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The development of advanced autonomous driving applications is hindered by the

complex temporal structure of sensory data, as well as by the limited computational

and energy resources of their on-board systems. Currently, neuromorphic engineering is

a rapidly growing field that aims to design information processing systems similar to the

human brain by leveraging novel algorithms based on spiking neural networks (SNNs).

These systems are well-suited to recognize temporal patterns in data while maintaining

a low energy consumption and offering highly parallel architectures for fast computation.

However, the lack of effective algorithms for SNNs impedes their wide usage in mobile

robot applications. This paper addresses the problem of radar signal processing by

introducing a novel SNN that substitutes the discrete Fourier transform and constant

false-alarm rate algorithm for raw radar data, where the weights and architecture of the

SNN are derived from the original algorithms. We demonstrate that our proposed SNN

can achieve competitive results compared to that of the original algorithms in simulated

driving scenarios while retaining its spike-based nature.

Keywords: spiking neural network, FMCW radar, Fourier tranform, constant false-alarm rate, autonomous driving

1. INTRODUCTION

Autonomous driving is a billion-dollar business with high demand for efficient computing systems.
This introduces a limitation for highly automated vehicles, where the systems that process sensor
data can drain more than 10% of the power stored for driving (Lin et al., 2018). Radar sensors are a
fundamental component of most autonomous vehicles. Their low price and robustness against bad
weather and lighting conditions make them great companions for lidar and vision cameras (Hasch
et al., 2012;Winner et al., 2014; Patole et al., 2017).Whereas, the algorithms in this field are typically
implemented on graphical processing units (GPUs), field-programmable gate arrays (FPGAs), or
application-specific integrated circuits (ASICs) (Lin et al., 2018), neuromorphic hardware (NHW)
offers an efficient alternative environment (Furber et al., 2014; Davies et al., 2018; Sangwan and
Hersam, 2020). It provides a low-energy-footprint platform for a new generation of neural networks
called spiking neural networks (SNNs), which reduce the high energy consumption of the popular
artificial neural networks (ANNs) (Maass and Schmitt, 1999; Bouvier et al., 2019; Strubell et al.,
2019).

SNN-based applications for sensor signal processing comprise a novel area within autonomous
driving and have been applied to traditional vision cameras for tracking applications (Cao et al.,
2015; Piekniewski et al., 2016); raw temporal pulses of lidar sensors for object detection (Wang et al.,
2021); dynamic vision sensors for tasks including lane keeping (Bing et al., 2020), feature extraction
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and motion perception (Paredes-Vallés et al., 2019), and collision
avoidance (Salvatore et al., 2020); as well as remote sensing
images for object detection (Liu et al., 2018). Likewise, bio-
inspired neural networks have also been applied to control
problems in mobile applications, including rotation control for
unmanned aerial vehicles (Stagsted et al., 2020); and tracking
control (Khan et al., 2021) and obstacle avoidance (Khan et al.,
2020) for smart-home manipulators.

Current trends in signal processing include optimization of
the energy consumption, memory resources, and computational
speed of the Fourier transform (FT) (Gilbert et al., 2014).
In the case of radar processing, the FT converts the raw
data from the sensor into a range-Doppler map, followed by
an object-detection algorithm that separates the target values
from noise (Patole et al., 2017). Later stages extract high-
level information, such as a list of labeled objects or target
trajectories. A few recent works have explored the application of
SNNs to decomposing a time signal into a frequency spectrum,
e.g., by applying sequential spiking band-pass filters to audio
signals (Jiménez-Fernández et al., 2016) or using neurons that
spike at specific input frequencies (Auge and Mueller, 2020).
The former offers an efficient bio-inspired solution, but its
applications are limited to extracting a small set of frequency
components. The latter provides a simple and elegant solution,
but fails to provide an accurate measurement of the frequency-
components angles, which are crucial for computing a 2D FT.

In this letter, we present a novel SNN that is able to effectively
replace the discrete FT (DFT) and constant false-alarm rate
(CFAR) algorithms (Rohling, 1983). Its weights are fixed, as they
are mathematically derived from the equations defining the two
algorithms, leading to equivalent results in simulated driving
scenarios. Therefore, the network does not require learning
to adapt its weights. Modern radar applications use the fast
FT (FFT), which consists of a recursive decomposition of the
problem into smaller DFTs over subsets of the original data
(Frigo and Johnson, 2005), i.e., the DFT is a generalization of
the FFT. The proposed network is a theoretical approximation
of the DFT, and further work can explore network topologies
with smaller layers that mimic the desired FFT structure. The
quantitative results show high similarity between the outputs
of the proposed SNN and the original algorithms for both one
and two dimensions. In combination with NHW, this work
could provide an efficient alternative for processing radar data
while maintaining analogous performance. Designing SNNs that
can process sensor data is a crucial step for obtaining full
neuromorphic sensor processing pipelines and, together with
NHW, bring a new generation of signal-processing solutions with

FIGURE 1 | Diagram of the implemented pipeline. The first block implements a

spiking DFT on raw discretized FMCW radar data, and the second block

implements the spiking OS-CFAR.

higher energy efficiencies and shorter latency response-times.
Furthermore, finding SNN equivalents for all radar-processing
stages is paramount, as hybrid pipelines introduce additional
complexity through communication and spike conversion when
data flows between the NHW and traditional hardware.

2. SPIKING NEURAL NETWORK

In this section, we explain an SNN that substitutes the 2D DFT
(S-DFT) and object detection (S-OSCFAR) on raw frequency-
modulated continuous-wave (FMCW) radar data. To do so, the
network is split into two smaller networks that process each of
the steps (see Figure 1).

2.1. Fourier Transform
The 2D DFT is a linear transformation that can be represented
by two successive matrix multiplications. Hence, each of the
dimensions of the 2D DFT can be represented by a one-layer
neural network with a linear activation function.

We have implemented the S-DFT with a two-layer network,
where the first layer provides information about the target ranges
and the second extracts their velocities. The input data has
dimension N × M, where N is the total number of samples per
chirp, and M is the number of chirps in a radar frame. Owing
to the complex nature of the DFT, both the real and imaginary
values must be computed. Therefore, each layer contains 2N×M
neurons (Figure 2).

The weights of the network have been calculated based on the
trigonometric equation of the DFT:

Yk =

L−1
∑

l=0

Xl

[

cos

(

2π

L
kl

)

− i · sin

(

2π

L
kl

)]

. (1)

Both the input vector X and output vector Y are formed by L
values; hence, k and l take values between 0 and L − 1. L takes
the value ofN for the first layer andM for the second. We rewrite
Equation (1) as

Y = WReX + i ·WImX , (2)

where Y is the result of the transform, X is the input vector,
and WRe and WIm are the real and imaginary coefficients,
respectively. From Equation (1), the individual weight
coefficients can be calculated using the following equations:

wRekl = cos

(

2π

L
kl

)

, (3)

wImkl
= −sin

(

2π

L
kl

)

. (4)

The first layer is replicated in parallel M times using the same
weights. The output consists of the frequency spectrum of the
input chirps, formed each by 2N values.

The second layer applies the same algorithm to the output
of the first layer, Y(1). The main difference is that the input in
this case is formed by complex values, so the real and imaginary
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FIGURE 2 | Diagram of the S-DFT. The first layer implements one DFT per chirp to obtain the range-dependent frequency bins, and the second layer performs a DFT

along the different chirps to obtain the Doppler frequency components. A transpose operation is implemented between these steps, as each layer is applied along a

different dimension.

parts obtained from Equation (2) for the first layer are fed
into the equation for the second layer. Therefore, Equation (2)
can be generalized for the second layer by using the following
algebraic system:
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(
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. (5)

For this layer,WRe andWIm areM ×M matrices.
With appropriate weights, a two-layer feed-forward network

with linear activation can represent Equations (2) and (5). A rate-
based SNN can approximate a neural network based on rectified
linear unit (ReLU) functions (Rueckauer et al., 2017). For one
layer, such a network transforms its input a ∈ R

n as

zj = ReLU

(

∑

i

Wjiai

)

, (6)

where W ∈ R
m×n is the weight matrix and z ∈ R

m is the
result. In the rate-based approximation, the input is represented
by n neurons whose spike frequencies are proportional to the
components of a. Assuming that we simulate the SNN for k
timesteps, we denote the spike train of the input neuron i as a
binary vector 2(i) ∈ {0, 1}k, where 1 in indicates a spike and 2(i)

is computed from ai. Rueckauer et al. (2017) showed that z can
be approximated by the spike frequency of m output neurons.
The membrane potential Vj fully describes the state of the output

neuron j. At a certain timestep 1 < t < k, it is computed
according to

V t
j = V t−1

j + Vthr

∑

i

Wji2
(i)
t , (7)

where Vthr is a model parameter. We compute the output spike
train with a threshold behavior. Whenever V t

j > Vthr , the output

neuron j spikes and V t
j is reduced by Vthr . The spike train defines

the spike frequency, and we obtain an approximation to yj. For
deeper networks, the neuron model governs all hidden layers as
well as the output layer (Rueckauer et al., 2017).

Latest conversion approaches are based on ReLU networks.
However, a single ReLU function does not span over the entire
real spectrum, so the S-DFT implements the activation by
combining two ReLU functions with opposite signs in their
weights. To still use the existing conversion theory, we rewrite
a regular matrix multiplication as a sum of two ReLU layers

∑

i

Wjiai = ReLU

(

∑

i

Wjiai

)

− ReLU

(

∑

i

(

−Wji

)

ai

)

, (8)

which leads to two convertible sub-networks with weights of
opposite signs. This logic is applied to Equations (1) and (5) in
order to obtain a convertible network and ultimately an SNN for
the DFT.

2.2. OS-CFAR
CFAR algorithms differentiate signals from noise. In the context
of radar processing, the ordered-statistics (OS) CFAR is a very
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FIGURE 3 | Diagrams representing the functionality of (A) the traditional

OS-CFAR algorithm, and (B) the spiking OS-CFAR algorithm described in

section 2.2. The diagrams show the N neighbor cells, G guarding cells, and

the value under consideration xc in blue, red, and yellow, respectively. The

different connection colors indicate the weights: −1 (blue), 0 (red), and

1+ (k − 1) (yellow).

prominent candidate to detect targets in range-Doppler maps
(Rohling, 1983).

It operates on a 1D array x containing N + G + 1 values,
where N is the number of neighbor cells, G is the number of
guarding cells, and the remaining value is the one to be classified
(see Figure 3). Let us denote the latter as xc and the set of all
neighbor cells as N . The OS-CFAR algorithm compares the kth
largest value of N against αxc, where 0 < α < 1 is a scale factor.
If αxc is larger, it is classified as a signal; otherwise, it is considered
noise. This can be expressed as

OS-CFAR(x) = [αxc > maxk{y|y ∈ N }] , (9)

where maxk selects the kth largest element and [.] denotes the
Iverson bracket1.

The OS-CFAR algorithm can be replaced by an SNN
consisting of a single integrate-and-fire (IF) neuron, see Equation
(7). We refer the reader to chapter 1.3 of Gerstner et al. (2014) for
more details about the neuron model. If the IF neuron receives
a spike from a pre-synaptic neuron connected with weight w,
the membrane potential v instantaneously increases to the new
value, v + w. The information of the real-valued vector x ∈ R

q

is encoded in the precise spike time of a set of q pre-synaptic
neurons. For a given value xi, the associated pre-synaptic neuron
i spikes at

t(xi) = − (tmax − tmin)
xi − xmin

xmax − xmin
+ tmax , (10)

where xmin < xi < xmax ∀i, and tmin and tmax define the earliest
and latest spike time, respectively. Equation (10) is a linear
transformation that maps larger values to earlier spike times.

1The Iverson bracket [C] yields 1 if the condition C is true and 0 if false.

The defined encoding allows us to rewrite the CFAR problem.
Instead of finding the kth largest value and comparing it against
αxc, we evaluate whether fewer than k spikes arrive before
t(αxc). Therefore, we need to choose the parameters of the
IF neuron appropriately. Among many different choices, we
propose defining the initial membrane potential, firing threshold,
neighbor weights, guarding weights, and weight for the value
under consideration as v0 = 0, vth = 1, wN = −1, wG = 0,
and wc = 1 + (k − 1), respectively. With these parameters, the
neuron spikes if and only if fewer than k spikes arrived before
t(αxc). The neuron spikes in the same manner in which the
OS-CFAR computes 0 or 1; thus, in that sense, both methods
are mathematically equivalent. To guarantee that the classic
algorithm and its spiking counterpart detect the same peaks, the
time step 1t must comply with 1t < |tk−1 − t(αxc)|; i.e., the
(k − 1)th spike must arrive at least one time step before the
reference spike.

The method can be generalized to the 2D case by defining
the neighbor and guarding cells on a 2D array, as done for the
traditional OS-CFAR algorithm. The interested reader may find
more information in Kronauge and Rohling (2013). Although
the weights and spike times remain unchanged, the algorithmic
parameters k and α need to be adapted to the new problem to
obtain meaningful results (Rohling, 1983).

3. EXPERIMENT RESULTS

The data used in the experiments has been gathered using an
automotive radar simulator. This tool simulates a 77 GHz radar
with a user-specified number of targets in the sensed scene. The
generated data also includes several sources of noise typically
present in real radar data, e.g., analog front-end noise, ADC noise
and saturation, phase noise, and thermal noise. The generated
data frames are formed by 128 chirps and 1,024 samples per
chirp. The bandwidth and duration of each chirp are 275 MHz,
and 54 µs, respectively.

The simulated sensor is a long-distance radar (range up to 300
m), and the scene is populated with three targets at ranges R =

{5, 9, 100} m. The velocities of the targets relative to the radar
are V = {0, 2, 14} m/s, and the radar cross section (RCS) σ =

{0, 5, 40} dBsm. The first two objects represent two pedestrians,
whereas the last target represents a vehicle. These values are based
on the typical velocities of such targets, and the RCS values are
obtained from previous studies (Kamel et al., 2017; Deep et al.,
2020). The simulation also includes 20-mm sensor packaging
and the 1-cm car bumper, with RCS σP = −40 dBsm, and
σB = −23 dBsm, respectively.

The proposed algorithm was implemented in Python, and the
code is open-source2.

3.1. One-Dimensional DFT and CFAR
In the first experiment, we applied the S-DFT and S-OSCFAR to a
single chirp of the simulated scene. The 1D S-DFT was simulated
with 1,000 time steps of size 1t = 0.01ms, i.e., for a total time
of 10ms. The input values are converted to spike trains with

2https://github.com/KI-ASIC-TUM/spiking-dft-cfar
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FIGURE 4 | Results of the experiments on a simulation with three targets and a car bumper next to the sensor for (A) the 1D standard DFT and OS-CFAR algorithms,

(B) the 1D S-DFT and S-OSCFAR, (C) the 2D standard DFT and OS-CFAR algorithms, and (D) the 2D S-DFT and S-OSCFAR. The sensor range is up to 300 m, but

for visualization purposes the range dimension has been cropped until 125m.

regular spike time intervals 1T ∈ [0.2, 10.0]ms. To encode the
S-OSCFAR values, we set the parameters tmin and tmax to 0 and
50ms, respectively. This sub-network was also simulated with a
temporal resolution 1t = 0.01ms. Both the classical and spiking
CFAR algorithms used G = 12 guarding cells, N = 30 neighbor
cells, a scale factor α = 0.2, and compared against the kth = 6th
largest value.

Figure 4A shows the results of the original algorithms, and
Figure 4B shows the results of the proposed algorithm for a single
dimension, i.e., range. The performance of both the standard and
spiking versions are comparable, and they were able to detect the
three objects present in the scene.

For evaluating the performance of the S-DFT, we measured
the root mean square error (RMSE) between the DFT and
S-DFT, which yielded RMSE = 0.0056. This measure
was taken after normalizing the output values between 0
and 1. This small error is generated during the encoding
process, as the S-DFT is a mathematical approximation of the
original DFT.

3.2. Two-Dimensional DFT and CFAR
In the second experiment, we applied the S-DFT and S-
OSCFAR to the complete radar frame of the simulated scene.
The 2D S-DFT simulation parameters were identical to the
1D case, except for the total simulation time, which was
increased to 50ms. Furthermore, the encoding parameters for
the S-OSCFAR algorithm and the temporal resolution were
identical to the 1D experiment. The CFAR parameters were
set to G = 48 guarding cells, N = 176 neighbor cells, a

scale factor α = 0.2, and compared against the kth = 9th
largest value.

Figure 4C shows the results for the standard DFT and OS-
CFAR, and Figure 4D shows the results for the spiking versions.
As in the 1D experiment, the traditional and the spiking
approaches were able to detect the three targets.

The error between the traditional algorithm and the S-DFT
resulted in an RMSE of 0.0060, which is slightly larger than in
the 1D case. As the number of layers in the network increases,
encoding errors accumulate and the results increasingly differ
from the desired goal (Rueckauer et al., 2017). However, this error
is small, and the S-DFT offers very similar output to that of the
standard DFT. Moreover, the small deviations did not affect the
overall detection performance.

4. CONCLUSION

In this work, we presented an SNN that approximates the first
stages of a typical automotive radar pipeline i.e., the Fourier
transform and object detection. In contrast to the majority of
ANN and SNN applications, our network is mathematically
derived from the original algorithms and is not based on learning,
as the DFT and CFAR are efficient and fast methods that
can be translated into a neural network. Thus, we avoid the
difficulties of network verification arising from high-dimensional
optimization algorithms.

The implementation of every step of the radar signal
processing with SNNs is fundamental in order to unfold the
full potential of SNNs and NHW. For instance, the input and
output of the proposed method are binary temporal events. In
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the present work, this data structure is inferred with encoding
and decoding techniques. However, they introduce additional
overhead and consequently penalize the energy footprint of
the method. Instead of generating spikes after the analog-
to-digital converter, future work should focus on designing
ad-hoc electronics for generating spike-trains directly from
the voltage signal, taking inspiration from the most recent
advances in neuromorphic sensors. Future work should also
focus on encoding the information using temporal coding,
due to the efficiency gains that it provides, as well as
extending the SNN to higher-level processing stages e.g.,
classification, tracking, or semantic segmentation. Furthermore,
it is necessary to implement the developed algorithms in NHW
and conduct benchmarking experiments that compare them
with traditional methods. An exhaustive assessment that evaluate
performance parameters (e.g., latency, energy, and memory
usage) is paramount in order to determine its real potential for
automotive applications.

The application of SNNs has typically been limited to
computer vision datasets or ad-hoc neuromorphic sensors, and,
to our knowledge, this is the first implementation of an SNN
to the processing pipeline of automotive radar. We anticipate a
rise in the application of SNNs for radar processing in upcoming
years, due to increasing interest in efficient processing chains for
autonomous driving applications and the major role that radar
sensors play in these systems.
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