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Abstract. In building information modeling (BIM), a digital twin (DT) is a model that represents 

the current status of an existing structure; thus, facilitating the operation and management process. 

Due to higher measurement speed and accuracy, laser scanning and photogrammetry are generally 

employed, resulting in point cloud data (PCD). Today, the required volumetric models are created 

in a laborious and costly manual process from PCD. This paper aims to automate this process by 

applying metaheuristic optimization algorithms to fit highly parametric BIM models of bridges into 

given point clouds. For this purpose, parametric base models of elements are created and instantiated 

by adjusting their parameters’ value using metaheuristic algorithms. This optimization process leads 

to extracting the parameters for a model from PCD and creating 3-D volumetric shapes. The paper’s 

results show that metaheuristic algorithms can be successfully used for parametric modeling even 

in point clouds with occlusion and clutter. 

 

1. Introduction  

Building information modeling (BIM) is an efficient tool for supporting the design and 

construction of buildings and infrastructure facilities. BIM can also assist in the operation and 

maintenance process. As-is BIM models represent the digital replica of an existing facility, such 

as a bridge, and provide an appropriate basis for inspection, condition assessment, and repair 

planning (Sacks et al., 2018). They also provide an integrated and single unit in which all the 

gathered information from the construction site can be imported. The main advantages of a 

digital as-is model are the possibility of accessing and querying structured data and the 

visualization of information.  

Most recently, the concept of as-is BIM has been extended to digital twin (DT) (Pan et al., 2019; 

Lu et al., 2020). A DT is updated frequently, thus keeping the digital replica consistent with the 

physical reality. However, the frequency of these updates depends on the product type, its 

dynamics, and the model’s purpose. While the DT of a jet engine is updated in minute intervals, 

it is suitable to update the DT yearly in bridge maintenance management. However, a significant 

challenge is that the vast majority of existing bridges were constructed decades ago, which 

means DT models must be created from the existing asset as well.  

Laser scanning and photogrammetry are two of the best-known methods to capture the 

geometry of an existing facility (Bosché et al., 2015; Laing et al., 2015; Technion, 2015; Adán 

et al., 2018; Rocha et al., 2020). The output of these techniques is point cloud data (PCD). 

Compared with a visual inspection, PCD is provided in a lower time and has higher 

measurement accuracy (Zhu et al. 2010). However, DT modeling based on PCD is laborious 

and error-prone. In current practice, these models are created manually, which in turn, increases 

the duration and costs. Hence, infrastructure authorities mostly do not undertake high costs and 

potential risks of DT models and still prefer the old rating system to manage structures (Zhu et 

al. 2011). To utilize the benefits of DT models and reduce the modeling costs, the digital 

twinning process needs to be automated. Recently, several attempts have been made towards 
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this goal (Sacks et al., 2016; Sacks et al., 2018), which mostly follow a bottom-up approach, 

which has limitations, especially in point clouds with occlusion and clutter.   

In this paper, we propose a method based on metaheuristic algorithms to automate the creation 

of parametric BIM models. We use a top-down approach for parametric modeling of bridges 

from PCD and combine it with a bottom-up approach by instantiating parametric profiles of 

bridge elements. These profiles are created based on pre-knowledge about the existing elements 

in a typical bridge. Hence, the profiles comprise all the human-definable features such as 

parallelism, symmetricity, and orthogonality. Since the scope of the paper is on parametric 

modeling, we use element-wisely segmented point clouds. Also, it is assumed that elements can 

be defined by an extrude function. To extract the parameters’ value, the required cross-section 

or face for the extrude function is recognized and then be used as an input for updating the 

parameters’ value of the corresponding profile. Since closed-form formulations cannot describe 

these profiles, metaheuristic algorithms are applied. Finally, all the extracted parameters are 

used to create the parametric model of the elements. The workflow of the proposed approach 

can be seen in Figure 1.  

 
Figure 1: The proposed pipeline of parametric modeling 

2. Related research 

Bottom-up and top-down are the major approaches for detecting structural elements and 

modeling based on PCD. The bottom-up methods start from the low-level features to generate 

a complex system at successively higher levels. Walsh et al. (2013) extracted sharp features of 

points and used a region-growing algorithm to segment planar faces of bridge elements. Next, 

surfaces were fitted by the least square algorithm. Zhang et al. (2015) determined the local 

features of points and clustered them based on the existing linear relationships and finally 

extracted the planar faces of elements in bridges by singular value decomposition (SVD). Yan 

et al. (2017) used principal component analysis (PCA) to recognize the endpoints of elements 

and then applied a voxelization process to modify the real boundaries of bridges to generate a 

mesh. The bottom-up approach provides an efficient tool for modeling elements. However, 

created models are vulnerable to occlusion and do not mostly provide a meaningful parametric 

model in the end. 

In contrast to the bottom-up, the top-down methods start from an abstract model and decompose 

a complex system to the subordinate models. Lu et al. (2019)  used a top-down approach for 

detecting elements in the point cloud of RC bridges and represented the geometry of the bridge 

by the alpha-concave hull. Qin et al. (2021) also considered a top-down approach for detecting 

elements in bridges based on the density of points and employed a bottom-up method for 

parametric modeling of cylindrical and cuboid shapes. Kwon et al. (2004) introduced a fast and 

accurate local spatial modeling algorithm to fit planes, cuboids, and cylinders to sparse PCD, 

assuming that the construction site can be modeled by these primitives. Song and Jüttler (2009) 
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improved the performance of implicit modeling by adding sharp features to the models. Cao 

and Wang (2019) used cuboids and graph-cut energy minimization algorithms for model fitting 

to unstructured PCD. The top-down methods can provide a completely human-understandable 

model; however, they have been mostly limited to primitives as they can be mathematically 

defined in closed-form formulations.   

2.1 Overview of metaheuristic algorithms 

Metaheuristic algorithms are a sub-branch of optimization algorithms and artificial intelligence. 

These algorithms have been inspired mainly by natural, biological, and social systems of 

animals and humans. In contrast to most optimization algorithms, metaheuristic algorithms do 

not need the closed-form formulation of the loss function. Hence, they can be adequately used 

for expressing a parametric instance with no closed-form formulation.  

Particle swarm optimization (PSO) 

PSO, as a metaheuristic algorithm, was proposed by (Kennedy and Eberhart, 1997). This swarm 

intelligence algorithm has been inspired by the social behavior of birds and herds of fish. A 

population of random solutions is firstly initialized in PSO, called a swarm of particles. Based 

on a fitness function, the quality of solutions is assessed. Next, the position of each particle is 

updated by the following formulas:  

1

1 1 , 2 2. . .( ) / . .( ) /k k k k k k

i i best i i best iV w V c r P p t c r G p t         (1)  
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i i ip p V t     (2)  

where pi is the position of the ith particle, Vi is the velocity vector of the ith particle, pk
 best, i is the 

best position of the ith particle over its history up to iteration k, Gk
 best is the position of the best 

particle in the swarm by up to iteration k, c1 is the cognitive parameter, c2 is a social parameter, 

r1 and r2 are independent random numbers uniformly distributed between 0 and 1, w is the 

inertial weight, and ∆t is the time interval which is considered equal to 1.  

Firefly algorithm (FFA) 

FFA is another metaheuristic algorithm that was proposed by (Yang, 2008). This algorithm has 

been inspired by fireflies’ flashing patterns to attract their partners, communicate, and show 

risk warnings. Every firefly is assumed unisexual in FFA whose attractiveness is proportional 

to its brightness. This algorithm is based on three parameters, including attractiveness, 

randomization, and absorption. The position of every firefly is formulated as below:  

2
1
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where xi is the position of a firefly at the iteration t,  β0 > 0 is the attractiveness at the distance 

zero (rij = 0),  γ is the absorption coefficient that controls the visibility of fireflies, εi is a vector 

with random numbers, and αt is the mutation coefficient.  

3. Method for model-to-cloud fitting 

To extract the parameters’ value of an element from its corresponding point cloud, the cross-

section or face of interest should be recognized first. In this paper, the required face for the 

extrude function is only detected since most of the elements in bridges, including piers, wing 

walls, and direct decks, can be defined by this function. To this end, we evaluate all the faces 

of the element by a bounding box. Figure 2(a) illustrates the axis-aligned bounding box (AABB) 
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of a point cloud that is not aligned coordinate axes. As can be seen, the lack of alignment in the 

point cloud has resulted in an AABB that is not the minimal bounding box (MBB) 

simultaneously (Figure 2(b)). Based on this observation, if the AABB of a point cloud is its 

MBB at the same time, the point cloud is thus aligned coordinate axes. We denote this resulting 

bounding box as Minimal Axis Aligned Bounding Box (MAABB) that aligns point cloud in the 

direction of coordinate axes (see Figure 2(c)). A MAABB is computed the same as an AABB, 

however, after applying a transformation to the point cloud.  

     
(a) (b) (c) 

Figure 2: Different types of bounding box: (a) AABB; (b) MBB; (c) MAABB 

To determine this transformation, an optimization problem is defined. As the first step, the point 

cloud is translated to the origin of the coordinate system. Next, it is transformed using the 

general form of the rotation matrix in 3-D space. This rotation matrix can be computed by the 

multiplication of rotation matrices around x, y, and z axes with the angles α, β, and γ, 

respectively. For every value of α, β, and γ, a new rotation matrix can be obtained, and a volume 

for the AABB can thus be calculated. Hence, the fitness function of the optimization problem 

can be defined as below:  

To Minimize: ( , , ) = V l w h                 Subjected to: , ,           (4)  

where V is the AABB volume after transformation, l, w, and h are also the dimensions of the 

bounding box.  

All the available real (continuous) metaheuristic algorithms can solve this optimization 

problem. In this paper, PSO is used as it is simple in coding and results in faster convergence. 

3.1 Extrude function  

Two parameters are required to extrude a 2D sketch: the direction vector and thickness (depth). 

Using MAABB, these parameters are simply determined. Figure 3 shows an element created 

by the extrude operation. As can be seen, the shape’s projection (shadow) is a rectangle in all 

the side views, except for the face of interest (the extrusion base plane). This feature is seen in 

any shape created by extrusion. Therefore, the face with the lowest similarity to a rectangle is 

selected as the basis of the extrusion. Subsequently, the vector perpendicular to this face is the 

direction vector, and the dimension along this vector is the thickness. 

 
Figure 3: An arbitrary element created by extrude function  
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To determine the similarity between the faces of a point cloud and a rectangle, the factor of area 

ratio is defined. This factor is the ratio of the covered area by points and the faces area of the 

MAABB.  The former can be estimated by creating the alpha complex of points with a critical 

value of alpha that leads to a single region, i.e., axy, axz, and ayz, and the latter is simply computed 

using the dimensions of the MAABB as follows:  

xy x yA L L ,   xz x zA L L ,   yz y zA L L  (5)  

Considering the calculated values of the area, one area ratio for each direction (x, y, z) can be 

obtained as below:  

/x yz yzr a A ,     /y yz yzr a A ,     /z xy xyr a A  (6)  

The minimum area ratio shows the direction of extrusion in MAABB.  

3.2 Parametric modeling  

The methodology described in the previous section can detect the cross-section of any element 

that can be modeled by the extrude function. This element can be a wing wall, a straight deck, 

or an abutment in a typical bridge. To extract the parameters’ value of elements, the 

corresponding profiles of the elements can be created based on pre-knowledge, as shown in 

Figure 4. Although these profiles cannot be expressed by closed-form formulations, they all can 

be defined by an origin (x0, y0) and a set of parameters {p1, p2, …, pk}.  

   
(a) (b) (c) 

Figure 4: Parametric profiles: (a) Wing walls; (b) Deck; (c) Abutment 

Adjusting the origin and value of the parameters leads to new geometries. Hence, if these 

profiles are optimized and become closer to the existing points, the obtained parameters at the 

end of the optimization process will be the actual parameters of the profile. For this purpose, 

we use metaheuristic algorithms and encode every solution as shown in Figure 5.  

 
Figure 5 Encoding a profile as a solution in a metaheuristic algorithm 

Given a set of points ẞ = {bi = (xi, yi), i = 1, 2, …, N} and the profile F(vj, ej) with vertices v, 

edges e, and parameters set P = {x0, y0, p1, p2, … , pk}, the fitness function of the optimization 

problem can be defined as the root min squared error (RMSE) of the minimum distance between 

the profile and points as below: 

To minimize: 

2
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where dij (bi, F(vj, ej)) is the distance of the ith point to the jth vertex v or edge e. N is the number 

of points, M is the number of vertices or edges, and k is the number of parameters.  

The range of parameters needs to be defined as well to solve this optimization problem. These 

ranges can be estimated based on engineering knowledge or can be provided by external 

resources. Note that the exact ranges are not required, and they should be defined such that the 

profile can keep its form during the optimization process. However, to make the profiles 

adaptive, a simple method for estimating these ranges is proposed. For this purpose, all the 

points are normalized in the range of [-1, 1] using the following formula:  

min

max min

min

max min

( (
( 2 1

( (

, ) , )
, )

, ) , )

io

i

io
i

x x
x

x x

y y
y

y y


  


 (8)  

where (xi , yi) and (xio, yio) are the coordinates of points after and before normalization, 

respectively. (xmin , ymin) and (xmax , ymax) are also the minimum and maximum of points. 

After this process, all the points will be mapped in a square bounding box with a length of 2. 

The range of parameters can then be approximated using this bounding box. To clarify, an 

example has been shown in Figure 6.  

 

lb: -1 -1 0  tan-1(2) 2 

sol: xo y0 p1 p2 p3 

ub: 1 1 2 π/2 ≈2.5 

lb: lower bound; ub: upper bound; sol: solution 

Figure 6: An example of defining the range of parameters 

As the last step, three degrees of freedom for considering the rotation and reflection of the 

profiles are added to the solution, as shown in Figure 7. These modes create eight regions that 

are helpful in the parametric modeling of asymmetric profiles. The range of these variables is 

defined between [-1, 1] so that for values more than 0, the transformations are applied to the 

profile, and for values lower than 0, no transformation is exerted. The defined optimization 

problem in this section can be solved by real metaheuristic algorithms. In this paper, FFA is 

used as it showed more promising performance, especially after adding transformations to the 

solution. 

 

 
Figure 7: General form of a solution in a metaheuristic algorithm 

4. Real-world applications  

Two cases are studied to evaluate the performance of the developed methodology on the point 

cloud of structural elements. The first case is the concrete abutment of a bridge, and the second 

case is an overpass with two connected wing walls. To validate and compare results, the models 

are also created manually. The minimum distance of points to the 3-D objects, obtained from 

our approach and manual modeling, is calculated and finally, a value of RMSE is reported in 

each case.  
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4.1 Case study 1: Abutment 

In this case, an asymmetric point cloud of an abutment has been studied. The point cloud 

included 56,767 points after down-sampling. Due to occlusion, 2 faces out of 7 faces of the 

element were not present (the bottom and left face). Also, occlusion and clutter could be seen 

on the remaining faces, especially the back face of the element. To determine the MAABB (see 

Section 3), PSO was used. It was seen that considering a swarm with 35 particles and 100 

iterations is sufficient for solving the problem. c1, c2 coefficients were also set 2, and a damping 

factor of 0.99 was applied. To calculate the area covered by points, an alpha complex with a 

critical value of alpha for meshing a single region was employed. The area ratios of rx, ry, and 

rz were computed 0.8833, 0.7531, and 0.8358, respectively. Hence, the y-direction was detected 

correctly as the extrusion direction. The cross-section of the point cloud was obtained from the 

alpha hull with the same value of alpha (0.3839). To extract the parameters of the cross-section, 

FFA with a parametric model of an abutment profile was used. All the points were normalized, 

and optimization was conducted in this space. The number of 15 fireflies with 30 iterations was 

initialized. FFA coefficients including β0, γ, and α were considered 2, 1, and 0.2, respectively. 

Figure 8 shows the steps of parametric modeling and Figure 9 demonstrates the final output. 

Comparing the results of our approach and manual modeling illustrates that the proposed 

approach not only reduce the modelilng time significantly but also might improve the quality 

of modeling, i.e. lower value of RMSE. This can be due to visual errors and rounding numbers 

that happens in the manual modeling process.  

   
(a) (b) (c) 

Figure 8: Parametric modeling process: (a) input PCD; (b) MAABB; (c) Optimized profile 

 

 

Results 
Our 

approach 

Manual 

modeling 

p1 7.03 m  7.00 m 

p2 13.67 m  13.50 m 

p3 1.36 m  1.40 m 

p4 3.73 m  3.50 m 

p5 1.89 m  1.90 m 

RMSE 0.11 m 0.25 m 

Time 23.43 sec ≈ 1200.00 sec 
 

Figure 9: Resulting model of the abutment and its parameters 
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4.2 Case study 2: Overpass with wing walls  

In this case, the point cloud of wing walls connected by an overpass has been studied. In contrast 

to the previous case, this point cloud has an axis of symmetry. Hence, this feature should also 

be considered in parametric modeling. The point cloud after down-sampling contained 129,028 

points. Two faces of each wing wall were not present, and the other faces had clutter and 

occlusion. All the parameters of the metaheuristic algorithms were considered the same as the 

first case study. The area ratios of rx, ry, and rz were computed 0.3543, 0.8015, and 0.9569, 

respectively. Hence, the x-direction was recognized as the direction vector. The total time 

necessary for modeling this structure was 43.67 sec. Figure 10 demonstrates all the steps for 

automatic parametric modeling based on PCD. Figure 11 also shows the final model and a 

comparison between the proposed method and manual modeling. As can be seen, the obtained 

parameters in both cases are very close to each other. However, the accuracy of the model 

derived from our approach is higher, i.e., lower RMSE.  

   
(a) (b) (c) 

Figure 10: Parametric modeling process: (a) input PCD; (b) MAABB; (c) Optimized profile 

 

 

Results 
Our 

approach 

Manual 

modeling 

p1 10.11 m 10.00 m 

p2 5.93 m 6.00 m  

p3 1.22 m 1.30 m 

p4 1.30 m 1.30 m 

p5 15.63 m 15.50 m 

RMSE 0.17 m 0.38 m 

Time 43.67 sec ≈ 1200.00 sec 
 

Figure 11: Resulting model of the overpass with wing walls and its parameters 

5. Conclusion  

In this paper, a method is presented that enables fitting a parametrized bridge model into a given 

point cloud resulting from a capturing campaign. To this end, metaheuristic algorithms are 

applied to derive the value of parameters from point cloud data of structural elements. It is 

shown that these algorithms could extend the conventional model-based approach from 

primitives to more general shapes that are common in infrastructure assets. The presented 

method consists of three steps: (1) identifying orientation, (2) fitting parametrized cross-section, 

and (3) applying extrusion operation. In all steps, meta-heuristic optimization approaches were 

successfully applied. Except for the optimization algorithms’ parameters that exist in any 
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problem, no additional parameter or threshold was set. The accuracy of the proposed method 

was tested on actual point clouds of structural elements that had a significant amount of 

occlusion and clutter. The results of the paper show that metaheuristic algorithms can be 

successfully employed for extracting parameters and deriving the volumetric model of the point 

cloud. The main advantage of the presented method over existing ones is that a high-quality as-

is BIM model is generated with a level of abstraction that fulfills the needs of bridge 

management systems. In this paper, only components with comparatively simple geometries 

have been investigated. However, the positive results of the presented feasibility analysis 

provide grounds for further extending the presented approach to represent the most common 

bridge types in Germany by highly parameterized models for rapid and automated DT 

generation from point clouds. 
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