
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 1

Learning a Low-Dimensional Representation of a
Safe Region for Safe Reinforcement Learning on

Dynamical Systems
Zhehua Zhou , Graduate Student Member, IEEE, Ozgur S. Oguz , Member, IEEE,

Marion Leibold, Member, IEEE, and Martin Buss , Fellow, IEEE

Abstract— For the safe application of reinforcement learning
algorithms to high-dimensional nonlinear dynamical systems,
a simplified system model is used to formulate a safe rein-
forcement learning (SRL) framework. Based on the simplified
system model, a low-dimensional representation of the safe region
is identified and used to provide safety estimates for learning
algorithms. However, finding a satisfying simplified system model
for complex dynamical systems usually requires a considerable
amount of effort. To overcome this limitation, we propose a
general data-driven approach that is able to efficiently learn a
low-dimensional representation of the safe region. By employing
an online adaptation method, the low-dimensional representation
is updated using the feedback data to obtain more accurate
safety estimates. The performance of the proposed approach for
identifying the low-dimensional representation of the safe region
is illustrated using the example of a quadcopter. The results
demonstrate a more reliable and representative low-dimensional
representation of the safe region compared with previous works,
which extends the applicability of the SRL framework.

Index Terms— Data-driven model order reduction, deep learn-
ing in robotics and automation, learning and adaptive systems,
safe reinforcement learning (SRL).

I. INTRODUCTION

RECENT studies of applying reinforcement learning or
deep reinforcement learning algorithms to complex,

i.e., highly nonlinear and high-dimensional, dynamical sys-
tems have demonstrated attractive achievements in various
control tasks, e.g., humanoid control [1] and robotic manip-
ulator control [2]. However, although the results display the
potential of utilizing reinforcement learning algorithms as a
substitute for traditional controller design techniques, most
of them are still only presented in simulations [3]. One

Manuscript received October 16, 2020; revised July 7, 2021; accepted
August 14, 2021. (Corresponding author: Zhehua Zhou.)

Zhehua Zhou, Marion Leibold, and Martin Buss are with the
Chair of Automatic Control Engineering, Technical University of
Munich, 80290 Munich, Germany (e-mail: zhehua.zhou@tum.de;
marion.leibold@tum.de; mb@tum.de).

Ozgur S. Oguz is with the Max Planck Institute for Intelligent Systems,
University of Stuttgart, 70569 Stuttgart, Germany (e-mail: ozgur.oguz@
ipvs.uni-stuttgart.de).

This article has supplementary material provided by the
authors and color versions of one or more figures available at
https://doi.org/10.1109/TNNLS.2021.3106818.

Digital Object Identifier 10.1109/TNNLS.2021.3106818

major impediment against implementing reinforcement learn-
ing algorithms on real-world dynamical systems is that, due
to the random exploration mechanism, the intermediate policy
may lead to dangerous behaviors of the system. As a result,
both the system itself and the environment may be damaged
during learning. In order to apply state-of-the-art reinforce-
ment learning algorithms to real-world control systems, one
central problem to address is how to introduce a reliable safety
guarantee into the learning process.

A. Related Work

Safe reinforcement learning (SRL) aims to find an optimal
control policy by way of reinforcement learning while ensuring
that certain safety conditions are not violated during the
learning process. Although the exact definition of safety in
SRL varies in different learning tasks, for instance, collision
avoidance in autonomous vehicles or crash prevention when
controlling a quadcopter, we generally consider the safety
condition as neither the system itself nor the environment will
be damaged.

SRL in dynamical systems with continuous action space
has been a topic of research for over a decade [4]. Most
previous studies employed a manual control mechanism to
ensure the safety of the controlled system. For instance, in [5],
an experienced human pilot takes over the control of the
helicopter if the learning algorithm places the system in a
risky state. However, such an approach requires a considerable
amount of resources to monitor the entire learning process.
Hence, in most cases, it is not applicable to complex learning
tasks. Another possibility of safely implementing reinforce-
ment learning algorithms on real-world dynamical systems is
by transfer learning [6]. First, a satisfying initial policy is
trained in simulation and then transferred to the real-world
dynamical system. In essence, this minimizes the required
number of learning iterations for obtaining the final policy, and
thus, reduces the risk of encountering dangerous intermediate
policy [7]. However, since the mismatch between simulation
and reality is not considered in transfer learning, no reliable
safety guarantee is obtained [8].

In recent studies, SRL in model-free scenarios is usually
achieved by solving a constraint satisfaction problem. For

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0001-9542-4858
https://orcid.org/0000-0002-1776-2752
https://orcid.org/0000-0001-8723-1837

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

example, constrained policy optimization [9] introduces a
constraint to the learning process to the effect that the expected
return of cost functions should not exceed certain prede-
fined limits. Alternatively, including an additional risk term
in the reward function, such as risk-sensitive reinforcement
learning [10], can also increase the safety of reinforcement
learning algorithms. However, as no system model is directly
considered in these approaches, there is still a high possibility
that safety conditions are violated, especially in the early
learning phase.

When at least an approximated system model is avail-
able, a more promising SRL can be realized by combin-
ing control-theoretic concepts with reinforcement learning
approaches. For example, in [11] and [12], Lyapunov functions
are employed to compute a subregion of the state space
where safety conditions will never be violated. The system
is then limited to this subregion during the learning process.
However, finding suitable candidates for Lyapunov functions
is challenging if the system dynamics contain uncertainties or
are highly nonlinear.

For uncertain dynamical systems, methods based on learn-
ing a model of unknown system dynamics [13] or of environ-
mental constraints [14] are proposed to ensure safety during
the learning. For instance, by predicting the system behavior in
the worst case, robust model predictive control [15] is able to
provide safety and stability guarantees to reinforcement learn-
ing algorithms if the error in the learned model is bounded.
Besides, [16] introduces an action governor to correct the
applied action when the system is predicted to be unsafe. How-
ever, limited by computational efficiency, these approaches
with deterministic safety estimates, i.e., the prediction about
the safety of a system state is either safe or unsafe, are usually
only applicable to linear systems. Moreover, the accuracy of
the learned model also strongly affects the performance of
these approaches.

To relax the demands placed on the system model and
extend the SRL to nonlinear systems, instead of deterministic
safety estimates, recent studies employ probabilistic safety
estimates, in which safety predictions are represented as
probabilities [17]. In [18], for example, modeling uncer-
tainties are approximated by Gaussian process models [19],
and a probabilistic safe region is computed by reachability
analysis [20]. Similarly, Gaussian process models are used
in [21] and [22] to model unknown system dynamics. A safe
region is then obtained from the probabilistic estimate of the
region of attraction (ROA) of a safe equilibrium state. The
key component of these studies is a forward invariant safe
region, such that the learning algorithm has the flexibility
to execute desired actions within the safe region. Safety is
ensured by switching to a safety controller whenever the
system approaches the boundary of the safe region. How-
ever, the safe region is computed either by solving a partial
differential equation in [18] or sampling in [22], both of
which suffer from the curse of dimensionality. Moreover,
modeling an unknown dynamics or disturbance with Gaussian
process models also poses challenges when the system is
highly nonlinear and high dimensional since both making
adequate assumptions about the distribution of dynamics and

acquiring a sufficient amount of data are difficult. Therefore,
although approaches, such as [18] and [22], enable promising
results with low-dimensional dynamical systems,1 they are not
directly applicable to complex dynamical systems [23].

Often the motivation for using reinforcement learning algo-
rithms for controller design is to overcome the difficulty of
applying model-based controller design approaches to highly
nonlinear, high-dimensional, and uncertain dynamic system
models [24], [25]. In particular, it is challenging to compute
a safe region for a complex dynamical system. For this
reason, [26] introduces an SRL framework that utilizes a
supervisory control strategy based on finding a simplified
system by means of physically inspired model order reduc-
tion [27]. A simplified safe region is constructed from the
simplified system, which functions as an approximation for
the safe region of the full dynamics. Such a low-dimensional
representation of the safe region, which is usually 2-D or 3-D,
at least provides safety estimates for the original system states,
and it can be updated online during the learning process.
To account for the uncertainty in making safety decisions
for the complex dynamics based on a rough low-dimensional
reduction, the safety estimate is represented in a probabilistic
form. Then, in accordance with the derived safety estimate,
a supervisor is employed to switch the actually applied con-
trol action between the learning algorithm and a corrective
controller to keep the system safe. However, implementing
physically inspired model order reduction usually requires a
thorough understanding of the system dynamics. Moreover,
multiple performance tests are required before a satisfying
simplified system can be found.

B. Contribution

In this paper, we consider the same supervisory control
strategy as used in [26] to construct a general SRL framework
that is applicable to complex dynamical systems. However,
to overcome the limitations of physically inspired model order
reduction, we propose a novel data-driven approach to identify
the supervisor, i.e., the low-dimensional representation of the
safe region. Inspired by transfer learning [28], we assume
that an approximated system model of the complex dynamical
system is available. Even though, inevitably, the approximated
model displays discrepancies compared with the real system
behavior, an initial estimate of safety can usually be obtained
by simulating the approximated model. For example, while
the dynamics of a real-world humanoid cannot be known per-
fectly, an approximated humanoid model can be constructed
in simulation for making predictions. Hence, by simulating
the system, we obtain training data that represents the safety
of various original system states. However, as the state space
is high dimensional, it is infeasible to acquire a sufficient
amount of training data to directly learn the safe region of the
original system. To solve this problem, a data-driven approach
that computes probabilistic similarities between each training

1In this article, we consider dynamical systems with dimensions higher
than six as high dimensional, as in such cases it is computationally difficult
to implement traditional methods, such as reachability analysis or sum-of-
squares programming, in identifying the safe region.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

ZHOU et al.: LEARNING A LOW-DIMENSIONAL REPRESENTATION OF A SAFE REGION FOR SRL 3

data is proposed to first learn a low-dimensional representative
safety feature of the complex dynamical system. Then, based
on the learned feature, a low-dimensional representation of the
safe region is identified, which is used as the starting point to
SRL in the real system.

Due to the inevitable simulation-to-reality gap, the initial
low-dimensional representation of the safe region learned
from training data displays discrepancies compared to the real
system behavior. To compensate for this mismatch, we also
propose an efficient online adaptation method to update the
low-dimensional representation of the safe region. During the
learning process, we receive feedback data about the actual
safe region of the real system. These feedback data are not
only used to generate new safety estimates, but they also allow
us to adjust our confidence in the reliability of the safety
estimates obtained from training data. The proposed online
adaptation method then updates the low-dimensional repre-
sentation of the safe region by simultaneously considering the
safety estimates derived from training and feedback data.

The contributions of this study are summarized as follows.

1) We propose a novel data-driven approach that is capable
of systematically identifying a low-dimensional repre-
sentation of the safe region. In contrast to physically
inspired model order reduction, the proposed approach
does not require a thorough understanding of system
dynamics. Moreover, it is applicable to a wide range of
dynamical systems, as long as an approximated system
model is available.

2) We introduce a new online adaptation method for
updating the low-dimensional representation of the safe
region according to the observed real system behavior.
By fully utilizing the information contained in the feed-
back data, the update is performed efficiently, while a
reasonable amount of feedback data enables an accurate
low-dimensional representation of the safe region to be
acquired.

3) Since the proposed approach results in a reliable and
representative low-dimensional representation of the safe
region, the applicability of the SRL framework is
increased.

The remainder of this article is organized as follows: a brief
introduction to the SRL framework is given in Section II.
Thereafter, we present an overview of our approach in
Section III. In Section IV, we propose a data-driven method
to derive a low-dimensional representation of the safe region.
This is followed by the online adaptation method in Section V,
which is used to update the low-dimensional representation.
An example is presented in Section VI to demonstrate the
performance of the proposed approach. In Section VII, we dis-
cuss several properties of the approach, and Section VIII
concludes the article. A table of nomenclatures is included
in the Supplementary Material.

II. SAFE REINFORCEMENT LEARNING FRAMEWORK

In this article, we consider SRL in order to optimize a
learning-based policy with respect to a predefined reward
function, while ensuring that the system state remains in a safe

Fig. 1. SRL framework with a supervisor which decides on the actual applied
actions.

region of the state space. In this section, we outline a general
SRL framework for dynamical systems, see also [26]. The
SRL framework first identifies a safe state-space region as the
safe region. Then, the learning-based policy has the flexibility
to execute desired actions within the safe region. Once the
system state is about to leave the safe region, a corrective
controller is applied to drive the system back to a safe state.

A. System Model and Safe Region

A nonlinear control-affine dynamical system is given by

ẋ = f (x) + g(x)u (1)

where x ∈ X ⊆ R
n is the n-dimensional system state within

a connected set X , and u ∈ U ⊆ R
m is the m-dimensional

control input to the system. With a given control policy u =
K (x), the closed-loop system dynamics is denoted as

ẋ = fK (x) = f (x) + g(x)K (x). (2)

If a system state x satisfies fK (x) = 0, then it is an
equilibrium point. Any equilibrium point can be shifted to the
origin by a state transform. Therefore, this article only uses
the origin to formulate the safe region.

Assumption 1: The origin is a safe state and a locally
asymptotically stable equilibrium point under the control pol-
icy K (x).

Based on Assumption 1, the ROA of the origin is defined
as

R =
{

x0 ∈ X | lim
t→∞ �(t; x0) = 0

}
(3)

where �(t; x0) is the system trajectory of (2) that starts at the
initial state x0 when time t = 0. The ROA R is the set of
initial states that can be driven back to a safe state, i.e., the
origin, under the control policy K (x). Therefore, in this article,
we define the safe region of the SRL framework as follows.

Definition 1: A safe region S is a closed positive invariant
subset of the ROA R containing the origin. We consider the
system state x as safe if it is in the safe region S.

B. SRL Framework

To realize SRL, we keep the system state within the safe
region during the learning process. This is achieved by an SRL
framework that adapts a switching supervisory control strategy,
where the given controller K (x) acts as corrective control and
π(x) is the learning-based policy that is used while the system

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

state is in the safe region (see Fig. 1). A supervisor determines
the actual applied actions as

u =
{

π(x), if t < t safe

K (x), else
(4)

where t safe is the first time point at which the system state x
is on the boundary of the safe region S.

For each learning iteration, the system starts inside the
safe region S for time t = 0. The learning algorithm then
updates and executes the learning-based policy π(x). Since
the safe region S is a closed set and the trajectory is contin-
uous, the system state can only leave the safe region S by
crossing the boundary. Hence, once the system state x is on
the boundary of the safe region S, this learning iteration is
terminated at time t = t safe and the corrective controller K (x)
is activated. For the remaining time of this learning iteration,
the corrective controller K (x) attempts to bring the system
back to the origin to maintain safety. After this safety recovery,
the learning environment is reset and the next learning iteration
starts at time t = 0.

Remark 1: In this article, we only consider the safe region
obtained from the ROA R, where stability is used as the
safety criterion. If more safety criteria should be taken into
consideration, such as collision avoidance represented as state
constraints, the safe region can be constructed using other
control-theoretical concepts, e.g., control barrier functions [29]
or invariance functions [30]. The definition of the safe region
does not affect the use of the SRL framework and the proposed
approach, as long as the safe region is a closed and control
invariant set under a given corrective controller.

C. SRL Framework for Complex Dynamical Systems

The aforementioned SRL framework is not directly applica-
ble to complex dynamical systems, as in such cases, calcu-
lating the safe region S is computationally infeasible [31].
An SRL framework based on estimating safety with a
low-dimensional representation of the safe region is introduced
to overcome this problem [26].

Each original system state x is mapped to a low-dimensional
safety feature, represented as a simplified state y ∈ Y ⊆
R

ny , ny � n, through a state mapping y = �(x). The
state mapping is chosen such that safe and unsafe states are
separated in the simplified state space Y . Nevertheless, due to
the order reduction, multiple original system states that have
different safety properties can map to the same simplified state.
Hence, the safety of the original system state x is estimated
by the safety of its corresponding simplified state y in a
probabilistic form as

p(x ∈ S) = �(y)|y=�(x) ∼ [0, 1] (5)

where �(y) is a function defined over the simplified state
space Y and is referred to as the safety assessment function
(SAF) in this article. Not only does the SAF �(y) encode
information relating to the safety of the simplified state y,
it also includes the uncertainty involved in making predictions
for a high-dimensional state by using a low-dimensional
reduction. In Section IV, we demonstrate how to efficiently

identify the state mapping y = �(x) and the SAF �(y) using
a data-driven method.

For a given SAF �(y), the probability p(x ∈ S) depends
only on the simplified state y. Therefore, by introducing a pre-
defined probability threshold pt , we obtain a low-dimensional
representation of the safe region, denoted as Sy , in the sim-
plified state space Y

Sy = {y ∈ Y | �(y) > pt} (6)

which works as an approximation of the high-dimensional safe
region S. The supervisor (4) is, thus, modified to

u =
{

π(x), if t < t safe′

K (x), else
(7)

where t safe′
denotes the first time point at which the probability

p(x ∈ S) is not larger than the threshold pt , i.e., p(x ∈ S) =
�(y) ≤ pt . More details of this SRL framework are given
in [26].

III. OVERVIEW OF THE APPROACH

The essential factor when applying the SRL frame-
work to complex dynamical systems is finding a reliable
low-dimensional representation of the safe region Sy . In order
to overcome the limitations of physically inspired model order
reduction, we propose a novel data-driven approach to identify
the low-dimensional representation of the safe region Sy ,
together with a new online adaptation method to efficiently
update the learned low-dimensional representation.

We consider a scenario in which the complex dynamical
system, referred to as the real system, has partially unknown
dynamics. However, we assume that a nominal approximated
system model is available and can be used to roughly pre-
dict the real system behavior. The nominal system model is
assumed to be represented by (1). The real-system model is
then given as

ẋ = f (x) + g(x)u + d(x) (8)

where d(x) is the unknown, unmodeled part of the system
dynamics. For brevity, we refer to the nominal and the real
systems as simulation and reality, respectively.

Due to the highly nonlinear and high-dimensional dynamics,
the direct calculation of the safe region is computationally
infeasible for both the nominal and the real systems. Besides,
although the real system provides exact safety information,
in general, it is expensive to collect data directly on the real
system. In contrast, simulating the nominal system is usually
efficient and allows a sufficient amount of data to be obtained
for finding a low-dimensional safety representation. However,
due to the unknown term d(x), such data are inaccurate and
have to be modified to account for the real-system behavior.

Based on these facts, to construct a reliable low-dimensional
representation of the safe region Sy for the real system, we pro-
pose the approach outlined in Fig. 2 (a complete workflow is
given in the Supplementary Material). It consists of two parts
that solve the following two problems, respectively.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

ZHOU et al.: LEARNING A LOW-DIMENSIONAL REPRESENTATION OF A SAFE REGION FOR SRL 5

Fig. 2. Overview of the proposed approach. The low-dimensional repre-
sentation Sy is initialized using the training dataset Dtrain obtained from the
nominal system. Once we collect the feedback dataset Dfeedback on the real
system, the low-dimensional representation Sy is updated using the proposed
online adaptation method.

1) How to derive and initialize the low-dimensional rep-
resentation of the safe region Sy by using the nominal
system model.

2) How to update the low-dimensional representation of
the safe region Sy online with the observed real-system
behavior.

A. Part 1: Derivation and Initialization

Since no information about uncertainty d(x) is available
prior to the learning process, the corrective controller K (x)
is designed for the nominal system model (1). Although the
safe region of the nominal system is unknown, its simulation
is possible and delivers a dataset as follows.

Definition 2: The training dataset of kt training data is given
as

Dtrain =
{

D1
train, D2

train, . . . , Dkt
train

}
. (9)

It contains the simulation results that state whether the
safety recovery is successful or not for different system states
x under the corrective controller K (x). The i th training data
consists of three elements

Di
train = {

x i
sim, ssim

(
x i

sim

)
,�sim

(
t; x i

sim

)}
. (10)

x i
sim is the initial system state in which the corrective con-

troller K (x) is activated. ssim(x i
sim) is the safety label that

represents the result of safety recovery for the state x i
sim.

We denote ssim(x i
sim) = 1 if the system state x i

sim is safe
under the corrective controller K (x), and ssim(x i

sim) = 0 if
it is not. �sim(t; x i

sim) is the corresponding system trajectory
of the safety recovery that starts at x i

sim when time t = 0.
The subscript sim indicates that the data is collected by using
the nominal system model.

The low-dimensional representation of the safe region Sy is,
thus, derived and initialized by using the training dataset Dtrain.
To do this, we first identify the state mapping y = �(x) using
a data-driven method that computes the probabilistic similarity

between each training data (Section IV-A). Then, to facilitate
an efficient computation, we discretize the simplified state
space Y into grid cells and assign an index vector v ∈ Z

ny
+

to each grid cell. By assuming that the SAF �(y) is constant
in each grid cell, we, thus, obtain a discretized SAF (DSAF)
�d(v). A discretized low-dimensional representation of the
safe region Sy is then given by applying the probability
threshold pt on the DSAF �d(v) (Section IV-B). To enable
the SRL framework on the real system, we also calculate
an initial estimate of the DSAF �d(v), denoted as the prior
DSAF �

prior
d (v), from the training dataset Dtrain. It is then

used to initialize the low-dimensional representation of the
safe region Sy (Section IV-C). Further details of Part 1 are
given in Section IV.

B. Part 2: Online Adaptation

Due to the unknown part of the system dynamics d(x),
there is inevitably a mismatch between simulation and reality.
In order to compensate for this mismatch, we update the
low-dimensional representation Sy by accounting for the real-
system behavior.

Each time the corrective controller K (x) is activated during
learning, we observe feedback data about the real safe region.
The set of feedback data is defined as follows.

Definition 3: The feedback dataset of k f feedback data is
given as

Dfeedback =
{

D1
feedback, D2

feedback, . . . , D
k f

feedback

}
. (11)

It contains the results of safety recovery from implementing
the corrective controller K (x) on the real system. The i th
feedback data are

Di
feedback = {

x i
real, sreal

(
x i

real

)
,�real

(
t; x i

real

)}
. (12)

While x i
real, sreal(x i

real), and �real(t; x i
real) have the same

meaning as in Definition 2, the subscript real indicates here
that the data are collected on the real system.

Since collecting data on the real system, e.g., real-world
robots, is usually expensive and time-consuming, in most
cases, the feedback dataset Dfeedback has a limited size. There-
fore, the low-dimensional representation of the safe region Sy

needs to be updated in a data-efficient manner. To achieve
this, we propose an online adaptation method, as given in
Section V. It comprises three steps: first, we modify the prior
DSAF �

prior
d (v) by changing our confidence in its reliability

using the feedback dataset Dfeedback (Section V-A). Second,
to fully utilize the valuable information contained in the feed-
back dataset Dfeedback, we generate another feedback DSAF
�feedback

d (v) (Section V-B). Third, the two DSAFs are fused to
obtain a more accurate DSAF �d(v), which is then used to
update the low-dimensional representation Sy (Section V-C).

IV. LEARNING A LOW-DIMENSIONAL REPRESENTATION

OF THE SAFE REGION

To derive the low-dimensional representation of the safe
region Sy , two components have to be determined: the state
mapping y = �(x), which gives the low-dimensional safety
feature, and the SAF �(y), which predicts the safety of

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

original system states. In this section, we present a data-driven
method for identifying the low-dimensional representation of
the safe region Sy . It utilizes a technique called t-distributed
stochastic neighbor embedding (t-SNE) [32], which was orig-
inally proposed for visualizing high-dimensional data.

A. Identifying the State Mapping With t-SNE

To identify the state mapping y = �(x), we first find
the realization of the low-dimensional safety feature, i.e., the
values of simplified states y1, . . . , ykt , that best corresponds
with the training dataset Dtrain by revising t-SNE. Through
measuring the similarity between each high-dimensional data
point, t-SNE defines a 2-D or 3-D data point such that
similar high-dimensional data points are represented by nearby
low-dimensional data points with high probability. It uses
Euclidean distance between each pair of high-dimensional data
points as the metric for measuring similarity. However, since
our purpose is to construct the low-dimensional representation
of the safe region Sy , we are more interested in safety, rather
than just distance. Accordingly, we propose a new metric that
considers similarity and safety at the same time.

The general motivation for determining the simplified state
y is that the safe and unsafe original system states x should
be separated in the simplified state space Y . Since, in this
article, the safe region is defined with respect to the ROA,
the trajectories of safe initial states will converge to the origin,
while unsafe initial states will have divergent trajectories.
Hence, if two original system states x have similar trajectories
under the corrective controller K (x), then ideally they should
also have nearby corresponding simplified states y (see Fig. 3).
Based on this, we first calculate the pairwise trajectory dis-
tance ωi j between the i th and j th training data, using dynamic
time warping (DTW) as

ωi j = dtw
(
�sim

(
t; x i

sim

)
,�sim

(
t; x j

sim

))
(13)

where dtw(·) represents the DTW measurement. We, thus,
have ωi j = 0 if i = j , and the more similar the trajectories
are, the smaller the value of ωi j is.

Remark 2: Besides DTW, other trajectory distance mea-
sures, e.g., Fréchet distance, can also be used in (13). Changing
the distance metric does not affect the applicability of the
proposed approach. However, DTW turns out to be a more
suitable metric for trajectories of the dynamical systems we
investigated.

While, in general, the trajectory distance ωi j reflects the
probability that the original system states x i

sim and x j
sim have

the same safety property, it is still possible that safe and
unsafe states have similar trajectories. To obtain a better
low-dimensional safety feature, we, thus, modify the trajectory
distance ωi j in relation to the safety label ssim(xsim) and
compute the distance �i j between the i th and j th training
data as

�i j =

⎧⎪⎪⎨
⎪⎪⎩

ωi j

ωmax
+ δ, if ssim

(
x i

sim

)
= ssim

(
x j

sim

)
ωi j

ωmax
, if ssim

(
x i

sim

) = ssim

(
x j

sim

) (14)

Fig. 3. Distances �12 and �13 are computed for three training data D1
train,

D2
train, and D3

train using the trajectory distances ω12 and ω13, and the safety
labels ssim(x1

sim), ssim(x2
sim), and ssim(x3

sim). Based on these distances, t-SNE
calculates the values of corresponding simplified states y, where similar and
dissimilar training data are modeled by nearby and distant simplified states,
respectively.

where δ is a constant and ωmax = maxi, j ωi j is the maximum
trajectory distance within the training dataset Dtrain. The dis-
tance �i j is then used as the new metric for t-SNE to measure
the similarities between different training data.

In our experiments, we find that a small value of δ is
sufficient for providing a satisfying result of t-SNE (in this
article, for example, we use δ = 0.01). A large value of
δ, in contrast, may lead to the information contained in
trajectories being ignored, which can reduce the representation
power of the learned simplified states y. A sensitivity analysis
of the parameter δ is provided in the Supplementary Material.

After computing the distance �i j between each pair of
training data, we apply t-SNE on the training dataset Dtrain

to derive a realization of the low-dimensional safety feature.
To do this, we modify the conditional probability p j |i of
t-SNE [32] using the distance �i j as

p j |i =
exp

(
−�2

i j/2σ 2
i

)
∑

k
=i exp
(−�2

ik/2σ 2
i

) (15)

where σi is the variance of the Gaussian distribution that is
centered on the state x i

sim. The remaining computations are
the same as in t-SNE. Since this part makes no contribution,
the main steps involved in performing t-SNE are given only in
the Supplementary Material. More details are available in [32].

Using t-SNE, we obtain the values of simplified states
y1, . . . , ykt that correspond to the training dataset Dtrain as
an initial realization of the low-dimensional safety feature.
Such a realization models similar training data with nearby
simplified states, e.g., y1 and y2 in Fig. 3, and dissimilar

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

ZHOU et al.: LEARNING A LOW-DIMENSIONAL REPRESENTATION OF A SAFE REGION FOR SRL 7

Fig. 4. Simplified state space Y is discretized into grid cells. The location of
each grid cell is indicated by the index vector v . The safety of a new original
system state, e.g., x∗, is estimated by way of the corresponding belief mass
as p(x∗ ∈ S) = �d([2, 3]) = b[2,3]

safe , where L(x∗) = v = [2, 3]. The prior
estimate Bprior

v of an index vector v is either obtained by fusing all BBAs
within the set Bv , e.g., Bprior

[2,3] = F(B[2,3]), or set to an initial estimate, e.g.,

Bprior
[3,6] = Bini.

training data with distant simplified states, e.g., y1 and y3

in Fig. 3. In general, the simplified state y is chosen to be
2-D or 3-D, i.e., y ∈ R

ny with ny = 2 or ny = 3. In this
article, we set ny = 2.

Note that t-SNE only determines the values of simplified
states but gives no expression of the state mapping y = �(x).
Therefore, to identify the state mapping y = �(x), we learn
a function approximator using the values of simplified states
y1, . . . , ykt obtained from t-SNE and the original system states
x1

sim, . . . , xkt
sim contained in the training dataset Dtrain. This

function approximator, e.g., we use a neural network in this
article, is then utilized to represent the state mapping y =
�(x) = NN(x).

Remark 3: Different forms of function approximator, for
instance, a Gaussian process, can be used to describe the
state mapping y = �(x). The selection of the function
approximator depends mainly on the available training data.

Due to the approximation error in the function approxima-
tor, some original system states x may have slightly different
values in their simplified states y when comparing the initial
realization obtained from t-SNE with the one computed from
the learned state mapping y = �(x) (for example, see the
simulations in Section VI-B). Hence, to reduce the influence
of this issue on deriving the low-dimensional representation of
the safe region Sy, we compute the values of simplified states
y1, . . . , ykt once again with the learned state mapping. This
final realization of the low-dimensional safety feature is then
used for formulating the SAF �(y).

B. Belief Function Theory and DSAF

Once the state mapping y = �(x) is determined, we are
able to generate the SAF �(y) using the training dataset Dtrain.
However, due to the limited size of the training data, it is diffi-
cult to construct the SAF �(y) over the continuous simplified
state space Y . Therefore, we discretize the simplified state
space Y .

The range of the simplified state space Y is determined
by the maximum and minimum values of the simplified
states y1, . . . , ykt in each dimension. We then discretize the
simplified state space Y into grid cells with a predefined step
size. Each grid cell is assigned an index vector v ∈ Z

2+
to indicate its position in the simplified state space Y; for
example, v = [2, 3] refers to the grid cell that is located
at the second row and third column (see Fig. 4). A locating
function is defined as follows.

Definition 4: By locating the simplified state y = �(x) for
an original system state x in the simplified state space Y ,
the locating function L(x) returns the index vector v of the
grid cell that it belongs to.

By assuming that the SAF �(y) is constant in each grid
cell, we obtain a DSAF �d(v) that we will have to define.
Then, instead of using the simplified state y, the safety of an
original system state x is estimated by way of the index vector
v as

p(x ∈ S) = �d(v)|v=L(x) ∼ [0, 1]. (16)

In general, the DSAF �d(v) for an index vector v can
be approximated by the number of safe and unsafe original
system states x that map to the corresponding grid cell,
i.e., L(x) = v. However, due to the high-dimensional original
system state space, it is, in most cases, infeasible to acquire
a sufficient amount of data to derive an accurate estimate.
To solve this problem, we propose using belief function
theory [33] to describe the DSAF �d(v), where the uncertainty
caused by insufficiency in the data amount is considered by a
subjective probability [34].

Belief function theory is a general approach to modeling
epistemic uncertainty that uses a belief mass to represent the
probability of the occurrence of an event. The assignment of
belief masses to all possible events is denoted as the basic
belief assignment (BBA). The belief mass on the entire event
domain, i.e., the probability that one arbitrary event hap-
pens, indicates the subjective uncertainty of the estimate [34].
According to this, we define a BBA Bv separately for each
index vector v as follows.

Definition 5: The BBA Bv for an index vector v is given
as

Bv = (
bv

safe, bv
unsafe, μ

v
)

(17)

which represents the belief about the value of the DSAF �d(v)
for the index vector v. The belief masses bv

safe and bv
unsafe

are the probabilities of the occurrence of two complementary
events, i.e., p(x ∈ S) and p(x /∈ S), where the original system
state x has the index vector v from the locating function L(x).
μv is the subjective uncertainty that reflects the confidence
level of estimating the safety. μv = 0 means we believe that
the estimate is absolutely correct. It holds that

bv
safe + bv

unsafe + μv = 1 (18)

and bv
safe, bv

unsafe, and μv all lie within the interval [0, 1].
Hence, the DSAF �d(v) is given by the belief masses bv

safe
of the corresponding BBAs Bv as

�d(v) = bv
safe. (19)

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

The low-dimensional representation of the safe region Sy is
then defined among the discretized simplified state space as

Sy = {
v | �d(v) = bv

safe > pt
}

(20)

where pt is the predefined probability threshold. In the next
subsection, we explain how to initialize the DSAF �d(v) so
as to enable the application of the SRL framework on the real
system.

C. Initializing the DSAF From Training Data

Since each training data provide information on the value
of the DSAF �d(v), the low-dimensional representation of
the safe region Sy is initialized using the training dataset
Dtrain. By considering each training data as a belief source,
we formulate the following BBAs for all training data and later
fuse them to derive an initial estimate of the DSAF �d(v).

Definition 6: The BBA Bi obtained from the i th training
data Di

train is defined as

Bi = (
bi

safe, bi
unsafe, μ

i
)
. (21)

It represents the belief about the value of the DSAF �d(v)
for the index vector v = L(x i

sim), where the belief source is the
i th training data. bi

safe, bi
unsafe and μi have the same meanings

as in Definition 5.
Due to the inevitable simulation-to-reality gap, we initialize

the BBA of each training data with a constant uncertainty
μini > 0 as

Bi =
⎧⎨
⎩

(1 − μini, 0, μini), if ssim
(
x i

sim

) = 1

(0, 1 − μini, μini), if ssim
(
x i

sim

) = 0
(22)

where i = 1, . . . , kt . Since no information about the unknown
term d(x) is available prior to the learning process on the real
system, the initial subjective uncertainties are chosen to be
the same for all BBAs. Later in the online adaptation method,
the subjective uncertainties are updated by using the feedback
data to realize more accurate safety estimates.

For each index vector v, the BBA Bv is then estimated by
using the BBAs of the training data. To achieve this, we first
generate a set of BBAs Bv for each index vector v

Bv = {
Bi | L

(
x i

sim

) = v
}
. (23)

which contains the BBAs of the training data whose original
system state xsim corresponds to the index vector v. The size
of the set Bv is denoted as kv .

Every BBA in the set Bv provides a belief about the value
of the DSAF �d(v) for the index vector v. Hence, an estimate
of the BBA Bv is derived by fusing all BBAs within the set
Bv as

Bprior
v =

(
bv,prior

safe , bv,prior
unsafe , μv,prior

)
=

{
F(Bv), if kv ≥ kmin

Bini, else

(24)

where Bini is an initial estimate that represents our guess about
the BBA Bv when no training data are available (see Fig. 4).
F(·) is a fusion operation among the set Bv , which is referred

to as weighted belief fusion and is defined according to [35]
as

bv,prior
safe =

∑
Bi ∈Bv

bi
safe(1 − μi)

∏
B j ∈Bv

i
= j
μ j

(∑
Bi ∈Bv

∏
B j ∈Bv

i
= j
μ j

)
− kv

∏
Bi ∈Bv

μi

(25)

bv,prior
unsafe =

∑
Bi ∈Bv

bi
unsafe(1 − μi)

∏
B j ∈Bv

i
= j
μ j

(∑
Bi ∈Bv

∏
B j ∈Bv

i
= j
μ j

)
− kv

∏
Bi ∈Bv

μi

(26)

μv,prior =
(
kv − ∑

Bi ∈Bv
μi

)∏
Bi ∈Bv

μi(∑
Bi ∈Bv

∏
B j ∈Bv

i
= j
μ j

)
− kv

∏
Bi ∈Bv

μi

. (27)

We refer to this estimate of the BBA Bv as the prior estimate
Bprior

v . Since it is still likely to be imprecise if the available
number of training data is too small, the fusion is performed
only when the number of BBAs contained in the set Bv is not
smaller than a minimum number kmin. Otherwise, the prior
estimate Bprior

v is set to the initial estimate Bini. We use Bini =
(0.05, 0.55, 0.4) in our experiments. This means that if there
is very little experience available in the form of training data
for one grid cell, then the respective states will initially be
considered unsafe. The resulting prior estimate Bprior

v is a BBA
that satisfies

bv,prior
safe + bv,prior

unsafe + μv,prior = 1 (28)

and bv,prior
safe , bv,prior

unsafe , and μv,prior all lie within the interval [0, 1].
After computing the prior estimate Bprior

v for all index
vectors v, we, thus, obtain a prior DSAF �

prior
d (v)

�
prior
d (v) = bv,prior

safe (29)

which delivers an estimate of the DSAF �d(v) that is derived
from the training data. The low-dimensional representation
of the safe region Sy is then initialized by letting �d(v) =
�

prior
d (v). In Section V, we propose an online adaptation

method to update the DSAF �d(v) using feedback data,
to account for the unknown part of the system dynamics d(x).

V. ONLINE ADAPTATION OF THE SAFETY ASSESSMENT

FUNCTION

In the early learning phase with the real system, the prior
DSAF �

prior
d (v) allows a rough estimate of the safety of an

original system state. During the learning process, the feed-
back data are used to update the DSAF �d(v) to achieve
more accurate safety estimates. Each update iteration of the
DSAF �d(v) consists of three steps. First, we modify the
prior DSAF �

prior
d (v) by revising the subjective uncertainties

of the BBAs of the training data. Second, we compute a
feedback DSAF �feedback

d (v) using the feedback data. Third,
the updated DSAF �d(v) is obtained by fusing the prior
and feedback DSAFs. Note that each time the corrective
controller K (x) is activated for the real system, we obtain
new feedback data. Hence, the size of the feedback dataset
Dfeedback increases incrementally during the learning process.
For simplicity, we consider the feedback dataset Dfeedback of
size k f in this section. Details of the online adaptation method
are given in the following.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

ZHOU et al.: LEARNING A LOW-DIMENSIONAL REPRESENTATION OF A SAFE REGION FOR SRL 9

A. Update of the Prior DSAF With Feedback Data

The prior DSAF �
prior
d (v) is constructed using the training

dataset Dtrain, in which the uncertainty caused by the unknown
term d(x) is represented by the subjective uncertainty μi of
each BBA Bi . Hence, the update of the prior DSAF �

prior
d (v)

will now modify the subjective uncertainties by accounting for
new information given by feedback data. For this, we assume
that original system states that are in close proximity to each
other most probably have similar safety properties.

Assumption 2: The probability p(sreal(x1) = sreal(x2)) that
two original system states x1 and x2 have the same safety
property on the real system is inversely proportional to their
Euclidean distance in the original state space ||x1 − x2||.

In addition, we define a function P(x) to quantify the
similarity with respect to the safety of nominal and real system
trajectories that start in the same initial original system state x

P(x) = p(ssim(x) = sreal(x)) ∼ [0, 1]. (30)

It represents the probability that for a given original system
state x , its safety label ssim(x) obtained with the nominal
system is the same as the safety label sreal(x) obtained with the
real system. Then, according to Assumption 2, if we observe
an original system state x that has the same safety property
both in simulation and in reality, it is likely that other original
system states that are close to the observed state will also show
the same safety property.

In order to predict the value of the function P(x),
we approximate it with a Gaussian process regression (GPR)
model P(x) = GP(x). For each original system state xreal con-
tained in the feedback dataset Dfeedback, we examine its safety
label ssim(xreal) in simulation. This leads to a set of samples
{P(x1

real), . . . , P(x
k f

real)} for the function P(x), in which

P
(
x i

real

) =
{

1, if ssim
(
x i

real

) = sreal
(
x i

real

)
0, if ssim

(
x i

real

)
= sreal
(
x i

real

) (31)

for i = 1, . . . , k f . Hence, the GPR model GP(x) is trained
with the sets {x1

real, . . . , x
k f

real} and {P(x1
real), . . . , P(x

k f

real)},
which are obtained from the current feedback dataset Dfeedback.

Remark 4: If the real system is a real-world dynamical
system, then it is usually difficult to test the corrective con-
troller K (x) with arbitrary initial original system states x
in reality, since there is a high risk of encountering unsafe
behaviors. However, in contrast, the simulation can be ini-
tialized with any original system state xreal contained in the
feedback data, which then makes it possible to approximate
the function P(x).

The trained GPR model GP(x) is then used to update
the BBA Bi of each training data. The general motivation
is that we decrease the subjective uncertainty μi if we are
confident about the reliability of this training data. Hence, for
the i th training data, we compute a predicted mean value of
the function P(x i

sim), denoted as pi
mean, from the GPR model

GP(x), along with a corresponding standard deviation pi
std of

the predicted value. Since a low value of the standard deviation
pi

std means we have observed enough feedback data to make a
reliable prediction, we only update the BBA Bi if the standard

Fig. 5. As given in (33), the subjective uncertainty μi in the BBA Bi of
the ith training data is determined using the corresponding standard deviation
pi

std obtained from the GPR model GP(x).

deviation pi
std is smaller than a predefined threshold pth

Bi =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
pi

mean

(
1 − μi

)
,
(
1 − pi

mean

)(
1 − μi

)
, μi

)
,

if pi
std ≤ pth and ssim

(
x i

sim

) = 1((
1 − pi

mean

)(
1 − μi

)
, pi

mean

(
1 − μi

)
, μi

)
,

if pi
std ≤ pth and ssim

(
x i

sim

) = 0

(32)

with the new subjective uncertainty μi calculated as

μi = μini − μmin

α pth − 1

(
α pi

std − 1
)

+ μmin (33)

where μini is the same initial subjective uncertainty as that
given in (22) [see Fig. 5 for a graphical representation of (33)].
BBAs Bi with pi

std > pth remain unchanged, as in (22). Such
an update of the BBA Bi considers the predicted value of the
function P(x i

sim) and the reliability of this prediction at the
same time.

Equation (33) is designed by considering two aspects:
first, the subjective uncertainty μi is set equal to μini when
pi

std ≥ pth. This means that, in this case, we do not have the
confidence to update the BBA Bi , as not enough information
is observed from the feedback data; and second, due to the
inevitable reality gap, the subjective uncertainty μi maintains
a minimum uncertainty μmin even when the standard deviation
pi

std is 0. We use the exponential form such that the decrease
in μi is faster when the standard deviation pi

std is near the
threshold pth. The parameter α > 1 determines the decay rate
and is selected by considering the actual learning task.

Note that for the same training data, the relationship
between the standard deviation pi

std and the threshold pth can
change during the learning process. For example, we might
obtain pi

std ≤ pth in the current update iteration, but in the
next update iteration it changes to pi

std > pth. This happens
primarily when we first observe a safe original system state
but followed by a nearby unsafe state, such that the safety
of the states in between these two observed states becomes
uncertain. In such cases, we set the BBA Bi back to the initial
BBA given in (22).

Once the BBAs Bi of all training data have been updated
with the up-to-date feedback dataset Dfeedback, the prior esti-
mate Bprior

v for each index vector v is recomputed using (24).
This results in an updated prior DSAF �

prior
d (v), which is used

later for revising the DSAF �d(v).

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

10 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

B. Feedback DSAF

The feedback data contain the information about the real
safety properties of different original system states x . To fully
utilize this valuable information, we construct an additional
DSAF, denoted as the feedback DSAF �feedback

d (v), using the
feedback dataset Dfeedback.

As the amount of data is insufficient, we also consider
the estimate obtained from the feedback data as a subjective
probability [26]. Then, as with the prior estimate Bprior

v ,
we formulate another estimate of the BBA Bv for each index
vector v as

B feedback
v =

(
bv,feedback

safe , bv,feedback
unsafe , μv,feedback

)
(34)

which is referred to as the feedback estimate B feedback
v .

For each index vector v, the feedback estimate B feedback
v

is determined by the number of safe and unsafe feedback
data that correspond to this grid cell. By sorting the feedback
dataset Dfeedback with the locating function L(x), we denote the
number of safe feedback data that have the index vector v from
the locating function, i.e., L(xreal) = v and sreal(xreal) = 1,
as kv

safe (and kv
unsafe for the number of unsafe feedback data).

If at least one feedback data is available for the index vector
v, i.e., kv

safe + kv
unsafe ≥ 1, we compute the feedback estimate

B feedback
v as follows:

bv,feedback
safe = kv

safe

kv
safe + kv

unsafe

(
1 − μv,feedback

)
(35)

bv,feedback
unsafe = kv

unsafe

kv
safe + kv

unsafe

(
1 − μv,feedback) (36)

μv,feedback = βexp
(−γ

(
kv

safe + kv
unsafe − 1

))
. (37)

The subjective uncertainty μv,feedback decreases if more
feedback data are observed for the index vector v. It satisfies
that, if a sufficient number of feedback data are obtained,
the subjective uncertainty μv,feedback approaches 0. In such
a case, the belief masses bv,feedback

safe and bv,feedback
unsafe can be

considered as the actual probabilities. The parameters β and
γ define the initial value and the decay rate of the subjective
uncertainty μv,feedback, respectively. If no feedback data are
observed for the index vector v, we set the feedback estimate
B feedback

v to an empty BBA B∅ defined as B feedback
v = B∅ =

(0, 0, 1), which indicates that no safety estimate can be made.
Using the feedback estimate B feedback

v , we obtain the follow-
ing feedback DSAF �feedback

d (v):

�feedback
d (v) = bv,feedback

safe (38)

which represents the estimate of the DSAF �d(v) derived from
the feedback data only. In Section V-C, we fuse the feedback
DSAF �feedback

d (v) with the updated prior DSAF �
prior
d (v) to

derive a more accurate DSAF �d(v).

C. Fusion of Prior and Feedback DSAFs

The prior and feedback DSAFs both provide beliefs about
safety by using different datasets as their belief source.
To update the DSAF �d(v), we fuse these two functions using

weighted belief fusion as given in (25)–(27). This leads to a
fused estimate B fuse

v for each index vector v

B fuse
v =

(
bv,fuse

safe , bv,fuse
unsafe, μ

v,fuse
)

(39)

which is computed as

B fuse
v =

{
F

({
Bprior

v , B feedback
v

})
, if B feedback

v
= B∅

Bprior
v , if B feedback

v = B∅.
(40)

If the feedback estimate B feedback
v is nonempty, we find the

fused estimate B fuse
v through weighted belief fusion F(·) of

the set {Bprior
v , B feedback

v }. Otherwise, we set the fused estimate
B fuse

v equal to the prior estimate Bprior
v .

The fused estimate B fuse
v fulfills the following property,

which is also given in [26].
Proposition 1: If the number of feedback data approaches

infinity, the fused estimate B fuse
v becomes the actual proba-

bilities, and the prior estimate Bprior
v has no effect in making

safety estimates.
Proof: Proposition 1 is justified by the following:

lim
kv

safe+kv
unsafe→∞

bv,fuse
safe = bv,feedback

safe (41)

lim
kv

safe+kv
unsafe→∞

bv,fuse
unsafe = bv,feedback

unsafe (42)

lim
kv

safe+kv
unsafe→∞

μv,fuse = μv,feedback = 0 (43)

which are obtained by simplifying (25)–(27) with the set
{Bprior

v , B feedback
v }. �

Considering computational efficiency, the update of the
DSAF �d(v) is generally performed once when every ku

feedback data are obtained, where the value of ku is selected
according to the actual learning task. In each update iteration
(indexed by number N , see Section VI-C), we first use the up-
to-date feedback dataset Dfeedback to update the prior DSAF
�

prior
d (v) and to construct the feedback DSAF �feedback

d (v).
Then, the fused estimate B fuse

v is computed from these two
functions for each index vector v. The updated DSAF �d(v)
is, thus, obtained using the fused estimate B fuse

v as

�d(v) = bv,fuse
safe (44)

which also gives the latest low-dimensional representation of
the safe region Sy according to (20). With further feedback
data, the DSAF �d(v) becomes more accurate, and more
reliable safety estimates are obtained.

VI. QUADCOPTER EXPERIMENTS

In this section, we demonstrate the proposed approach for
identifying the low-dimensional representation of the safe
region Sy , using the example of a quadcopter.

A. Experimental Setup

We simulate the quadcopter using the system dynamics
given in [36] with MATLAB Simulink2 (Version R2019b)
running on a laptop powered by an Intel i7-7700HQ CPU.
The 12-D system state is defined as x = [pg, θg, vb, ωb]T ,

2https://www.mathworks.com/products/simulink.html

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

ZHOU et al.: LEARNING A LOW-DIMENSIONAL REPRESENTATION OF A SAFE REGION FOR SRL 11

Fig. 6. System state x of a quadcopter is defined using the ground frame
and the body frame.

where pg = [px, py, pz]T and θg = [θr , θp, θy]T are the
linear and angular positions defined in the ground frame,
respectively, vb = [vx, vy, vz]T and ωb = [ωr , ωp, ωy]T are
the linear and angular velocities defined in the body frame
(see Fig. 6), respectively. The control input u consists of the
four motor speeds of the quadcopter. For the nominal system
model, we set the mass of the quadcopter to m = 1 kg and
the maximal lifting force to f = 200 N. The safety of a given
state x is determined by simulating the controlled dynamics
with the corrective control K (x) that starts in the initial state
x and checking if the controller is able to successfully drive
the quadcopter back to a hovering state without crashing.
In this example, we use the PID controller given in [36] as the
corrective controller K (x). It stabilizes the quadcopter’s height
and its roll, pitch, and yaw rotations. The coefficients of the
PID controller are: K P,h = 1.5, KI,h = 0, and KD,h = 2.5
for the height control, and K P,r = K P,p = K P,y = 6,
KI,r = KI,p = KI,y = 0, and KD,r = KD,p = KD,y = 1.75
for the roll, pitch, and yaw rotations control, respectively.

To generate the training dataset Dtrain, we first create kt =
10 000 original system states x . We set px = py = 0
and pz = 2 m to leave enough space and time for the
corrective controller K (x). All other variables are sampled
with a uniform distribution within the following range: 0 ≤
θr , θp, θy ≤ 2π rad, −3 m/s ≤ vx , vy, vz ≤ 3 m/s, and
−10 rad/s ≤ ωr , ωp, ωy ≤ 10 rad/s. The training dataset
Dtrain is then obtained by examining the performance of the
corrective controller K (x) for all these initial values.

B. Identifying the Low-Dimensional Representation of the
Safe Region

The initial realization of the low-dimensional safety feature,
i.e., the values of simplified states y1, . . . , ykt , obtained from
t-SNE is given in Fig. 7(a). We use δ = 0.01 in (14) and set the
perplexity and tolerance of t-SNE (see [32]) to 40 and 1e−4,
respectively. The result shows that the safe and unsafe original
system states are clearly separated in the 2-D simplified state
space Y ⊆ R

2.
The state mapping y = �(x) is represented by a

two-layer neural network with 128 neurons in each layer,
which is trained using the initial realization of simpli-
fied states y1, . . . , ykt and the set of original system
states {x1

sim, . . . , xkt
sim}. By recomputing the outputs of the

learned neural network, we obtain the final realization of

Fig. 7. (a) Initial realization of simplified states y1, . . . , ykt obtained from t-
SNE. The safe and unsafe training data are denoted by green and blue points,
respectively. (b) Final realization of simplified states y1, . . . , ykt obtained by
recomputing with the learned neural network that represents the state mapping
y = �(x) = NN(x).

the low-dimensional safety feature, i.e., the values of the
simplified states y1, . . . , ykt , given in Fig. 7(b). Due to
approximation error, certain simplified states have a slightly
changed position compared with the values obtained from
t-SNE. However, this does not affect the computation of
the low-dimensional representation of the safe region Sy , as
the results are updated later in the online adaptation using the
feedback data.

We set the simplified state space as {Y | − 30 ≤ y1, y2 ≤
30}. By discretizing the simplified state space Y into grid
cells with step size 1 in both y1 and y2, we obtain the index
vector v ∈ {1, 2, . . . , 60}2. The prior DSAF �

prior
d (v) is, thus,

computed from the training dataset Dtrain using the index
vector v. The results are given in Fig. 8(a), where the initial
subjective uncertainty, the initial estimate and the minimum
number are selected as μini = 0.4, Bini = (0.05, 0.55, 0.4), and
kmin = 3, respectively. Depending on the number of safe and
unsafe training data in each grid cell, the prior DSAF �

prior
d (v)

estimates the probability p(x ∈ S) for original system states
x that take the index vector v from the locating function L(x).
In Fig. 8(i), the DSAF �d(v) is initialized by the prior DSAF
�

prior
d (v). In Section VI-C, we demonstrate the update process

of the DSAF �d(v) using the proposed online adaptation
method.

C. Updating the Low-Dimensional Representation

To simulate a mismatch between the nominal and the real
systems, we set the mass and the maximal lifting force of

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

12 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

Fig. 8. Results of the online adaptation. (a)–(d) Prior DSAF �
prior
d (v) in different update iterations N . N = 0 refers to the initialization prior to the

online adaptation. The values of the safety estimates are represented by different colors. (e)–(h) Feedback DSAF �feedback
d (v) in different update iterations N .

(i)–(l) DSAF �d(v) in different update iterations N .

the real system to m = 0.8 kg and f = 145 N, respectively.
To eliminate the influence of a specific learning task or algo-
rithm and focus on illustrating the update process, the feedback
dataset Dfeedback is obtained by randomly selecting states xreal

where the corrective controller K (x) is activated, such that the
entire original system state space can be visited.

The following parameters are used in the online adaptation
method: μmin = 0.1, pth = 0.3, α = 3e5, β = 0.3, and
γ = 0.4. The GPR model GP(x) uses a squared exponential
kernel. To demonstrate the online update process, we collect
the feedback data one by one and incrementally extend the
feedback dataset Dfeedback. The DSAF �d(v) is updated once
when every ku = 20 feedback data are obtained.

The results of the online adaptation are given in Fig. 8.
Prior to the update (update iteration N = 0), the DSAF �d(v)
is initialized as the prior DSAF �

prior
d (v), while the feedback

DSAF �feedback
d (v) is constructed using the empty BBA B∅

[see Fig. 8(a), (e), and (i)]. Once the learning procedure has
started, we collect the feedback data incrementally. In the early
updating phase, e.g., update iteration N = 10, the DSAF �d(v)
is mainly determined by the prior DSAF �

prior
d (v). The subjec-

tive uncertainties of each training data are modified using the
feedback data, where we become confident about the safety
of certain training data when we observe a nearby feedback
data that has the same safety property. Since the amount of
feedback data is insufficient for providing a reliable safety

estimate, the feedback DSAF �feedback
d (v) has a smaller effect

on the computation of the low-dimensional representation of
the safe region Sy [see Fig. 8(b), (f), and (j)].

When more feedback data are available, e.g., update iter-
ation N = 50, the feedback DSAF �feedback

d (v) is able to
provide more accurate safety estimates; hence, its influence
on the DSAF �d(v) also becomes more significant. Due to
the high dimensionality of the original system state x and the
limited amount of feedback data, it is difficult to acquire an
estimate with high confidence from the GPR model GP(x).
As a result, changes are marginal in the prior DSAF �

prior
d (v)

[see Fig. 8(c), (g), and (k)]. With even more feedback data,
e.g., update iteration N = 100, the DSAF �d(v) is able to
provide reliable estimates about the probability p(x ∈ S) for
each index vector v. While the prior and feedback DSAFs are
updated accordingly, the DSAF �d(v) represents the actual
low-dimensional representation of the safe region Sy under
the unknown part of the system dynamics d(x) [see Fig. 8(d),
(h), and (l)].

D. Comparison With Physically Inspired Model Order
Reduction

We compare the proposed approach with the physically
inspired model order reduction presented in [26] in terms
of the representation power of the identified low-dimensional

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

ZHOU et al.: LEARNING A LOW-DIMENSIONAL REPRESENTATION OF A SAFE REGION FOR SRL 13

Fig. 9. Comparison with physically inspired model order reduction. (a) For physically inspired model order reduction, the DSAF �d (v) is initialized
conservatively. (b) and (c) DSAFs �d (v) obtained by using physically inspired model order reduction and the proposed approach, respectively. The feedback
dataset D′

feedback is used for the update. (d) DSAF �d (v) obtained by using physically inspired model order reduction and the feedback dataset Dfeedback.

representation of the safe region Sy , i.e., how well the safe
and unsafe states are separated. To do this, we compute
another DSAF �d(v) using physical features. As in [26],
the low-dimensional safety feature, i.e., the simplified state
y, is selected for the velocities in the x- and y-directions y =
[vx , vy]T . To avoid any dangerous behavior in early learning
phase, the low-dimensional representation of the safe region
Sy is initialized conservatively [26] by setting �d(v) = 0.6 for
grid cells that satisfy −0.5 ≤ vx , vy ≤ 0.5 [see Fig. 9(a)].

As the learning task in [26] is relatively simple, the explo-
ration in the original system state space is limited to a small
subspace around the origin (see Section VII-A for more dis-
cussions on this point). Therefore, to make a fair comparison,
we also generate another feedback dataset D′

feedback that has
the same size as the dataset Dfeedback. However, instead of the
complete original system state space given in Section VI-A,
the states xreal in the set D′

feedback are sampled from a smaller
state space, where the ranges of angular positions and angular
velocities are changed to −(1/3)π ≤ θr , θp, θy ≤ (1/3)π rad
and −3 rad/s ≤ ωr , ωp, ωy ≤ 3 rad/s, respectively.

We first compare the performance of both approaches by
considering a small state space, i.e., the feedback dataset
D′

feedback is used for the update. The results show that, in this
case, physical features are able to provide reasonable predic-
tions about safety, i.e., the safe and unsafe regions are sepa-
rated [see Fig. 9(b)]. Meanwhile, the proposed approach also
produces a satisfying result with marginally better separation
between the safe and unsafe states [see Fig. 9(c)].

However, if the learning task becomes more complex,
the complete state space usually has to be explored to enable
an optimal policy to be found. To simulate this scenario,
we also update the initial DSAF �d(v) using the feedback
dataset Dfeedback. As seen in Fig. 9(d), when considering the
entire original system state space, it is difficult to make reliable
safety estimates based only on physical features. The boundary
between safe and unsafe regions becomes unclear, and there
are numerous grid cells that lead to a safety estimate close
to 0.5. In contrast, the proposed approach is still able to
find a representative low-dimensional representation of the
safe region Sy for the complete state space. As the identified
simplified state y can describe the safety of the original system
states x more precisely, a satisfying separation between the
safe and unsafe regions is achieved [see Fig. 8(l)] and more
useful safety estimates are obtained. The independence of the

size of the state space indicates the possibility of implementing
the proposed approach on different learning tasks, which,
in turn, increases the applicability of the SRL framework.

VII. DISCUSSION

In this work, we propose a general approach for effi-
ciently identifying a low-dimensional representation of the safe
region. Two important aspects of the proposed approach are
discussed in this section.

A. Relevance to Different SRL Tasks

In [26], the SRL framework utilizes the low-dimensional
representation of the safe region Sy that is obtained
using physically inspired model order reduction. Such a
low-dimensional representation is useful when the learning
task is relatively simple, e.g., teaching a quadcopter to fly
forward, as given in [26], such that a satisfying control policy
can be found without requiring an extensive exploration in
the original state space. Since, in this case, the system state
is likely to stay in a substate space near the origin, physical
features are able to provide reliable safety estimates. However,
when the learning task becomes more difficult, e.g., the quad-
copter needs to track a complex 3-D trajectory, the learning
algorithm in general has to explore a large portion of the state
space to find an optimal policy. Under these circumstances,
at least a rough safety assessment of the complete state space
is needed. Unfortunately, being restricted by the representation
power, the physically inspired low-dimensional representation
of the safe region Sy fails to provide useful safety estimates
when considering the entire state space. Hence, the perfor-
mance of the SRL framework is affected.

Therefore, to overcome this problem, this article proposes
a data-driven approach for identifying a low-dimensional rep-
resentation of the safe region Sy that is able to make more
precise predictions about safety. Meaningful safety estimates
are even obtained for the entire original state space. This not
only gives the learning algorithm more flexibility in choos-
ing its actions to find the optimal policy but also indicates
the applicability of the proposed approach to more complex
learning tasks.

B. Strengths and Limitations

The presented approach has three particular strengths. First,
it finds a low-dimensional representation of the safe region

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

14 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

Sy that allows safe and unsafe states to be clearly separated
for large portions of a high-dimensional state space; see also
Section VI-D. Second, the effort required for identifying the
low-dimensional representation of the safe region Sy is low.
While, for instance, physically inspired model order reduc-
tion usually needs a comprehensive analysis of the system
dynamics, the proposed approach relies solely on training data
that can be collected efficiently even for complex dynamical
systems through parallel computing and a suitable simulation
environment. Third, it fully utilizes the information contained
in the feedback data using two DSAFs. Hence, the update
can be performed with little feedback data while providing a
satisfying result.

However, the performance of the identified low-dimensional
representation of the safe region Sy is affected by the quality
of the nominal system, i.e., the magnitude of the discrepancy
between the nominal and the real systems. While the state
mapping y = �(x) is determined using only training data,
the online adaptation method attempts to find an accurate
DSAF �d(v) based on the learned low-dimensional safety
feature. If the reality gap is too large, then it is possible
that the learned safety feature is not sufficiently representative
and we might therefore observe more grid cells with final
safety estimates that are close to 0.5, i.e., �d(v) ≈ 0.5, which
are less useful for guiding the learning process. In general,
if the nominal system is assumed to be unreliable, a high
probability threshold pt should be used for constructing
the low-dimensional representation of the safe region Sy

[see (20)], such that the learning process becomes more
conservative for keeping the system safe. However, we usually
consider the unknown system dynamics d(x) as bounded
within a reasonable range, since it makes less sense to use
a dissimilar nominal system to predict the behavior of the real
system. To further generalize the proposed approach, more
studies are required to quantify the influence of the simulation-
to-reality gap on the reliability of the obtained safety estimates.

VIII. CONCLUSION

To apply SRL to complex dynamical systems, this arti-
cle proposes a novel data-driven approach to identify a
low-dimensional representation of the safe region for realizing
a general SRL framework. Using a nominal system model
that predicts the behavior of the real system, we first collect
training data about the safety of different system states. Then,
by computing the probabilistic similarities between each train-
ing data using a data-driven method, an initial low-dimensional
representation of the safe region is obtained. To compensate
for the mismatch between the nominal and the real systems,
an efficient online adaptation method based on belief func-
tion theory is also proposed to update the low-dimensional
representation of the safe region by accounting for the real-
system behavior. Experimental results show that, compared
with the previous work, a more reliable and representative
low-dimensional representation of the safe region is found
using the proposed approach. However, our approach has the
limitation that its performance is affected by the magnitude
of discrepancy between the nominal and real systems. If the

reality gap is assumed to be large, then it is likely that a less
meaningful low-dimensional representation of the safe region
will be obtained.

For future work, we intend to combine the data-driven
method with model-based model order reduction techniques to
find an approach that is more robust to the simulation-to-reality
gap when identifying the low-dimensional representation of
the safe region. Moreover, we also plan to investigate the
possibility of quantifying the similarity between different
dynamical systems, such that the learned safety feature can be
generalized from one system to other similar systems. How
the similarity between dynamical systems will be measured
is, however, still an open research problem.

REFERENCES

[1] X. B. Peng, G. Berseth, K. Yin, and M. Van De Panne, “Deeploco:
Dynamic locomotion skills using hierarchical deep reinforcement learn-
ing,” ACM Trans. Graph., vol. 36, no. 4, pp. 1–13, Jul. 2017.

[2] S. Levine, C. Finn, T. Darrell, and P. Abbeel, “End-to-end training
of deep visuomotor policies,” J. Mach. Learn. Res., vol. 17, no. 39,
pp. 1–40, Apr. 2016.

[3] Y. Duan, X. Chen, R. Houthooft, J. Schulman, and P. Abbeel, “Bench-
marking deep reinforcement learning for continuous control,” in Proc.
Int. Conf. Int. Conf. Mach. Learn., May 2016, pp. 1329–1338.

[4] J. Garcıa and F. Fernández, “A comprehensive survey on safe reinforce-
ment learning,” J. Mach. Learn. Res., vol. 16, no. 42, pp. 1437–1480,
Aug. 2015.

[5] P. Abbeel, A. Coates, M. Quigley, and A. Y. Ng, “An application of
reinforcement learning to aerobatic helicopter flight,” in Proc. Adv.
Neural Inf. Process. Syst. (NeurIPS), Dec. 2006, pp. 1–8.

[6] S. J. Pan and Q. Yang, “A survey on transfer learning,” IEEE Trans.
Knowl. Data Eng., vol. 22, no. 10, pp. 1345–1359, Oct. 2010.

[7] P. Christiano et al., “Transfer from simulation to real world through
learning deep inverse dynamics model,” 2016, arXiv:1610.03518.
[Online]. Available: http://arxiv.org/abs/1610.03518

[8] S. Huang, N. Papernot, I. Goodfellow, Y. Duan, and P. Abbeel, “Adver-
sarial attacks on neural network policies,” 2017, arXiv:1702.02284.
[Online]. Available: http://arxiv.org/abs/1702.02284

[9] J. Achiam, D. Held, A. Tamar, and P. Abbeel, “Constrained policy
optimization,” in Proc. 34th Int. Conf. Mach. Learn. (ICML), Aug. 2017,
pp. 22–31.

[10] Y. Shen, M. J. Tobia, T. Sommer, and K. Obermayer, “Risk-sensitive
reinforcement learning,” Neural Comput., vol. 26, no. 7, pp. 1298–1328,
Jul. 2014.

[11] T. J. Perkins and A. G. Barto, “Lyapunov design for safe reinforcement
learning,” J. Mach. Learn. Res., vol. 3, no. 4, pp. 803–832, Dec. 2002.

[12] Y. Chow, O. Nachum, E. Duenez-Guzman, and M. Ghavamzadeh,
“A Lyapunov-based approach to safe reinforcement learning,” in Proc.
Adv. Neural Inf. Process. Syst. (NeurIPS), Dec. 2018, pp. 8103–8112.

[13] C. J. Ostafew, A. P. Schoellig, and T. D. Barfoot, “Robust constrained
learning-based NMPC enabling reliable mobile robot path tracking,” Int.
J. Robot. Res., vol. 35, no. 13, pp. 1547–1563, May 2016.

[14] D. Sadigh and A. Kapoor, “Safe control under uncertainty with prob-
abilistic signal temporal logic,” in Proc. Robot., Sci. Syst. (RSS),
Jun. 2016, pp. 171–181.

[15] M. Zanon and S. Gros, “Safe reinforcement learning using robust MPC,”
IEEE Trans. Autom. Control, vol. 66, no. 8, pp. 3638–3652, Aug. 2021.

[16] Y. Li, N. Li, H. E. Tseng, A. Girard, D. Filev, and I. Kolmanovsky, “Safe
reinforcement learning using robust action governor,” in Proc. 3rd Conf.
Learn. Dyn. Control (L4DC), Jun. 2021, pp. 1093–1104.

[17] T. M. Moldovan and P. Abbeel, “Safe exploration in Markov decision
processes,” in Proc. 29th Int. Conf. Mach. Learn. (ICML), Jun. 2012,
pp. 1451–1458.

[18] J. F. Fisac, A. K. Akametalu, M. N. Zeilinger, S. Kaynama, J. Gillula,
and C. J. Tomlin, “A general safety framework for learning-based control
in uncertain robotic systems,” IEEE Trans. Autom. Control, vol. 64,
no. 7, pp. 2737–2752, Jul. 2019.

[19] C. E. Rasmussen and C. K. I. Williams, Gaussian Processes for Machine
Learning. Cambridge, MA, USA: MIT Press, 2006.

[20] S. Bansal, M. Chen, S. Herbert, S. Herbert, and C. J. Tomlin, “Hamilton-
Jacobi reachability: A brief overview and recent advances,” in Proc.
IEEE Conf. Decision Control, Dec. 2017, pp. 2242–2253.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

ZHOU et al.: LEARNING A LOW-DIMENSIONAL REPRESENTATION OF A SAFE REGION FOR SRL 15

[21] F. Berkenkamp, R. Moriconi, A. P. Schoellig, and A. Krause, “Safe
learning of regions of attraction for uncertain, nonlinear systems with
Gaussian processes,” in Proc. IEEE 55th Conf. Decis. Control (CDC),
Dec. 2016, pp. 4661–4666.

[22] F. Berkenkamp, M. Turchetta, A. Schoellig, and A. Krause, “Safe model-
based reinforcement learning with stability guarantees,” in Proc. Adv.
Neural Inf. Process. Syst. (NeurIPS), Dec. 2017, pp. 908–919.

[23] J. F. Fisac, N. F. Lugovoy, V. Rubies-Royo, S. Ghosh, and C. J. Tomlin,
“Bridging Hamilton-Jacobi safety analysis and reinforcement learn-
ing,” in Proc. IEEE Int. Conf. Robot. Autom. (ICRA), May 2019,
pp. 8550–8556.

[24] A. R. Mahmood, D. Korenkevych, G. Vasan, W. Ma, and J. Bergstra,
“Benchmarking reinforcement learning algorithms on real-world robots,”
in Proc. 2nd Conf. Robot Learn. (CoRL), Oct. 2018, pp. 561–591.

[25] S. James, Z. Ma, D. R. Arrojo, and A. J. Davison, “RLBench: The robot
learning benchmark & learning environment,” IEEE Robot. Autom. Lett.,
vol. 5, no. 2, pp. 3019–3026, Apr. 2020.

[26] Z. Zhou, O. S. Oguz, M. Leibold, and M. Buss, “A general framework
to increase safety of learning algorithms for dynamical systems based
on region of attraction estimation,” IEEE Trans. Robot., vol. 36, no. 5,
pp. 1472–1490, Oct. 2020.

[27] W. H. Schilders, H. A. Van der Vorst, and J. Rommes, Model Order
Reduction: Theory, Research Aspects and Applications. New York, NY,
USA: Springer, 2008.

[28] A. Marco et al., “Virtual vs. real: Trading off simulations and physical
experiments in reinforcement learning with Bayesian optimization,” in
Proc. IEEE Int. Conf. Robot. Autom. (ICRA), May 2017, pp. 1557–1563.

[29] M. Z. Romdlony and B. Jayawardhana, “Stabilization with guaranteed
safety using control Lyapunov–Barrier function,” Automatica, vol. 66,
pp. 39–47, Apr. 2016.

[30] M. Sobotka, J. Wolff, and M. Buss, “Invariance controlled balance
of legged robots,” in Proc. Eur. Control Conf. (ECC), Jul. 2007,
pp. 3179–3186.

[31] A. A. Ahmadi and A. Majumdar, “DSOS and SDSOS optimization:
More tractable alternatives to sum of squares and semidefinite opti-
mization,” SIAM J. Appl. Algebra Geometry, vol. 3, no. 2, pp. 193–230,
Apr. 2019.

[32] L. van der Maaten and G. Hinton, “Visualizing data using t-SNE,”
J. Mach. Learn. Res., vol. 9, no. 86, pp. 2579–2605, Nov. 2008.

[33] G. Shafer, A Mathematical Theory of Evidence. Princeton, NJ, USA:
Princeton Univ. Press, 1976.

[34] A. Jøsang, Subjective Logic. New York, NY, USA: Springer, 2016.
[35] A. Jøsang, “Categories of belief fusion,” J. Adv. Inf. Fusion, vol. 13,

no. 2, pp. 235–254, Dec. 2018.
[36] T. Luukkonen, “Modelling and control of quadcopter,” School Sci., Aalto

Univ., Espoo, Finland, Tech. Rep. Mat-2.4108, Aug. 2011.

Zhehua Zhou (Graduate Student Member, IEEE)
received the B.E. degree in mechatronics engi-
neering from Tongji University, Shanghai, China,
in 2014, and the M.Sc. degree in electrical and com-
puter engineering from the Department of Electrical
and Computer Engineering, Technical University of
Munich, Munich, Germany, in 2017, where he is cur-
rently pursuing the Ph.D. degree in learning-based
control and robotics with the Chair of Automatic
Control Engineering, Department of Electrical and
Computer Engineering.

His research interests include optimal control, learning-based control, and
applications to robotics.

Ozgur S. Oguz (Member, IEEE) received the B.Sc.
and M.Sc. (summa cum laude) degrees in computer
science from Koc University, Istanbul, Turkey, in
2007 and 2010, respectively, and the Ph.D. degree
(summa cum laude) from the Department of Electri-
cal and Computer Engineering, Technical University
of Munich, Munich, Germany, in 2018.

He is currently a Post-Doctoral Researcher with
the Machine Learning and Robotics Laboratory, Uni-
versity of Stuttgart, Stuttgart, Germany, and the Max
Planck Institute for Intelligent Systems, Stuttgart.

His research interests are developing autonomous systems that are able to
reason about their states of knowledge, take sequential decisions to realize a
goal, and simultaneously learn to improve their causal physical reasoning and
manipulation skills.

Marion Leibold (nee Sobotka) (Member, IEEE)
received the Diploma degree in applied mathematics
from the Technical University of Munich, Munich,
Germany, in 2002, and the Ph.D. degree from
the Faculty of Electrical Engineering and Informa-
tion Technology, Technical University of Munich,
in 2007.

She is currently a Senior Researcher with the
Institute of Automatic Control Engineering, Faculty
of Electrical Engineering and Information Technol-
ogy, Technical University of Munich. Her research

interests include optimal control and nonlinear control theory, and applications
to robotics.

Martin Buss (Fellow, IEEE) received the Diploma
degree in electrical engineering from the Tech-
nische Universität Darmstadt, Darmstadt, Germany,
in 1990, and the Ph.D. degree in electrical engineer-
ing from The University of Tokyo, Tokyo, Japan,
in 1994.

In 1988, he was a Research Student with the Sci-
ence University of Tokyo, Tokyo, for one year. From
1994 to 1995, he was a Post-Doctoral Researcher
with the Department of Systems Engineering, Aus-
tralian National University, Canberra, ACT, Aus-

tralia. From 1995 to 2000, he was a Senior Research Assistant and a Lecturer
with the Chair of Automatic Control Engineering, Department of Electrical
Engineering and Information Technology, Technical University of Munich,
Munich, Germany. From 2000 to 2003, he was a Full Professor, the Head
of the Control Systems Group, and the Deputy Director of the Institute
of Energy and Automation Technology, Faculty IV, Electrical Engineering
and Computer Science, Technical University Berlin, Berlin, Germany. Since
2003, he has been a Full Professor (Chair) with the Chair of Automatic
Control Engineering, Faculty of Electrical Engineering and Information Tech-
nology, Technical University of Munich, where he has also been with the
Medical Faculty since 2008. Since 2006, he has also been the Coordinator
of the Deutsche Forschungsgemeinschaftcluster of excellence—Cognition for
Technical Systems, Bonn, Germany. His research interests include automatic
control, mechatronics, multimodal human-system interfaces, optimization,
nonlinear, and hybrid discrete-continuous systems.

