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Abstract

Shaker tables are used for high-frequency fatigue test-
ing of components. In piezo-shaker tests, the component
is excited with input accelerations at different points,
and the output acceleration is measured, e.g., at the
circuit board of the component. However, piezo-shaker
tests for various loads are expensive and laborious. Ma-
chine Learning (ML) algorithms promise to be a suitable
method for simulation. The main task is using Neuronal
Networks as a virtual sensor to derive a good approxi-
mation of the resulting vibration. Existing piezo tests
can be used as the training data to get a good prediction
of the output time series (TS) for different input loads
and temperatures. The predicted time series allows us to
determine an estimation of the pseudo damage inflicted
by the vibration. Accordingly, the method results in less
bench test time and experimental effort. The resulting
output time series has matched statistics like Root Mean
Square (energy) and also matched the spectrum of the
true TS well. Nevertheless, when predicting output ac-
celerations at untrained temperature areas, a time shift
is noticed, making rating models with the help of valida-
tion loss impossible. Because of that, a new metric, the
Mean Percentage Window Energy Error (MPWEE), is
introduced, comparing energy deviations between small
windows of size 1000 (equivalent to 0.02 second windows).
The best ML models are verified with a classical nominal
mean stress approach comparing the pseudo damage in-
flicted by the original and predicted time series from the
ML models.

State of the Art

Convolutional Neural Networks (CNNs) have signif-
icantly contributed to increasing the accuracy of
regression-based methods. It has been shown that CNNs
can be used as virtual sensors to approximate vibration
responses at different locations to reduce the number of
sensors needed [1]. In general, methods that work well
for time series forecasting seem to do well as virtual sen-
sors. This makes sense since the signals are of high res-
olution in the time domain resulting in adjacent values
being similar. Another approach is to wavelet transform
the time series and use the frequency domain information
as input. Time series data is driven by multiple latent
patterns which occur at different frequencies. Many ex-
isting approaches to time series forecasting fail to iden-
tify these frequency-domain components [2]. This can be
done with scalograms. They show a visual representa-
tion of the spectrum of frequencies of a signal as it varies
with time. These images then can be analyzed by CNNs.
Mainly for time series classification spectrograms have

been used with great success as input data [3] [4]. Wang
et al. [5] presented the use of wavelet scalogram images
as an input into a CNN to detect faults within a set of
vibration data. Zhao et al. [2] present time series fore-
casting with scalograms from wavelet transforms. This
paper discusses different network architectures like 1D-
CNN with different inputs or 2D-CNN getting scalograms
as input and then compares the results.

Data preprocessing

We got data from performing different maneuvers with
the piezo shaker table (see Fig. 1) on car components.
The shaker table has excited the component with 10 in-
put accelerations - Input_1 to Input_10 - at different lo-
cations in the direction of the x, y, z-axis. Then the
resulting accelerations at a point of interest like at the
support of the component were measured. The input ex-
citations simulated different typical car maneuvers like
curve cruise, emergency braking etc. The dataset con-
tains 4 typical maneuvers repeated at 5 different temper-
atures, namely -5°C, 25°C, 50°C, 82°C, 115°C. Figure

Figure 1: Piezo-shaker table exciting the component with 10
input accelerations and measuring the output accelerations.

2 shows one maneuver of raw data. The accelerations -
Input _1 - Input _10 and Output - are plotted scaled be-
tween -1 and 1. Here, Temp is the temperature measured
over time and stays rather constant in one maneuver.
The output is the resulting acceleration in the z-axis at
the circuit board and is also scaled between -1 and 1. To
speed up the training process, we focus on the z-axis out-
put acceleration and neglect the resulting acceleration in
the x and y-axis. The data was bandpassed and idle time
was removed. Afterwards, we reduced the number of in-
puts from 10 to 6 with the feature engineering method
SelectKBest.



Figure 2: Starting point: Raw data from Bosch of one ma-
neuver.

Before feeding the data to a CNN, the data is standard-
ized. Next, the data needs to be rolled in windows for a
1D CNN. This is done by rolling the time series taking
the 699 past values and the present value of all inputs
to predict the current output. As we also wanted to test
frequency domain information, scalograms have been cre-
ated and saved as numpy arrays as inputs to the CNNs.
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Figure 3: Contour plot of a scalogram showing the power val-
ues of the T'S with a log,. The used time window is 700. The
scales of the wavelets are chosen to depict the corresponding
frequency band between 86-6164 Hz and are displayed loga-
rithmically as the y-axis. Here a 3rd order complex Gauss
wavelet was chosen.

Results

To create and optimize the CNNs Keras tuner was used.
The inputs are fed into the nets starting with into a con-
volution block alternating CNN layers and pooling lay-
ers. The output is fed into a dense block and then it
is decided if the temperature is added as an extra input.
Another dense block then calculates the predicted output
acceleration.

The subplot in the left of Fig. 4 shows the predicted and
true validation acceleration time series. The true TS con-
tains the 8 measured validation maneuvers appended be-
hind each other. The y-axis of the plots is unit-less as the

accelerations have been standardized. The predicted TS
is overall very similar to the true T'S. The subplot on the
upper right compares the true and predicted spectrum.
The amplitude spectrum is plotted over the frequency
between 90 Hz and 5000 Hz as that is the interval of the
bandpass filter. The spectrum of frequencies matches
well except for the peak around 1000 Hz and the 2 peaks
around 2000 Hz. The left subplot of Fig. 5 presents a
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Figure 4: Comparing the predicted and true TS and spec-
trum of the best model from the grid search using 6 inputs
without the temperature.

zoom into the time series and shows that the model is
not able to predict the exact position of individual peaks
of vibration, even so the RMS (Root Mean Square) and
spectrum are depicted quite accurately. Trends in am-
plitude of acceleration are still depicted well. The data
seems to be time-shifted by around 10 time steps. The
time shift can be explained by the model predicting vi-
brations in unseen temperature areas as the temperature
affects material properties.
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Figure 5: Comparing  models
trained/untrained temperature areas.
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To confirm this statement, the maneuvers with temper-
ature 25°C, 82°C were split in the ratio 70% t030% in
training and validation data. Figure 5 compares the same
window with the model training from data at 25°C, 82°C,
and the model training from data at -5°C, 50°C and
115°C. The model training and testing with the same
temperatures was able to accurately predict the phase of
the vibration with the validation loss going towards zero,
confirming our statement. However, the exact course of
the vibration is not of interest as the goal is to predict the
resulting damage statistics of the component. As long as
the curve results in similar damage to the component,
the model fulfills its job. That is why validation loss is a
poor metric to decide on the best models as the time shift
causes big errors but does not affect the damage done to
the component. The Mean percentage window energy



error (MPWEE) was defined to rate model performance:
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When using the scalograms as input we reduced the size
of the dataset from 100.000 values to 20.000 values to
keep scalogram creation and training time reasonable.

Table 1: Table of the best MPWEE values reached with
different inputs. The number after TS (time series) stands
for the number of input accelerations used, T refers to the
temperature here and Scalo to the scalograms. Because of
the long training time of network using scalograms there was
no extensive grid search done for that one.

Inputs large Dataset
TS(6) TS(6)+T TS(10)4+T
MPWEE 26,86% 24,51% 21,00%
Inputs reduced Dataset
TS(6)+T TS(6)+T+Scalo
MPWEE 32,54% 30,60%

As the table shows using more data significantly outper-
formed the value of scalograms in this test.

A classical nominal mean stress approach is used to ap-
proximate the fatigue damage of the component based
on the true and predicted TS. We set the material pa-
rameters: slope of the Woehler curve to k = 5, edge load
number of cycles ND_50 = 1.5 - 105, the fatigue limit
SD_50 = 5 and the mean stress parameters to M1 = 0.2
and M2 = 0.3 and the R-Ratio =-1 (fully reverse loading)
and used the method “Miner elementary” [6].
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Figure 6: Pseudo damage of the TS predicted by the ML
models compared to the original T'S.

Figure 6 compares the pseudo damage of the original T'S
(nominated to 0.5) and the TS predicted by different ML
models. The model with all 10 input accelerations - no
SelectkBest - (10 inputs with T) performs best, followed
by the model using 6 inputs and the temperature (6 in-
puts with T). As the pseudo damage of these maneuvers

have different powers of tens the critical ones can be de-
termined. Overall, the damage is well described by the
model with 10 inputs and the temperature.

Conclusion

The output time series predicted by the ML models
matches Root Mean Square and spectrum of true time
series quite well but could not precisely locate the indi-
vidual peaks of vibration in time. The time shift causes
the validation loss to not decrease but does not affect the
damage on the component. Because of that a new met-
ric - Mean Percentage Window Energy Error (MPWEE)
- was introduced to rate models.

Using scalograms to the model didn’t make sense for the
problem as the input dataset needed to be reduced. Nev-
ertheless, it could be interesting for tasks, where only
small amount of data is available or resources do not
matter.

It was shown that ML models can approximate the ac-
celeration time series and estimate the pseudo damage
reasonably. As the pseudo damage of these maneuvers
have different powers of tens the critical ones can be de-
termined and bench-tested.
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