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Introduction 

1.1 Motivation 

Electric motors play an important role in our daily lives. On the consumer market, their fields 

of application range from the vibration alert in cell phones to washing machines or high-power 

drives in electric cars. Many modern industrial sectors such as intra logistics, transportation, 

pumps and fans, or fabrication base on the use of electric machines. 

One type of electric motors are synchronous machines (SM). They play an important role, 

whenever the focus is on torque or power density or on efficiency. With increasing use of variable 

frequency drives (VFD) in combination with the political implementation of energy efficiency 

directives, their importance grows. 

VFDs are electrical energy converters that provide electric power at variable frequency and 

amplitude. With respective control techniques, it is thus possible to operate electric motors at 

optimal speeds and torques for the actual application. 

Many control strategies, such as the widely applied field-oriented control (FOC), or the more 

sophisticated predictive control require accurate mathematical models of the motor to be 

operated. While in FOC the motor parameters are mainly needed to tune the PI-type current 

controllers and for observing the magnetic field of the motor [1, 2], predictive control applies 

the model to predict the motor behavior and use the results to derive optimal control actions 

[3–5]. Applying inaccurate models can lead to non-ideal operation, to unwanted oscillations, or 

to instability of the drive system at worst. Deadbeat control as a special type of predictive 

control aiming at maximal control bandwidth is known for becoming instable rather quickly, 

when the time constants of the underlying model are incorrect [6]. 
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Control methods with focus on energy efficiency do also require parameter knowledge of the 

operated motor in order to find the operating points with minimal losses. Here, it should be 

obvious that model errors directly lead to efficiency reductions. 

Another important field of control techniques for synchronous motors is sensorless control [7–

17]. It aims at reducing system costs and improving robustness and reliability of the drive 

system by avoiding sensors that measure the rotor position, such as rotary encoders or resolvers. 

Instead of the sensor, position estimates based on motor currents and voltages are employed. 

Especially at low speed operation down to standstill, these control methods are challenging and 

their control performance strongly depends on the quality and accuracy of the motor model 

they base on [8, 18–30]. 

Many control schemes base on simplified, linear models in order to reduce mathematical 

complexity or algorithmic and computational effort. In practice, however, synchronous 

machines are nonlinear. The main reason for that are magnetic effects such as saturation, 

hysteresis, and eddy currents in ferromagnetic material. Being able to identify and model these 

effects is thus a prerequisite to improve the control performance in a variety of control schemes 

and applications and motivates the present work. 

1.2 Outline 

The focus of this work lies on identifying the magnetic characteristics of synchronous machines 

without knowledge about the employed material properties, the windings schemes or the design 

of rotor or stator sheets. In practice, only basic information such as motor type, rated voltage 

and current, rated torque and speed is typically available. We thus aim at obtaining accurate 

motor models by appropriate measurement techniques rather than by analytical techniques 

such as, for instance, finite element analysis (FEA). 

The key elements of this work are two measurement techniques, one basing on evaluating the 

back electromotive force (BEMF) and the other on high frequency (HF) signal injection. Along 

with a state-of-the-art analysis, both methods are described and compared in Chapter 6. The 

sensitivities of both methods to a variety of disturbances are extensively analyzed and 

discussed. Major effort is put on reducing the known sources of error as good as possible, such 

that only iron effects remain. This allows us to ideally analyze the influence of these effects 

that are mathematically difficult to address and also difficult to measure. 

In Chapter 6 too, the results are discussed in the context of anisotropy-based sensorless control 

and of an efficient control strategy named maximum torque per ampere (MTPA). 

In order to being able to obtain best results and to ideally compare the measurement results 

of both methods, an optimization algorithm is proposed in Chapter 5. With minimal 

corrections, it enforces symmetry and guarantees physical validity of the measurement results. 

Chapter 2 sets the theoretical basis of this work. It presents the state-of-the-art of the theory 

needed in the following chapters. The detailed and unified descriptions shall enable the reader 

to better understand and validate the present work without referring to further literature. 
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In Chapter 3, the tested motors and the test bench that are used to transfer the theory to 

practice are described. Special emphasis is placed on nonlinear effects of the voltage source 

inverter, that can influence the proposed measurement schemes. In order to identify those 

effects, a measurement technique is proposed, and the results are presented and discussed. 

In an attempt to introduce the tested motors and also to motivate the following chapters, the 

results of the BEMF-based measurements refined by the optimization algorithm are presented 

already in Chapter 4. The results presented here are used as reference in the later discussions 

of measurement results. From magnetic (co-) energy to torque, flux linkages and inductances, 

the influence of magnetic saturation is extensively analyzed. Additionally, its relevance for 

mathematically accurately linearized models and for anisotropy-based sensorless control 

schemes is discussed. 
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Theoretical Background 

This chapter sets the theoretical basis of the complete work. The relevant theory known from 

literature is collected and presented here in a unified form in the context of synchronous 

machines. Special emphasis is put on magnetic saturation and how this typically nonlinear 

effect influences the electrical as well as mechanical behavior of the machines. 

In literature, usually linear or linearized models of synchronous machines are applied. The 

purpose of this chapter is twofold: first, to justify the validity of the derived mathematical 

model, even when nonlinearities caused by magnetic saturation play an important role; second, 

to have all relevant well-known theory collected here for reference, such that the later chapters 

with new contributions do not have to be interrupted, when the results are discussed. 

2.1 Electromagnetic Fields and Ferromagnetism 

2.1.1 Electromagnetic Fields in Free Space 
Electric charges and its relative movements are the source of electromagnetic fields. Our today’s 

knowledge about the interaction between electric and magnetic fields bases on the work of 

James Clerk Maxwell [31], who is therefore considered one of the most influential physicists of 

the 19th century. The set of four equations describing electromagnetic fields is hence named 

after him. In the free, three-dimensional space, for a system at rest, they are given in integral 

form as follows [32 pp. 38–42 (Ch. 1)]. 
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 ∯𝜖0𝐸⃗ ⋅ 𝑑𝑎⃗
𝑆

 = ∭𝜌 ⋅ 𝑑𝑣
𝑉

 (a) 

(2.1) 

 ∮𝐻⃗   ⋅ 𝑑𝑠 ⃗
𝐶

 = ∬𝑗 ⃗⋅ 𝑑𝑎⃗
𝑆

+
𝑑

𝑑𝑡
∬𝜖0𝐸⃗ ⋅ 𝑑𝑎⃗
𝑆

 (b) 

 ∮𝐸⃗ ⋅ 𝑑𝑠 ⃗
𝐶

 = −
𝑑

𝑑𝑡
∬𝜇0𝐻⃗   ⋅ 𝑑𝑎⃗
𝑆

 (c) 

 ∯𝜇0𝐻⃗   ⋅ 𝑑𝑎⃗
𝑆

 = 0 (d) 

The fundamental assumption in Maxwell’s equations is that electric charges and their 

movements can be considered as continuous charge and current distributions. Although this is 

not true on atomic scale, it is a convenient simplification to describe electromagnetic fields of 

interest on mesoscopic and macroscopic view [32 pp. 10–11 (Ch. 1)]. The charge density, 𝜌, is 

thus defined as net charge per mesoscopic unit volume, Δ𝑉 , whereas its movement at the 

velocity 𝑣 ⃗is denoted as current density, 𝑗 ⃗

𝜌 =
net charge in Δ𝑉

Δ𝑉
 (2.2) 

𝑗 ⃗= 𝜌𝑣 ⃗ (2.3) 

Equation (2.1)(a) is also known as Gauss’ law. It states that any electric net charge expressed 

in terms of the charge density in an arbitrary volume, 𝑉 , that is enclosed by a surface, 𝑆, is a 

source of electric displacement flux. The latter is described by the electric displacement flux 

density, 𝜖0𝐸⃗, which for its part consists of the electric field intensity, 𝐸⃗, times the permittivity 

of free space, 𝜖0 = 8.854 ⋅ 10
−12 F m⁄ . The closed surface is described on each infinitesimal point 

by corresponding normal vectors, 𝑑𝑎,⃗ whereas the volume can be divided into infinitesimal 

volume elements, 𝑑𝑣. 

While Gauss’ law reveals that the electric field intensity can be a conservative (or source) field, 

Faraday’s law, (2.1)(c), states that it can also be a solenoidal (or vortex) field [33 p. 15], as its 

circulation around a contour, 𝐶, is proportional to the time rate of change of the magnetic flux 

piercing the surface, 𝑆, enclosed by that contour. Each point of the contour is described by 

corresponding differential line segments, 𝑑𝑠.⃗ The magnetic flux is expressed in terms of the 

magnetic flux density, 𝜇0𝐻⃗   , that consists of the magnetic field intensity, 𝐻⃗   , and the permeability 

of free space, 𝜇0 = 4𝜋 ⋅ 10
−7H m⁄ . 

Ampère’s law1, (2.1)(b), expresses the circulation of the magnetic field intensity along a contour 

enclosing an arbitrary surface as superposition of the current density piercing that surface and 

the time rate of change of the electric displacement flux density through the same surface. 

The last of Maxwell’s equations, (2.1)(d), is Gauss’ law for magnetic flux. It reveals that 

magnetic flux has no sources, as the net flux out of any closed volume is zero. We can directly 

 
1 What Ampère defined in his law was in fact only the relation between magnetic field intensity and 

current density. Complementing this expression with the time rate of change of the electric displacement 

flux density was the achievement of Maxwell 
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derive from here that no magnetic monopoles can exist and that the magnetic flux density field 

is always solenoidal [33 p. 15]. 

Maxwell’s equations, (2.1), provide a closed mathematical description of electric and magnetic 

fields and their interaction as electromagnetic fields. The link between electric and magnetic 

fields is found to be dependent on the time-derivatives of both, the electric and magnetic flux. 

Under certain conditions at high frequencies, this link lets magnetic fields arise from electric 

fields and vice versa – energy is radiated by electromagnetic waves. However, in many technical 

processes, electromagnetic radiation is unwanted. In consequence, they are designed in such a 

way that the time rate of change of either the electric or the magnetic flux can be neglected, 

thus leading to considering the processes as electroquasistatic (EQS) or magnetoquasistatic 

(MQS) systems. 

Except for some special applications in micro-mechanical systems [34], electromechanical energy 

converters base on that part of the Lorentz force that is due to moving charges in magnetic 

fields. Consequently, synchronous machines have windings to generate magnetic flux, and are 

constructed such that the condition √𝜇0𝜖0𝑙 ≪ 1 𝑓⁄  is satisfied, where 𝑙 is the largest length of 

the motor and 𝑓 are the frequencies of interest of the electrical quantities. We can hence 

consider the machine as MQS system in good approximation [32 pp. 8–20 (Ch. 3)]. Equation 

(2.1)(b) then simplifies to 

∮𝐻⃗   ⋅ 𝑑𝑠 ⃗
𝐶

≈∬𝑗 ⃗⋅ 𝑑𝑎⃗
𝑆

. (2.4) 

 

2.1.2 Electromagnetic Fields in Matter 
Maxwell’s equations, as discussed so far, are valid for charge distributions in free space. In 

material medium, however, atoms or molecules are densely packed. As they consist of negatively 

charged electrons orbiting positive nuclei, they are sources of electromagnetic fields. The effort 

to describe fields of engineering interest by superposition of the atomic field contributions is 

generally tremendous and would also require the consideration of quantum mechanical laws. 

Consistently with the mesoscopic definition of charge distributions (which are technically seen 

also matter), a more expedient approach is to approximate the electromagnetic processes inside 

a medium in a mesoscopic or macroscopic view. Therefore, we introduce equations describing 

material with respect to their averaged magnetic and electric characteristics over a distance of 

order of a few nanometers (mesoscopic view) to distances including whole bodies of matter 

(macroscopic view). In these regions, the local fields are assumed homogeneous [35 p. 25]. 

2.1.2.1 Electrical Conductivity 

An important property of electromagnetic material is the electric conductivity, i.e. the ability 

of the material to transport free charges. The availability of free (i.e. unpaired or unbound) 

charges is thus a prerequisite for electric conductors. In presence of magnetic or electric fields, 

the charged particles are accelerated by the Lorentz force. The resulting kinetic energy of the 

particles is equivalent to their magnetic energy [36]. In contrast to free space, the particles 

collide with the atomic or molecular constituents in the conductor, leading to a comparably 
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low average velocity [32 pp. 3–4 (Ch. 7)]. The collusions transform the kinetic energy of the 

particles into thermal energy of the material and therefore produce Ohmic losses, often also 

referred to as Joule losses. 

The mesoscopic conduction law is a generalization of Ohm’s law [37] and is given by 

𝑗𝑓⃗ ≈ 𝜎𝐸⃗, (2.5) 

where 𝑗𝑓⃗  is the free current density and 𝜎 is the electrical conductivity. The latter is typically 

depending on the local temperature of the conductor. For inhomogeneous temperature 

distributions, the conductivity will therefore become directional dependent, i.e. anisotropic. 

Mathematically, this would have to be taken into account by defining 𝜎 as a tensor depending 

on temperature and location [38 p. 18]. Equation (2.5), where 𝜎 is considered as constant and 

scalar, is hence an averaging approximation. 

In synchronous machines, where typically copper conductors are applied, the approximation is 

convenient, if the temperature distribution of the wires is homogeneous and the conducting 

cross-sectional areas remain constant. In practice, the validness of these assumptions is impaired 

by the occurrence of Ohmic losses in combination with inhomogeneous heat conduction and 

the proximity effect (similar to the skin effect [32 pp. 35–42 (Ch. 10)]) at high frequencies 

[38 pp. 18 and 51-57]. This is taken up again in the later sections, where the measurement 

schemes are described and the results are discussed. 

2.1.2.2 Saturation in Ferromagnetic Material 

In ferromagnetic material, we must consider the magnetic dipole moment. It is associated with 

the spin of electrons and their orbital motion around the nucleus of atoms2. The quantum 

mechanical exchange interaction between or among the electronic spins and orbits in single 

atoms or molecules typically lead to cancelled net contributions to the molecular magnetic 

moment. Only in case of electrons orbiting the nucleus in unfilled shells3, a non-zero net 

magnetic moment occurs [32 pp. 15–19 (Ch. 9)]. In ferromagnetic solids, the mutual magnetic 

moment interaction of densely packed atoms leads to spontaneous magnetization, i.e. domains 

where the magnetic moments of all atoms are parallelly aligned. Typical volumes of magnetic 

domains range from 10−9 to 1 mm3 [39 p. 548]. In common synchronous machines, we therefore 

have a large number of domains with different magnetic orientations. The overall domain 

structure of a given ferromagnetic specimen is a result of the minimization of the free energy 

due to the magnetic dipole moments [35 p. 231]. 

In an unmagnetized or virgin state, the magnetizations of all domains cancel. The ferromagnet 

thus has no net macroscopic magnetization density 𝑀⃗     [32 pp. 3–4 and 17, 35 pp. 8 and 258-

260]. When, however, an external magnetic field, 𝐻⃗   , is applied to the ferromagnetic material, 

the magnetic dipole moments tend to align with that field. As a result, domains with a similarly 

 
2 Note that the spin of the nucleus can usually be neglected, since the corresponding nuclear moment is 

three orders of magnitude smaller than the one associated with electrons [35 p. 24] 
3 The theory of electrons orbiting an atomic nucleus on discrete shells is a concept of quantum mechanics 

that has its origin in Bohr’s atomic model 
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oriented magnetization grow at the expense of other domains. The resulting imbalance between 

the magnetic dipole moments within the specimen leads to an overall magnetization. This is 

exemplarily shown in Figure 2.1 for a circular specimen with four magnetic domains. Starting 

from the initial demagnetized state, an increasing field in direction of the axes of abscissae is 

applied. The lower left domain has the closest orientation to the applied field and thus enlarges 

the most, resulting in an increasing magnetization. When the material is isotropic, the overall 

magnetization is in the same direction as the 𝐻⃗    field. With increasing external field, the 

domains with opposed orientations disappear one after each other and the relative growth of 

the lower left domain lessens – the ferromagnetic material begins to saturate. The phase of 

domain growth is characterized by domain wall motion. The following phase is predominated 

by the so-called coherent rotation or magnetic moment rotation [35 p. 246, 40 p. 101], where 

the magnetic moments of the remaining domains start to rotate in order to align with the 

applied field. 

In the final state for high applied fields, all magnetic moments are in alignment with that field. 

As a result, no further increase of the magnetization density can be obtained – the 

ferromagnetic specimen is saturated. The corresponding value is denoted as saturation 

magnetization, 𝑀𝑠. 

 

It is important to note that the spontaneous magnetization depends on the temperature of the 

ferromagnetic media [35 pp. 9–11]. With increasing temperature, the value of 𝑀𝑠 continuously 

decreases until it falls precipitously to zero at the Curie temperature. At this temperature and 

above, the ferromagnetic order collapses. 

2.1.2.3 MQS Approximations of Maxwell’s Equations in Ferromagnetic Material 

In order to account for the influence of ferromagnetic material on MQS systems, Ampere’s law 

(2.4), Faraday’s law (2.1)(c) and Gauss’ law for magnetic flux (2.1)(d) are rewritten as 

 

Figure 2.1: Magnetic saturation as result of domain wall motion and magnetic moment 

rotation in ferromagnetic material 
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 ∮𝐻⃗   ⋅ 𝑑𝑠 ⃗
𝐶

 ≈ ∬𝑗𝑓⃗ ⋅ 𝑑𝑎⃗
𝑆

 (a) 

(2.6)  ∮𝐸⃗ ⋅ 𝑑𝑠 ⃗
𝐶

 = −
𝑑

𝑑𝑡
∬𝐵⃗    ⋅ 𝑑𝑎⃗
𝑆

 (b) 

 ∯𝐵⃗    ⋅ 𝑑𝑎⃗
𝑆

 = 0 (c) 

with the aforementioned free current density 𝑗𝑓⃗ and 𝐵⃗     as magnetic flux density, which is given 

by the superposition of external magnetic field intensity and magnetization density [32 pp. 4–

6 (Ch. 9), 39 p. 694]  

𝐵⃗    = 𝜇0(𝐻⃗   + 𝑀⃗    ) (2.7) 

Equation (2.7) is typically rewritten in a compacter form that is analogous to Ohm’s law (2.5). 

Before we can do this, however, we must introduce magnetic anisotropy and magnetic hysteresis, 

which is done in the following two subsections. 

2.1.2.4 Magnetic Anisotropy 

As mentioned before, the magnetic samples in Figure 2.1 are assumed to be isotropic, which 

results in perfect alignment of 𝐻⃗    and 𝑀⃗    . Without loss of information, we can thus only consider 

the magnitudes of both fields, as expressed by the scalar axis labeling. In actual ferromagnetic 

material, however, we do have magnetic anisotropy. According to the formal definition, the 

latter requires a change in the internal energy of a magnetic specimen, when the magnetization 

in that material changes its direction [41 p. 266]. Another interpretation of this definition is 

that the magnetization has one or more easy axes, along which it prefers to lie [41 p. 247]. This 

leads to misalignment between applied field and magnetization, unless the direction of the 

applied field is along an easy or hard axis, as shown in Figure 2.2. Note that for a constant 

magnitude of 𝐻⃗   , the resulting magnitude of 𝑀⃗     is maximal, when oriented along the easy axis 

(a) and minimal, when oriented along the hard axis (c). 

 

Magnetic anisotropy has different origins [35 p. 168]. On microscopic view, the crystal structure 

and the micro-scale texture of a magnetic specimen are the main sources. The corresponding 

magnetocrystalline and induced magnetic anisotropies depend on the chemical composition and 

on the manufacturing processes of the magnetic material. A macroscopic source of anisotropy 

is the shape of the sample. In [40 pp. 224–226], it is demonstrated that the demagnetizing 

 

Figure 2.2: Influence of magnetic anisotropy on the relation between applied field, 𝐻⃗   , and 

magnetization, 𝑀⃗    ; (a) applied field along easy axis; (b) applied field between 

easy and hard axis; (c) applied field along hard axis 
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energy density is a function of the angle between the magnetization and the long axis of a 

spheroidal body. This means that shape anisotropy is inherent in every non-spherical magnetic 

sample [40 p. 205]. 

2.1.2.5 Magnetic Hysteresis 

The concepts of domain wall motion and coherent rotation can sufficiently explain the 

occurrence of magnetic saturation. In real ferromagnetic material, however, another effect is 

observed. When the external 𝐻⃗    field, applied to a given specimen, is linearly increased with 

time (i.e. 𝐻~𝑡), the resulting increasing magnetization presents small-scaled discontinuities. 

This effect was discovered first by Heinrich Barkhausen in 1919 and is hence named after him 

[35 pp. 257–258]. 

Barkhausen jumps result from the interplay between domain wall motion, domain rotation and 

microscopic or mesoscopic magnetic anisotropy [42]. Stoner-Wolfarth particles do explain them 

as irreversible catastrophic discontinuities due to jumps from one energy minimum to another, 

leading to a sudden change of magnetization of a domain [35 pp. 247–252]. In real material, we 

have impurities, i.e. voids, or crystallographic defects, which can be seen as induced magnetic 

anisotropies or small-scale shape anisotropies. These impurities impede the domain wall motion, 

as they act as pinning sites for the domain walls. Figure 2.3 illustrates an emerging Barkhausen 

jump due to domain wall motion over a single pinning site. Beginning with a given domain 

distribution, an increasing external field in direction of the axis of abscissae is applied. As the 

increase of the field is linear in time, the axis of abscissae qualitatively represents both, the 

applied magnetic field and the time. Between the first and second depicted snapshot of the 

domain distributions in the magnetic discs, the domain wall bows around the pinning site. 

With further increasing field, the force on the wall reaches a critical value and the internal 

energy minimum becomes unstable [42]. As a result, a switching process to a new, stable energy 

minimum occurs – a Barkhausen jump happens. In Figure 2.3, this is shown between the second 

and third depicted quasistationary domain wall distributions. For comparison, also a 

magnetization curve with the same relative domain sizes but without pinning site is shown in 

grey. 

 

When repeating the experiment shown in Figure 2.3 in reverse order, i.e. starting from the 

right domain configuration and successively decreasing the applied field, it is obvious that a 

 

Figure 2.3: Occurrence of Barkhausen jumps due to domain wall motions over pinning sites 
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Barkhausen jump is irreversible. The domain wall would again bend around the pinning site, 

this time, however, from bottom to top. When falling below a critical external field, another 

Barkhausen jump will occur. The irreversible transitions between both jumps cause an effect 

known as magnetic hysteresis [35 pp. 244–260]. 

Figure 2.4 shows a typical major hysteresis loop for ferromagnetic material (grey plot). The 

initial curve with predominating pinning processes is plotted in black [35 pp. 259–260, 43 p. 

359]. Starting from an initial unmagnetized state, a segment with low gradient follows, where 

the domain walls bow out from the pinning sites. Since no Barkhausen jumps occur, the 

magnetization is reversible. The following line segment with high slope is characterized by 

irreversible domain wall motions with Barkhausen jumps, leading to beginning saturation 

obeying the same mechanisms as described before (c.f. Figure 2.1). In this phase, some of the 

initial domain walls vanish, as indicated by the corresponding snapshot of the domain 

distribution. As a result, the initial state cannot be recovered by external magnetic fields [35 

p. 8]. 

 

The last line segment of the initial magnetization curve approaches the saturation 

magnetization, 𝑀𝑠, and its slope approaches zero. This phase is dominated by coherent 

rotation, which is reversible again. When, beginning from here, the applied field is cycled 

between ±𝐻𝑠, the grey hysteresis curve will occur. It presents the same reversible and 

irreversible saturation effects as the initial curve, i.e. erratic domain wall motion for segments 

with high slope and coherent rotation when the magnetization saturates. It is worth noting 

that the hysteresis curve, as well as the ideal magnetization curve (see Figure 2.1) are symmetric 

to the origin. 

The characteristic points of a hysteresis curve are the remanent or residual magnetization, 𝑀𝑟, 

and the intrinsic coercive field intensity, 𝐻𝑐 [40 p. 100]. The remanence is the magnetization 

left behind after the external field is completely removed. It describes the state of 

magnetization, where the internal energy is stuck in a local minimum, which can be significantly 

larger the than the absolute minimum energy from the initial state [35 p. 244]. The coercivity 

is the external magnetic field that is necessary to completely demagnetize a magnetic specimen, 

after it has been maximally magnetized. The value of 𝐻𝑐 varies over a wide range for 

 

Figure 2.4: Initial magnetization (black) and magnetic hysteresis loop (grey) and as a result 

of impurities and crystallographic defects in ferromagnetic material 
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ferromagnetic material and is used to distinguish between soft and hard magnetic material. 

Typical hard magnetic applications are permanent magnets, where values between 50 to 770 

kA/m are obtained at room temperature for the most important magnet materials [40 p. 352]. 

Unless for permanent magnets, wide hysteresis loops are usually unwanted, as the area of a 

loop corresponds to losses associated with one magnetization cycle (see also the following 

subsection at p. 14). In applications where ferromagnets are dynamically magnetized in a wide 

range, soft magnetic material is employed. Permalloys typically applied as core material in 

transformers and electric machines have typical vales of 8 A/m or less for the coercivity [41 p. 

13]. 

Magnetic hysteresis is mathematically difficult to handle, since its description must incorporate 

discontinuities. As described above, hysteresis is dominated by irreversible highly dynamic 

events occurring in high numbers all over the magnetic specimen, where each of the events is 

restricted to small areas near pinning sites. As a result, even smallest changes in the applied 

field cause discontinuities that must be taken into account. In non-ideal processes, we must rely 

on measurements that are superimposed by noise. It is therefore difficult to distinguish between 

measurement noise and small-scale field changes that cause hysteretic effects. 

Another problem with hysteresis is that it relies on the magnetic history of the material. Any 

point within the major loop can be reached by nearly infinite ways. This means that for any 

applied field, 𝐻1, within the non-saturated region, the corresponding values of 𝑀 can lie in the 

range between 𝑀1,𝑚𝑖𝑛 and 𝑀1,𝑚𝑎𝑥, as is shown in Figure 2.5 [44 p. 299]. Expressed in a 

mathematical point of view, the relation between 𝑀 and 𝐻 is not bijective. 

 

The minor loops as depicted in Figure 2.5 occur when one or both of the extrema of 𝐻 defining 

that loop is not either +𝐻𝑠 or –𝐻𝑠 [45]. Their average slope is given by 

𝜒𝑟𝑒𝑣 =
Δ𝑀

Δ𝐻
 (2.8) 

and is a measure for the local relation between magnetization and applied field due to reversible 

processes [41 p. 11, 44 pp. 225–229]. It is called reversible susceptibility and denoted by 𝜒𝑟𝑒𝑣. 

 

Figure 2.5: Minor loops in comparison with the initial magnetization curve and the major 

loop; depending on the starting points and the applied fields, all values of 𝑀 

lying between 𝑀1,𝑚𝑖𝑛 and 𝑀1,𝑚𝑎𝑥 are accessible. 
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In order to simplify the mathematical descriptions following in the next sections, we will 

henceforward neglect magnetic hysteresis. For the narrow loops of soft magnetic material, the 

approximation error is usually small when only the anhysteretic (i.e. hysteresis-free) curve is 

considered. It represents the globally optimal macroscopic state for the magnetization caused 

by an applied field in a given magnetic body [44 pp. 229–230, 46]. It thus corresponds to the 

ideal saturation curve already presented in Figure 2.1. It is usually close to the average of both 

branches of the major loop [47 p. 8].We should keep in mind at this point that the slope of the 

anhysteretic curve, i.e. the differential susceptibility, 

𝜒𝑑𝑖𝑓 =
𝜕𝑀

𝜕𝐻
, (2.9) 

will always be larger than 𝜒𝑟𝑒𝑣, since it also contains the changes in 𝑀 due to irreversible 

processes [41 p. 11]. We will take this up again later when discussing the measurement results 

in Chapter 6. 

The simplification of using the anhysteretic curve allows us to express the general relation 

between 𝑀⃗     and 𝐻⃗    as bijective function, i.e. 

𝑀⃗    = 𝝌(𝐻⃗   ) ⋅ 𝐻⃗   . (2.10) 

As mentioned before, magnetic anisotropy can cause misalignments between the vectors 𝑀⃗     und 

𝐻⃗    (see Figure 2.2). In order to account for possible anisotropies, the magnetic susceptibility, 𝝌, 

thus has to be a symmetric second-rank tensor [35 p. 40]. In a given coordinate system, it can 

be expressed as 3 × 3 matrix [44 p. 39]. Since the influence of magnetic saturation renders the 

relation between magnetization and magnetic field intensity nonlinear, 𝝌 is a generic likewise 

nonlinear and bijective function of 𝐻⃗   . 

With (2.10), we are now able to simplify the definition of the flux density (2.7) by introducing 

the permeability matrix, 𝝁, and the relative permeability matrix, 𝝁𝑟, respectively [44 p. 39]. 

By this means, we can directly relate 𝐵⃗     and 𝐻⃗    as 

𝐵⃗    = 𝜇0 (𝑰 + 𝝌(𝐻⃗   ))
⏟    

𝝁𝑟(𝐻⃗    )

𝐻⃗   = 𝜇0𝝁𝑟(𝐻⃗   )⏟    

𝝁(𝐻⃗    )

𝐻⃗   , (2.11) 

where 𝑰 is the unity matrix. 

2.1.2.6 Energy and Losses in MQS Systems 

The most important fundamental law in physics is the law of energy conservation. It states 

that the total energy of an isolated system is conserved, i.e. energy can neither be created nor 

destroyed. It can only be transformed from one form of energy to another. Mathematically, this 

can be expressed in terms of generalized field theory as 

−∯𝑝⃗ ⋅ 𝑑𝑎⃗
𝑆

=
𝑑

𝑑𝑡
∭𝑤 ⋅ 𝑑𝑣
𝑉

, (2.12) 

where 𝑤 denotes the volume density of energy and the vector 𝑝⃗ represents the flow of power 

density [32 pp. 5–6 (Ch. 11)]. The term on the left-hand-side (LHS) of (2.12) is the net power 

flowing into an arbitrary volume, 𝑉 , enclosed by the surface 𝑆. Since the norm vector, 𝑎,⃗ of 



2.1  ELECTROMAGNETIC FIELDS AND FERROMAGNETISM 

  15 

that surface is per definition positive and points out of the volume, the minus sign guarantees 

that a positive 𝑝⃗ pointing towards the volume is counted as power flowing into that volume. 

The term on the right-hand-side (RHS) is the time rate of change of the total energy within 

the volume. 

By means of the Lorentz force and the definition of mechanical work, we obtain Joule’s law, 

describing the transformation from electromagnetic energy to thermal energy [32 pp. 6–7 (Ch. 

11)]. The latter corresponds to the aforementioned Joule losses and will be denoted by 𝑝𝐽 . 

Joule’s law in terms of field theory is given as 

𝑝𝐽 = 𝑗𝑓⃗ ⋅ 𝐸⃗. (2.13) 

Combining (2.13) with the MQS approximation of Maxwell’s equations in matter (2.6) gives 

−∯(𝐸⃗ × 𝐻⃗   ) ⋅ 𝑑𝑎⃗
𝑆

=∭𝐻⃗   ⋅
𝜕𝐵⃗    

𝜕𝑡
 𝑑𝑣

𝑉

+∭𝑗𝑓⃗ ⋅ 𝐸⃗ 𝑑𝑣
𝑉

, (2.14) 

which is the MQS version of Poynting’s theorem [39 pp. 751–752]. 

The comparison of (2.12) and (2.14) gives the Poynting vector, 𝑝⃗, defining the flow of 

electromagnetic power density as 

𝑝⃗ = 𝐸⃗ × 𝐻⃗   . (2.15) 

We can further see that the terms on the RHS of (2.14) represent the time rate of change of 

net electromagnetic energy in a closed volume. The second term on the RHS is obviously that 

part of electromagnetic energy that is transformed to thermal energy according to (2.13). Since 

the closed system is considered from an electromagnetic point of view, the thermal energy is 

always leaving the system and is thus generally regarded as dissipated energy. 

Due to the fact that only MQS systems are considered, the first term on the RHS of (2.14) 

describes the rate of change of magnetic energy density, i.e. 

𝑝𝜇 = 𝐻⃗   ⋅
𝜕𝐵⃗    

𝜕𝑡
. (2.16) 

From (2.16), the magnetic energy density can be directly given as integral of 𝑝𝜇 over a time 

interval Δ𝑡, or as integral of 𝐻⃗    vs. 𝐵⃗     along a contour line, 𝐶, describing the progression of 

𝐻⃗   (𝑡) within that time interval. 

𝑤𝜇 = ∫ 𝑝𝜇 𝑑𝑡
Δ𝑡

= ∫𝐻⃗   ⋅ 𝑑𝐵⃗    

𝐶

. (2.17) 

Figure 2.6 illustrates the definition of 𝑤𝜇 acc. to (2.17) for an isotropic example, where the 

contour line is chosen from zero to 𝐵1 in order to obtain the absolute magnetic energy density. 

From the example in (a), it becomes apparent that for linear material, the energy is given by 

0.5 𝐻⃗   ⋅ 𝐵⃗    . In saturating material as shown in (b), however, only the general definition (2.17) is 

valid. It is clear that the areas above and below the saturation curve are different. This 

circumstance led to the definition of magnetic co-energy [32 pp. 22–24 (Ch. 11)], 𝑤𝜇,𝑐𝑜, which 

is given by 
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𝑤𝜇,𝑐𝑜 = 𝐻⃗   ⋅ 𝐵⃗    − 𝑤𝜇 = ∫𝐵⃗    ⋅ 𝑑𝐻⃗   

𝐶

. (2.18) 

 

Figure 2.6(c) shows a major hysteresis loop, where, in contrast to the loops shown before, 𝐵⃗     is 

the ordinate. When performing the integration from (2.17) along the closed contour of the 

hysteresis loop, we become aware that the area of the loop corresponds to the energy dissipated 

during one cycle, 𝑤𝜇,ℎ𝑦𝑠𝑡. Hysteresis loops are thus inseparably linked with dissipated energy. 

The losses associated with it are often referred to as hysteresis losses. 

Hysteresis losses are typically one of the two main contributors to the so-called iron losses, i.e. 

losses associated with iron, or ferromagnetic material in general, in magnetic systems. The 

other main part of iron losses is due to eddy currents. 

Eddy currents occur, when the magnetic flux changes in conducting material [39 pp. 661–666]. 

Mathematically, they are described by the diffusion equation and thus have the same origin as 

the aforementioned proximity and skin effects [32 pp. 27–30 (Ch. 10)]. Since the diffusion 

equation has no general solution, when no specific body with defined boundary values is given, 

this work will only qualitatively deal with eddy currents. 

When assuming a changing 𝐵⃗     field, a rotational 𝐸⃗ field will be induced in accordance with 

Faraday’s law, (2.6)(b). In conducting media, this so-called electromotive force (EMF) will 

cause an electric current acc. to Ohm’s law, (2.5) – Eddy currents are circulating within the 

material and dissipate energy by producing Joule losses acc. to (2.13). 

When taking a step back again to the hysteresis losses, we can now address the origin of these 

losses. Knowing that changes in 𝐵⃗     cause eddy currents, it becomes obvious that domain wall 

motions in conducting ferromagnetic material must be related to eddy currents. In fact, the 

speed of the wall motion is damped by eddy currents in a viscous manner [48 p. 95]. In [49], in 

reference to prior published works [50–54], it is pointed out that the physical origins of 

hysteresis losses are eddy currents and spin relaxation. Especially, when reminding the fact 

that Barkhausen jumps are local quasi-discontinuous changes of the magnetization and thus of 

the flux density, local eddy currents close to domain wall pinning sites can be identified to be 

the main source of hysteresis losses [50]. 

 

Figure 2.6: Graphical interpretation of magnetic energy and co-energy; (a) linear material; 

(b) saturating material; (c) dissipated energy in hysteresis loop 
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Although eddy currents are typically seen as dynamic losses, their connection with Barkhausen 

jumps makes them relevant also in macroscopically quasistatic re- or demagnetization 

processes. The hysteresis loops resulting from infinitely slow magnetization cycles are referred 

to as quasistatic hysteresis loops. 

When we turn around the former statement that hysteresis loops are linked with losses, we 

arrive at the conclusion that losses are the reason for hysteresis4. Moreover, we can state that 

all types of losses associated with a remagnetization cycle are necessarily expressed in terms of 

the area enclosed by the corresponding 𝐵⃗     vs. 𝐻⃗    trajectory during that cycle. These losses 

depend on the remagnetization frequency, but also on specific properties of the material such 

as stress, temperature, micro- and macrostructure. In technical processes with frequencies in a 

range allowing the usage of the MQS approximations, the losses will mainly occur due to global 

and local eddy currents [50], but in literature also other effects like magnetostriction are 

identified [41 pp. 343–349]. The latter describes the mechanic deformation of material under 

the influence of changing magnetization. It can cause acoustic noise emissions and hence must 

also be a drain for electromagnetic energy. 

With increasing remagnetization frequency, we can expect an increasing influence of global 

eddy currents and, in consequence, the shape of the resulting hysteresis loop will differ from 

that of the quasistatic loop. This can be seen, for instance in the works of Jiles [46], or, in the 

context of electrical machines, in the work of Cordier [55]. The complex interaction of global 

and local eddy currents, however, influences the domain wall motions [54, 56] and makes it 

difficult to predict the forms of the loops. 

2.1.2.7 Equivalent Current Density 

The magnetization density is measured in the same unit as the magnetic field intensity and has 

the same origin, i.e. moving (or spinning) electrical charges. In accordance with Ampere’s MQS 

law (2.4), we can thus define an intrinsic equivalent current density that causes the 

magnetization of a given specimen [35 pp. 43–44, 39 pp. 534–540, 41 pp. 8–10]. Technically 

seen, the magnetizing current density, 𝑗𝑀⃗ , is that part of charges bound to atoms or molecules 

that contributes on microscopic scale to the net molecular magnetic moment and on 

macroscopic scale to the net magnetization 𝑀⃗    . 

∮𝑀⃗    ⋅ 𝑑𝑠 ⃗
𝐶

≈∬𝑗𝑀⃗ ⋅ 𝑑𝑎⃗
𝑆

. (2.19) 

Figure 2.7 shows a graphical interpretation of (2.19) in a magnetized solenoid. In the left 

drawing, (a), slices with volumetric current density loops are shown. It emerges that the current 

densities at neighboring loops are always in opposed direction at their closest distances – within 

 
4 It was stated before that irreversible processes are causing hysteresis. In fact, the dissipation of energy 

is the reason for those processes to be irreversible. When reminding the statement that hysteresis results 

from the internal energy being stuck in a local minimum, it should be clear that the internal energy must 

have approached that minimum from a higher energy level (i.e. a local maximum) and that the difference 

energy between local maximum and minimum has to be dissipated in order to let the internal energy 

come to rest at that minimum. 
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the solenoid, they tend to cancel. Only in case of inhomogeneous magnetizations, they are 

relevant [39 pp. 538–539]. 

In homogeneous magnetization fields, the loops are uniformly distributed and have the same 

current densities. Within the body, they hence cancel completely, having only a net contribution 

along the circumference of the slices. For the representation of uniform magnetizations or when, 

in macroscopic view, only the net magnetization of the body shall be considered, it is sufficient 

to introduce a surface current density, 𝑗𝑀⃗𝑆, as shown in Figure 2.7(b) [39 pp. 539–540]. 

Mathematically, it is given by the cross product of the uniform magnetization density and a 

norm vector, 𝑛⃗, in radial direction of the solenoid on the respective point on the surface. 

𝑗𝑀⃗𝑆 = 𝑀⃗    × 𝑛⃗ (2.20) 

 

We can conclude that the macroscopic magnetization of a specimen can be considered as the 

result of an intrinsic current loop with such a spacial orientation and current density that the 

resulting field intensity corresponds to that magnetization. We will take this concept up again 

in section 2.2.3.1, where we discuss the virtual magnetic origin of synchronous machines. 

2.1.2.8 Macroscopic Approximations: Circuit Theoretical Approach 

Up to now, the electromagnetic processes were considered in a mesoscopic volume average. 

From a control engineering point of view, however, we are basically interested in the 

macroscopic electromagnetic repercussions, which can be measured and influenced via the 

electric terminals of synchronous machines. As mentioned before, the latter are MQS systems 

and as such, they are characterized by coils with ferromagnetic cores. 

 

Figure 2.7: Illustration of the concept of equivalent current density for magnetized bodies; 

(a) slices with magnetization volume current density loops for inhomogeneous 

magnetizations; (b) slices with magnetization surface current density loops for 

both, homogeneous and inhomogeneous magnetizations 
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Figure 2.8 sketches a coil as such an element known from circuit theory with two electric and 

two magnetic terminals [57 pp. 353–422]. The terminals a and b are the electric interfaces of 

the coil, where we can measure the voltage 𝑢 between the terminals and the electrical current 

𝑖 flowing into terminal a and out of terminal b. 

According to the formal definition, voltage is the difference between electric potentials at two 

different points in a conservative electric field [32 pp. 2–3 (Ch. 4)]. The terminal voltage is 

hence given by 

𝑢 ≈ −∫ 𝐸⃗ ⋅ 𝑑𝑠 ⃗
𝐶2

, (2.21) 

where 𝑑𝑠 ⃗is an infinitesimal segment of the path 𝐶2 from terminal a to b well outside the coil, 

where the electric field can be assumed to be conservative [32 pp. 24–25 (Ch. 8)]. The minus 

sign in (2.21) takes care of the fact that the path 𝐶2 is defined in opposite direction to the 

voltage 𝑢. The current through a conductor is determined from the free current density 

integrated over the cross-sectional area, 𝑆, of that conductor. The terminal current is thus  

𝑖 ≈∬𝑗𝑓⃗ ⋅ 𝑑𝑎⃗
𝑆

, (2.22) 

where 𝑎 ⃗is the norm vector of 𝑆 pointing in direction of the path 𝐶1 along the conductor from 

terminal a to b. Note that (2.22) gives a sufficiently accurate solution for 𝑖 independent from 

the position of 𝑆 as long as the conductor is surrounded by isolators with very low conductivity. 

With a given terminal current, 𝑖, the voltage along the conductor obeys Ohm’s law in its 

original, i.e. macroscopic form [37]. Hence, 

∫ 𝐸⃗ ⋅ 𝑑𝑠 ⃗
𝐶1

≈ 𝑅 ⋅ 𝑖, (2.23) 

 

Figure 2.8: Definition of macroscopic electromagnetic field repercussions for an electric coil 

with ferromagnetic core and electric terminals a and b and magnetic terminals c 

and d; dashed lines represent integration paths 𝐶1 and 𝐶2 
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where the resistance, 𝑅, is a material-specific parameter describing the conductor’s resistivity 

against the movement of electric charges averaged over the complete conductor. Note that in 

contrast to the mesoscopic form of Ohm’s law (2.5) the macroscopic equivalent usually applies 

resistivity instead of conductivity, whose relation is reciprocal. Note further that the same 

statements made with respect to the approximate character of (2.5) also hold for (2.23). 

The third quantity introduced in Figure 2.8 is the magnetic flux linkage, 𝜓, where the term 

‘linkage’ indicates that the superposed flux of a coil with multiple windings is considered. It is 

hence given by integration of the flux density over the surface 𝑆, which is enclosed by the paths 

𝐶1 +𝐶2. 

𝜓 ≈∬𝐵⃗    ⋅ 𝑑𝑎⃗
𝑆

 (2.24) 

As long as the ferromagnetic core is not saturated and surrounded by paramagnetic media (i.e. 

media with 𝜒 ≈ 0), the flux linkage ‘flows’ into the magnetic terminal c, through the 

ferromagnet and out of d. That part of the magnetic flux not passing the terminals is typically 

referred to as leakage flux and is neglected in (2.24). 

The three macroscopic quantities current, voltage und flux linkage as defined in (2.21)-(2.23) 

are related to each other by Faraday’s law for MQS systems (2.6)(b). When the closed 

integration path is again 𝐶1 + 𝐶2, we get 

−
𝑑𝜓

𝑑𝑡
≈ ∮ 𝐸⃗ ⋅ 𝑑𝑠 ⃗

𝐶1+𝐶2

= ∫𝐸⃗ ⋅ 𝑑𝑠 ⃗

𝐶1

+ ∫𝐸⃗ ⋅ 𝑑𝑠 ⃗

𝐶2

. 
(2.25) 

Substituting (2.21) and (2.23) into (2.25) finally leads to 

𝑢 ≈ 𝑅 ⋅ 𝑖 +
𝑑𝜓

𝑑𝑡
. (2.26) 

Equation (2.26) is the basis for the mathematical model of synchronous machines, or electrical 

machines in general. It is an approximate solution since it was derived by applying several 

assumptions that are repeated below for clarity: 

1. The system is assumed to be MQS, i.e. the electric energy within the system is negligible 

compared to the magnetic energy and the maximal length of the system is small 

compared to the wavelengths of occurring frequencies (→ 𝑑
𝑑𝑡
∬ 𝜖0𝐸⃗ ⋅ 𝑑𝑎⃗𝑆

≈ 0) 

2. The occurring frequencies are assumed to be low enough such that no relevant reduction 

of the effective cross-sectional area of the conductor due to proximity or skin effects has 

to be taken into account (→ 𝑅 ≈ const.) 

3. The temperature of the system is assumed to be constant such that its influence on the 

resistance can be neglected (→ 𝑅 ≈ const.) 

4. The terminal voltage is defined assuming the electrical terminals and the integration 

path between them to be located in a conservative electric field (𝑑𝜓
𝑑𝑡
≈ 0 outside the coil 

in the area between the electric terminals) 

5. Leakage flux, i.e. flux not passing the magnetic terminals, is negligible 
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6. The conductor is assumed to be perfectly isolated such that the same amount of electric 

charges flowing into terminal a flows out of terminal b, or vice versa (𝑖𝑎 = −𝑖𝑏); due to 

the MQS assumptions, which involve that the conductor is non-capacitive, that 

condition must be valid at any time 

When all these assumptions are applicable, (2.26) describes the macroscopic repercussions of 

the electromagnetic processes in a winding. It seems to be linear – at least at first sight. In 

fact, we must remind that the current produces a magnetic field acc. to Ampere’s law (2.6)(a). 

This field is amplified by the magnetization within the ferromagnetic core acc. to (2.7) and as 

extensively discussed in the former subsections, the relation between 𝐻⃗    and 𝑀⃗     is determined 

by saturation and hysteresis and is thus nonlinear. The superposition of 𝐻⃗   - and 𝑀⃗    -fields leads 

to the magnetic flux density and for a given geometry to the flux linkage. We can thus state 

that (2.26) is nonlinear in all applications, where ferromagnetic material is (re-)magnetized in 

such magnitudes that it saturates or desaturates. In common synchronous machines, this is 

usually the case, as they are designed to be as compact and material-saving as possible. 

At this point, it shall be emphasized that – regardless of all assumptions listed above – Equation 

(2.26) is explicitly valid also in case of nonlinear relations between current and flux linkage, 

because it was derived without any constraints requesting linearity. 

When considering the nonlinear relation between current and flux linkage, (2.26) can be 

rewritten by applying the chain rule of differential calculus [58 p. 437] such that only the 

quantities related with the electrical terminals occur. Hence, 

𝑢 ≈ 𝑅 ⋅ 𝑖 +
𝜕𝜓

𝜕𝑖

𝑑𝑖

𝑑𝑡
, (2.27) 

with 

𝐿 =
𝜕𝜓

𝜕𝑖
 (2.28) 

as the formal definition of the inductance 𝐿. 

It is important to note that in many applications, an affine or even linear relation between flux 

linkage and current is assumed for convenience. In the affine case, the differential quotient from 

(2.28) simplifies to a difference quotient, and in the linear case to an absolute quotient. Hence, 

𝐿𝑎𝑓𝑓𝑖𝑛𝑒 =
Δ𝜓

Δ𝑖
 (2.29) 

and 

𝐿𝑙𝑖𝑛𝑒𝑎𝑟 =
𝜓

𝑖
. (2.30) 

Figure 2.9(a) and (b) illustrate the definitions of affine and linear inductances. The linear 

inductance acc. to (2.30) is found very often in literature. It is, however, important to note that 

it is only applicable when no flux linkage offset is present and no magnetic saturation occurs. 
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In applications where magnetic saturation must be taken into account, the inductance value 

acc. to (2.28) is depending on the actual operating point as shown in Figure 2.9(c). Whenever 

it is necessary to linearize a system at a given operating point, it is crucial to properly 

distinguish between the different definitions of inductances acc. to (2.28) to (2.30). As shown 

in (c), where the slopes of the grey, dashed lines correspond the inductances at the operating 

point, all three inductances have different values. 

Generally, (2.28) is the formal correct definition, whereas (2.29) is an approximation that can 

be used for linearization. For sufficiently small Δ𝑖, we obtain the small-signal inductance, which 

is a good approximation for the actual differential inductance acc. to (2.28). For Δ𝑖 = 𝑖𝑜𝑝, as 

it is shown in Figure 2.9(c), we obtain the large-signal inductance, often also referred to as 

absolute inductance. It corresponds to the average slope of the flux linkage curve in the range 

from 𝑖 = 0 to 𝑖 = 𝑖𝑜𝑝. 

 

In terms of circuit theory, (2.27) can be interpreted as lumped element model as shown in 

Figure 2.10. Each term on the RHS of (2.27) is considered as discrete element linking voltage 

and current (Resistor) or current derivative (Inductor), respectively. 

 

 

2.2 Description of Synchronous Machines 

2.2.1 Preliminaries on Synchronous Machines 
Synchronous machines exist in several variants. They all have in common that the stator 

windings produce a rotating magnetic field. As the name indicates, the rotor tends to follow 

this stator field, such that a synchronous rotation occurs. 

 

Figure 2.9: Graphical interpretations of inductances; (a) affine relation between flux linkage 

and current; (b) linear relation between flux linkage and current; (c) nonlinear 

relation between flux linkage and current 

 

Figure 2.10: Lumped element model of the electric part of a coil as shown in Figure 2.8 
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In order to produce a rotational magnetic field, at least two non-parallel windings are necessary. 

The simplest configuration with two orthogonal windings is shown in Figure 2.11. In the 

depicted cross-sectional view, a stator-fixed Cartesian coordinate system with the perpendicular 

axes 𝛼 and 𝛽 is introduced. 

 

A useful definition in order to simplify the field calculations is the current loading. In the same 

manner as magnetization can be interpreted as surface current density acc. to (2.20) (see Figure 

2.7(b)), the current density in axial direction in the windings is interpreted as linear current 

density, or current loading at an infinitesimal layer in the air gap between stator and rotor [38 

p. 6]. It is defined as axial current per differential length 𝜕𝑙 along the middle of the air gap. 

𝑎 =
𝜕

𝜕𝑙
∬𝑗 ⃗⋅ 𝑑𝑎⃗
𝑆

≈
Δ

Δ𝑙
∬𝑗 ⃗⋅ 𝑑𝑎⃗
𝑆

 (2.31) 

The approximate solution in (2.31) corresponds to the mean current loading over a finite 

circumferential section Δ𝑙 and helps to further simplify calculations. The surface 𝑆 is typically 

chosen as the area of a stator slot and Δ𝑙 is the corresponding slot opening. As a result, we 

will get a discrete current loading distribution along the circumference, which has the value of 

the mean current loading in the areas of the corresponding slots and which is zero elsewhere 

[59 p. 61]. 

By means of Fourier analysis, the discrete current loading can be expressed in terms of 

harmonic components. For the moment, we will neglect the fact that stators are slotted in order 

to host the windings and only consider the fundamental wave of the current loading. This is 

analogue to assuming the windings to be sinusoidally distributed along the circumference of 

the stator, as indicated in Figure 2.11(a). In this case, the superposition of the current loadings 

of both coils give a joint, likewise sinusoidal current loading distribution (cf. superposition of 

harmonic functions [58 p. 83]). 

 

Figure 2.11: Example of a stator in cross-sectional view with a winding configuration, which 

allows the generation of rotational fields by two orthogonal windings with 

idealized sinusoidal distribution along the circumference 
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When, as shown in Figure 2.11(b), sinusoidally alternating currents (AC) with a phase 

difference of ±90° flow through both coils, the joint current loading moves along the 

circumference. In accordance with the MQS approximation of Ampere’s Law, a synchronously 

rotating magnetic field is the result. The direction of rotation is determined by the sign of the 

phase delay between both currents. In the shown case, where 𝑖𝛼 leads 90° in phase, a 

mathematically positive or counter-clockwise rotation occurs. 

Additionally to the Cartesian system, it is useful to introduce also a polar coordinate system 

with the mechanical angle 𝜗𝑚, whose reference direction is the 𝛼-axis, as shown in Figure 

2.11(a). 

In practice, most synchronous machines have three symmetrical, star-connected5 phases as 

shown in Figure 2.12. This has the advantage that only three power lines are necessary to 

supply the motor instead of the obligatory four lines a two phase machine would need. The 

assumptions from the definition of the lumped element model (especially numbers 1 and 6, see 

p. 20) allow the application of Kirchhoff’s current law [60]. Employing it in the given case with 

star-connection without neutral conductor directly leads to 

𝑖𝑎 + 𝑖𝑏 + 𝑖𝑐 = 0, (2.32) 

which reduces the degrees of freedom for the three stator currents to two. 

 

 

 
5 Star connection is the standard for three-phase synchronous machines, since the alternative delta 

connection would allow circular short circuit currents, which occur in the case of third harmonic 

components (e.g. due to magnetic saturation, see Section 2.2.3) in the electromotive force (EMF) of the 

machine [2 p. 429]. 

 

Figure 2.12: Stator configuration of a star-connected three-phase synchronous machine 
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The three stator coils are wound such that their spatial orientations are exactly ±120° 𝑝⁄  

displaced from each other, whereat p denotes the number of pole pairs. 

Provided that assumption number 4 (see p. 20) is applicable, the phase voltages 𝑢𝑠,𝑎, 𝑢𝑠,𝑏 and 

𝑢𝑠,𝑐 are linked with the applied terminal voltages 𝑢𝑢, 𝑢𝑣 and 𝑢𝑤 by Kirchhoff’s voltage law [60]. 

[

𝑢𝑢 − 𝑢𝑣
𝑢𝑣 − 𝑢𝑤
𝑢𝑤 − 𝑢𝑢

] = [
1 −1 0
0 1 −1
−1 0 1

][

𝑢𝑠,𝑎
𝑢𝑠,𝑏
𝑢𝑠,𝑐
] (2.33) 

Since the rank of the matrix in (2.33) is two, we can state that the degree of freedom for the 

terminal voltages is also two, whereas the phase voltages have three degrees of freedom [61 p. 

53]. It is thus not possible to determine the phase voltages from the terminal voltages without 

knowing the star point potential 𝑢0. 

Due to the symmetry of the windings and when we assume an equal temperature distribution 

in the machine, we get the following relations for the stator resistances. 

𝑅𝑠,𝑎 = 𝑅𝑠,𝑏 = 𝑅𝑠,𝑐 = 𝑅𝑠 (2.34) 

The phase inductances of the stator windings, 𝐿𝑠,𝑎, 𝐿𝑠,𝑏 and 𝐿𝑠,𝑐, however, can differ, since 

they depend not only on the stator but also on the magnetic coupling with the rotor and the 

level of magnetic saturation. 

At this point, we get to the main distinguishing criterion of standard sine-wave commutated 

synchronous machines – the rotor design. It determines the way the rotor field is produced and 

how the inductances change during a rotor turn. Figure 2.13 shows three examples of brushless 

synchronous machines, i.e. machines without field windings in the rotor. The advantage of 

omitting rotor windings is that no electric current and, in consequence, no direct current (DC) 

power supply and no carbon brushes are necessary. Unless superconductors are employed (as, 

for instance, in high-power marine applications [62]), the rotor current is associated with Ohmic 

losses. For this reason, permanent magnet (PM) synchronous machines generally present higher 

efficiency than the electrically excited ones, however, at increased raw material costs due to the 

higher price of PM material. The absence of brushes, on the other hand, reduces the 

maintenance costs and increases the drive’s robustness. Additionally, the construction process 

of electrically exited rotors is more complex [63]. For those reasons, this work addresses only 

the three main types of brushless synchronous motors, as exemplarily shown in Figure 2.13. 

Common PM materials in synchronous machines are ferrites in low cost applications, 

Sammarium-Cobalt (SmCo) in high-performance applications and Neodymium-Iron-Boron 

(NdFeB) in small-size or high-performance applications with low operating temperature [48 p. 

28]. 
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The subfigures (a) and (b) show permanent magnet synchronous machines (PMSMs). In (a), 

the field of the internal rotor is produced by surface (mounted) permanent magnets (SPM), 

whereas in (b) interior permanent magnets (IPM) are employed. Subfigure (c) shows a 

synchronous reluctance machine (SynRM6), where no PMs are used. All three machines have 

the same three-phase stators. They have four poles each at the stator and the rotor, i.e. 𝑝 = 2. 

The magnetic stator field or – in case of the PMSMs – the joint field as superposition of stator 

and rotor field passes along both yokes and crosses the air gap. Here, Lorentz forces arise and 

sum up to a torque that is applied to external processes via the shaft of the machine. 

As indicated, stator and rotor are constructed rotationally symmetric in order to maximally 

utilize the ferromagnetic material and to avoid torque fluctuations during operation. 

In Figure 2.11, the stator-fixed 𝛼𝛽 coordinate system has already been introduced. It is also 

depicted in Figure 2.13. Note that the angle between the axes in the real spatial interpretation 

is 90° 𝑝⁄ = 45°, since 𝑝 = 2. For the mathematical interpretation, however, an electrical rotor 

angle is introduced as 

𝜗𝑟 = 𝜗𝑚 ⋅ 𝑝. (2.35) 

Due to this definition, we can mathematically describe the electrical processes in the machine 

in terms of a stator-fixed system with orthogonal axes. This is further described in the following 

section 2.2.2. 

 
6 In literature also referred to as reluctance synchronous machine and abbreviated by RSM. In German 

literature, however, RSM is reserved for ‘Reihenschlussmaschine’, i.e. series-wound DC machine. 

Additionally, the abbreviation SRM is typically used for ‘switched reluctance machine’. We will hence 

use the abbreviation SynRM within this work in order to avoid confusion. 

 

Figure 2.13:  Cross-sectional views of three-phase brushless synchronous machines with four 

poles each; (a): surface permanent magnet synchronous motor (SPMSM); (b): 

interior permanent magnet synchronous motor (IPMSM); (c): synchronous 

reluctance motor (SynRM) 
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In order to simplify the mathematical representation of the rotor’s magnetic properties, it is 

useful to define a rotor-fixed Cartesian coordinate system. It is also drawn in Figure 2.13 in 

dark grey. Per common definition, it has a 𝑑-axis (direct axis) that is aligned with the rotor 

flux and a corresponding (in terms of the electrical angle) perpendicular 𝑞-axis. In case of the 

SynRM, where no flux is produced in the rotor, the 𝑑-axis is aligned with the magnetically easy 

axis of the rotor, i.e. with direction of the flux path with the least air gap. This definition has 

the advantage that for all types of synchronous machines, the stable operating point under no 

load condition is obtained, when the 𝑑-axis is aligned with the stator field. 

Rotors with SPMs are usually easier and hence cheaper to produce. Common PM materials 

have a relative permeability of 𝜇𝑟 ≈ 1 (SmCo and NdFeB magnets have both 𝜇𝑟 = 1.05, 

Barium-Iron ferrites have 𝜇𝑟 = 1.1 [39 p. 552], since at remanence magnetization they are 

almost completely saturated). They can thus be considered as an increase of the effective air 

gap for the magnetic flux traversing the magnets. In case of the surface permanent magnet 

synchronous machine (SPMSM), it can be stated that both, the 𝑑- and the 𝑞- axis flux linkage 

traverse an equidistant air gap. An SPM motor hence does not have an easy axis. In practice, 

however, it nevertheless exhibits a magnetic anisotropy, which results from pre-saturation of 

the 𝑑-axis due to the permanent magnets, as will be shown later in section 4.3. 

As the name indicates, in interior permanent magnet synchronous machines (IPMSM) the 

magnets are embedded into the rotor. This is advantageous, because the PMs are removed from 

the air gap, which, in consequence, can be significantly reduced. By this means, the magnetic 

utilization of the rotor yoke can be improved. When the magnets, however, are surrounded by 

ferromagnetic material, flux barriers are necessary in order to prevent the PM flux from directly 

closing on the shortest way within the rotor. The typically air-filled flux barriers cause a strict 

separation between the 𝑑- and the 𝑞-flux paths. Since the 𝑑-path has an increased effective air 

gap due to the PMs and the flux barriers, both paths have different magnetic resistances, or 

reluctances, i.e. the rotor exhibits magnetic shape anisotropy. This reluctance difference can be 

exploited in order to generate an additional so-called reluctance torque. The superposition with 

the torque originating from the PM field allows higher torque and power densities than non-

reluctant machines have [2 p. 866]. As in SPM motors, the PMs pre-saturate the 𝑑-flux path 

and thus enhance the magnetic anisotropy due to the salient rotor design. 

Another use of salient rotor designs with flux barriers is in synchronous reluctance machines. 

Here, the only torque produced is the reluctance torque and the magnets are consequently 

omitted. This leads to cheaper and more temperature resistant motors, however, at the expense 

of lower torque and power densities [59 p. 775]. 

 

2.2.2 Space Vector Notation 
An efficient and common mathematical description of synchronous machines applies the space 

vector notation. Here, the idea is to express the magnetic field distributions of an 𝑛-phase motor 

in terms of the simple two-dimensional case as depicted in Figure 2.11. A space vector is, 

accordingly, a two-dimensional vector with a spatial orientation in the cross-sectional view of a 

motor. It should be noted that in this cross-sectional interpretation, only currents in axial 
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direction and related fields in radial direction are considered, or, with other words, the end 

windings are neglected. This is a valid simplification for standard radial flux machines, where 

the length of the machine is significantly larger than its diameter. For all machines used within 

this work, this condition is fulfilled. 

2.2.2.1 Current Space Vector 

The Figures 2.14 to 2.16 illustrate an example of the space vector theory for currents in the 

stator windings of three-phase motors with two stator poles. 

 

Figure 2.14 shows the currents in a symmetrical three-phase alternating current (AC) system. 

Within the diagram, the times 𝑡1 and 𝑡2 and the corresponding instantaneous line currents are 

defined as they are shown in the following Figures 2.15 and 2.16. For simplicity, the stators in 

Figure 2.15 are drawn without stator slots and with non-sinusoidally distributed windings, 

which would lead to rectangular shaped current density distributions along the circumference 

as shown in Figure 2.16. However, the problem of harmonic distortions due to slotting, non-

sinusoidal winding schemes, air gap geometries or magnetic saturation shall be neglected for 

the moment. We thus only consider the fundamental wave of the current loading as indicated, 

which would correspond to a motor with sinusoidally distributed windings [64 p. 182] as in 

Figure 2.11. From Figure 2.16, we can see that the fundamental component of the current 

loading has a constant amplitude and thus describes a propagating wave traveling along the 

stator in positive direction of the angle 𝜗. 

As depicted in Figure 2.15, a stator current space vector for each phase is defined as the 

projection of the generic instantaneous line current on the respective winding axis. This might 

seem unusual, since it is defined orthogonal to the extrema of the current loading. However, 

space vectors shall describe the magnetic couplings between the phases and also between the 

rotor and stator fields and thus point into the direction of the magnetic field produced by the 

electrical current of each winding. The superposition of the three windings’ fields consequently 

leads to an overall stator current space vector 𝒊Σ
𝑠  as summation of the three phase current 

vectors. 

𝒊Σ
𝑠 = 𝒊𝑎

𝑠 + 𝒊𝑏
𝑠 + 𝒊𝑐

𝑠 (2.36) 

In order to not confuse space vectors with the field vectors from section 2.1, space vectors are 

written in bold letters. The distinction from matrices is made by only using small letters for 

 

Figure 2.14: Symmetrical three-phase alternating current in the phases a, b and c over time 
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space vectors and capital letters for matrices. For both, space vectors and matrices, the 

superscript 𝑠  denotes the reference coordinate system of the space vectors, which is in this case 

a stator-fixed Cartesian system with the two perpendicular axes 𝛼 and 𝛽, respectively. Per 

definition, the abscissa of the stator-oriented system is aligned with the phase a winding’s axis, 

as shown in Figures 2.13 and 2.15. 

 

 

By considering the information about the spatial distribution of the windings, we can write the 

phase current vectors as 

𝒊𝑎
𝑠 = [

𝑖𝑎
0
] ,

𝒊𝑏
𝑠 = 𝑻 (

2𝜋

3
) [

𝑖𝑏
0
] ,

𝒊𝑐
𝑠 = 𝑻 (−

2𝜋

3
) [
𝑖𝑐
0
] ,

 (2.37) 

 

Figure 2.15: Graphical interpretation of stator current space vectors for three-phase AC 

motors at two different times 𝑡1 and 𝑡2 defined in Figure 2.14 with the 

fundamental component of the current loading 

 

Figure 2.16: Current density distribution along the circumference of the stators from Figure 

2.15 at the times 𝑡1 and 𝑡2 as defined in Figure 2.14 
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where 𝑻 (𝜗) is the rotation matrix, which – when multiplied with a given two-dimensional 

column vector – gives a new vector that is rotated by the angle 𝜗 in mathematically positive 

sense [58 p. 299, 65 p. 66]. 

𝑻 (𝜗) = [
cos 𝜗 − sin 𝜗
sin 𝜗 cos 𝜗

] (2.38) 

With (2.37)-(2.38), we can rewrite (2.36) as 

𝒊Σ
𝑠 = [

𝑖𝑎
0
] + [

−1 2⁄ −
√
3 2⁄

√
3 2⁄ −1 2⁄

] [
𝑖𝑏
0
] + [

−1 2⁄
√
3 2⁄

−
√
3 2⁄ −1 2⁄

] [
𝑖𝑐
0
]

= [
1
0
] 𝑖𝑎 + [

−1 2⁄
√
3 2⁄
] 𝑖𝑏 + [

−1 2⁄

−
√
3 2⁄
] 𝑖𝑐.

 (2.39) 

By collecting the scalar phase currents in a three-dimensional column vector, we can further 

simplify (2.39) to  

𝒊Σ
𝑠 = [

1 −1 2⁄ − 1 2⁄

0
√
3 2⁄ −

√
3 2⁄
]

[
 
 
𝑖𝑎
𝑖𝑏
𝑖𝑐]
 
 . (2.40) 

When applying (2.40) to the steady state three-phase AC system with the line current 

amplitude 𝑖 ̇ ̂as shown in Figures 2.14 to 2.16, we see that 𝒊Σ
𝑠  rotates at the AC frequency with 

a constant amplitude of 3 2⁄ ⋅ 𝑖 ̇.̂ It is therefore common practice to define a space vector with a 

scaling factor of 2 3⁄  in order to normalize it to the phase amplitude [2, 66–68]. This so-called 

non-power-invariant form has the advantage that the orthogonal projections of the current 

space vector on the phase axes yields the instantaneous values of the respective line current [66 

p. 35] as indicated by the dotted lines in Figure 2.15. It is worth noting that this is only valid, 

if no zero-sequence components are present, which is guaranteed in our case due to the star 

connection of the windings (see Equation (2.36)). 

In steady-state, the electrical behavior of AC machines can be described by single-phase 

equivalent circuits [59 pp. 223–225 and 516]. It is due to this fact that space vectors are most 

commonly defined as complex vectors, so-called space phasors [2, 59, 66–69] in analogy to the 

phasors used for the analysis of AC equivalent circuits [70 p. 18, 71 pp. 33–42]. It is important, 

however, not to confuse both phasors, since space phasors have a spatial orientation (the 𝛽-

axis is defined as imaginary axis) and can also describe non-sinusoidal variables [66 p. 33]. For 

that reason and also because of limitations in describing the magnetic anisotropy of 

synchronous machines, the mathematically equivalent generic vector notation will be used 

within this work. 

Concluding above considerations, we get an expression for calculating the stator current 

(denoted by index 𝑠) space vector 𝒊𝑠
𝑠 from the generic instantaneous line currents by the 

bijective transformation function  

𝒊s
𝑠 = [

𝑖𝑠,𝛼
𝑖𝑠,𝛽
] =
2

3
[
1 − 1 2⁄ −1 2⁄

0
√
3 2⁄ −

√
3 2⁄
]

[
 
 
𝑖𝑎
𝑖𝑏
𝑖𝑐]
 
 . (2.41) 
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Equation (2.41) is the vectorial equivalent of the Clarke transformation (with the difference 

that the applied scaling factor there is 1/3) [69 pp. 54–70]. Its inverse can be obtained by means 

of the pseudo-inverse of the transformation matrix. Hence, 

[
 
 
𝑖𝑎
𝑖𝑏
𝑖𝑐]
 
 =
3

2
[

 
 
2 3⁄ 0

− 1 3⁄
√
3 3⁄

− 1 3⁄ −
√
3 3⁄ ]

 
 
[
𝑖𝑠,𝛼
𝑖𝑠,𝛽
]. (2.42) 

2.2.2.2 Voltage Space Vector 

In voltage source inverter (VSI) driven applications, as exclusively considered within this thesis, 

the terminal voltages are the actuation variables for controlling synchronous machines. For a 

complete mathematical model, also a space vector for the stator voltages must be defined. 

Therefore, we collect the terminal equations (2.26) for the three phase windings and rewrite 

them in matrix notation as 

[

𝑢𝑎
𝑢𝑏
𝑢𝑐

] = 𝑅𝑠 ⋅

[
 
 
𝑖𝑎
𝑖𝑏
𝑖𝑐]
 
 +
𝑑

𝑑𝑡
[
 
 
𝜓𝑎
𝜓𝑏
𝜓𝑐]
 
 , (2.43) 

where the stator resistance is scalar, since we assumed it to have the same value for each phase 

acc. to (2.34). 

From (2.41), we know that the Clarke transformation is the result of a linear matrix 

multiplication. We can thus apply the transformation also to (2.43) without loss of generality. 

In this particular case, however, we shall extend the transformation matrix by a third line 

accounting for a potential zero-sequence component. For the current space vector (2.41), this 

line was omitted, since star connection without neutral conductor suppresses zero-sequence 

currents (see (2.32)). The phase voltages in unbalanced7 star-connected machines, however, can 

have a zero-sequence component, 𝑢𝑠,𝛾. In accordance with the theory of symmetrical 

components, the zero-sequence voltage is defined as the mean value of the instantaneous phase 

voltages [72 pp. 6–12]. We can thus transform (2.43) by matrix multiplication and obtain 

2

3
[
 
 
1 −1 2⁄ −1 2⁄

0
√
3 2⁄ −

√
3 2⁄

1 2⁄ 1 2⁄ 1 2⁄ ]
 
 [

𝑢𝑎
𝑢𝑏
𝑢𝑐

]

= 𝑅𝑠 ⋅
2

3
[
 
 
1 −1 2⁄ − 1 2⁄

0
√
3 2⁄ −

√
3 2⁄

1 2⁄ 1 2⁄ 1 2⁄ ]
 
 

[
 
 
𝑖𝑎
𝑖𝑏
𝑖𝑐]
 
 +
𝑑

𝑑𝑡
(

  
2

3
[
 
 
1 −1 2⁄ − 1 2⁄

0
√
3 2⁄ −

√
3 2⁄

1 2⁄ 1 2⁄ 1 2⁄ ]
 
 

[
 
 
𝜓𝑎
𝜓𝑏
𝜓𝑐]
 
 

)

  , 

(2.44) 

which can be rewritten compacter in extended space vector notation as 

[

𝑢𝑠,𝛼
𝑢𝑠,𝛽
𝑢𝑠,𝛾
] = 𝑅𝑠

[
 
 
𝑖𝑠,𝛼
𝑖𝑠,𝛽
0 ]
 
 +
𝑑

𝑑𝑡
[

 
 
𝜓𝑠,𝛼
𝜓𝑠,𝛽
𝜓𝑠,𝛾]

 
 
. (2.45) 

 
7 Reminding the fact that the three phase inductances can differ due to salient rotor geometry and 

magnetic saturation (see Section 2.2.1) 
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It was mentioned before that the factor 2 3⁄  in the Clarke transformation scales the space vector 

to the instantaneous phase values of the respective quantities (see p. 30). It is worth noting 

that in consequence, the resistance of a single phase can be applied without scaling in the space 

vector model. 

From (2.44) and (2.45), we can see that the extended voltage space vector is given by 

[

𝑢𝑠,𝛼
𝑢𝑠,𝛽
𝑢𝑠,𝛾
] =
2

3
[
 
 
1 −1 2⁄ −1 2⁄

0
√
3 2⁄ −

√
3 2⁄

1 2⁄ 1 2⁄ 1 2⁄ ]
 
 [

𝑢𝑎
𝑢𝑏
𝑢𝑐

]. (2.46) 

The inverse transformation of (2.46) can be obtained by matrix inversion. Hence, 

[

𝑢𝑎
𝑢𝑏
𝑢𝑐

] =
3

2
[

 
 
2 3⁄ 0 2 3⁄

− 1 3⁄
√
3 3⁄ 2 3⁄

− 1 3⁄ −
√
3 3⁄ 2 3⁄ ]

 
 
[

𝑢𝑠,𝛼
𝑢𝑠,𝛽
𝑢𝑠,𝛾
]. (2.47) 

For cost effectiveness, most star-connected synchronous machines do not have an accessible star 

point. It is thus not possible to directly measure its potential 𝑢𝑠,0 (see Figure 2.12). By means 

of Kirchhoff’s voltage law, however, we can relate it with the zero-sequence voltage by 

𝑢𝑠,𝛾 =
𝑢𝑎 + 𝑢𝑏 + 𝑢𝑐

3
= 𝑢𝑠,0 +

𝑢𝑢 + 𝑢𝑣 + 𝑢𝑤
3

. (2.48) 

The zero-sequence voltage is thus the sum of the (unknown) star point potential and the zero-

sequence component of the supply voltage. The latter depends on the voltage source topology 

and the modulation scheme [73]. Both are not in the scope of this work and thus will be taken 

as given (see description of the test rig in Chapter 3). We will therefore assume that we cannot 

freely influence the zero-sequence component of the supply voltage. 

When we remind the equation for the terminal voltages (2.33) and substitute the phase voltages 

by (2.47), we get 

[

𝑢𝑢 − 𝑢𝑣
𝑢𝑣 − 𝑢𝑤
𝑢𝑤 − 𝑢𝑢

] =
3

2
[

 
 
1 −

√
3 3⁄ 0

0 2
√
3 3⁄ 0

−1 −
√
3 3⁄ 0]

 
 
[

𝑢𝑠,𝛼
𝑢𝑠,𝛽
𝑢𝑠,𝛾
]. (2.49) 

From (2.49), we can see that the terminal voltages do not depend on the zero-sequence 

component 𝑢𝑠,𝛾, or vice versa. The two 𝛼 and 𝛽 components of the voltage space vector do thus 

have the same content of information as the terminal voltages, which corroborates the 

statement from section 2.2.1 that the terminal voltages have two degrees of freedom. 

We can conclude that we can neither measure, nor freely influence the zero-sequence voltage. 

For that reason and also due to the fact that 𝑢𝑠,𝛾 does not influence the mechanical behavior 

of the machine, we will henceforth consequently calculate with two-dimensional (𝛼𝛽) voltage 

space vectors. We can thus remove the redundant information in (2.49) and give its inverse 

transformation as 

[
𝑢𝑢 − 𝑢𝑣
𝑢𝑤 − 𝑢𝑢

] =
3

2
[
1 −

√
3 3⁄

−1 −
√
3 3⁄
] [
𝑢𝑠,𝛼
𝑢𝑠,𝛽
], (2.50) 
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𝒖𝑠
𝑠 = [

𝑢𝑠,𝛼
𝑢𝑠,𝛽
] =
2

3
[
1 2⁄ − 1 2⁄

−
√
3 2⁄ −

√
3 2⁄
] [
𝑢𝑢 − 𝑢𝑣
𝑢𝑤 − 𝑢𝑢

]. (2.51) 

 

2.2.2.3 Flux Linkage Space Vector 

The last missing space vector needed for a complete mathematical model is the flux linkage 

space vector. It can be obtained in the same manner as the voltage space vector from 

multiplying (2.43) with the Clarke transformation matrix. Since the transformation matrix is 

time-invariant, it can be included into the time-derivative of the flux linkage, leading directly 

to 

𝝍𝑠
𝑠 = [

𝜓𝛼
𝜓𝛽
] =
2

3
[
1 −1 2⁄ − 1 2⁄

0
√
3 2⁄ −

√
3 2⁄
]

[
 
 
𝜓𝑎
𝜓𝑏
𝜓𝑐]
 
  (2.52) 

and its inverse, 

[
 
 
𝜓𝑎
𝜓𝑏
𝜓𝑐]
 
 =
3

2
[

 
 
2 3⁄ 0

−1 3⁄
√
3 3⁄

−1 3⁄ −
√
3 3⁄ ]

 
 
[
𝜓𝑠,𝛼
𝜓𝑠,𝛽
]. (2.53) 

In (2.52) and (2.53), the zero-sequence component, 𝜓𝑠,𝛾, was also omitted, since we cannot 

measure it, we cannot freely influence it by applying a voltage 𝑢𝑠,𝛾 and we cannot relate it to 

the current as its zero-sequence component is always zero. 

2.2.3 General Mathematical Model 

2.2.3.1 The Electric Model 

In the previous section, the space vector notation was introduced. Combining it with the 

electromagnetic field theory from section 2.1.2 leads to the stator (index 𝑠) voltage balance in 

a stator-oriented (superscript 𝑠) reference frame [2 p. 761, 66 p. 60]. 

𝒖𝑠
𝑠 = 𝑅𝑠𝒊𝑠

𝑠 +
𝑑

𝑑𝑡
𝝍𝑠
𝑠 (2.54) 

The first term on the RHS of (2.54) is the Ohmic voltage drop caused by the current space 

vector 𝒊𝑠
𝑠 at the phase resistances 𝑅𝑠. The second term is the time derivative of the flux linkage 

vector 𝝍𝑠
𝑠. 

As already discussed in the end of section 2.1.2, the relation between current and flux linkage 

is typically nonlinear in synchronous machines. Additionally, the shape of the rotor can cause 

a magnetic anisotropy. In order to account for that shape anisotropy, it is useful to transform 

the current and flux linkage space vectors into a rotor-oriented coordinate system and describe 

their nonlinear relation by a general vector function, 𝒇𝑟. Hence, 

𝝍𝑠
𝑟 = 𝒇𝑟(𝒊𝑠

𝑟). (2.55) 

Note that 𝒇𝑟 can only be bijective, when magnetic hysteresis is neglected. In this case, 𝒇𝑟 is 

invertible and we can write 
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𝒊𝑠
𝑟 = 𝒇𝑟−1(𝝍𝑠

𝑟). (2.56) 

When the stator is magnetically isotropic and the effects of discrete winding distributions and 

slotting are neglected, 𝒇𝑟 does not depend on the rotor angle. 

The transformation of any space vector quantity, 𝒙, from a stator- into a rotor-oriented 

reference frame is done by means of the rotation matrix, 𝑻 , which was given in (2.38). In (2.35), 

the angle between the stator 𝛼- and the rotor 𝑑-axis was introduced as 𝜗𝑟. The transformation 

is thus done by  

𝒙𝑟 = 𝑻 (−𝜗𝑟)𝒙
𝑠. (2.57) 

Note that 𝑻  is a skew-symmetric 2 × 2 matrix. In combination with its trigonometric character, 

we can state that 

𝑻 −1(𝜗) = 𝑻 𝑇 (𝜗) = 𝑻 (−𝜗) = [
cos 𝜗 sin 𝜗
− sin 𝜗 cos 𝜗

], (2.58) 

where 𝑻 𝑇  denotes the transpose of 𝑻 . With (2.58), we can give the inverse transformation of 

(2.57), i.e. the transformation of a vector in rotor coordinates into stator coordinates, as 

𝒙𝑠 = 𝑻 (𝜗𝑟)𝒙
𝑟. (2.59) 

The time-derivative of 𝑻 (𝜗𝑟) is given by 

𝑑

𝑑𝑡
𝑻 (𝜗𝑟) = 𝜔𝑟𝑱𝑻 (𝜗𝑟), (2.60) 

where 𝜔𝑟 is the electrical angular velocity of the rotor and 𝑱 is the matrix analogon to the 

complex operator 𝑗 in phasor analysis, i.e. a vector rotation by 𝜋 2⁄ . Hence, 

𝜔𝑟 =
𝑑

𝑑𝑡
𝜗𝑟 (2.61) 

and 

𝑱 = 𝑻 (
𝜋

2
) = [

0 −1
1 0

]. (2.62) 

With (2.57)-(2.62), the transformation of (2.54) into rotor coordinates gives us 

𝒖𝑠
𝑟 = 𝑅𝑠𝒊𝑠

𝑟 + 𝜔𝑟𝑱𝝍𝑠
𝑟 +
𝑑

𝑑𝑡
𝝍𝑠
𝑟. (2.63) 

In (2.63), we can now eliminate either the current or the flux linkage by means of (2.55) and 

(2.56), respectively. The first case is straightforward and results in 

𝒖𝑠
𝑟 = 𝑅𝑠𝒇

𝑟−1(𝝍𝑠
𝑟) + 𝜔𝑟𝑱𝝍𝑠

𝑟 +
𝑑

𝑑𝑡
𝝍𝑠
𝑟. (2.64) 

The second case can be done in a similar manner as in (2.27), which led to the definition of the 

inductance acc. to (2.28). This time, however, we must take into account that the machine 

windings are magnetically coupled with each other as well as with the permanent magnetic flux 

linkage. What this means is exemplarily shown in Figure 2.17. In case (a), where two coils are 

coupled by a ferromagnetic toroid, the flux linkage produced by one coil will also flow through 
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the other coil (when leakage flux is neglected). In consequence, the flux linkage 𝜓12 will depend 

on both, 𝑖1 and 𝑖2. 

The second example, (b), shows two coils with perpendicular winding axes. In free space, their 

magnetic coupling would be negligible. When wound around a ferromagnetic sphere, however, 

the fields of both coils are applied to the same material and thus cause magnetic saturation. 

The changing level of saturation caused by one coil in turn influences the magnetic properties 

of the other coil. This effect is called magnetic cross-saturation and is illustrated in Figure 

2.17(c) and (d). 

We assume that the ferromagnetic material is isotropic. When we further assume that the 

current 𝑖𝑦 is zero, the resulting flux linkage space vector, 𝝍𝑥(𝑖𝑥, 0), is aligned with the current 

space vector 𝒊𝑥 in 𝑥-direction. When we now let a current 𝑖𝑦 flow in the other coil while 𝑖𝑥 is 

hold constant, the resulting current space vector 𝒊𝑥𝑦 = 𝒊𝑥 + 𝒊𝑦 will cause a likewise aligned flux 

linkage space vector, as shown in Figure 2.17(d). In linear material, the flux linkage vector 

would correspond to 𝝍𝑥𝑦, which would have the same 𝑥-component as 𝝍𝑥(𝑖𝑥, 0). In case of 

saturating material, however, the resulting flux linkage vector, 𝝍𝑥𝑦
′ , will be smaller, depending 

on the level of saturation as indicated in Figure 2.17(c). The corresponding 𝑥-component, 

𝜓𝑥
′ (𝑖𝑥, 𝑖𝑦) will hence be smaller than 𝜓𝑥(𝑖𝑥, 0) although the current 𝑖𝑥 was not changed. 

In synchronous machines, typically, both types of magnetic coupling between the three phase 

windings occur. The direct coupling as described in the first example, (a), is inherently 

considered in the space vector notation, which allows to express the three coils as two 

 

Figure 2.17: Examples of magnetically coupled coils; (a) two coils on a ferromagnetic toroid; 

(b) two perpendicular coils around a ferromagnetic sphere; (c) anhysteretic 

saturation curve of ferromagnetic material; (d) effect of cross-saturation in a two-

dimensional winding system 
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perpendicular coils. Since this corresponds to the second example, (b-d), we will only have to 

consider magnetic cross-saturation, when working with space vectors. Additionally, in case of 

PM machines, the coupling between the PM flux linkage and the virtual space vector coils must 

be incorporated in 𝒇𝑟. 

As a consequence of the magnetic couplings, we can conclude that both components of the flux 

linkage space vector are depending on both current vector components. In this case, the flux 

linkage can be eliminated in (2.63) by means of (2.55) and the chain rule of differential calculus. 

Hence, 

𝒖𝑠
𝑟 = 𝑅𝑠𝒊𝑠

𝑟 + 𝜔𝑟𝑱𝒇
𝑟(𝒊𝑠
𝑟) + 𝑳𝑠

𝑟 𝑑

𝑑𝑡
𝒊𝑠
𝑟. (2.65) 

where 𝑳𝑠
𝑟 is the Jacobian matrix of 𝒇𝑟, 

𝑳𝑠
𝑟 =

[

 
  
 
𝜕𝜓𝑑
𝜕𝑖𝑑

𝜕𝜓𝑑
𝜕𝑖𝑞

𝜕𝜓𝑞
𝜕𝑖𝑑

𝜕𝜓𝑞
𝜕𝑖𝑞 ]

 
  
 
= [
𝐿𝑑𝑑 𝐿𝑑𝑞
𝐿𝑞𝑑 𝐿𝑞𝑞

]. (2.66) 

Note that 𝑳𝑠
𝑟 contains the information of the magnetic susceptibility tensor, 𝝌, as it was defined 

in (2.10) in section 2.1.2. It was stated that 𝝌 is a symmetric second-rank tensor and for that 

reason, 𝑳𝑠
𝑟 has the same properties. In the given rotor coordinate system, it will again be 

written in matrix notation. Since in space vectors only two dimensions are considered, it has 

the dimension 2 × 2. The symmetry requirements enforce that the mutual inductances (for 

conciseness denoted with the index  𝑚  in the following) must be equal at any time, i.e. 

𝐿𝑑𝑞 = 𝐿𝑞𝑑 = 𝐿𝑚. (2.67) 

When reminding the formal definition of an inductance acc. to (2.28) as the differential quotient 

from flux linkage and current, the entries of 𝑳𝑠
𝑟 can be identified to be differential inductances 

and 𝑳𝑠
𝑟 will consequently referred to as (differential) inductance matrix. 

In many applications, it is useful to work with affine or linear machine models at given operating 

points. A convenient way of linearization in technical processes splits the nonlinear model up 

into two models – one for the large signal behavior at a given operating point and one for the 

small signal dynamics around that operating point [74 p. 860]. This basically corresponds to 

the Taylor series expansion of the nonlinear model up to the first term of the Taylor polynomial. 

[58 pp. 452–453 and 707]. 

As it is easier to measure, the electric current is typically chosen as state variable rather than 

the flux linkage. We then can write 

𝒖𝑠
𝑟 = 𝒖𝑠,𝑜𝑝

𝑟 +Δ𝒖𝑠
𝑟, (a) 

(2.68) 
𝒊𝑠
𝑟 = 𝒊𝑠,𝑜𝑝

𝑟 +Δ𝒊𝑠
𝑟, (b) 

where the first terms on the RHS describe the large signal and the second terms the small 

signal behavior. For the large signal model, we assume steady states and thus can rewrite (2.65) 

as 
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𝒖𝑠,𝑜𝑝
𝑟 = 𝑅𝑠𝒊𝑠,𝑜𝑝

𝑟 + 𝜔𝑟,𝑜𝑝𝑱𝒇
𝑟(𝒊𝑠,𝑜𝑝
𝑟 ), (2.69) 

where the index 𝑜𝑝 indicates the constant machine states and inputs at the actual operating 

point. 

The current or voltage vector progressions for sufficiently small changes around that operating 

point are approximated by  

Δ𝒖𝑠
𝑟 = 𝑅𝑠Δ𝒊𝑠

𝑟 + 𝜔𝑟,𝑜𝑝𝑱𝑳𝑠,𝑜𝑝
𝑟 Δ𝒊𝑠

𝑟 +𝑳𝑠,𝑜𝑝
𝑟 𝑑

𝑑𝑡
Δ𝒊𝑠
𝑟, (2.70) 

where the inductance matrix 𝑳𝑠,𝑜𝑝
𝑟  is given by 

𝑳𝑠,𝑜𝑝
𝑟 = 𝑳𝑠

𝑟|𝒊𝑠,𝑜𝑝𝑟 . (2.71) 

Note that in (2.70) the rotor speed at the operating point, 𝜔𝑟,𝑜𝑝, is assumed constant, which is 

typically a good approximation except for machines with very low moments of inertia. 

By vector addition acc. to (2.68) of the two models, (2.69) and (2.70), we obtain the affine SM 

model in rotor coordinates, 

𝒖𝑠
𝑟 = 𝑅𝑠𝒊𝑠

𝑟 + 𝜔𝑟,𝑜𝑝𝑱

(

  
 
𝒇𝑟(𝒊𝑠,𝑜𝑝

𝑟 ) − 𝑳𝑠,𝑜𝑝
𝑟 𝒊𝑠,𝑜𝑝

𝑟

⏟        
𝝍𝑠,𝑙𝑠
𝑟

+𝑳𝑠,𝑜𝑝
𝑟 𝒊𝑠,𝑜𝑝

𝑟 +𝑳𝑠,𝑜𝑝
𝑟 Δ𝒊𝑠

𝑟

⏟        
𝝍𝑠,𝑠𝑠
𝑟 =𝑳𝑠,𝑜𝑝

𝑟 𝒊𝑠
𝑟 )

  
 
+𝑳𝑠,𝑜𝑝

𝑟 𝑑

𝑑𝑡
𝒊𝑠
𝑟. (2.72) 

It shall be emphasized at this point that (2.72) is the formally correct affine approximation 

that can be applied to model the current or voltage vector progressions for sufficiently small 

changes around the operating point. In many recent publications dealing with the nonlinear 

effect of magnetic saturation (e.g. [75–79]), it is observed that the authors do not properly 

distinguish between the operating point dependent absolute flux linkage term, 𝝍𝑠,𝑙𝑠
𝑟 , describing 

the large-signal behavior, and the differential component, 𝝍𝑠,𝑠𝑠
𝑟 , taking into account the small-

signal current progressions. A common mistake is that the absolute flux linkage in PMSMs is 

written as 

𝝍𝑠
𝑟|𝒊𝑠,𝑜𝑝𝑟 = 𝑳𝑎𝑏𝑠

𝑟 |𝒊𝑠,𝑜𝑝𝑟 𝒊𝑠
𝑟 +𝝍𝑃𝑀

𝑟 , (2.73) 

where 𝑳𝑎𝑏𝑠
𝑟 |𝒊𝑠,𝑜𝑝𝑟  is a matrix containing the absolute inductances at the given operating point 

(see, for instance, [75]) and  

𝝍𝑃𝑀
𝑟 = [

𝜓𝑃𝑀
0
] (2.74) 

is the PM flux linkage space vector, which is treated as constant. 

When looking at the overall flux linkage vector as given in (2.72), i.e. 

𝝍𝑠
𝑟|𝒊𝑠,𝑜𝑝𝑟 = 𝝍𝑠,𝑙𝑠

𝑟 +𝑳𝑠,𝑜𝑝
𝑟 𝒊𝑠

𝑟, (2.75) 

we see – at a given operating point – a constant offset term, 𝝍𝑠,𝑙𝑠
𝑟 , and a linear term consisting 

of the likewise operating point depending constant, 𝑳𝑠,𝑜𝑝
𝑟 , multiplied with the variable stator 

current vector. 
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Comparing offset and linear terms in (2.73) and (2.75) directly leads to 

𝑳𝑎𝑏𝑠
𝑟 |𝒊𝑠,𝑜𝑝𝑟 = 𝑳𝑟|𝒊𝑠,𝑜𝑝𝑟  (2.76) 

and 

𝝍𝑃𝑀
𝑟 = 𝝍𝑠,𝑙𝑠

𝑟 = 𝒇𝑟(𝒊𝑠,𝑜𝑝
𝑟 ) − 𝑳𝑟|𝒊𝑠,𝑜𝑝𝑟 𝒊𝑠,𝑜𝑝

𝑟 . (2.77) 

We see that applying absolute inductances in the sense of 𝐿 = 𝜓 𝑖⁄  (see section 2.1.2 at page 

22) is wrong and that 𝝍𝑃𝑀
𝑟  must indeed be operating point dependent. Furthermore, we should 

be aware that 𝝍𝑃𝑀
𝑟  acc. to (2.77) does not only contain the PM flux linkage but also the large-

signal flux linkage associated with the stator currents and is thus a misleading choice of name. 

We can conclude that absolute inductances could be used to describe 𝒇𝑟 in a form of, for 

instance,  

𝒇𝑟(𝒊𝑠,𝑜𝑝
𝑟 ) = [

𝜓𝑃𝑀
0
] + 𝑳𝑎𝑏𝑠

𝑟 |𝒊𝑠,𝑜𝑝𝑟 𝒊𝑠,𝑜𝑝
𝑟 , (2.78) 

where the underdetermined matrix 𝑳𝑎𝑏𝑠
𝑟  can be defined by means of the Moore-Penrose inverse 

[65 p. 29] of the current vector, (𝒊𝑠,𝑜𝑝
𝑟 )+, as 

𝑳𝑎𝑏𝑠
𝑟 |𝒊𝑠,𝑜𝑝𝑟 = (𝒇𝑟(𝒊𝑠,𝑜𝑝

𝑟 ) − [
𝜓𝑃𝑀
0
]) (𝒊𝑠,𝑜𝑝

𝑟 )+. (2.79) 

According to that definition, 𝑳𝑎𝑏𝑠
𝑟  contains non-equal mutual inductance values, which is 

necessary to properly account for cross-saturation of the permanent magnetic flux linkage. 

It is however – from a strictly mathematical point of view – not valid to apply the absolute 

inductances as quasi-constant parameters to be multiplied with variable stator currents, 𝒊𝑠
𝑟, in 

order to model the dynamic interrelation of stator voltage and stator current space vectors. 

This fact makes the use of absolute inductances generally questionable. Despite the problem, 

that absolute inductances tend to ±∞ for small currents and are thus sensitive to measurement 

errors around zero-currents, it seems more expedient to directly evaluate 𝒇𝑟(𝒊𝑠,𝑜𝑝
𝑟 ) from 

appropriate models or look-up tables (LUTs) instead of multiplying 𝒊𝑠,𝑜𝑝
𝑟  with absolute 

inductances, which are itself functions of 𝒊𝑠,𝑜𝑝
𝑟 . For that reason, this work hereinafter discusses 

the relation between flux linkage and stator current only in the general form of look-up data 

describing 𝒇𝑟. 

From (2.78), we can see that, if the magnetic influence of the PM shall be described by a 

constant, scalar parameter, 𝜓𝑃𝑀 , it must be part of 𝒇𝑟, such that  

𝒇𝑟(𝒊𝑠
𝑟 = 𝟎) = [

𝜓𝑃𝑀
0
]. (2.80) 

Another way of describing the PM influence with a single parameter is to take up the concept 

of equivalent current density from section 2.1.2.7 again and introduce the stator current space 

vector equivalent of the PM flux linkage as 

𝒊𝑠,𝑃𝑀
𝑟 = [

𝑖𝑃𝑀
0
]. (2.81) 
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It is thus a space vector aligned with the 𝑑-axis, that would – seen from the stator windings – 

produce the same magnetic flux linkage space vector as the permanent magnet does. The latter 

could be physically replaced by a 𝑑-axis current of magnitude 𝑖𝑃𝑀 . 

In the inverse view, this means that a negative 𝑑-axis current of value −𝑖𝑃𝑀  would exactly 

compensate the PM flux linkage, such that the overall flux linkage is zero. This point of 

magnetic origin is thus characterized by 

𝝍𝑠,0
𝑟 = [

0
0
] (2.82) 

and 

𝒊𝑠,0
𝑟 = [

−𝑖𝑃𝑀
0
]. (2.83) 

It should be obvious, that in case of SynRMs, the equivalent current is zero, while it is positive 

for PMSMs. 

It is worth noting at this point that assigning a PM equivalent current to the stator windings 

is a simplification, which allows to superimpose virtual PM current and real electrical current 

vectors. In this simplified view, we cannot distinguish between the overall magnetic states of 

machines, where the PM field is actively weakened by a negative 𝑑-axis current and where no 

electrical current is present but weaker permanent magnets are employed. 

In reality, however, both cases lead to different magnetic states in the rotor. This becomes 

clear, when considering a more accurate model, where the permanent magnets are replaced by 

virtual windings at their exact positions in the rotor. Assuming that we are not permanently 

demagnetizing the PMs leads us to constant equivalent currents in those windings. With a 

negative 𝑑-axis current, we do thus have stator windings and rotor windings that produce 

counteracting electromagnetic fields. Depending on the actual rotor and stator geometry, those 

fields do not exactly cancel each other everywhere in the machine. Instead, the magnetic field 

of the negative 𝑑-axis stator current influences the permanent magnetic field paths to close 

within the rotor rather than interacting with the stator windings. We thus have regions within 

the rotor, where the fields of both, permanent magnet and stator current superimpose and lead 

to strong saturation effects. Those effects are not present in the case of weaker magnets and 

zero stator currents. 

We can thus state that the magnetic origin as defined by (2.82) and (2.83) is a simplification, 

or a virtual magnetic origin. It is, nevertheless, a good approach to discuss the general 

similarities and differences between the different PM and PM free machine types, as it is done 

in Chapter 4. It is also useful, when addressing the magnetic energy and co-energy in 

synchronous machines, as it defines the point, where energy and co-energy are zero. This is 

taken up again in the following section. 

2.2.3.2 Energy and Torque – The Mechanic Model 

In the macroscopic description of synchronous machines, the flux linkage and current densities 

become their integral counterparts. The local energy densities accordingly are condensed to the 

absolute values of the overall energy within the machine at a certain point of time. Analogously 
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to the mesoscopic case as described in section 2.1.2, the energy balance of a synchronous 

machine can be obtained, when (2.43) is multiplied by the transpose of the phase current 

vector, transformed into rotor-oriented space vectors and integrated over time [80]. For 

conciseness, the individual calculation steps are moved to Appendix B.1. Hence, 

𝑊𝑒𝑙 = ∫
3

2
𝒊𝑠
𝑟𝑇𝒖𝑠

𝑟 𝑑𝑡
Δ𝑡

= ∫
3

2
𝑅𝑠𝒊𝑠

𝑟𝑇 𝒊𝑠
𝑟 𝑑𝑡

Δ𝑡

+∫
3

2
𝒊𝑠
𝑟𝑇𝑑𝝍𝑠

𝑟

𝐶

+∫
3

2
𝜔𝒊𝑠
𝑟𝑇𝑱𝝍𝑠

𝑟 𝑑𝑡
Δ𝑡

, (2.84) 

where 𝑊𝑒𝑙 is the electric energy of the synchronous machine exchanged with an external system 

via the electric terminals during a time interval Δ𝑡. It is worth noting the occurrence of the 

factor 3 2⁄ , which justifies the former statement that the chosen scaling factor leads to non-

power-invariant space vectors (see p. 30). 

The first term on the RHS of (2.84) denotes the dissipated energy due to Ohmic losses in the 

winding resistances, while the second term on the RHS is the change of magnetic energy in the 

machine during that time. The integration path 𝐶 hereby describes the corresponding 

trajectory of the flux linkage space vector. Analogously to the energy and co-energy definitions 

acc. to (2.17) and (2.18), we can thus determine the exchanged magnetic energy and co-energy 

of the stator windings by 

Δ𝑊𝜇|𝐶 =
3

2
∫𝒊𝑠
𝑟𝑇𝑑𝝍𝑠

𝑟

𝐶

 (2.85) 

and 

Δ𝑊𝜇,𝑐𝑜|𝐶 =
3

2
∫𝝍𝑠

𝑟𝑇𝑑𝒊𝑠
𝑟

𝐶

=
3

2
𝝍𝑠
𝑟𝑇 𝒊𝑠

𝑟 −Δ𝑊𝜇|𝐶 (2.86) 

It is important to note, that the definition of co-energy acc. to (2.86) can be problematic in 

case of PM machines. In order to illustrate that problem, Figure 2.18 shows the graphical 

interpretations of (2.85) and (2.86), when exemplarily selecting integration trajectories from 

𝒊𝑠
𝑟𝑇 = [0 0] and 𝝍𝑠

𝑟𝑇 = [𝜓𝑃𝑀 0] towards an operating point on the 𝑑-axis. In subfigure (a), 

the operating point is defined by a positive current. We see that the PM flux linkage leads to 

additional co-energy. In subfigure (b), we see that for a negative-valued current operating point, 

the co-energy along with the sum of energy and co-energy can also become negative (note that 

the product of positive flux linkage and negative current is negative). 

 

Figure 2.18: Graphical interpretation of magnetic energy and co-energy in the 𝑑-axis of a PM 

machine 
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The reason for this behavior is, that the flux linkages in (2.85) and (2.86) include the influence 

of the permanent magnet, while the stator currents do not. In order to improve the 

comparability of PMSMs and SynRMs, where no negative co-energies can occur, we define the 

absolute stored magnetic energy and co-energy within any type of synchronous machine as 

𝑊𝜇 =
3

2
∫ (𝒊𝑠

𝑟 + 𝒊𝑠,𝑃𝑀
𝑟 )𝑇𝑑𝝍𝑠

𝑟
𝝍𝑠,𝑜𝑝
𝑟

𝝍𝑠,0
𝑟

 (2.87) 

and 

𝑊𝜇,𝑐𝑜 =
3

2
∫ 𝝍𝑠

𝑟𝑇𝑑𝒊𝑠
𝑟

𝒊𝑠,𝑜𝑝
𝑟

𝒊𝑠,0
𝑟

=
3

2
𝝍𝑠
𝑟𝑇 (𝒊𝑠

𝑟 + 𝒊𝑠,𝑃𝑀
𝑟 ) −𝑊𝜇, (2.88) 

where the integration paths are the trajectories of currents and flux linkages from the virtual 

magnetic origin acc. to (2.82) and (2.83) to a given operating point. The above definitions 

imply that magnetic energy and co-energy are zero at the point of origin, i.e. 

𝑊𝜇|𝝍𝑠,0𝑟 = 𝑊𝜇,𝑐𝑜|𝒊𝑠,0𝑟 = 0. (2.89) 

At any other point, they must be positive. We thus also get a positive-valued magnetic energy 

at zero stator current. This is the energy associated with the permanent magnetic field. 

Rewriting (2.87) and (2.88) in differential form and solving for flux linkage and current space 

vectors gives 

𝒊𝑠
𝑟 + 𝒊𝑠,𝑃𝑀

𝑟 =
2

3
𝛁𝑊𝜇 (2.90) 

and 

𝝍𝑠
𝑟 =
2

3
𝛁𝑊𝜇,𝑐𝑜, (2.91) 

where 𝛁 is the nabla operator denoting the gradient of 𝑊𝜇 in a flux linkage plane and of 𝑊𝜇,𝑐𝑜 

in a stator current plane, respectively. 

An inherent part of the law of energy conservation is that the magnetic energy in the flux 

linkage plane as given by (2.87) cannot jump, i.e. that the magnetic energy scalar field is 

continuously differentiable. Due to that condition, the integration paths in (2.87) and (2.88) 

can be arbitrarily chosen, or, with other words, 𝒊𝑠
𝑟 and 𝝍𝑠

𝑟 are conservative vector fields. From 

(2.90) or (2.91), it can easily be shown that the following conditions must apply at any time 

[32 pp. 44–45 (Ch. 11)]: 

𝜕𝑖𝑑
𝜕𝜓𝑞
=
𝜕2𝑊𝜇
𝜕𝜓𝑑𝜕𝜓𝑞

=
𝜕2𝑊𝜇
𝜕𝜓𝑞𝜕𝜓𝑑

=
𝜕𝑖𝑞
𝜕𝜓𝑑

 (2.92) 

𝜕𝜓𝑑
𝜕𝑖𝑞
=
𝜕2𝑊𝜇,𝑐𝑜
𝜕𝑖𝑑𝜕𝑖𝑞

=
𝜕2𝑊𝜇,𝑐𝑜
𝜕𝑖𝑞𝜕𝑖𝑑

=
𝜕𝜓𝑞
𝜕𝑖𝑑

 (2.93) 

Note that (2.92) and (2.93) are in accordance with the former statement that 𝝌 as well as 𝑳𝑠
𝑟 

have to be symmetrical (see p. 14). 
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As described before, all energy dissipating effects associated with the re- or demagnetization of 

the ferromagnetic material in the machine (e.g. global and local eddy currents or acoustic noise 

emissions) are expressed in terms of the areas of resulting hysteresis loops (see 2.1.2, pp. 14-

17). Further losses cannot be represented by the electric machine model (2.63) in the present 

form, since they are excluded due to the assumptions made in order to derive that circuit 

theoretical model (see p. 20). In consequence, the third term on the RHS of (2.84) can only be 

the mechanic energy exchanged with an external system via the shaft of the synchronous 

machine. 

In combination with the relation between electric and mechanic angular velocity (2.35) and 

with the well-known equation describing the relationship between mechanical work, 𝑃𝑚𝑒𝑐ℎ, and 

torque, 𝑀 , in rotary systems [59 p. 12], 

𝑃𝑚𝑒𝑐ℎ = 𝑀 ⋅ 𝜔𝑚, (2.94) 

the torque of the machine can by derived from (2.84) as 

𝑀 =
3

2
𝑝𝒊𝑠
𝑟𝑇𝑱𝝍𝑠

𝑟 =
3

2
𝑝(𝜓𝑠,𝑑𝑖𝑠,𝑞 − 𝜓𝑠,𝑞𝑖𝑠,𝑑). (2.95) 

Note that by transforming the space vectors in (2.84) into stator coordinates, a quite similar 

expression is found, namely 

𝑀 =
3

2
𝑝(𝜓𝑠,𝛼𝑖𝑠,𝛽 − 𝜓𝑠,𝛽𝑖𝑠,𝛼). (2.96) 

Comparing (2.95) and (2.96) shows that the torque is independent of the coordinate system, 

as long as both, current and flux linkage space vectors, are written in the same reference frame. 

In fact, the torque is determined by the relative positions of both vectors, or, more precisely, 

their cross product. 

In order to complete the mechanic model, the relation between torque and angular velocity of 

the machine shaft can be given by 

𝑑

𝑑𝑡
𝜔𝑚 =

1

Θ
(𝑀 −𝑀𝐿), (2.97) 

where Θ is the moment of inertia of the rotor and the coupled load and 𝑀𝐿 is the load torque. 

Note that 𝑀𝐿 is typically depending on the speed 𝜔𝑚 due to friction. 

2.2.3.3 Sensorless Control Based on Magnetic Anisotropy 

When transforming the machine model in rotor coordinates (2.65) back into stator coordinates, 

we get  

𝒖𝑠
𝑠 = 𝑅𝑠𝒊𝑠

𝑠 + 𝜔𝑟(𝑱𝝍𝑠
𝑠 −𝑳𝑠

𝑠𝑱𝒊𝑠
𝑠) + 𝑳𝑠

𝑠 𝑑

𝑑𝑡
𝒊𝑠
𝑠, (2.98) 

which, solved for the current derivative, gives 

𝑑

𝑑𝑡
𝒊𝑠
𝑠 = 𝑳𝑠

𝑠−1
⏟
𝜞𝑠
𝑠

(𝒖𝑠
𝑠 − 𝑅𝑠𝒊𝑠

𝑠 − 𝜔𝑟(𝑱𝝍𝑠
𝑠 − 𝑳𝑠

𝑠𝑱𝒊𝑠
𝑠))⏟              

𝒖𝑠,𝐿
𝑠

, 
(2.99) 

where 
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𝑳𝑠
𝑠 = 𝑻(𝜗𝑟)𝑳𝑠

𝑟𝑻(−𝜗𝑟) = 𝜞𝑠
𝑠−1, (2.100) 

𝜞𝑠
𝑠 = 𝑻 (−𝜗𝑟)

−1𝑳𝑠
𝑟−1𝑻 (𝜗𝑟)

−1 = 𝑻(𝜗𝑟)𝜞𝑠
𝑟𝑻 (−𝜗𝑟), (2.101) 

and 

𝜞𝑠
𝑟 =

[

 
  
 
𝜕𝑖𝑑
𝜕𝜓𝑑

𝜕𝑖𝑑
𝜕𝜓𝑞

𝜕𝑖𝑞
𝜕𝜓𝑑

𝜕𝑖𝑞
𝜕𝜓𝑞]

 
  
 
= [
𝛤𝑑𝑑 𝛤𝑑𝑞
𝛤𝑞𝑑 𝛤𝑞𝑞

] = 𝑳𝑠
𝑟−1. (2.102) 

A detailed derivation of above equations can be found in Appendix B.2. 

The ability to provide position information also at standstill is a key characteristic of anisotropy 

based sensorless control (see for instance [7–16]). We are therefore only interested in the third 

term on the RHS of (2.98), which is the only term that contains extractable position 

information, even when 𝜔𝑟 = 0. We thus focus on the differential inductance (2.100) or its 

inverse (2.102), respectively. By means of trigonometric calculus (see Appendix B.3), we can 

rewrite both matrices as 

𝑳𝑠
𝑠 =
1

2
(𝐿𝑑𝑑 + 𝐿𝑞𝑞)
⏟    

𝐿𝛴

𝑰 +
1

2
(𝐿𝑞𝑑 − 𝐿𝑑𝑞)
⏟    

0

𝑱 +

(

  
  1

2
(𝐿𝑑𝑑 − 𝐿𝑞𝑞)
⏟    

𝐿𝛥

𝑰 +
1

2
(𝐿𝑞𝑑 + 𝐿𝑑𝑞)
⏟    

𝐿𝑚

𝑱

)

  
  𝑺(𝜗𝑟) (2.103) 

and 

𝜞𝑠
𝑠 =
1

2
(𝛤𝑑𝑑 + 𝛤𝑞𝑞)
⏟    

𝛤𝛴

𝑰 +
1

2
(𝛤𝑞𝑑 − 𝛤𝑑𝑞)
⏟    

0

𝑱 +

(

  
  1

2
(𝛤𝑑𝑑 − 𝛤𝑞𝑞)
⏟    

𝛤𝛥

𝑰 +
1

2
(𝛤𝑞𝑑 + 𝛤𝑑𝑞)
⏟    

𝛤𝑚

𝑱

)

  
  𝑺(𝜗𝑟), (2.104) 

where 

𝑺(𝜗) = [
cos(2𝜗) sin(2𝜗)

sin(2𝜗) − cos(2𝜗)
]. (2.105) 

The fact that the mutual inductances have to be equal as stated in (2.67) leads directly to 

𝛤𝑑𝑞 = 𝛤𝑞𝑑 = 𝛤𝑚, (2.106) 

and is taken into account in (2.103) and (2.104). 

When comparing the definitions of 𝑺(𝜗) acc. to (2.105) and 𝑻 (𝜗) acc. to (2.38), we can see 

that 𝑺 comprises of a double angle rotation following a vertical flip of the vector it is multiplied 

with, i.e. 

𝑺(𝜗) = 𝑻 (2𝜗)𝑿, (2.107) 

where 

𝑿 = [
1 0
0 −1

] (2.108) 

is the analogon to the complex conjugate operation in complex calculus [81 pp. 10–24]. 
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With (2.98)-(2.108), we are able to graphically interpret the current progression for a given 

inductive voltage vector 𝒖𝑠,𝐿
𝑠 . As shown in Figure 2.19, the time rate of change of the current 

comprises of an isotropic component, which is aligned with 𝒖𝑠,𝐿
𝑠  and an anisotropic component 

with constant amplitude that rotates with twice the rotor position. 

 

All anisotropy based sensorless control algorithms are extracting the position information from 

that rotating component of the current derivative vector. The main distinguishing criterions of 

the algorithms are the way that a current change is enforced (e.g. by phase voltage pulse 

injection [14], rotating [10], ellitpic [15], alternating [11, 82, 83] or arbitrary [84] voltage 

injection), and by the way the rotational component is seperated from the rest of the current 

derivative. 

Many sensorless algorithms neglect the effect of magnetic cross-saturation by applying the 

simplifiying assumption that 𝐿𝑚 = 𝛤𝑚 = 0. This allows comparably simple derivations of the 

position signal without extensive parameter knowledge. The main drawback, however, is that 

the estimated position inherits an error depending on the actual level of magnetic cross-

saturation. 

Several publications analyze this error for certain position estimation schemes. Indepently from 

the injection scheme, the error is found to be the same (e.g. in [23] for elliptic voltage injection 

and in [19] for alternating injection), which corroborates the former statement that all 

algorithms have the same source of position information. 

From Figure 2.19(c), it can almost instantly be seen that the angle difference of the rotational 

component for 𝛤𝑚 ≠ 0 compared to those with 𝛤𝑚 = 0 is exactly  

Δ𝜗𝑟 =
1

2
atan2(𝛤𝑚, 𝛤𝛥), (2.109) 

 

Figure 2.19: Vector diagram of the time rate of change of the stator current space vector in 

stator coordinates; (a): graphical interpretation of (2.99), (2.104) and (2.107) for 

a given voltage vector 𝑢𝑠,𝐿
𝑠  and a rotor position of 𝜗𝑟 = 30°; (b): time rate of 

change of the current as vector sum and its progression with increasing rotor 

position 𝜗𝑟; (c): magnification of the rotational component of the current 

derivative vector 
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which is the result of the error analysis in mentioned publications. The definition of the atan2 

function can be found in Appendix B.5. 

From a mathematical point of view, it is interesting to note that neglecting the mutual (inverse) 

inductances means to assume an (inverse) inductance matrix that decouples the 𝑑- and 𝑞-axes 

of the respective vector it is multiplied with. This decoupling of a linear system of equations is 

subject of the well-established eigenvalue problem [58 pp. 318–325]. 

It is known that the eigendecomposition of a square (𝑛 × 𝑛) matrix, 𝑨, with 𝑛 linearly 

independent eigenvectors is given by 

𝑨 = 𝑽𝑫𝑽 𝑇 , (2.110) 

where 𝑽  is a square matrix, whose columns are the eigenvectors of 𝑨, and 𝑫 is a diagonal 

matrix, whose diagonal elements are the corresponding eigenvalues. Furthermore, if 𝑨 is real 

and symmetric, its eigenvectors are orthogonal and so is 𝑽 . 

Knowing that 𝑳𝑠
𝑟 is real and symmetric, we can see that the diagonal matrix of its respective 

eigendecomposition is an inductance matrix, where the mutual inductances are zero and the 

respective eigenvalues are the diagonal elements that can be written as (see Appendix B.4 for 

details) 

𝐿𝐷 𝑄⁄ = 𝐿𝛴 ±√𝐿𝛥
2 + 𝐿𝑚

2 . (2.111) 

The indices 𝐷 and 𝑄 indicate the axes of a new coordinate system, which we will refer to as 

anisotropy coordinate system in the following. It describes the easy and the hard axes of the 

magnetic anisotropy (cf. Figure 2.2 in section 2.1.2). An overview of the different coordinate 

systems and their relative angles is given in Figure 2.20 exemplarily under saturated conditions. 

Note that the 𝐷 axis is aligned with the easy axis of the anisotropy for SynRMs, whereas it is 

aligned with the hard axis for PMSMs (cf. Figure 2.13). Note further that even SPMSMs 

typically develop a magnetic anisotropy as shown in Figure 2.20 (b) due to the permanent 

magnetic presaturation of the 𝑑 path. We do thus have to distinghish the anisotropy inductance 

definitions in the following way: 

SynRM: 𝐿𝐷  = 𝐿𝛴 +√𝐿𝛥
2 + 𝐿𝑚

2  , (a) 

(2.112) 

 𝐿𝑄  = 𝐿𝛴 −√𝐿𝛥
2 + 𝐿𝑚

2  , (b) 

PMSM: 𝐿𝐷  = 𝐿𝛴 −√𝐿𝛥
2 + 𝐿𝑚

2  , (c) 

 𝐿𝑄  = 𝐿𝛴 +√𝐿𝛥
2 + 𝐿𝑚

2  . (d) 
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Besides the anisotropy inductances, 𝐿𝐷 𝑄⁄ , we can also determine the orientation of the 

anisotropy’s easy and hard axes. The detailed derivations can be found in Appendix B.4. The 

result is 

𝜗𝐷 𝑄⁄ =
1

2
atan2(±𝐿𝑚,±𝐿𝛥), (2.113) 

where we have to consider again the differences between SynRMs and PMSMs in the same 

manner as written above. 

Note that we are only able to determine the easy or hard axes of the magnetic anisotropy, 

which means that we are not necessarily able to distinguish between positive or negative 𝐷 or 

𝑄 axis. This is a problem especially for PMSMs, where the direction of the positive 𝑑 or 𝐷 axis 

is determined by the PM north pole. Here, an initialization procedure is necessary to avoid 

180° errors in the position estimate [13]. 

When considering the different definitions of the 𝐷 and 𝑄 axis for SynRMs and PMSMs and 

the fact that the anisotropy position, 𝜗𝐴, is defined relative to the 𝐷 axis, we can conclude 

that 

SynRM: 𝜗𝐴  =
1

2
atan2(𝐿𝑚, 𝐿𝛥), (a) 

(2.114) 

PMSM: 𝜗𝐴  =
1

2
atan2(−𝐿𝑚,−𝐿𝛥). (b) 

Since the eigendecomposition can be done analogously for the inverse inductance matrix, 𝜞𝑠
𝑟, 

we can also write 

SynRM: 𝛤𝐷  = 𝛤𝛴 −√𝛤𝛥
2 + 𝛤𝑚

2  , (a) 

(2.115) 

 𝛤𝑄  = 𝛤𝛴 +√𝛤𝛥
2 + 𝛤𝑚

2  , (b) 

 

Figure 2.20: Introduction of the anisotropy coordinate system in comparison to the known 

rotor and stator fixed coordinate systems for SynRMs (a) and for PMSMs (b) 
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PMSM: 𝛤𝐷  = 𝛤𝛴 +√𝛤𝛥
2 + 𝛤𝑚

2  , (c) 

 𝛤𝑄 = 𝛤𝛴 −√𝛤𝛥
2 + 𝛤𝑚

2  (d) 

and 

SynRM: 𝜗𝐴  =
1

2
atan2(𝛤𝑚, 𝛤𝛥), (a) 

(2.116) 

PMSM: 𝜗𝐴  =
1

2
atan2(−𝛤𝑚, −𝛤𝛥). (b) 

From the comparison of (2.116) and (2.109), we can see that the estimation error of anisotropy 

based sensorless algorithms that neglect magnetic cross-saturation corresponds to the 

anisotropy angle, 𝜗𝐴, or, with other words, they do not track the rotor position but rather the 

orientation of the magnetic anisotropy, 𝜗𝑎. For that reason, it is essential to know 𝝍𝑠
𝑟 = 𝒇𝑟(𝒊𝑠

𝑟) 

for each valid operating point in order to understand error and stability issues of anisotropy 

based sensorless control algorithms. 

Another aspect worth noting is that calculating the 𝛥 and 𝛴 components of the (inverse) 

inductances in anisotropy coordinates, 𝐿𝐴 (or 𝛤𝐴, respectively), analogously to those defined 

in (2.103) and (2.104) gives us 

𝐿𝐴,𝛴  =
1

2
(𝐿𝐷 + 𝐿𝑄) = 𝐿𝛴 , (2.117) 

𝛤𝐴,𝛴  =
1

2
(𝛤𝐷 + 𝛤𝑄) = 𝛤𝛴 , (2.118) 

SynRM: 𝐿𝐴,𝛥  =
1

2
(𝐿𝐷 − 𝐿𝑄) = √𝐿𝛥

2 + 𝐿𝑚
2  , (a) 

(2.119) 

PMSM: 𝐿𝐴,𝛥  =
1

2
(𝐿𝐷 − 𝐿𝑄) = −√𝐿𝛥

2 + 𝐿𝑚
2  , (b) 

and 

SynRM: 𝛤𝐴,𝛥  =
1

2
(𝛤𝐷 − 𝛤𝑄) = √𝛤𝛥

2 + 𝛤𝑚
2  , (a) 

(2.120) 

PMSM: 𝛤𝐴,𝛥  =
1

2
(𝛤𝐷 − 𝛤𝑄) = −√𝛤𝛥

2 + 𝛤𝑚
2  . (b) 

The 𝛴 components describing the isotropic current progression do thus not change, while the 

𝛥 components now represent the absolute value (or the length) of the anisotropic current 

derivative vector (cf. Figure 2.19(c)). 

We can thus write the (inverse) inductance matrix in stator coordinates independently from 

the SM type as 

𝑳𝑠
𝑠 =
1

2
(𝐿𝐷 + 𝐿𝑄)
⏟    

𝐿𝛴

𝑰 +
1

2
(𝐿𝐷 − 𝐿𝑄)
⏟    

𝐿𝐴,𝛥

𝑺(𝜗𝑎). 
(2.121) 
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𝜞𝑠
𝑠 =
1

2
(𝛤𝐷 + 𝛤𝑄)
⏟    

𝛤𝛴

𝑰 +
1

2
(𝛤𝐷 − 𝛤𝑄)
⏟    

𝛤𝐴,𝛥

𝑺(𝜗𝑎). 
(2.122) 

It becomes clear that the (inverse) inductance matrixes contain three indepentent variables, 

i.e. an isotropic component, an anisotropic component and the orientation of the anisotropy. 

When assessing the suitablitiy of SMs for sensorless control, the anisotropic component is the 

most relevant parameter. In practice, however, it is also important to assess the relation 

between anisotropic and isotropic components, as it is a measure for sensorless signal content 

in the current derivative vector. This so-called saliency ratio (SR) is defined by 

𝑟𝑆 =
𝐿𝐴,Δ
𝐿Σ
=
𝛤𝐴,Δ
𝛤Σ
. (2.123) 

An important aspect in the discussion of position errors in sensorless control schemes is the 

differentiation between open-loop (OL) and closed-loop (CL) errors. The OL case starts with a 

given stator current vector in rotor coordinates. For this operating point, a set of inductance 

parameters (𝐿𝛴, 𝐿𝐴,𝛥 and 𝜗𝐴) can be identified. So far, we thus discussed OL errors (namely 

𝜗𝐴) for sensorless control schemes that neglect magnetic (cross-) saturation. 

A CL error occurs, if the erroneous position estimate is applied in order to control the stator 

current vector in an estimated rotor reference frame (as it is done in FOC, for instance). The 

estimation error leads to a misalignment of the resulting current space vector and thus to a 

new operating point with different inductance parameters. The CL current control continuously 

adapts the current vector angle, until a possibly stable operating point is reached. 

A stable CL operating point is characterized by two conditions: 

1. The angle difference between the OL and the CL current vectors must be exactly the 

anisotropy angle at the given CL operating point 

𝜗𝑖,𝐶𝐿 − 𝜗𝑖,𝑂𝐿 = 𝜗𝐴,𝐶𝐿 (2.124) 

2. The gradient of anisotropy angle over current vector angle in a sufficiently large area 

around the CL operating point must be smaller than one 

𝜕𝜗𝐴,𝐶𝐿
𝜕𝜗𝑖,𝐶𝐿

< 1 (2.125) 

Equation (2.124) identifies potentially stable operating points and allows to determine the 

resulting CL current angle, 𝜗𝑖,𝐶𝐿, for a given reference angle, 𝜗𝑖,𝑂𝐿. Wheather or not this point 

is stable is decided by (2.125). It ensures that the CL current angle does not drift away, if small 

perturbations occur. 

An exemplary illustration of the transition from OL to CL operation is shown in [85] but is not 

repeated here for conciseness. A more detailed analysis with focus on condition two can be 

found in [86]. For the purpose of discussing the measured flux linkage maps in Chapter 4, the 

above mathemal characeterization is sufficient. 
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The differences between OL and CL controlled current vectors with the corresponding angle 

definitions are shown in Figure 2.21. The OL current vector is the resulting vector, when the 

correct rotor position is applied in the current controller. The angle 𝜗𝑖,𝑂𝐿 can thus be seen as 

the reference angle for the current in order to obtain the desired torque. 

When the estimated rotor position is used for current control, the CL current vector is the 

result (given, that a stable CL operating point exists). It can be seen that the difference between 

the desired and the actual current angle is exactly 𝜗𝐴,𝐶𝐿, as requested by (2.124). 

 

 

2.2.3.4 Sources of Harmonic Distortions 

In section 2.2.2, it was stated that the Clarke transformation gives the phase quantities a spatial 

interpretation. The resulting space vectors point into the direction of the superimposed 

magnetic fields associated with the phase currents and voltages. For this spatial interpretation, 

however, it is necessary to assume sinusoidal field distributions along the circumference of the 

machine, as in this case the superposition principle for harmonic signals of same frequency or 

wavelength can be applied [58 pp. 83–84]. All phase components of same wavelength 

superimpose to a likewise sinusoidal signal of that wavelength and the direction of the space 

vector describes the spatial orientation of that wave. 

Space vectors were derived by considering only the fundamental components of the 

circumferential current and flux density distributions, although several sources of harmonic 

distortions were identified. Non-sinusoidal winding schemes and slotting belong together and 

cannot be avoided completely in machines with ferromagnetic stator yokes (see simplified 

example from Figure 2.16). Salient rotor geometries can be avoided but are often designed 

intentionally in order to obtain reluctance torque. These sources of harmonics can be seen as 

linear in the sense that the spectrum of the current loading can be found also in the flux density 

with the same relative harmonic components. 

In contrast to these linear harmonic sources, harmonic distortions can also arise from magnetic 

saturation. This is illustrated in the following example, where the linear sources are neglected. 

 

Figure 2.21: Vector diagram of current space vector resulting from open-loop (grey) and 

closed-loop (black) sensorless current control 
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Figure 2.22 shows two examples of sinusoidal current loadings (d) and the resulting flux 

densities (a) under the influence of saturation (b). The amplitude of the blue current loading 

is ten times bigger than the orange signal’s amplitude. As a result, the orange current loading 

only interacts with the linear part of the saturation curve in (b), leading to a likewise sinusoidal 

flux density distribution along the circumference. The spectral analysis of the orange flux 

density shown in (c) states that no harmonic distortions of the flux density occur in the linear 

case. When, however, the ferromagnetic material is driven into magnetic saturation as 

exemplarily demonstrated by the blue current loading, the resulting flux density distribution 

results in a flattened sine function. The spectral analysis of the saturated signal shows that 

relevant third, fifth and seventh harmonic components occur, while the fundamental wave’s 

amplitude is reduced to only ca. 37% of the amplitude it would have in the linear case. 

 

In case of highly saturated machines, the sigmoidal saturation curve as shown in Figure 2.22(b) 

approaches a signum function and, in consequence, the flattened sine function approaches a 

square wave function, whose Fourier series expansion is given by (see [58 p. 1071] and also 

section 2.4) 

𝑦𝑠𝑞𝑢𝑎𝑟𝑒(𝑡) =
4

𝜋
∑
sin(2𝜋(2𝑘 − 1)𝑓𝑡)

2𝑘 − 1

∞

𝑘=1

. (2.126) 

The fundamental component of a square wave function is thus 4 𝜋⁄  times the amplitude of the 

square signal. When only considering the fundamental waves along the circumference, the 

observed saturation curve describing the relation between current loading and flux density will 

be stretched accordingly. This is shown in Figure 2.23(a), where the blue line shows the same 

saturation curve as in Figure 2.22(b) and the orange curve is the ratio of the amplitudes of 

sinusoidal current loading and the fundamental flux density component. In Figure 2.23(b), 

 

Figure 2.22: Harmonic distortion of the circumferential flux density distribution due to 

magnetic saturation 
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where the ratio between the blue and orange curves is plotted, it can be seen that both curves 

are identical in the linear region of the saturation curve. For larger amplitudes, however, the 

fundamental components become larger and tend to the aforementioned value of 4 𝜋⁄ ≈1.27. 

It is also worth noting from (2.126) that a square wave function does only consist of odd-

ordered harmonic components. Without further quantitative analysis, we can thus conclude 

from the above considerations that the upper limit in harmonic distortions due to magnetic 

saturation is an increase of approximately 27% in the fundamental component and the 

occurrence of odd-ordered harmonics, whose amplitudes decrease with the inverse of their order. 

 

Another source of harmonic distortions is magnetic hysteresis. This is exemplarily shown in 

Figure 2.24. When only reversible magnetizing processes are considered as indicated by the 

orange signals, no hysteresis occurs in (b) and thus the sinusoidal current signal (d) produces 

a likewise sinusoidal flux linkage (a) without harmonic distortions (c). Note that the given 

example assumes small current amplitudes, as in this case magnetic saturation is negligible and 

thus the flux linkage is linearly related to the current. 

As discussed in section 2.1.2, small-signal magnetic excitation of ferromagnetic material leads 

to minor hysteresis loops as a result of irreversible magnetization changes. Such a minor loop 

is depicted in blue in subfigure (b). When exited with the same current signal as the orange 

signals, the hysteresis distorts the resulting flux linkage signal as shown in (a). The spectral 

analysis of that signal reveals a slight increase of the fundamental component as well as third 

and fifth harmonics. 

Again, we can analyze the upper limits of the harmonic distortions by considering the most 

extreme form the nonlinear effect can show. In this case, the hysteresis loop cannot widen up 

to more than a square, a so-called relay hysteron, which is the basis for the Preisach model of 

 

Figure 2.23: Influence of magnetic saturation on the fundamental wave components in the 

circumferential flux density distribution, when excited by sinusoidal current 

loadings 
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hysteresis [87], leading again to a square wave function of the flux linkage. We can thus state 

that magnetic hysteresis is quite similar to magnetic saturation in its influence on harmonic 

distortions. It increases the fundamental component by maximal 27% and only causes odd-

ordered harmonics with amplitudes that are inverse proportional to their orders. 

It is worth noting, however, that the 27% increase of the fundamental small-signal amplitude 

is related to the anhysteretic susceptibility or inductance. The latter are not necessarily 

depending only on the operating point of the fundamental current space vector but also on the 

frequency of the small-signal current due to the occurrence of eddy currents (cf. section 2.1.2). 

 

2.2.3.5 Remarks on Model Validity 

The derivation of space vectors bases on vector addition (see (2.36) - (2.41)). Since flux density 

and current loading must be periodic along the circumference, they can be described as Fourier 

series, i.e. as sum of sinusoidal functions [58 pp. 477–479] (see also section 2.4). For that reason, 

harmonic space vectors can be defined, whereas their vector sum gives the overall space vector. 

Except for the fundamental space vector, however, the harmonic vectors will rotate 

asynchronously to the mechanical velocity of the machine or do not rotate at all. They can 

therefore be seen as additional flux leakage, i.e. flux linkage not contributing to the intended 

synchronous torque generation [38 pp. 42–45]. 

We can conclude that the electric and mechanic models derived above are valid also in case of 

relevant harmonic components in the current loading and flux density. It must be kept in mind 

that the fundamental behavior we are interested in is superposed by harmonic distortions that 

can cause torque ripples and acoustic noise. The harmonic content is influenced by the 

geometric design of the machine, but also depends on the level of magnetic saturation and 

hysteresis. When operated in highly saturated states, the fundamental saturation curve will 

differ from the actual one but will still be sigmoidal. 

 

Figure 2.24: Harmonic distortion of flux linkage due to magnetic hysteresis  
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2.3 Two-Level Voltage Source Inverters 

Two-level voltage source inverters (VSI) are a standard way to control electrical machines in 

industrial applications. They convert a fixed DC voltage into an AC voltage with variable 

frequency and amplitude. More precisely, they are switching devices and as such they can only 

generate discrete output voltages. Due to the low pass characteristic of the connected motors, 

the resulting currents are comparable to those coming from an ideal analog AC voltage source. 

The lower the switching frequency of the inverter, however, the more harmonic distortions 

occur in the currents. 

2.3.1 Topology 
The topology of an ideal two-level VSI is shown in Figure 2.25. The DC voltage from an external 

source, 𝑢𝐷𝐶, is sustained by a large capacitor. The switching devices are power semiconductors. 

Although the symbol of a bipolar junction transistor is used here, various transistor types can 

be used depending on the switching frequency and power of the target application. The 

antiparallel diodes are so-called freewheeling diodes that are necessary to avoid high voltage 

peaks, when a transistor switches off an inductive current. 

 

2.3.2 Space Vector Modulation 
As depicted in Figure 2.25, a VSI consists of three half-bridges, one for each phase. The bridges 

itself consist of two series transistors each. In order to avoid short circuits, only one of the two 

bridge transistors can be switched on at a time. We can thus describe the actual state of a half-

bridge with a binary parameter. Per common definition, this parameter has the value one, when 

the upper transistor is switched on and the lower off, and the value zero vice versa. For the 

three phases, we thus get eight possible switching combinations which result in a set of terminal 

voltages. When now assuming a three-phase AC machine connected to the inverter outputs, we 

can apply the space vector notation from section 2.2.2 and transform the terminal voltages into 

voltage space vectors in stator coordinates by means of (2.51). Table 1 lists all possible discrete 

 

Figure 2.25: Topology of a three-phase two-level voltage source inverter 
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voltages and Figure 2.26(a) gives the graphical representation of the voltage space vectors in 

the 𝛼𝛽 plane. 

 

Table 1: Possible switching states and resulting terminal and space vector voltages 

 Switching states Terminal voltages Voltage space vector 

# 𝑈  𝑉  𝑊  𝑢𝑢 − 𝑢𝑣 𝑢𝑤 − 𝑢𝑢 𝑢𝛼 𝑢𝛽 

0 0 0 0 0 0 0 0 

1 1 0 0 𝑢𝐷𝐶  −𝑢𝐷𝐶  2 3⁄ 𝑢𝐷𝐶  0 

2 1 1 0 0 −𝑢𝐷𝐶  1 3⁄ 𝑢𝐷𝐶  1
√
3⁄ 𝑢𝐷𝐶  

3 0 1 0 −𝑢𝐷𝐶  0 −1 3⁄ 𝑢𝐷𝐶  1
√
3⁄ 𝑢𝐷𝐶  

4 0 1 1 −𝑢𝐷𝐶  𝑢𝐷𝐶  −2 3⁄ 𝑢𝐷𝐶  0 

5 0 0 1 0 𝑢𝐷𝐶  −1 3⁄ 𝑢𝐷𝐶  −1
√
3⁄ 𝑢𝐷𝐶  

6 1 0 1 𝑢𝐷𝐶  0 1 3⁄ 𝑢𝐷𝐶  −1
√
3⁄ 𝑢𝐷𝐶  

7 1 1 1 0 0 0 0 

 

 

We see that the output voltages are restricted to six active (𝒖1. . 𝒖6) and two zero vectors 

(𝒖0, 𝒖7). It is also worth noting that a transition between two adjacent active vectors requires 

only one switching operation. Furthermore, one commutation of a half-bridge is necessary for 

a transition from an active to a zero vector, or vice versa. All even active vectors form a set 

with 𝒖7 and all odd with 𝒖0. 

In drive systems, where the motor is controlled by a VSI, we can distinguish between direct 

control algorithms and those who require a modulator. A well-known example of direct 

algorithms is direct torque control (DTC) that was developed in the 1980s by Takahashi and 

Noguchi [88] and Depenbrock [89]. It considers the discrete nature of the inverter and gives 

pulse commands directly to the inverter. 

 

Figure 2.26: (a) Set of active voltage space vectors and the respective sectors (roman 

numerals) for a two-level VSI; (b) example of SVM for a voltage reference 𝒖∗ in 

sector I 
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Conventional field oriented control (FOC), as it is applied within this work, belongs to the class 

of algorithms that calculate continuous voltage references. The discrete voltages of the inverter 

do thus have to be modulated. In literature, a wide range of different modulation techniques 

exists. They are optimized with respect to different criterions such as algorithmic complexity, 

current harmonics, or switching losses. A good overview is given in the survey paper from Holtz 

[73]. 

This work applies the so-called space vector modulation (SVM), a special form of pulse width 

modulation (PWM) techniques. It is easy to implement and causes comparably low harmonic 

distortions, especially in the low and medium voltage range [73 pp. 1200–1202]. Its basic idea 

is to average the desired reference vector over a fixed time period by the vectorial sum of the 

two adjacent active vectors and one or both of the zero vectors. Figure 2.26(b) demonstrates 

this exemplarily for a reference vector 𝒖∗ in sector I. The closest active vector to the right, 𝒖1, 

is applied for a time 𝑡1, and the left vector, 𝒖2, for a time 𝑡2, respectively. For an arbitrary 

reference vector in sector number 𝑆, this can be expressed mathematically as 

𝑇𝑆𝒖
∗ = 𝑡𝑟𝒖𝑟 + 𝑡𝑙𝒖𝑙, (2.127) 

where 𝑇𝑆 is the SVM cycle time and the left (subscript 𝑙) and right (subscript 𝑟) voltage vectors 

are given by 

 𝒖𝑟 =
2

3
𝑢𝐷𝐶𝑻 ((𝑆 − 1) ⋅ 60°) [

1
0
], (a) 

(2.128) 

 𝒖𝑙 =
2

3
𝑢𝐷𝐶𝑻 (𝑆 ⋅ 60°) [

1
0
]. (b) 

By substituting (2.128) into (2.127), we can find the switching times 

[
𝑡𝑟
𝑡𝑙
] =

√
3𝑇𝑆
𝑢𝐷𝐶

[
sin(𝑆 ⋅ 60°) − cos(𝑆 ⋅ 60°)

− sin((𝑆 − 1) ⋅ 60°) cos((𝑆 − 1) ⋅ 60°)
] [
𝑢𝛼
∗

𝑢𝛽
∗ ] (2.129) 

and 

𝑡0 = 𝑇𝑆 − 𝑡𝑟 − 𝑡𝑙. (2.130) 

It should be obvious that 𝑡0 must not be negative. This, however, occurs, when the given 

reference vector exceeds the limiting hexagon as shown in Figure 2.26(a). In this case, the 

reference vector is cut at its intersection point with the hexagon. For that reason, a saturation 

factor is introduced as 

𝑘𝑠𝑎𝑡 =
𝑇𝑆
𝑡𝑙 + 𝑡𝑟

. (2.131) 

Feasible vector times are then calculated by 

 𝑡0,𝑠𝑎𝑡 = 0, (a) 

(2.132) 

 [
𝑡𝑟,𝑠𝑎𝑡
𝑡𝑙,𝑠𝑎𝑡
] = 𝑘𝑠𝑎𝑡 [

𝑡𝑟
𝑡𝑙
] (b) 

and the reference vector that is actually modulated is given by 
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 𝒖𝑠𝑎𝑡
∗  = 𝑘𝑠𝑎𝑡𝒖

∗.  (2.133) 

From Figure 2.26(a), we can see that the maximal feasible reference voltages are directed along 

the 𝑢, 𝑣, 𝑤 axes and are of length 2 3⁄ 𝑢𝐷𝐶. When, however, a reference vector is oriented along 

a sector middle, its maximal length is 1
√
3⁄ 𝑢𝐷𝐶 . This corresponds to the maximal length a 

rotating reference vector can have without being saturated. 

After the vector times are computed, it is necessary to determine the exact switching times 

and the order in which the discrete inverter voltage vectors are applied. In literature, different 

strategies are discussed with respect to harmonic distortions, switching losses and maximum 

modulation indices [73]. A common technique with relatively good characteristics is to arrange 

the switching times symmetrically around the middle of an SVM cycle and to share the time 

𝑡0 equally among both zero vectors, 𝒖0 and 𝒖7. Additionally, the active vectors are ordered in 

such a way that only one commutation occurs at the transition from one vector to the following 

one. The switching sequence for a complete SVM cycle with an exemplary reference vector in 

sector I is then as follows: 

𝒖0 〈
𝑡0
4
〉 → 𝒖1 〈

𝑡1
2
〉 → 𝒖2 〈

𝑡2
2
〉 → 𝒖7 〈

𝑡0
2
〉 → 𝒖2 〈

𝑡2
2
〉 → 𝒖1 〈

𝑡1
2
〉 → 𝒖0 〈

𝑡0
4
〉 

Typically, the vector times are translated into duty cycles, 𝑑𝑢,𝑣,𝑤, which determine the times, 

where the respective half-bridge is in state ‘1’, i.e. where the upper switch is closed. Depending 

on the actual sector, they are calculated as listed in Table 2. 

Table 2: Duty cycles for each sector 

𝑺 𝒅𝒖 𝒅𝒗 𝒅𝒘 

𝑰 𝑡𝑟 + 𝑡𝑙 + 𝑡0 2⁄

𝑇𝑆
 

𝑡𝑙 + 𝑡0 2⁄

𝑇𝑆
 

𝑡0 2⁄

𝑇𝑆
 

𝑰𝑰 𝑡𝑙 + 𝑡0 2⁄

𝑇𝑆
 

𝑡𝑟 + 𝑡𝑙 + 𝑡0 2⁄

𝑇𝑆
 

𝑡0 2⁄

𝑇𝑆
 

𝑰𝑰𝑰  𝑡0 2⁄

𝑇𝑆
 

𝑡𝑟 + 𝑡𝑙 + 𝑡0 2⁄

𝑇𝑆
 

𝑡𝑙 + 𝑡0 2⁄

𝑇𝑆
 

𝑰𝑽  𝑡0 2⁄

𝑇𝑆
 

𝑡𝑙 + 𝑡0 2⁄

𝑇𝑆
 

𝑡𝑟 + 𝑡𝑙 + 𝑡0 2⁄

𝑇𝑆
 

𝑽  𝑡𝑟 + 𝑡𝑙 + 𝑡0 2⁄

𝑇𝑆
 

𝑡0 2⁄

𝑇𝑆
 

𝑡𝑙 + 𝑡0 2⁄

𝑇𝑆
 

𝑽𝑰 𝑡𝑟 + 𝑡𝑙 + 𝑡0 2⁄

𝑇𝑆
 

𝑡0 2⁄

𝑇𝑆
 

𝑡𝑙 + 𝑡0 2⁄

𝑇𝑆
 

 

In practice, the exact duty cycles usually cannot be processed as calculated due to hardware 

limitations (e.g. time quantization effects in digital systems; see description of the test bench 

in Chapter 3). In order to be as accurate as possible, it is thus useful, to calculate the applied 

voltage space vector from the exact duty cycles as processed by the real time system. 

By means of Kirchhoff’s voltage law, we can directly obtain the output voltages from the VSI 

circuit diagram in Figure 2.25. Thus,  
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𝑢𝑢 − 𝑢𝑣 =  𝑢𝐷𝐶(𝑑𝑢 − 𝑑𝑣), (a) 
(2.134) 

𝑢𝑤 − 𝑢𝑢 =  𝑢𝐷𝐶(𝑑𝑤 − 𝑑𝑢). (b) 

Substituting (2.134) into (2.51), then leads to the desired expression, 

[
𝑢𝛼
∗

𝑢𝛽
∗ ] = 𝑢𝐷𝐶

2

3
[
1 2⁄ −1 2⁄

−
√
3 2⁄ −

√
3 2⁄
][
𝑑𝑢 − 𝑑𝑣
𝑑𝑤 − 𝑑𝑢

]. (2.135) 

 

2.4 Fourier Analysis of Space Vectors 

When dealing with synchronous machines at steady states, we have to deal with constantly 

rotating and thus time periodic space vectors. The theory dealing with periodic signals is named 

after Jean Baptiste Joseph Fourier, who approximated arbitrary (continuous) functions by 

trigonometric series in order to simplify his analysis of heat distribution and heat movement 

[90, 91]. This section gives a short introduction to the Fourier analysis of space vectors. 

2.4.1 Fourier Series of Space Vectors 
A space vector describing the periodic progressions of voltages, currents and flux linkages in 

time can be written as sum of multiple space vectors, each rotating constantly at unique 

combinations of speed and amplitude. Taking, for instance, voltage space vectors, we can write 

𝒖(𝑡) = ∑ 𝑢𝑘 𝑻 (𝜔𝑘𝑡 + 𝜙𝑘)𝒆1

∞

𝑘=−∞

, (2.136) 

where 𝑢𝑘 is the amplitude of the voltage space vector rotating with a speed of 𝜔𝑘 with an initial 

orientation given by the angle 𝜙𝑘 with respect to the axis of abscissae of the given reference 

coordinate system. The vector 𝒆1 is the unit vector of that respective axis and 𝑻 (𝜙) is the 

rotation matrix as introduced in section 2.2.2 (see (2.38)). 

Equation (2.136) is the space vector form of the classical Fourier series in complex notation [92 

p. 85], where  

𝒖𝑘 = 𝑢𝑘 𝑻 (𝜙𝑘)𝒆1 (2.137) 

corresponds to the complex Fourier coefficients and 

𝜔𝑘 = 2𝜋
𝑘

𝑇1
 (2.138) 

is describing the discrete radian frequencies of the overall signal with a period length of 𝑇1. 

The corresponding frequency is thus given by 

𝑓𝑘 =
𝑘

𝑇1
= 𝑘𝑓1. (2.139) 

Equations (2.138) and (2.139) involve that all occurring frequencies have to be 𝑘 times periodic 

to the overall signal and that also negative frequencies can occur, where 

−𝜔𝑘 = 𝜔−𝑘 (2.140) 



CHAPTER 2  THEORETICAL BACKGROUND 

58 

and 

−𝑓𝑘 = 𝑓−𝑘. (2.141) 

For 𝑘 > 0 we thus have rotating vectors in mathematically positive direction and in negative 

direction for 𝑘 < 0, accordingly. 

In section 2.2.3, it was shown that splitting up the overall signal 𝒖(𝑡) into its spectral 

components can be useful to simplify the analysis of the underlying physical processes in 

synchronous machines. The transformation of the machine model from stator to rotor fixed 

coordinates allows to separate out the torque producing current space vector components at 

rotor synchronous frequencies and making them easy to handle for standard control techniques.  

The same procedure can be generally applied at arbitrary frequencies, leading to a signal 

transformed into a coordinate system that is constantly rotating at 𝜔𝑥. Hence, 

𝒖𝑥(𝑡) = 𝑻 (−𝜔𝑥𝑡)𝒖(𝑡) = ∑ 𝑢𝑘 𝑻 ((𝜔𝑘 − 𝜔𝑥)𝑡 + 𝜙𝑘)𝒆1

∞

𝑘=−∞

. (2.142) 

From (2.142), we can see that the frequencies of all spectral components in 𝒖(𝑡) are shifted to 

the new frequencies 𝜔𝑘 − 𝜔𝑥, whereas only that signal component with 𝜔𝑘 = 𝜔𝑥 is constant in 

that respective coordinate system. For this reason, we can determine that specific Fourier 

coefficient by eliminating all oscillating signal components. When we consider a period of 𝑇1 or 

integer multiples thereof, this can be easily done by calculating the arithmetic mean of (2.142). 

We thus get 

𝒖𝑥 = 𝑢𝑥𝑻 (𝜙𝑥)𝒆1 =
1

𝑇1
∫𝑻(−𝜔𝑥𝑡)𝒖(𝑡)𝑑𝑡

(𝑇1)

, 
(2.143) 

where 𝑢𝑥 is the Euclidean norm of 𝒖𝑥 and 𝜙𝑥 is the analogon to the argument of complex 

numbers, 

𝑢𝑥 = ‖𝒖𝑥‖2, (a) 
(2.144) 

𝜙𝑥 = ∠(𝒖𝑥, 𝒆1). (b) 

 

2.4.2 Leakage Effect of Fourier Coefficients 
When analyzing integrable periodic functions, the Fourier coefficients can be precisely 

determined by (2.143). In practice, however, it is often difficult to consider complete periodic 

time ranges of 𝒖(𝑡), especially when 𝒖(𝑡) is not a known function but a series of measurements. 

This might be, for instance, due to combinations of occurring frequencies that would require 

impracticable long periods of times to be analyzed. Also, measurements are typically impaired 

by measurement noise, which makes it difficult to identify the exact period length, since the 

identity 𝒖(𝑡) = 𝒖(𝑡 + 𝑛𝑇1) cannot be found. 

If a spectral component is not precisely periodic in the evaluated time range, its arithmetic 

mean is not zero and thus causes an error when determining in the Fourier coefficients acc. to 

(2.143) – the non-periodic signals ‘leak’ into neighboring frequencies. 
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The error due to the leakage effect can be determined, when we substitute the sum expression 

from (2.142) into (2.143) and solve the integral from the arithmetic mean operation for a non-

periodic time range, 𝑇𝑎𝑣𝑔. For each transformed frequency component, we can now define a 

factor, 𝑛𝑘𝑥, that describes the (not necessarily integer) number of periods of that specific 

frequency within the time range 𝑇𝑎𝑣𝑔. Thus, 

𝑇𝑎𝑣𝑔 = 𝑛𝑘𝑥
2𝜋

𝜔𝑘𝑥⏟
𝑇𝑘𝑥

, ∀𝑛𝑘𝑥 ∈ ℝ
+. 

(2.145) 

For conciseness, we introduce the transformed angular frequencies 

𝜔𝑘𝑥 = 𝜔𝑘 − 𝜔𝑥 (2.146) 

and then solve 

𝒖̅   𝑥 =
1

𝑇𝑎𝑣𝑔
∫ ∑ 𝑢𝑘 𝑻 (𝜔𝑘𝑥𝑡 + 𝜙𝑘)𝒆1

∞

𝑘=−∞

𝑑𝑡

(𝑇𝑎𝑣𝑔)

. 
(2.147) 

When we denote the starting point of the evaluated time range as 𝑡0, we can solve the integral 

and further simplify the result, ending up with 

𝒖̅   𝑥 = ∑ 𝑢𝑘 sinc(𝑛𝑘𝑥) 𝑻 (𝜔𝑘𝑥𝑡0 + 𝑛𝑘𝑥𝜋 + 𝜙𝑘)𝒆1

∞

𝑘=−∞

, (2.148) 

where  

sinc(𝑛𝑥) =
sin(𝜋𝑛𝑘𝑥)

𝜋𝑛𝑘𝑥
 (2.149) 

is the normalized Sinus cardinalis, or cardinal sine function [92 p. 105], as shown in Figure 

2.27. 

When we, as in the former section, assume that we are looking for a specific, existing frequency 

component, we get 𝜔𝑘𝑥 = 0 and hence 𝑛𝑘𝑥 = 0. Equation (2.148) thus contains the information 

we are interested in, namely 𝒖𝑥. It is, however, distorted by all other frequency components. 

When we rewrite (2.148) as  

𝒖̅   𝑥 = 𝒖𝑥 + ∑ 𝑢𝑘 sinc(𝑛𝑘𝑥) 𝑻 (𝜔𝑘𝑥𝑡0 + 𝑛𝑘𝑥𝜋 + 𝜙𝑘)𝒆1
𝑘∈ℤ,𝑘≠𝑥

, 
(2.150) 

we see that the distortion amplitude depends on the amplitude 𝑢𝑘 and the term sinc(𝑛𝑘𝑥). As 

shown in Figure 2.27, the Fourier coefficient of interest is only distorted by frequency 

components with 𝑛𝑘𝑥 ∉ ℕ. We further see that the amplitude of the disturbance decreases with 

increasing 𝑛𝑘𝑥. When determining the extrema of the sinc function, we can state that the 

maximal disturbance amplitude for 𝑛𝑘𝑥 > 32.5 is less than 1% of 𝑢𝑘 and for 𝑛𝑘𝑥 > 63.5 it is 

less than 0.5%. 

We can thus conclude that if we cannot guarantee 𝑛𝑘𝑥 ∈ ℕ
+ for all nonzero spectral 

components, the measurement period should be as long as possible and as close as possible to 

the roots of the corresponding sinc function. 
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2.4.3 The Aliasing Effect in Sampled Signals 
In digital signal processing, analogue signals are generally sampled at certain times. Typically, 

the time 𝑇𝑆 between the samples is constant, such that we get a sampling frequency of 

𝑓𝑆 =
1

𝑇𝑆
. (2.151) 

Without further knowledge about the general properties of the sampled signal, we have no 

information about the signal during that time between the samples. When attempting to 

analyze the spectral components of sampled data, we face the problem that the trigonometric 

functions are periodic and thus non-injective. For a given set of equidistant, periodic samples, 

we can find an infinite set of frequencies that would result in the same set of sampled data. 

This is illustrated exemplarily for two cosine functions in Figure 2.28(a). It can thus happen 

that one signal, for instance at 𝑓 = 5 4⁄ 𝑓𝑆, is interpreted as a signal of same phase and 

amplitude at 𝑓 = 1 4⁄ 𝑓𝑆. We can say that one frequency appears to be another – they are alias 

frequencies of each other. 

In Figure 2.28(a), we can see that alias frequencies are intersecting at the sampling times. 

Mathematically and in accordance with the space vector notation applied within this work, we 

can thus find the definition of alias frequencies from the expression 

𝑻 (2𝜋𝑓𝑇𝑆)𝒆1 = 𝑻 (2𝜋𝑓𝑎𝑛𝑇𝑆 + 2𝜋𝑛)𝒆1, ∀𝑛 ∈ ℕ, 𝑛 ≠ 0, (2.152) 

where 𝑓𝑎𝑛 is the 𝑛th alias frequency of 𝑓 and the term 2𝜋𝑛 takes into account the fact that 

there is an infinite number of solutions. 

When solving (2.152) for 𝑓𝑎𝑛, we get an infinite set of alias frequencies,  

𝑓𝑎𝑛 = 𝑓 − 𝑛𝑓𝑆 , ∀𝑛 ∈ ℕ, 𝑛 ≠ 0. (2.153) 

 

 

Figure 2.27: The cardinal sine function with its roots marked by dots and its extrema marked 

by circles 
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If we now assume a real signal that consists solely of the sum of spectral components at alias 

frequencies and that is sampled at the discrete times 𝑡 = 𝑛𝑆𝑇𝑆, ∀𝑛𝑆 ∈ ℕ, we can write 

𝒖(𝑛𝑆𝑇𝑆) = (𝑢 𝑻 (2𝜋𝑓𝑛𝑆𝑇𝑆 + 𝜙) + ∑ 𝑢𝑎𝑛 𝑻 (2𝜋𝑓𝑎𝑛𝑛𝑆𝑇𝑆 + 𝜙𝑎𝑛)
𝑛∈ℕ,𝑛≠0

)𝒆1. (2.154) 

Substituting (2.153) into (2.154) and determining the Fourier coefficient acc. to (2.143) at 𝑓 or 

any other of the alias frequencies, we obtain 

𝒖(𝑓) = 𝒖(𝑓𝑎1) = ⋯ = (𝑢 𝑻 (𝜙) + ∑ 𝑢𝑎𝑛 𝑻 (𝜙𝑎𝑛)
𝑛∈ℕ,𝑛≠0

)𝒆1. (2.155) 

We see that it is impossible to correctly determine the amplitudes and phases of each spectral 

component from the sampled data. Instead, the Fourier coefficient for each of the alias 

frequencies appears to be the sum of all respective Fourier coefficients. This is exemplarily 

shown in Figure 2.28(b), where the sum of both functions from (a) is sampled. When 

 

Figure 2.28: (a): Example of two cosine functions with same amplitude and phase but at 

different frequencies that produce the same set of sampled data; (b): sum of both 

functions from (a) and how its samples could be misinterpreted in Fourier 

analysis 
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determining the Fourier coefficient of this sampled data for 𝑓 = 1 4⁄ 𝑓𝑆, we obtain a result with 

twice the amplitude (i.e. the sum of both amplitudes) of the actual component. 

The aliasing effect motivated the sampling theorem, first formulated in 1933 by Vladimir 

Kotelnikov [93], which states that a sampled signal can only be correctly reconstructed, if the 

sampling frequency is higher than twice the highest occurring frequency in a signal, usually 

called the Nyquist frequency. 

We can conclude that the aliasing effect can only be avoided, when a signal has a finite 

bandwidth, and the sampling frequency is chosen high enough to guarantee that no alias 

components can disturb the Fourier analysis. 
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Test Bench Description 

The test rig, as used for all measurements within this work, is shown in Figure 3.1. In order to 

have full flexibility, the motor under test is always coupled with a load motor. The latter is 

controlled by an industrial inverter, which can be set to torque or speed control mode. 

The motor under test is driven by a modified industrial inverter. Its control unit is replaced by 

an interface that provides current and DC voltage measurement signals and accepts three-phase 

PWM commands. The latter are directly fed to the original power electronics module, which 

contains over-current protection and ensures proper switching dead times in order to avoid 

bridge short-circuits. 

Both inverters are coupled at their DC links, which allows the optimal use of electrical energy 

during the tests. Typically, one motor is operated in generator mode and can thus provide the 

 

Figure 3.1: Graphical overview of the complete test bench 
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energy for the other motor. The DC source supplying both inverters does only have to provide 

sufficient energy during acceleration periods and for compensating the overall losses. Since the 

DC source actively controls the voltage and is capable of recuperating brake energy into the 

supply grid, no braking chopper is necessary. 

The control algorithms for the motor under test run on a rapid prototyping system, which also 

acquires all available measurement signals, i.e. phase currents, DC voltage and rotor position. 

The rapid prototyping system has an optical communication module that is connected with a 

standard PC, where the measurements can be visualized, and user commands can be processed 

and forwarded to the motor controller. 

It is worth noting that all measurement raw data are logged on the PC. The evaluation of the 

flux linkage information as discussed in Chapter 6 is done during post processing. This has the 

advantage that the results obtained with different methods can be optimally compared to each 

other. 

In the following sections, the specifications of each of the described components are given. As 

we will show later, the switching characteristics of the test inverter are important for the 

measurement results. Therefore, this issue is addressed in detail. 

3.1 Rapid Prototyping System 

The rapid prototyping system consists of a dSPACE DS1005 PowerPC Board with a one GHz 

real-time processor (RTP) and 128 MByte SDRAM. For generation of the symmetric PWM 

pulse patterns, a DS4002 Timing and Digital IO Board is employed. The rotor position is 

acquired by a DS3002 Incremental Encoder Board. The other sensors deliver analogue voltages, 

which are fed to a DS2001 High-Speed ADC Board with five 16-Bit analog-to-digital converter 

(ADC) channels with a sample and hold unit each for synchronous data acquisition. 

The timing of data acquisition, control and PWM generation is shown in Figure 3.2. From top 

downwards, the PWM signals as they are passed to the test inverter are shown. At bottom, 

the sequential working steps of the real-time system are shown. With the beginning of each 

PWM cycle, the DS4002 board generates an interrupt. The resulting interrupt service routine 

(ISR) starts with sampling all measurement signals. As the sampling takes place in the middle 

of the zero vector 𝒖0, the sampling frequency corresponds to the PWM frequency, which is in 

this case 𝑓𝑆 = 10 kHz. The sampling time is thus 𝑇𝑆 = 1 𝑓𝑆⁄ = 100 µs. 

After the simultaneous data acquisitions of all available signals, the ISR processes the field-

oriented control algorithm. Its outcome is the reference signal of the stator voltage vector 𝒖𝑠
𝑠∗. 

As indicated, the updated reference does not influence the actual PWM. Only after finishing a 

complete cycle, the duty-cycles are updated. This leads to a dead time in the voltage commands 

that must be taken into account when evaluating the measurements. 

The different lengths of both ISRs in Figure 3.2 indicates that the processing times can differ 

from one call to another. In order to guarantee real-time processing, the ISR has to be 

completely processed before the next interrupt occurs. This is monitored by a watch dog 

routine, which turns off the test inverter, if not regularly reset at the end of each ISR. 



3.2  POWER ELECTRONICS 

  65 

The time between two ISRs is used by the system for a background routine, which mainly 

consists of data exchange with the connected PC. Updated user commands are received and 

the measurements buffered during the ISR are transmitted. 

 

3.2 Power Electronics 

3.2.1 DC Source 
The DC link voltage is supplied by an industrial inverter for elevators. The RPI 5.5 from 

ThyssenKrupp has an input power of 7 kVA and controls the DC voltage to remain within a 

range between 570 V and 630 V. 

3.2.2 Load Inverter 
The load motor is driven by an FC302 industrial two-level VSI from Danfoss. It has a nominal 

power of 11.1 kVA and is manually commanded by the user via a control panel. 

3.2.3 Test Inverter 
The motor under test is driven by a modified MDX60A0074 two-level VSI from SEW. It 

provides phase current and DC link voltage measurements as described below in section 3.3. 

Its nominal output power is 11.2 kVA with a nominal output phase current of 16 A (AC). The 

integrated over-current protection turns off the power module, when the phase current exceeds 

120% of the nominal current (i.e. 27.15 A). 

As the given test bench does not provide possibilities to measure the inverter output voltages 

(which is common in industrial applications), the later flux linkage measurements must rely on 

 

Figure 3.2: Timing diagram of data acquisition, control routine, communication and three-

phase PWM signal generation 
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the DC voltage measurements. However, the switching elements, in this case insulated gate 

bipolar transistors (IGBTs), are not ideal. They have typical forward voltage drops of 2-3 V [94 

p. 690] and different turn-on and -off times, depending on the currents they switch. 

Additionally, the inverter enforces a switching dead time of 800 ns. All these effects lead to 

errors in the assumed phase voltages. 

While the voltage drops and the constant dead times could be compensated for easily, the 

nonlinear dependency of the switching times from the currents requires more effort. For that 

reason, the holistic voltage distortions caused by the inverter are measured according to the 

following procedure: 

1. Initialization: 

a. An appropriate motor (in terms of nominal voltage and current) is connected to 

the inverter. The motor shaft can be free or fixed. This has no influence on the 

measurements as we only need the motor as typical RL load. 

b. The motor is operated in current control mode. A slowly rotating nominal stator 

current vector is applied in order to uniformly heat up the stator windings and 

the IGBTs. 

c. When the motor temperature arrives at a steady state, the inverter is turned off 

and the exact motor and cable resistances are measured with an Ohmmeter. 

2. Measurements: 

a. The motor is operated again in current control mode. A set of gridded stator 

currents in the 𝛼𝛽 plane is chosen as reference for the current controller. One 

after each other, all current references are applied and the resulting steady state 

phase currents and the DC voltage are logged for a time interval of two seconds. 

In order to account for limitations regarding the minimal and maximal pulse 

width and time quantization due to the DS4002 PWM board, also the exact 

duty-cycle times as they are processed by the board are logged. 

b. In between each measurement, a simple resistance estimation is performed. Since 

the usually employed copper wires in AC motors have a positive temperature 

coefficient (i.e. the resistance increases with increasing temperature), the 

winding temperature can be hold in a defined range by either heating up the 

motor again or pausing the measurements. In this way, we can ensure that the 

measured resistance value from step 1.c remains valid. 

3. Post-processing: 

After finishing the measurements, the stator current and voltage space vectors are 

computed acc. to (2.41) and (2.135), respectively. Now, the voltage distortion caused 

by the inverter can be calculated by 𝒖𝑠,𝑖𝑛𝑣
𝑠 = 𝒖𝑠

𝑠∗ −𝑅𝑐𝑎𝑙𝒊𝑠
𝑠. This should be zero and the 

fact that it is not, must be due to the inverter as all other sources of error are eliminated 

as good as possible. 

Figure 3.3 shows the results of described method. While the 3D plots of the inverter distortion 

voltages in 𝛼- and 𝛽-axis, shown in (a) and (c), shall give a more qualitative overview, the 

respective contour plots, (b) and (d), improve the quantitative readability. 
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As expected, we see a nonlinear dependency of the voltage errors on the currents. The diode 

or IGBT forward voltage drops, the switching dead time and the different turn-on and -off 

times are all contained in the plots and sum up at maximum to an absolute value of ca. 8.2 V 

in the 𝛼, and ca. 7.5 V in the 𝛽-axis. The differences between both axes can be explained by 

the asymmetric coupling between the phase 𝑎𝑏𝑐 axes and the space vector 𝛼𝛽 axes. 

 

 

Figure 3.3: Voltage perturbation caused by the inverter plotted over stator currents in 𝛼𝛽 

plane; (a): 3D view of the 𝛼-axis voltage perturbation, color represents 𝑧-axis 

value, see color bar from (b); (b): corresponding 𝑥𝑦 contour plot, black dotted 

lines depict points, where phase currents are zero; (c): 3D view of the 𝛽-axis 

voltage perturbation, color represents 𝑧-axis value, see color bar from (d); 

(d): corresponding 𝑥𝑦 contour plot, black dotted lines depict points, where phase 

currents are zero 
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Another effect that is slightly8 observable in Figure 3.3 is the occurrence of discontinuities in 

the disturbance voltages along the phase axes. The latter are plotted in dotted lines in the 

subplots (b) and (d). During each commutation phase, the switching delays and dead times 

lead to a period, where both IGBTs of a half-bridge are insulating. During this time, the 

direction of the current driven by its own magnetic energy determines whether the upper or 

the lower freewheeling diode is conducting. The potential of the respective phase then 

corresponds to the high- or low-side DC voltage potential, accordingly. In consequence, the 

potential instantly changes with a change in the direction of the phase current [95, 96]. 

3.3 Used Sensor Systems 

3.3.1 Current Measurement 
The phase currents are measured with the internal current transducers of the test inverter. 

Their technology bases on the closed-loop Hall effect principle. 

Two sensors are applied to measure the currents of the phases 𝑈 and 𝑉 , while the current of 

phase 𝑊  is calculated acc. to (2.32) by means of an analog circuit. All three signals are also 

analogously low pass filtered with a filter time constant of 𝑇𝑓𝑖 = 5 µs. 

3.3.2 Voltage Measurement 
A measurement signal for the DC voltage, 𝑢𝐷𝐶, is also provided by the test inverter. The signal 

is low-pass filtered with a second order filter, whose time constants are  

𝑇𝑓𝑢1 = 1.1 µs and 𝑇𝑓𝑢2 = 4.7 µs. 

3.3.3 Speed and Position Measurement 
The rotor position, 𝜗𝑚, is measured with an optical incremental encoder with 1024 pulses per 

revolution. With quadruple evaluation, we thus get a resolution of 2𝜋 4096⁄ = 5.5′′. 

From the position information, the speed is approximated from 

𝜔𝑚 =
𝑑𝜗𝑚
𝑑𝑡
≈
Δ𝜗𝑚
Δ𝑡
, (3.1) 

where Δ𝜗𝑚 is the position difference between two subsequent samples and Δ𝑡 is the sampling 

time. With 𝑇𝑆 = 100 µs, we get a speed resolution of 15.3 ° 𝑠⁄ = 146.5 rpm. In order to reduce 

these discretization effects, the speed signal is low-pass filtered with a filter that averages the 

past ten speed values. In this way, the resolution of the speed signal can be improved be the 

factor ten, however at the expense of a time lag in the signal. 

3.4 Tested Machines 

Three different types of synchronous motors are tested within this work: 

• A synchronous reluctance motor (SynRM) 

• A permanent magnet synchronous motor with buried magnets (IPMSM) 

 
8 The discontinuities would be better visible with smaller step sizes in the measurement grid, however at 

the cost of exponentially increasing measurement effort. 
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• A permanent magnet synchronous motor with surface magnets (SPMSM) 

Their relevant parameters are given in Table 3. 

Table 3: Parameters of the tested motors according to manufacturer (italic formatting 

indicates values that are not directly given but could be derived from the 

information given) 

   

 

  

SM type   SynRM IPMSM SPMSM 

Manufacturer   Stellenbosch 

University, EM Lab 

Yaskawa Electric 

Corporation 

Merkes GmbH 

Type   Prototype SSR1-43P7AFN MT5-1050-30-560/P 

Nominal voltage 

(RMS) 

𝑈𝑁  V 400 369 330 

Nominal current 

(RMS) 

𝐼𝑁  A 3.5 6.8 6.3 

Nominal power 𝑃𝑁  kW 1.5 3.7 2.76 

Nominal torque 𝑀𝑁  Nm 9.55 20.2 8.8 

Nominal speed 𝜔𝑚,𝑁  rpm 1500 1750 3000 

Nominal phase 

resistance 

𝑅𝑠,𝑁  Ω  1.798 0.85 

Nominal phase 

inductance 

𝐿𝑠,𝑁  mH  32.93 (𝑑-axis) 

37.70 (𝑞-axis) 

7.6 

PM flux  

linkage 

𝜓𝑃𝑀  mVs 0 498.7 226.3 

Number of  

pole pairs 

𝑝  2 3 3 
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chaPter 4  

 

On Magnetic Characteristics of Synchronous Machines 

Before the following chapters address how to identify the magnetic characteristics of 

synchronous machines, this chapter explains the basic interrelations between magnetic energy, 

flux linkage and inductances in the context of synchronous machines and discusses, how this 

information can improve practical control tasks. Presenting now already the final results of the 

following chapters shall motivate and simplify understanding the hereinafter presented theory. 

4.1 The Synchronous Reluctance Machine 

4.1.1 The Relation between Magnetic Energy, Flux Linkage and Stator Current 
In the description of synchronous machines in Chapter 2.2, a detailed analysis came to the 

conclusion that the relation between the flux linkage and stator current space vectors is essential 

for modelling and controlling SMs. The mathematical translation of this relation was found in 

(2.55) to be 

𝝍𝑠
𝑟 = 𝒇𝑟(𝒊𝑠

𝑟), (4.1) 

where 𝒇𝑟 is a bijection that maps each current space vector with a flux linkage vector. We 

further found in (2.91) that the flux linkage is a conservative vector field derived from the 

gradient of the magnetic co-energy scalar field, i.e. 

𝝍𝑠
𝑟 =
2

3
𝛁𝑊𝜇,𝑐𝑜(𝒊𝑠

𝑟). (4.2) 

We can thus state that all information describing the magnetic characteristics of synchronous 

machines is contained in the co-energy field. The same statement holds analogously for the 

inverse of 𝒇𝑟 and the magnetic energy acc. to (2.56) and (2.90), i.e. 

𝒊𝑠
𝑟 = 𝒇𝑟−1(𝝍𝑠

𝑟) (4.3) 
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and  

𝒊𝑠
𝑟 + 𝒊𝑠,𝑃𝑀

𝑟 =
2

3
𝛁𝑊𝜇(𝝍𝑠

𝑟). (4.4) 

Figure 4.1 presents the magnetic energy and co-energy maps as final result of measurements 

described in section 6.3 for the SynRM introduced in Table 3. We can see that both, energy 

and co-energy, are zero in the origin of the respective planes and that they are symmetric with 

respect to the respective 𝑑 and 𝑞 axes. As discussed in section 2.1.2.4, the different energy levels 

along both axes are expressing the magnetic anisotropy of the machine. 

We can clearly see that the magnetic energy and co-energy maps are not equal as it would be 

in non-saturating (linear) material. In fact, the co-energy is larger than the energy at any point 

except the origin, which is clearly indicating that the ferromagnetic material of the SynRM is 

saturating in the expected way, i.e. that the magnetization versus the magnetic field is 

characterized by a sigmoid function (cf. Figure 2.1 and Figure 2.6). 

 

With this information, we can obtain both, 𝒇𝑟 and 𝒇𝑟−1, by applying (4.2) and (4.4), 

respectively. The corresponding visualizations are presented in Figure 4.2 and Figure 4.3. The 

black contour lines indicate loci of constant magnetic (co-)energy. The blue arrows represent 

the flux linkage and current space vectors as gradient of the respective (co-)energy fields (i.e. 

they are always orthogonal to their corresponding (co-)energy lines). The arrow lengths are 

proportionally correct but only of qualitative nature as a graphical comparison of the arrow 

length at a given point with a map scale would be difficult. The starting points of each arrow 

indicate the actual current (cf. Figure 4.2) or flux linkage (cf. Figure 4.3) points they are valid 

for. 

 

Figure 4.1: Magnetic energy and co-energy maps of the SynRM plotted as surfaces over 

stator current (a) and flux linkage (b) planes 
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Since this work only considers the fundamental components of flux linkage and stator current 

space vectors and since all measurements are performed at a rotor speed well above standstill, 

the magnetic anisotropy observable in Figure 4.2 is a shape anisotropy due to the specific rotor 

geometry, i.e. it results from different amounts of ferromagnetic material along 𝑑 and 𝑞 axis 

enforced by flux barriers (cf. Figure 2.13). The additional amount of magnetic material along 

the 𝑑 axis path leads to faster increasing magnetic co-energy in that axis. 

Regarding the magnetic energy, the inverse effect is seen in Figure 4.3. When reminding the 

graphical interpretation from Figure 2.6 (b), where the energy is interpreted as area between 

𝒇𝑟 and the flux linkage axis, it is obvious that the most energy is stored in the axis with a 

lower slope of 𝒇𝑟, i.e. the 𝑞 axis which has more air in its path. 

 

Figure 4.2: SynRM flux linkage space vector field derived from the magnetic co-energy scalar 

field in the 𝑑𝑞 current plane 
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From now on, we could continue to parallelly analyze 𝒇𝑟 in a current and 𝒇𝑟−1 in a flux linkage 

plane. For brevity, however, we will henceforward focus on 𝒇𝑟 only. Since the stator currents 

are directly measured, they seem to be the natural choice as reference plane. 

As a quantitative analysis of 𝒇𝑟 is difficult in the form presented in Figure 4.2, it is necessary 

to interpret the 𝑑 and 𝑞 components of 𝒇𝑟 separately. This is done in Figures 4.4 and 4.5, where 

the 𝑑 flux map (Figure 4.4) and the 𝑞 flux map (Figure 4.5) are plotted versus the 𝑑 and 𝑞 

currents. 

The 3D plots in the subfigures (a) shall give a qualitative impression of 𝑓𝑑 and 𝑓𝑞, whereas the 

subfigures (b)-(d) allow also quantitative analysis. The (b) plots show contour lines of the flux 

linkages for constant 𝑞 currents and thus correspond to the view on (a) from the front right. 

The (c) subfigures accordingly correspond to a view on (a) from the front left along the 𝑑 

current axis and the (d) subfigures show the contour lines of constant flux linkage, when we 

look at (a) from the top. 

In Figure 4.4(b) and Figure 4.5(c), we see the expected, typical sigmoidal saturation curves in 

accordance with the theoretical conclusions from section 2.2.3.5. Around the origin, the material 

is nearly linear, beginning to saturate with increasing currents. The 𝑑 axis flux linkage shows 

a higher increase than its counterpart in the 𝑞 axis. Additionally, the saturation begins at a 

point farther away from the origin and the cross-saturation effect is less significant around the 

origin. 

The latter statement is confirmed by the comparison of Figure 4.4(c) and Figure 4.5(b). While 

the 𝑑 flux linkage shows only few and nearly linear decrease with increasing 𝑞 current, the 𝑞 

 

Figure 4.3: SynRM stator current space vector field derived from the magnetic energy scalar 

field 
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axis flux linkage develops a quite nonlinear decrease with increasing 𝑑 current, especially around 

the origin. 

When analyzing the cross-saturation effects of both axes, it should be noted that best 

comparability is given for subfigures (d) of Figure 4.4 and Figure 4.5, as both are plotted on 

the same equidistant current plane. Here, the influence of cross-saturation is expressed by the 

additional current that is necessary to hold the flux linkage constant, when the current in the 

orthogonal axis is increasing. 

 

 

Figure 4.4: SynRM 𝑑-axis flux linkage maps plotted over stator currents in 𝑑𝑞 plane; (a): 3D 

view of flux linkage surface, color represents flux linkage value, see color bar from 

(d); (b): corresponding 𝑥𝑧 contour plot; (c): corresponding 𝑦𝑧 contour plot; 

(d): corresponding 𝑥𝑦 contour plot 
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All subfigures in Figures 4.4 and 4.5 demonstrate the symmetry of both flux linkage surfaces 

with respect to the origin. This symmetry is an obvious result from the geometric symmetry of 

the rotor yoke. 

 

4.1.2 Torque Generation and Associated Control Strategies 
In section 2.2.3.2, the torque was defined in (2.95) as 

𝑀 =
3

2
𝑝𝒊𝑠
𝑟𝑇𝑱𝝍𝑠

𝑟 =
3

2
𝑝(𝜓𝑑𝑖𝑞 − 𝜓𝑞𝑖𝑑). (4.5) 

 

Figure 4.5:  SynRM 𝑞-axis flux linkage maps plotted over stator currents in 𝑑𝑞 plane; (a): 3D 

view of flux linkage surface, color represents flux linkage value, see color bar from 

(d); (b): corresponding 𝑥𝑧 contour plot; (c): corresponding 𝑦𝑧 contour plot; 

(d): corresponding 𝑥𝑦 contour plot 
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With the measured pairs of flux linkage and stator current space vectors as presented above, 

we are thus able to calculate the torque at all feasible operating points. Figure 4.6 shows the 

SynRM torque over both, current and flux linkage planes in rotor coordinates. 

 

We see that the torque is symmetric with respect to the origin, as it could be expected due to 

the symmetry of flux linkage and current surfaces. The torque in first and third quadrants is 

positive, whereas it is negative in the quadrants two and four. Along both axes, no torque is 

produced, which means that both axes must be simultaneously magnetized to generate torque. 

The loci of constant torque indicate that a certain torque can be produced by a variety of 

operating points. This degree of freedom leads to the introduction of optimization criteria in 

order to develop advantageous control strategies. In many cases, optimizing the machine losses 

is the primary goal. An important role in loss minimization strategies play the so-called 

maximum torque per Ampere (MTPA) and the maximum torque per Volts9 (MTPV) trajectories. 

As their names indicate, they aim at finding the maximum torque for a given current or flux 

linkage space vector of constant length. 

They are seen as advantageous, because both, current and flux linkage space vectors are 

associated with losses. The electric current produces Ohmic losses in the stator windings, 

whereas the flux linkage is associated with iron losses. However, only when the motor is 

 
9 In fact, this strategy aims at maximizing the torque for a given flux linkage and hence should be 

abbreviated by MTPVs (“per Volt seconds”). However, besides minimizing the associated iron losses, this 

strategy also minimizes the back electromotive force (BEMF), which is measured in Volts. In literature, 

this strategy is also referred to as maximum torque per flux, which is, however, inconsistent with the 

naming of MTPA 

 

Figure 4.6: SynRM torque contour lines plotted over stator currents (a) and flux linkage in 

𝑑𝑞 plane; legend and color bar are valid for both subfigures 
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operated at a certain speed, the resulting remagnetization cycles of the stator yoke produce 

relevant hysteresis and eddy current losses. 

In practice, operating points in between both trajectories or intelligent switching procedures 

between the strategies have to be applied. Independent from the actual implementation, 

however, both trajectories enclose the areas of relevant operating points for efficient control 

strategies. 

The MTPA and MTPV current and flux linkage trajectories in Figure 4.6 indicate that the 

optimal current angles for the analyzed SynRM lie between approximately 50 to 80 degrees for 

positive and between -50 to -80 degrees for negative torques. 

It is worth noting that both trajectories are comparably linear. Only at the borders of the 

measured area, the MTPV trajectories show a sharp curve towards the MTPA trajectories. 

Under those limited conditions, the torque is maximal along the border. Without limitations, 

however, the MTPV trajectories would proceed relatively linear. Note that a quite similar effect 

can be seen for the MTPA moving towards the MTPV trajectory, when considering voltage 

limitations. This, however, only happens at high speeds and is thus not indicated in Figure 4.6. 

Also note that both, MTPA and MTPV, are not only relevant for efficiency but also to 

optimally deal with current and voltage constraints. MTPA allows maximal torque at a given 

current limit (determined by thermal heating in the stator windings and power electronics). 

MTPV allows to obtain maximal torque, when at high speed the BEMF approaches the 

maximum voltage of the inverter. 

4.1.3 Affine Model Parameters 
An affine model of synchronous machines was discussed in section 2.2.3.1 and mathematically 

described by (2.72), i.e. 

𝒖𝑠
𝑟 = 𝑅𝑠𝒊𝑠

𝑟 + 𝜔𝑟,𝑜𝑝𝑱(𝝍𝑠,𝑙𝑠
𝑟 (𝒊𝑠,𝑜𝑝

𝑟 ) + 𝑳𝑠,𝑜𝑝
𝑟 𝒊𝑠

𝑟) + 𝑳𝑠,𝑜𝑝
𝑟 𝑑

𝑑𝑡
𝒊𝑠
𝑟. (4.6) 

In the context of magnetic saturation, we can identify to sets of parameters, that can be 

considered constant for small changes around given operating points – the differential 

inductance matrix 𝑳𝑠
𝑟 and the large-signal flux linkage vector 𝝍𝑠,𝑙𝑠

𝑟 , where  

𝝍𝑠,𝑙𝑠
𝑟 = 𝝍𝑠

𝑟(𝒊𝑠,𝑜𝑝
𝑟 ) − 𝑳𝑠,𝑜𝑝

𝑟 𝒊𝑠,𝑜𝑝
𝑟 . (4.7) 

The inductance matrix parameters are plotted in Figure 4.7 as maps in the 𝑑𝑞 stator current 

plane. They are derived by computing the mean gradients of the flux linkage maps, which were 

shown in section 4.1.1. Especially in the contour plots on the right side of Figure 4.7, we can 

note a higher level of noise in the maps, which is a direct consequence of the numerical 

differentiation of the (at least slightly) noisy flux linkage data. The borders of the maps show 

the most noise. This is due to two effects. Firstly, at the borders no mean gradients can be 

computed. Instead, the gradients to the inner points are taken, which halves the evaluation 

distance and thus doubles the effect of noise on the numerical differentiation. The second effect 

results from the optimization process that is used to polish the measured data. That process is 

described in detail in Chapter 5. For the moment, it is only important, that it reduces noise by 
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solving an optimization problem involving all measurement points simultaneously. For that 

reason, neighboring points contribute to reducing the noise on each center point. In the border 

region, however, each point only has a reduced number of valid neighbors. 

All subfigures of Figure 4.7 demonstrate the highly non-linear behavior of the SynRM as a 

consequence of magnetic saturation. In a perfectly linear machine, both, 𝐿𝑑𝑑 and 𝐿𝑞𝑞, would 

be positive valued constants and the coupling inductance, 𝐿𝑚, would always be zero. Instead, 

𝐿𝑑𝑑 is decreasing very fast along the 𝑑-axis, whereas 𝐿𝑞𝑞 decreases along the 𝑞-axis. The 

influence of cross-saturation is observable in both, 𝐿𝑑𝑑 and 𝐿𝑞𝑞, and is also demonstrated by 

mutual inductances that reach up to ±60% of the main axes’ inductance values in the border 

regions of the measured area. 

It is worth noting that the mutual inductance values change their signs, when entering from 

one quadrant to its neighbor. The consequences of this sign changes at the 𝑑𝑞 axes are important 

in anisotropy-based sensorless control schemes, which are addressed in the following section. 

Due to less ferromagnetic material along the 𝑞-axis flux linkage paths, 𝐿𝑞𝑞 is generally smaller 

and faster saturating than 𝐿𝑑𝑑. Furthermore, 𝐿𝑞𝑞 seems to be maximally saturated in the border 

regions of the measured area, since it does not relevantly change with increasing 𝑑- or 𝑞- 

currents. Note, however, that this does not necessarily mean that the 𝑞-axis is generally 

maximally saturated. As already mentioned, the mutual inductances have a relevant influence 

on the overall flux linkages in the border region. This was already observed in the 𝑞-axis flux 

linkage measurements in Figure 4.5. 

A similar point can be made for the 𝑑-axis, where 𝐿𝑑𝑑 begins to desaturate with increasing 𝑞-

currents for inductance values smaller than 200mH. With regard to the flux linkage maps in 

Figure 4.4, we can state that increasing 𝑞-currents always led to cross-saturation, which is again 

a result of the mutual inductances. 

In the global perspective, we cannot identify any region of relevant size, where the machine 

could be considered linear. This underlines the necessity to distinguish between large- and 

small-signal behavior of synchronous machines, as it was discussed in section 2.2.3.1. 
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Figure 4.7: SynRM inductances plotted over stator currents in 𝑑𝑞 plane; (a)&(b): 𝑑 axis 

inductance; (c)&(d): 𝑞 axis inductance (e)&(f): mutual inductance 
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The large-signal flux linkages, that determine the offsets in the affine SM model acc. to (4.6), 

are shown in Figure 4.8. It is worth noting that 𝜓𝑑,𝑙𝑠 reaches values of about four times of 𝜓𝑞,𝑙𝑠, 

which is significantly more than the ratio between the maximal values of the flux linkages (≈

2.1, cf. Figures 4.4 and 4.5) Also note, that the maps are comparably curvy, making it difficult 

to approximate by simple mathematical models. 

 

 

 

Figure 4.8: SynRM large-signal flux linkages for linearized models plotted over stator 

currents in 𝑑𝑞 plane; (a)&(b): 𝑑 axis flux linkage; (c)&(d): 𝑞 axis flux linkage 
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4.1.4 Characteristics for Sensorless Control 
In section 2.2.3.3, it was discussed that the suitability of synchronous machines for anisotropy 

based sensorless control depends on the ratio of anisotropic and isotropic components in the 

inductance matrix, 𝑳𝑠
𝑟. In Figure 4.9, this saliency ratio acc. to (2.123) is plotted over the stator 

current plane in rotor coordinates in subfigures (a) and (b). With up to 70%, it reaches 

comparably high values, indicating that this machine should be well suited for sensorless 

control. Only for current vectors along the 𝑑 axis and especially at 𝑖𝑑 ≈ ±4A, comparably low 

anisotropic current derivatives of less than 10% of the overall current change are observable. 

As stated above in section 4.1.2, however, these regions are not of interest for typical control 

strategies. 

In subfigures (c) and (d), the half-differences between the 𝑑- and 𝑞- axis inductances are shown. 

Here, it is interesting to note that for large 𝑑-currents the inductance difference becomes 

negative. This means that in these regions, the current saturates the 𝑑-axis inductance to a 

point, where it is smaller than the 𝑞-axis inductance. For the anisotropy, this means that the 

easy and hard axes are interchanged. 

It should be emphasized that even at points, where 𝐿𝑑𝑑 = 𝐿𝑞𝑞 (i.e. along the zero-locus in 

subfigure (d) ), there is still an anisotropic component. This can easily be seen when comparing 

subfigures (b) and (d). According to (2.119), the coupling inductance, 𝐿𝑚, thus solely 

contributes to the anisotropic behavior of the machine at these points. Figure 4.7 (f) confirms 

this statement. Only the specific points at the 𝑑-axis, where 𝐿𝑚 = 𝐿Δ = 0, show no magnetic 

anisotropy. For sophisticated sensorless control schemes, however, this is not generally 

problematic, since a bijective assignment of rotor position and actual operating point should 

still be possible (see, for instance, [17, 97]). 

The subfigures (e) and (f) in Figure 4.9 show the orientation of the magnetic anisotropy. We 

see that along the 𝑞-axis, the anisotropy axes are exactly aligned with the rotor axes. Along 

the 𝑑-axis, beginning from the points, where 𝐿Δ ≤ 0, a misalignment of ±90° can be observed, 

which means that a standard anisotropy based sensorless control scheme would interpret the 

𝑑- as 𝑞- axis and vice versa. The discontinuities in the anisotropy angle indicate that the 

directions of the interpreted anisotropy axes are ambiguous (i.e. the 𝑑-axis could be interpreted 

as positive or negative 𝑞-axis). They result from the combination of small 𝐿Δ and a change of 

sign in 𝐿𝑚 (see Figure 4.7 (f)), which lead to a large quotient 𝐿𝑚/𝐿Δ and a change of sign 

when passing the 𝑞-axis. These large values with changing signs substituted into the definition 

of the anisotropy angle acc. to (2.114)(a) explain the observed discontinuities. 

The regions, where 𝐿Δ ≤ 0 generally lead to |𝜗𝐴| ≥ 45°, which lets the estimated 𝑑-axis be 

closer to the 𝑞-axis than the real 𝑑-axis. As mentioned before, the MTPA and MTPV 

trajectories demarcate the typical operating areas of the SynRM. We can thus conclude that 

the critical areas discussed above are not within that region. The maximal open-loop errors 

that can occur here, are at approximately ±22.5°. 
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Figure 4.9: SynRM anisotropy characteristics plotted over stator currents in 𝑑𝑞 plane;  

(a)&(b): saliency ratio; (c)&(d): half difference between 𝑑 and 𝑞 axis inductances; 

(e)&(f): angle difference between 𝐷 and 𝑑 axis, MTPA and MTPV trajectories 

for reference 



CHAPTER 4  ON MAGNETIC CHARACTERISTICS OF SYNCHRONOUS MACHINES 

84 

As discussed in section 2.2.3.3, we have to distinguish between open-loop (OL) and closed-loop 

(CL) sensorless control errors. Of course, CL control is the main purpose of sensorless control 

and thus we must further analyze the predictable CL behavior of the SynRM. Figure 4.10 (a) 

shows the top view and (b) the side view of the anisotropy angle. In contrast to subfigures (e) 

and (f) in Figure 4.9, it is plotted over the stator currents in an anisotropy-oriented reference 

frame. In order to obtain best result for visualization, a polar grid has been chosen and all 

points along the 𝑑-axis, where |𝜗𝐴| > 89° are eliminated. We can see that there are relevant 

operating points in the regions between the MTPA and MTPV trajectories, where the relation 

between current vector and anisotropy angle is non-bijective. For that reason, it seems not 

reasonable to compute the relevant current trajectories from the measured flux linkage maps 

and simply operate the SynRM in an anisotropy reference frame. Taking, for instance, a 

reference point on the MTPA trajectory with 𝑖𝐷 = 2.3A and 𝑖𝑄 = 6A would lead to two possible 

anisotropy positions at 𝜗𝐴 ≈ −15° or 𝜗𝐴 ≈ −60°. In consequence, a simple position estimator 

that tracks the anisotropy angle should fail in assigning an unambiguous rotor position without 

further parameter knowledge. 

 

 

Figure 4.10: SynRM anisotropy angle plotted over stator current in 𝐷𝑄 plane; (a): top view 

of 3D surface plot; (b): corresponding 𝑥𝑧 contour plot 
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Figure 4.10 thus indicates that sensorless CL operation might be instable in certain relevant 

operating regions, when only the anisotropy orientation is tracked, and no further parameters 

are applied. We thus analyze the CL stability acc. to the conditions (2.124) and (2.125) in the 

following Figures 4.11 and 4.12. 

 

In Figure 4.11, the CL current angle is plotted over the corresponding OL (or reference) current 

angle. It is obtained by solving (2.124) for 𝜗𝑖,𝑂𝐿, i.e. 

𝜗𝑖,𝑂𝐿 = 𝜗𝑖,𝐶𝐿 − 𝜗𝐴,𝐶𝐿, (4.8) 

and applying this to all combinations of apparent CL stator currents and corresponding 

anisotropy angles, which were shown in Figure 4.9 (e) and (f). For a given reference current 

vector in rotor coordinates, we can find the potentially stable corresponding CL current angle. 

Taking up the former example of 𝑖𝐷 = 2.3A and 𝑖𝑄 = 6A leads us to the MTPA point of 𝑖𝑑 =

3.8A and 𝑖𝑞 = 5.2A (transformed into rotor coordinates with 𝜗𝐴 ≈ −15°), or, in polar 

coordinates, 𝑖𝑠 = 6.4A and 𝜗𝑖,𝑂𝐿 = 54°. 

In the zoomed plot, we can see that this current operating point is only intersecting with the 

discontinuous section of the respective curve near the 𝑑-axis. Since discontinuities are 

characterized by gradients of 𝜕𝜗𝐴 𝜕𝜗𝑖⁄ = ±∞, we can directly see that the derivative condition 

acc. to (2.125), i.e. 

𝜕𝜗𝐴,𝐶𝐿
𝜕𝜗𝑖,𝐶𝐿

< 1, (4.9) 

is not met and thus the exemplary operating point is in fact instable. 

In order to further discuss potentially stable CL points, we now select 𝑖𝑠 = 7A and 𝜗𝑖,𝑂𝐿 = 70° 

as new current reference vector. Besides the intersection at the discontinuity, we can graphically 

identify further possible operating points at 𝜗𝑖,𝐶𝐿 ≈ 10° and 𝜗𝑖,𝐶𝐿 ≈ 50°, that meet condition 

 

Figure 4.11: SynRM potentially stable CL operating points plotted over OL stator current 

angle reference in rotor-oriented coordinate system 
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(2.124). For further analysis, we now need to evaluate the derivative condition (2.125), which 

is shown in Figure 4.12 (b). 

Note that for determining the derivative 𝜕𝜗𝐴,𝐶𝐿 𝜕𝜗𝑖,𝐶𝐿⁄ , two numerical differentiations of the 

initially measured flux linkage data are necessary This results in an according amplification of 

measurement noise. In order to filter this noise in the curves of subfigure (b), the derivatives 

are calculated with current angle differences of ±5°. 

For reference, the absolute relation between anisotropy position and stator current operating 

point is shown in subfigure (a) of Figure 4.12. Here, we can see again the discontinuities along 

the 𝑑-axis (i.e. for current angles 𝜗𝑖 = 0°) for current vectors of length 4A and more. In 

subfigure (b), we can see that around the discontinuities in the range of −40° ≤ 𝜗𝑖 ≤ 40°, 

condition (2.125) is started being violated by large currents and in regions with smaller current 

angles also by currents of smaller amplitude. In order to not lose too much resolution, the 

respective derivative axis in (b) is limited to a range of −1.5 to 1.5. 

 

When getting back to the last exemplary current operating point, we can see from subfigure 

(a) that it lies well within the practically relevant MTPA/MTPV region. Subfigure (b) reveals 

that from the two identified potentially stable CL operating points at 10° and 50°, only the 

latter satisfies the derivative condition (2.125). We can thus conclude, that a stable sensorless 

CL operation point exists, if a current vector of 𝑖𝑠 = 7A and 𝜗𝑖 = 70° is given as reference. 

From the zoomed plot in subfigure (a), we can identify a misalignment of the resulting current 

vector of approximately −18°, which means that the current vector in CL operation would be 

slightly outside the MTPA/MTPV region. 

Note that the exemplary graphical identification of the stable point is not very precise. This 

can be seen on the identified angles, 𝜗𝑖,𝑂𝐿 = 70°, 𝜗𝑖,𝐶𝐿 ≈ 50° and 𝜗𝐴 ≈ −18°, which obviously 

 

Figure 4.12: SynRM anisotropy angle (a) and its derivative (b) plotted over OL stator current 

angle in rotor oriented coordinate system; color bar is valid for (a) and (b) 
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do not exactly meet (2.124). For an overview of stable CL operating points, however, it is 

sufficient. For comparison, a simulative verification of the above graphical analysis gives us the 

exact angles of 𝜗𝑖,𝑂𝐿 = 70°, 𝜗𝑖,𝐶𝐿 = 52.9° and 𝜗𝐴 ≈ −17.1°. 

Another aspect worth noting is, that this stability analysis only tells us, whether a stable 

operating point exists, when the machine is operated in sensorless closed-loop mode and the 

position estimator neglects magnetic cross-saturation. Whether this operating point can be 

reached in practice depends on the bandwidths of the position estimator and the current 

controllers. Only, if the current vector remains in stable regions around the stable CL operating 

point, we can expect the control scheme to be generally stable. 

For the above-mentioned simulative stability analysis, a simple iterative adaption of the actual 

current vector was performed. A given OL current reference vector was rotated iteratively 

towards the respective anisotropy angle, until the changes of the resulting current vectors 

became sufficiently small. The instant rotation of the current vector in between two simulation 

steps corresponds to the case of unlimited bandwidths of position estimator and current 

controllers. If the termination criterion was not reached within a certain number of iterations, 

the corresponding OL reference vector was considered instable. 

The results of these simulations for all current reference vectors within the measured area are 

shown in Figure 4.13. All subfigures show the angle differences between CL and OL current 

vectors, i.e. the anisotropy angle at the resulting CL current vector. Only stable CL operating 

points are shown. 

Subfigures (a) and (b) show the resulting stable CL operating errors, when the current grid 

points as shown in (a) are given as OL reference. We can see that only reference vectors with 

|𝑖𝑑| < 3A result in stable CL operation. Before becoming instable, CL errors of up to ±25° 

occur. When comparing the resulting MTPA and MTPV trajectories, as shown in subfigure 

(b), the black OL references lead to the grey CL trajectories, which show significant derivations 

from the desired behavior. Along the MTPA trajectory, the SynRM can only be operated in 

CL-operation up to approximately 𝑖𝑑 = ±4.5A and 𝑖𝑞 = ±2.7A, which corresponds to around 

𝑀 = ±6.1Nm (see Figure 4.6 (a) ), or 64% of the rated torque. Along the MTPV trajectory, 

stable operation is possible up to approximately [𝑖𝑑 𝑖𝑞]𝑇 = [±4.9A ±7.6A]𝑇 , which allows 

torques of about 𝑀 = ±17.3Nm (182% rated torque). 

Especially at higher loads, both CL trajectories are far from being optimal in terms of their 

initial purpose, i.e. maximum torque per ampere, or per volts. In order to improve the CL 

behavior of the machine, we get back to the above-mentioned idea of controlling the machine 

in an anisotropy reference frame (see Figure 4.10). When comparing Figure 4.10 and Figure 

4.13 (c), we see that the overlapping regions are instable in CL operation. For that reason, the 

depicted stable CL errors resulting from reference vectors in anisotropy coordinates are 

bijective. In subfigure (d), we can see that we obtain the desired CL behavior. When applying 

the black trajectories to the CL current controllers, the resulting grey trajectories are identical 

with the real MTPA and MTPV trajectories (see Figure 4.9 (f), for instance), i.e. the machine 

is operated along the optimal trajectories. 
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It is worth noting, that by controlling the SynRM in anisotropy coordinates, the valid CL 

operating area can be effectively extended. Although we see that the trajectories at maximal 

load are identified as instable by the simulations, this is simply a result of the increasing noise 

in the measured flux linkage planes at high currents. The reasons for that noise were already 

explained in section 4.1.2, where the inductance maps in Figure 4.7 are discussed and in the 

above discussions of the results shown in Figure 4.12 (b). 

It can thus be stated that the simulations might falsely identify operating points in the border 

regions of the measured area as instable. From Figure 4.12, we can see that the stability 

conditions for CL control are met along both, MTPA and MTPV trajectories. It is thus possible 

 

Figure 4.13: SynRM closed-loop control error plotted over stator current in dq plane with 

closed-loop (grey) and open-loop (black) MTPA and MTPV trajectories for 

reference 
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to control the analyzed SynRM in closed-loop mode in the complete measured region along 

both trajectories, if they are transformed into anisotropy coordinates, before applying them as 

references to the CL sensorless current controllers. In contrast to more sophisticated sensorless 

control schemes that take magnetic cross-saturation into account, no additional parameters are 

needed online in this approach10. 

4.2 The Interior Permanent Magnet Synchronous Machine 

4.2.1 The Relation between Magnetic Energy, Flux Linkage and Stator Current 
Before starting the discussion of the IPMSM measurement results, we are addressing the general 

similarities and differences between this PM machine type and the formerly discussed PM free 

reluctance machines. Figure 4.14 exemplarily shows a comparison of the flux linkage maps of 

the SynRM from section 4.1 and a virtual IPMSM that has exactly the same design and 

material properties but additionally permanent magnets in the flux barriers. 

The first point to note is that compared to the SynRM flux linkage maps presented in Figures 

4.4 and 4.5, the maps here are rotated by 90°. This is necessary in order to account for the 

different definitions of 𝑑- and 𝑞-axis for PM and PM-free machines (cf. Figure 2.13 on page 26). 

The second point is that the origin of both flux linkage maps is shifted along the 𝑑-axis to the 

virtual magnetic origin of the machine, which was discussed in section 2.2.3.1. 

 
10 When assuming, that the trajectories are stored as lookup-tables for optimal current control in any 

case 

 

Figure 4.14: Hypothetical flux linkages plotted over stator currents in 𝑑𝑞 plane for imaginary 

machine based on SynRM (white filling) but with permanent magnets in the flux 

barriers; colored fillings show the feasible operating areas; (a): 𝑑 axis flux linkage; 

(b): 𝑞 axis flux linkage 
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Apart from those two modifications, i.e. a rotation and a parallel shift, the maps with white 

fillings are the same SynRM maps, as presented in the former section. In the given example, 

𝑖𝑃𝑀 is chosen to 5A, which leads to a permanent magnetic flux linkage of 𝜓𝑃𝑀 = 0.469Vs at 

the point of zero stator currents. 

When we now select an exemplary current limit of 4.9A, such that the given maps do not need 

to be extrapolated, we obtain the flux linkage maps of our virtual IPMSM. They are represented 

by the regions with colored fillings in Figure 4.14. 

We see that the permanent magnet shifts the feasible operating area along the 𝑑-axis. The 

magnetic origin is not in the center of the maps anymore, and, as in this example, can even be 

outside of the feasible operating area. We can thus not expect IPMSM flux linkage maps to be 

point symmetric anymore. They should, however, still be symmetric to the 𝑑-axis. 

With this hypothetical flux linkage maps in mind, we can now inspect the measured flux linkage 

maps from the real IPMSM, which was introduced in Table 3. Figure 4.15 shows the flux linkage 

map of the 𝑑-axis and Figure 4.16 that of the 𝑞-axis. In the 3D overviews in subfigures (a), we 

can generally find the forms that we expected from above hypothetical considerations. 

Compared to the flux linkage curves of the SynRM, we can note only moderate magnetic 

saturation in both axes. The 𝑑-axis flux linkage is already beginning to saturate due to the 

permanent magnetic field without any stator currents. Along the 𝑞-axis, where 𝑖𝑑 = 0, there is 

a noticeable cross-saturation effect on the 𝑑-axis flux linkage. This supports the statement from 

section 2.2.3.1, that PMSMs cannot be adequately modelled, when assuming constant 𝜓𝑃𝑀 and 

neglecting mutual absolute inductances (as done, for instance, in [75]). 

In Figure 4.16 (b), we can see that the permanent magnet also causes noticeable cross 

saturation effects on the 𝑞-axis flux linkage. All curves of non-zero, constant 𝑞-currents show at 

least slightly reduced 𝑞-axis flux linkages at 𝑖𝑑 = 0. 

In Figure 4.15 (b), we see that the magnetic origin is outside the measured area. As shown by 

the black, dotted line, we extrapolated the 𝑑-axis flux linkage curve without cross-saturation 

(i.e. where 𝑖𝑞 = 0) to the virtual magnetic origin, i.e. to the point, where 𝜓𝑑 = 0. This 

polynomial extrapolation leads to a PM equivalent current of 𝑖𝑃𝑀 = 15.8A, which is 

approximately 1.6 times the rated motor current. 

The main qualitative difference between the measured maps and those from the hypothetical 

IPMSM that was derived from the SynRM measurements can be noted in the field-weakening 

region for 𝑑-axis currents smaller than −6A. In Figure 4.15 (b), for instance, the curves for 

non-zero 𝑞-currents lie above the zero-current curve. This means, that the 𝑑-axis flux linkage 

increases with increasing 𝑞-currents, which is thus corresponding to magnetic cross-

desaturation, i.e. the opposite of what we would expect when reminding the explanation of 

cross-saturation in section 2.2.3.1 (see Figure 2.17 on page 35). The cross-desaturation is also 

observable in subfigure (c), when following the curves of constant 𝑑-currents < −6A, that lead 

to increasing flux linkage with increasing 𝑞-current. Figure 4.16 (b) does also show cross-

desaturation, when, for constant 𝑞-currents, the 𝑞-axis flux linkage begins to slightly decrease 

with negative, decreasing 𝑑-currents. 
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The reason for that behavior can be found in the superposition of PM field and electromagnetic 

field. As it was already discussed in section 2.2.3.1, the magnetic field of negative 𝑑-currents 

interacts with the permanent magnetic field such that its field lines close within the rotor. For 

mechanical reasons, the flux barriers in the rotor are supported by bridges. Those bridges are 

typically highly saturated due to the permanent magnetic field. If an additional electromagnetic 

field is imposed to the rotor, the bridges can be partly desaturated. Of course, this local 

desaturation can occur at other highly saturated rotor regions, as well. 

 

Figure 4.15: IPMSM 𝑑-axis flux linkage plotted over stator currents in 𝑑𝑞 plane; (a): 3D view 

of flux linkage surface, color represents flux linkage value, see color bar from (d); 

(b): corresponding 𝑥𝑧 contour plot; (c): corresponding 𝑦𝑧 contour plot; 

(d): corresponding 𝑥𝑦 contour plot 
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Without precise knowledge of the rotor geometry and material properties of the given IPMSM, 

it is difficult to further analyze the observed desaturation effects. A finite element analysis 

(FEA) would also extend the scope of this work. However, in [98], for instance, it is shown that 

the observed cross-demagnetization can also be analytically obtained for IPMSMs. 

The magnetic co-energy scalar field together with the above flux linkages as vector field is 

shown in Figure 4.17. The co-energy is computed acc. to (2.88) (see page 41), i.e. in the 

definition with virtual magnetic origin, where the PM is represented by the above-mentioned 

equivalent current of 𝑖𝑃𝑀 = 15.8A. Although not within the measured area, we see that the 

 

Figure 4.16: IPMSM 𝑞-axis flux linkage plotted over stator currents in 𝑑𝑞 plane; (a): 3D view 

of flux linkage surface, color represents flux linkage value, see color bar from (d); 

(b): corresponding 𝑥𝑧 contour plot; (c): corresponding 𝑦𝑧 contour plot; 

(d): corresponding 𝑥𝑦 contour plot 
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flux linkage vectors tend to zero towards the magnetic origin. We do also see the axial symmetry 

around the 𝑑-axis. 

As discussed in section 2.2.3.2, the concept of virtual magnetic origin leads to overall non-

negative co-energy fields. We can identify the co-energy associated with the permanent magnet 

to be approximately 𝑊𝜇,𝑐𝑜,𝑃𝑀 = 6J, since the corresponding curve passes through the point of 

zero current. 

In the given form with virtual magnetic origin, we can ideally compare the IPMSM co-energy 

fields with those of the SynRM as presented in Figure 4.2. We can observe that the loci of 

constant co-energy of the IPMSM are less elliptic than those of the SynRM. This indicates less 

 

Figure 4.17: IPMSM flux linkage space vector field and the corresponding magnetic co-energy 

scalar field in the 𝑑𝑞 current plane 
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magnetic anisotropy. Also, the major and minor axes are exchanged, which is a consequence of 

the different definitions of the 𝑑-axes for PM and PM-free synchronous machines. 

4.2.2 Torque Generation, MTPA and MTPV 
The torque produced by the IPMSM at different operating points can be calculated from the 

above flux linkage maps. The results are shown in Figure 4.18. 

In contrast to the trajectories of the SynRM, the MTPA and MTPV trajectories of the IPMSM 

do not intersect at the point of zero torque. This would only be the case, if the MTPA strategy 

included the PM equivalent current into its optimization process. Then, both trajectories would 

intersect at the point of virtual magnetic origin. However, since the PM equivalent current is 

not associated with Ohmic losses, only the real stator currents are considered in the MTPA 

strategy. The corresponding trajectory thus has its origin at the point of zero stator current. 

We see that the MTPA strategy requires increasing field weakening currents with increasing 

absolute torque values. This is a consequence of the combination of permanent magnetic and 

reluctance effects together with magnetic saturation. 

In contrast to the PM equivalent current, the PM flux linkage can cause losses, namely iron 

losses in the stator yoke. The MTPV strategy thus aims at minimizing the overall flux linkage. 

Since the virtual magnetic origin is outside the measured area, the MTPV trajectory lies at 

the border of the measured area, where the flux linkages are minimal. 

Under the aspect of energy efficiency and field-weakening at high rotor speeds, the relevant 

operating area of the IPMSM’s stator currents and flux linkages lies between both trajectories. 

 

Figure 4.18: IPMSM torque contour lines plotted over stator currents (a) and flux linkage (b) 

in 𝑑𝑞 plane; legend and color bar are valid for both subfigures 
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4.2.3 Affine Model Parameters 
In the exact same way as described in section 4.1.3 for the SynRM, the IPMSM inductances 

are determined from the flux linkage maps and presented in Figure 4.19. When starting from 

the origin of the stator currents, we can observe, that the main axes inductances, 𝐿𝑑𝑑 and 𝐿𝑞𝑞, 

are desaturating with negative 𝑑-currents. This process can be explained by the active field 

weakening of the PM field. It does, however, not proceed towards the virtual magnetic origin, 

as we would expect it from the simplified model, where the PM field and stator field perfectly 

cancel each other out. Instead, we see that the 𝑑-axis begins to saturate again for 𝑑-currents 

smaller than −8A. In the 𝑞-axis, this effect sets in with 𝑖𝑑 ≤ −3.5A.  

Again, identifying the exact reasons for that early saturation would require detailed finite 

element analysis and is thus out of scope of this work. It is, however, a clear indication that 

the superposition of permanent magnetic and electromagnetic fields leads to additional 

saturation in certain rotor regions and that this local saturation has a stronger influence on the 

overall flux linkage than the desaturation of other regions that were saturated from the PM 

field. 

Another indication of the complex superposition of PM and opposed electromagnetic field is 

observable in the mutual inductance map. As expected, it is zero everywhere on the 𝑑-axis. In 

𝑞-direction, however, the zero-locus progresses from approximately −3.75A on the 𝑑-axis 

towards 𝒊𝑠
𝑟 = [−9A ±12.75A]𝑇 . Note again, that this curve should theoretically be parallel to 

the 𝑞-axis and intersect the 𝑑-axis at −𝑖𝑃𝑀 = −15.8A. A more detailed analysis of this effect 

including FEA can be found in [99]. The region left from that locus is characterized by the 

magnetic cross-desaturation that was discussed in section 4.2.1. 
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Figure 4.19: IPMSM inductances plotted over stator currents in 𝑑𝑞 plane; (a)&(b): 𝑑 axis 

inductance; (c)&(d): 𝑞 axis inductance (e)&(f): mutual inductance 
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Figure 4.20 shows the large-signal flux linkages depending on their stator current operating 

points for the affine machine model. They are computed acc. to (4.7) from the flux linkage 

maps and the inductance maps already presented above. Since those maps were already 

discussed in detail, we cannot reveal any new information about the magnetic characteristics 

of the IPMSM. The only thing worth noting here is the non-monotonic form of both maps, 

which highlights the non-linearity of the measured flux linkage maps. 

 

 

Figure 4.20: IPMSM large-signal flux linkages for linearized models plotted over stator 

currents in 𝑑𝑞 plane; (a)&(b): 𝑑 axis flux linkage; (c)&(d): 𝑞 axis flux linkage 
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4.2.4 Characteristics for Sensorless Control 
The important characteristics for anisotropy based sensorless control of the IPMSM are shown 

in Figure 4.21. We can observe that, in contrast to the SynRM results, the saliency ratio in 

subfigures (a) and (b) is always negative. This is a consequence of the different main axis 

definition between both machine types and is in accordance with the mathematical definitions 

in (2.119) (see page 47). 

In wide regions, the absolute values of the saliency ratio are above 10%, which is generally 

sufficient for anisotropy based sensorless control. However, we can also identify two regions 

around 𝒊𝑠
𝑟 = [−9A ±12.75A]𝑇 , where the saliency ratio approaches zero, i.e. points of magnetic 

isotropy. Since these regions are located in the relevant operating area between the MTPA und 

MTPV trajectories, we can predict problems in conventional sensorless control operation. 

We already know these two points from the discussions of the inductance maps in the former 

section, where we identified the mutual inductances to be zero. We further know that the 

anisotropic inductance parameter, 𝐿𝐴,𝛥, will only be zero, if both, 𝐿𝛥 and 𝐿𝑚, are zero. 

Consequently, we see two zero-loci passing the above-mentioned points in subfigure (d). Similar 

to the SynRM results, the anisotropy position on those loci lies exactly between the 𝑑- and the 

𝑞-axes, i.e. at ±45°. This can be seen in subfigure (f). 

The above-mentioned points, where the zero-loci of 𝐿𝛥 and 𝐿𝑚 are intersecting, are thus 

characterized by no magnetic anisotropy and, in consequence, by an undefined anisotropy 

position. This is expressed by the discontinuities in 𝜗𝐴, where the values jump between ±90°. 

Depending on the sign of 𝐿𝑚 right next to the intersection on the zero-𝐿Δ-loci, a conventional 

anisotropy based position estimator would track the positive or negative 𝑞-axis instead of the 

actual positive 𝑑-axis. 

Except for the discontinuity points, the zero-loci of 𝐿𝑚 are identical with the zero-loci of 𝜗𝐴. 

Along a corresponding trajectory, a parameter-free anisotropy-based position observer would 

thus identify the correct rotor position. Since this trajectory lies within the relevant operating 

area between MTPA and MTPV trajectories, we can expect a comparably good sensorless 

control performance of the IPMSM as long as the absolute values of 𝐿𝐴,𝛥 are sufficiently large 

to be reliably measured with the given current measurement system. 
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Figure 4.21: IPMSM anisotropy characteristics plotted over stator currents in 𝑑𝑞 plane; 

(a)&(b): saliency ratio; (c)&(d): half difference between 𝑑 and 𝑞 axis inductances; 

(e)&(f): angle difference between 𝐷 and 𝑑 axis, MTPA and MTPV trajectories 

for reference 
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The corresponding graphical stability analysis of the IPMSM in closed-loop sensorless control 

operation is shown in Figures 4.22 – 4.24. In Figure 4.22, we see that with increasing current 

amplitudes, the differences between open-loop reference current angle and the corresponding 

closed-loop current angle grow. The above-mentioned discontinuities in the anisotropy position 

are observable at current angles around ±125°. Except for those discontinuities, we can find 

bijective assignments between OL and CL current angles, which fulfill the first condition for 

stable closed-loop operation acc. to (2.124) or (4.8). 

 

The second stability condition acc. to (2.125) or (4.9) is analyzed in Figure 4.23 (b), again 

computed with a current angle difference of ±5° in order to reduce the noise influence on the 

numerical differentiations. We can clearly see the discontinuities at ±125°, which cause large 

negative values. In order to maintain a sufficient resolution in the continuous regions, the 

ordinate axis is limited to |𝜕𝜗𝐴 𝜕𝜗𝑖⁄ | ≤ 1.25. 

We can see that the angle derivate values are below one at all operating points. We have, 

however, to keep in mind that the discontinuities are characterized by 𝜕𝜗𝐴 𝜕𝜗𝑖⁄ = ±∞. 

Furthermore, close to the discontinuity points, we do hardly have any anisotropy to detect (cf. 

Figure 4.21 (b)). We can thus conclude that the IPMSM is generally stable in sensorless closed-

loop operation, except for the small regions around 𝒊𝑠
𝑟 = [−9A ±12.75A]𝑇 , where the magnetic 

anisotropy becomes too small to be reliably detected. 

 

Figure 4.22: IPMSM potentially stable CL operating points plotted over OL stator current 

angle reference in rotor oriented coordinate system 
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This statement is confirmed by iterative simulations, whose results are shown in Figure 4.24. 

Analogously to the CL analysis of the SynRM, the stable operating areas of the IPMSM in 

closed-loop sensorless operation are shown. In the above subfigures, we see the misalignment 

angles of the stator currents for the respective 𝑑𝑞 current references defined by the grid points. 

It can be observed that wide regions of the measured area allow stable sensorless operation 

with errors of up to ±60°. In the relevant regions on the left side of the MTPA trajectory, the 

errors remain between −15° to +10°. Along the black MTPA trajectory, the machine can be 

operated up to a reference current of approximately 𝒊𝑠,𝑂𝐿
𝑟 = [−3.8A ±10.5A]𝑇 . The resulting 

real current trajectory in closed-loop operation is drawn in grey and arrives at approximately 

𝒊𝑠,𝐶𝐿
𝑟 = [−5.7A ±9.7A]𝑇 . From the computed torque data as shown in Figure 4.18, we can 

determine an effective torque reduction of 2.3% at these points. 

The absolute torque that can be obtained with the “open-loop (𝑑𝑞) reference strategy” lies 

within ±24.6Nm, or ±122% of the rated torque. When the current references are transformed 

into anisotropy coordinates, the stable operating range can be extended to ±32.4Nm, which 

corresponds to ±160% of the rated torque. This is indicated in Figure 4.24 (d) by the grey 

MTPA trajectory. In comparison to the black trajectory in (b), we can see that we obtain the 

desired MTPA behavior of the machine in closed-loop sensorless operation. 

When considering the MTPA reference trajectory in anisotropy coordinates in (d), we see, how 

it is inflected towards the positive D-current plane. It thus remains right within the stable 

operating area, which leads to the observable extension of the stable closed-loop operation. 

As it was done before with the SynRM, the transformed currents in subfigure (c) are shown in 

a polar grid in order to avoid overlapping of neighboring grid points and thus improve the 

clarity of presentation. It is worth noting, that the resulting reduction of resolution in the 

 

Figure 4.23: IPMSM anisotropy angle (a) and its derivative (b) plotted over stator current 

angle in rotor oriented coordinate system; color bar is valid for (a) and (b) 



CHAPTER 4  ON MAGNETIC CHARACTERISTICS OF SYNCHRONOUS MACHINES 

102 

border regions lead to the incorrect impression, that stable operating areas are smaller in (d) 

than in (b). 

Note also, that the MTPV trajectory is not extended, when changing from the 𝑑𝑞 to the 𝐷𝑄 

reference strategy. This is due to the fact that the transformed 𝐷𝑄 reference trajectory is 

inflected out of the measured area and we did not extrapolate it in the simulations. In practice, 

we can expect that the MTPV strategy in anisotropy coordinates is stable up to the regions 

with undetectably small magnetic anisotropy. 

 

 

 

Figure 4.24: IPMSM closed-loop control error plotted over stator current in dq plane with 

MTPA and MTPV trajectories in contour plot (b) 
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4.3 The Surface Permanent Magnet Synchronous Machine 

4.3.1 The Relation between Magnetic Energy, Flux Linkage and Stator Current 
Unlike IPMSMs, machines with surface permanent magnets usually do not have salient rotor 

geometries. As it was discussed in section 2.2.1, the permanent magnets have approximately 

the same permeability as air and do thus not lead to shape anisotropy. The only mechanism, 

that can cause magnetic anisotropy in the measurements, that are presented in this section, is 

magnetic pre-saturation caused by the permanent magnets in the 𝑑-axis field path. 

This is visualized in Figure 4.25, where we averaged the SynRM flux linkage maps in both axes 

to eliminate any shape anisotropy. The maps with white fillings are the result. The colored 

fillings indicate the valid operational regions of that hypothetical SPMSM, when we assume 

again a PM equivalent current of 𝑖𝑃𝑀 = 5A and a current limit of 4.9A. 

We see that the resulting flux linkage maps are in their form qualitatively comparable to those 

of an IPMSM. We can expect stronger self-saturation in the 𝑑-axis and stronger cross-saturation 

in the 𝑞-axis for positive 𝑑-currents. The different levels of saturation in both axes will lead to 

the magnetic anisotropy, that will be observable in the measurements. 

 

The actually measured flux linkage maps of the SPMSM, which is described in Table 3, are 

shown in Figures 4.26 and 4.27. Again, we can find the qualitative form of the measured maps 

in good accordance with the expectations from above considerations. In the measured region, 

the SPMSM is the least saturating of all three machines, which are evaluated in this work. 

 

Figure 4.25: Hypothetical flux linkages plotted over stator currents in 𝑑𝑞 plane for imaginary 

machine based on averaged SynRM characteristics (white filling) but with surface 

mounted permanent magnets; colored fillings show the feasible operating areas;  

(a): 𝑑 axis flux linkage; (b): 𝑞 axis flux linkage 
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In Figure 4.26 (b), it is observable that the virtual magnetic origin is well outside the measured 

area. By means of polynomial extrapolation, we obtain a PM equivalent current of 𝑖𝑃𝑀 =

24.2A. The corresponding PM flux linkage at zero currents is 𝜓𝑃𝑀 = 235mVs, which is ~4% 

higher than the value of 226.3mVs, which was obtained from the manufacturer specifications. 

The most likely explanation for that deviation is, that the machine was measured at a lower 

PM temperature than the manufacturer specifications are valid for. 

 

 

 

Figure 4.26: SPMSM 𝑑-axis flux linkage plotted over stator currents in 𝑑𝑞 plane; (a): 3D view 

of flux linkage surface, color represents flux linkage value, see color bar from (d); 

(b): corresponding 𝑥𝑧 contour plot; (c): corresponding 𝑦𝑧 contour plot; 

(d): corresponding 𝑥𝑦 contour plot 
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In contrast to the IPMSM flux linkage maps, we do not see any cross-demagnetization effects 

for negative 𝑑-currents. This indicates a more homogeneous saturation in the rotor iron, which 

is expectable due to the absence of flux barriers and associated bridges. We cannot state, 

however, that SPMSMs do not show demagnetization effects at all, since the presented 

measurements are not reaching as close to the magnetic origin as the IPMSM measurements 

do. 

 

 

 

Figure 4.27: SPMSM 𝑞-axis flux linkage plotted over stator currents in 𝑑𝑞 plane; (a): 3D view 

of flux linkage surface, color represents flux linkage value, see color bar from (d); 

(b): corresponding 𝑥𝑧 contour plot; (c): corresponding 𝑦𝑧 contour plot; 

(d): corresponding 𝑥𝑦 contour plot 
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Figure 4.28 shows the magnetic co-energy of the SPMSM together with the flux linkages as 

vector field. Again, we only have positive co-energy values. The permanent magnet influence 

can be identified as approximately 𝑊𝜇,𝑐𝑜,𝑃𝑀 = 4.3J. As expected, the loci of constant co-energy 

are nearly circular. 

 

4.3.1 Torque Generation, MTPA and MTPV 
The torque of the given SPMSM at different stator current and flux linkage operating points 

is shown in Figure 4.29. As expected, it qualitatively looks similar to the results from the 

IPMSM. The valid operating area in energy efficient control strategies is enclosed by the MTPA 

and MTPV trajectories. 

 

Figure 4.28: SPMSM flux linkage space vector field and the corresponding magnetic co-energy 

scalar field in the 𝑑𝑞 current plane 
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The latter is located on the border of the measured area, where the flux linkages are minimal. 

Compared to the IPMSM, the MTPA strategy requires less field weakening, which results from 

the absence of shape anisotropy and the corresponding reluctance torque. Nevertheless, there 

is a reluctance torque component, which must be a consequence of the magnetic saturation 

caused by the permanent magnet. It is worth noting, that, in non-saturating machines, the 

MTPA would lie on the 𝑞-axis of the stator currents. 

 

4.3.2 Affine Model Parameters 
The differential inductances obtained from above flux linkage maps of the SPMSM are shown 

in Figure 4.31. We can observe curve forms that are qualitatively comparable to those of the 

IPMSM. The most striking difference is that the desaturation process is not reversed within 

the field weakening area. Additionally, the mutual inductances in subfigure (f) do not show a 

vertical zero-locus, which corroborates the impression from the flux linkage maps, that no cross-

demagnetization is present. 

The fact that the inductance maps are slightly noisy results from the overall smaller flux linkage 

values in combination with the numerical differentiation. 

We see that the superposition of PM field and positive 𝑑-axis stator current field causes the 

strongest saturation in the machine, since 𝐿𝑑𝑑 approximately halves its value compared to its 

maximum in the field-weakening region. 

For 𝐿𝑞𝑞, such a strong saturation is not observable. It is worth noting, that the minimal value 

of 𝐿𝑞𝑞 is larger than the maximum of 𝐿𝑑𝑑, which is a consequence of the strong PM influence 

compared to the electromagnetic fields from the stator windings in the feasible operating area 

(note, that 𝑖𝑃𝑀 is around 2.7 times the rated current of the machine). 

 

Figure 4.29: SPMSM torque contour lines plotted over stator currents (a) and flux linkage in 

𝑑𝑞 plane; legend and color bar are valid for both subfigures 
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Figure 4.30 shows the large-signal flux linkages of the SPMSM. Compared to the IPMSM, we 

can note a large region for negative 𝑑-axis currents, where 𝜓𝑞,𝑙𝑠 ≈ 0. This indicates that the 

machine is nearly linear, here – at least in the 𝑞-axis. 

Overall, we can expect this machine to be the least demanding in terms of sensorless control 

strategies. This statement is confirmed in the following section. 

 

 

 

Figure 4.30: SPMSM large-signal flux linkages for linearized models plotted over stator 

currents in 𝑑𝑞 plane; (a)&(b): 𝑑 axis flux linkage; (c)&(d): 𝑞 axis flux linkage 
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Figure 4.31: SPMSM inductances plotted over stator currents in 𝑑𝑞 plane; (a)&(b): 𝑑 axis 

inductance; (c)&(d): 𝑞 axis inductance (e)&(f): mutual inductance 
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4.3.3 Characteristics for Sensorless Control 
The abovementioned fact that the 𝑞-axis inductance is larger than the 𝑑-axis inductance at any 

operating point can be observed in the anisotropy maps shown in Figure 4.33 (a) – (d). We can 

see that 𝐿𝛥 as well as the saliency ratio 𝐿𝛥,𝐴 𝐿𝛴⁄  are always negative. In the measured region, 

there is no point, where the 𝑞-axis is more saturated than the 𝑑-axis. For that reason, we do 

not have the problem of insignificant anisotropy and, accordingly, do not have discontinuities 

in the anisotropy position as shown in subfigures (e) and (f). 

We can generally say that with absolute values of the saliency ratio of more than 12% and 

anisotropy angles between ±20°, the SPMSM does not show any challenges for anisotropy-

based sensorless control. 

Figure 4.32 confirms, that the machine is not demanding in closed-loop sensorless control 

operation. We see that the relation between open-loop and closed-loop current angles is nearly 

linear and always bijective. Condition one for stable CL control acc. to (4.8) is thus always 

fulfilled. 

 

 

 

Figure 4.32: SPMSM potentially stable CL operating points plotted over OL stator current 

angle reference in rotor oriented coordinate system 
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Figure 4.33: SPMSM anisotropy characteristics plotted over stator currents in 𝑑𝑞 plane; 

(a)&(b): saliency ratio; (c)&(d): half difference between 𝑑 and 𝑞 axis inductances; 

(e)&(f): angle difference between 𝐷 and 𝑑 axis, MTPA and MTPV trajectories 

for reference 
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Condition two acc. to (4.9) is analyzed in Figure 4.34. Except for the already discussed noise 

in the signals, we can observe comparably smooth curve forms in (a), leading to angle derivate 

values between −0.5 and 0.4. 

 

Overall, the SPMSM fulfills all conditions for stable closed-loop control in anisotropy-based 

sensorless control schemes. This is confirmed by simulations, whose results are presented in 

Figure 4.35. We can observe that all operating points in the measured region are stable. It is 

worth noting again, that the noise in the border regions leads to bad extrapolation results and 

thus causes some operating points to be falsely identified as instable. 

The main difference between the 𝑑𝑞 and the 𝐷𝑄 reference strategies can be observed in the 

MTPA trajectories in CL operation. As discussed before, the black reference trajectory in open-

loop rotor coordinates leads to a non-optimal CL trajectory (grey) in subfigure (b). 

Within the measured area, torques of up to ±11.5Nm are possible in MTPA control, which 

corresponds to approximately 131% of the rated machine torque of 8.8Nm. The suboptimal CL 

trajectory in subfigure (b) results in maximal torques of around ±10.9Nm, or an effective torque 

reduction of 5.3%. This efficiency reduction can be avoided, when transforming the reference 

trajectories in anisotropy coordinates. As shown in subfigure (d), the resulting CL trajectories 

are identical to the original MTPA and MTPV trajectories (cf. the black trajectories in (b)). 

 

Figure 4.34: SPMSM anisotropy angle (a) and its derivative (b) plotted over stator current 

angle in rotor oriented coordinate system; color bar is valid for (a) and (b) 
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Figure 4.35: SPMSM closed-loop control error plotted over stator current in dq plane with 

MTPA and MTPV trajectories in contour plot (b) 
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chaPter 5  

 

Optimizing Measured Inductance Maps 

Before in the following chapter measurement schemes for inductance and flux linkage maps are 

presented, discussed and results are shown, this chapter addresses a possibility to refine the 

measurement results. The outcomes of these refinement processes are already shown and 

discussed in Chapter 4. Also, in Chapter 6 the measurement results are compared to the refined 

results in order to analyze different sources of error in the proposed measurement schemes. This 

chapter is therefore limited to describing the theory of proposed optimization processes. 

5.1 Motivation 

When measuring the magnetic characteristics of synchronous machines, we have to deal with 

errors. We can generally distinguish between two types of errors – random errors and systematic 

errors. While random errors can typically be averaged out for a sufficiently large number of 

repeated measurements at a given operating point, systematic errors are more difficult to 

eliminate. In Chapter 6, it is pointed out that different measurement techniques are prone to 

different types of systematic errors, such as voltage errors, harmonic distortions or iron effects, 

for instance. The basic idea of this chapter is to develop a generic methodology to minimize 

systematic errors as good as possible without having to deal with the individual sources of 

errors. 

We make use of two basic principles that allow to identify systematic errors: symmetry 

considerations and physical laws. Both lead to hard constraints on inductance, flux linkage and 

magnetic co-energy maps. The following section discusses the concrete mathematical 

expressions of these constraints and in section 5.3, an algorithm is proposed, that enforces these 

constraints on the measured maps and by that way allows to eliminate systematic errors 

violating these constraints. 
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5.2 Symmetry and Physical Constraints 

5.2.1 Symmetry Considerations 
As it was discussed in the introduction of synchronous machines in section 2.2.1, they are 

constructed rotationally symmetric. This symmetry must be observable in the magnetic 

characteristics, as well. 

In section 2.2.3, we defined the point of magnetic origin, where no magnetic energy and co-

energy is observable from the stator windings. It was given by 

𝝍𝑠,0
𝑟 = [

0
0
], (5.1) 

𝒊𝑠,0
𝑟 = [

−𝑖𝑃𝑀
0
] (5.2) 

and 

𝑊𝜇|𝝍𝑠,0𝑟 = 𝑊𝜇,𝑐𝑜|𝒊𝑠,0𝑟 = 0. (5.3) 

In Chapter 4, where the measurement results of a SynRM, an IPMSM and an SPMSM were 

presented, it was discussed already, that the magnetic energy and co-energy fields are 

symmetrical to that point11. 

With respect to this symmetry point as defined by (5.1) to (5.3), we can now determine a set 

of symmetry constraints for the magnetic characteristics of SMs. 

As discussed in Chapter 4, we can express the magnetic characteristics of synchronous machines 

in various ways. When starting from an energetic point of view, it is useful to describe the 

magnetic energy as a scalar field in the flux linkage space vector plane, and to consider the 

magnetic co-energy in a stator current space vector plane, respectively. 

As done before, we focus on the magnetic co-energy in a current plane, since the latter are 

directly measured. Note, however, that the following considerations are valid analogously for 

the magnetic energy in the flux linkage plane. 

Since the stator can be assumed to be magnetically isotropic, we describe all quantities in rotor 

reference frames. In this case, the point symmetry towards the magnetic origin leads to two 

perpendicular symmetry axes. They are parallel to the 𝑑- and 𝑞- axes of the rotor reference 

frame and intersect at the point of magnetic origin. 

Mathematically, we can express the energetic symmetry as 

𝑊𝜇,𝑐𝑜|[𝑖𝑑 𝑖𝑞]
𝑇   = 𝑊𝜇,𝑐𝑜|[𝑖𝑑 −𝑖𝑞]

𝑇  , (a) 
(5.4) 

𝑊𝜇,𝑐𝑜|[𝑖𝑑+𝑖𝑃𝑀 𝑖𝑞]𝑇   = 𝑊𝜇,𝑐𝑜|[−𝑖𝑑−𝑖𝑃𝑀 𝑖𝑞]𝑇  , (b) 

 
11 When neglecting local desaturation processes in PMSMs. For the purposes of this thesis, where the 

PMSMs are not weakened to negative 𝑑-axis flux linkages within the measured current regions, this 

simplification is valid. 
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With the given relations between magnetic co-energy, stator current and flux linkage acc. to 

the gradient equation (2.91), we can directly derive the symmetry constraints for the stator 

current and flux linkage vector fields from (5.4) as 

𝜓𝑑|[𝑖𝑑 𝑖𝑞]𝑇   = 𝜓𝑑|[𝑖𝑑 −𝑖𝑞]𝑇  , (a) 

(5.5) 

𝜓𝑑|[𝑖𝑑+𝑖𝑃𝑀 𝑖𝑞]𝑇   = −𝜓𝑑|[−𝑖𝑑−𝑖𝑃𝑀 𝑖𝑞]𝑇  , (b) 

𝜓𝑞|[𝑖𝑑 𝑖𝑞]𝑇   = −𝜓𝑞|[𝑖𝑑 −𝑖𝑞]𝑇  , (c) 

𝜓𝑞|[𝑖𝑑+𝑖𝑃𝑀 𝑖𝑞]𝑇   = 𝜓𝑞|[−𝑖𝑑−𝑖𝑃𝑀 𝑖𝑞]𝑇  . (d) 

In the same manner, we can find the symmetry constraints for the inductances by determining 

the partial derivatives of (5.5) acc. to (2.66). We then obtain 

𝐿𝑑𝑑|[𝑖𝑑 𝑖𝑞]𝑇   = 𝐿𝑑𝑑|[𝑖𝑑 −𝑖𝑞]𝑇  , (a) 

(5.6) 

𝐿𝑑𝑑|[𝑖𝑑+𝑖𝑃𝑀 𝑖𝑞]𝑇   = 𝐿𝑑𝑑|[−𝑖𝑑−𝑖𝑃𝑀 𝑖𝑞]𝑇  , (b) 

𝐿𝑞𝑞|[𝑖𝑑 𝑖𝑞]𝑇   = 𝐿𝑞𝑞|[𝑖𝑑 −𝑖𝑞]𝑇  , (c) 

𝐿𝑞𝑞|[𝑖𝑑+𝑖𝑃𝑀 𝑖𝑞]𝑇   = 𝐿𝑞𝑞|[−𝑖𝑑−𝑖𝑃𝑀 𝑖𝑞]𝑇  , (d) 

𝐿𝑚|[𝑖𝑑 𝑖𝑞]𝑇   = −𝐿𝑚|[𝑖𝑑 −𝑖𝑞]𝑇  , (e) 

𝐿𝑚|[𝑖𝑑+𝑖𝑃𝑀 𝑖𝑞]𝑇   = −𝐿𝑚|[−𝑖𝑑−𝑖𝑃𝑀 𝑖𝑞]𝑇  . (f) 

In order to finalize the set of symmetry constraints, we can define the constraints on the 

symmetry axes as 

𝜓𝑑|[−𝑖𝑃𝑀 𝑖𝑞]𝑇   = 0 , (a) 

(5.7) 

𝜓𝑞|[𝑖𝑑 0]𝑇   = 0 , (b) 

𝐿𝑚|[𝑖𝑑 0]𝑇   = 0 , (c) 

𝐿𝑚|[−𝑖𝑃𝑀 𝑖𝑞]
𝑇   = 0 . (d) 

With (5.4) - (5.7), we now have a set of equations defining the symmetry constraints for all 

types of synchronous machines. 

5.2.2 Physical Considerations 
The symmetry constraints, as defined in the former section, can be considered best, if the 

measured inductance maps are gridded and arranged symmetrically along the symmetry axes 

in the stator current plane. For this section, it is further necessary that the distances between 

the grid points are sufficiently small, such that the inductances – expressed by the differential 

relation between flux linkage and current – can be approximated by a difference quotient, as it 

was discussed in section 2.1.2 (cf. Figure 2.9 at page 22). In accordance with the definition of 

the inductance matrix in (2.66), we can then write the approximate inductances as 

𝐿𝑑𝑑  =
Δ𝜓𝑑
Δ𝑖𝑑
 , (a) (5.8) 
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𝐿𝑞𝑞  =
Δ𝜓𝑑
Δ𝑖𝑑
, (b) 

𝐿𝑚  =
Δ𝜓𝑑
Δ𝑖𝑞
=
Δ𝜓𝑞
Δ𝑖𝑑
 , (c) 

where (5.8)(c) is already the first physical constraint. Its non-approximative definition was 

given in (2.67) and the equations (2.92) and (2.93) demonstrated, how the law of energy 

conservation and the fact that the physical origin of inductances are conservative magnetic co-

energy scalar fields directly leads to this constraint. 

Since this work focusses on the relation of inductances, flux linkages and co-energy, we interpret 

the differential constraints in their integral form. The above statement can then be reinterpreted 

in a way that integrating the inductance maps along different paths must lead to unique flux 

linkage maps. Furthermore, integrating the resulting flux linkage maps must lead to 

unambiguous co-energy maps. 

Figure 5.1 illustrates this statement exemplarily for 𝜓𝑑 in the simple case of four 𝑑𝑞 current 

grid points. When starting from the point 00, we can determine the flux linkage at point 11 in 

two different ways, applying the approximative integral equations 

𝜓𝑑,11  = 𝜓𝑑,00 +
1

2
(𝐿𝑑𝑑,00 + 𝐿𝑑𝑑,01)Δ𝑖𝑑 +

1

2
(𝐿𝑚,01 + 𝐿𝑚,11)Δ𝑖𝑞 , (a) 

(5.9) 

𝜓𝑑,11  = 𝜓𝑑,00 +
1

2
(𝐿𝑚,00 + 𝐿𝑚,10)Δ𝑖𝑞 +

1

2
(𝐿𝑑𝑑,10 + 𝐿𝑑𝑑,11)Δ𝑖𝑑 , (b) 

where the integration from one grid point to its neighbor applies the mean inductance values 

of both points. 

 

As indicated, the two integration paths can pass either through point 01 or 10. In any case, 

however, we must obtain the same result for 𝜓𝑑,11. This means that Δ𝜓𝑑,11 must be zero and 

thus (5.9) directly leads to another equality constraint, relating the inductances of the four 

points with each other. We get 

 (𝐿𝑚,00 + 𝐿𝑚,10 − 𝐿𝑚,01 − 𝐿𝑚,11)Δ𝑖𝑞 = (𝐿𝑑𝑑,00 + 𝐿𝑑𝑑,01 − 𝐿𝑑𝑑,10 − 𝐿𝑑𝑑,11)Δ𝑖𝑑 . (5.10) 

For the q-axis flux linkage, we obtain analogously 

 

Figure 5.1: Example of two different integration paths in the 𝑑𝑞 current plane that lead to 

different results for the d-axis flux linkage 
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 (𝐿𝑚,00 + 𝐿𝑚,01 − 𝐿𝑚,10 − 𝐿𝑚,11)𝛥𝑖𝑑 = (𝐿𝑞𝑞,00 + 𝐿𝑞𝑞,10 − 𝐿𝑞𝑞,01 − 𝐿𝑞𝑞,11)𝛥𝑖𝑞 . (5.11) 

The same procedure for the magnetic co-energy with corresponding integration along the flux 

linkages leads to 

 
(𝐿𝑑𝑑,00 + 𝐿𝑑𝑑,01 − 𝐿𝑑𝑑,10 − 𝐿𝑑𝑑,11)(𝛥𝑖𝑑)

2 + 2𝐿𝑚,11𝛥𝑖𝑞𝛥𝑖𝑑
= (𝐿𝑞𝑞,01 + 𝐿𝑞𝑞,11 − 𝐿𝑞𝑞,00 − 𝐿𝑞𝑞,10)(𝛥𝑖𝑞)

2 + 2𝐿𝑚,00𝛥𝑖𝑑𝛥𝑖𝑞 . 
(5.12) 

When substituting (5.10) into (5.12), we get 

 𝐿𝑚,00 + 𝐿𝑚,11 = 𝐿𝑚,11 + 𝐿𝑚,00 (5.13) 

and for the combination of (5.11) and (5.12), we end up with  

 𝐿𝑚,01 + 𝐿𝑚,10 = 𝐿𝑚,10 + 𝐿𝑚,01 . (5.14) 

It becomes clear that (5.10) – (5.12) are linearly dependent and for that reason the constraint 

(5.8)(c) for each measured grid point in combination with (5.10) and (5.11) for each quadruple 

of neighboring grid points are sufficient to ensure the physical validness of the inductance maps. 

In consequence, we are able to derive unambiguous flux linkage and co-energy maps, 

independently from the chosen integration paths by applying the following set of equality 

constraints: 

 𝐿𝑚|[𝑖𝑑 𝑖𝑞]𝑇 = 𝐿𝑑𝑞|[𝑖𝑑 𝑖𝑞]𝑇 = 𝐿𝑞𝑑|[𝑖𝑑 𝑖𝑞]𝑇  , (a) 

(5.15) 

 

(𝐿𝑚|[𝑖𝑑 𝑖𝑞]𝑇 + 𝐿𝑚|[𝑖𝑑 𝑖𝑞+Δ𝑖𝑞]
𝑇 − 𝐿𝑚|[𝑖𝑑+Δ𝑖𝑑 𝑖𝑞]

𝑇 − 𝐿𝑚|[𝑖𝑑+Δ𝑖𝑑 𝑖𝑞+Δ𝑖𝑞]
𝑇 )Δ𝑖𝑞 

= 
(𝐿𝑑𝑑|[𝑖𝑑 𝑖𝑞]𝑇 + 𝐿𝑑𝑑|[𝑖𝑑+Δ𝑖𝑑 𝑖𝑞]

𝑇 − 𝐿𝑑𝑑|[𝑖𝑑 𝑖𝑞+Δ𝑖𝑞]
𝑇 − 𝐿𝑑𝑑|[𝑖𝑑+Δ𝑖𝑑 𝑖𝑞+Δ𝑖𝑞]

𝑇 )Δ𝑖𝑑 , 
(b) 

 

(𝐿𝑚|[𝑖𝑑 𝑖𝑞]
𝑇 + 𝐿𝑚|[𝑖𝑑+Δ𝑖𝑑 𝑖𝑞]

𝑇 − 𝐿𝑚|[𝑖𝑑 𝑖𝑞+Δ𝑖𝑞]
𝑇 − 𝐿𝑚|[𝑖𝑑+Δ𝑖𝑑 𝑖𝑞+Δ𝑖𝑞]

𝑇 )𝛥𝑖𝑑 

= 
(𝐿𝑞𝑞|[𝑖𝑑 𝑖𝑞]𝑇 + 𝐿𝑞𝑞|[𝑖𝑑 𝑖𝑞+Δ𝑖𝑞]

𝑇 − 𝐿𝑞𝑞|[𝑖𝑑+Δ𝑖𝑑 𝑖𝑞]
𝑇 − 𝐿𝑞𝑞|[𝑖𝑑+Δ𝑖𝑑 𝑖𝑞+Δ𝑖𝑞]

𝑇 )𝛥𝑖𝑞 . 
(c) 

Note that constraints for inverse inductances can be obtained analogously, when considering 

currents and magnetic energy in a flux linkage plane. For conciseness, these constraints are not 

discussed here. 

In comparison to the symmetry constraints from the former sub section, it should be noted 

that the constraints of this section are physically reasonable in any case. Enforcing symmetry 

on the measurements, however, can also introduce errors, because real machines are typically 

not perfectly symmetric for mechanical reasons or due to tolerances in the production processes. 

On the other hand, there are asymmetric effects (e.g. iron effects or inverter distortions) that 

can be effectively canceled out by the symmetry constraints. Depending on the application, it 

might thus be useful to apply only the physical constraints, or a combination of both, physical 

and symmetry constraints. This issue is further discussed in the context of measurement results 

in Chapter 6. 

5.3 The Optimization Problem 

Symmetry of measured inductance or flux linkage maps can be enforced comparably simple by 

averaging the measurement results along the respective symmetry axis. However, enforcing the 
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physical constraints, or both, symmetry and physical constraints, simultaneously, requires a 

more sophisticated strategy. 

We obviously have to modify the measurement results in order to enforce the constraints. A 

natural approach is to restrict these modifications to the absolute minimum. This can be 

interpreted as a classical constrained optimization problem. Especially in the linear case, there 

are several effective algorithms and software solutions that can be applied [100]. 

We thus define correction variables for each inductance value at each grid point, i.e. 

𝐿𝑑𝑑|[𝑖𝑑 𝑖𝑞]𝑇  = 𝐿̌𝑑𝑑|[𝑖𝑑 𝑖𝑞]
𝑇 + 𝐿̃𝑑𝑑|[𝑖𝑑 𝑖𝑞]

𝑇  , (a) 

(5.16) 

𝐿𝑑𝑞|[𝑖𝑑 𝑖𝑞]𝑇  = 𝐿̌𝑑𝑞|[𝑖𝑑 𝑖𝑞]𝑇 + 𝐿̃𝑑𝑞|[𝑖𝑑 𝑖𝑞]𝑇  , (b) 

𝐿𝑞𝑑|[𝑖𝑑 𝑖𝑞]𝑇  = 𝐿̌𝑞𝑑|[𝑖𝑑 𝑖𝑞]
𝑇 + 𝐿̃𝑞𝑑|[𝑖𝑑 𝑖𝑞]

𝑇  , (c) 

𝐿𝑞𝑞|[𝑖𝑑 𝑖𝑞]𝑇  = 𝐿̌𝑞𝑞|[𝑖𝑑 𝑖𝑞]𝑇 + 𝐿̃𝑞𝑞|[𝑖𝑑 𝑖𝑞]𝑇  , (d) 

where the correction variables are denoted by a ‘  ̌‘. Adding them to the measured inductance 

parameters (‘  ̃‘) gives us the corrected inductance values that comply with the given 

constraints. 

The sets of correction variables for all grid points can be collected in a vector, 𝑳̌, and we can 

then compute them by solving the linear optimization problem 

 
𝑳̌ = arg min

subj. to (5.6), (5.15)

(‖𝑳̌‖ℓ) , (5.17) 

where the norm ℓ defines, whether the sum of the absolute values of all correction variables 

(ℓ = 1) or the sum of squares of all correction variables (ℓ = 2) is minimal, or whether the 

maximal absolute value of each single correction variable is minimal (ℓ =∞). 

All optimized results presented and discussed in this thesis are obtained by minimizing the sum 

of squares, i.e. with ℓ = 2. The respective solution of the optimization problem (5.17) is 

substituted into (5.16) in order to obtain symmetric and physically reasonable inductance maps. 

These optimized maps can be integrated along arbitrary paths to determine unambiguous flux 

linkage and (co-) energy maps. 

It shall be emphasized at this point, that the results of the direct flux linkage measurements 

(see section 6.3) are converted into inductance maps acc. to (5.8), before optimizing them. 

Afterwards, they are converted back into flux linkage maps by means of (5.9), where the 

integration constant is chosen in accordance with (2.80), i.e. 

𝒇𝑟(𝒊𝑠
𝑟 = 𝟎) = [

𝜓𝑃𝑀
0
]. (5.18) 

Of course, it would be possible to formulate an optimization problem for symmetric and 

unambiguous (co-) energy maps directly from flux linkage measurements. However, in order to 

obtain best comparability between inductance and flux linkage measurement schemes, this work 

generally applies the above-mentioned inductance optimization algorithm. 
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chaPter 6  

 

Measuring Flux Linkage in Synchronous Machines 

6.1 State of the Art Measurement Techniques 

6.1.1 Preliminaries: Distinguishing Between EMF, BEMF and HF Based Methods 
When we talk about measuring the flux linkage in synchronous machines, we are basically 

interested in the relation between the flux linkage and stator current space vectors as it was 

stated in section 2.2.3. The mathematical translation of this statement was defined in (2.55) as 

𝝍𝑠
𝑟 = 𝒇𝑟(𝒊𝑠

𝑟), (6.1) 

where 𝒇𝑟 is a bijection that maps each current space vector with a flux linkage vector. In order 

to find 𝒇𝑟, we thus need to measure both, the current and the flux linkage, at steady operating 

points within the region of interest. The latter is naturally defined by the maximal admissible 

currents that do neither harm the motor nor the inverter due to thermal overload. 

How both, current and flux linkage, can be simultaneously measured, becomes apparent when 

reminding the electric model of synchronous machines in stator coordinates. It was defined also 

in section 2.2.3 as 

𝒖𝑠
𝑠 = 𝑅𝑠𝒊𝑠

𝑠 +
𝑑

𝑑𝑡
𝝍𝑠
𝑠

⏟
𝐸𝑀𝐹

. (6.2) 

We can see that the flux linkage information is contained in the second term on the RHS of 

(6.2). In the following, we will refer to this term as electromotive force (EMF). All flux linkage 

measurement methods that base on current and voltage signals extract the information from 

the EMF. There are, however, methods that need a sufficiently high rotor speed and those that 

work at standstill but depend on test signal injection. The reason for that can be seen, when 

the electric model in rotor coordinates is reminded as 
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𝒖𝑠
𝑟 = 𝑅𝑠𝒊𝑠

𝑟 + 𝜔𝑟𝑱𝝍𝑠
𝑟

⏟
𝐵𝐸𝑀𝐹

+
𝑑

𝑑𝑡
𝝍𝑠
𝑟

⏟
𝐻𝐹

. (6.3) 

The coordinate transformation splits the EMF into two terms. The second term on the RHS of 

(6.3) will be referred to as back electromotive force (BEMF) from now on. The BEMF can be 

seen as the motional part of the EMF. It contains the direct flux linkage space vector, which 

can thus be evaluated without any mathematical integration. It is, however, proportional to 

the electric rotor speed, 𝜔𝑟, and hence zero at standstill. 

The third term on the RHS is a voltage proportional to the time rate of change of the flux 

linkage space vector. It is therefore the dynamically induced part of the EMF and as such, it 

is consequentially zero at steady state operation. For extraction of the flux linkage information, 

the change of the flux linkage must be enforced by appropriate applied voltages. This is typically 

done by imposing high frequency (HF) currents or voltages to the motor under test, whereat 

“high” refers to the fact that the frequency of the injected signal is well above the BEMF 

frequency, i.e. 𝜔𝑟 2𝜋⁄ . In this way, it is possible to separate the HF signal from the BEMF signal 

by filtering techniques. We consequently refer to the third term on the RHS as HF term in the 

following. As it does not depend on the rotor speed, it can be evaluated also at standstill. 

6.1.2 EMF Based Techniques 
Solving the motor model in stator coordinates, (6.2), for the EMF term and subsequently 

integrating it gives us 

𝝍𝑠
𝑠 = ∫(𝒖𝑠

𝑠 − 𝑅𝑠𝒊𝑠
𝑠)𝑑𝑡 + 𝝍𝑠,𝑐

𝑠 , (6.4) 

where 𝝍𝑠,𝑐
𝑠  is the flux linkage space vector at the beginning of the integration process. Eq. (6.4) 

is a standard open-loop flux estimator, as it is usually employed in sensorless control schemes 

[66 pp. 125–128]. 

An EMF based measurement scheme relies only on one parameter, namely 𝑅𝑠, and the typically 

available current and voltage signals. Furthermore, the rotor position is necessary in order to 

transform the corresponding current and flux linkage space vectors into rotor coordinates as 

requested by (6.1). 

The challenge of this method is the integration process, which requires knowledge of the initial 

flux linkage and a drift compensation. As it is typical for open-loop integrators, the quality of 

its output suffers from integration drifts. They occur due to various reasons, as, for instance, 

offsets in the measurements, parameter errors, or inaccurate integration techniques. A drift 

compensation is thus necessary in order to obtain accurate flux linkage results. A typical 

approach in literature is to replace the integrator with a first order low-pass filter (LPF) [66 p. 

128, 101]. At high frequencies, it acts like an integrator, but it suppresses low frequencies and 

thus constant errors. 

The EMF flux linkage estimator is an effective method to determine the desired magnetic 

characteristics of the motor under test. Independent from whether the rotor is spinning or not, 

we only need to track voltages and currents, and map them with the estimated flux linkages. 
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The drift and initialization problems, however, make it usually necessary to separate the BEMF 

and HF components that are both contained in the EMF. Additionally, the iron loss phenomena 

have different effects on both signals, which makes it for the sake of reproducibility more 

convenient to separate both. For that reason, no methods are known in literature that extract 

the flux linkage information from both terms simultaneously. All methods can thus be assigned 

to the group of either BEMF based or HF based techniques. 

6.1.3 BEMF Based Techniques 
The most obvious approach to obtain the flux linkage information from the BEMF term is to 

solve the motor model in rotor coordinates, (6.3), for the flux linkage space vector. Hence, 

𝝍𝑠
𝑟 = −

1

𝜔𝑟
𝑱 (𝒖𝑠

𝑟 −𝑅𝑠𝒊𝑠
𝑟 −
𝑑

𝑑𝑡
𝝍𝑠
𝑟). (6.5) 

As we can see, Eq. (6.5) still contains the HF term, namely 𝑑𝝍𝑠
𝑟 𝑑𝑡⁄ . In order to extract the 

BEMF flux linkage information from (6.5), we thus need to eliminate the HF component. A 

common approach in literature is to apply a constant current vector, 𝒊𝑠
𝑟∗, to the motor under 

test [75–77, 102–105]. Since 𝒇𝑟 is bijective, we can conclude that if 

𝑑

𝑑𝑡
𝒊𝑠
𝑟 = 0, (6.6) 

then also  

𝑑

𝑑𝑡
𝒇𝑟(𝒊𝑠

𝑟) = 0 (6.7) 

and thus  

𝑑

𝑑𝑡
𝝍𝑠
𝑟 = 0. (6.8) 

Provided that we have a constant current vector, the flux linkage from the BEMF term can 

hence be evaluated from 

𝝍𝑠
𝑟 = −

1

𝜔𝑟
𝑱(𝒖𝑠

𝑟 −𝑅𝑠𝒊𝑠
𝑟). (6.9) 

In practice, however, the conditions (6.6)-(6.8) cannot be completely achieved because of 

harmonic distortions due to slotting, non-sinusoidal winding schemes, etc. (see section 2.2.3). 

This fact can be considered by appropriate filter techniques, as it is done for instance in [105] 

with a fast Fourier transform (FFT). Another possibility is to measure currents and voltages 

over a period that contains complete rotor turns. This technique was already used in prior 

publications [106, 107] and will consequently be applied within this work, as well. 

Simultaneously, it was proposed in [102]. 

The idea behind this technique is that all distortions caused by the motor itself must be periodic 

to a complete rotor turn and are thus harmonics of the fundamental frequency of the motor. 

The latter is the frequency at which the rotor turns, i.e. it correlates with the mechanic speed 

by 
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𝑓𝑚 =
𝜔𝑚
2𝜋
=
1

2𝜋

𝑑𝜗𝑚
𝑑𝑡
. (6.10) 

Provided that the fundamental current as well as the temperature distribution remain the same 

during one complete turn, the flux linkage at the beginning of the measurement period must 

be exactly the same as at the end. In mathematical terms, this means that the overall change 

in the flux linkage over the measurement interval, 𝑇𝑚𝑒𝑎𝑠, is zero, i.e. 

∫ (
𝑑

𝑑𝑡
𝝍𝑠
𝑟)  𝑑𝑡

(𝑇𝑚𝑒𝑎𝑠)

= 0. 
(6.11) 

Due to that fact, averaging the measured signals over the measurement period will not only 

reduce the influence of noise, it will also effectively eliminate the harmonic components in 

current and flux linkage and the unknown HF term. 

When the rotor velocity is held constant, e.g. by a coupled load motor, we get 

1

𝑇𝑚𝑒𝑎𝑠
∫ (

𝑑

𝑑𝑡
𝝍𝑠
𝑟 1

𝜔𝑟
)𝑑𝑡

𝑇𝑚𝑒𝑎𝑠

0

= 0 (6.12) 

and hence 

𝝍𝑠̅
𝑟 = −

1

𝑇𝑚𝑒𝑎𝑠
∫ (

1

𝜔𝑟
𝑱(𝒖𝑠

𝑟 − 𝑅𝑠𝒊𝑠
𝑟))𝑑𝑡

𝑇𝑚𝑒𝑎𝑠

0

. (6.13) 

Note that most of the BEMF based methods in literature neglect harmonics and will hence 

require sufficiently large measurement intervals to reduce their influence (see leakage effect in 

section 2.4.2). 

As mentioned before, a sufficiently large rotor velocity is inevitable for all BEMF based 

methods. The speed, however, does not have to be constant. In [103], for instance, (6.9) is 

evaluated during periods of constant acceleration and deceleration. This has the advantage that 

no load motor is necessary, however, at the expense of harmonic distortions and the fact that 

only current vectors can be evaluated that accelerate or decelerate the rotor sufficiently fast. 

Many parameter identification methods in literature can also be seen as flux linkage 

measurement techniques. They base on linearized models at given operating points as described 

in section 2.2.3. Although they identify absolute inductances rather than flux linkages, both 

quantities can be directly converted into each other and hence deriving the flux linkage would 

only require an additional straightforward computation step. 

Parameter identification for linear models is a general, well examined area [74 pp. 357–456]. A 

wide variety of methods exist. In the context of electric drives, least squares based methods are 

predominant, as proposed for instance in [77, 104] to name but a few. It should be noted, 

however, that often the linearized models are incorrect, as they do not properly distinguish 

between differential and absolute inductances as in [77]. This means that the expectable results 

will be inaccurate in saturated regions. Additionally, the simplified models do not allow to 

properly assign the methods to either of the HF or BEMF groups in many cases. 
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6.1.4 HF Based Techniques 
The HF term as defined in (6.3), namely 𝑑𝝍𝑠

𝑟 𝑑𝑡⁄ , does only contain differential flux linkage 

information. This means that in order to obtain the absolute flux linkages, a mathematical 

integration procedure is necessary. This integration can be done in time domain, resulting in 

the flux linkage estimator from section 6.1.2. Note that at standstill, the BEMF term is zero 

and therefore (6.4) can be rewritten in rotor coordinates as 

𝝍𝑠
𝑟 = ∫(𝒖𝑠

𝑟 − 𝑅𝑠𝒊𝑠
𝑟)𝑑𝑡 + 𝝍𝑠,𝑐

𝑟 . (6.14) 

The same problems related with the open-loop integration as described in section 6.1.2 must 

hence be taken into account. 

In [108] a rectangular voltage and in [55] a sinusoidal voltage is applied in order to excite 

current responses. The corresponding voltage and current signals together with a simple 

resistance estimate are directly applied to (6.14). Due to the short measurement times, the 

integrator drift is neglected. The initialization of the integrator, however, is very important 

here, as an error in 𝝍𝑠,𝑐
𝑟  leads to corresponding offsets in the resulting flux linkage maps. This 

can be seen in [108], where the 𝑑-axis flux linkage map shows an offset of exactly the PM flux 

linkage value, which was neglected in the initialization of 𝝍𝑠,𝑐
𝑟 . 

In contrast to the BEMF based methods, no constant current and flux linkage values are 

available in the methods proposed in [55, 108]. For that reason, the mapping of flux linkage 

and current signals happens on basis of their transient states. In order to excite currents 

covering the complete region of interest, large-signal HF injection is necessary. 

Other known large-signal methods determine absolute [78] or absolute and differential 

inductances [79]. The method described in [78] is comparably complex, as it determines the 

inductance values from the parameters of PI type current controllers. The parameters have to 

be tuned iteratively in such a way that their step response is critically damped. In [79], a 

current decay test starting from a high current is performed in order to obtain the inductance 

values. The calculation algorithm is obtained straightforward from the linearized model. The 

measurements, however, cannot be directly performed with a VSI, as the method requires a 

special test arrangement. 

In contrast to the above HF methods, most techniques in literature determine only differential 

inductances, or, more precisely, their small-signal approximations [109–114]. In order to obtain 

good approximations, the excitation signal has to be as small as possible, but large enough for 

a sufficient signal-to-noise ratio (SNR). These techniques can thus be classified as small-signal 

HF based methods. 

Unlike the large-signal techniques, a constant operating point within the region of interest is 

enforced. To this fundamental component the HF signal is superimposed. Only the HF current 

and voltage signals are then evaluated to obtain the differential inductance matrix, 𝑳𝑠
𝑟, which 

was defined in section 2.2.3 as the Jacobian matrix of 𝒇𝑟. The resulting inductance values are 

mapped with the fundamental current components. 
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Although none of the above small-signal methods evaluate the flux linkage information 

contained in these inductance surfaces, we count them as flux linkage measurement methods, 

since it is principally possible to extract that information. As indicated above, an integration 

process is necessary, again. The time domain integrator, however, has to be replaced by an 

integration of the inductance maps in a 𝑑𝑞 current plane, as already discussed in Chapter 5. 

Typical small-signal HF schemes apply sinusoidal signal injection. Since decoupling of 𝑑- and 

𝑞-axis simplifies the inductance evaluation, the signal is often injected in either 𝑑- or 𝑞-direction. 

After evaluating the corresponding inductance, the procedure can be repeated for the other 

axis [55, 107, 109–112]. The separation of fundamental and HF components can be done either 

by appropriate filtering techniques [55, 109, 110, 114] or by applying special HF current 

controllers [111, 112]. Also more sophisticated injection schemes are published. In [114] a 

rotating voltage injection is applied, whereas in [113] a VSI modulation technique for multi-

sine signals is proposed in order to evaluate the inductances at different frequencies 

simultaneously. 

The frequency dependence of the resulting inductances is explicitly addressed in [55, 111–113]. 

While [113] only shows the dependency without further analysis, [55] presents results that 

indicate a major influence of magnetic hysteresis on the small-signal inductances. In [111, 112], 

the frequency dependency is explained generally by iron losses and an HF resistance matrix is 

introduced and experimentally identified in order to account for those losses. 

By far most small-signal HF techniques are performed at standstill with a fixed rotor. This is 

an effective method to eliminate the BEMF term. From the above publications, only [114] 

allows a spinning rotor. This is, however, only possible due to simplifications, which reduce the 

accuracy of the parameter identification. As a matter of fairness, it should be mentioned, 

though, that [114] is primary an online identification technique aiming at improved torque 

control and not necessarily at obtaining accurate flux linkage maps. 

A problem that arises from measurements at standstill is that spatial harmonics in the air gap 

field make the results dependent on the rotor position. In order to obtain a complete model, 

many sets of measurements at different rotor positions are thus necessary. As will be discussed 

in the following section, this work will avoid that problem by performing the HF measurements 

at a spinning rotor. 

6.2 Ensuring a Comparable Measurement Environment 

In recent publications, especially in view of anisotropy based sensorless control, it is stated that 

the differential inductances differ from those derived from the flux linkage maps [21, 55, 110–

112]. This work will address this phenomenon by comparing the results of a BEMF based and 

a small-signal HF based measurement scheme. Both schemes presented below are developed in 

the frame of this thesis, whereat the focus was put on comparability and reproducibility. They 

aim at achieving highest possible accuracy with the given hardware setup. In this way, the 

results can be optimally compared in order to evaluate the iron loss phenomenon that is 

generally seen as reason for differences between the theoretical differential and the so-called HF 

(differential) inductances. 
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For the sake of comparability and reproducibility, the presented methods rely on evaluation 

algorithms that can be processed offline. During a measurement period, all raw data of the 

phase currents, the DC link voltage, the torque, the rotor position and the calculated duty 

cycles are logged. By this way, all algorithms can be applied to the same data. 

As mentioned before, the temperature of the complete motor, the power cables and the power 

electronics is an important issue. It influences the resistance of cable and stator windings and 

the susceptibility of rotor and stator yokes and the PM material (see section 2.1.2). 

Additionally, it influences the switching times and the forward voltage drops of the 

semiconductors in the inverter (see section 3.2.3). It is thus crucial, to ensure constant 

temperature distributions during the measurements. 

Another important aspect is the chosen rotor velocity. For the sake of comparability, it should 

be the same during both, BEMF and HF measurements. Furthermore, it should be constant in 

order to allow proper separation of BEMF and HF components during the measurements. Even 

when we assume steady state operation in rotor coordinates, the associated rotating magnetic 

field causes iron losses in the stator, whereat the rotational speed determines the height of the 

losses. As direct consequence, magnetic hysteresis occurs, which is difficult handle 

mathematically (see section 2.1.2). It is thus desirable to perform the measurements at low 

speed. On the other hand, low speed means low BEMF and thus bad SNR for BEMF based 

measurements. 

Besides iron losses and SNR, also the problem of harmonic distortions plays a role in choosing 

the rotor speed. As already mentioned, the BEMF and for the same reason also the HF based 

measurements require measurement periods that cover integer numbers of rotor turns in order 

to avoid negative effects of the harmonics on the measurements. For that reason, the rotor 

speed has to be chosen fast enough to allow measurement times that result in an acceptable 

effort for data acquisition, buffering, transmission and processing. 

In conclusion, a tradeoff between iron losses, SNR and measurement effort is necessary. Unless 

otherwise stated, we thus choose a measurement speed of 1 3⁄  of the nominal motor speed 

within this work. 

In order to appropriately account for all of the above issues, the flux linkage measurements are 

embedded into a similar procedure as the measurements of the inverter voltage distortions, 

namely: 

1. Initialization: 

a. The load motor is operated in speed control mode at the desired constant rotor 

speed. 

b. The motor under test is operated in field oriented current control. A constant 

current space vector is applied to the motor in order to heat up inverter, cable 

and motor. The vector is aligned with the 𝑑-axis and its absolute value is around 

80 % of the nominal current. 

c. When the surface temperature of the motor arrives at a steady state (between 

42°C to 45°C for all tested motors), both, current and speed control, are turned 
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off and the exact motor cable and stator windings resistance, 𝑅𝑐𝑎𝑙, is measured 

with an Ohmmeter. Additionally, current measurement offsets are determined 

and compensated for in the following. 

d. Constant speed control of the load motor and current control of the motor under 

test are activated again. The current reference is set to nominal current on the 

𝑑-axis. For a period of 100 electrical rotor turns, the 𝑑-axis current and voltage 

are measured and averaged. From these values, the approximate resistance is 

calculated by 𝑅𝑎 = 𝑢𝑑,𝑎𝑣𝑔 𝑖𝑑,𝑎𝑣𝑔⁄ . As inverter distortion voltages and iron loss 

effects are not compensated for, the value differs from 𝑅𝑐𝑎𝑙. It is, however, a 

good measure for temperature changes. 

2. Measurements: 

a. The resistance estimation from step 1.d is repeated. If the obtained value is 

below 99.5% of 𝑅𝑎, the resistance estimation is repeated until the desired 

temperature is reached again. As the resistance estimation is performed at rated 

current, it can sufficiently heat up motor, cable and inverter. If the estimated 

resistance value is above 100.5% of 𝑅𝑎, a zero current reference is applied for an 

appropriate time interval. Afterwards, the resistance estimation is repeated. 

b. A pre-defined current reference vector is applied. After the 𝑑𝑞 currents arrive at 

steady state, the BEMF or HF based measurements are performed as described 

in the following sections. For a time period corresponding to 15 complete rotor 

turns, all current and DC link voltage measurements as well as the 

corresponding inverter duty cycles are buffered in the real time system. 

Afterwards, the buffered data is transmitted to and saved at the PC for post-

processing. 

c. When further designated current references are defined for measurements, the 

whole process is repeated from step 2.a. 

3. Post-processing: 

The flux linkage information contained in the logged raw data is extracted by the 

evaluation techniques described in the following sections. 

6.3 BEMF Based Measurement Method 

6.3.1 Measurement Scheme and Algorithm 
In an attempt to be as precise as possible, the BEMF based methods from literature are 

modified within this work. The main problem of the conventional methods is their dependency 

on the rotor velocity signal. As described in section 3.3.3, the speed signal obtained from an 

incremental encoder suffers from the discretization of the position signal and its differentiation. 

This is a known problem in drive systems and a common remedy is to filter the speed signal [2 

pp. 294–296]. This, on the other hand, introduces a delay in the speed signal, which again is 

problematic, particularly with regard to dynamic measurement schemes as in [103]. 

Another problem related with the velocity in known BEMF methods is the difficulty to 

eliminate harmonic distortions. Both techniques described in section 6.1.3 are restricted to 

constant rotor speeds. The FFT filtering technique from [105] can only work at a constant 
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fundamental frequency to be filtered out. The complete rotor turn evaluation from [102] bases 

on the assumption (6.12), which cannot be guaranteed, when 𝜔𝑟 is a time-dependent variable 

instead of a constant parameter. Although we will also perform the measurements at constant 

velocities, the fact that this restriction is omitted in the following method can make it 

interesting also for other schemes, as for example [103]. 

In order to eliminate the rotor velocity signal from the BEMF based flux linkage determination, 

we evaluate the measurement signals in stator coordinates. Our approach is hence to evaluate 

the EMF term as described in section 6.1.2. The drift and initialization problems associated 

with the open-loop integrator are approached in the sense of the discussed LPFs. However, 

since the LPF method depends on the chosen filter time constants, we follow a more systematic 

approach. 

When we assume a constant voltage offset, 𝒖𝑜𝑓𝑓𝑠𝑒𝑡
𝑠 , perturbing the measurements, we get 

𝑑

𝑑𝑡
𝝍𝑠
𝑠 +
𝑑

𝑑𝑡
𝝍𝑠,𝑒𝑟𝑟
𝑠 = 𝒖𝑠

𝑠 −𝑅𝑠𝒊𝑠
𝑠 + 𝒖𝑜𝑓𝑓𝑠𝑒𝑡

𝑠 , (6.15) 

where 𝑑𝝍𝑠,𝑒𝑟𝑟
𝑠 𝑑𝑡⁄  is the corresponding error in the flux linkage derivative, when the RHS of 

(6.15) serves as input for the flux linkage evaluation. 

In the same manner as in section 6.1.3, we assume steady currents and hence the same starting 

and end points of the flux linkage independently from the rotor speed or harmonic distortions, 

as long as the measurement period, 𝑇𝑚𝑒𝑎𝑠, covers an exact rotor turn or an integer multiple 

thereof. Equation (6.11) is thus still valid and when determining the arithmetic average of 

(6.15), we obtain 

1

𝑇𝑚𝑒𝑎𝑠
∫ (

𝑑

𝑑𝑡
𝝍𝑠,𝑒𝑟𝑟
𝑠 )  𝑑𝑡

𝑇𝑚𝑒𝑎𝑠

0

= 𝒖𝑜𝑓𝑓𝑠𝑒𝑡
𝑠 . (6.16) 

We can therefore eliminate the offset voltage causing the integrator drifts by subtracting the 

arithmetic average from the measurements. The result can then be used as input for an open-

loop integrator. 

Note that determining the arithmetic average of a signal is a special form of a low-pass filter 

(LPF) [92 pp. 318–320] and subtracting a low-pass filtered signal from the original signal gives 

us a high-pass filtered (HPF) signal. 

The remaining problem of selecting the correct initialization value, 𝝍𝑠,𝑐
𝑠 , for the integrator can 

be solved in exactly the same way. We know that the flux linkage vector is rotating 

synchronously with the electrical rotor position and after each complete turn arrives at the 

same position. We can thus conclude that the mean value of all flux linkage values during one 

rotor turn must be zero. Therefore, we can initialize the integrator with a random value, e.g. 

𝝍𝑠,𝑐
𝑠 = 𝟎, and eliminate the resulting initialization error by subtracting the arithmetic average 

from the calculated flux linkages. 

Note that this operation requires a BEMF signal in order to work properly. If only an HF 

component would be present, removing its average value would mean to remove the information 

about the steady state flux linkage at the actual operating point we are actually interested in. 
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Therefore, the proposed method is clearly located in the group of BEMF based techniques, 

although it looks like an EMF technique at first sight. 

It is also worth noting that no kind of HF signal injection deteriorates the results of the BEMF 

evaluation, as long as the injection is periodic to the measurement interval. This is important, 

as it allows us to simultaneously perform both, BEMF and HF measurements, and thus obtain 

ideal comparability of both techniques. 

The complete BEMF based measurement scheme is shown in Figure 6.1, where a block diagram 

of the physical test setup and the signal processing is shown. The part enclosed by a dotted 

line represents the field oriented current control algorithm which must be processed online, 

whereas the outer signal part is processed offline. The three averaging blocks each compute the 

mean values of the respective inputs over the complete measurement period. The outcome of 

the measurements is a look-up table (LUT), where the mean flux linkage is mapped with the 

respective current at pre-defined operating points in a rotor-oriented reference frame. As 

indicated, we set 𝑅𝑠 = 𝑅𝑐𝑎𝑙 and subtract the inverter error voltages as described in section 

3.2.3 before performing the open-loop integration with drift and initialization error 

compensation. 

 

6.3.2 Measurement Results 
Most of the measurements presented here are taken from the IPMSM. From all three machines, 

it has the advantage of having sufficiently large inductances for a good SNR and, additionally, 

it combines the basic principles of the other two machine types. 

The data sets presented in Chapter 4 serve as references, when discussing the results presented 

here and in the following sections. Note, that all relevant physical quantities such as flux 

linkage, inductances, magnetic (co-) energy or torque can be zero (or very small) at certain 

operating points, which would lead to infinite values, when discussing relative differences. 

Furthermore, relating the errors to nominal values, for instance, would seem meaningless, since 

at an operating point, where we expect only a fraction of the nominal torque, the error with 

respect to nominal torque is irrelevant. When discussing differences at certain operating points, 

 

Figure 6.1: Block diagram for BEMF based flux linkage measurements; black: signal section; 

grey: power section 
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we thus generally consider absolute values. Only in cases, where a relative view is useful to 

simplify the analysis, it is applied. 

In Figures 6.2 and 6.3, we see the results of BEMF based 𝑑- and 𝑞-axis flux linkage 

measurements for the IPMSM at one third, minus one third and two thirds of the rated speed. 

The results are presented as surfaces in the left subfigures (a), (c) and (e) and shall give a 

qualitative overview. Additionally, the corresponding current contour lines are projected to the 

bottom of the respective figure’s plot box. That same contour lines are shown in the right 

subfigures (b), (d) and (f) by fully colored surfaces. 

All results are obtained from the procedure described in section 6.3.1, however, without 

compensating the inverter effects on the applied voltages as described in section 3.2.3. We can 

see that the results at different speeds are comparable on average but that the maps are slightly 

unsymmetrical. This can be seen best in comparison to the white contour lines on the right 

subfigures, which represent the corrected flux linkage maps as a result of the optimization 

process described in Chapter 5. 

In both, 𝑑- and 𝑞-axis flux linkage maps, the asymmetry is obviously depending on the rotor 

speed. At one third of the rated motor speed in clockwise and counter-clockwise direction, the 

distortions change their directions as well, leading to similar results mirrored horizontally at 

the 𝑑-axis. At two thirds of the rated motor speed, the asymmetry is strongly reduced. This 

indicates that the asymmetric distortions in the measurements are inverse proportional to the 

rotor speed. 

Additionally, the complete measured 𝑑-axis flux map at 2 3⁄  𝜔𝑁 is lower-valued than the 

physically reasonable results. This difference is increasing with increasing 𝑑-axis currents. At 

the same time, the 𝑞-axis flux linkage is very similar to the optimized results at the region with 

maximal 𝑑-currents. Instead, we can observe increasing deviations between both results with 

negative 𝑑-axis currents. 

Especially the differences in the 𝑑-axis flux linkage maps indicate, that a simple symmetrization 

of the measured flux linkage maps along the 𝑑-axis does not automatically lead to physically 

reasonable results. 

We know already that the results should be distorted by the inverter effects described in 

Chapter 3. They lead to errors in the applied voltages, that are only depending on the stator 

currents. Over a complete rotor turn, the respective voltage perturbations change depending 

on the actual current space vector in stator coordinates. The form and especially the amplitudes 

of the inverter distortion voltages, however, are independent from the rotor speed. At the same 

time, the BEMF voltage signal is proportional to the rotor speed, thus leading a decreasing 

influence of the inverter distortions with increasing speed. 

This can be seen in Figures 6.4 and 6.5, where the flux linkage maps obtained from the same 

measurement data are shown, when the inverter effects are compensated by subtracting the 

voltage distortions as shown in Figure 3.3 from the FOC reference stator voltage vectors in 

stator coordinates. 
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We see that the results at ± one third of the rated speed are now more symmetrical and 

generally closer to the physically reasonable optimum. It is also interesting to note, that the 

measured results are now very similar to those measured at two thirds of the rated speed 

without compensation of the inverter distortions (cf. subfigures (f) in Figures 6.2 – 6.3 and (b) 

in Figures 6.4 – 6.5). With compensated inverter effects at 2 3⁄  𝜔𝑁 , however, we can observe a 

slight asymmetry. 

This indicates that another speed-dependent effect perturbs the measurements. At 1 3⁄  𝜔𝑁 , it 

seems to act comparably symmetric and mainly reduces the measured 𝑑-axis flux linkage values. 

At 2 3⁄  𝜔𝑁 , it causes asymmetries in the same order of magnitude than the inverter effects but 

mirrored at the 𝑑-axis (thus leading to comparably symmetric results, when the inverter effects 

are not compensated). 

Since all other sources of error are eliminated as good as possible, these remaining differences 

to the physically reasonable optimum should be caused by iron effects, i.e. eddy currents and 

magnetic hysteresis. While determining explicit eddy currents and hysteretic states of the 

machine would go beyond the scope of this work, we will analyze their effects on the magnetic 

characteristics of the machine and how these effects act on control strategies like MTPA or on 

anisotropy based sensorless control. These issues are addressed further in section 6.5. For now, 

we can conclude that BEMF based measurement schemes are sensitive to voltage errors due to 

inverter switching effects, especially at low rotor speeds. 
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Figure 6.2: 𝑑-axis flux linkage measurement results for the IPMSM at 1 3⁄ 𝜔𝑁  (a, b), at 

−1 3⁄ 𝜔𝑁  (c, d) and at 2 3⁄ 𝜔𝑁  (e, f) without compensation of inverter effects 
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Figure 6.3: 𝑞-axis flux linkage measurement results for the IPMSM at 1 3⁄ 𝜔𝑁  (a, b), at 

−1 3⁄ 𝜔𝑁  (c, d) and at 2 3⁄ 𝜔𝑁  (e, f) without compensation of inverter effects 
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Figure 6.4: 𝑑-axis flux linkage measurement results for the IPMSM at 1 3⁄ 𝜔𝑁  (a, b), at 

−1 3⁄ 𝜔𝑁  (c, d) and at 2 3⁄ 𝜔𝑁  (e, f) with compensation of inverter effects 



CHAPTER 6  MEASURING FLUX LINKAGE IN SYNCHRONOUS MACHINES 

136 

 

 

Figure 6.5: 𝑞-axis flux linkage measurement results for the IPMSM at 1 3⁄ 𝜔𝑁  (a, b), at 

−1 3⁄ 𝜔𝑁  (c, d) and at 2 3⁄ 𝜔𝑁  (e, f) with compensation of inverter effects 
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When comparing the optimized results (white contour lines), we can note that – independent 

from the measurement speed and whether or not the inverter distortions are compensated – 

they are almost identical. In order to quantitatively compare the optimized results, Table 4 

shows the sums of all absolute differences (i.e. the ℓ1 norm) between the respective 𝑑- and 𝑞-

axis flux linkage maps in relation to the ℓ1 norm of the reference flux linkage map. For the 

latter, the optimized results of the measurements at one third rated speed and with 

compensated inverter effects are selected (these exact results were already shown and discussed 

in Chapter 4.2). 

Since in comparison to itself, there is no difference, the respective entries in the table are zero. 

Compared to the measured (i.e. non-optimized) results, we see a relative ℓ1 difference of 3.18% 

in the 𝑑-axis and 2.33% in the 𝑞-axis. Without inverter error compensation, the differences to 

the measurements are 4.79% and 8.03%, respectively. In comparison to the optimized results, 

however, we have only 0.02% and 0.03% differences, which allows to conclude that the 

optimization process as described in Chapter 5 can effectively eliminate the influence of the 

inverter voltage errors. 

The maximal differences to the non-optimized flux linkage maps are 5.13% in the 𝑑-axis and 

8.03% in the 𝑞-axis. When the inverter distortions are compensated, we still see differences of 

up to 3.28% and 5.63% in the 𝑑 and 𝑞 axes, respectively. As already mentioned, these deviations 

can be explained best by iron effects. 

The largest differences between the optimized results occur in the 𝑑-axis at reversed speed and 

in the 𝑞-axis at double speed. The differences, however, remain below 0.5% in any case. This 

indicates that also the influence of iron effects on the flux linkage measurements can be strongly 

reduced by the optimization process. 

Table 4: Comparison of the differences between the measured and corrected IPMSM flux 

linkage maps, where the corrected flux linkage map with compensated inverter 

effects measured at 1/3 of the rated speed is the reference 

𝓵𝟏 norm of  

differences in % 

𝒅-axis,  

optim. 

𝒒-axis,  

optim. 

𝒅-axis,  

meas. 

𝒒-axis,  

meas. 

@𝟏 𝟑⁄ 𝝎𝑵 , inv. comp. 0.00 0.00 3.18 2.33 

@−𝟏 𝟑⁄ 𝝎𝑵 , inv. comp. 0.32 0.18 2.66 2.12 

@𝟐 𝟑⁄ 𝝎𝑵 , inv. comp. 0.29 0.47 3.28 5.63 

@𝟏 𝟑⁄ 𝝎𝑵 , no inv. comp. 0.02 0.03 4.79 8.03 

@−𝟏 𝟑⁄ 𝝎𝑵 , no inv. comp. 0.30 0.23 5.13 7.72 

@𝟐 𝟑⁄ 𝝎𝑵 , no inv. comp. 0.26 0.43 3.22 5.64 

 

The above conclusions concerning the inverter effects are supported by the BEMF based flux 

linkage measurements of the SPMSM and the SynRM. Figures 6.6 and 6.7 show the measured 

and optimized 𝑑- and 𝑞-axis flux linkage maps of the SynRM at one third rated speed without 

(subfigures on top) and with (bottom subfigures) compensation of inverter effects. Again, the 

optimized results are presented as white contour lines in the right subfigures. 
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Since the SynRM has noticeably larger inductances than the IPMSM, we get larger absolute 

flux linkage vectors and thus a stronger BEMF voltage signal. As the voltage perturbations 

caused by the inverter remain constant for the respective current operating points, the flux 

linkage maps without compensated inverter effects are only slightly distorted. When the 

inverter distortions are eliminated, the obtained flux linkage maps are very similar to the 

optimized results, which is confirmed quantitatively by Table 5. 

Here, we see that the optimized results are practically identical and only corrections of less 

than 1.4% are necessary to obtain physically feasible results, if the inverter effects are 

compensated. If not, the necessary corrections of up to 9% are comparable to the results from 

the IPMSM. 

 

Figure 6.6: 𝑑-axis flux linkage measurement results for the SynRM at 1 3⁄ 𝜔𝑁 , without (a, b) 

and with (c, d) compensation of inverter effects 
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Figure 6.7: 𝑞-axis flux linkage measurement results for the SynRM at 1 3⁄ 𝜔𝑁 , without (a, b) 

and with (c, d) compensation of inverter effects 
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Table 5: Comparison of the differences between the measured and corrected SynRM flux 

linkage maps, where the corrected flux linkage map with compensated inverter 

effects measured at 1/3 of the rated speed is the reference 

𝓵𝟏 norm of  

differences in % 

𝒅-axis,  

optim. 

𝒒-axis,  

optim. 

𝒅-axis,  

meas. 

𝒒-axis,  

meas. 

@𝟏 𝟑⁄ 𝝎𝑵 , inv. comp. 0.00 0.00 1.34 0.97 

@𝟏 𝟑⁄ 𝝎𝑵 , no inv. comp. 0.00 0.01 4.60 8.99 

From the discussion of the final results in Chapter 4, we know that the SPMSM has the least 

magnetic energy and thus the smallest flux linkage values of all three machines. It is thus the 

most demanding machine in terms of SNR and we can expect the biggest influence of the 

inverter distortions on the results. This is confirmed in Figures 6.8 and 6.9, where the same 

analysis is shown for the SPMSM as before for the IPMSM and the SynRM. Additionally, as a 

worst-case analysis, the influence of parameter errors in the identified stator resistance is shown 

in the top subfigures. The middle subfigures show the results for correctly identified stator 

resistance but still without compensation of the inverter effects. The bottom subfigures show 

the results for both, correct resistance and compensated inverter effects. 

As expected, the inverter error voltages lead to noticeably stronger asymmetric distortions in 

the flux linkage maps of both axes, than it is observed at the other machines. When completely 

neglecting the stator resistance, the maps are even further distorted. We can see, however, that 

the optimization of the measurements can also effectively compensate this error. This is 

observable by comparing the white contour lines as well as in the quantitative analysis in Table 

6. 

Due to the permanent magnet in the 𝑑-axis, the absolute flux linkage values in the 𝑞-axis are 

smaller and thus the relative errors are larger, here. With more than 17%, the differences in 

the 𝑞-axis without inverter error compensation are much bigger than it was observed at the 

IPMSM. 

It is worth noting, that even with correct resistance and compensated inverter errors, the 𝑞-

axis flux linkages have to be corrected by in total 11 % in order to obtain physically feasible 

results. When inspecting Figure 6.9 (f), we see that the differences increase with increasing 𝑑-

axis currents and with increasing absolute values of the 𝑞-axis currents. The largest differences 

occur in regions with large positive 𝑑-currents and large positive or negative 𝑞-currents, i.e. in 

regions with the highest magnetic saturation. This was also observable at the IPMSM, as well, 

but here, it is better to see. 

The most likely reasons for this behavior are iron effects, or eddy currents in particular. At 

high currents, and when a positive 𝑑-axis current supports the PM flux linkage, large flux 

linkages vectors rotate at electrical rotor speed in the machine. As discussed in section 2.1.2, 

changing flux linkages cause eddy currents in conducting material, i.e. in the stator yoke in this 

case. Since the SPMSM has almost twice the rated speed of the IPMSM at the same number 

of pole pairs, the time rate of change of the flux linkage in the stator yoke is much higher, 

which – in combination with the generally worse SNR in the SPMSM – explains the bigger 

differences between measured and optimized flux maps. 
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Note that magnetic hysteresis seems to be of marginal relevance in this case. In section 2.1.2, 

it was discussed that with increasing saturation, coherent rotation begins to dominate the 

magnetization process. Since this effect is reversible, we can expect a decreasing influence of 

hysteresis with increasing flux linkage vectors, which contradicts the observed behavior. 

The worst case of erroneous measurement results consists of a combination of inverter voltage 

errors and a 100% resistance parameter error. The graphical analysis in (a) and (b) of Figures 

6.8 and 6.9 shows, how asymmetric the measured maps are and how big the differences between 

measurements and optimized results are. As reported in Table 6, physically reasonable results 

require corrections of almost 12% in the 𝑑- and nearly 43% in the 𝑞-axis. The resulting 

optimized maps, however, differ less than 0.2% and 0.7% from the optimized 𝑑𝑞 reference maps 

which were derived from measurements with correct resistance value and compensated inverter 

errors. We can thus state that the proposed optimization algorithm does also effectively reduce 

resistance parameter errors. 

Table 6: Comparison of the differences between the measured and corrected SPMSM flux 

linkage maps, with and without resistance parameter error, where the corrected 

flux linkage map with compensated inverter effects measured at 1/3 of the rated 

speed is the reference 

𝓵𝟏 norm of  

differences in % 

𝒅-axis,  

optim. 

𝒒-axis,  

optim. 

𝒅-axis, 

meas. 

𝒒-axis, 

meas. 

@𝟏 𝟑⁄ 𝝎𝑵 , inv. comp., correct 𝑹 0.00 0.00 1.10 10.99 

@𝟏 𝟑⁄ 𝝎𝑵 , no comp., correct 𝑹 0.05 0.20 4.71 17.57 

@𝟏 𝟑⁄ 𝝎𝑵 , no comp., no 𝑹 0.16 0.61 11.71 42.68 
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Figure 6.8: 𝑑-axis flux linkage measurement results for the SPMSM at 1 3⁄ 𝜔𝑁 ; (a, b): 

neglected stator resistance and no compensation of inverter effects; (c, d): correct 

resistance and no compensation of inverter effects; (e, f): correct resistance and 

compensation of inverter effects 
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Figure 6.9: 𝑞-axis flux linkage measurement results for the SPMSM at 1 3⁄ 𝜔𝑁 ; (a, b): 

neglected stator resistance and no compensation of inverter effects; (c, d): correct 

resistance and no compensation of inverter effects; (e, f): correct resistance and 

compensation of inverter effects 
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6.4 Small-Signal HF Based Measurement Method 

6.4.1 Measurement Scheme and Algorithm 
In terms of hardware requirements and test preparation effort, HF based measurement schemes 

are usually advantageous over BEMF based techniques (except for those with free motor shafts, 

e.g. [103]). When carried out at standstill, only a brake is necessary and we do thus not have 

to care about the load machine, its control setup and how to dissipate the brake energy. 

Within this work, the focus lies on comparing BEMF and HF based measurement schemes. 

Therefore, an HF based method is proposed that can be carried out simultaneously to the 

BEMF method from section 6.3. Both methods must not interfere with each other, which results 

in the following requirements: 

• The HF method should not be restricted to standstill operation 

o Filter techniques will be necessary to separate the HF signals from the 

fundamental components 

• The HF method should be compatible with steady current operating points and injected 

HF signals should not disturb the fundamental FOC current controllers 

o Small signal injection is necessary 

o Open-loop voltage injection is easier to handle than closed-loop HF current 

controllers, that might interfere with the FOC controllers or natural machine 

harmonics 

• The arithmetic mean of the injection signals should be zero for periods of complete 

rotor turns 

o This avoids interference of both BEMF and HF signals due to the leakage effect 

• Both, the 𝑑 and 𝑞 axes should be magnetized simultaneously in order to avoid the need 

for separate measurement periods 

o This disqualifies uniaxial injection schemes 

• Ideally, the HF scheme should be processible completely offline to allow comparing the 

influence of different effects on the exact same set of data 

o This leads again to open-loop voltage injection rather than HF current control 

that would rely on online processing of measurements that might be distorted 

by different effects – analyzing these effects would be more difficult since the 

influence of the online processes must be considered 

In order to comply with all requirements, a rotating small signal voltage injection scheme is 

proposed. The online part of the scheme is kept simple, as only a voltage vector rotating at 

constant speed and amplitude is computed and added to the fundamental field oriented current 

controller output. During the measurement periods of 15 rotor turns, the FOC dynamics are 

strongly reduced to avoid interference of the current controllers with the HF signals. No further 

changes are necessary to integrate the HF measurement scheme into the existing BEMF scheme. 
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The offline process of determining the flux linkage information from the measured currents 

consists of three separate tasks: 

1. Separating the HF current signal from all other harmonic components 

2. Determining the differential inductances as accurate as possible 

3. Computing the flux linkages from those inductance maps 

The third step is already described in Chapter 5. The steps one and two are discussed in the 

following subsections. Since the optimal way of extracting the HF current signal from the 

measurements depends on the typical small signal current response to rotating voltages for 

linearized SM models, this issue is addressed first. 

6.4.1.1 Small Signal HF Current Response to Rotating Voltage Injection 

The basis for analyzing the current response to rotating voltage excitation is the linearized 

small signal model as described in section 2.2.3. When rewriting (2.70) in state space 

representation, we obtain 

𝑑

𝑑𝑡
𝒊𝑠,Δ
𝑟 = 𝑨𝑟𝒊𝑠,Δ

𝑟 +𝑩𝑟𝒖𝑠,Δ
𝑟  , (6.17) 

where the system matrix 𝑨𝑟 and the input matrix 𝑩𝑟 for SM models in rotor coordinates are 

given by 

𝑨𝑟 = −𝑳𝑠,𝑜𝑝
𝑟 −1(𝑅𝑠𝑰 + 𝜔𝑟,𝑜𝑝𝑱𝑳𝑠,𝑜𝑝

𝑟 ), (6.18) 

𝑩𝑟 = 𝑳𝑠,𝑜𝑝
𝑟 −1, (6.19) 

and the Δ-operands indicating the approximative small-signal character of the model are moved 

to the indices for conciseness. 

It is worth noting that (6.17) is accurately describing the small signal current progression as 

long as the absolute current, 𝒊𝑠
𝑟 = 𝒊𝑠,op

𝑟 + 𝒊𝑠,Δ
𝑟 , remains sufficiently close to the operating point 

for which the parameters 𝜔𝑟,𝑜𝑝 and 𝑳𝑠,𝑜𝑝
𝑟  are valid. Besides this prerequisite, no further 

simplifications are necessary. The actual rotor speed as well as the ohmic voltage at the stator 

resistance are considered. 

Note also, that the large signal model (2.72) is negligible without further error, when proper 

filter techniques are applied to separate the HF signal components from the rest of the 

measurements since in this case the constant operating point offsets are filtered out. 

When, during the measurement periods, the operating point is constant and the HF signal 

remains sufficiently small, equation (6.17) is a linear, time-invariant (LTI) system. The general 

solution of this inhomogeneous differential equation is the sum of the homogenous solution and 

the particular solution [74 pp. 706-707]. The homogenous solution describes the transient 

current progression as a result of its initial value at the time 𝑡0 without any input signal. The 

particular solution describes the system response to any given input signal. Both solutions are 

found by means of the matrix exponential of the system matrix. It is defined analogously to 

the Taylor series expansion of the scalar exponential function as  
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exp(𝑨𝑡) =∑𝑨𝑛
𝑡𝑛

𝑛!

∞

𝑛=0

. (6.20) 

The solution of (6.17) is now given by 

𝒊𝑠,Δ
𝑟 (𝑡) = exp(𝑨𝑟(𝑡 − 𝑡0)) 𝒊𝑠,Δ

𝑟 (𝑡0) +∫ exp(𝑨
𝑟(𝑡 − 𝜏))𝑩𝑟𝒖𝑠,Δ

𝑟 (𝜏)𝑑𝜏
𝑡

𝑡0

, (6.21) 

where the first term on the RHS is the homogeneous solution and the second term is the 

particular solution. 

Analogously to the Fourier series of space vectors in section 2.4.1, we now assume a rotating 

voltage input vector, 𝒖𝑠,𝑘
𝑟 , with constant amplitude, 𝑢𝑠,𝑘, constant rotational frequency, 𝜔𝑘, 

and an initial phase, 𝜙𝑢,𝑘, such that 

𝒖𝑠,𝑘
𝑟 (𝑡) = 𝑢𝑠,𝑘 𝑻 (𝜔𝑘𝑡 + 𝜙𝑢,𝑘)𝒆1. (6.22) 

In Appendix B.6 it is shown that for this special case of rotating input vectors, the integral in 

the particular solution acc. to (6.21) can be solved analytically. The sum of homogeneous and 

particular solution results in 

𝒊𝑠,𝐻𝐹
𝑟 (𝑡) = exp(𝑨𝑟(𝑡 − 𝑡0)) (𝒊𝑠,𝐻𝐹

𝑟 (𝑡0) −𝑲𝑝
𝑟𝒖𝑠,𝑘
𝑟 (𝑡0)) +𝑲𝑝

𝑟𝒖𝑠,𝑘
𝑟 (𝑡), (6.23) 

where 𝑲𝑝
𝑟 is a matrix describing the particular solution of (6.17). It can be calculated from the 

system and input matrices by 

𝑲𝑝
𝑟 = −(𝑨𝑟2 + 𝜔𝑘

2𝑰)
−1
(𝑨𝑟𝑩𝑟 + 𝜔𝑘𝑩

𝑟𝑱). (6.24) 

It is worth noting that, for a given operating point, 𝑲𝑝
𝑟 is a constant matrix, which translates 

a rotating small signal voltage vector at any time into a corresponding current vector at that 

same time. 

We can see from (6.23), that the overall system response consists of two components – one 

describing the exponentially decaying12 response to the initial current and voltage vectors and 

the other describing the steady state current response. This basically opens up two possibilities 

for parameter identification techniques. Either the steady state current response or the transient 

current response to given initial current and voltage vectors can be analyzed. We will choose 

the first possibility within this work, since we know from section 2.4 that Fourier analysis allows 

to accurately separate the relevant rotating voltage and current space vectors from all the 

fundamental and harmonic components that might impair our results. Additionally, the 

transient processes can be easily eliminated by waiting a sufficient amount of time13 after 

activating the voltage injection at a given operating point, before starting the measurement. 

We do thus only have to focus on 𝑲𝑝
𝑟 to find a way to determine the inductance matrix 𝑳𝑠,𝑜𝑝

𝑟 , 

which is contained in both, the system and the input matrices. When substituting the latter 

acc. to (6.18) and (6.19) into (6.24), we obtain (see Appendix B.7 for details) 

 
12 Given that the real components of all eigenvalues of 𝑨𝑟 are negative, see also Section 6.4.1.3 
13 For all eigenvalues of 𝑨𝑟, ℜ{𝜆𝑛}(𝑡 − 𝑡0) ≤ −5 must be ensured, see also Section 6.4.1.3 
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𝑲𝑝
𝑟 = (𝑅𝑠

2𝑰 + 2𝜔𝑟,𝑜𝑝𝑅𝑠𝐿𝛴𝑱 + (𝜔𝑘
2 − 𝜔𝑟,𝑜𝑝

2 )𝑳𝑠,𝑜𝑝
𝑟 2)−1(𝑅𝑠𝑰 − (𝜔𝑘 − 𝜔𝑟,𝑜𝑝)𝑳𝑠,𝑜𝑝

𝑟 𝑱). (6.25) 

We can see that 𝑲𝑝
𝑟 is a nonlinear function of 𝑳𝑠,𝑜𝑝

𝑟  and the presence of the latter in the inverse 

expression as well as in the numerator makes it difficult to solve (6.25) for 𝑳𝑠,𝑜𝑝
𝑟 . We can also 

note that 𝑲𝑝
𝑟 contains the mean inductance, 𝐿𝛴, as it was defined in the theory section about 

sensorless control (see section 2.2.3 from pages 42 to 49). This is the key to obtain the desired 

results. When splitting up 𝑳𝑠,𝑜𝑝
𝑟  into its mean and anisotropic components, we get 

𝑳𝑠,𝑜𝑝
𝑟 = 𝐿𝛴𝑰 + 𝐿𝐴,𝛥𝑺(𝜗𝐴). (6.26) 

By substituting (6.26) into (6.25) and performing several simplifications, that are described in 

Appendix B.7, we can find 

𝑲𝑝
𝑟 =
𝑁𝐼+𝑰 + 𝑁𝐽+𝑱 + (𝑁𝐼−𝑰 + 𝑁𝐽−𝑱)𝑺(𝜗𝐴)

𝐷
 (6.27) 

where the numerator terms are 

𝑁𝐼+  = 𝑅𝑠 (𝑅𝑠
2 + (𝜔𝑘 − 𝜔𝑟,𝑜𝑝) (𝐿𝛴

2 (𝜔𝑘 − 𝜔𝑟,𝑜𝑝) + 𝐿𝐴,𝛥
2 (𝜔𝑘 + 𝜔𝑟,𝑜𝑝))), (a) 

(6.28) 
𝑁𝐽+  = −((𝜔𝑘 + 𝜔𝑟,𝑜𝑝)𝐿𝛴 (𝑅𝑠

2 + (𝜔𝑘 − 𝜔𝑟,𝑜𝑝)
2(𝐿𝛴

2 − 𝐿𝐴,𝛥
2 ))), (b) 

𝑁𝐼−  = −2𝑅𝑠𝐿𝛴𝐿𝐴,𝛥𝜔𝑘(𝜔𝑘 − 𝜔𝑟,𝑜𝑝), (c) 

𝑁𝐽−  = (𝜔𝑘 − 𝜔𝑟,𝑜𝑝)𝐿𝐴,𝛥 (𝑅𝑠
2 − (𝜔𝑘

2 − 𝜔𝑟,𝑜𝑝
2 )(𝐿𝛴

2 − 𝐿𝐴,𝛥
2 )) (d) 

and the denominator is 

𝐷 = 𝑅𝑠
2 (𝑅𝑠

2 + 2((𝜔𝑘
2 + 𝜔𝑟,𝑜𝑝

2 )𝐿𝛴
2 + (𝜔𝑘

2 − 𝜔𝑟,𝑜𝑝
2 )𝐿𝐴,𝛥

2 )) + (𝜔𝑘
2 − 𝜔𝑟,𝑜𝑝

2 )2(𝐿𝛴
2 − 𝐿𝐴,𝛥

2 )2. (6.29) 

When analyzing the structure of 𝑲𝑝
𝑟 acc. to (6.27), we see that all machine parameters are 

contained in scalar expressions that either scale the unit matrix, 𝑰, or the 90° rotational matrix, 

𝑱 . Additionally, there is an expression that is multiplied with the double-angle rotational 

matrix, 𝑺(𝜗𝐴), which was found already in (2.107) to be 

𝑺(𝜗) = 𝑻 (2𝜗)𝑿. (6.30) 

It is important to remind that the matrix 𝑿 is the analogon to the conjugate complex operator, 

which flips a vector along the axis of abscissae. For the product of 𝑻 (𝜗) and 𝑿, we can find 

the relation 

𝑻 (𝜗)𝑿 = 𝑿𝑻 (−𝜗). (6.31) 

We can now find that the product of 𝑺(𝜗𝐴) and the rotating voltage vector acc. to (6.22) 

results in 

𝑺(𝜗𝐴)𝒖𝑠,𝑘
𝑟 (𝑡) = 𝑢𝑠,𝑘 𝑻 (2𝜗𝐴)𝑿𝑻 (𝜙𝑢,𝑘)𝑻 (𝜔𝑘𝑡)𝒆1. (6.32) 

By applying (6.31), we can eliminate 𝑿 by moving it to the right, where it cancels out when 

multiplied with the unit vector 𝒆1. We then finally see that the product of 𝑺(𝜗𝐴) and 𝒖𝑠,𝑘
𝑟 (𝑡) 

gives us a vector rotating in reverse direction of 𝒖𝑠,𝑘
𝑟 (𝑡). 
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𝑺(𝜗𝐴)𝒖𝑠,𝑘
𝑟 (𝑡) = 𝑢𝑠,𝑘 𝑻 (2𝜗𝐴)𝑻 (−𝜙𝑢,𝑘)𝑻 (−𝜔𝑘𝑡)𝑿𝒆1⏟

𝒆1

. 
(6.33) 

Since only one term in (6.27) contains 𝑺(𝜗𝐴), we can state that 𝑲𝑝
𝑟 splits up the steady state 

current response to a rotating voltage vector into two current vectors – one rotating in same 

and one rotating in opposite direction. This is why the numerator terms in (6.28) are denoted 

with the indices + (same direction) and – (reverse direction). 

The graphical interpretation of this statement is shown in Figure 6.10. It reveals that the 

current response of synchronous machines to a rotating voltage vector is generally elliptic. 

When we split up 𝑲𝑝
𝑟 into its + and – parts and remind the fact known from section 2.4.1 that 

𝜔𝑘 = −𝜔−𝑘, we obtain the respective pos. and neg. rotating current vectors, 

𝑖𝑠,𝑘𝑻(𝜙𝑖,𝑘)𝑻 (𝜔𝑘𝑡)𝒆1  =
𝑁𝐼+𝑰 + 𝑁𝐽+𝑱

𝐷
𝑢𝑠,𝑘𝑻 (𝜙𝑢,𝑘)𝑻 (𝜔𝑘𝑡)𝒆1, (a) 

(6.34) 

𝑖𝑠,−𝑘𝑻(𝜙𝑖,−𝑘)𝑻 (𝜔−𝑘𝑡)𝒆1  =
𝑁𝐼−𝑰 + 𝑁𝐽−𝑱

𝐷
𝑢𝑠,𝑘𝑻 (2𝜗𝐴)𝑻 (−𝜙𝑢,𝑘)𝑻 (−𝜔𝑘𝑡)𝒆1. (b) 

When expressing the matrices 𝑰 and 𝑱 in terms of the rotation matrix, we get 

𝑰 =  𝑻 (0), (a) 
(6.35) 

𝑱 =  𝑻 (𝜋 2⁄ ) (b) 

and can state that only rotation matrices occur in (6.34). Since those matrices are commutative, 

i.e. 

𝑻 (𝜗1)𝑻 (𝜗2) = 𝑻 (𝜗2)𝑻 (𝜗1), (6.36) 

we can simplify and rewrite (6.34) as 

𝑖𝑠,𝑘𝑻 (𝜙𝑖,𝑘)𝒆1  = 𝑢𝑠,𝑘𝑻 (𝜙𝑢,𝑘)
𝑁𝐼+𝑰 + 𝑁𝐽+𝑱

𝐷
𝒆1, (a) 

(6.37) 

𝑖𝑠,−𝑘𝑻(𝜙𝑖,−𝑘)𝒆1  = 𝑢𝑠,𝑘𝑻 (2𝜗𝐴)𝑻 (−𝜙𝑢,𝑘)
𝑁𝐼−𝑰 + 𝑁𝐽−𝑱

𝐷
𝒆1. (b) 

When analyzing the last terms on the RHS of (6.37), we see a vector sum of the unit vector 𝒆1 

scaled by 𝑁𝐼± 𝐷⁄  and the unit vector 𝒆2 = 𝑱𝒆1 scaled by 𝑁𝐽± 𝐷⁄ , as indicated in Figure 6.11. 

We can now easily see that the last terms rotate the unit vector 𝒆1 by atan2(𝑁𝐽±, 𝑁𝐼±) and 

scale it by √𝑁𝐼±
2 +𝑁𝐽±

2 𝐷⁄ . We thus rewrite (6.37) as 

 

𝑖𝑠,𝑘𝑻 (𝜙𝑖,𝑘)𝒆1  = 𝑢𝑠,𝑘

√𝑁𝐼+
2 +𝑁𝐽+

2

𝐷
𝑻(𝜙𝑢,𝑘)𝑻 (atan2(𝑁𝐽+, 𝑁𝐼+))𝒆1, 

(a) 

(6.38) 

𝑖𝑠,−𝑘𝑻(𝜙𝑖,−𝑘)𝒆1  = 𝑢𝑠,𝑘

√𝑁𝐼−
2 +𝑁𝐽−

2

𝐷
𝑻(2𝜗𝐴)𝑻 (−𝜙𝑢,𝑘)𝑻 (atan2(𝑁𝐽−, 𝑁𝐼−))𝒆1. 

(b) 
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By comparing the amplitudes and phases of the vectorial equations (6.38), we find the current 

amplitudes 

 𝑖𝑠,𝑘 = 𝑢𝑠,𝑘

√𝑁𝐼+
2 +𝑁𝐽+

2

𝐷
, (a) 

(6.39) 

 𝑖𝑠,−𝑘 = 𝑢𝑠,𝑘

√𝑁𝐼−
2 +𝑁𝐽−

2

𝐷
 (b) 

and the phases 

𝜙𝑖,𝑘 = 𝜙𝑢,𝑘 + atan2(𝑁𝐽+, 𝑁𝐼+), (a) 
(6.40) 

𝜙𝑖,−𝑘 = 2𝜗𝐴 − 𝜙𝑢,𝑘 + atan2(𝑁𝐽−,𝑁𝐼−). (b) 

From (6.28), (6.39) and (6.40), we can draw the following conclusions: 

• The current amplitudes are proportional to the voltage amplitude 

• Since both, 𝑁𝐼− and 𝑁𝐽− are proportional to 𝐿𝐴,𝛥, there is no reversely rotating current 

in magnetically isotropic machines 

• The current amplitudes do not depend on the voltage phase 

• The current phases do not depend on the voltage amplitude 

 

Figure 6.10: Elliptic HF current trajectory as sum of two vectors rotating in mathematically 

positive and negative direction each with constant amplitude and frequency 

 

Figure 6.11: Graphical interpretation of the last terms on the RHS of (6.37)  
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• Only the phase of the reversely rotating current vector contains information about the 

magnetic anisotropy angle, 𝜗𝐴 

Another important aspect to note is that (6.39) and (6.40) describe the steady state current 

response to a voltage vector rotating circularly with 𝜔𝑘. If the applied voltage is elliptic (or, in 

its most extreme form, alternating), there is also a negatively rotating voltage component, 

which itself produces two current vectors in same and reverse rotating directions. The respective 

current vectors rotating in the same direction superimpose, such that we get the much more 

complicated expressions 

𝑖𝑠,𝑘  = √𝑢𝑘
2𝐹𝑘
2 + 𝑢−𝑘

2 𝐹−𝑘
2 + 2𝑢𝑘𝑢−𝑘𝐹𝑘𝐹−𝑘 cos(𝜙𝑢,𝑘 + 𝜙𝑢,−𝑘 + 𝛷𝑘 − 𝛷−𝑘 − 2𝜗𝐴), (a) 

(6.41) 

𝑖𝑠,−𝑘  = √𝑢−𝑘
2 𝐹𝑘

2 + 𝑢𝑘
2𝐹−𝑘
2 + 2𝑢𝑘𝑢−𝑘𝐹𝑘𝐹−𝑘 cos(𝜙𝑢,𝑘 + 𝜙𝑢,−𝑘 + 𝛷𝑘 − 𝛷−𝑘 − 2𝜗𝐴) (b) 

and 

𝜙𝑖,𝑘  = atan2(𝑢𝑘𝐹𝑘 sin(𝜙𝑢,𝑘 + 𝛷𝑘) + 𝑢−𝑘𝐹−𝑘 sin(−𝜙𝑢,−𝑘 + 2𝜗𝐴 + 𝛷−𝑘) ,

𝑢𝑘𝐹𝑘 cos(𝜙𝑢,𝑘 + 𝛷𝑘) + 𝑢−𝑘𝐹−𝑘 cos(−𝜙𝑢,−𝑘 + 2𝜗𝐴 + 𝛷−𝑘)) , 
(a) 

(6.42) 
𝜙𝑖,−𝑘  = atan2(𝑢−𝑘𝐹𝑘 sin(𝜙𝑢,−𝑘 + 𝛷𝑘) + 𝑢𝑘𝐹−𝑘 sin(−𝜙𝑢,𝑘 + 2𝜗𝐴 + 𝛷−𝑘) ,

𝑢−𝑘𝐹𝑘 cos(𝜙𝑢,−𝑘 + 𝛷𝑘) + 𝑢𝑘𝐹−𝑘 cos(−𝜙𝑢,𝑘 + 2𝜗𝐴 + 𝛷−𝑘)) , 
(b) 

where  

𝐹𝑘 
 
=
√𝑁𝐼+

2 +𝑁𝐽+
2

𝐷
 , (a) 

(6.43) 𝐹−𝑘  =
√𝑁𝐼−

2 +𝑁𝐽−
2

𝐷
 , (b) 

𝛷𝑘  = atan2(𝑁𝐽+, 𝑁𝐼+) , (c) 

𝛷−𝑘  = atan2(𝑁𝐽−, 𝑁𝐼−). (d) 

 

6.4.1.2 Determining the Differential Inductances 

The former subsection has excessively discussed the current responses of synchronous machines 

to rotating voltage vectors. When both, the applied voltages and the resulting currents are 

known, these results allow us to determine the inductance matrix. According to (6.26), we need 

to identify the three parameters 𝐿𝛴, 𝐿𝐴,𝛥 and 𝜗𝐴 to reconstruct 𝑳𝑠,𝑜𝑝
𝑟 . The best way to obtain 

this for circularly rotating voltages, as in the given case, is to split up the problem into two 

steps. We have two equations acc. to (6.39) which can be solved for the two unknowns 𝐿𝛴 and 

𝐿𝐴,𝛥 and in a second step we can directly determine 𝜗𝐴 from (6.40). 

Manually solving (6.39) for 𝐿𝛴 and 𝐿𝐴,𝛥, however, is not an easy task, since we have to 

calculate the squares of the numerator and denominator expressions (6.28) and (6.29). This 

leads to fractions with forth degree polynomials of 𝐿𝛴 and 𝐿𝐴,𝛥 in both, numerator and 



6.4  SMALL-SIGNAL HF BASED MEASUREMENT METHOD 

  151 

denominator. By means of the symbolic math toolbox for MATLAB [115], however, it was 

possible to find the solutions 

𝐿𝛴 
 
=

√(𝑖𝑘𝑢𝑘(𝜔𝑘 − 𝜔𝑟,𝑜𝑝))
2
− (𝑅𝑠 ((𝑖𝑘

2 + 𝑖−𝑘
2 )𝜔𝑘 − (𝑖𝑘

2 − 𝑖−𝑘
2 )𝜔𝑟,𝑜𝑝))

2

(𝑖𝑘
2 − 𝑖−𝑘

2 )(𝜔𝑘
2 − 𝜔𝑟,𝑜𝑝

2 )
, 

(a) 

(6.44) 

𝐿𝐴,𝛥  = ±
𝑖−𝑘√𝑢𝑘

2(𝜔𝑘 − 𝜔𝑟,𝑜𝑝)
2 − 4𝑅𝑠

2(𝑖−𝑘
2 𝜔𝑘

2 − (𝑖𝑘
2 − 𝑖−𝑘

2 )𝜔𝑘𝜔𝑟,𝑜𝑝)

(𝑖𝑘
2 − 𝑖−𝑘

2 )(𝜔𝑘
2 − 𝜔𝑟,𝑜𝑝

2 )
, (b) 

where 𝐿𝐴,𝛥 acc. to (6.44)(b) is negative for PMSMs and positive for SynRMs in accordance 

with its definition in section 2.2.3. 

After determining 𝐿𝛴 and 𝐿𝐴,𝛥, we can calculate 𝜗𝐴 from (6.40). It is convenient to eliminate 

the phase of the voltage vector by computing the sum of (6.40)(a) and(b). Solving the result 

for 𝜗𝐴 gives us 

𝜗𝐴 =
1

2
(𝜙𝑖,𝑘 + 𝜙𝑖,−𝑘 − atan2(𝑁𝐽+, 𝑁𝐼+) − atan2(𝑁𝐽−,𝑁𝐼−)). (6.45) 

It is well worth noting that the anisotropy position is a nonlinear function of the resistance, 

𝑅𝑠, as well as of the rotor speed, 𝜔𝑟,𝑜𝑝. To the authors knowledge, all anisotropy based sensorless 

algorithms neglect one or both of these parameters. By means of (6.45), it is possible to predict 

the resulting estimation errors. This issue is taken up again in the discussion of the results in 

section 6.5. 

6.4.1.3 Obtaining Accurate Current and Voltage Measurements 

The equations (6.44) show us that the inductance parameters of synchronous machines are 

nonlinear functions of the rotating HF voltage and current space vector amplitudes. We do 

thus have to determine these amplitudes of the fundamental HF voltage and current vectors as 

precisely as possible. As mentioned before, this is done by Fourier analysis and there are some 

points to be taken into account. These points are addressed in this subsection. 

The theoretic foundations of the Fourier analysis for space vectors were set in section 2.4. It 

was shown that two effects, that always occur in sampled signals, should be considered, when 

Fourier analysis is applied to reconstruct the underlying continuous signal: the leakage effect 

and the aliasing effect. 

The leakage effect does only occur, when spectral components are present that are nonperiodic 

to the measurement time range. However, if this cannot be avoided completely, it was shown 

that by increasing the measurement times, the leakage effect can be reduced as much as needed. 

The aliasing effect is more difficult to handle with the given rapid prototyping system as 

described in section 3.1. For the given PWM at a sampling frequency of 𝑓𝑆 = 10kHz, it cannot 

be guaranteed that the measured current signal is limited in bandwidth to remain within the 

Nyquist band of ±𝑓𝑆 2⁄ . How eventually occurring alias frequencies can be effectively 

eliminated, is analyzed in the following. 
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In section 2.3, it was shown how voltage source inverters apply modulation techniques to 

reconstruct continuous reference voltages. In consequence, the voltages applied to the machine 

are sequences of discrete voltage space vectors. The progression of the voltages in time can thus 

be mathematically expressed as piecewise constant (PWC) vector function. 

When we consider such a PWC function with 𝑚 sections, where during each section from time 

𝑡𝑖 to 𝑡𝑖+1 the voltage space vector in stator coordinates, 𝒖𝑖
𝑠, is constant, we can determine its 

Fourier coefficients by (see Appendix B.8 for details) 

 𝒖0
𝑠 =
1

𝑇1
∑((𝑡𝑖+1 − 𝑡𝑖)𝒖𝑖

𝑠)
𝑚

𝑖=1

, (a) 

(6.46) 

 𝒖𝑘
𝑠 =

1

𝑘𝜋
∑(sin(

𝑘𝜋

𝑇1
(𝑡𝑖 − 𝑡𝑖−1))𝑻 (−

𝑘𝜋

𝑇1
(𝑡𝑖 + 𝑡𝑖−1))𝒖𝑖

𝑠) , ∀𝑘 ∈ ℤ, 𝑘 ≠ 0
𝑚

𝑖=1

. (b) 

Equation (6.46) allows us to analyze the harmonic spectrum of a rotating HF voltage vector, 

which is modulated by the VSI at a constant sampling frequency, 𝐹𝑆. When assuming an HF 

rotating voltage reference, 

 𝒖𝐻𝐹
𝑠 = 𝑢𝐻𝐹𝑻 (𝜔𝐻𝐹 𝑡𝑖 + 𝜙𝑢,𝐻𝐹 )𝒆1,  (6.47) 

and determining the resulting modulated PWC voltages, 

 𝒖𝑖
𝑠 = SVM(𝒖𝐻𝐹

𝑠 ),  (6.48) 

as well as the switching times as described in section 2.3.2, we can see that the space vector 

modulation influences the fundamental component of that HF signal and also introduces 

harmonic components that are far above the Nyquist frequency. This is exemplarily illustrated 

in Figure 6.12 for an HF signal with 𝜙𝑢,𝐻𝐹 = 0 rotating at a frequency of 𝑓𝑆 3⁄ , thus leading to 

a triangular signal after the SVM. From top to bottom, the results for reference vectors of 

length 2 3⁄ 𝑢𝐷𝐶, 1
√
3⁄ 𝑢𝐷𝐶 and 0.1

√
3⁄ 𝑢𝐷𝐶 are shown. 

The first case describes the maximum possible triangle the VSI can supply. As the triangle is 

aligned with the 𝑢, 𝑣, 𝑤 axes, no modulation is necessary – the respective voltage vectors are 

applied for complete PWM cycles, as shown in (b). Subfigure (a) shows the corresponding 

harmonic spectrum normalized to the reference amplitude corrected by the mean saturation 

factor, 𝑘𝑠𝑎𝑡, of the SVM. We can see that the fundamental component of the HF signal is 

approximately 0.83 𝑢𝐻𝐹𝑘𝑠𝑎𝑡. We thus inject at a lower amplitude than desired. Additionally, 

harmonic components occur, even if they decrease relatively fast at higher frequencies. 

While the first case describes a simple discretization by a zero-order hold (ZOH), the second 

and third cases demonstrate the effect of the SVM for large (second case) and small (third 

case) HF amplitudes. The modulation introduces new discontinuities, which result in higher 

harmonic components. With decreasing active voltage vector period lengths, the harmonic 

spectrum widens up and the fundamental component slightly increases. For the third case at 

small signal injection, we can observe a wide spectrum of harmonics converging to two nested 

sinc functions. The amplitude of the fundamental HF voltage is approximately 0.87 𝑢𝐻𝐹𝑘𝑠𝑎𝑡. 



6.4  SMALL-SIGNAL HF BASED MEASUREMENT METHOD 

  153 

 

Note that the problem worsens when the HF injection is superimposed by a FOC voltage 

component. This is shown in Figure 6.13 for the same injection voltages but with a FOC voltage 

that corresponds to the ohmic voltage at the stator resistance, when the IPMSM is loaded at 

rated torque at standstill. 

 

Figure 6.12: Fourier analysis of PWC voltage space vectors resulting from the SVM of 

reference vectors rotating with 𝑓𝑆 3⁄  and with amplitudes of 2 3⁄ 𝑢𝐷𝐶 (top), 

1
√
3⁄ 𝑢𝐷𝐶 (middle) and 0.1

√
3⁄ 𝑢𝐷𝐶 (bottom); the left subfigures show the 

normalized amplitudes of the spectral components of the corresponding VSI 

output voltages in time domain shown on the right (thick lines); for comparison, 

also the respective Fourier series are plotted (thin lines)  
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We see that the FOC voltage causes unsymmetrical voltage curves and thus introduces 

additional harmonic components. While the influence on the fundamental HF components is 

not noticeable here, we see in the following that there can be differences in other cases. 

We can conclude for now that the SVM causes two problems: 

1. the amplitude of the injected signal is smaller than the reference signal; for triangular 

injection, for instance, it ranges from approximately 83% to 87%, depending on the 

modulation level 

2. instead of injecting a single voltage vector rotating at one specific frequency, we inject 

several vectors with different amplitudes rotating at harmonic frequencies well outside 

the Nyquist band; when measuring the resulting current responses at a sampling rate 

of 𝐹𝑆, we can expect the occurrence of harmonic components at alias frequencies, 

leading to measurement errors 

The first problem is further analyzed in Figure 6.14 for the given system with a sampling rate 

of 𝑓𝑆 = 10kHz and positive injection frequencies within the Nyquist band from 0 to 5kHz. The 

amplitudes of the resulting fundamental HF components as shown in Figure 6.14 (a) are 

normalized to the eventually saturated reference amplitude. In addition to the modulated 

curves, the fundamental component of the reference signal discretized with a ZOH is plotted. 

We can see that the fundamental amplitudes decrease with increasing frequencies and with 

increasing reference amplitudes. While the ZOH curve is continuous, we can find discontinuities 

 

Figure 6.13: Fourier analysis of a PWC voltage space vector resulting from the SVM of the 

sum of the reference vector from Figure 6.12 (e) and (f) and a constant voltage 

vector corresponding to the ohmic voltage at the phase resistances of the IPMSM 

at rated load at standstill; the left subfigure shows the normalized amplitudes of 

the spectral components of the corresponding VSI output voltages in time 

domain shown on the right (thick lines); for comparison, also the respective 

Fourier series are plotted (thin lines) 
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in the modulated curves, as exemplarily highlighted by the three zoomed plots. The 

discontinuities typically occur at frequencies that lead to injection patterns that are at least 

partly aligned with the phase axes and thus have time periods, where only one active space 

vector is applied. 

Please note that the discontinuities in the middle, zoomed window around 3.33kHz correspond 

to the first two cases of triangular injection from Figure 6.12. As already mentioned, the special 

case of triangular injection aligned with the phase axes at maximum modulation level 

corresponds to ZOH discretization. In contrast, with reduced reference amplitude, zero vectors 

occur, and the resulting additional switching operations introduce higher harmonics but also 

increase the fundamental amplitude. 

In Figure 6.14(b), we see that the SVM causes a phase shift of the injected voltage vector that 

decreases linearly with increasing frequency. The phase shift does not depend on the modulation 

level and is the same as for ZOH discretization. 

As discussed in section 2.3.2, the SVM requires to identify the actual sector of the reference 

vector, which makes it difficult to express the SVM algorithm in a closed mathematical form 

without case discriminations. It is thus difficult to further analytically describe the harmonic 

distortions caused by the SVM. 

The ZOH, however, is well known in literature [92 pp. 222–224] and its influence on the 

fundamental component of the discretized signal is given by 

𝑢1,𝐻𝐹  = 𝑢𝐻𝐹 sinc (
𝑓𝐻𝐹
𝑓𝑆
), (a) 

(6.49) 

𝜙𝑢,1,𝐻𝐹  = 𝜙𝑢,𝐻𝐹 − 𝜋
𝑓𝐻𝐹
𝑓𝑆
. (b) 

With the above analysis, we are able to calculate the series of rotating voltage space vectors 

that are applied to the synchronous machine. The next step is to correctly determine the 

relevant HF current response. 

With equation (6.23), we found the current vector response to rotating voltages. Note that the 

solution does also include the case of constant voltage inputs, since we can set 𝜔𝑘 = 0. When 

we rewrite (6.23) accordingly as 

𝒊𝑠,𝐻𝐹
𝑟 (𝑡) = exp(𝑨𝑟(𝑡 − 𝑡0)) (𝒊𝑠,𝐻𝐹

𝑟 (𝑡0) −𝑲𝑝
𝑟𝒖𝑠,0
𝑟 ) +𝑲𝑝

𝑟𝒖𝑠,0
𝑟 , (6.50) 

we see that the current response consists of a constant current vector, 𝑲𝑝
𝑟𝒖𝑠,0
𝑟 , and a transient 

term that describes the current progression from an initial state to that offset. 

Analogously to the machine model in section 2.2.3.1 we can linearize (6.50) at a given operating 

time, 𝑡𝑜𝑝, by means of Taylor series expansion up to the first term of the Taylor polynomial 

and obtain 

𝒊𝑠,𝐻𝐹
𝑟 (𝑡) ≈ 𝒊𝑠,𝐻𝐹

𝑟 (𝑡𝑜𝑝) +
𝑑𝒊𝑠,𝐻𝐹
𝑟 (𝑡)

𝑑𝑡
|
𝑡𝑜𝑝

Δ𝑡, (6.51) 
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where the time rate of change of the HF current vector is given by 

𝑑

𝑑𝑡
𝒊𝑠,𝐻𝐹
𝑟 (𝑡) = 𝑨𝑟 exp(𝑨𝑟(𝑡 − 𝑡0)) (𝒊𝑠,𝐻𝐹

𝑟 (𝑡0) −𝑲𝑝
𝑟𝒖𝑠,0
𝑟 ). (6.52) 

After substituting (6.52), (6.51) can be rewritten as 

𝒊𝑠,𝐻𝐹
𝑟 (𝑡) ≈ (𝑰 +𝑨𝑟Δ𝑡) exp (𝑨𝑟(𝑡𝑜𝑝 − 𝑡0)) (𝒊𝑠,𝐻𝐹

𝑟 (𝑡0) −𝑲𝑝
𝑟𝒖𝑠,0
𝑟 ) +𝑲𝑝

𝑟𝒖𝑠,0
𝑟 . (6.53) 

 

When subtracting (6.50) and (6.53), we obtain the linearization error, 

 

Figure 6.14: Analysis of the influence of the SVM on the fundamental component (amplitude 

in (a) and phase shift in (b)) of the HF reference signal at different amplitudes 

and frequencies 
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𝒆𝑙𝑖𝑛 = ((𝑰 + 𝑨
𝑟Δ𝑡) exp (𝑨𝑟(𝑡𝑜𝑝 − 𝑡0)) − exp(𝑨

𝑟(𝑡 − 𝑡0))) (𝒊𝑠,𝐻𝐹
𝑟 (𝑡0) −𝑲𝑝

𝑟𝒖𝑠,0
𝑟 ). (6.54) 

By means of eigendecomposition, we can diagonalize 𝑨𝑟 by 

𝑨𝑟 = 𝑽 𝑟𝑫𝑟𝑽 𝑟−1, (6.55) 

where 𝑫𝑟 is the diagonal matrix of the eigenvalues 𝜆1 and 𝜆2 of 𝑨𝑟 [65 p. 113] and 𝑽 𝑟 is a 

constant matrix containing the eigenvectors of 𝑨𝑟. 

The matrix exponential can likewise be decomposed to [65 pp. 108–109] 

exp(𝑨𝑟(𝑡 − 𝑡0)) = 𝑽 exp(𝑫
𝑟(𝑡 − 𝑡0)) 𝑽

−1, (6.56) 

where 

exp(𝑫𝑟(𝑡 − 𝑡0)) = [
exp(𝜆1(𝑡 − 𝑡0)) 0

0 exp(𝜆2(𝑡 − 𝑡0))
]. (6.57) 

With (6.55) to (6.57), the linearization error can be rewritten as 

𝒆𝑙𝑖𝑛 = 𝑽 ((𝑰 +𝑫
𝑟Δ𝑡) exp (𝑫𝑟(𝑡𝑜𝑝 − 𝑡0)) − exp(𝑫

𝑟(𝑡 − 𝑡0)))𝑽
−1(𝒊𝑠,𝐻𝐹

𝑟 (𝑡0) −𝑲𝑝
𝑟𝒖𝑠,0
𝑟 ). (6.58) 

It thus only depends on the differences between the scalar exponential functions and their linear 

approximations, i.e. 

𝒆𝑙𝑖𝑛 = 𝒇(1 + 𝜆𝑖Δ𝑡 − exp(𝜆𝑖(𝑡 − 𝑡0))). (6.59) 

We can also see from (6.55) to (6.57) that both eigenvalues of 𝑨𝑟 must have negative real parts 

in order to obtain a stable transient towards the constant offset term acc. to (6.50). These real 

parts determine the time constants, 

𝜏𝑖 = −
1

ℜ(𝜆𝑖)
. (6.60) 

In VSI supplied drive systems, the PWM cycle times, 𝑇𝑆, are typically significantly smaller 

than the time constants of the synchronous machine. For the given machines, the minimum 

and maximum time constants within the feasible operating areas are reported in Table 7. 

Table 7: Minimum and maximum time constants of the tested machines within feasible 

operating ranges 

𝝉𝒊 in ms min(𝝉𝟏) min(𝝉𝟐) max(𝝉𝟏) max(𝝉𝟐) 

SynRM 5.19 7.96 60.26 75.24 

IPMSM 4.34 6.63 18.67 25.02 

SPMSM 5.04 6.84 11.68 13.40 

 

It is striking out that the largest differences between the machines occur in the maximum values 

of the time constants, which range from 11.7ms at the SPMSM to more than 75.2ms for the 

SynRM. The minimum time constants, however, are comparably similar with values from 4.3ms 

up to 8ms. 
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For the given test rig with 𝑇𝑆 = 100 μs, we can note that the smallest occurring time constant 

of all three machines is more than 43 times larger than the PWM cycle time. For the model 

linearized at 𝑡𝑜𝑝 = 𝑡0 and when only considering the real parts of the eigenvalues, we can 

determine a maximal relative difference between the exponential function and its approximation 

acc. to (6.59) of ±0.03% after a time of Δ𝑡 = 𝑇𝑆 (i.e. at 𝑡 = 𝑡0 + 𝑇𝑆). During that time, the 

transient current progressions in response to a constant voltage vector can thus be assumed to 

be linear in good approximation. 

Consequently, we can assume that a PWC voltage sequence applied to a synchronous machine 

leads to piecewise affine (PWA) current responses. 

Since we are interested in the harmonic components of the PWA current response, we have to 

apply Fourier analysis here, as well. In literature [92 pp. 224–225], discretizing a harmonic 

signal by a PWA function is denoted as first-order hold (FOH). Its influence on the fundamental 

component of the discretized current signal is given by 

𝑖1,𝐻𝐹  = 𝑖𝐻𝐹 sinc
2 (
𝑓𝐻𝐹
𝑓𝑆
), (a) 

(6.61) 

𝜙𝑖,1,𝐻𝐹  = 𝜙𝑖,𝐻𝐹 . (b) 

From (6.61)(b), we see that the fundamental component of the HF current signal is not phase 

shifted. Since we actually do not know the ‘real’ current amplitude, 𝑖𝐻𝐹 , when measuring the 

currents, (6.61)(a) is only useful in so far as we can see that the scaling factor between the 

‘real’ or reference signal and its fundamental component at PWA signals is the square of that 

same scaling factor at PWC signals acc. to (6.49). 

When denoting the respective scaling factors with 𝑐1 and the phase shifts with Δ𝜙1, we can 

thus write 

𝑐1,𝑃𝑊𝐶  = sinc(
𝑓𝐻𝐹
𝑓𝑆
), (a) 

(6.62) 
𝑐1,𝑃𝑊𝐴  = sinc

2 (
𝑓𝐻𝐹
𝑓𝑆
) = 𝑐1,𝑃𝑊𝐶

2 , (b) 

Δ𝜙1,𝑃𝑊𝐶  = −𝜋
𝑓𝐻𝐹
𝑓𝑆
, (c) 

Δ𝜙1,𝑃𝑊𝐴  = 0. (d) 

The graphical interpretation of (6.62) is shown in Figure 6.15. 

In order to understand, how the two SVM problems mentioned above deteriorate our current 

and voltage measurements, we exemplarily calculate the small signal current response of the 

IPMSM at standstill and rated torque to an HF voltage vector rotating at 𝐹𝑆 3⁄  with an 

amplitude of 0.1
√
3⁄ 𝑢𝐷𝐶. The applied motor model bases on the parameters that are obtained 

from the corrected BEMF measurements as shown in section 4.2. The results are shown in 

Figure 6.16. 
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The modulated voltage vector and (a small section of) its spectrum are shown in (a) and (b). 

They are known already from Figure 6.13. The resulting current spectrum is calculated from 

the generic, particular steady state solution for elliptic input voltages acc. to Eqs. (6.41) and 

(6.42). It is shown in (d) and its corresponding Fourier series in time domain are the blue curves 

in (c) and (e) for the 𝛼 and 𝛽 axes, respectively. As expected, we see approximately PWA 

current progressions with time derivative values depending on the actual constant voltage 

vectors. 

In the description of the test rig, it was mentioned that the measured currents are analogously 

filtered. The filtered current signals are plotted in orange in subfigures (c), (d) and (e). In time 

domain, we can see that it has no relevant influence on the current at the sampling times (see 

purple signals). In frequency domain, this can also be observed, additionally to the fact that 

the filter is obviously not designed as anti-aliasing filter. The filtered current signal has relevant 

spectral components outside the Nyquist band from −𝐹𝑆 2⁄  to +𝐹𝑆 2⁄ . As we can see in (f), 

these components are alias frequencies. When Fourier analyzing the sampled data, we get the 

repeated spectrum of (f) with the superposition of all corresponding alias components. 

When only considering that part of the spectrum of (f) within the Nyquist band, we get the 

yellow reconstructed signal in time domain as shown in subfigures (c) and (e). We can see that 

the Fourier series accurately predicts the currents at the sampling times. Since it neglects the 

PWA current progressions in between the sampling times, however, the apparent fundamental 

HF current components we are interested in, are obviously distorted by the aliasing effect, 

which can be seen by comparing the amplitudes in (d) and (f). 

 

Figure 6.15: Comparison of the scaling (a) and phase shift (b) of a harmonic HF reference 

signal, which is discretized by means of ZOH or FOH 
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Figure 6.16: Calculated current response in 𝛼 (c) and 𝛽 (e) axes to a triangular voltage 

injection (see (a) for modulated voltage signal in time domain and (b) for its 

respective spectrum); (d) shows the spectrum of the calculated current; (f) shows 

the apparent spectrum of the sampled current due to the aliasing effect 
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When we now only consider the fundamental HF current components and repeat the 

computations from Figure 6.16 for different injection frequencies and amplitudes, we obtain the 

results as shown in Figure 6.17. 

 

We can see that the reductions of the measured fundamental current amplitudes are close to 

the influence of FOH discretization of harmonic signals. Moreover, when comparing the ZOH 

and FOH scaling factors with and without the influence of the SVM, we find the approximation  

 

Figure 6.17: Analysis of the influence of the SVM on the fundamental component (amplitude 

in (a) and phase shift in (b)) of the HF current response to rotating reference 

voltages at different amplitudes and frequencies 
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𝑐1,𝑃𝑊𝐶
𝑐1,𝑃𝑊𝐶,𝑆𝑉𝑀

≈
𝑐1,𝑃𝑊𝐴
𝑐1,𝑃𝑊𝐴,𝑆𝑉𝑀

.  (6.63) 

By means of (6.62), we can solve (6.63) for the PWA scaling factor considering the SVM and 

get 

 𝑐1,𝑃𝑊𝐴,𝑆𝑉𝑀 ≈ sinc (
𝑓𝐻𝐹
𝐹𝑆
) 𝑐1,𝑃𝑊𝐶,𝑆𝑉𝑀 .  (6.64) 

With (6.64), we are now able to determine the fundamental component of the HF current 

response from the sampled current measurements. Although we do not know the exact current 

progressions in between the sampling points, the knowledge about the qualitative (namely 

PWA) current progressions allows us to estimate the actual fundamental current response to 

the applied fundamental HF voltage. In other words, we can eliminate the aliasing effect caused 

by the SVM by this approach. 

Since we do not have a generic analytic solution for the PWC scaling factor considering the 

SVM, 𝑐1,𝑃𝑊𝐶,𝑆𝑉𝑀 , it must be calculated individually for each measurement series by Fourier 

analysis of the actual inverter duty cycles. We can then determine all scaling factors and correct 

the fundamental HF current and voltage components by 

𝑢1,𝐻𝐹  = 𝑢𝐻𝐹  𝑐1,𝑃𝑊𝐶,𝑆𝑉𝑀 , (a) 

(6.65) 𝜙𝑢,1,𝐻𝐹  = 𝜙𝑢,𝐻𝐹 − 𝜋
𝑓𝐻𝐹
𝐹𝑆
, (b) 

𝑖1,𝐻𝐹  = 𝑖1,𝐻𝐹,𝑚𝑒𝑎𝑠 𝑐1,𝑃𝑊𝐴,𝑆𝑉𝑀 . (c) 

Note, however, that determining 𝑐1,𝑃𝑊𝐶,𝑆𝑉𝑀  requires lots of computational effort. For that 

reason, we substitute (6.65) into the inductance solutions (6.44) and can discover that 

𝑐1,𝑃𝑊𝐶,𝑆𝑉𝑀 cancels out. We obtain 

 

𝐿𝛴 =
√

 
 
 
 
 
 
 

(𝑖1,𝐻𝐹,𝑚𝑒𝑎𝑠𝑢𝐻𝐹 (𝜔𝐻𝐹 − 𝜔𝑟,𝑜𝑝))
2
−

𝑐𝑃𝑊𝐴
(

  𝑅𝑠(
(𝑖1,𝐻𝐹,𝑚𝑒𝑎𝑠
2 + 𝑖−1,𝐻𝐹,𝑚𝑒𝑎𝑠

2 )𝜔𝐻𝐹

−(𝑖1,𝐻𝐹,𝑚𝑒𝑎𝑠
2 − 𝑖−1,𝐻𝐹,𝑚𝑒𝑎𝑠

2 )𝜔𝑟,𝑜𝑝
)

)

  
2

𝑐𝑃𝑊𝐶(𝑖1,𝐻𝐹,𝑚𝑒𝑎𝑠
2 − 𝑖−1,𝐻𝐹,𝑚𝑒𝑎𝑠

2 )(𝜔𝐻𝐹
2 − 𝜔𝑟,𝑜𝑝

2 )
, 

(a) 

(6.66) 

 

𝐿𝐴,𝛥 = ±

𝑖−1,𝐻𝐹,𝑚𝑒𝑎𝑠

√

 
 
 
 
 𝑢𝐻𝐹

2 (𝜔𝐻𝐹 − 𝜔𝑟,𝑜𝑝)
2 −

4𝑅𝑠
2𝑐𝑃𝑊𝐴(

𝑖−1,𝐻𝐹,𝑚𝑒𝑎𝑠
2 𝜔𝐻𝐹

2 −

(𝑖1,𝐻𝐹,𝑚𝑒𝑎𝑠
2 − 𝑖−1,𝐻𝐹,𝑚𝑒𝑎𝑠

2 )𝜔𝐻𝐹𝜔𝑟,𝑜𝑝
)

𝑐𝑃𝑊𝐶(𝑖1,𝐻𝐹,𝑚𝑒𝑎𝑠
2 − 𝑖−1,𝐻𝐹,𝑚𝑒𝑎𝑠

2 )(𝜔𝐻𝐹
2 − 𝜔𝑟,𝑜𝑝

2 )
, 

(b) 

and can thus determine the HF inductance parameters without computing 𝑐1,𝑃𝑊𝐶,𝑆𝑉𝑀 . 

Another important point that needs to be considered for accurate results it the proper selection 

of HF injection frequencies. From section 2.2.3, we know that there are several sources of 

harmonic distortions caused by synchronous machines, such as, for instance, discrete winding 

distributions or magnetic saturation. Without detailed analysis, qualitative considerations lead 
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to the conclusions that there are harmonic space vectors rotating at integer multiples of the 

rotor speed. 

With a maximal electrical rotor speed of 58.3Hz during the measurements within this work, we 

can assume that no relevant motor harmonics occur above the Nyquist frequency. We do thus 

not have to expect additional errors from the aliasing effect due to motor harmonics. 

We should, however, avoid interference of these harmonics with the HF signal. The injection 

frequencies should thus be chosen such that they are non-integer multiples of the rotor speed, 

𝑓𝑚. On the other hand, they should allow practicable measurement time periods, that contain 

complete rotor turns as well as complete periods of the injected signal, while considering the 

fixed sampling frequency 𝑓𝑆. This means that 𝑓𝐻𝐹  should be selected such that there are 

reasonable long common period lengths for the combination of 𝑓𝑚, 𝑓𝐻𝐹  and 𝑓𝑆. 

One last topic to address in the context of current measurements is the influence of the PT1 

filter. In Figures 6.16 and 6.17, we already saw that its influence on the measured fundamental 

current amplitude is marginal, whereas the occurring phase shifts are almost completely caused 

by the filter. When discussing the resulting errors in the identified inductance values and the 

anisotropy position, we need to take into account that the filter acts directly on the stator 

currents. This means that its influence is symmetric to a current frequency of zero Hertz, as it 

is shown within the relevant frequency range of ±𝐹𝑆 2⁄  in Figure 6.18. The negatively and 

positively rotating HF current components acc. to (6.41) – (6.43), however, are determined for 

a model in a rotor reference frame. For machines not at standstill, the filter is thus unevenly 

influencing the corresponding currents. 

Of all three machines evaluated within this work, the SPMSM is operated at the highest 

electrical rotor frequency of 𝑓𝑟 = 150Hz at rated speed. Although not measured at this speed, 

this case is exemplarily considered in Figure 6.18 with an injection frequency of 𝑓𝐻𝐹 = 1kHz. 

The negatively rotating current frequency is thus 𝑓−1,𝐻𝐹 = 2𝑓𝑟 − 𝑓𝐻𝐹 = −700Hz. The 

asymmetric filter influence on the measured currents is observable in both subfigures. The 

amplitude reductions acc. to subfigure (a) are below 1.3% even at worst case. It can thus be 

generally neglected when determining the inductances acc. to (6.44). The asymmetric filter 

influence is negligible as well. 

When determining the anisotropy position, we need to remind that (6.45) contains the sum of 

negatively and positively rotating current phases. At standstill, the filter influence thus 

completely cancels out. At higher rotor speeds, however, the resulting filter asymmetry causes 

a position error. As demonstrated in subfigure (b) by the green line, this error is nearly constant 

at approximately −0.8° for all feasible injection frequencies at the worst case of maximum 

electrical rotor speed. Although the filter causes a phase delay of up to ±9°, its influence on 

the anisotropy position can thus be neglected as well. 
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6.4.2 Measurement Results 
The measurement results presented in this section are split up into two categories. In the first 

set of measurements, we analyze the influence of the frequency of the rotating HF voltage 

vectors applied to the different types of synchronous machines. In the second part, we generate 

flux linkage maps from the measured inductance parameters as discussed in Chapter 5. They 

are analyzed and compared to the corrected flux linkage maps as shown in Chapter 4. 

For the same reason as in the BEMF results in section 6.3.2, the discussion of measurement 

results focusses on the IPMSM. 

6.4.2.1 Results for Variable HF Frequencies 

For the measurements presented here, we have selected injection frequencies from 5kHz 

downwards to at least 2 times the electrical rotor speed in steps of size 1000 18⁄ Hz = 55. 5H̅z. 

Before we present the measured inductance parameters, we verify that the injection frequencies 

 

Figure 6.18: Influence of the PT1 filter on the measured current amplitudes (a) and phases 

(b); exemplary positively and negatively rotating current values for the SPMSM 

at rated speed with an HF injection frequency of 1kHz 
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do not interfere with the motor harmonics. This is demonstrated in Figure 6.19, where the 

relevant current spectra at different operating points without HF signal injection (blue lines) 

are compared against the fundamental HF current responses (orange and yellow) to rotating 

voltage vectors. 

We see in subfigure (b) that even at a rotor speed of 2 3⁄  𝜔𝑚,𝑁  the harmonics of relevant 

magnitude are in the range between ±400Hz. When we compare the respective zoomed plots, 

we see relevant changes in the spectra at the three operating conditions. Only a strong minus 

fifth harmonic with respect to the electrical rotor speed appears constant. In all three cases, 

however, we can note that the injection frequencies indeed do not overlap with the motor 

harmonics, or with other non-injection related harmonics, respectively. The latter can result, 

for instance, from the IGBT related inverter distortions as discussed in section 3.2.3 and shall 

not be further analyzed here, since they are not relevant for the HF measurements. 

Another aspect worth noting is that at rated load in (c), we see the leakage effect around the 

fundamental FOC current component at rotor frequency. It is resulting from the fact that the 

rotor speed is not perfectly constant or not exactly at the expected value (i.e. 1 3⁄  𝜔𝑚,𝑁) during 

the measurements, causing small deviations between the expected and real period times. Due 

to the long measurement periods that cover 14 mechanical, or 42 electrical rotor turns, the 

frequency leakage is limited to a small range of approximately 100Hz around the electrical rotor 

frequency. With an amplitude of almost 10A, however, the FOC current is more than 850 times 

larger than the negatively rotating HF current responses in that region. For that reason, even 

the very limited leakage effect can distort the measurements at very low injection frequencies 

(see the first two negatively rotating current magnitudes in the zoomed plot in (c)). 
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Figure 6.19: Comparison of the measured current spectra without HF injection with the 

current responses to HF injection at the selected frequencies at 1 3⁄  𝜔𝑚,𝑁  and 

no load (a), at 2 3⁄  𝜔𝑚,𝑁  and no load (b) and at 1 3⁄  𝜔𝑚,𝑁  and rated load 
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Figure 6.20 shows the current responses of the IPMSM at 1 3⁄  𝜔𝑚,𝑁 and no load to rotating 

HF voltage injection. As shown in (a), the voltage amplitude is increasing with the injection 

frequency. This shall ensure a constant magnitude of the current response. 

We know from section 6.4.1, that the particular solution, 𝑲𝑝
𝑟, for linear systems stimulated 

with rotating input signals involves a denominator term with 𝜔𝑘
2 and a numerator term with 

𝜔𝑘 (see Eq. (6.24) on page 146). With increasing frequencies, the offset terms in both, numerator 

and denominator, thus become more and more insignificant and we can expect the current 

amplitude to be proportional to 𝑢𝐻𝐹/𝜔𝐻𝐹 . For that reason, we can define a factor, 𝐾𝐻𝐹 , that 

scales the voltage amplitude with the injection frequency and allows us to obtain approximately 

constant current magnitudes. It is important to note, though, that the particular solution is 

valid for a model in rotor reference frame. We thus must translate the effectively injected 

frequencies by means of the electrical rotor frequency, 𝑓𝑟. 

In conclusion, and when considering the fact that the fundamental component of the injected 

voltage is impaired by ZOH discretization, we let the HF reference voltage amplitude increase 

with the injection frequency by 

 
𝑢𝐻𝐹 =

𝐾𝐻𝐹

sinc (
𝑓𝐻𝐹
𝑓𝑆
)
(𝑓𝐻𝐹 − 𝑓𝑟).  (6.67) 

Figure 6.20 (a) shows the respective voltage magnitudes. For conciseness, the positively 

(denoted with ‘+’ in the legend) and negatively (‘−‘) rotating voltages are plotted over the 

same positive injection frequency. 

We can see that the measured positively rotating voltage curve is increasing nonlinearly with 

the frequency resulting in a nearly linear actual fundamental HF voltage applied to the 

machine. The measured curves are obtained from the sampled duty cycles, which are converted 

by means of (2.135) to reference voltages and subsequently transformed into its Fourier 

coefficients acc. to (2.143). We can see that no noticeable negatively rotating (‘−‘) voltages are 

measured as it is desired. 

In subfigures (b) and (c), we see the magnitudes and phases of the Fourier coefficients of the 

HF current responses. The expected signals are plotted as reference. They are obtained from 

the corrected voltages from (a) and the parameters of the IPMSM reference model presented 

in section 4.2. Although we do not have relevant negatively rotating HF voltage components, 

we apply Equations. (6.41) and (6.42) for elliptic input signals. Additionally, in order to be as 

precise as possible, the PT1 current filter is considered. As intended, the current magnitudes 

are nearly constant at high frequencies. At low frequencies, however, they decrease due to the 

constant factors in the numerator and denominator terms of 𝑲𝑝
𝑟. 

We can see that the measured current amplitudes and phases differ significantly from the 

expected ones. The biggest part of these differences can be explained by the SVM, leading to 

PWA currents with significantly reduced fundamental HF current components. After correcting 

the measurements by means of (6.65), we obtain results much closer to the expected ones. 
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Figure 6.20: Theoretical and measured magnitudes (b) and phases (c) of the fundamental 

current responses to rotating HF voltage injection (a) for the IPMSM at 

1 3⁄  𝜔𝑚,𝑁 , no load and 𝐾𝐻𝐹 = 0.025Vs 
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Please note that the current phases in (c) are plotted in relation to the respective voltage 

phases, i.e. 

 𝜙𝑢𝑖,1,𝐻𝐹 = 𝜙𝑖,±1,𝐻𝐹 ∓ 𝜙𝑢,1,𝐻𝐹 .  (6.68) 

We know that the influence of the PT1 current filter causes phase errors below ±9°. 

Additionally, Eq. (6.62) states that the SVM causes no phase delays in the PWA current 

responses. The differences between measured and expected phases are thus mainly caused by 

the SVM influence on the measured voltage phases, that go up to −90°, as shown in Figure 

6.15. 

It is also important to note that the negatively rotating current amplitudes are approximately 

four times smaller than the respective positive ones. They are therefore more affected by 

measurement noise. 

Except for iron effects, all potential sources of errors are compensated as good as possible in 

the corrected signals. The remaining differences to the expected signals should thus be mainly 

caused by iron effects. In [81], it is pointed out that eddy currents lead to increasing stator 

current responses to voltage steps. In our case that means bigger amplitudes in the measured 

currents. Since eddy currents correlate with the excitation frequency, we consequently see 

increasing current amplitudes with increasing injection frequencies. It is worth noting that the 

increase in amplitude is larger than the expected decrease due to the current filter. 

In subfigure (c), we can note phase shifts smaller than ±10° that remain nearly constant for all 

frequencies. This independence from the injection frequency indicates that eddy currents do 

not have a relevant influence on the measured current phases. Instead, magnetic hysteresis 

effects are the most likely explanation for the observed phase shifts. From the simplified 

considerations in section 2.2.3.4, we already know that hysteresis can cause harmonic 

distortions. Although not explicitly shown in Figure 2.24 (see p. 52), we can also observe phase 

shifts in the fundamental signal component. In the depicted example, a phase delay of 

approximately 30° occurs. Phase differences of ±10° are thus well within the range of possible 

hysteresis effects. 

In Figure 6.21, we see the inductance parameters obtained from the voltage and current signals 

from Figure 6.20, calculated by means of (6.44), (6.45) and (6.66). The term ‘measured’ in the 

legends now refers to the parameters obtained from the measurements with all error 

compensations, that were discussed so far. 

We see the influence of the iron effects on the measured inductance parameters. At low injection 

frequencies between 200 and 500 Hz, the measured inductance parameters correspond well with 

the expected values from the corrected BEMF measurements. Below 200 Hz, the anisotropy 

position shows its largest deviations of more than −5°. As already discussed, the latter is 

expected to be a result of magnetic hysteresis, while eddy currents mainly distort the 

inductance parameters at higher injection frequencies. 

It is worth reminding the statement from section 2.1.2.5 that the reversible susceptibility will 

always be smaller than the anhysteretic susceptibility. This is exactly what we see here in the 
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context of the mean inductances in subfigure (a). The only exception occurs at the lowest 

injection frequency. The reason for this deviation from the expectation will be discussed below. 

For now, we can state that we generally obtain smaller mean inductance values than expected. 

With increasing injection frequencies, the HF inductances become smaller, which correlates 

with the above-mentioned increasing current amplitudes. At an injection frequency of 5kHz, 

the largest errors of more than −15% occur. The differences between measured and expected 

anisotropic inductances as shown in (b) indicate that the eddy currents do not have the same 

influence on both axes. This could be expected, since it is known from former publications that 

eddy currents are stronger in the unlaminated permanent magnets than in the rest of the 

laminated stator and rotor iron [116]. As we can see, 𝐿𝐴,Δ is up to approximately 5% more 

negative than the expected values at frequencies close to 5 kHz. The eddy currents thus let 𝐿𝐷 

decrease stronger than 𝐿𝑄. 

Besides the comparison of measured and expected parameter curves, Figure 6.21 also analyzes 

the influence of the different sources of error that were discussed above. We can see that if we 

do not eliminate the discretizing effects of the SVM (yellow curves), we get large errors in the 

obtained inductances at high injection frequencies. The identified anisotropy position is not 

affected, since the current phases are not influenced by the SVM and the voltage phases cancel 

out in (6.45). 

Most publications dealing with HF injection at synchronous machines neglect the influence of 

the stator resistance, 𝑅𝑠, on the relation between currents and voltages (e.g. [10, 25]). Some 

also neglect the BEMF, which can be interpreted as neglecting the rotor speed14, 𝜔𝑟. In order 

to analyze the errors due to these simplifications, the green and purple curves are plotted. They 

demonstrate that neglecting the rotor speed causes relevant errors in the inductance values at 

low injection frequencies. In the anisotropy position, the errors are comparably small. 

Neglecting the resistance has no relevant influence on the inductance values. It is, however, 

distorting the anisotropy position identification at low injection frequencies. This indicates that 

it might be worth to consider the resistance in anisotropy based sensorless control schemes with 

very low injection frequencies. This is further discussed in section 6.5.1. 

Although not shown in Figure 6.21, it shall be mentioned that no relevant differences are 

observed with or without compensation of the inverter voltage errors due to the IGBT effects. 

Since the latter should only cause distortions at integer multiples of the rotor speed, it can 

generally be expected that HF injection techniques are insensitive to these types of voltage 

errors, as long as the injection frequency does not interfere with that specific rotor harmonics. 

 
14 This means that in Equations (6.44) and (6.45), 𝜔𝑟,𝑜𝑝 is set to zero. Since these equations base on a 

model in rotor coordinates, the rotor speed nevertheless hast to be considered, when determining the 

injection frequency as seen by the rotor, i.e. 𝜔𝑘 = 𝜔𝐻𝐹 − 𝜔𝑟,𝑜𝑝 
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Figure 6.21: Comparison of the effects of different inductance parameter identification 

methods on 𝐿Σ (a), 𝐿𝐴,Δ (b) and 𝜗𝐴 (c) for the IPMSM at 1 3⁄  𝜔𝑚,𝑁 , no load 

and 𝐾𝐻𝐹 = 0.025Vs 
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An overview of the identified HF inductance parameters in comparison to the expected 

reference parameters for different operating and measurement configurations is shown in 

Figures 6.22 and 6.23. We can observe only small differences in the identified parameters when 

the rotor speed or the injection amplitude are changed. 

At very low injection frequencies, we can observe rapid changes and partially large errors in all 

identified parameters in both figures. We already identified three effects that can cause this 

behavior: 

1. The current amplitudes decrease due to the constant factors in the numerator and 

denominator terms of 𝑲𝑝
𝑟, thus worsening the SNR 

2. The frequency leakage effect from the FOC fundamental current can distort the low 

frequent current measurements 

3. Although not visible in Figure 6.20 (a), at certain frequencies we get negatively rotating 

voltage components and thus an elliptic injection, whereas the identification algorithm 

assumes circular injection patterns 

Points one and two can be compensated by increasing the injection amplitude at low frequencies 

and increasing the measurement period at large FOC current amplitudes. The third point 

addresses a systematic problem in the proposed identification algorithm, as it relies on perfectly 

circular injection patterns. The latter, however, cannot always be guaranteed, as it is shown in 

Figure 6.24. 

In order to analyze the influence of elliptic injections, the ratio of negatively and positively 

rotating voltages is plotted for all measurement configurations shown in Figures 6.22 and 6.23. 

We can see that all voltages are nearly circular, as the reversely rotating voltage components 

are well below 1% of the injected voltages. At rated load, we can note at average a slightly 

higher level than in the unloaded case. 

It stands out that, although still small, at the lowest frequencies the injection pattern grows 

more elliptic, partially with abrupt increases. The reason for that is not yet definitively clarified. 

Since at low frequencies the injection amplitude is very small, it would be understandable, if 

constant perturbations lead to continuously increasing relative errors. It is also possible that 

the FOC reacts to speed oscillations resulting from the HF injection near the fundamental 

speed. The rapid increase of negatively rotating voltages, however, points more into the 

direction of harmonic distortions, although this was not observed in the analysis of current 

harmonics in Figure 6.19. 

Without further analyzing the reason for the elliptic voltages, we focus on determining their 

influence on the expected inductance parameters. For that reason, we apply the BEMF 

reference model to calculate the expected current responses to the measured elliptic voltages 

and substitute the results into the inductance equations for circular injection. When 

exemplarily taking the voltage data from Figure 6.24 (a) and (d) for the loaded and unloaded 

cases, we get the red curves denoted with ‘BEMF, proposed algorithm’, in Figures 6.22 and 

6.23. 
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At the loaded case according to Figure 6.24 (d) the negatively rotating voltage components are 

well below 0.2% of the positively rotating voltage vectors. In consequence, the red curves in 

Figure 6.23 are close to the expected BEMF references at any injection frequency. When 

considering the unloaded case from Figure 6.24 (a), we note a single frequency of 166.67Hz, 

where the ratio of negatively and positively rotating voltages is almost 1%. At that frequency, 

we see larger differences in Figure 6.22 (b) and (c) between the BEMF reference and the 

estimated parameters determined by the proposed algorithm for circular voltages. Although 

the elliptic injection patterns do not completely explain the observed parameter errors at the 

lowest injection frequencies, we can state that even small elliptic HF voltages of less than 1% 

can lead to noticeable errors in the determined inductance parameters. We can thus conclude 

that all three points discussed above have their relevance in the observed errors at low injection 

frequencies. 

At no load, the anisotropic inductance in Figure 6.22 (b) is identified with a relative error of 

less than 10%. At rated load, however, the error is up to approximately 50% at frequencies 

around 2kHz to 2.5kHz (cf. Figure 6.23 (b) ). It should be noted though, that the IPMSM is 

in a saturated state at rated load, where the anisotropic inductance is less than one third of 

the unloaded case. 

It should also be kept in mind that 𝐿𝐴,Δ is not a real inductance in a strict physical sense. It 

is rather describing the difference between two valid physical inductances, i.e. 𝐿𝐷 and 𝐿𝑄. 

While the latter cannot become zero (or negligibly small) in MQS systems, 𝐿𝐴,Δ=0 is a valid 

state, as it describes the common case of magnetic isotropy. Considering relative errors is thus 

only of limited relevance here. 

Except for low injection frequencies below 500Hz, the identified anisotropy positions as shown 

in Figure 6.22 (c) show comparably small errors of at average below ±2.5°, when the motor is 

unloaded. In the loaded case shown in Figure 6.23 (c), however, we see positive errors of about 

10° around 1kHz and negative up to almost −19° around 4kHz. It is interesting to note that 

the error is very small in the region at 2kHz, where the largest errors occur in the identified 

anisotropic inductance. The errors do apparently not correlate, although 𝐿𝐴.Δ is the basis 

prerequisite in the definition of the anisotropy angle, 𝜗𝐴. 

In the curves of the identified mean inductances in both subfigures (a), we can note increasing 

deviations from the reference with increasing frequencies. While at 500Hz, the errors are around 

−5% at no load and −3.5% at rated load, they increase to about −15% and −18%, respectively, 

at 5kHz. As already discussed, eddy currents are the most likely reason for this behavior. The 

observed effect is clearly influenced by the injection frequency, while the injection amplitude is 

only of minor relevance. 

When reminding the generic definition of inductances as partial derivatives of flux linkages and 

currents, we can note that larger current amplitudes due to eddy currents result in smaller 

appearing mean inductances. Since the EMF of each eddy current loop scales linearly with the 

frequency, we can expect a linearly increasing error due to the resulting eddy currents. In good 

approximation, with a slight tendency to saturate at high frequencies, this can be observed in 

both subfigures (a) of Figures 6.22 and 6.23. 
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Figure 6.22: Comparison of the identified inductance parameters, 𝐿Σ (a), 𝐿𝐴,Δ (b) and 𝜗𝐴 

(c), for the unloaded IPMSM at different speeds and injection amplitudes 
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Figure 6.23: Comparison of the identified inductance parameters, 𝐿Σ (a), 𝐿𝐴,Δ (b) and 𝜗𝐴 

(c), for the IPMSM at rated load and different speeds and injection amplitudes 
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Figure 6.24: Ratio of negatively and positively rotating voltage amplitudes for HF 

measurements of the IPMSM at (a): 1 3⁄  𝜔𝑚,𝑁 , no load, 𝐾𝐻𝐹 = 0.025Vs; (b): 

1 3⁄  𝜔𝑚,𝑁 , no load, 𝐾𝐻𝐹 = 0.0167Vs; (c): 1 3⁄  𝜔𝑚,𝑁 , no load, 𝐾𝐻𝐹 = 0.0125Vs; 

(d): 2 3⁄  𝜔𝑚,𝑁 , no load, 𝐾𝐻𝐹 = 0.0125Vs; (e): 1 3⁄  𝜔𝑚,𝑁 , rated load, 𝐾𝐻𝐹 =

0.025Vs; (f): 1 3⁄  𝜔𝑚,𝑁 , rated load, 𝐾𝐻𝐹 = 0.0125Vs 



6.4  SMALL-SIGNAL HF BASED MEASUREMENT METHOD 

  177 

Analogously to the IPMSM results, Figure 6.25 shows the identified HF inductance parameters 

of the SPMSM in comparison to the expected reference parameters for different operating 

conditions. The subfigures on the left-hand side show the results in the unloaded case at 1/3 

of the rated motor speed. On the right-hand side, we see the inductance parameters at rated 

load and 1/3 as well as 1/6 of the rated speed. 

From the latter, we can state that the rotor speed does not have a relevant influence on the 

identified parameters. In the mean inductance curves acc. to subfigures (a) and (b), we see the 

influence of eddy currents, which lead to parameter errors of up to −25% at the highest injection 

frequencies in both, loaded and unloaded cases. 

In contrast to the IPMSM results, the mean inductance parameter errors show a cubic rather 

than a linear form with respect to the injection frequency. Additionally, when projecting the 

inductance curves downwards to the actual rotor frequency, we can note an offset to the 

expected reference value, indicating a stronger influence of magnetic hysteresis. 

A hysteresis offset is also observable in the anisotropic inductance parameter in subfigure (c), 

while in a more saturated state at rated load, this effect is strongly reduced (see (d)). 

Nevertheless, eddy currents lead to frequency dependent parameter errors that go up to around 

41% and 37% at maximum injection frequencies in both cases. 

Another main difference to the IPMSM measurements is observable at the lowest injection 

frequencies. Especially in the anisotropic inductance and position curves, we have significant 

deviations between the BEMF reference and the parameters obtained from the proposed 

identification method assuming circular voltage injection. These deviations indicate that in fact 

negatively rotating injection components were present during the measurements. 

This is confirmed by the analysis shown in Figure 6.26. In all three depicted combinations of 

loads and rotor speeds, we can find elliptic injection patterns of more than 1% for frequencies 

below 250Hz. Although finding even ratios of up to 36%, already these 1% deviations from 

perfectly circular injections cause relevant errors in the identified inductance parameters. 

The example of the SPMSM thus underlines the necessity to ensure as circular injection 

patterns as possible to avoid additional parameter errors. 
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Figure 6.25: Comparison of the identified inductance parameters, 𝐿Σ (a), 𝐿𝐴,Δ (b) and 𝜗𝐴 

(c), for the SPMSM at 𝐾𝐻𝐹 = 0.025Vs and different speeds and loads 
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Figure 6.26: Ratio of negatively and positively rotating voltage amplitudes for HF 

measurements of the SPMSM at (a): 1 3⁄  𝜔𝑚,𝑁 , no load, 𝐾𝐻𝐹 = 0.025Vs ; (b): 

1 3⁄  𝜔𝑚,𝑁 , rated load, 𝐾𝐻𝐹 = 0.025Vs; (c): 1 6⁄  𝜔𝑚,𝑁 , rated load, 𝐾𝐻𝐹 =

0.025Vs 
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In order to conclude the analysis of frequency depending effects on the proposed parameter 

identification technique for different synchronous machine types, Figures 6.27 and 6.28 show 

the corresponding results for the SynRM. 

In Figure 6.28, we can see again elliptic injection voltages at low frequencies. They are, however, 

only relevant at rated load and cause corresponding parameter errors in the anisotropic 

inductance and position curves acc. to subfigures (d) and (f) of Figure 6.27. 

In both, loaded and unloaded case, we can see the hysteresis effect leading to offsets in the 

obtained inductance parameters. Especially when comparing the mean inductances curves in 

(a) and (b), we can see that the influence of hysteresis significantly reduces, when the machine 

is magnetically saturated. 

As discussed in section 2.1.2.2, coherent rotation is predominant in saturated magnetic 

material. Since magnetic hysteresis mainly results from domain wall motions over pinning sites, 

it had to be expected, that hysteresis decreases with increasing saturation. Similar results have 

already been reported in [55]. 

In contrast to the permanent magnetic machines analyzed above, eddy currents lead to 

relatively linear inductance errors with increasing injection frequency. In subfigure (c), we do 

hardly see any frequency dependency in the anisotropic inductance curves. This means, that 

both axes are similarly influenced by eddy currents. In the loaded case in (d), however, we see 

that this symmetry breaks, when the machine is magnetically saturated. 

Nevertheless, the anisotropy orientation is only slightly affected by both, magnetic hysteresis 

and eddy currents. We can see in (e) and (f), that the differences between expected and 

measured curves are much smaller than they are for the PM machines. 

We can generally state that the influence of eddy currents is smaller in SynRMs than it is in 

PM machines. This does also indicate that the magnets are a relevant host for eddy currents. 
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Figure 6.27: Comparison of the identified inductance parameters, 𝐿Σ (a), 𝐿𝐴,Δ (b) and 𝜗𝐴 

(c), for the SynRM at 𝐾𝐻𝐹 = 0.025Vs and different loads 
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We can conclude that the proposed HF parameter identification method is insensitive to the 

injection amplitude, as long it guarantees sufficiently large current signals to obtain a good 

SNR. Although it can be expected that larger injection amplitudes cause additional eddy 

currents, the latter seem to have no additional effects on the proposed method. It can thus be 

advised to set the injection amplitude as large as possible with the available voltage margin of 

the VSI at the given operating point. 

A weak point of the proposed method is the prerequisite that there must be no reversely 

rotating voltages. We have observed that already small amplitudes of less than 2% can lead to 

relevant parameter errors. 

6.4.2.2 Results for Variable Current Operating Points 

In this section, we compare the BEMF reference maps to HF results at constant injection 

frequencies and different operating points. Since the HF results are obtained from the same 

sets of sampled data, we have the same measurement configurations as described before. 

When setting the injection frequency to 875Hz, where the parameter errors in the IPMSM 

measurements were comparably small, we get the inductance maps presented in Figures 6.29 

and 6.30. 

In both figures, the upper subfigures (a) and (b) show the directly measured HF results, whereas 

the lower graphs (c) and (d) show the corrected maps after applying the optimization algorithm 

described in Chapter 5. In all contour graphs (b) and (d) on the RHS, the already discussed 

corrected maps obtained from BEMF measurements are represented by white contour lines for 

reference. 

 

Figure 6.28: Ratio of negatively and positively rotating voltage amplitudes for HF 

measurements of the SynRM at (a): 1 3⁄  𝜔𝑚,𝑁 , no load, 𝐾𝐻𝐹 = 0.025Vs ; (b): 

1 3⁄  𝜔𝑚,𝑁 , rated load, 𝐾𝐻𝐹 = 0.025Vs 
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Compared to the inductance maps derived from the BEMF measurements (see Figure 4.21), 

we can note less noise. This indicates that the direct inductance measurement is advantageous 

over measuring and numerically differentiating flux linkage maps. 

At all operating points in Figure 6.29, the mean HF inductance values are smaller than the 

respective BEMF references. This is in accordance with the results discussed in the former 

section, where we identified iron effects as the main reason for those deviations. We can note 

that the actual inductance reduction is not only depending on the HF frequency but also on 

the current operating point, as the differences are not constant. 

 

Figure 6.29: Comparison of directly measured ((a) and (b)) and corrected ((c) and (d))  

IPMSM mean inductances obtained from HF measurements at 1 3⁄ 𝜔𝑁  and 

𝑓𝐻𝐹 = 875Hz; white contour lines in (b) and (d) are corrected BEMF based 

results for reference 



CHAPTER 6  MEASURING FLUX LINKAGE IN SYNCHRONOUS MACHINES 

184 

From the comparison of measured and corrected maps, we can see that the measured 

inductances are not perfectly symmetric. This is observable in both, isotropic and anisotropic 

inductance maps, whereas the asymmetry is stronger in the latter (c.f. Figure 6.30 (b)). For 

the same reasons as discussed before, these asymmetric differences are mainly resulting from 

iron effects. We can thus state that the repercussions of eddy currents and magnetic hysteresis 

on the HF current responses are different for motor and generator operation of the IPMSM. 

When comparing the corrected BEMF and HF maps, we see smaller differences. Especially the 

anisotropy inductance maps now match comparably well. The optimization algorithm is thus 

 

Figure 6.30: Comparison of directly measured ((a) and (b)) and corrected ((c) and (d))  

IPMSM anisotropic inductances obtained from HF measurements at 1 3⁄ 𝜔𝑁  and 

𝑓𝐻𝐹 = 875Hz; white contour lines in (b) and (d) are corrected BEMF based 

results for reference 
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able to reduce the influence of iron effects to a certain extent. Especially in the typical operating 

ranges in the negative 𝑑-current plane, the measured inductance values are in good accordance. 

At this point, we are focusing on the general parametric differences between HF and BEMF 

measurements. The conclusions from those differences in the context of sensorless control are 

drawn in section 6.5.1. For that reason, we are showing and analyzing the HF anisotropy angle 

measurements in that later section. 

In order to conclude the comparison of BEMF and HF measurements, we present the flux 

linkage maps obtained from above corrected inductance maps. After transforming the 

 

Figure 6.31: Comparison of and corrected 𝑑-axis ((a) and (b)) and 𝑞-axis ((c) and (d)) IPMSM 

flux linkage maps obtained from HF measurements at 1 3⁄ 𝜔𝑁  and 𝑓𝐻𝐹 = 875Hz; 

white contour lines in (b) and (d) are corrected BEMF based results for reference 
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underlying data into d-, q- and m-inductances, we can apply (5.9) to integrate the respective 

inductance values along the d- and q-stator currents to obtain the flux linkage maps shown in 

Figure 6.31. Note again, that due to the correction algorithm, the integration paths can be 

arbitrarily chosen without influencing the resulting map. 

The only additional information needed for valid flux linkage maps is their offset, or – in other 

words – an integration constant. We let this constant be the identified PM flux linkage, i.e. the 

flux linkage at zero stator currents. This means, for PMSMs we need at least one BEMF-based 

measurement at a feasible operating point, when deriving valid flux linkage maps from HF 

measurements. 

We can observe that the HF and BEMF maps show only small differences. Around our selected 

fixed point, the maps are nearly identical. With increasing distance to that point, however, we 

can note the influence of iron effects in the HF measurements. Due to the integration process, 

the inductance errors sum up and, in consequence, the flux linkage maps slightly drift apart. 

Depending on the application of those HF inductance maps, the drifts can have different 

impacts. In section 6.5.2, we exemplarily address the consequences for MTPA control strategies 

derived from HF measurements. 

 

6.5 Discussions 

6.5.1 Sensorless Control 
In the former section, we already saw the isotropic and anisotropic inductance maps of the 

IPMSM. The third information needed to completely describe the inductance matrix in this 

case is the anisotropy orientation. It is shown in Figure 6.32. 

As before, we can note unsymmetric differences between the measured angles and the BEMF 

references in subfigure (b). Especially in the negative d-current plane, where the MTPA and 

MTPV trajectories are located, we see that when directly evaluated from the HF signal 

injection method, we can expect deviations of more than ±10° – especially around the points 

of magnetic isotropy. These errors can again be explained by iron effects, which make it 

necessary to distinguish between motor and generator operation. 

As it was already observed in the former section at the inductance maps, the corrected HF and 

BEMF anisotropy position maps as shown in subfigure (d) show only small differences. 

Independently from the basic measurement scheme, we are thus able to obtain very similar 

results as long as we apply the correction algorithm. 
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Another important information for sensorless control schemes is the saliency ratio, as it 

determines the position signal content in the system response to HF injection. It is shown in 

Figure 6.33. Again, we can note asymmetries in the direct measurements (see (b)), which are 

effectively eliminated by the correction algorithm (see (d)). 

Note that although we saw certain differences between the corrected mean inductance maps 

(c.f. Figure 6.29 (d)), we can hardly find differences in the SR maps now, especially in the 

relevant negative d-current plane. The iron effects do seem to scale linearly with both isotropic 

 

Figure 6.32: Comparison of directly measured ((a) and (b)) and corrected ((c) and (d))  

IPMSM anisotropy orientation obtained from HF measurements at 1 3⁄ 𝜔𝑁  and 

𝑓𝐻𝐹 = 875Hz; white contour lines in (b) and (d) are corrected BEMF based 

results for reference 
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and anisotropic inductances and thus cancel out, when setting both inductance values in 

relation. 

We can conclude that for the IPMSM we obtain very similar results independently from the 

measurement scheme. Since the optimization, however, is an offline algorithm, it is thus crucial 

for accurate sensorless operation to adequately consider iron effects. 

 

 

 

Figure 6.33: Comparison of directly measured ((a) and (b)) and corrected ((c) and (d))  

IPMSM anisotropy ratio obtained from HF measurements at 1 3⁄ 𝜔𝑁  and 𝑓𝐻𝐹 =

875Hz; white contour lines in (b) and (d) are corrected BEMF based results for 

reference 
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When repeating the above analysis for the SPMSM, we obtain the anisotropy position and SR 

maps as shown in Figures 6.34 and 6.35. We can again observe asymmetric differences between 

the measured HF maps and its BEMF counterparts. This time, however, the correction 

algorithm is only slightly reducing those differences. 

In Figure 6.34 (d), we can find position errors of up to around ±9° in the relevant negative d-

current plane. Since the SR has its smallest values here because of magnetic desaturation, the 

occurrence of the largest position errors is explainable. 

 

 

Figure 6.34: Comparison of directly measured ((a) and (b)) and corrected ((c) and (d))  

SPMSM anisotropy orientation obtained from HF measurements at 1 3⁄ 𝜔𝑁  and 

𝑓𝐻𝐹 = 1000Hz; white contour lines in (b) and (d) are corrected BEMF based 

results for reference 
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We can conclude that the correction algorithm does not generally eliminate the different 

repercussions of iron effects on HF- or BEMF-based measurements. Especially machines like 

this SPMSM with comparably low inductances show relevant deviations and it seems advisable 

to take that into account, when deriving parameters for sensorless control schemes. 

In comparison to the respective maps obtained from BEMF-based measurements (cf. Figure 

4.33) note the significant better SNR in the HF evaluation. 

 

 

Figure 6.35: Comparison of directly measured ((a) and (b)) and corrected ((c) and (d))  

SPMSM anisotropy ratio obtained from HF measurements at 1 3⁄ 𝜔𝑁  and 𝑓𝐻𝐹 =

1000Hz; white contour lines in (b) and (d) are corrected BEMF based results for 

reference 
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In Figure 6.36, we see the anisotropy position maps of the SynRM and in Figure 6.37 the 

corresponding saliency ratios. The asymmetric differences between measured HF and corrected 

BEMF maps are less significant than they were at the PMSMs. This also indicates that eddy 

currents in the permanent magnets play a significant role in the deviations between HF and 

BEMF signals. 

In the relevant control regions between MTPA and MTPV trajectories (compare Figure 4.9), 

the corrected HF and BEMF anisotropy positions show only small deviations. Along the q-

 

Figure 6.36: Comparison of directly measured ((a) and (b)) and corrected ((c) and (d))  

SynRM anisotropy orientation obtained from HF measurements at 1 3⁄ 𝜔𝑁  and 

𝑓𝐻𝐹 = 1000Hz; white contour lines in (b) and (d) are corrected BEMF based 

results for reference 
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axis, we can note the biggest deviations, which can be explained by the small SR in combination 

with fast changing orientation angles in that region. 

The SR maps of both, directly measured and corrected HF evaluation, show significant 

deviations to the BEMF references. We can thus state again that the correction algorithm does 

not completely eliminate the influence of iron effects. If the SR should be used in advanced 

sensorless control schemes, it is preferable to measure it directly with a corresponding HF 

injection scheme. 

 

 

Figure 6.37: Comparison of directly measured ((a) and (b)) and corrected ((c) and (d))  

SynRM anisotropy ratio obtained from HF measurements at 1 3⁄ 𝜔𝑁  and 𝑓𝐻𝐹 =

1000Hz; white contour lines in (b) and (d) are corrected BEMF based results for 

reference 
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We can conclude for all three machines that the directly measured HF parameters are impaired 

by iron effects. Although in the case of the IPMSM the correction algorithm could eliminate 

most of the resulting deviations, the SPMSM and the SynRM maps show remaining differences 

to the BEMF reference maps. For that reason and since the correction cannot be performed 

online, for instance during sensorless operation, it is necessary to model the influence of eddy 

currents as well as of magnetic hysteresis. 

A straightforward way of doing this is to approximate the parametric errors due to iron effects 

by polynomial functions of the injection frequency. In section 6.4.2.1, we saw that the anisotropy 

position error can have quite nonlinear forms that would require polynomials of high order to 

obtain accurate results. It is thus advantageous to model the parametric errors of the 

inductances in rotor coordinates. This is shown for the IPMSM in Figure 6.38. In the upper 

subfigures, we see the identified HF d-, q- and m-inductances for different injection frequencies 

in the unloaded (a) and loaded (b) case. Additionally, we see their 2nd order polynomial 

approximations and the expected non-frequency-dependent values from the BEMF 

measurements for reference. 

Since we observed additional errors at the lowest injection frequency range due to, inter alia, 

negatively rotating voltage components, the polynomials are fitted to the measured data in the 

range above 800 Hz by least squares optimization. We can state that the quadratic polynomials 

do approximate the measured curve forms with sufficient accuracy. With this polynomial 

approach, we thus found a simple model for the iron effects that does require three parameters 

for each d-, q- and m-inductance curve at any relevant operating point. 

When determining the anisotropy orientation acc. to (2.114) from those inductance 

polynomials, we obtain the curves presented in the lower subfigures – again for the unloaded 

case on the left (c) and at rated torque on the right (d). We can see that the nonlinear curve 

forms are reproduced well within the considered injection range. In sensorless control schemes, 

where the injection frequency changes during operation, we are thus able to identify the correct 

rotor position based on the identified anisotropy position. 

It is worth noting that the obtained polynomial coefficients can be interpreted in the context 

of iron effects. Therefore, it is necessary to remind the differences between magnetic hysteresis 

and eddy currents. The fundamental magnetic hysteresis loop is characterized by injection 

frequencies that are tending to zero. Since injecting an “HF” signal with a frequency of zero is 

impossible, we can only extrapolate measurements at higher frequencies downwards zero. This 

extrapolated offset will then contain information about the influence of magnetic hysteresis, 

whereas all other values at non-zero injection frequencies describe the influence of eddy 

currents. 

Another important aspect to note is that for non-zero rotor speeds, it is not possible to clearly 

separate hysteresis effects from eddy currents. If the extrapolated injection frequency in a rotor 

reference frame is zero, the stator at the same time sees an injection at rotor frequency. Wo do 

thus see a superposition of hysteresis effects in the rotor and a combination of hysteresis as well 

as eddy current effects in the stator. For simplicity, we neglect the latter and refer to hysteresis 
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effects only, when the extrapolated curves show an offset at injection frequencies that 

correspond to the rotor speed. 

We can see that in the unloaded case, the approximated curves approach the BEMF references 

comparably well at rotor speed. The resulting angle difference is below two degrees, indicating 

only a small influence of magnetic hysteresis on the HF measurements. At rated load, we can 

note a stronger influence of magnetic hysteresis, leading to small offset errors of all d-, q- and 

m-inductances. 

 

 

Figure 6.38: IPMSM inductance values and anisotropy orientation in the unloaded (left) and 

loaded (right) operating cases; comparison of BEMF reference inductance 

parameters with HF measurements and its polynomial approximations in 

subfigures (a) and (b); resulting anisotropy orientations in (c) and (d) 
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When applying the same polynomial iron effects model to the SPMSM measurements, we 

obtain the results presented in Figure 6.39. As before, we can determine the anisotropy position 

impaired by iron effects sufficiently well in the considered frequency range above 800 Hz. 

We already discussed in section 6.4.2.1, that the SPMSM shows a stronger effect of magnetic 

hysteresis in the mean and anisotropic inductance curves (see Figure 6.25). This is also 

observable in both, loaded and unloaded cases, in the d-, q- and m-inductances. 

 

 

 

Figure 6.39: SPMSM inductance values and anisotropy orientation in the unloaded (left) and 

loaded (right) operating cases; comparison of BEMF reference inductance 

parameters with HF measurements and its polynomial approximations in 

subfigures (a) and (b); resulting anisotropy orientations in (c) and (d) 
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In order to verify the discussed polynomial model for the SynRM as well, we show the respective 

results in Figure 6.40. Again, we see that the approximated anisotropy positions match well 

with the measured curves. We can thus conclude that the polynomial approximations of the 

direct, quadrature and mutual inductance curves are a good way to eliminate the influence of 

iron effects in sensorless control schemes at arbitrary injection frequencies with a comparable 

low number of nine parameters needed for each relevant operating point. 

 

 

 

Figure 6.40: SynRM inductance values and anisotropy orientation in the unloaded (left) and 

loaded (right) operating cases; comparison of BEMF reference inductance 

parameters with HF measurements and its polynomial approximations in 

subfigures (a) and (b); resulting anisotropy orientations in (c) and (d) 
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So far, we separately discussed inductance maps at certain injection frequencies for variable 

operating points and inductance curves at certain operating points for variable injection 

frequencies. In order to allow comparing the results, the IPMSM maps are measured at three 

different injection frequencies. For the unloaded case and at rated load, we can then plot the 

results as shown in Figure 6.41. 

We see again the anisotropy orientation angles from the BEMF measurements as reference. 

The curves denoted with ‘approx. 1’ correspond to the polynomial models we just discussed in 

Figure 6.38. When fitting the 2nd order polynomials to the inductance values from the 

measurements of the three maps, we obtain the curves denoted with ‘approx. 2’, where the 

measured points are separately marked by ‘x’. 

The first polynomial curves approximate a high number of measurements in a least squares 

sense, whereas the second approximation curves exactly fit the three respective measurement 

points. The noise we observed in above measurements (see Figures 6.38 to 6.40) in consequence 

leads to noticeable differences between both approximations. With a higher number of measured 

maps, we would thus be able to reduce the differences between both curves. 

The effect of the proposed optimization algorithm for measured maps is shown by the ‘o’ 

markers. In the unloaded case, the stator current of the motor is zero. In this case, we know 

that the mutual inductances must be zero as well. Since the optimization algorithm enforces 

this condition, the resulting anisotropy positions for all three measurements are zero and thus 

identical with the BEMF reference in subfigure (a). 

At rated load in subfigure (b), we see that the optimization is not able to completely eliminate 

the influence of iron effects in the HF measurements. This has been observed before in the 

discussions of the anisotropy orientation maps, especially at the SPMSM and the SynRM (see 

 

Figure 6.41: Comparison of the interpolated influence of iron effects on the identified 

anisotropy position for the IPMSM in an unloaded case (a) and at rated load (b) 
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Figures 6.34 and 6.36). While we found only minor differences between the corrected BEMF 

and HF maps in Figure 6.32, we can now see that at higher frequencies than 875 Hz, we will 

have larger differences as well. 

We can thus conclude that the influence of iron effects on HF-based measurements is reduced 

on average but not completely eliminated. Best results for maps free of distortions from iron 

effects can be obtained from BEMF-based measurements in combination with the proposed 

correction algorithm. 

As we preempted in section 6.4.2.1, this discussion on sensorless control is concluded with an 

analysis of the expectable position estimation errors in sensorless control schemes that evaluate 

the current response to rotating voltage injections, when the stator resistance is neglected (see 

for instance [10, 25]). We therefore evaluate the inductance parameters of all three machines 

along their MTPA trajectories. As before, we use the corrected BEMF measurement results as 

data source. We can thus map each torque value with a corresponding set of inductance 

parameters. When assuming the rotor to be at rest and defining a range of reasonable injection 

frequencies, we can determine the numerator terms acc. to (6.28) and substitute them into the 

anisotropy position equation (6.45). We perform this procedure one time with the correct stator 

resistance and the second time with 𝑅𝑠 = 0. After subtracting both results from each other, we 

obtain the results presented in Figure 6.42, where 

𝜗𝐴,𝑒𝑟𝑟 = 𝜗𝐴|𝑅𝑠=0 − 𝜗𝐴. (6.69) 

We can see that for all three machines we get negative position errors that depend on the 

torque as well as the injection frequency. It was already analyzed in section 6.4.2 that neglecting 

the stator resistance only leads to relevant anisotropy position errors, when the injection 

frequency is low. The results in Figure 6.42 confirm this for all three machines. 

The largest occurring errors are around −7° for the PM machines and −5° for the SynRM. The 

load dependency of the errors seems to correlate with the level of rotor saliency. We thus do 

have nearly constant errors over different torques at the SPMSM in subfigure (b), while the 

SynRM in (c) shows the strongest torque dependency. 

When comparing the position error maps of all three machines, we find that the SPMSM is the 

most critical machine, followed by the IPMSM and the SynRM shows the least sensitivity to 

stator resistance errors. In all three cases however, selecting injection frequencies above 500Hz 

allows us to neglect the stator resistance without relevant position estimation errors. 

It is worth noting that the presented results are generic error predictions for rotating injection 

schemes. Depending on the actual algorithmic implementation and applied filtering techniques, 

the errors in specific sensorless control schemes might significantly differ. The figure shall just 

give an overview of the theoretical underlying signal content for all types of rotating injection 

schemes. 

Please also note, that the error analysis for other injection schemes can be done analogously 

but requires the more complex elliptic solutions acc. to (6.41) – (6.43). 
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6.5.2 Differences in Torque 
As already discussed, the motor torque is resulting from the cross product of stator current 

and flux linkage space vectors. A comparison of the IPMSM torque maps obtained from BEMF 

and HF measurements after applying the proposed optimization algorithm is shown in Figure 

6.43. 

 

Figure 6.42: Comparison of the position estimation errors at standstill and variable loads 

along the MTPA trajectory for low injection frequencies for the IPMSM (a), the 

SPMSM (b) and the SynRM (c) 
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While subfigure (a) gives us a three-dimensional impression of the motor torque obtained from 

HF measurements at different stator currents, subfigure (b) directly compares those torque 

values with the BEMF reference. We can note that both measurement schemes lead to very 

similar results. This is remarkable, since we observed clearly visible drift errors due to iron 

effects in the border regions of the HF flux linkage maps which are the basis for this torque 

map (cf. Figure 6.31). 

 

When deriving the MTPA trajectories from both torque maps, we also get nearly identical 

results. Although we can expect the resulting torque differences to be negligible as well, we 

further analyze both trajectories in Figure 6.44. In subfigure (a), we can find the angular 

differences between both trajectories, plotted over the magnitudes of the respective stator 

current space vectors. We can see that the maximal displacement of the HF trajectory is below 

one degree. The influence of these displacements is analyzed in subfigure (b). 

The angular displacement of the HF trajectory leads to relative torque errors, which are 

represented by the solid blue line. In this analysis, we apply the current vector values of the 

HF trajectory to the BEMF torque map. When we, instead apply it to the HF torque map, we 

get relative errors as shown by the dashed orange line. We can see that in both cases, the 

maximal errors are below 0.5% of the respective BEMF reference and should thus indeed be 

negligible in most applications. 

 

Figure 6.43: Comparison of IPMSM torque maps obtained from optimized HF (black and 

colored) and BEMF (white) measurements 
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The results of the same analysis for the SPMSM are shown in Figures 6.45 and 6.46. We see 

that both torque maps obtained from BEMF and HF measurements fit well, but not as good 

as for the IPMSM. The BEMF map and the resulting MTPA trajectory show a slightly higher 

level of curvature towards the negative d-axis current. Since the SPMSM has a non-salient 

rotor, this curvature can only be caused by magnetic saturation. We can thus state that the 

HF measurements lead to slightly lower saturated flux linkage maps. This was already observed 

at the IPMSM and iron effects are identified as reason for that. 

 

Figure 6.44: Angular differences between (a) and relative torque errors along (b) MTPA 

trajectories obtained from corrected IPMSM BEMF and HF measurements 

 

Figure 6.45: Comparison of SPMSM torque maps obtained from optimized HF (black and 

colored) and BEMF (white) measurements 
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In Figure 6.46 (a), we see that the iron effects lead to angle errors of the MTPA trajectory of 

almost −2.5°. In consequence, the corresponding torque is reduced by around −1.2 to −1.7%. 

When relying on the HF torque measurements, the expected torque along the MTPA trajectory 

is up to 0.7% smaller than we would expect from the BEMF measurements. 

 

In contrast to both PM machines, we find larger differences between the HF and BEMF torque 

maps of the SynRM as shown in Figure 6.47. While around the origin the differences are small, 

they grow fast with increasing current vector magnitudes. The already observed strong 

magnetic hysteresis effects in the unsaturated ferromagnetic material of the SynRM are the 

most likely explanations for these errors. The resulting smaller inductance measurements 

cumulate during the integration process towards the border regions of the measured area. 

Nevertheless, we can see that the resulting torque errors are comparably symmetrical, which 

leads to very similar MTPA trajectories. In Figure 6.48 (a), it is shown that the angular 

displacement of the HF trajectory is below two degrees. Acc. to subfigure (b), the resulting 

torque is reduced by less than around 2%. 

The torque along the MTPA trajectory that we would expect from the HF measurements, 

however, is significantly smaller by around 20 to 22%. In applications, where this is problematic, 

it is thus advisable to measure the actual torque with BEMF based techniques. 

 

Figure 6.46: Angular differences between (a) and relative torque errors along (b) MTPA 

trajectories obtained from corrected SPMSM BEMF and HF measurements 
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Figure 6.47: Comparison of SynRM torque maps obtained from optimized HF (black and 

colored) and BEMF (white) measurements 

 

Figure 6.48: Angular differences between (a) and relative torque errors along (b) MTPA 

trajectories obtained from corrected SynRM BEMF and HF measurements 
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chaPter 7  

 

Conclusions and Outlook 

7.1 Summary 

In this work, the issue of accurately modelling and identifying the respective model parameters 

of synchronous machines under the influence of magnetic saturation is addressed. 

The underlying physical processes that cause magnetic saturation as well as magnetic hysteresis 

in ferromagnetic material are discussed. After transferring the insights from a fundamental, 

mesoscopic view to a macroscopic view in the form of lumped elements, it is shown that the 

nonlinearity resulting from magnetic saturation has no influence on the general validity of the 

widespread space vector theory that is applied to describe, predict and control the behavior of 

synchronous machines. It is exemplarily discussed that harmonic distortions can occur, which 

itself can be expresses as harmonic space vectors. 

With a SynRM, an IPMSM and an SPMSM, three important types of synchronous machines 

are discussed. Based on fundamental space vectors, nonlinear models are introduced and 

subsequently linearized in order to obtain affine models that allow the mathematically efficient 

approximation of the motor behavior around given operating points. 

Two methods to measure the nonlinear relation between currents in the stator windings and 

the resulting flux linkages are presented and discussed – one method that evaluates the back 

electromotive force and one that bases on the linearized small-signal model and that evaluates 

the current responses to high-frequent voltages that are injected to the machine. For both 

methods, different sources of error are discussed, and appropriate measures are proposed to 

minimize those errors. 

The BEMF method was found to be sensitive to stator voltage errors, to inaccurate stator 

resistance parameters, to harmonic distortions and, to a limited extend, to iron effects. The 
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errors in the stator voltages result from their indirect measurement via the DC-link voltage 

and nonlinear switching characteristics of the IGBTs in the supplying VSI. It is discussed, how 

these switching effects can be measured and the results being used to eliminate the resulting 

model errors. The resistance parameter errors can have different sources, such as the frequency 

dependent proximity effect or heat related effects. The latter are explicitly taken care of in all 

proposed measurement schemes by heat management via resistance measurements. The 

problem of harmonic distortions is addressed by selecting measurement intervals that cover 

integer numbers of rotor turns. 

For the proposed HF based measurement scheme, a detailed analysis of linear, time-invariant 

systems with rotating input signals is performed. This allows to explicitly consider the influence 

of the stator resistance in HF current responses of synchronous machines, which is generally 

neglected in literature. Depending on the injection frequency, especially at low frequencies, it 

is shown that neglecting the resistance leads to errors in the identified anisotropy orientation, 

which can distort derived flux linkage maps and is also relevant in anisotropy-based sensorless 

control schemes. Additionally, the LTI system analysis shows that neglecting the BEMF as it 

is done in several HF-based publications does lead to inductance parameter errors for low to 

medium injection frequencies. 

Besides that, the main sources of error in the HF based measurement scheme are harmonic 

distortions and iron effects. The former are only partly addressed by measurement intervals 

covering complete rotor turns and by properly selecting the injection frequencies such that they 

do not interfere with motor harmonics. The main problem here are the high injection 

frequencies that go up to half the PWM frequency. The discrete sampling at PWM frequency 

and the discrete nature of the applied space vector modulation technique make it necessary to 

consider frequency leakage and aliasing effects. Both effects are analyzed, and appropriate 

compensation techniques are proposed. 

After eliminating the discussed sources of error as good as possible, it can be stated that the 

remaining errors in both measurement schemes are due to iron effects. Comparing the 

measurement results allows to better understand their influence on the machine behavior. 

Additionally, the HF-based measurements at variable injection frequencies allow to further 

distinguish between the influence of eddy currents and magnetic hysteresis. It is discussed that 

magnetic hysteresis results in inductance offsets, especially in unsaturated operating points. 

With increasing levels of magnetic saturation, the influence of magnetic saturation decreases. 

Eddy currents are causing inductance parameter errors that scale linearly or quadratically with 

the injection frequency. Additionally, they lead to misorientation of the anisotropy position. 

While the BEMF based method measures flux linkages, the HF method identifies inductances. 

The flux linkage information is needed to identify optimal current trajectories that produce 

maximal torque while simultaneously considering current and voltage limitations. The 

inductance parameters are important in anisotropy-based sensorless control schemes. 

Independent from the measurement scheme, it is thus useful to convert flux linkage maps to 

inductance maps and vice versa. Differentiating flux linkage maps to obtain inductances is 

straightforward. Integrating inductance maps that contain measurement errors, however, is 



7.2  OUTLOOK 

  207 

more difficult. Depending on the selected integration paths, we obtain different flux linkage 

maps. To overcome this problem, an optimization algorithm is proposed that constraints the 

inductance maps to comply with fundamental physical laws. This guarantees unambiguous flux 

linkage or even magnetic energy and co-energy maps. 

The optimization algorithm is further extended by symmetry constraints. The linear 

optimization identifies the minimal necessary modifications that enforce both, physical and 

symmetry constraints. It is shown that the optimization does effectively eliminate the inverter 

voltage errors and the resistance parameter errors in the BEMF based measurements and 

reduces the influence of iron effects. 

The optimized results of all three synchronous machines are used to discuss the general 

differences between the machine types. Additionally, the results are discussed in the context of 

magnetic energy, torque production, the affine model parameters and the motor characteristics 

in anisotropy-based sensorless control schemes. The aforementioned misorientation of the 

anisotropy position caused by eddy currents is addressed by a frequency dependent polynomial 

model. It is shown that in the proposed way, the relatively nonlinear dependency of the position 

error on the injection frequency can be accurately modelled, while also adequately describing 

the frequency dependency of the inductance parameters. 

Even though the HF measurement scheme is more affected by iron effects, it is shown that the 

results nevertheless are useful to identify MTPA trajectories for efficient control strategies. For 

all three machines, we obtain trajectories that differ less than 2.5° from the ideal trajectories. 

The resulting effective torque reductions remain below 2%. For the PM machines, the predicted 

torques along the MTPA trajectories are even better with errors below 1%. Only the SynRM 

shows larger relative errors of more than 20% in the predicted torques due to the strong 

influence of magnetic hysteresis and due to the absence of permanent magnetic torque 

components. 

Since the HF measurements can also be performed at standstill, they can be a useful alternative, 

when no load machine is available to control the speed of the motor under test. When the 

influence of iron effects on sensorless control errors shall be analyzed, the HF method is also 

preferable over BEMF-based measurements. 

7.2 Outlook 

With magnetic saturation, magnetic hysteresis and eddy currents, this work addresses 

fundamental problems in basically all control strategies for synchronous machines. It thus 

provides several potential connecting points with further works, which are addressed in the 

following. 

In the discussion of the results for sensorless control schemes in section 6.5.1, a model describing 

the influence of iron effects is proposed. Since this will only work for steady injection 

frequencies, a more general attempt that allows the dynamic analysis of iron effects seems worth 

further work. One way might be to extend the state-space model of the synchronous machine 

by additional states that represent eddy currents. In its simplest form, we would add two states 

for a single eddy current space vector that models the average magnetic repercussions of all 
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individual eddy current loops. This way, we obtain a model with the same structure as that of 

an induction machine. 

When addressing the issue of identifying the additional model parameters, it can be useful that 

the particular solution of LTI systems responding to circular inputs is also valid for systems of 

higher order than two. We would thus need to find a systematic approach to determine those 

eddy current parameters that let the entries of the particular solution matrix that correlate the 

stator voltages with the stator currents match those of the BEMF model. 

The differences between the particular solution matrix entries obtained from BEMF and HF 

measurements are exemplarily shown in Figure 7.1. Obviously, the HF results for all motor 

speeds and all injections amplitudes are very similar and – at least in subfigures (a) to (c) – 

are clearly distinguishable from the BEMF results. These differences should be modelled by 

additional eddy current parameters, while the main model parameters obtained from BEMF 

measurements should remain unchanged. 

This approach of dynamically modelling eddy currents might also be advantageous, when 

dealing with iron losses. In literature, this is typically done by introducing frequency-dependent 

resistances [21, 111, 112, 116], which does not reflect the physical reality. 

Since we end up with a similar model as an induction motor without eddy currents, the 

presented HF based measurement approach might also be interesting for parameter 

identification of induction machines. 

An open point that could not be completely analyzed within this work are the partially elliptic 

injection voltages and especially their abrupt changes at low injection frequencies. As mentioned 

in section 6.4.2.1, oscillations of the motor speed in response to the low injection frequencies 

might be a reason. Since analyzing speed oscillations would require to introduce the speed as 

additional state variable, the resulting model would be much more complex to analyze. This 

remains open for further works. 

If it turns out that speed oscillations are not the reason for the elliptic voltages, it might also 

be useful to work on control schemes that eliminate all negatively rotating voltages or to extend 

the HF method such that it can handle elliptic injection voltages as well. 
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Figure 7.1: Entries of the particular solution matrix for rotating voltage signals of the 

IPMSM for variable injection frequencies and at different injection amplitudes 

and motor speeds (legend valid for all subfigures) 
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aPPendix a  

 

Nomenclature 

A.1 List of Symbols 

A.1.1 Roman Characters 
𝑎 A/m current loading 

𝑨  system matrix of a state space model 

𝑨𝑟  system matrix of a synchronous machine in rotor reference frame 

𝐵⃗     Vs m2⁄  magnetic flux density 

𝑩𝑟  input matrix of a synchronous machine in rotor reference frame 

𝑐1  scaling factor for fundamental HF signal components 

𝐶 m contour line around a surface 𝑆 (section 2.1) 

𝐶  stator current and flux linkage space vector trajectory (section 2.2) 

𝑑𝑢,𝑣,𝑤 1 duty cylces of phases 𝑢, 𝑣, 𝑤 in space vector modulation 

𝐷 Ω4 denominator of the particular solution matrix 𝑲𝑝
𝑟 

𝑫  diagonal matrix 

𝑑𝑎 ⃗ m normal vector of an infinitesimal surface 𝑆 

𝑑𝑠 ⃗ m infinitesimal line segment 

𝑑𝑣 m3 infinitesimal volume 

𝒆1 1 unit vector in first dimension of multi-dimensional space 

𝒆2 1 unit vector in second dimension of multi-dimensional space 

𝐸⃗ V m⁄  electric field intensity 

𝑓 Hz frequency 

𝑓𝑎𝑛 Hz 𝑛th alias frequency of a given frequency, 𝑓 

𝑓𝐻𝐹  Hz HF injection frequency 

𝑓𝑘 Hz discrete frequency in Fourier analysis 

𝑓𝑚 Hz mechanical rotor frequency 
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𝑓𝑟 Hz electrical rotor frequency 

𝑓𝑆 Hz sampling frequency 

𝒇𝑟  bijective vector function 

𝐻⃗    A m⁄  magnetic field intensity 

𝐻𝑐 A m⁄  coercive field intensity 

𝐻𝑠 A m⁄  saturation magnetic field intensity 

𝑖 A electrical current 

𝑖𝑃𝑀 A permanent magnet equivalent stator current 

𝒊𝑠
𝑎 A stator current space vector in anisotropy reference frame 

𝒊𝑠
𝑟 A stator current space vector in rotor reference frame 

𝒊𝑠
𝑟∗ V reference input for 𝒊𝑠

𝑟 

𝒊𝑠
𝑠 A stator current space vector in stator reference frame 

𝒊𝑠,0
𝑟  A stator current space vector in the magnetic origin 

𝑰 1 unit matrix 

𝑗 ⃗ A m2⁄  current density vector 

𝑗𝑓⃗  A m2⁄  free current density vector in conducting material 

𝑗𝑀⃗  A m2⁄  magnetizing current density 

𝑗𝑀⃗𝑆 A m2⁄  magnetizing surface current density 

𝑱 1 90° rotation matrix 

𝑘𝑠𝑎𝑡 1 saturation factor in space vector modulation 

𝐾𝐻𝐹  Vs scaling factor for injection voltage amplitudes over injection frequency 

𝑲𝑝
𝑟 A V⁄  particular solution matrix of a SM in rotor reference frame 

𝑙 m length 

𝐿 H inductance of an electric conductor 

𝐿𝑑𝑑 H 𝑑-axis inductance 

𝐿𝑑𝑞 H coupling inductance between 𝑑- and 𝑞-axis 

𝐿𝑞𝑑 H coupling inductance between 𝑞- and 𝑑-axis 

𝐿𝑞𝑞 H 𝑞-axis inductance 

𝐿𝑚 H mutual inductance 

𝐿𝐷 H 𝐷-axis inductance 

𝐿𝑄 H 𝑄-axis inductance 

𝐿𝐴,𝛥 H anisotropic inductance of the stator windings 

𝐿𝑠 H inductance of the stator windings 

𝐿𝛥 H mean difference inductance of the stator windings 

𝐿𝛴 H mean (isotropic) inductance of the stator windings 

𝑳𝑠
𝑎 H inductance matrix of the stator windings in anisotropy reference frame 

𝑳𝑠
𝑟 H inductance matrix of the stator windings in rotor reference frame 

𝑳𝑠
𝑠 H inductance matrix of the stator windings in stator reference frame 

𝑀 Nm motor torque 

𝑀⃗     A m⁄  magnetization density 

𝑀𝐿 Nm load torque 

𝑀𝑟 A m⁄  remanent magnetization 

𝑀𝑠 A m⁄  saturation magnetization 
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𝑛⃗ 1 normal vector 

𝑁𝐼+  Ω3 pos. rotating numerator term of 𝑲𝑝
𝑟 

𝑁𝐽+  Ω3 pos. rotating 90° numerator term of 𝑲𝑝
𝑟 

𝑁𝐼−  Ω3 neg. rotating numerator term of 𝑲𝑝
𝑟 

𝑁𝐽−  Ω3 neg. rotating 90° numerator term of 𝑲𝑝
𝑟 

p 1 number of pole pairs 

𝑝⃗ W/m2 power density vector (Poynting vector) 

𝑝𝐽  W/m3 Joule loss density 

𝑝𝜇 W/m3 magnetic energy density 

𝑃𝑚𝑒𝑐ℎ W mechanical power 

𝑟𝑆 1 saliency ratio 

𝑅 Ω electrical resistance 

𝑅𝑎 Ω approximative resistance of stator windings and motor cable 

𝑅𝑐𝑎𝑙 Ω calibrated resistance of stator windings and motor cable 

𝑅𝑠 Ω resistance of the stator windings 

𝑆 m2 surface area (section 2.1) 

𝑆  sector number of a space vector (section 2.3) 

𝑺 1 double-angle rotation matrix 

𝑡 s time 

𝑡0 s active time of zero vector in SVM 

𝑡𝑙 s active time of left vector in SVM 

𝑡𝑟 s active time of right vector in SVM 

𝑇1 s period length of a signal in Fourier analysis 

𝑇𝑓𝑖 s filter time constant of current measurements 

𝑇𝑓𝑢1,2 s filter time constants of voltage measurements 

𝑇𝑚𝑒𝑎𝑠 s measurement time period 

𝑇𝑆 s sampling time or SVM cycle time 

𝑻  1 rotation matrix 

𝑢 V voltage 

𝑢𝐷𝐶 V DC link voltage 

𝒖𝑠
𝑎 V stator voltage space vector in anisotropy reference frame 

𝒖𝑠
𝑟 V stator voltage space vector in rotor reference frame 

𝒖𝑠
𝑟∗ V reference input for 𝒖𝑠

𝑟 

𝒖𝑠
𝑠 V stator voltage space vector in stator reference frame 

𝒖𝑠
𝑠∗ V reference input for 𝒖𝑠

𝑠 

𝑣 ⃗ m/s velocity vector 

𝑉  m3 volume 

𝑽   eigenvector matrix 

𝑤 J/m3 energy density 

𝑤𝜇 J/m3 magnetic energy density 

𝑤𝜇,𝑐𝑜 J/m3 magnetic co-energy density 

𝑤𝜇,ℎ𝑦𝑠𝑡 J/m
3 hysteretic magnetic co-energy density 

𝑊𝑒𝑙 J electric energy 
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𝑊𝜇 J magnetic energy 

𝑊𝜇,𝑐𝑜 J magnetic co-energy 

𝑿 1 vertical flip matrix (complex conjugate analogon) 

A.1.2 Greek Characters 
𝛤𝑑𝑑 1/H inverse 𝑑-axis inductance 

𝛤𝑑𝑞 1/H inverse coupling inductance between 𝑑- and 𝑞-axis 

𝛤𝑞𝑑 1/H inverse coupling inductance between 𝑞- and 𝑑-axis 

𝛤𝑞𝑞 1/H inverse 𝑞-axis inductance 

𝛤𝑚 1/H inverse mutual inductance 

𝛤𝐷 1/H inverse 𝐷-axis inductance 

𝛤𝑄 1/H inverse 𝑄-axis inductance 

𝛤𝐴,𝛥 1/H inverse anisotropic inductance of the stator windings 

𝛤𝑠 1/H inverse inductance of the stator windings 

𝛤𝛥 1/H inverse mean difference inductance of the stator windings 

𝛤𝛴 1/H inverse mean (isotropic) inductance of the stator windings 

𝜞𝑠
𝑎 1/H inv. inductance matrix of the stator windings in anisotropy reference frame 

𝜞𝑠
𝑟 1/H inverse inductance matrix of the stator windings in rotor reference frame 

𝜞𝑠
𝑠 1/H inverse inductance matrix of the stator windings in stator reference frame 

Δ  Delta (difference) operator 

𝜖 F m⁄  permittivity 

𝜖0 F m⁄  permittivity of free space (8.854 ⋅ 10−12 F m⁄ ) 

𝜗 rad generic angle 

𝜗𝑎 rad angle between stator and anisotropy reference frame 

𝜗𝐴 rad angle between rotor and anisotropy reference frame 

𝜗𝑟 rad electrical rotor angle of a synchronous machine 

𝜗𝑚 rad mechanical rotor angle of a synchronous machine 

Θ kg m2 moment of inertia 

𝜆𝑖  𝑖th eigenvalue of a square matrix 

𝜇0 H m⁄  permeability of free space (4𝜋 ⋅ 10−7H m⁄ ) 

𝝁 H m⁄  permeability matrix 

𝝁𝑟 1 relative permeability matrix 

𝜌 C m3⁄  charge density 

𝜎 1/Ωm electrical conductivity 

𝜏𝑖 s time constant of a linear system 

𝜙𝑘 rad phase of a signal in Fourier analysis 

𝜒𝑟𝑒𝑣 1 reversible susceptibility 

𝜒𝑑𝑖𝑓 1 differential susceptibility 

𝝌 1 magnetic susceptibility tensor 

𝜓 Vs/A magnetic flux linkage 

𝜓𝑃𝑀 Vs/A permanent magnet flux linkage 

𝝍𝑠
𝑎 Vs stator flux linkage space vector in anisotropy reference frame 

𝝍𝑠
𝑟 Vs stator flux linkage space vector in rotor reference frame 



A.1  LIST OF SYMBOLS 

  215 

𝝍̅𝑠
𝑟 Vs arithmetic average of 𝝍𝑠

𝑟 

𝝍𝑠
𝑠 Vs stator flux linkage space vector in stator reference frame 

𝝍𝑠,0
𝑟  Vs stator flux linkage space vector in the magnetic origin 

𝝍𝑠,𝑐
𝑠  Vs constant of integration of the stator flux linkage space vector 

𝜔𝑘 rad s⁄  discrete radial frequency in Fourier analysis 

𝜔𝑚 rad s⁄  mechanical angular velocity of the rotor 

𝜔𝑟 rad s⁄  electrical angular velocity of the rotor 

A.1.3 Special Characters 
𝛁  nabla operator 

ℓ  vector norm 

ℜ  real part of a complex number 
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A.2 List of Abbreviations 

AC Alternating Current 

ADC Analog-to-Digital Converter 

BEMF Back Electromotive Force 

CL Closed-Loop 

DC Direct Current 

DTC Direct Torque Control 

EMF Electromotive Force 

EQS Electroquasistatic 

FEA Finite Element Analysis 

FFT Fast Fourier Transform 

FOC Field Oriented Control 

FOH First Order Hold 

HF High Frequency 

HPF High-Pass Filter 

IGBT Insulated Gate Bipolar Transistor 

IO Input-Output 

IPM Interior Permanent Magnet 

IPMSM Interior Permanent Magnet Synchronous Machine 

ISR Interrupt Service Routine 

LHS Left-Hand-Side 

LPF Low-Pass Filter 

LTI linear, time-invariant 

LUT Look-Up Table 

MTPA Maximum Torque Per Ampere 

MTPV Maximum Torque Per Volts 

MQS Magnetoquasistatic 

NdFeB Neodymium-Iron-Boron 

OL Open-Loop 

PC Personal Computer 

PI Proportional-Integral (type controller) 

PM Permanent Magnet 

PMSM Permanent Magnet Synchronous Machine 

PWA Piece Wise Affine 

PWC Piece Wise Constant 

PWM Pulse Width Modulation 

RMS Root Mean Square 

RTP Real-Time Processor 

RHS Right-Hand-Side 

SDRAM Synchronous Dynamic Random Access Memory 

SM Synchronous Machine 

SmCo Sammarium-Cobalt 

SNR Signal-to-Noise Ratio 
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SPM Surface Permanent Magnet 

SPMSM Surface Permanent Magnet Synchronous Machine 

SR Saliency Ratio 

SVM Space Vector Modulation 

SynRM Synchronous Reluctance Machine 

VSI Voltage Source Inverter 

VFD Variable Frequency Drive 

ZOH Zero Order Hold 
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Calculations 

B.1 Energy Balance of Synchronous Machines 

Starting with the electrical three-phase model (2.43), the power balance can be obtained by 

multiplication with the phase current vector. Hence, 

[

𝑢𝑎
𝑢𝑏
𝑢𝑐

] = 𝑅𝑠 ⋅

[
 
 
𝑖𝑎
𝑖𝑏
𝑖𝑐]
 
 +
𝑑

𝑑𝑡
[
 
 
𝜓𝑎
𝜓𝑏
𝜓𝑐]
 
 , (B.1) 

𝒖𝑎𝑏𝑐 = 𝑅𝑠 ⋅ 𝒊𝑎𝑏𝑐 +
𝑑

𝑑𝑡
𝝍𝑎𝑏𝑐, (B.2) 

𝑃𝑒𝑙 = 𝒊𝑎𝑏𝑐
𝑇 ⋅ 𝒖𝑎𝑏𝑐 = 𝑅𝑠 ⋅ 𝒊𝑎𝑏𝑐

𝑇 ⋅ 𝒊𝑎𝑏𝑐 + 𝒊𝑎𝑏𝑐
𝑇 ⋅
𝑑

𝑑𝑡
𝝍𝑎𝑏𝑐, (B.3) 

where the vectors are denoted by 𝒙𝑎𝑏𝑐 for conciseness.  

Transforming (2.97) into space vector notation, when the transformation matrix is denoted by 

𝑨𝑎𝑏𝑐2𝑟 gives 

𝑨𝑎𝑏𝑐2𝑟 =
2

3
[
1 − 1 2⁄ − 1 2⁄

0
√
3 2⁄ −

√
3 2⁄
] (B.4) 

(𝑨𝑎𝑏𝑐2𝑟 ⋅ 𝒊𝑠
𝑠)𝑇 ⋅ 𝑨𝑎𝑏𝑐2𝑟 ⋅ 𝒖𝑠

𝑠 = 𝑅𝑠 ⋅ (𝑨𝑎𝑏𝑐2𝑟 ⋅ 𝒊𝑠
𝑠)𝑇 ⋅ 𝑨𝑎𝑏𝑐2𝑟 ⋅ 𝒊𝑠

𝑠 + (𝑨𝑎𝑏𝑐2𝑟 ⋅ 𝒊𝑠
𝑠)𝑇 ⋅

𝑑

𝑑𝑡
𝑨𝑎𝑏𝑐2𝑟 ⋅ 𝝍𝑠

𝑠, (B.5) 

𝒊𝑠
𝑠𝑇 ⋅ 𝑨𝑎𝑏𝑐2𝑟

𝑇 ⋅ 𝑨𝑎𝑏𝑐2𝑟 ⋅ 𝒖𝑠
𝑠 = 𝑅𝑠 ⋅ 𝒊𝑠

𝑠𝑇 ⋅ 𝑨𝑎𝑏𝑐2𝑟
𝑇 ⋅ 𝑨𝑎𝑏𝑐2𝑟 ⋅ 𝒊𝑠

𝑠 + 𝒊𝑠
𝑠𝑇 ⋅ 𝑨𝑎𝑏𝑐2𝑟

𝑇 ⋅ 𝑨𝑎𝑏𝑐2𝑟 ⋅
𝑑

𝑑𝑡
𝝍𝑠
𝑠  (B.6) 

With 𝑨𝑎𝑏𝑐2𝑟
𝑇 ⋅ 𝑨𝑎𝑏𝑐2𝑟 =

3
2
[
1 0
0 1
], (2.97) can be rewritten as 

𝑃𝑒𝑙 =
3

2
𝒊𝑠
𝑠𝑇 ⋅ 𝒖𝑠

𝑠 =
3

2
(𝑅𝑠 ⋅ 𝒊𝑠

𝑠𝑇 ⋅ 𝒊𝑠
𝑠 + 𝒊𝑠

𝑠𝑇 ⋅
𝑑

𝑑𝑡
𝝍𝑠
𝑠). (B.7) 
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Transforming the space vectors in (B.7) into rotor coordinates gives 

𝑃𝑒𝑙 =
3

2
𝒊𝑠
𝑟𝑇𝒖𝑠

𝑟 =
3

2
(𝑅𝑠𝒊𝑠

𝑟𝑇 𝒊𝑠
𝑟 + 𝜔𝒊𝑠

𝑟𝑇𝑱𝝍𝑠
𝑟 + 𝒊𝑠

𝑟𝑇 𝑑

𝑑𝑡
𝝍𝑠
𝑟). (B.8) 

Finally, the energy balance can be obtained by integrating (2.97) over a time interval, Δ𝑡. 

Hence, 

𝑊𝑒𝑙 = ∫
3

2
𝒊𝑠
𝑟𝑇𝒖𝑠

𝑟 𝑑𝑡
Δ𝑡

=
3

2
∫ (𝑅𝑠𝒊𝑠

𝑟𝑇 𝒊𝑠
𝑟 + 𝜔𝒊𝑠

𝑟𝑇𝑱𝝍𝑠
𝑟)𝑑𝑡

Δ𝑡

+
3

2
∫𝒊𝑠
𝑟𝑇𝑑𝝍𝑠

𝑟

𝐶

, (B.9) 

where 𝐶 is the integration path along the trajectory of currents and flux linkages during the 

given time interval. 

B.2 Alternative Machine Model in Stator Coordinates 

In section 2.2.3.1, the machine model in stator coordinates (2.54) was transformed into rotor 

coordinates in order to account for the nonlinear magnetic characteristics, 𝝍𝑠
𝑟 = 𝒇𝑟(𝒊𝑠

𝑟), which 

can be described best in rotor coordinates. The result was 

𝒖𝑠
𝑟 = 𝑅𝑠𝒊𝑠

𝑟 + 𝜔𝑟𝑱𝝍𝑠
𝑟 + 𝑳𝑠

𝑟 𝑑

𝑑𝑡
𝒊𝑠
𝑟, (B.10) 

where 

𝑳𝑠
𝑟 =

[

 
  
 
𝜕𝜓𝑑
𝜕𝑖𝑑

𝜕𝜓𝑑
𝜕𝑖𝑞

𝜕𝜓𝑞
𝜕𝑖𝑑

𝜕𝜓𝑞
𝜕𝑖𝑞 ]

 
  
 
= [
𝐿𝑑𝑑 𝐿𝑑𝑞
𝐿𝑞𝑑 𝐿𝑞𝑞

]. (B.11) 

In an attempt to maintain this description of the magnetic characteristics and at the same time 

have a model with directly measurable inputs and variables, we transform (B.10) back into 

stator coordinates. Therefore, we rewrite the time derivative in the third term on the RHS of 

(B.10) as 

𝑑

𝑑𝑡
𝒊𝑠
𝑟 =
𝑑

𝑑𝑡
(𝑻 (−𝜗𝑟)𝒊𝑠

𝑠) = −𝜔𝑟𝑱𝑻 (−𝜗𝑟)𝒊𝑠
𝑠 + 𝑻 (−𝜗𝑟)

𝑑𝒊𝑠
𝑠

𝑑𝑡
. (B.12) 

By multiplying (B.10) with 𝑻 (𝜗𝑟) and substituting the time rate of change of the current acc. 

to (B.12) into (B.10), we obtain 

𝒖𝑠
𝑠 = 𝑅𝑠𝒊𝑠

𝑠 + 𝜔𝑟𝑱𝝍𝑠
𝑠 + 𝑻(𝜗𝑟)𝑳𝑠

𝑟 (−𝜔𝑟𝑱𝑻 (−𝜗𝑟)𝒊𝑠
𝑠 + 𝑻(−𝜗𝑟)

𝑑𝒊𝑠
𝑠

𝑑𝑡
), (B.13) 

which, when considering the fact that 𝑱 is also a rotational matrix and that those matrices 

commute with each other, can be further simplified to 

𝒖𝑠
𝑠 = 𝑅𝑠𝒊𝑠

𝑠 + 𝜔𝑟(𝑱𝝍𝑠
𝑠 −𝑳𝑠

𝑠𝑱𝒊𝑠
𝑠) + 𝑳𝑠

𝑠 𝑑𝒊𝑠
𝑠

𝑑𝑡
, (B.14) 

where 
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𝑳𝑠
𝑠 =

[

 
  
 
𝜕𝜓𝛼
𝜕𝑖𝛼

𝜕𝜓𝛼
𝜕𝑖𝛽

𝜕𝜓𝛽
𝜕𝑖𝛼

𝜕𝜓𝛽
𝜕𝑖𝛽 ]

 
  
 
= 𝑻 (𝜗𝑟)𝑳𝑠

𝑟𝑻 (−𝜗𝑟). (B.15) 

 

B.3 Rotational Transformations of Matrices 

Rotational coordinate transformations as in the former section B.2 lead to matrix expressions 

of the following form, 

𝑲𝑎 = 𝑻 (𝜗)𝑲𝑏𝑻 (−𝜗), (B.16) 

where 𝑲𝑎 is a 2 × 2 matrix in coordinate system 𝑎 and 𝑲𝑏 is the respective matrix in 

coordinate system 𝑏 with 𝜗 being the angle between the axes of abscissae of both systems (from 

𝑎 to 𝑏) and 𝑻 (𝜗) being the rotational matrix as defined in (2.38). 

When performing the transformation, we get 

𝑻 (𝜗)𝑲𝑏𝑻(−𝜗) = [
cos(𝜗) − sin(𝜗)

sin(𝜗) cos(𝜗)
] [
𝑘11 𝑘12
𝑘21 𝑘22

] [
cos(𝜗) sin(𝜗)

− sin(𝜗) cos(𝜗)
] 

 

= [
cos(𝜗) 𝑘11 − sin(𝜗) 𝑘21 cos(𝜗) 𝑘12 − sin(𝜗) 𝑘22
sin(𝜗) 𝑘11 + cos(𝜗) 𝑘21 sin(𝜗) 𝑘12 + cos(𝜗) 𝑘22

] [
cos(𝜗) sin(𝜗)

− sin(𝜗) cos(𝜗)
] 

 

= [
cos2(𝜗) 𝑘11 − sin(𝜗) cos(𝜗) 𝑘21 − sin(𝜗) cos(𝜗) 𝑘12 + sin

2(𝜗) 𝑘22
sin(𝜗) cos(𝜗) 𝑘11 + cos

2(𝜗) 𝑘21 − sin
2(𝜗) 𝑘12 − sin(𝜗) cos(𝜗) 𝑘22

  

            
sin(𝜗) cos(𝜗) 𝑘11 − sin

2(𝜗) 𝑘21 + cos
2(𝜗) 𝑘12 − sin(𝜗) cos(𝜗) 𝑘22

sin2(𝜗) 𝑘11 + sin(𝜗) cos(𝜗) 𝑘21 + sin(𝜗) cos(𝜗) 𝑘12 + cos
2(𝜗) 𝑘22

] 

 

= [
cos2(𝜗) 𝑘11 − sin(𝜗) cos(𝜗) (𝑘21 + 𝑘12) + sin

2(𝜗) 𝑘22
sin(𝜗) cos(𝜗) (𝑘11 − 𝑘22) + cos

2(𝜗) 𝑘21 − sin
2(𝜗) 𝑘12

 

       
sin(𝜗) cos(𝜗) (𝑘11 − 𝑘22) − sin

2(𝜗) 𝑘21 + cos
2(𝜗) 𝑘12

sin2(𝜗) 𝑘11 + sin(𝜗) cos(𝜗) (𝑘21 + 𝑘12) + cos
2(𝜗) 𝑘22

]. 

 

With the trigonometric identities [58 pp. 81–83] 

sin2(𝜗) =
1

2
(1 − cos(2𝜗)), (B.17) 

cos2(𝜗) =
1

2
(1 + cos(2𝜗)), (B.18) 

and  
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sin(𝜗) cos(𝜗) =
1

2
sin(2𝜗), (B.19) 

we can further simplify above calculations to 

𝑻 (𝜗)𝑲𝑏𝑻(−𝜗) =
1

2
[
(1 + cos(2𝜗))𝑘11 − sin(2𝜗) (𝑘21 + 𝑘12) + (1 − cos(𝜗))𝑘22
sin(2𝜗) (𝑘11 − 𝑘22) + (1 + cos(2𝜗))𝑘21 − (1 − cos(𝜗))𝑘12

 

                                     
sin(2𝜗) (𝑘11 − 𝑘22) − (1 − cos(𝜗))𝑘21 + (1 + cos(2𝜗))𝑘12
(1 − cos(𝜗))𝑘11 + sin(2𝜗) (𝑘21 + 𝑘12) + (1 + cos(2𝜗))𝑘22

] 

 

=
1

2
([
(1 + cos(2𝜗))𝑘11 + (1 − cos(𝜗))𝑘22 sin(2𝜗) (𝑘11 − 𝑘22)

sin(2𝜗) (𝑘11 − 𝑘22) (1 − cos(𝜗))𝑘11 + (1 + cos(2𝜗))𝑘22
]

+ [
−sin(2𝜗) (𝑘21 + 𝑘12) −(1 − cos(𝜗))𝑘21 + (1 + cos(2𝜗))𝑘12

(1 + cos(2𝜗))𝑘21 − (1 − cos(𝜗))𝑘12 sin(2𝜗) (𝑘21 + 𝑘12)
]) 

 

=
1

2
([
𝑘11 + 𝑘22 + cos(2𝜗) (𝑘11 − 𝑘22) sin(2𝜗) (𝑘11 − 𝑘22)

sin(2𝜗) (𝑘11 − 𝑘22) 𝑘11 + 𝑘22 + cos(2𝜗) (−𝑘11 + 𝑘22)
]

+ [
− sin(2𝜗) (𝑘21 + 𝑘12) 𝑘12 − 𝑘21 + cos(𝜗) (𝑘21 + 𝑘12)

𝑘21 − 𝑘12 + cos(2𝜗) (𝑘21 + 𝑘12) sin(2𝜗) (𝑘21 + 𝑘12)
]) 

 

=
1

2
((𝑘11 + 𝑘22) [

1 0
0 1
] + (𝑘11 − 𝑘22) [

cos(2𝜗) sin(2𝜗)

sin(2𝜗) − cos(2𝜗)
] + (𝑘21 − 𝑘12) [

0 −1
1 0

]

+ (𝑘21 + 𝑘12) [
− sin(2𝜗) cos(2𝜗)

cos(2𝜗) sin(2𝜗)
]). 

With the definition of 𝑺(𝜗) as 

𝑺(𝜗) = [
cos(2𝜗) sin(2𝜗)

sin(2𝜗) − cos(2𝜗)
], (B.20) 

we can write 

𝑻 (𝜗)𝑲𝑏𝑻 (−𝜗) =
1

2
((𝑘11 + 𝑘22)𝑰 + (𝑘11 − 𝑘22)𝑺(𝜗) + (𝑘21 − 𝑘12)𝑱 + (𝑘21 + 𝑘12)𝑱𝑺(𝜗)) (B.21) 

and finally 

𝑻 (𝜗)𝑲𝑏𝑻 (−𝜗) =
1

2
((𝑘11 + 𝑘22)𝑰 + (𝑘21 − 𝑘12)𝑱 + ((𝑘11 − 𝑘22)𝑰 + (𝑘21 + 𝑘12)𝑱)𝑺(𝜗)), (B.22) 

where 

𝑰 = 𝑻 (0) = [
1 0
0 1
], (B.23) 

and 

𝑱 = 𝑻 (
𝜋

2
) = [

0 −1
1 0

]. (B.24) 
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B.4 Eigenvalues and Eigenvectors of a (2×2) Matrix 

A square (𝑛 × 𝑛) matrix, 𝑨, has 𝑛 eigenvalues, 𝜆𝑖, that can be found from 

det(𝑨 − 𝜆𝑖𝑰) = 0. (B.25) 

For 𝑛 = 2, we can write 

det [
𝑎11 − 𝜆𝑖 𝑎12
𝑎21 𝑎22 − 𝜆𝑖

] = 0 (B.26) 

Solving (B.26) for 𝜆𝑖 is straightforward and gives: 

(𝑎11 − 𝜆𝑖)(𝑎22 − 𝜆𝑖) − 𝑎12𝑎21 = 0 

𝑎11𝑎22 − 𝑎11𝜆𝑖 − 𝑎22𝜆𝑖 + 𝜆𝑖
2 − 𝑎12𝑎21 = 0 

𝜆𝑖
2 − (𝑎11 + 𝑎22)𝜆𝑖 + 𝑎11𝑎22 − 𝑎12𝑎21 = 0 

𝜆𝑖 =
𝑎11 + 𝑎22
2

±√(
𝑎11 + 𝑎22
2

)
2

− 𝑎11𝑎22 + 𝑎12𝑎21 

𝜆𝑖 =
𝑎11 + 𝑎22
2

±
1

2
√𝑎11

2 + 2𝑎11𝑎22 + 𝑎22
2 − 4𝑎11𝑎22 + 4𝑎12𝑎21 

Simplifying the root expression finally gives 

𝜆𝑖 =
𝑎11 + 𝑎22
2

±√(
𝑎11 − 𝑎22
2

)
2

+ 𝑎12𝑎21. (B.27) 

When substituting (B.27) into the eigenvalue problem, we can determine the components of 

the corresponding eigenvectors, 𝒙𝑖: 

(𝑨 − 𝜆𝑖𝑰)𝒙𝑖 = 𝟎 (B.28) 

For 𝑛 = 2, (B.28) is a set of two equations, namely 

[
𝑎11 − 𝜆𝑖 𝑎12
𝑎21 𝑎22 − 𝜆𝑖

] [
𝑥𝑖1
𝑥𝑖2
] = 𝟎. (B.29) 

When solving both equations separately for the first component of 𝒙𝑖, we get: 

1) 

(𝑎11 − 𝜆𝑖)𝑥𝑖1 + 𝑎12𝑥𝑖2 = 0 

𝑥𝑖1 = −
𝑎12

𝑎11 − 𝜆𝑖
𝑥𝑖2 

𝑥𝑖1 = −
𝑎12

𝑎11 −
𝑎11 + 𝑎22
2 ∓√(

𝑎11 − 𝑎22
2 )

2
+ 𝑎12𝑎21

𝑥𝑖2 

𝑥𝑖1 =
𝑎12

−
𝑎11 − 𝑎22
2 ±√(

𝑎11 − 𝑎22
2 )

2
+ 𝑎12𝑎21

𝑥𝑖2 (B.30) 
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2) 

𝑎21𝑥𝑖1 + (𝑎22 − 𝜆𝑖)𝑥𝑖2 = 0 

𝑥𝑖1 = −
𝑎22 − 𝜆𝑖
𝑎21

𝑥𝑖2 

𝑥𝑖1 = −
𝑎22 −

𝑎11 + 𝑎22
2 ∓√(

𝑎11 − 𝑎22
2 )

2
+ 𝑎12𝑎21

𝑎21
𝑥𝑖2 

𝑥𝑖1 =

𝑎11 − 𝑎22
2 ±√(

𝑎11 − 𝑎22
2 )

2
+ 𝑎12𝑎21

𝑎21
𝑥𝑖2 

(B.31) 

The length of eigenvectors is usually not interesting. Often, they are normalized to one. The 

orientation, however, contains their relevant information. We can express it in terms of the 

angle 𝜗 between the axis of abscissae and the respective eigenvector: 

From 1) 

𝜗𝑖 = atan (
𝑥𝑖2
𝑥𝑖1
) = atan

(

  
 −
𝑎11 − 𝑎22
2 ±√(

𝑎11 − 𝑎22
2 )

2
+ 𝑎12𝑎21

𝑎12
)

  
 

 (B.32) 

From 2) 

𝜗𝑖 = atan(
𝑥𝑖2
𝑥𝑖1
) = atan

(

  
 𝑎21
𝑎11 − 𝑎22
2 ±√(

𝑎11 − 𝑎22
2 )

2
+ 𝑎12𝑎21)

  
 

 (B.33) 

When we assume that 𝑨 is symmetric and by comparing (B.32) and (B.33) to the definitions 

of the atan2 function (B.40) and (B.43) in the following section B.5, we can also write in both 

cases 

𝜗𝑖 =
1

2
atan2 (±𝑎12,±

𝑎11 − 𝑎22
2

) (B.34) 

 

B.5 Definition of atan2(y,x) 

The atan2 function shall give us the angle, 𝜗, of a point in Cartesian coordinates (𝑥, 𝑦) with 

respect to the axis of ordinate in all four quadrants of that coordinate system, i.e. in the interval 

−𝜋 < 𝜗 ≤ 𝜋. We thus define 

atan2(𝑦, 𝑥) = 𝜗, (B.35) 

where the coordinates are given by 

(𝑥, 𝑦) = (𝑟 cos 𝜗 , 𝑟 sin 𝜗), (B.36) 

with 

𝑟 = √𝑥2 + 𝑦2. (B.37) 
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The tangent half-angle formula is known to be [58 p. 82] 

tan (
𝜗

2
) =

sin 𝜗

1 + cos 𝜗
. (B.38) 

Substituting (B.36) into (B.38) and subsequently solving for 𝜗 2⁄  gives us: 

tan (
𝜗

2
) =

𝑦 𝑟⁄

1 + 𝑥 𝑟⁄
 

tan(
𝜗

2
) =

𝑦

𝑟 + 𝑥
 

𝜗

2
= atan

𝑦

√𝑥2 + 𝑦2 + 𝑥
 (B.39) 

Finally, substituting (B.39) into (B.35) gives us the solution: 

atan2(𝑦, 𝑥) = 2 atan
𝑦

√𝑥2 + 𝑦2 + 𝑥
 (B.40) 

An alternative solution can be found analogously, when using the other half-angle formula [58 

p. 82]: 

tan (
𝜗

2
) =
1 − cos 𝜗

sin 𝜗
. (B.41) 

𝜗

2
= atan

√𝑥2 + 𝑦2 − 𝑥

𝑦
 (B.42) 

atan2(𝑦, 𝑥) = 2 atan
√𝑥2 + 𝑦2 − 𝑥

𝑦
 (B.43) 

 

B.6 Response of Linear State Space Models to Rotating Input Signals 

The particular solution of a linear, time-invariant system in state-space notation, 

𝑑

𝑑𝑡
𝒙 = 𝑨𝒙 +𝑩𝒖, (B.44) 

is given by 

𝒙𝑝(𝑡) = ∫ exp(𝑨(𝑡 − 𝜏))𝑩𝒖(𝜏)𝑑𝜏
𝑡

𝑡0

, (B.45) 

where 𝒙 is the vector of state variables, 𝒖 is the input vector and 𝑨 and 𝑩 are the 

corresponding system and input matrices [74 pp. 706–707]. 

When we consider the special case of a rotational input signal, we can define 

𝒖(𝑡) = 𝑢 [
cos(𝜔𝑡 + 𝜙)

sin(𝜔𝑡 + 𝜙)
] = 𝑢𝑻 (𝜔𝑡 + 𝜙)𝒆1, (B.46) 

where 𝑢 is the magnitude of the signal rotating at a frequency of 𝜔 with an initial phase of 𝜙. 
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We thus have two input dimensions. With 𝑛 state variables, the input matrix has the size 𝑛 × 2, 

whereas the system matrix is a 𝑛 × 𝑛 square matrix. The latter can be decomposed into 

𝑨 = 𝑽𝑫𝑽 −1, (B.47) 

where 𝑫 is a diagonal matrix containing the 𝑛 eigenvalues of 𝑨 and 𝑽  is a square matrix, 

whose columns are the eigenvectors of 𝑨 [65 p. 113]. Analogously, the matrix exponential in 

(B.45) can be decomposed into ([65 pp. 108–109]) 

exp(𝑨(𝑡 − 𝜏)) = 𝑽 exp(𝑫(𝑡 − 𝜏)) 𝑽 −1, (B.48) 

where 

exp(𝑫(𝑡 − 𝜏)) =

[
 
 
exp𝜆1(𝑡 − 𝜏) 0 0

0 ⋱ 0
0 0 exp 𝜆𝑛(𝑡 − 𝜏)]

 
 . (B.49) 

It is easy to see that (B.49) can be rewritten as the product of two diagonal matrix exponentials, 

i.e. 

exp(𝑫(𝑡 − 𝜏)) = exp(𝑫𝑡) exp(−𝑫𝜏). (B.50) 

Since 𝑽  is constant and also the time, 𝑡, is independent from the integration variable, 𝜏 , we 

can substitute (B.48) into (B.45) and rewrite the result as 

𝒙𝑝(𝑡) = 𝑽 exp(𝑫𝑡)∫ exp(−𝑫𝜏) 𝑽
−1𝑩𝒖(𝜏)𝑑𝜏

𝑡

𝑡0

. (B.51) 

The product of inverse eigenvector matrix and input matrix is a constant 𝑛 × 2 matrix, 

𝑲 = 𝑽 −1𝑩. (B.52) 

When substituting the rotational input signal acc. to (B.46) into (B.51) and determining the 

vector elements in the integral on the RHS of (B.51), we obtain scalar expressions in the form 

of 

𝑥𝑖𝑛𝑡,𝑛 = 𝑢∫ exp(−𝜆𝑛𝜏) (𝐾𝑛1 cos(𝜔𝑡 + 𝜙) + 𝐾𝑛2 sin(𝜔𝑡 + 𝜙))𝑑𝜏
𝑡

𝑡0

, (B.53) 

where 𝐾𝑛1 and 𝐾𝑛2 are the elements of the first and second columns of 𝑲 in row 𝑛. 

With the known integral solutions [58 p. 1103] 

∫exp(𝜆𝜏) cos(𝜔𝜏 + 𝜙) 𝑑𝜏 =
exp(𝜆𝜏)

𝜆2 + 𝜔2
(𝜆 cos(𝜔𝜏 + 𝜙) + 𝜔 sin(𝜔𝜏 + 𝜙)), (B.54) 

∫exp(𝜆𝜏) sin(𝜔𝜏 + 𝜙) 𝑑𝜏 =
exp(𝜆𝜏)

𝜆2 + 𝜔2
(𝜆 sin(𝜔𝜏 + 𝜙) − 𝜔 cos(𝜔𝜏 + 𝜙)), (B.55) 

we can rewrite (B.53) as 
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𝑥𝑖𝑛𝑡,𝑛 = 𝑢[
exp(−𝜆𝑛𝜏)

𝜆𝑛
2 + 𝜔2

(𝐾𝑛1(−𝜆𝑛 cos(𝜔𝜏 + 𝜙) + 𝜔 sin(𝜔𝜏 + 𝜙))

+ 𝐾𝑛2(−𝜆𝑛 sin(𝜔𝜏 + 𝜙) − 𝜔 cos(𝜔𝜏 + 𝜙)))]
𝑡0

𝑡

, 
(B.56) 

which can be further simplified to 

𝑥𝑖𝑛𝑡,𝑛 = 𝑢[
exp(−𝜆𝑛𝜏)

𝜆𝑛
2 + 𝜔2

(cos(𝜔𝜏 + 𝜙) (−𝐾𝑛1𝜆𝑛 −𝐾𝑛2𝜔) + sin(𝜔𝜏 + 𝜙) (𝐾𝑛1𝜔 − 𝐾𝑛2𝜆𝑛))]
𝑡0

𝑡

. (B.57) 

When substituting this elementwise solution of the integral into the matrix expression (B.51), 

we obtain 

𝒙𝑝(𝑡) = 𝑽 exp(𝑫𝑡) [(𝑫
2 + 𝜔2𝑰)−1 exp(−𝑫𝜏) (−𝜔𝑲𝑱 −𝑫𝑲)𝒖(𝜏)]𝑡0

𝑡 , (B.58) 

and, after substituting (B.52) and the definite integral boundaries, 

𝒙𝑝(𝑡) = 𝑽 exp(𝑫𝑡) (𝑫
2 + 𝜔2𝑰)−1(exp(−𝑫𝑡) (−𝜔𝑽 −1𝑩𝑱 −𝑫𝑽 −1𝑩)𝒖(𝑡)

− exp(−𝑫𝑡0) (−𝜔𝑽
−1𝑩𝑱 −𝑫𝑽 −1𝑩)𝒖(𝑡0)). 

(B.59) 

Further simplification of (B.59) leads to 

𝒙𝑝(𝑡) = 𝑽 (𝑫
2 + 𝜔2𝑰)−1 ((−𝜔𝑽 −1𝑩𝑱 −𝑫𝑽 −1𝑩)𝒖(𝑡)

− exp(𝑫(𝑡 − 𝑡0)) (−𝜔𝑽
−1𝑩𝑱 −𝑫𝑽 −1𝑩)𝒖(𝑡0)), 

(B.60) 

and, by transforming the diagonal eigenvalue matrices and matrix exponentials acc. to (B.48) 

and (B.49) back into their system matrix representation, we obtain 

𝒙𝑝(𝑡) = (𝑨
2 + 𝜔2𝑰)−1 ((−𝜔𝑩𝑱 −𝑨𝑩)𝒖(𝑡) − exp(𝑨(𝑡 − 𝑡0)) (−𝜔𝑩𝑱 −𝑨𝑩)𝒖(𝑡0)). (B.61) 

When rearranging (B.61) and introducing the particular response matrix, 

𝑲𝑝 = −(𝑨
2 + 𝜔2𝑰)−1((𝑨𝑩 + 𝜔𝑩𝑱)), (B.62) 

we end up with 

𝒙𝑝(𝑡) = − exp(𝑨(𝑡 − 𝑡0))𝑲𝑝𝒖(𝑡0) +𝑲𝑝𝒖(𝑡). (B.63) 

We can see that the particular response of a linear system to rotating input signals consists of 

an exponential component depending on the initial input 𝒖(𝑡0) and a linear component 

depending on 𝑲𝑝 and the rotating input signal. 

 

B.7 Current Response of Synchronous Machines to Rotating Voltages 

In the previous section, the particular response matrix of linear systems with rotating inputs 

was found to be  

𝑲𝑝 = −(𝑨
2 + 𝜔2𝑰)−1((𝑨𝑩 + 𝜔𝑩𝑱)). (B.64) 

The system and input matrices of synchronous machines linearized at a given operating point 

are given by 



APPENDIX B  CALCULATIONS 

228 

𝑨 = −𝑳𝑠,𝑜𝑝
𝑟 −1(𝑅𝑠𝑰 + 𝜔𝑟,𝑜𝑝𝑱𝑳𝑠,𝑜𝑝

𝑟 ) (B.65) 

and 

𝑩 = 𝑳𝑠,𝑜𝑝
𝑟 −1. (B.66) 

Substituting (B.65) and (B.66) into (B.64) results in 

𝑲𝑝 = −((−𝑳𝑠,𝑜𝑝
𝑟 −1(𝑅𝑠𝑰 + 𝜔𝑟,𝑜𝑝𝑱𝑳𝑠,𝑜𝑝

𝑟 ))
2
+ 𝜔2𝑰)

−1

((−𝑳𝑠,𝑜𝑝
𝑟 −1(𝑅𝑠𝑰 + 𝜔𝑟,𝑜𝑝𝑱𝑳𝑠,𝑜𝑝

𝑟 )𝑳𝑠,𝑜𝑝
𝑟 −1

+ 𝜔𝑳𝑠,𝑜𝑝
𝑟 −1𝑱)), 

(B.67) 

which can be rewritten as 

𝑲𝑝 = ((𝑅𝑠
2𝑰 + 𝜔𝑟,𝑜𝑝𝑅𝑠𝑳𝑠,𝑜𝑝

𝑟 𝑱 + 𝜔𝑟,𝑜𝑝𝑅𝑠𝑱𝑳𝑠,𝑜𝑝
𝑟 + 𝜔𝑟,𝑜𝑝

2 𝑳𝑠,𝑜𝑝
𝑟 𝑱𝑱𝑳𝑠,𝑜𝑝

𝑟 ) + 𝜔2𝑳𝑠,𝑜𝑝
𝑟 2)

−1
(𝑅𝑠𝑰

− (𝜔 − 𝜔𝑟,𝑜𝑝)𝑳𝑠,𝑜𝑝
𝑟 𝑱). 

(B.68) 

With 

𝑱𝑱 = −𝑰 (B.69) 

and 

𝑳𝑠,𝑜𝑝
𝑟 𝑱 + 𝑱𝑳𝑠,𝑜𝑝

𝑟 = 𝐿Σ𝑱, (B.70) 

we can obtain 

𝑲𝑝 = (𝑅𝑠
2𝑰 + 2𝜔𝑟,𝑜𝑝𝑅𝑠𝐿Σ𝑱 + (𝜔

2 − 𝜔𝑟,𝑜𝑝
2 )𝑳𝑠,𝑜𝑝

𝑟 2)−1(𝑅𝑠𝑰 − (𝜔 − 𝜔𝑟,𝑜𝑝)𝑳𝑠,𝑜𝑝
𝑟 𝑱). (B.71) 

In order to further simplify this expression, we need to apply the following equations: 

(𝑿 + 𝒀 )−1 =
1

det(𝑿 + 𝒀 )
(adj(𝑿) + adj(𝒀 )) (a) 

(B.72) 

adj(𝑰) = 𝑰 (b) 

adj(𝑱) = −𝑱  (c) 

adj(𝑳𝑠,𝑜𝑝
𝑟 2) = −𝑱𝑳𝑠,𝑜𝑝

𝑟 2𝑱 (d) 

det(𝑥𝑰 + 𝑦𝑱 + 𝑧𝑺(𝜗)) = 𝑥2 + 𝑦2 − 𝑧2 (e) 

𝑳𝑟 = 𝐿Σ𝑰 + 𝐿A,Δ𝑺(𝜗𝐴) (f) 

𝑳𝑟𝑱 = 𝑱 (𝐿Σ𝑰 − 𝐿A,Δ𝑺(𝜗𝐴)) (g) 

𝑳𝑟2 = (𝐿Σ
2 + 𝐿A,Δ

2 )𝑰 + 2𝐿Σ𝐿A,Δ𝑺(𝜗𝐴) (h) 

𝑱𝑳𝑟2𝑱 = −(𝐿Σ
2 + 𝐿A,Δ

2 )𝑰 + 2𝐿Σ𝐿A,Δ𝑺(𝜗𝐴) (i) 

With (B.72) (a), we can rewrite the inverse term in (B.71) and obtain 

𝑲𝑝 =
(adj(𝑅𝑠

2𝑰) + adj(2𝜔𝑟,𝑜𝑝𝑅𝑠𝐿Σ𝑱) + adj ((𝜔
2 − 𝜔𝑟,𝑜𝑝

2 )𝑳𝑠,𝑜𝑝
𝑟 2))(𝑅𝑠𝑰 − (𝜔 − 𝜔𝑟,𝑜𝑝)𝑳𝑠,𝑜𝑝

𝑟 𝑱)

det(𝑅𝑠
2𝑰 + 2𝜔𝑟,𝑜𝑝𝑅𝑠𝐿Σ𝑱 + (𝜔

2 − 𝜔𝑟,𝑜𝑝
2 )𝑳𝑠,𝑜𝑝

𝑟 2)
 (B.73) 

The denominator term in (B.73) can be rewritten by means of (B.72) (e) and (h) as 
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𝐷 = (𝑅𝑠
2 + (𝜔2 − 𝜔𝑟,𝑜𝑝

2 )(𝐿Σ
2 + 𝐿A,Δ

2 ))
2
+ (2𝑅𝑠𝜔𝑟,𝑜𝑝𝐿Σ)

2 − (2(𝜔2 − 𝜔𝑟,𝑜𝑝
2 )𝐿Σ𝐿A,Δ)

2. (B.74) 

After expanding the squared terms and rearranging the results, we end up with 

𝐷 = 𝑅𝑠
2 (𝑅𝑠

2 + 2((𝜔2 + 𝜔𝑟,𝑜𝑝
2 )𝐿Σ

2 + (𝜔2 − 𝜔𝑟,𝑜𝑝
2 )𝐿A,Δ

2 )) + (𝜔2 − 𝜔𝑟,𝑜𝑝
2 )2(𝐿Σ

2 − 𝐿A,Δ
2 )2. (B.75) 

In the numerator term of (B.73), we can rewrite the adjugate expressions by means of (B.72) 

(b) – (d) and obtain 

𝑁 = (𝑅𝑠
2𝑰 − 2𝑅𝑠𝜔𝑟,𝑜𝑝𝐿Σ𝑱 − (𝜔

2 − 𝜔𝑟,𝑜𝑝
2 )𝑱𝑳𝑠,𝑜𝑝

𝑟 2𝑱)(𝑅𝑠𝑰 − (𝜔 − 𝜔𝑟,𝑜𝑝)𝑳𝑠,𝑜𝑝
𝑟 𝑱). (B.76) 

Substituting the inductance equations (B.72) (g) and (i) leads to 

𝑁 = (𝑅𝑠
2𝑰 − 2𝑅𝑠𝜔𝑟,𝑜𝑝𝐿Σ𝑱 + (𝜔

2 − 𝜔𝑟,𝑜𝑝
2 ) ((𝐿Σ

2 + 𝐿A,Δ
2 )𝑰 + 2𝐿Σ𝐿A,Δ𝑺(𝜗𝐴))) (𝑅𝑠𝑰

− (𝜔 − 𝜔𝑟,𝑜𝑝)𝑱 (𝐿Σ𝑰 − 𝐿A,Δ𝑺(𝜗𝐴))). 
(B.77) 

We can see that the numerator only contains terms of scalars that are multiplied with 𝑰, 𝑱 , 

𝑺(𝜗𝐴) or 𝑱𝑺(𝜗𝐴). We thus expand (B.77) and afterwards factor out the respective matrices. 

The resulting numerator terms of 𝑲𝑝 are 

𝑁𝐼  = 𝑅𝑠 (𝑅𝑠
2 + (𝜔 − 𝜔𝑟,𝑜𝑝) (𝐿𝛴

2 (𝜔 − 𝜔𝑟,𝑜𝑝) + 𝐿𝐴,𝛥
2 (𝜔 + 𝜔𝑟,𝑜𝑝))) 𝑰, (a) 

(B.78) 
𝑁𝐽  = −((𝜔 + 𝜔𝑟,𝑜𝑝)𝐿𝛴 (𝑅𝑠

2 + (𝜔 − 𝜔𝑟,𝑜𝑝)
2(𝐿𝛴

2 − 𝐿𝐴,𝛥
2 )))𝑱, (b) 

𝑁𝑆  = −2𝑅𝑠𝐿𝛴𝐿𝐴,𝛥𝜔(𝜔 − 𝜔𝑟,𝑜𝑝)𝑺(𝜗𝐴), (c) 

𝑁𝐽𝑆  = ((𝜔 − 𝜔𝑟,𝑜𝑝)𝐿𝐴,𝛥 (𝑅𝑠
2 − (𝜔2 − 𝜔𝑟,𝑜𝑝

2 )(𝐿𝛴
2 − 𝐿𝐴,𝛥

2 )))𝑱𝑺(𝜗𝐴). (d) 

With (B.75) and (B.78), we thus found a clearly arranged form of 𝑲𝑝, i.e. 

𝑲𝑝 =
𝑁𝐼 +𝑁𝐽 +𝑁𝑆 +𝑁𝐽𝑆

𝐷
. (B.79) 

 

B.8 Fourier Analysis of Piecewise Constant Vector Functions 

Given a piecewise constant vector function with 𝑚 segments, 

𝒖(𝑡) =

{ 
 
  
𝒖1, 𝑡0 ≤ 𝑡 < 𝑡1
𝒖𝑖, 𝑡𝑖−1 ≤ 𝑡 < 𝑡𝑖
𝒖𝑚, 𝑡𝑚−1 ≤ 𝑡 < 𝑡𝑚

 , (B.80) 

where 

𝒖𝑖 = [
𝑢𝛼𝑖
𝑢𝛽𝑖
] , (B.81) 

we can determine its Fourier components acc.to (2.143) by 

𝒖𝑘 = 𝑢𝑘𝑻 (𝜙𝑘)𝒆1 =
1

𝑇1
∫ 𝑻(−𝜔𝑘𝑡)𝒖(𝑡)𝑑𝑡

𝑡0+𝑇1

𝑡0

, (B.82) 
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where 𝑇1 is the period time of 𝒖(𝑡),  

𝑇1 = 𝑡𝑚 − 𝑡0. (B.83) 

In order to account for the piecewise nature of 𝒖(𝑡), we compute the integral segment by 

segment and obtain 

𝒖𝑘 =
1

𝑇1
∑

(

  ∫ 𝑻(−𝜔𝑘𝑡)𝒖𝑖𝑑𝑡

𝑡𝑖

𝑡𝑖−1 )

  
𝑚

𝑖=1

. (B.84) 

When solving the integrals, we need to remind the definition of 𝜔𝑘 acc. to (2.138), i.e. 

𝜔𝑘 = 2𝜋
𝑘

𝑇1
. (B.85) 

For 𝑘 = 0, we obtain 

𝒖0 =
1

𝑇1 
∑((𝑡𝑖 − 𝑡𝑖−1)𝒖𝑖)
𝑚

𝑖=1

, (B.86) 

while in any other case, the solution is 

𝒖𝑘 =
1

𝑇1
∑([

1

𝜔𝑘
𝑱𝑻 (−𝜔𝑘𝑡)]

𝑡𝑖−1

𝑡𝑖

𝒖𝑖)
𝑚

𝑖=1

, ∀𝑘 ≠ 0. (B.87) 

When considering the trigonometric difference equations acc. to [58 p. 82], i.e. 

cos(𝜙1) − cos(𝜙2)  = −2 sin (
𝜙1 + 𝜙2
2
) sin (

𝜙1 − 𝜙2
2
), (a) 

(B.88) 

sin(𝜙1) − sin(𝜙2)  = 2 cos(
𝜙1 + 𝜙2
2
) sin (

𝜙1 − 𝜙2
2
), (b) 

we can find that 

𝑻 (𝜙1) − 𝑻 (𝜙2) = 2 sin (
𝜙1 − 𝜙2
2
)𝑱𝑻 (

𝜙1 + 𝜙2
2
). (B.89) 

When applying (B.89), we can rewrite (B.87) as 

𝒖𝑘 =
2

𝜔𝑘𝑇1
∑(sin(

𝜔𝑘
2
(𝑡𝑖 − 𝑡𝑖−1)) 𝑻 (−

𝜔𝑘
2
(𝑡𝑖 + 𝑡𝑖−1))𝒖𝑖

𝑠) , ∀𝑘 ≠ 0
𝑚

𝑖=1

, (B.90) 

and, when substituting (B.85), we get 

𝒖𝑘 =
1

𝑘𝜋
∑(sin(

𝑘𝜋

𝑇1
(𝑡𝑖 − 𝑡𝑖−1))𝑻 (−

𝑘𝜋

𝑇1
(𝑡𝑖 + 𝑡𝑖−1))𝒖𝑖

𝑠), ∀𝑘 ≠ 0
𝑚

𝑖=1

. (B.91) 
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