ)]

]
263

≤ C.264
265

We conclude that with probability 1 − C the minimum load achieved by the Greedy-266

strategy exceeds min
{

S(J σ)− Hm

2m , Hm

2m

}
OPT ≥ Hm

m

(1
2 − C

)
OPT. Thus its competitive267

ratio in the random-order model is at most (1− C) m
Hm

1
(1

2 −C) = (2 + om(1)) m
Hm

. ◀268

▶ Theorem 5. The Greedy-strategy is not better than m
Hm

-competitive in the random-order269

model.270

ISAAC 2021

57:8 Machine Covering in the Random-Order Model

Figure 3 A comparison of the solution returned by the Greedy-strategy (left) and the optimal
solution (right) for some order σ of the instance defined in Theorem 4. Dark jobs have size 1 and
the remaining jobs have size ε > 0.

Proof. Consider the following instance for ε > 0: Job set J consists of m − 1 jobs of271

size 1 and 1
ε jobs of size ε. It is not difficult to see that OPT = 1 by assigning the jobs272

of size 1 to different machines and the jobs of size ε together on the remaining machine.273

Following a similar approach as the one above, interpreting the jobs of size 1 as large and274

the rest as small, we can prove that for any given order J σ, the expected minimum load275

achieved by the Greedy-strategy is at most
∑m−1

i=0
Si(J σ)

m−i + εm. If now σ ∼ Sn is chosen276

uniformly at random, then the minimum load achieved by the Greedy-strategy is at most277 ∑m−1
i=0

1
m(m−i) + εm = Hm

m + εm. In particular, the competitive ratio in the random-order278

model of the Greedy-strategy is at most 1/(Hm

m + εm) which approaches m
Hm

as ε→ 0. ◀279

4 An Õ(4√m)-competitive algorithm280

We now describe an improved competitive algorithm for the problem further exploiting the281

extra features of the random-order model. More in detail, we devise a sampling-based method282

to classify relatively large jobs (with respect to OPT). After this, we run a slight adaptation283

of the algorithm Partition due to Azar and Epstein [7] in order to distinguish large jobs that284

our initial procedure could not classify, leading to strictly better approximation guarantees285

(see Algorithm 1 for a description). We will assume w.l.o.g. that job sizes are rounded down286

to powers of 2, which induces an extra multiplicative factor of at most 2 in the competitive287

ratio.288

4.1 Simple and Proper Inputs289

Given an input sequence J , we call any job J large if its size is larger than OPT[J]
100 4√m

, and we290

call it small otherwise. Let k = k[J] be the number of large jobs in J . Let Lsmall = Lk+1291

be the total size of small jobs. The following definition allows to recognize instances where292

the Greedy-strategy performs well, see Proposition 7.293

▶ Definition 6. We call the input set J simple if either294

The set J has size n < m,295

There are at least m large jobs, i.e. k ≥ m, or296

There are at most m− 4√
m3

50 large jobs, i.e. k ≤ m− 4√
m3

50 .297

Note that the first condition is mostly included for ease of notation; the third condition298

implies that sequences with n < m− 4√
m3

50 are simple, which is good enough for our purposes299

but somewhat clumsy to refer to.300

S. Albers, W. Gálvez and M. Janke 57:9

Algorithm 1 The online Algorithm for Random-Order Machine Covering
Input: Job sequence J σ, m identical parallel machines.

1: Guess t ∈ {−1, 0, 1, . . . ,
⌈ 3

4 log(m)
⌉
} uniformly at random.

2: if t = −1, then Run the Greedy-strategy and return the computed solution.
3: else Partition the machines into 2t small machines and m− 2t large machines.

Phase 1 – Sampling.
4: Schedule the first n/8 jobs iteratively into a least loaded large machine.
5: Let P ↑ be the

(
m−2t

8 −
√

m
2

)
-th largest job size among these first n/8 jobs.

Phase 2 – Partition.
6: τ ← 0
7: for j = n

8 + 1, . . . , n do
8: if pσ(j) ≥ P ↑, then Schedule job Jσ(j) onto a least loaded large machine.
9: if pσ(j) > τ , then Update τ to pσ(j) with probability 1

9·2t
√

m
.

10: if pσ(j) ≤ τ , then Schedule job Jσ(j) onto a least loaded small machine.
11: if pσ(j) > τ , then Schedule job Jσ(j) onto a least loaded large machine.
12: end for
13: return the computed solution.

▶ Proposition 7. The Greedy-strategy achieves minimum load at least OPT
100 4√m

on simple301

inputs.302

Proof. We consider each case from Definition 6 separately:303

If the instance has less than m jobs, OPT = 0 and every algorithm is optimal.304

If there are at least m large jobs in the instance, then the minimum load achieved by the305

Greedy algorithm is at least Pm ≥ OPT
100 4√m

thanks to Lemma 2.306

If there are at most m − 4√
m3

50 large jobs, then Lk+1 ≥
4√

m3

50 OPT as there are at least307
4√

m3

50 machines without large jobs in the optimal solution. If we apply Lemma 3 with308

i = k + 1, the minimum load achieved by the Greedy algorithm is at least OPT
100 4√m

. ◀309

For an input set J which is not simple, let d := ⌈log2(m − k)⌉. Note that 0 ≤ d ≤310 ⌈ 3
4 log(m)

⌉
. We say that such an instance J is proper (of degree d).311

Algorithm 1 guesses a value t with probability Ω(1/ log(m)) to address in a different way312

simple instances (case t = −1) and proper instances of degree t for each 0 ≤ t ≤
⌈ 3

4 log(m)
⌉
,313

at the expense of an extra logarithmic factor in the competitive ratio. By Proposition 7,314

simple instances are sufficiently handled by the Greedy-strategy. From now on we will315

focus on proper instances of degree d and show that the corresponding case when t = d in316

Algorithm 1 returns a O (4
√

m)-approximate solution.317

4.2 Algorithm for Proper Inputs of Degree d318

Let J be proper of degree d and assume without loss of generality that its size n is divisible319

by 8 (an online algorithm can always simulate up to 7 extra jobs of size 0 to reduce to this320

case). The algorithm, assuming d is guessed correctly, chooses 2d small machines Msmall,321

while the other machines Mlarge are called large machines. The algorithm will always assign322

the incoming job either to a least loaded small or to a least loaded large machine, the only323

choice it has to make is to which set of machines the job will go. Theoretically, the goal324

would be to assign all large jobs to large machines and all small ones to small machines325

ISAAC 2021

57:10 Machine Covering in the Random-Order Model

according to our definition. Large and small jobs, unfortunately, cannot be distinguished by326

an online algorithm with certainty. Instead, we have to use randomization and expect a small327

error. We aim for a small one-sided error, meaning that we want to avoid misclassifying328

large jobs at all cost while incorrectly labeling very few small jobs as large.329

The algorithm starts with a sampling phase: the first n
8 jobs will be used for sampling330

purposes, and since we yet lack good knowledge about what should be considered large,331

these jobs will all be assigned to large machines. Let P ↑ be the element of rank m−2d

8 −
√

m
2332

among these elements. The following lemma shows that P ↑ can be used as a threshold to333

distinguish most of the large jobs from small ones.334

▶ Lemma 8. For proper sequences, it holds that P[Pk−8
√

m−2d ≥ P ↑ ≥ Pk] ≥ 1
3 .335

Proof. Let nlarge be the number of large jobs among the first n
8 jobs in the sequence. Notice336

that nlarge obeys an hypergeometric distribution with parameters N = n (size of the total337

population), K = k (number of elements with the desired property) and r = n
8 (size of the338

sample). This implies that Eσ∼Sn [nlarge] = k
8 ≥ m−2d

8 . Moreover339

Var[nlarge] = n

8 ·
k

n
· n− k

n
· 7n

8(n− 1) = 7
64 ·

k(n− k)
n− 1 <

m

8 .340

If we use Cantelli’s inequality, a one-sided version of Chebyshev’s inequality, then341

P[P ↑ < Pk] = P
[
nlarge <

m− 2d

8 −
√

m

2

]
≤ P

[
nlarge < E[nlarge]−

√
m

2

]
≤ m/8

m
8 + m

4
= 1

3 .342

Consider now n′
large to be the number of the k − 8

√
m − 2d largest jobs among the n

8343

first jobs in the sequence. Similarly as before, n′
large obeys an hypergeometric distribution344

with parameters N = n, K = k − 8
√

m− 2d and r = n
8 , which implies that Eσ∼Sn [n′

large] =345

k−2d−8
√

m
8 < m−2d

8 −√m. Here we use that k ≤ m. Furthermore Var[n′
large] = n

8 ·
k−8

√
m−2d

n ·346

n−k+8
√

m+2d

n · 7n
8(n−1) ≤ m

8 . Then, using again Cantelli’s inequality, we obtain that347

P
[
Pk−8

√
m−2d < P ↑]

= P
[
n′

large ≥
m− 2d

8 −
√

m

2

]
348

≤ P
[
n′

large ≥ E[n′
large] +

√
m

2

]
≤ m/8

m
8 + m

4
= 1

3 .349

350

We conclude that P[Pk−8
√

m−2d ≥ P ↑ ≥ Pk] = 1 − P
[
Pk−8

√
m−2d < P ↑]

− P[P ↑ < Pk] ≥351

1/3. ◀352

After the aforementioned sampling phase is finished and P ↑ is known, the algorithm will353

enter a partition phase. If a job now has size at least P ↑, it is assigned to the large machines354

as it will be large with high probability. The large jobs below this value are the most difficult355

to assign. To this end, we define a threshold value τ , which we initialize to 0. If the incoming356

job has size at most τ we simply assign it to a least loaded small machine, but whenever357

we encounter a job J of size p > τ , we set τ = p with probability 1
9·2d

√
m

. If now p ≤ τ ,358

which could happen if we just increased τ , we schedule J on the least loaded small machine.359

Else, J is assigned to the least loaded machine in Mlarge (see Figure 4 for a depiction of the360

procedure). As the following lemma shows, this procedure distinguishes all the large jobs361

with constant probability.362

▶ Lemma 9. All large jobs are scheduled onto large machines with constant probability.363

S. Albers, W. Gálvez and M. Janke 57:11

τ

P ↑

sampling

Figure 4 The classification of large (dark) and small (light and dashed) jobs. During sampling,
all small jobs are misclassified (dashed ones). Threshold P ↑ classifies large jobs, while threshold τ

classifies small jobs. Jobs in between are conservatively classified as large, since misclassifying large
jobs is fatal. Increasing τ due to a small job is a helpful event as less small jobs will be misclassified.
On the other hand, increasing τ due to a large job below P ↑ is a fatal event as large jobs will be
misclassified. The choice of P ↑ ensures that fatal events are unlikely to happen.

Proof. Let us assume that Pk−8
√

m−2d ≥ P ↑ ≥ Pk. Now, the statement of the lemma can364

only be wrong if we decided to increase τ when encountering some large job of size less365

than P ↑. By assumption there are less than 8
√

m + 2d such jobs. The desired probability is366

thus at least367

(
1− 1

9 · 2d
√

m

)8
√

m+2d

≥ 1− 8
√

m + 2d

9 · 2d
√

m
≥ 1− 8

9 · 2 −
1

9
√

m
>

4
9 .368

The first inequality is Bernoulli’s inequality, the second one uses that d ≥ 1. The lemma369

follows by multiplying with the probability from Lemma 8. ◀370

We call an input sequence orderly if it satisfies the properties of Lemmas 8 and 9. The371

following lemma shows that the total size of misclassified small jobs can be, in expectation,372

bounded from above. This proof is an adaptation of one of the results from Azar and373

Epstein [7], which we present for the sake of completeness.374

▶ Lemma 10. The expected total size of small jobs scheduled onto small machines is at least375
31

800 4√m
Lsmall, even when conditioned on the input sequence being orderly.376

Proof. Let L′
small be the random variable corresponding to the size of small jobs assigned to377

large machines in the sampling phase. Since jobs appear in random order, we have that378

Eσ∼Sn
[L′

small] = 1
n!

∑

Ji small

n

8 · (n− 1)! · pi = 1
8Lsmall.379

Let us now bound the total size of misclassified small jobs in the partition phase. We380

will define, for a given set of 18 · 2d 4
√

m small jobs of the same size pi (recall that jobs are381

rounded down to powers of 2), the following event: after 9 · 2d 4
√

m jobs from the set arrived,382

τ is at least pi. If this were not the case, τ was never updated at any of these 9 · 2d 4
√

m first383

jobs albeit being smaller than pi. The probability for this is at most384

(
1− 1

9 · 2d
√

m

)9·2d 4√m

≤ e
− 1

4√m ≤ 1− 1
2 4
√

m
,385

where we used the fact that e−x ≤ 1− x
2 if 0 ≤ x ≤ 1. This implies that the probability of386

the previous event occurring is at least 1
2 4√m

.387

ISAAC 2021

57:12 Machine Covering in the Random-Order Model

Let S be the set of small jobs remaining after the sampling phase. We will partition S388

into batches of 18 4
√

m jobs of the same size. There will be jobs that are not assigned to any389

batch because there are not enough jobs of the same size to complete it, but the total size of390

these jobs is at most391

18 · 2d 4
√

m
∑

i≥1

OPT
100 4
√

m · 2i
≤ 18 · 2d−1 ·OPT

25 ≤ 18Lsmall
25 ,392

where the last inequality holds as there are at least 2d−1 machines in the optimal solution393

without large jobs. For each of the batches, the probability of assigning at least half of its394

size to small machines is bounded below by the probability of the previously described event395

occurring, which is at least 1
2 4√m

. Hence, the expected total size of small jobs assigned to396

small machines is at least397

1
2 4
√

m
· 1

2
∑

Ji∈S
pi ≥

1
4 4
√

m
·
(

1− 1
8 −

18
25

)
Lsmall = 31

800 4
√

m
Lsmall.398

To observe that we can condition on the sequence being orderly, it suffices to note that the399

arguments work for every way to fix P ↑ and that they do not make any assumptions on τ400

being increased at large jobs. ◀401

Putting all the previous ingredients together we can conclude the following proposition.402

▶ Proposition 11. The previously described algorithm is O (4
√

m)-competitive in the random-403

order model for the case of proper inputs of degree d.404

Proof. By assumption, all k ≥ m − 2d large jobs are scheduled onto large machines. A405

lower bound of Pk = OPT
100 4√m

for the minimum load achieved in the large machines follows406

then from Lemma 2. By Lemma 3, the minimum load among small machines is at least407
31

800 4√m
Lsmall

2d − OPT
100 4√m

. The proposition follows from observing that Lsmall ≥ 2d−1OPT since408

the optimal solution contains at least m− k ≥ 2d−1 machines with only small jobs. ◀409

4.3 The Final Algorithm410

As discussed before, our final algorithm first guesses whether the instance is simple or proper411

of degree d. Then we apply the appropriate algorithm, the Greedy-strategy or the previously412

described algorithm for the right degree. Since there are O(log(m)) many possibilities, this413

guessing induces an extra logarithmic factor on the final competitive ratio, which concludes414

the proof of Theorem 1 restated below.415

▶ Theorem 1. There exists a Õ(4
√

m)-competitive algorithm for the online Machine Covering416

problem in the random-order model.417

5 A Lower Bound for the Random-Order Model418

The main difficulty for Online Machine Covering algorithms, including our main result, is419

to tell large jobs apart from the largest small jobs. In this section we prove that doing so420

is, to a certain extent, inherently hard. The main difference to adversarial models is that421

hardness is not obtained through withholding information but rather through obscuring it.422

This relates to some studied variants of the classical Secretary Problem such as the Postdoc423

Problem [43] but requires additional features particularly catered to our needs.424

S. Albers, W. Gálvez and M. Janke 57:13

5.1 The Talent Contest Problem425

Consider the following selection problem: To a yearly talent show contest n candidates apply.426

To appeal to a general audience, we try to exclude the best candidates because an imperfect427

performance is more entertaining, but we also want to have at least an appropriate candidate428

who can be presented as the winner. To do so, each candidate will participate in t trials429

(each trial is considered as an arrival) and we must decide for every arrival if we mark the430

candidate or not, meaning that we consider her to be the K-th best candidate or worse.431

The global order in which candidates arrive for trials is uniformly distributed, thus at later432

trials we have much more information to go by. Our final goal is to maximize the number of433

trials for which we successfully marked the K-th best candidate without marking any better434

candidate.435

Formally, the Talent Contest problem is specified by three parameters K, n and t,436

where K ≤ n. Candidates have pairwise different non-negative valuations v1, v2, . . . , vn,437

and each candidate arrives t times; the arrival order is chosen uniformly at random. The438

valuation of each candidate is revealed when the candidate arrives for the first time. We may439

decide to mark each arrival or not, though once the next candidate arrives such marking440

decision is permanent. For each value 1 ≤ h ≤ t we get one point if we marked the h-th441

arrival of the K-th best candidate, but not the h-th arrival of any better candidate. In442

particular, we can get up to t points in total, one for each value of h. Let P (K, t, n) be the443

expected number of points the optimal online algorithm scores given the three values K, t444

and n. Similar to the classical Secretary problem, we are mostly interested in the limit case445

P (K, t) = limn→∞ P (K, t, n).446

We require for our desired results one extra technical definition. Given λ ≥ 1, we call447

the valuations of candidates λ-steep if all candidate valuations are guaranteed to be at least448

by a factor λ apart, i.e. minvi>vj

vi

vj
≥ λ. It is possible to prove the following bound on the449

expected value P (K, t), whose proof we defer to the full version of the paper.450

▶ Lemma 12. It holds that P (K, t) ≤ ζ(t/2)(t+1)t/2

2π
√

K
, where ζ is the Riemann Zeta Function.451

This bound still holds if we restrict ourselves to λ-steep valuations for some λ ≥ 1.452

Roughly speaking, the proof relies on the fact that if an algorithm manages to perform453

relatively well in the Talent Contest problem, then it could be used to guess the value of a454

binomially distributed random variable. For the latter problem, difficulty can be directly455

established. However, the proof involves more technical aspects as some few irregular orders456

do not allow this reduction and have to be excluded beforehand. The property of λ-steepness457

is ensured by choosing µ sufficiently large and applying the transformation v 7→ µv to each458

valuation.459

5.2 Reduction to Machine Covering460

It is possible to show that the Talent Contest problem and the Online Machine Covering461

problem in the random-order model are related as the following lemma states.462

▶ Lemma 13. Given K and t, let m = (K − 1) · t + 1. No (possibly randomized) algorithm463

for Machine Covering in the random-order model on m machines can be better than t
P (K,t)+1 -464

competitive.465

Proof. Let λ > t. Consider any instance of the Talent Contest problem with λ-steep466

valuations. We will treat the arrival sequence of candidates as a job sequence, where each467

arrival corresponds to a job of size given by the valuation of the corresponding candidate.468

ISAAC 2021

57:14 Machine Covering in the Random-Order Model

We call the m− 1 = t(K − 1) jobs corresponding to the arrivals of the K largest candidates469

large. The t jobs corresponding to the next candidate are called medium. Notice that the470

size of a medium job is at most OP T
t as evidenced by the schedule that assigns each large471

job on a separate machine and the t medium jobs onto the single remaining machine. Jobs472

which are neither large nor medium have total size at most t
∑∞

i=1 λ−i OPT
t = OPT

λ−1 and are473

thus called small. They will become negligible for λ→∞.474

Consider an online algorithm AMC for Machine Covering in the random-order model. We475

will derive an algorithm AT C for the Talent Contest problem as follows: AT C marks each job476

that gets assigned to a machine that already contains a job of the same size. Let P be the477

number of points this strategy gets. We will first show that the schedule of AMC contains a478

machine which has at most P + 1 medium jobs and no big job. For this we consider any fixed479

input order, and if AMC is randomized, we consider any fixed outcome of its coin tosses.480

For 2 ≤ i ≤ t, let wi be an indicator variable that is 1 if AT C gains a point for the i-th481

arrival, i.e. if it marks the i-th arrival of the K-th best candidate but not the i-th arrival of482

a better candidate; wi = 0 otherwise. Let also ri be an indicator variable that is 1 if AT C483

marked the i-th arrival of the K-th best candidate but still loses due to also marking the484

i-th arrival of a better candidate. Finally, let Msmall be the machines which do not receive a485

large job in the schedule of AMC , and let Zmed be the average number of medium jobs on486

machines in Msmall. Our intermediate goal is to show that Zmed < 2 +
∑t

i=2 wi.487

Since there are only m − 1 large jobs, of which at least
∑t

i=2 ri are scheduled on a488

machine already containing a large job, we have that |Msmall| ≥ 1 +
∑t

i=2 ri. Let d ≥ 0489

such that |Msmall| = 1 + d +
∑t

i=2 ri. Now, observe that
∑t

i=2(wi + ri) counts the number490

of medium jobs that are placed on a machine already containing a medium job. Thus,491

the number of medium jobs on machines in Msmall is at most |Msmall|+
∑t

i=2(wi + ri) =492

1 + d +
∑t

i=2(wi + 2ri). Now we can bound the average number of medium jobs on Msmall,493

namely Zmed ≤
1+d+

∑t

i=2
(wi+2ri)

1+d+
∑t

i=2
ri

. Let us assume that Zmed ≥ 2; then the term on the right494

hand side increases if we set d and all ri to zero, and we obtain that Zmed ≤ 1 +
∑t

i=2 wi495

and thus Zmed < 2 +
∑t

i=2 wi. To derive this inequality we assumed that Zmed ≥ 2 but it is496

trivially true if Zmed < 2.497

Now, let zmed be the least number of medium jobs on a machine in Msmall. Then498

zmed ≤ Zmed < 2 +
∑t

i=2 wi. Since zmed and the right hand side are both integers, it holds499

that zmed ≤ 1 +
∑t

i=2 wi. Since
∑t

i=2 wi = P , the number of points obtained by algorithm500

AT C for the Talent Contest problem, we have shown that the schedule of AMC contains a501

machine M with at most P + 1 medium jobs and no large one as desired.502

As argued before, each medium job has size at most OPT
t and the small jobs have503

total size at most OPT
λ−1 in total. Thus, machine M has load at most P +1

t OPT + OPT
λ−1 . In504

conclusion, the expected load of the least loaded machine in the schedule of AMC is at505

most P (K,t)+1
K OPT + OPT

λ−1 , given a worst-case input for the Talent Contest Problem. This506

concludes the proof by taking λ→∞. ◀507

By setting K = (t + 1)t and combining this with the lower bound in Lemma 12, we obtain508

the following general lower bound.509

▶ Theorem 14. The competitive ratio of no online algorithm for Machine Covering in the510

random-order model, deterministic or randomized, is better than ⌊e
W (ln(m))⌋−1
1.16+o(1) . Here, W (x)511

is the Lambert W-function, i.e. the inverse to x 7→ xex. In particular, no algorithm can be512

O
(

log(m)
log log(m)

)
-competitive for Online Machine Covering in the random-order model.513

S. Albers, W. Gálvez and M. Janke 57:15

Proof. Let K = (t+1)t. Then Lemma 12 yields P (K, t) ≤ ζ(t/2)
2π ≤ 1.16+o(1). By Lemma 13514

no algorithm can be better than
(

t
1.16+o(1)

)
-competitive for m = (K − 1) · t + 1 < (t + 1)t+1.515

We can always add a few jobs of large enough size so that the lower bound extends to larger516

numbers of machines. The theorem follows since the inverse function of x 7→ (t + 1)t+1 is517

t 7→ eW (ln(m)) − 1; the second part uses the identity W (x) ≥ log(x)− log log(x) + ω(1), see518

[28]. ◀519

References520

1 Susanne Albers. Better bounds for online scheduling. SIAM J. Comput., 29(2):459–473, 1999.521

doi:10.1137/S0097539797324874.522

2 Susanne Albers and Maximilian Janke. Scheduling in the random-order model. In 47th523

International Colloquium on Automata, Languages, and Programming (ICALP), volume 168,524

pages 68:1–68:18. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020. doi:10.4230/525

LIPIcs.ICALP.2020.68.526

3 Susanne Albers and Maximilian Janke. Scheduling in the secretary model. In 41st Annual Con-527

ference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS),528

2021. To appear.529

4 Susanne Albers, Arindam Khan, and Leon Ladewig. Best fit bin packing with random order530

revisited. In 45th International Symposium on Mathematical Foundations of Computer Science531

(MFCS), volume 170, pages 7:1–7:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020.532

doi:10.4230/LIPIcs.MFCS.2020.7.533

5 Susanne Albers, Arindam Khan, and Leon Ladewig. Improved online algorithms for knapsack534

and GAP in the random order model. Algorithmica, 83(6):1750–1785, 2021. doi:10.1007/535

s00453-021-00801-2.536

6 Arash Asadpour and Amin Saberi. An approximation algorithm for max-min fair allocation537

of indivisible goods. SIAM J. Comput., 39(7):2970–2989, 2010. doi:10.1137/080723491.538

7 Yossi Azar and Leah Epstein. On-line machine covering. Journal of Scheduling, 1(2):67–77, 1998.539

doi:https://doi.org/10.1002/(SICI)1099-1425(199808)1:2<67::AID-JOS6>3.0.CO;2-Y.540

8 Moshe Babaioff, Nicole Immorlica, David Kempe, and Robert Kleinberg. A knapsack secretary541

problem with applications. In Approximation, Randomization, and Combinatorial Optimization.542

Algorithms and Techniques, 10th International Workshop (APPROX/RANDOM), volume543

4627, pages 16–28. Springer, 2007. doi:10.1007/978-3-540-74208-1_2.544

9 Moshe Babaioff, Nicole Immorlica, David Kempe, and Robert Kleinberg. Matroid secretary545

problems. J. ACM, 65(6):35:1–35:26, 2018. doi:10.1145/3212512.546

10 Nikhil Bansal and Maxim Sviridenko. The santa claus problem. In 38th Annual ACM547

Symposium on Theory of Computing (STOC), pages 31–40. ACM, 2006. doi:10.1145/548

1132516.1132522.549

11 Yair Bartal, Amos Fiat, Howard J. Karloff, and Rakesh Vohra. New algorithms for an ancient550

scheduling problem. J. Comput. Syst. Sci., 51(3):359–366, 1995. doi:10.1006/jcss.1995.551

1074.552

12 Yair Bartal, Howard J. Karloff, and Yuval Rabani. A better lower bound for on-line scheduling.553

Inf. Process. Lett., 50(3):113–116, 1994. doi:10.1016/0020-0190(94)00026-3.554

13 Eugene B. Dynkin. The optimum choice of the instant for stopping a Markov process. Soviet555

Math. Dokl, 4, 1962.556

14 Tomás Ebenlendr, John Noga, Jirí Sgall, and Gerhard J. Woeginger. A note on semi-online557

machine covering. In Approximation and Online Algorithms, Third International Workshop558

(WAOA), volume 3879, pages 110–118. Springer, 2005. doi:10.1007/11671411_9.559

15 Leah Epstein. A survey on makespan minimization in semi-online environments. J. Sched.,560

21(3):269–284, 2018. doi:10.1007/s10951-018-0567-z.561

16 Leah Epstein, Asaf Levin, and Rob van Stee. Max-min online allocations with a reordering562

buffer. SIAM J. Discret. Math., 25(3):1230–1250, 2011. doi:10.1137/100794006.563

ISAAC 2021

57:16 Machine Covering in the Random-Order Model

17 Ulrich Faigle, Walter Kern, and György Turán. On the performance of on-line algorithms for564

partition problems. Acta Cybern., 9(2):107–119, 1989.565

18 Moran Feldman, Ola Svensson, and Rico Zenklusen. A simple O(log log(rank))-competitive566

algorithm for the matroid secretary problem. Math. Oper. Res., 43(2):638–650, 2018. doi:567

10.1287/moor.2017.0876.568

19 Rudolf Fleischer and Michaela Wahl. Online scheduling revisited. In Algorithms, 8th Annual569

European Symposium (ESA), volume 1879, pages 202–210. Springer, 2000. doi:10.1007/570

3-540-45253-2_19.571

20 Donald K. Friesen and Bryan L. Deuermeyer. Analysis of greedy solutions for a replacement572

part sequencing problem. Math. Oper. Res., 6(1):74–87, 1981. doi:10.1287/moor.6.1.74.573

21 Gábor Galambos and Gerhard J. Woeginger. An on-line scheduling heuristic with better574

worst case ratio than graham’s list scheduling. SIAM J. Comput., 22(2):349–355, 1993.575

doi:10.1137/0222026.576

22 Waldo Gálvez, José A. Soto, and José Verschae. Symmetry exploitation for online machine577

covering with bounded migration. ACM Trans. Algorithms, 16(4):43:1–43:22, 2020. doi:578

10.1145/3397535.579

23 Oliver Göbel, Thomas Kesselheim, and Andreas Tönnis. Online appointment scheduling in580

the random order model. In Algorithms, 23rd Annual European Symposium (ESA), volume581

9294, pages 680–692. Springer, 2015. doi:10.1007/978-3-662-48350-3_57.582

24 Todd Gormley, Nick Reingold, Eric Torng, and Jeffery R. Westbrook. Generating adversaries583

for request-answer games. In 11th Annual ACM-SIAM Symposium on Discrete Algorithms584

(SODA), pages 564–565. ACM/SIAM, 2000.585

25 Anupam Gupta, Ruta Mehta, and Marco Molinaro. Maximizing profit with convex costs in586

the random-order model. In 45th International Colloquium on Automata, Languages, and587

Programming (ICALP), volume 107, pages 71:1–71:14. Schloss Dagstuhl - Leibniz-Zentrum für588

Informatik, 2018. doi:10.4230/LIPIcs.ICALP.2018.71.589

26 Anupam Gupta and Sahil Singla. Random-order models. In Beyond the Worst-Case Analysis of590

Algorithms, pages 234–258. Cambridge University Press, 2020. doi:10.1017/9781108637435.591

015.592

27 Dorit S. Hochbaum and David B. Shmoys. Using dual approximation algorithms for scheduling593

problems theoretical and practical results. J. ACM, 34(1):144–162, 1987. doi:10.1145/7531.594

7535.595

28 Abdolhossein Hoorfar and Mehdi Hassani. Inequalities on the lambert w function and596

hyperpower function. J. Inequal. Pure and Appl. Math, 9(2):5–9, 2008.597

29 David R. Karger, Steven J. Phillips, and Eric Torng. A better algorithm for an ancient598

scheduling problem. J. Algorithms, 20(2):400–430, 1996. doi:10.1006/jagm.1996.0019.599

30 Claire Kenyon. Best-fit bin-packing with random order. In 7th Annual ACM-SIAM Symposium600

on Discrete Algorithms (SODA), pages 359–364. ACM/SIAM, 1996.601

31 Thomas Kesselheim, Klaus Radke, Andreas Tönnis, and Berthold Vöcking. Primal beats dual602

on online packing lps in the random-order model. SIAM J. Comput., 47(5):1939–1964, 2018.603

doi:10.1137/15M1033708.604

32 Robert D. Kleinberg. A multiple-choice secretary algorithm with applications to online605

auctions. In 16th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages606

630–631. SIAM, 2005.607

33 Oded Lachish. O(log log rank) competitive ratio for the matroid secretary problem. In 55th608

IEEE Annual Symposium on Foundations of Computer Science (FOCS), pages 326–335. IEEE609

Computer Society, 2014. doi:10.1109/FOCS.2014.42.610

34 Silvio Lattanzi, Thomas Lavastida, Benjamin Moseley, and Sergei Vassilvitskii. Online611

scheduling via learned weights. In Proceedings of the 2020 ACM-SIAM Symposium on Discrete612

Algorithms (SODA), pages 1859–1877. SIAM, 2020. doi:10.1137/1.9781611975994.114.613

35 D. V. Lindley. Dynamic programming and decision theory. Journal of the Royal Statistical614

Society, 10(1):39–51, March 1961.615

S. Albers, W. Gálvez and M. Janke 57:17

36 Adam Meyerson. Online facility location. In 42nd Annual Symposium on Foundations of616

Computer Science (FOCS), pages 426–431. IEEE Computer Society, 2001. doi:10.1109/SFCS.617

2001.959917.618

37 Michael Mitzenmacher and Sergei Vassilvitskii. Algorithms with predictions. In Beyond619

the Worst-Case Analysis of Algorithms, pages 646–662. Cambridge University Press, 2020.620

doi:10.1017/9781108637435.037.621

38 Marco Molinaro. Online and random-order load balancing simultaneously. In 28th Annual622

ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 1638–1650. SIAM, 2017.623

doi:10.1137/1.9781611974782.108.624

39 Christopher J. Osborn and Eric Torng. List’s worst-average-case or WAC ratio. J. Sched.,625

11(3):213–215, 2008. doi:10.1007/s10951-007-0019-7.626

40 John F. Rudin III. Improved bounds for the on-lijne scheduling problem. PhD thesis, The627

University of Texas at Dallas, 2001.628

41 Peter Sanders, Naveen Sivadasan, and Martin Skutella. Online scheduling with bounded629

migration. Math. Oper. Res., 34(2):481–498, 2009. doi:10.1287/moor.1090.0381.630

42 Martin Skutella and José Verschae. Robust polynomial-time approximation schemes for parallel631

machine scheduling with job arrivals and departures. Math. Oper. Res., 41(3):991–1021, 2016.632

doi:10.1287/moor.2015.0765.633

43 Robert J. Vanderbei. The postdoc variant of the secretary problem. http://www.princeton.634

edu/~rvdb/tex/PostdocProblem/PostdocProb.pdf, Unpublished.635

44 Gerhard J. Woeginger. A polynomial-time approximation scheme for maximizing the minimum636

machine completion time. Oper. Res. Lett., 20(4):149–154, 1997. doi:10.1016/S0167-6377(96)637

00055-7.638

ISAAC 2021

	Abstract
	German Abstract (Zusammenfassung)
	Acknowledgements
	Table of Contents
	Introduction
	Literature
	List Update in the bold0mu mumu PdPdchapterPdPdPdPd Model
	Scheduling in the Random-Order Model
	Scheduling in the Secretary Model
	Scheduling with Budgeted Uncertainty
	Machine Covering in the Secretary Model
	Randomized List Update in the Paid Exchange Model
	Scheduling in the Random-Order Model
	Scheduling in the Secretary Model
	Online Makespan Minimization w. Budgeted Uncertainty
	Machine Covering in the Secretary Model

