Technische Universitat Miinchen
TUM School of Computation, Information and Technology

Formal Verification of Algorithms
for Automata and Model Checking

Julian M. Brunner

Vollstandiger Abdruck der von der TUM School of Computation, Informati-
on and Technology der Technischen Universitat Miinchen zur Erlangung
des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitz:
Prof. Dr. Helmut Seidl
Priifende der Dissertation:
1. Prof. Tobias Nipkow, Ph.D.

2. Prof. Dr. Francisco Javier Esparza Estaun

Die Dissertation wurde am 25.10.2021 bei der Technischen Universitat Miin-
chen eingereicht und durch die TUM School of Computation, Information
and Technology am 31.10.2022 angenommen.

ii

Abstract

We use the proof assistant Isabelle to formally verify algorithms for omega
automata and LTL model checking. The focus lies on generating executable
code from these verified algorithms to produce highly trustworthy tools.
These can then be used as reference implementations to test unverified
tools against. Our work consists of three contributions in this general area.

Firstly, we formalize a library for transition systems and automata. It uses
abstraction in order to support many different types of automata without
duplicating formalization or compromising usability. The abstract part
includes concepts like finite and infinite paths, language, degeneralization,
and boolean operations on automata. Parts of it can also be instantiated
on other structures like graphs and Petri nets. The concrete part includes
several types of both finite and omega automata and can be extended easily.

Secondly, we formally verify an ample set partial order reduction algorithm.
This includes the abstract correctness proof as well as the reduction algo-
rithm which ensures that the reduction conditions hold. We integrate an
executable implementation of this algorithm into the CAVA model checker.
Furthermore, we show a counterexample for one of the lemmata involved
in the proof of dynamic on-the-fly partial order reduction.

Thirdly, we formally verify algorithms for Biichi complementation and
equivalence checking. The complementation algorithm follows the rank-
based approach. We then use this algorithm in conjunction with both an
intersection operation and an emptiness check to decide language-wise
equivalence of Biichi automata. Finally, we integrate executable imple-
mentations of both of these algorithms into a command-line tool that can
process automata represented in the Hanoi Omega-Automata format.

iii

iv

Zusammenfassung

Wir verwenden den Beweisassistenten Isabelle, um Algorithmen fiir Omega-
Automaten und LTL Model Checking formal zu verifizieren. Der Schwer-
punkt liegt auf der Generierung von ausfiithrbarem Code, um vertrauens-
wiirdige Werkzeuge zu produzieren. Diese konnen dann als Referenzimple-
mentierungen verwendet werden, um unverifizierte Werkzeuge dagegen
zu testen. Unsere Arbeit besteht aus drei Beitragen in diesem Gebiet.

Erstens formalisieren wir eine Bibliothek fiir Transitionssysteme und Au-
tomaten. Sie verwendet Abstraktion, um viele verschiedene Typen von
Automaten unterstiitzen zu konnen ohne Formalisierung zu duplizieren
oder Einbullen bei der Benutzbarkeit zu machen. Der abstrakte Teil umfasst
Konzepte wie endliche und unendliche Pfade, Sprache, Degeneralisierung,
und boolesche Operationen auf Automaten. Teile davon konnen auch auf
anderen Strukturen wie Graphen oder Petri-Netzen instanziiert werden.
Der konkrete Teil umfasst mehrere Typen von sowohl endlichen als auch
Omega-Automaten und kann leicht erweitert werden.

Zweitens verifizieren wir einen Ample Set Partial Order Reduction Algorith-
mus. Dies umfasst sowohl den abstrakten Korrektheitsheweis als auch den
Reduktionsalgorithmus, der die Reduktionsbedingungen sicherstellt. Wir
integrieren eine ausfithrbare Implementierung dieses Algorithmus in den
CAvA Model Checker. Weiterhin zeigen wir ein Gegenbeispiel fiir eines der
Lemmata im Beweis von dynamischer on-the-fly Partial Order Reduction.

Drittens verifizieren wir Algorithmen fiir Biichi-Komplementierung und
Aquivalenzpriifung. Der Komplementierungsalgorithmus folgt dem Rang-
basierten Verfahren. Anschliefend verwenden wir diesen Algorithmus
zusammen mit einer Schnittoperation und einem Leerheitstest, um Sprach-
dquivalenz von Biichi-Automaten zu entscheiden. Schlieflich integrieren
wir ausfiihrbare Implementierungen beider dieser Algorithmen in ein
Kommandozeilenwerkzeug, welches im Hanoi Omega-Automata Format
reprasentierte Automaten verarbeiten kann.

vi

Acknowledgments

First and foremost, I want to thank my advisor Tobias Nipkow. Over the
course of my undergraduate studies, he single-handedly redirected my
interests from the field of software engineering towards the fields of logic
and theoretical computer science via several lectures. Furthermore, his
lecture Semantics of Programming Languages introduced me to Isabelle and
the fascinating world of interactive theorem proving. Having been thor-
oughly hooked, I was both grateful and excited to be given the opportunity
to become part of his research group as a doctoral student. During this time,
his hands-off approach to supervision gave me almost complete freedom
in how to pursue my research. At the same time, he was always available
for advice and guidance, giving support and direction as needed.

I want to thank my colleagues at the Chair for Logic and Verification for
making our workplace such a pleasant and friendly environment. During
my time with the group, I met and worked with Mohammad Abdulaziz,
Jasmin Blanchette, Manuel Eberl, Maximilian P. L. Haslbeck, Johannes
Holzl, Lars Hupel, Fabian Immler, Kevin Kappelmann, Ondrej Kuncar,
Peter Lammich, Lars Noschinski, Andrei Popescu, Jonas Ridle, Simon
RofSkopf, Lukas Stevens, Dmitriy Traytel, Simon Wimmer, and Bohua Zhan.

Among these people, I want to thank in particular Peter Lammich, who
played an important role in many of the events that eventually brought me
to the group. At the group, we worked together on the CAVA project. He
is an expert in formalizing complex graph algorithms as well as deriving
executable implementations for them. In this context, he also taught me
the mysterious ways of the (in)famous refinement framework.

Next, I want to thank Ondfej Kuncar, who started the tradition of mak-
ing movies for colleagues leaving the chair. I gladly served as the cine-
matographer for him and his fellow investigative journalist Simon Wimmer.
Through their decisive improvisation, the movie was successfully produced
in just a single afternoon and achieved widespread critical acclaim.

vii

I also want to thank Manuel Eberl, who was always ready to include me in
his shenanigans as well as take part in mine. This led to great success (or at
least fun) in various endeavors like competitive Super Smash Bros. Melee
for the Nintendo GameCube™, VRChat, a USB sledgehammer for Isabelle,
a movie for Lars Hupel, and the Pub-Quiz.

Furthermore, I want to thank Mohammad Abdulaziz, another member of
the Melee group. He was always full of friendly curiosity, willing to have
conversations about Isabelle technicalities, research and work culture,
society and politics, and even life advice.

Last but not least, I want to thank our office managers Eleni Nikolaou-
Weiss and Helma Piller for helping us navigate the bureaucratic jungle that
teaching and research at a university can be sometimes.

The research in this dissertation was supported by the DFG grants Computer
Aided Verification of Automata (ES 139/5-1, N1 491/12-1, SM 73/2-1) and Verified
Model Checkers (KR 4890/1-1, LA 3292/1-1). I want to thank all of the people
taking part in these projects, namely Javier Esparza, Jan Kretinsky, Peter
Lammich, René Neumann, Tobias Nipkow, Alexander Schimpf, Salomon
Sickert, Jan-Georg Smaus, and Thomas Tuerk. Without them, this research
would not have been possible. I want to thank in particular my coauthors
Peter Lammich, Salomon Sickert, and Benedikt Seidl. Finally, I want to
thank Javier Esparza for providing his expertise on all things automata as
well as his knowledge about the model-checking community.

There are several people who I have met or who have helped me during my
research. These include Clemens Ballarin, Florian Haftmann, Alexander
Krauss, Michael Luttenberger, Stephan Merz, Doron Peled, Albert Rizaldi,
Helmut Seidl, Stephen Siegel, Antti Valmari, and Makarius Wenzel.

Finally, I want to thank Julian Asamer, Harald Brunner, Manuel Eberl,
Yannick Mahlich, and Cameron Murri, who read preliminary versions of
this dissertation and provided me with valuable feedback.

viii

Contents

I Discussion
1 Introduction

2 Interactive Theorem Proving

2.1 Isabelle
2.2 Verification e
2.3 Refinement
24 SeqUENCES i h e e e e e e e e e e e e e

3 Automatic Verification

3.1 Linear TemporalLogic
3.2 OmegaAutomata
3.3 LogicandAutomata.
34 ModelChecking oo
3.5 Formalization 0.,

4 Transition Systems and Automata

41 Architecture oL e
4.2 Prerequisiteso
4.3 TransitionSystems
44 Intermediates oo
45 Automata 0 Lo o e
4.6 Implementation,
47 Formalization

5 Partial Order Reduction

51 Theory i e
5.2 Abstract COrrectness v v v v v v v i i
5.3 Static Partial Order Reduction
54 Dynamic Partial Order Reduction

ix

N

O 0 N oG

10
10
11
11
12
12

14
15
16
17
20
22
23
24

I1

5.5 Results o v v i i e e e e e e 31

Biichi Complementation 32
6.1 Complementation 33
6.2 Equivalence 35
63 Results e 35
Conclusion 37
Relevant Publications 41
Partial Order Reduction 42
Al Introduction 45
A2 Theory v i i it i e 46
A.21 ReductionConditions 47
A.2.2 Reduction Algorithm 48
A.3 Formalization, 49
A31 Isabelle/HOL 0000 49
A.3.2 Refinement Framework. 50
A3.3 Basicso e e e e 50
A34 Systems oo 50
A3.5 TraceTheory 51
A.3.6 AbstractCorrectness 52
A37 TheSMLanguage 55
A.3.8 Reduction Algorithm 56
A.3.9 Architecture of the CAVA Model Checker. 56
A.3.10 Integration of Partial Order Reduction. 59
A4 Evaluation e 60
A.5 Dynamic Partial Order Reduction with On-The-Fly Model
Checking. 60
A6 Conclusion 62
References i i i i i i i e e e e e e 63
Biichi Complementation 65
Bl Introduction 67
B2 Theory i i it ittt e 68
B.21 Notation 69
B.2.2 Complementation 69
B.2.3 Complexity and Optimizations 70
B.24 Equivalence, 71

B.3 Formalization & o v i v i i ie e

B.3.1
B.3.2
B.3.3
B.3.4
B.3.5
B.3.6
B.3.7
B.3.8
B.3.9
B.3.10

Isabelle/HOL v v i v v ...
Basics o
Transition Systems and Automata
RunDAGs
OddRankings
Complement Automaton
Refinement Framework
Implementation
Equivalence
Integration,

B4 Evaluation & i v i i i e e e e e
B.5 Conclusion v i i e e e e e e e e e e

References

ooooooooooooooooooooooooooooo

II1 Extra Publications

C LTL Translation
C.l Introduction v v v v i ittt
C.2 Preliminaries v v v v v v it e
C.3 Transition Systems and Automata

C.3.1
C.3.2
C.3.3
C.34
C.3.5
C.3.6

Abstract Transition Systems
Concrete Automata
Predefined Automata
Executable Implementation
Formalisation
Contributions to the Translation Formalisation . . .

C4 The Master Theorem: Decomposing LTL Formulas

C4.1
C4.2
C4.3

The “after”-Function
Syntactic Fragmentsof LTL
The Master Theorem

C.5 Deriving the DRA Construction

C.5.1
C.5.2
C.5.3

Constructing Automata for L, x, L% y, and L} y
Assemblingthe Pieces
A Verified LTL Translator

C.6 ConcludingRemarks

References

IV Bibliography

xi

85

86
87
90
92
93
94
96
96
96
96
97
97
98
98
99
99
101
101
102
102

107

xii

Partl

Discussion

Chapter 1

Introduction

Software is present in almost all parts of our lives, and so are its issues.
They range from harmless quirks in smartphone user interfaces to critical
failures in aviation control software. Given the ubiquity of these systems
and the responsibility that they carry, avoiding these problems is essential.

Fundamentally, software issues constitute a discrepancy between what the
software is supposed to do and what it actually does. To facilitate aligning
these two sides, much of software engineering revolves around an inter-
mediate concept called the specification. It is the result of a process called
requirements engineering that gathers the requirements and refines them
into a precise artifact. The actual software is then developed based on and
according to this specification. In this view, the aforementioned discrep-
ancies could be either due to the specification not properly capturing the
requirements or the software not fulfilling the specification. Additionally,
it is unfortunately not uncommon for there to be no explicit specification,
with the developers left to guess what the software is meant to do. Over
time, the discipline of software engineering has developed various ways
of dealing with these issues. While the side of requirements engineering
is interesting in its own right, it is not part of the topic of this dissertation.
Instead, we will focus on correctness, the property of the software fulfilling
its specification, as well as verification, the process of ensuring correctness.

Correctness can be approached from various angles and with varying levels
of rigor. For instance, several practices and tools used during development
can help bring the behavior of the software closer to its specification. These
include but are not limited to software metrics, design patterns, best prac-
tices, and coding conventions. Assessing these indicators either manually

2

via code reviews or automatically via static analysis tools can help avoid
incorrect behavior. A particularly important technique is testing, which
can be done at various levels of granularity and during various stages in
the development process. An approach called test-driven development is
especially rigorous in that it encourages writing specifications for individ-
ual components in the form of tests. Thus, it incorporates both explicit
specifications and testing into the development process itself, while also
trying to take exhaustiveness into consideration via code coverage.

Depending on the software in question, a combination of these practices
may be sufficient to achieve adequate levels of compliance with the speci-
fication. However, all of these techniques are by their nature incomplete
and while they can help catch many mistakes, they can never guarantee
correctness. In scenarios where this is required, we employ formal verifi-
cation, the construction of a mathematical proof showing the correctness
of an algorithm. Unfortunately, these proofs are typically verbose to the
point of being impractically difficult to construct, maintain, understand,
and review. Furthermore, a correctness proof that is at least as difficult to
check as the correctness property itself does not seem very useful.

Fortunately, this is a great use case for interactive theorem proving. In this
context, proofs are constructed with the help of and automatically checked
for validity by a proof assistant. A proof assistant can automate some of the
parts that make formal proofs tedious as well as abstract away details to
make them less complex and easier to comprehend. This allows working
with the proof at a higher and more abstract level while the full formal
proof is still maintained in the background. Finally, the proof assistant
ensures the validity of the proof at all times. This way, we can enjoy the
benefits of formal verification while avoiding many of the drawbacks.

In order to use interactive theorem proving to perform formal verification,
both the specification and the algorithm need to be stated in a formal
and machine-readable language. This begs the question of whether it is
possible to automatically check if the algorithm fulfills the specification,
without a manually constructed correctness proof. Unfortunately, this
problem is undecidable in general. That is, there is no algorithm that
can compute the answer to this question for nontrivial specifications and
arbitrary algorithms. Additionally, while constructing or guessing a proof
can allow an algorithm to compute a positive answer in some cases, this is
usually not viable in terms of algorithmic complexity. It is for this reason
that proof assistants can only automate certain small steps of the proof,
while the large-scale structure needs to be given by the user.

3

However, certain more restricted problems can indeed be automated. No-
tably, algorithms that describe finite systems can be exhaustively explored,
giving rise to the idea of model checking. Here, a piece of software called a
model checker decides whether a given algorithm fulfills a given specifica-
tion. This takes place fully automatically, with the model checker either
giving a positive answer or returning a counterexample.

Model checkers as well as their components and associated tools have
become more and more complex over time. They incorporate a plethora
of features, optimizations, and heuristics to improve usability and perfor-
mance. Due to this, these verification tools have now themselves reached a
point where their correctness can be called into question.

The correctness of verification tools is especially important since they act
as trust multipliers. That is, the trust placed in these tools is extended to the
systems that are checked by them. If they are not correct, this can easily
lead to misplaced confidence in the correctness of these checked systems.
In a sense, this could actually be more dangerous than not having used any
verification techniques in the first place. Furthermore, verification tools
are difficult to test on realistically-sized examples, as commonly another
verification tool is the only way to verify the result. Finally, while the algo-
rithms used in verification tools are sometimes examined by the scientific
community, their implementations rarely are.

This leads to the main research topic of this dissertation. We want to use
interactive theorem proving to formally verify algorithms associated with
model checking. The immediate goal is to enable formally verified and thus
highly trustworthy verification tools. Furthermore, these tools can then
act as reference implementations to check other unverified tools against.

Chapters 2 and 3 will introduce the prerequisite concepts and literature in
detail. Chapters 4, 5, and 6 cover the main research. Appendices C, A, and
B contain the respective publications. Chapters 4 and 5 cover additional
material not contained in their corresponding papers.

Chapter 2

Interactive Theorem Proving

In the broadest sense, interactive theorem proving describes the act of
doing mathematics with the help of a computer. This is done with a piece
of software called a proof assistant or theorem prover. The proof assis-
tant allows expressing definitions, theorems, and proofs in a formal and
machine-readable language. It then helps both in finding proofs and, per-
haps more importantly, in checking their correctness.

Asthe name implies, the process of constructing a formal proof using such a
system is interactive. Regular programming languages employ predictable
type systems suitable for a loose edit-compile workflow. In contrast, formal
proof construction requires more detailed and more immediate insight
into the internal state of the prover. As such, it is both convenient and
necessary to have a tight feedback loop between the user and the system.

Formal proofs could in theory also be done on paper. However, this is
tedious, error-prone, and prohibitively time-consuming for all except the
most trivial cases. As such, interactive theorem proving is not merely of
academic interest, but enables the construction of formal proofs that would
otherwise be infeasible. Formal proofs in turn ensure a level of rigor that
would be difficult to achieve in an informal pen and paper proof.

Of course, one could argue that this merely shifts the question of correct-
ness from the proof to the prover. It helps to think about this scenario in
terms of the trusted codebase. It describes the minimum body of work
that needs to be trusted in order to be able to trust the overall correctness
theorem. In that sense, the use of a proof assistant means that instead of
the proof itself, only the proof assistant needs to be trusted. If the proof
assistant is small, this can reduce the trusted codebase significantly.

5

2.1 Isabelle

In this dissertation, we will focus mainly on the proof assistant Isabelle
[NPWO02, http://isabelle.in.tum.de]. It supports several logics, the most
popular of which is Higher-Order Logic (HOL). It can be thought of as a
combination of functional programming and logic.

Formalizations done in Isabelle are trustworthy due to its LCF-style archi-
tecture. In this architecture, there is a small logical inference kernel that
all proofs have to pass through. Thus, the soundness of the entire system
depends only on this inference kernel, with anything outside of the kernel
unable to compromise soundness. This way, the trusted codebase is re-
duced to a minimum. Furthermore, the inference kernel is rarely modified
and tested extensively over time. After decades of use and refinement, it
constitutes the trustworthy foundation of the system.

One of the standout features of Isabelle is the Isar proof language, where
Isar stands for intelligible semi-automated reasoning. It allows writing proofs
in a way that resembles typical mathematical notation and which can be
understood without information about the internal state of the prover. An
example of such a proof is presented in the following.

Example 1 (Isar Proof)

theorem cantor:
fixes f :: a = aset
shows — surj f

proof
assume surj f
then obtain x where f x = {y. y ¢ f y} by force
then have x € f x «— x € {y. y ¢ f y} by blast
also have x € {y. y ¢ f y} «<— x ¢ f x by blast
finally have x € f x <— x ¢ f x by this
then show False by simp

qed

Isabelle is supported by a rich standard library as well as the Archive of
Formal Proofs (AFP) [https://www.isa-afp.org]. The standard library is part
of the HOL object logic. It contains common mathematical concepts from
fields such as order theory, algebra, analysis, number theory, combina-
torics, and probability theory. It also includes concepts and data structures
taken from functional programming as well as concepts related to seman-
tics and formal verification. The AFP consists of various formal proof

6

http://isabelle.in.tum.de
https://www.isa-afp.org

developments mostly from the fields of mathematics and computer sci-
ence. It covers a both wider and deeper range of topics than the standard
library. It is continuously maintained by the authors of those entries as
well as the Isabelle developers. The work in this dissertation both builds
on some of these entries and contributes new ones to the archive.

2.2 Verification

While proof assistants allow for the expression of nearly arbitrary mathe-
matics, we want to focus on using them to perform formal verification. To
do so, both the specification and the algorithm have to be stated formally
in the language of the proof assistant. In Isabelle, the algorithm is usually
expressed using HOL definitions. The specification is a HOL proposition
involving the constants arising from these definitions. This proposition
can then be formally proven with the help of the proof assistant.

Note that while HOL definitions often resemble functional programs, they
are not necessarily executable. They may contain arbitrary HOL terms,
including uncomputable constructs like quantification over infinite sets.
Even when they are executable, HOL is usually not the most suitable en-
vironment for software development. In this case, it may seem appealing
to implement the verified algorithm in a separate programming language.
However, by manually translating the algorithm, one risks introducing
discrepancies. This way, the algorithm that ends up being executed may
not be the same as the algorithm that was proven correct.

Isabelle includes a code generator that can export code from HOL theories
to programming languages like SML, OCaml, Haskell, and Scala. To per-
form this, HOL constants are shallowly embedded in the target language
and equational theorems are translated into rewrite rules [HN10]. Given
the modest assumption that rewriting in the target language corresponds
to equality in HOL, the exported constants have the same semantics as
their HOL counterparts. Thus, the behavior should be the same and the
correctness proof of the algorithm should transfer to its implementation.

It is worth noting that the code generator itself is not verified. However,
this is still a significant improvement over having to establish and maintain
the correspondence between algorithm and implementation manually.
Overall, using interactive theorem proving in this way results in one of the
strongest correctness guarantees possible for an algorithm.

7

2.3 Refinement

Formal verification often involves a trade-off between efficiency of the
algorithm and simplicity of the proof. For instance, the use of efficient data
structures can obscure the abstract and high-level ideas of the correctness
proof with implementation details. Conversely, the representation most
suitable for the proof is not necessarily the most efficient for execution.
For complex algorithms, this can quickly become unmanageable.

Furthermore, many algorithms are naturally nondeterministic. For exam-
ple, an algorithm may involve repeatedly picking and removing an element
from a set until the set is empty. The order in which the elements are pro-
cessed may not be relevant to the correctness of the algorithm. However,
data structures that implement sets will determine a certain order in which
its elements are picked. This mismatch can make both definitions and
proofs very awkward, especially when induction is involved.

Both of these issues can be elegantly resolved via refinement [BW98]. In this
approach, algorithms are initially expressed as abstract specifications, em-
ploying nondeterminism and abstract data representations. The abstract
correctness proof of the algorithm is then performed on this specification.
After that, the specification undergoes stepwise refinement towards an
executable implementation. Each refinement step reduces nondetermin-
ism by replacing parts of the specification with more concrete and specific
versions. The structure and correctness of the algorithm are preserved in
each step, such that each version inherits the abstract correctness proof.

The refinement approach enables separating the correctness proof of the
algorithm from the correctness proof of the implementation. This way, the
former is not encumbered by implementation details and the latter does
not have to deal with the overall correctness of the algorithm. Furthermore,
refinement is compositional, such that predefined data structures can be
seamlessly substituted to implement abstract data representations.

Isabelle enables this via the Refinement Framework [Lam12; LT12; Lam16;
Lam15]. It implements a refinement calculus [BW98] based on a nondeter-
minism monad [Wad92]. The modularity that comes with this approach
in turn makes the Isabelle Collections Framework [Lam09; LL10] possible.
It provides a library of verified and efficient data structures that can be
reused in other formalizations. Together with powerful automation for
tasks like verification condition generation and data structure substitution,
these frameworks enable modular and efficient formal verification.

2.4 Sequences

Although extremely basic, sequences play an integral role in our work and
thus deserve an explicit introduction. Fortunately, the HOL library already
includes extensive support for both finite and infinite sequences in the
form of the types list and stream.

Definition 1 (Sequences)

datatype o list = [] | oc# o list (2.1)
codatatype o stream = o ## « stream (2.2)

The datatype list of finite sequences is well known from functional program-
ming. The codatatype stream of infinite sequences is enabled by Isabelle’s
datatype package based on bounded natural functors [Bla+14; Bie+17].

It is worth noting that it is also possible to represent infinite sequences as
functions N = « that map each index to its corresponding item. This type
is isomorphic to the type o stream. However, it can lead to undesired invo-
cation of both higher-order unification and automation intended for proper
functions. Furthermore, using a type synonym instead of a proper type
prevents type class instantiation. Finally, the codatatype stream with its as-
sociated coinduction rules lends itself more easily to definitions and proofs
involving corecursion and coinduction. These often allow expressing the
desired concepts in a way that is more elegant and concise.

The libraries of both list and stream include many common operations and
their properties, like the operators @ and @- for sequence concatenation.

Definition 2 (Concatenation)

primrec Q :: list = « list = o list (2.3)
primrec Q- :: xlist = « stream = « stream (2.4)

We also added several definitions of our own relating to zipping, scanning,
transposing, distinct sequences, and ordered sequences as well as some
rules and automation for coinduction and infinite sequences.

In a more mathematical context, we will use the following notation. Instead
of « list, we use =*. Instead of « stream, we use ~®. Let w® denote the
infinite sequence resulting from infinite repetition of the finite sequence w.
For a sequence w € X* or w € L, let wy € X be the symbol atindex kin w.

Chapter 3

Automatic Verification

Interactive theorem proving is a very powerful and general approach. Un-
fortunately, this generality comes at the price of requiring manual guidance.
However, when it comes to verification, one is often interested in solving
more constrained problems that can be automated to a higher degree.

One such approach is model checking [CGP01; Cla+18]. By restricting them-
selves to finite systems, model checkers can automatically decide if a given
system satisfies a given specification. They do this by searching the state
space of the system for a counterexample with respect to the given speci-
fication. As the state space is finite, they can search it exhaustively, thus
either finding such a counterexample or concluding that there is none.

Popular model checkers include Spin [Hol04; Hol97] and PRisM [KNP11].
Another tool worth mentioning is the Alloy Analyzer [Jac06], which can
also check infinite models, albeit not exhaustively.

In this dissertation, we will focus on the automata-theoretic approach to
model checking [VW86] that is also used by Spin. The following sections
will introduce the relevant concepts as well as how they relate to our work.

3.1 Linear Temporal Logic

Linear temporal logic (LTL) [Pnu77] is a type of modal logic that extends
propositional logic with a temporal component. There are various ways
of defining it that are equivalent in terms of expressive power. It usually
contains the modal operators always, eventually, next, until, and release as

10

well as the operators from propositional logic. As we will treat LTL formulae
opaquely in this dissertation, we will not define their interior structure.

We introduce some basic notation. LTL formulae are defined over a set
of atomic propositions P. Let £ = 2P denote the possible sets of atomic
propositions. Each word w € £ can then either satisfy a formula ¢ or not,
denoted w |= . Let £ ¢ C ¢ denote the language of the LTL formula .

3.2 Omega Automata

Like finite automata, omega automata have a finite number of states. How-
ever, unlike finite automata, they operate on infinite sequences. Further-
more, omega automata come with a variety of acceptance conditions, like
the Biichi, Rabin, and parity conditions. Some of these conditions also
exist as both dualized and generalized versions.

Many omega automata recognize the same class of languages, the omega-
regular languages. This class of languages generalizes the notion of regular
languages and is closed under intersection, union, complementation, con-
catenation, and omega iteration. Throughout the rest of this dissertation,
we will focus mostly on nondeterministic Biichi automata.

We introduce some basic notation. Let A = (£, Q, I, §, F) be a nondetermin-
istic Biichi automaton. It consists of an alphabet I, states Q, initial states
I C Q, successor function § :: £ = Q = 29 and acceptance condition
F: Q= bool. Let LA C X% denote the language of the automaton A.

3.3 Logic and Automata

An important property of LTL formulae is their ability to be translated to
omega automata. A variety of algorithms and target automata are available
for this [Ger+95; GO01; Bab+13a; Bab+13b; Sic+16; EKS16; EKS18]. Given an
LTL formula ¢, let A, be an automaton that recognizes the same language.

LA,=L¢o (3.1)

With this, it becomes appealing to model systems using omega automata
and specifications using LTL formulae. The connection between these two
structures then allows them to be processed by automata-theoretic algo-
rithms. Because of this, LTL translation algorithms form the fundamental
building blocks of many automatic verification techniques.

11

3.4 Model Checking

The basic idea of model checking is to automatically answer the question
of whether a given system satisfies a given specification. When the system
is given as an omega automaton S and the specification is given as an LTL
formula ¢, this problem can be stated in terms of their languages.

LSCLe (3.2)

As described in the previous section, LTL formulae can be translated to
omega automata. This allows reducing the model checking problem to the
emptiness problem on omega automata.

LSCLe < LSNLe=0 (3.3)
> LSNL(—)=0 (3.4)
— LSNLA.,=0 (3.5)
= L(SxA,,)=0 (3.6)

Step 3.3 is a simple set-theoretic transformation. Step 3.4 is based on nega-
tion of LTL formulae. Step 3.5 consists of the translation from LTL formulae
to omega automata. Step 3.6 is a product construction on omega automata.

In the case of Biichi automata, emptiness can then be decided via algo-
rithms for nested depth-first search [Cout+92; SE05] or strongly connected
components [Gab00]. Thus, the whole process yields a decision procedure
for the LTL model checking problem on Biichi automata.

3.5 Formalization

As mentioned before, both model checkers and associated automata al-
gorithms and tools have become more and more complex over time. Fur-
thermore, their role as trust multipliers means that their correctness is
of particular importance. With this in mind, it seems appealing to verify
the verification tools themselves, which brings us to the main topic of this
dissertation. We want to use interactive theorem proving to create formally
verified versions of these algorithms and tools.

Previous work in this area includes the DFG projects Computer Aided Verifica-
tion of Automata and Verified Model Checkers. They are collectively referred
to as the CAVA project [https://cava.in.tum.de]. Various components of
model checkers have been formalized as part of the CAVA project [Lam14b;

12

https://cava.in.tum.de

Neul4; LN15; BL18; BSS19] as well as its preliminary work [SMS09]. These
parts have then been integrated into a formally verified LTL model checker
[Esp+14; Esp+13]. The AFP includes a formalization of linear temporal logic
[Sic16]. Some of our work builds on and extends these formalizations.

The library for transition systems and automata described in chapter 4
forms the foundation of our work. Chapter 5 then describes how we use
this library to extend the CAVA model checker with a partial order reduction
optimization. Finally, we build a formally verified Biichi complementation
and equivalence checking tool that is described in chapter 6.

13

Chapter 4

Transition Systems and Automata

Transition systems and automata are central concepts in theoretical com-
puter science and especially formal language theory. They are also used in
applications like regular expressions, model checking, and compiler con-
struction. Given their importance and widespread use, it seems sensible to
formalize them as a reusable library. Despite their shared name, automata
cover a diverse range of structures, making this a challenging endeavor.

We start by establishing the goals of such a library.

Generality A general-purpose library should support many different types
of automata and operations on them. This presents a significant challenge,
as automata can vary independently along several dimensions. They can
be deterministic or nondeterministic, each option including various rep-
resentations. They can have labels on states or on transitions. They can
employ a variety of acceptance conditions, including but not limited to
finite acceptance, Biichi acceptance, and Rabin acceptance.

Abstraction The library should express concepts abstractly to facilitate
sharing between different types of automata. This avoids duplication and
enables more elegant and concise definitions and proofs. It also reduces
the effort needed to extend the library with additional types of automata.

Usability The first two goals should not interfere with the usability of
the library. Despite its generality and abstractness, it should offer good
automation and require little overhead compared to a specialized library.

The Isabelle ecosystem already contains some ad-hoc automata formaliza-
tions as part of other work [Sicl5; Esp+14; AVW16; LMO07]. Several more
have been developed as part of the CAVA project [LT12; Lam14a] and its

14

preliminary work [Mer00; SMS09]. However, all of these formalizations are
either very specific or sacrifice usability to achieve their generality.

For instance, the CAVA automata library [Lam14a] supports only nondeter-
ministic (generalized) Biichi automata with state labels and state-based
acceptance. This makes it a perfect fit for applications like the CAVA model
checker. However, its lack of generality makes it unsuitable for applications
that require different types of automata or different representations.

A different formalization [LT12] models deterministic automata as a special
case of nondeterministic ones. This seems appealing, as all instances of
the former are also instances of the latter. However, it essentially bypasses
the type system and requires manual management of wellformedness
predicates in all proofs, greatly restricting automation. It also introduces a
significant amount of boilerplate and glue code to account for the mismatch
between types and values. Furthermore, this approach cannot support
different representations of the same underlying concept.

4.1 Architecture

With this in mind, we propose the architecture shown in figure 4.1.

Transition System

Transition System

Intermediate

Deterministic Nondeterministic

p— N

DFA DRA NBA NGBA

Figure 4.1: Architecture. The library consists of three layers that range from
abstract and general at the top to concrete and specific at the bottom. Each
item instantiates an item in the layer above. Not all items are shown. The
ellipsis items indicate ways in which users can extend the library.

15

The central idea of this architecture is to formalize each concept on the
most abstract layer possible. This maximizes sharing, enabling the items
in the automaton layer to be expressed very concisely. To achieve this, we
employ the locale mechanism provided by Isabelle [Bal14]. Using locales
and instantiation rather than overly general types enables this degree of
abstraction without compromising usability.

The system is as much a library as it is a set of tools for building custom
automata formalizations. Depending on the situation, users can add new
formalizations either on the intermediate layer or on the automaton layer.
The former allows for maximum flexibility while still reusing the most ab-
stract parts of the system. The latter enables adding new types of automata
with minimal effort. With these options, users can represent automata in
whichever way is most fitting for their application.

4.2 Prerequisites

Before describing the actual transition systems and automata library, there
are some prerequisites that operate on the level of sequences.

In order to define omega acceptance conditions, we use a shallow embed-
ding of linear temporal logic from the HOL library. It defines operations
like alw and ev that express a property holding at every and any position of
a sequence, respectively. With this, we can create a definition expressing
that a predicate holds at infinitely many positions of a sequence.

Definition 3 (Infinite Occurrence)

infs Pw <= alw (ev (holds P)) w (4.1)

This is the Biichi acceptance condition. It is used to define others like the
Rabin acceptance condition. We also define the higher-order combinators
gen and cogen. They map acceptance conditions to their (co)generalized
counterparts which act on sets of whatever acceptance component the
original acceptance condition used.

Another important part of the library is degeneralization, the language-
preserving translation from automata with (co)generalized (co-)Biichi ac-
ceptance conditions to regular (co-)Biichi automata. While it is difficult to
share degeneralization as a whole between deterministic and nondetermin-
istic automata, it turns out that core aspects of it can be formalized entirely
at the level of sequences. This is done by defining constants for adding

16

acceptance class index annotations along an infinite sequence as well as a
degeneralized acceptance test operating on these annotated sequences. An
accompanying theorem then states that the annotated sequence is accepted
by the regular acceptance condition if and only if the original sequence is
accepted by the generalized acceptance condition. This formalization can
then be used to define and prove correctness of degeneralization for any
automaton with a suitable acceptance condition.

4.3 Transition Systems

The transition system layer forms the abstract root of the hierarchy. We
model transition systems as objects that can use transitions to change state.
This idea is directly reflected in their definition.

Definition 4 (Transition System)

locale transition_system = (4.2)
fixes execute :: transition = state = state
fixes enabled :: transition = state = bool

This definition declares the types transition and state as well as the terms
execute and enabled. The constant execute allows using a given transition
to change state, while the constant enabled determines in which states a
given transition can be executed. This very high level of abstraction allows
the locale to be instantiated for many different structures that exhibit the
characteristic of changing state via transitions.

While minimalistic, this already lets us define several basic constants.

Definition 5 (Targets and Traces)

target = fold execute :: transition list = state = state (4.3)
trace = scan execute :: transition list = state = state list (4.4)
strace = sscan execute :: transition stream = state = state stream (4.5)

We employ the functions fold, scan, and sscan that are commonly used
in functional programming. The constant target gives the target state of a
finite sequence of transitions starting at a certain state. The constants trace
and strace give the sequence of states traversed by a sequence of transitions
starting at a certain state. Note how all of these constants are simply lifted
versions of the constant execute, a fact that is also reflected in their types.

17

The transition system locale is also already sufficient to define the concepts
of finite and infinite paths. We do so using (co)inductive predicates.

Definition 6 (Paths)

inductive path :: transition list = state = bool where (4.6)
path [] p
enabled ap = pathr (execute ap) = path (a#7r)p
coinductive spath :: transition stream = state = bool where 4.7)
enabled ap = spath r (execute a p) = spath (a##r)p

The constants path and spath determine if a given sequence of transitions
can be executed starting at a certain state. In analogy to definition 5, these
constants are simply lifted versions of the constant enabled. In a similar
way, we also supply inductive definitions for the set of reachable states
from both a given state and the set of initial states.

While these definitions may seem trivial, they are fundamental to transition
systems and automata and almost all other concepts depend on them. Be-
cause of this, even minor details can have a significant impact on usability.
For instance, special care has been taken to define the constants path and
spath in such a way that their application to composite sequences allows
for safe introduction and elimination rules.

path (a#s) p < enabled a p A path s (execute a p) (4.8)
path (r@s) p <= pathr p A path s (target r p) (4.9)
spath (a##s) p < enabled a p A spath s (execute a p) (4.10)
spath (r@Q-s) p < path r p A spath s (target r p) (4.11)

For each kind of composite sequence, there is an equivalent statement on
its components. Furthermore, each variable appears on both sides of its
respective equation. This means that these rules can be safely applied to
expand statements involving paths on composite sequences. This leads to
significantly better automation than in other formalizations where these
aspects have not been taken into account.

Next, we demonstrate how the transition system locale can be instantiated.
For this, we consider some example transition systems with labels of type «
and states of type o. Each of those is represented by the function successor.
We then give instantiations for the types and terms of the locale that enable
accommodating this successor function.

18

Example 2 (Subdeterministic) successor :: x = ¢ = 0 option

transition = «

state = o
execute = A a p. the (successor a p) Ta=0=0
enabled = A a p. successor a p # None oo = 0 = bool
target talist=0=0
path o list = 0 = bool

The deterministic successor function fits the interface straightforwardly.
Furthermore, the constants target and path get the type signature that is
expected for subdeterministic transition systems.

Example 3 (Nondeterministic) successor :: x = 0 = o set

transition = x X O

state = o
execute = A (a, q) p. q TAX0=>0=>0
enabled =A(a,q) p. ¢ € successorap : ax 0= 0= bool
target t(axo)list=0=0
path = (a x 0) list = 0 = bool

As mentioned before, it may seem appealing to model deterministic tran-
sition systems as a special case of nondeterministic ones. Furthermore,
it may look like we are trying to do the impossible opposite here and rep-
resent a nondeterministic system as an instance of a deterministic one.
However, it turns out that there is a surprisingly elegant solution. By in-
stantiating the type variable transition with the type « x o, there can be
multiple transitions with the same label to different states. This turns out
to be the right choice, in the sense that a value of type transition contains
exactly the right amount of information. As the underlying locale treats
values of type transition opaquely, this property is passed onto the constants
defined earlier. For instance, the type of the constant path shown above
contains a source state and a sequence of pairs of traversed labels and
states. Thus, each value making up the path is mentioned exactly once and
wellformedness is captured by the type directly.

By making use of locales and their ability to instantiate type variables rather
than relying on overly general types, we achieve superior usability and flex-
ibility. This enables sharing and reusing abstract parts of the formalization
without incurring boilerplate or inconvenient wellformedness predicates
for different types of transition systems. It also enables freely choosing

19

between isomorphic representations. For instance, we can use either an
implicit successor function of type « = 0 = 0 set or an explicit transition
set of type (0 X « x 0) set. These differences will then simply be absorbed
by the locale instantiation.

Additionally, the transition system layer has been instantiated for several
structures outside of the library for transition systems and automata. This
includes systems with named operations [Brul8; BL18], directed acyclic
graphs [Brul7a; Bru20], finite state systems [Sac19; Sac+19], and Petri nets.
The ability of the formalization to accommodate these very different struc-
tures further demonstrates its generality.

4.4 Intermediates

The transition system layer contains the concepts that all automata and
other instances have in common. Thus, it is very general, but also very
basic, capturing only the very core of what an automaton is. There are
many things that some but not all automata share and which simply require
more specificity than the transition system layer provides. For instance,
defining the union of two automata may be almost identical among all
nondeterministic automata, but work very differently for deterministic
ones. Furthermore, the transition system layer provides a read-only view
of a single instance. Due to this, it does not support multiple automata or
the ability to assemble a new automaton from its components.

To solve these issues, we introduce an intermediate layer into the hierarchy.
We present the nondeterministic branch of this layer as an example.

Definition 7 (Nondeterministic Automaton)

locale automaton_nondeterministic = (4.12)
fixes automaton :: label set = state set =
(label = state = state set) = acceptance = automaton
fixes alphabet :: automaton = label set
fixes initial :: automaton = state set
fixes transition :: automaton = (label = state = state set)
fixes acceptance :: automaton = acceptance

This locale differs from the one for transition systems from definition 4 in
several ways. Firstly, it includes the automaton as an explicit term with a
constructor and selectors. The constructor allows assembling automata

20

from parts and the selectors allow expressing statements that involve more
than one automaton, neither of which is possible in the transition system
locale. Also note how the type of the acceptance component is simply
a type variable and thus has no structure. This way, the locale makes
no assumptions about the acceptance component and is thus completely
independent of the acceptance condition that is used. Finally, this being the
intermediate layer, the transition component takes on a more specific type.
This allows defining operations like intersection and union that depend on
the type of the transition component.

In order to express concepts like the language of an automaton, we need
to be able to extract information from the acceptance component. To this
end, we extend the locale from definition 7 with additional terms for finite
and infinite path acceptance, respectively.

Definition 8 (Nondeterministic Automaton with Acceptance)

locale automaton_nondeterministic_finite = (4.13)
automaton_nondeterministic +
fixes test :: acceptance = label list = state list = state = bool

locale automaton_nondeterministic_infinite = (4.14)
automaton_nondeterministic +
fixes test :: acceptance = label stream = state stream =- state = bool

The term test represents the acceptance condition. With this setup, only the
decision of whether the automaton operates on finite or infinite sequences
has to be made on the intermediate layer. In fact, the term test is even
general enough to accommodate both state-based and transition-based
acceptance. Meanwhile, the specific acceptance condition used by the
automaton is injected into the locale only at the time of instantiation.

The desired flexibility of the library with respect to aspects like finiteness,
determinism, acceptance, and representation has a multiplicative effect on
the number of types of automata. This can quickly become overwhelming,
such that even small amounts of required boilerplate code can have large
effects. Due to this, sharing of formalization is not a mere convenience, but
can actually determine whether incorporating certain concepts uniformly
and for all types of automata is feasible at all. The intermediate layer allows
for expressing and sharing of concepts such as language, degeneralization,
and boolean operations on automata. This way, it becomes significantly
easier to add new types of automata to the formalization.

21

4.5 Automata

Finally, the automaton layer forms the leaves of the hierarchy. In this
layer, we define concrete datatypes for specific automata and use them to
instantiate the locales that make up the more abstract layers.

We present this procedure for the example of nondeterministic finite au-
tomata. The first step consists of defining a datatype for the automaton.

Definition 9 (Nondeterministic Finite Automaton)

datatype (label, state) nfa = nfa (4.15)
(alphabet: label set)
(initial : state set)
(transition: label = state = state set)
(accepting: state = bool)

We can then instantiate the locales from the intermediate layer. In this
example, the locale for finite path acceptance from definition 8 is used.

interpretation nfa: automaton_nondeterministic_finite (4.16)
nfa alphabet initial transition accepting
APwrp. P(last (p#r))

This immediately gives us access to definitions and theorems for all of the
concepts from the transition system and intermediate layers. For our finite
automaton example, this includes the following definitions among others.

path :: (label, state) nfa = (label x state) list = state = bool (4.17)
nodes :: (label, state) nfa = state set (4.18)
language :: (label, state) nfa = label list set (4.19)

Note how the types of these constants are exactly what one would expect
from a tailored formalization of nondeterministic finite automata. The
fact that they are instantiated from a more abstract structure is thus barely
visible and largely does not impact usability on the concrete level.

Furthermore, adding degeneralization, intersection and union operations
is just a matter of instantiating another locale for each. Overall, thanks
to sharing most of the formalization, the entire setup necessary to get a
reasonable automaton instance involves less than 50 lines of theory text.

In the case of Biichi automata, the situation is slightly more complicated
as their intersection operation involves degeneralization [Var95; Cho74].

22

Specifically, the intersection of two Biichi automata results in a general-
ized Biichi automaton, which is subsequently degeneralized to a regular
Biichi automaton. To enable this process, we first set up formalizations
for both regular and generalized Biichi automata. Next, the intermediate
layer can be instantiated to provide the necessary intersection and degen-
eralization operations. These operations can then be composed to form
an intersection operation which acts entirely on regular Biichi automata.
This compositional approach cleanly separates Biichi intersection into its
component operations and makes use of the generality of the interme-
diate layer. While more complicated than finite automata, a reasonable
formalization of Biichi automata including intersection via generalized
Biichi automata can still be achieved in less than 100 lines.

The library comes with several concrete automaton types. On the determin-
istic side, these include finite automata, (generalized) (co-)Biichi automata,
and Rabin automata. On the nondeterministic side, these include finite
automata and (generalized) Biichi automata. Both the deterministic and the
nondeterministic Biichi automata support both state-based and transition-
based acceptance. More automaton types can be easily added as needed.

As mentioned before, the main focus of the library is not on providing a
comprehensive collection of concrete automata formalizations. Experience
has shown that many use cases have very specific requirements when it
comes to automata. Thus, our main goal is to provide the tools necessary
to assemble custom automata formalizations with minimal effort. This
enables each user to work with the representation that is most suitable to
their needs, while reusing as much of the existing formalization as possible.

4.6 Implementation

In addition to formalizing abstract automata theory, we also want to use our
library to create formally verified and executable algorithms. Furthermore,
many of the algorithms acting on automata involve nondeterminism and
thus require heavy machinery like the refinement framework introduced in
section 2.3. Due to this, a certain amount of setup is needed, including the
definition of relations between abstract automata and their implementa-
tions. With this setup, we can use automatic refinement [Lam13a; Lam13b]
to generate executable implementations for our definitions. Finally, these
executable implementations can then be exported using Isabelle’s code
generation facilities that were introduced in section 2.2.

23

While some definitions like degeneralization and intersection are fairly
basic and can be implemented mostly automatically, others form complex
algorithms. For instance, enumerating the set of reachable states in an
automaton is done via depth-first search. For this, we use the depth-first
search framework [LN16; LN15] that is available in the AFP.

This algorithm can then be used to turn an automaton that is implicitly
defined by a set of initial states and a transition function into an explicit
representation like a transition list. Furthermore, it allows assigning a
unique index to each state. We use this to implement a language-preserving
translation from arbitrary state types to natural numbers.

Unfortunately, implementations for algorithms like these are naturally
very specific to each type of automaton and thus difficult to share. Due
to this, we chose to formalize executable implementations separately for
each automaton type as needed.

4.7 Formalization

The library for transition systems and automata is available as part of the
AFP [Brul7b]. It has been used in several other formalizations [Brul8; BL18;
SS19; BSS19; Sac19; Sac+19; Brul7a; Bru20].

In particular, the library enabled the formalization of the compositional
LTL formula to automata translation procedure described in [BSS19]. This
approach makes use of several different types of automata as well as in-
homogenous boolean operations. For instance, it requires an intersection
operation between a deterministic Blichi automaton and a deterministic
co-Biichi automaton resulting in a deterministic Rabin automaton. Due to
sharing in the intermediate layer, even specialized constructions like this
one do not incur any duplication of either definitions or proofs.

24

Chapter 5

Partial Order Reduction

When modeling the behavior of concurrent systems, all possible interleav-
ings of operations in the participating processes have to be considered. In
the context of model checking, this can quickly become unmanageable
and lead to what is known as state space explosion. To counteract this, sev-
eral partial order reduction techniques have been proposed [Val89; God90;
God96; Pel93; Pel98]. These algorithms identify situations in which the
order of operations is not important and only a subset of all interleavings
has to be examined. Figure 5.1 shows an example of this. These techniques
can dramatically reduce the state space and thus improve performance.

: @
——>
c

OROn0 (@)=

(a) Original System (b) Reduced System

c C C
((a)(e)

Figure 5.1: Partial Order Reduction Example. The operations a and b are
independent of the operations c and d. This means that they can be executed
in any order without changing the result. Thus, only one interleaving has to
be considered for properties that are not sensitive to this order.

25

Partial order reduction algorithms are complex and have proven to be noto-
riously difficult to get right. For instance, the ample set algorithm in [Pel96]
was believed to be compatible with nested depth-first search. However, it
later turned out that the algorithm could choose different reductions in the
outer and the inner search, leading to incorrect behavior [HPY96]. During
our formalization efforts of [Pel96], we found additional problems with
the proof [Brul4; BL18]. These were later found out to also cause incorrect
behavior of the algorithm and affect results of the Spin model checker
[Siel9]. Finally, another issue was discovered in the stubborn set partial
order reduction algorithm [NVW20]. Here, the conditions are not strong
enough and allow for cases that produce an incorrect result. However, all
implementations of the algorithm happen to work with an approximation
of these conditions that cannot represent these cases.

Given this historical and current context, it appears desirable to formally
verify these algorithms. For this, we focus on the ample set flavor of par-
tial order reduction [Pel93; Pel96; Pel98]. A version of this technique was
already independently formalized in a different proof assistant [CP96].
However, it only covers the abstract part, requires a specific fairness as-
sumption, and is not compatible with on-the-fly model checking.

Our original goal was to formalize dynamic on-the-fly partial order reduc-
tion [Pel96]. This means that the algorithm takes dynamic system state
into account when making decisions about the reduction. It also means
that the reduction takes place on-the-fly, as part of the emptiness check
in the model checking process, without explicitly constructing the entire
reduced state space. Unfortunately, due to the aforementioned issues that
will be explained in detail in section 5.4, this was not possible. Instead, we
chose to formalize static partial order reduction [Kur+98], which bases its
decisions on approximations derived from static control-flow analysis.

5.1 Theory

On an abstract level, partial order reduction takes a system S and derives
a reduced system R from it. This reduced system is then used for model
checking instead of the original system. While £ S and £ R are not neces-
sarily equal, the reduction algorithm ensures that the property ¢ cannot
distinguish between them. Thus, model checking with the reduced system
yields the same result as model checking with the original system.

LSCLY < LRC Ly (5.1)

26

The theory of ample set partial order reduction is centered around the
concept of reduction conditions. These describe a set of properties that
are sufficient for the reduction to not affect the result of the model checker.
This approach neatly splits the correctness proof into two parts, decou-
pling reasoning about the actual reduction construction from the complex
abstract correctness proof of partial order reduction.

We will only introduce one of these reduction conditions here. Condition
well-founded requires that every cycle in the reduced system contains at
least one state where no reduction is performed. This ensures that the
execution of independent operations is not deferred indefinitely. For a
detailed explanation of the other reduction conditions, see appendix A.

5.2 Abstract Correctness

We build on our formalization of transition systems and automata from
chapter 4 to define systems with operations as required by ample set partial
order reduction. We also formalize parts of trace theory [Maz86], which
lifts the idea of independent operations to that of equivalent sequences
of operations. Furthermore, ample set partial order reduction involves
sequences which are not known to be either finite or infinite. To accommo-
date these sequences, we use a formalization of lazy lists [Locl0] from the
AFP and extend it with limits and index sets. Finally, we use a formalization
of stuttering-equivalence of infinite sequences [Mer12] from the AFP.

With these tools, we can formalize the abstract correctness proof of ample
set partial order reduction. We assume that the reduced system R meets
the reduction conditions and formally prove lemma 3.7 as well as theorems
3.9, 3.11, and 3.12 from [Pel96]. This yields the following statement.

Theorem 1 (Stuttering Equivalence)

weELR = weLS (5.2)
uelS = dve LR u~v (5.3)

It states that the language of the reduced system is a subset of the language
of the original system. Furthermore, it states that for each word accepted
by the original system, there exists a word that is equivalent up to stuttering
that is also accepted by the reduced system. Together with the fact that
properties expressed by next-free LTL formulae are stuttering-invariant
[PW97], we get the final correctness theorem.

27

Theorem 2 (Correctness of Ample Set Partial Order Reduction)

next_freeop — (LSC Lo < LRCL @) (5.4)

5.3 Static Partial Order Reduction

While the previous section was concerned with the abstract correctness
proof, we now turn to the issue of actually constructing the reduced system
in such a way that the reduction conditions hold. For instance, condition
well-founded states that reductions cannot take place at every state in a
cycle of the reduced system. Dynamic partial order reduction ensures this
condition with respect to the actual state space of the reduced system. In
contrast, static partial order reduction [Kur+98] overapproximates it by
ensuring that it holds on the control-flow graph of the reduced system.
It does this by identifying a set of so-called sticky edges that break every
cycle in the control-flow graph and then preventing any reduction involving
these edges. Thus, it does not base reduction decisions on information
available at run-time, relying on results of a static analysis phase instead.

While this more conservative approach may cause less reduction overall,
it has significant advantages. Firstly, it avoids all of the issues covered in
section 5.4. Secondly, and perhaps not any less importantly, it drastically
increases modularity. While dynamic on-the-fly partial order reduction
collapses reduction, product construction, and emptiness check into one
monolithic algorithm, static partial order reduction allows for a composi-
tional approach. This makes it much more manageable, especially in the
context of formal verification.

5.4 Dynamic Partial Order Reduction

As mentioned previously, dynamic partial order reduction ensures condi-
tion well-founded dynamically, by inspecting the search stack during the
depth-first search exploration of the system. This way, it can detect which
transitions would close a cycle in the state space of the system and prevent
reduction from taking place in these situations. In the case of on-the-fly
model checking, this exploration takes place as part of the emptiness check
on the product automaton. This requires some adjustments to both the
partial order reduction algorithm and the model checker.

One such approach is presented in [Pel96]. Here, partial order reduction,
product automaton, and emptiness check all collapse into one monolithic

28

algorithm, requiring a specialized construction. Let S be the system with
interpretation Z and let A, be the automaton for the formula ¢. Then the
successor function of the reduced product S x A, is defined as follows.

Definition 10 (Reduced Product Successor)

gy € dsxa, apx <= Y€ by, Tp)xNacamplepyNgedsap (5.5

Here, a transition takes place in two steps. Since the formula automaton A,
can exhibit nondeterminism, it needs to perform its transition first. This
way, the reduction function ample can get access to both the current system
state p and the formula successor state y. Together with the depth-first
search stack, it can furthermore determine if a cycle in the state space of the
system would be closed by the transition. It can then use this information
to abstain from performing any reduction in order to ensure condition
well-founded. In the interest of readability, the search stack parameter is
not included in the notation.

During our attempts at formalizing this algorithm, we discovered that one
of the lemmata it relies on does not hold. A detailed counterexample for
this lemma is presented in appendix A. This counterexample only affected
the particular proof and did not contradict the correctness of the algorithm
itself. Indeed, at this point, we still believed the algorithm to be correct
and thus tried to find a different proof. During these efforts, we discovered
another potential issue where the choices in the formula automaton and
the choices in the reduction may not line up. If this were to happen, the
reduced product could end up with no accepting runs even though the
regular product contains some. Unfortunately, we were not able to find a
concrete example exhibiting this behavior.

Some time later, Stephen Siegel used the Alloy Analyzer [Jac06] to discover
a proper example of this happening [Siel9], shown in figure 5.2.

In this example, the partial order reduction algorithm performs a reduction
when invoked as ample py. The justification is that since this transition does
not close a loop, a reduction that defers operation b should be legitimate.
With the property ¢ being stuttering-invariant, the formula automaton A,
should be able to accommodate this deferment. Unfortunately, this is not
the case. It is true that A, allows arbitrary stuttering of the transition «
via repetition. However, once it nondeterministically changes from state
X to state y, no further stuttering is possible. Thus, if a reduction takes
place at the same time that A, is transitioning from state x to state y, then
operation b gets deferred but can then no longer be executed afterwards.

29

Ip=«

Zq=p
S
(b) Interpretation
a
ample p x = {a, b}
ample p y = {a}
4 ample g x = {a}

ample gy = {a}

(a) Automata (c) Reduction

Figure 5.2: Dynamic Partial Order Reduction Counterexample. Figure a
shows the system automaton S, the formula automaton A, and the product
automaton S x A,. Figure b shows the interpretation function for S. Figure
c shows the reduction function ample. Note that only ample p y allows for
any reduction. The blue partsin S x A, indicate presence in the regular
product, but not in the reduced product. In this example, the regular product
contains an accepting run, while the reduced product does not.

This scenario hints at the idea that a stuttering-invariant property ¢ is not
enough and a more local property related to the formula automaton A,
is needed. Indeed, it is possible to make the automaton itself stuttering-
invariant [HK96; Ete99; Siel9]. This means that at every point of a path
through the automaton, it is possible to introduce or eliminate stuttering.
This avoids the previously described situation where nondeterminism in
the formula automaton renders further stuttering impossible. With this
stronger property, it is then possible to complete the correctness proof of
dynamic on-the-fly partial order reduction [Siel9].

In [Siel9], the counterexample from figure 5.2 is shown to change the result
in the Spin model checker when partial order reduction is enabled. It is
worth noting that this implementation continued to be used for a long time,
despite the issue with the proof being either suspected or known [Siel2;
Brul4; BL18]. As mentioned previously, the fact that model checkers are
trust multipliers makes this issue particularly critical and emphasizes the
need for formal verification of these tools.

30

5.5 Results

The formalization is available in the Archive of Formal Proofs [Brul8]. It
builds on our library for transition systems and automata [Brul7b] and is
integrated into the CAVA model checker [Esp+14].

This implementation includes a simple modeling language as well as the
static analysis facilities required to realize the partial order reduction algo-
rithm. The result is a formally verified and executable model checker that
can perform static partial order reduction.

We evaluate the partial order reduction performance on a distributed mu-
tual exclusion algorithm [NTA96]. We compare the number of states ex-
plored during model checking between CAVA and Spin, both with and
without partial order reduction enabled. While the absolute number of
states generated by Spin is much lower, the reduction factor is comparable
between CAVA and Spin, showing the effectiveness of the algorithm. For
more details, see appendix A.

31

Chapter 6

Buchi Complementation

Biichi automata are closed under complementation. That is, for any Biichi
automaton, it is possible to find another Biichi automaton whose language
is the complement of the language of the first one. This fact was established
early on by their inventor Julius Richard Biichi [Biic62]. Since then, Biichi
complementation has been a popular research topic [SVW87; Saf88; KV01;
FKV06; Sch09]. In fact, its popularity even warranted the publication of
several meta papers documenting this research [Var07; Tsa+14].

Much of this interest can be attributed to the difficulty of determining the
state complexity of this operation. Complementing a nondeterministic
finite automaton with n states results in an automaton with at most (O(2")
states. The lower bound is established via worst-case examples [SS78] and
the upper bound via the textbook complementation algorithm [RS59]. Biichi
automata on the other hand, have kept researchers busy for decades, with
the upper bound being successively lowered from 22°" [Biic62] to 2°(*)
[SVW87] to 20 loem [Saf88] to (6n)" [KVO1] to O((0.961)") [FKV06] and finally
to O((0.76n)") [Sch09], matching the lower bound established by [Mic88].

However, Biichi complementation is not just interesting based on theo-
retical considerations. One application is model checking, which needs
an automaton whose language represents the negation of the checked
property. This usually requires the property to be supplied as a formula
[VW86], a deterministic automaton [Kur94], or an automaton for the nega-
tion of the property [Hol97]. This is done because these representations are
either already in the right form or easy to negate or complement, respec-
tively [FKV06]. Having access to Bilichi complementation, we can instead
use arbitrary automata to represent the checked property. Furthermore,

32

complementation allows deciding language-wise equivalence of Biichi au-
tomata. This can be used to test the correctness of algorithms like LTL
formula to automaton translation or automaton simplification.

Complementation algorithms and their correctness proofs are complex.
Furthermore, when used as building blocks for verification tools, they act
as trust multipliers. Both their complexity and their role as trust multipliers
make them a valuable target for formalization. Moreover, the ability to
use complementation as part of a decision procedure for language-wise
equivalence of Biichi automata makes this an ideal application for a verified
reference implementation. Thus, we want to formalize Biichi complemen-
tation as well as use it to develop a formally verified equivalence checker.

Related work includes GOAL [Tsa+07], which is an unverified tool that im-
plements various complementation algorithms. There is also Spot [Dur+16],
which can complement automata as well as check for language-wise equiva-
lence. To the best of our knowledge, there has only been one other attempt
at formalizing Biichi complementation due to Stephan Merz. He formal-
ized preliminary work on weak alternating automata [Mer00] and parts
of Biichi complementation. However, this only covers the first part of the
complementation procedure and was never finished or published.

6.1 Complementation

Let A= (%, Q, I, 5, F) be anondeterministic Biichi automaton and w € £
be a word over its alphabet. We follow the rank-based complementation
construction described in [KVO01]. It consists of three major components.

Run DAG A directed acyclic graph G = (V, E) whose nodes V. C Q x N
are pairs of states and natural numbers. Intuitively, each node (g, k) € V
represents A being in state g after having read k characters from w. This
way, the run DAG contains all possible paths that A can take while reading
w. Figure 6.1 shows an example of such a run DAG.

0dd Ranking A function f :: V = N assigning a natural number rank to
each node in the run DAG. Intuitively, the rank of a node indicates the
distance to a node from which no more accepting states are visited [FKVO06].
Such an odd ranking certifies the rejection of a word by the automaton.

Complement Automaton The complement automaton A is designed to
nondeterministically search for an odd ranking, accepting if and only if
one exists. This way, the complement automaton accepts exactly those
words that the original automaton rejects.

33

5 e

Figure 6.1: Run DAG Example. Shown is an automaton A and its correspond-
ing run DAG G when reading the word w = abba . .. € . The nodes of the
run DAG are pairs (p, k), which are abbreviated to p;. Note how the run DAG
can be partitioned into layers according to node indices with only transitions
corresponding to that character in the input word between each layer.

To formalize these concepts, we make heavy use of the library for transi-
tion systems and automata introduced in chapter 4. We use it not only to
represent Biichi automata, but also for the run DAG. This makes it very
easy to relate concepts defined on both of these structures to each other.
The formal definition of odd rankings closely resembles the informal one,
with only minor differences to account for the implicit use of the definite
description operator. Similarly, the formal definition of the complement
automaton only differs from the informal one in technical details.

The correctness theorem is then structured as follows.

Theorem 3 (Correctness of Rank-Based Biichi Complementation)

w¢ LA <= 3If.odd_rankingAwf <= we LA (6.1)

The formal proof of equivalence 6.1a closely follows its informal counter-
part. While the proof is substantial, most of the concepts involved could
be captured with the tools provided by the distribution and the automata
library. One notable exception was the piecewise construction of infinite
paths that is described in detail in appendix B. The formal proof of equiva-
lence 6.1b is long and tedious, but mostly technical in nature.

For the implementation, we make extensive use of the refinement frame-
work described in section 2.3. We also use automatic refinement [Lam13a;
Lam13b] to derive efficiently executable definitions. Finally, we use the al-
gorithms described in section 4.6 to transform the complement automaton
into an explicit representation using natural numbers as the state type.

34

6.2 Equivalence

Complementation can be used to decide language containment for Biichi
automata. To do so, we need an intersection operation and an emptiness
check for Biichi automata. We can then decide language containment.

LACLB < LANLB=0 < L(AxB)=0 (6.2)

Checking for containment in both directions leads to a decision procedure
for language-wise equivalence of Biichi automata.

The intersection operation was added to the library for transition systems
and automata introduced in chapter 4 as part of this project. For the empti-
ness check, we use a procedure based on Gabow’s algorithm for strongly
connected components [Gab00]. Compared to emptiness checks based
on nested depth-first search, this has the advantage of also working for
generalized Biichi automata. This allows us to skip the second step of our
intersection operation, which improves performance significantly.

Again, we use the refinement framework for the implementation as well as
automatic refinement [Lam13a; Lam13b] to derive efficiently executable
definitions. The implementation of the intersection operation was done as
part of the automata library and is mostly automatic. The emptiness check
based on Gabow’s algorithm is available as an AFP entry [Laml4c; Lam14b]
originally developed as part of the CAVA model checker. It includes the
correctness proof as well as an executable implementation.

6.3 Results

The formalization is available in the Archive of Formal Proofs [Brul7a]. It
builds on our library for transition systems and automata [Brul7b].

This includes a command-line tool that provides complementation and
equivalence checking of Biichi automata. This tool consists mainly of SML
code generated from our theories via Isabelle’s code export facilities. The
only unverified part is a hand-written parser and printer for the Hanoi
Omega-Automata format [Bab+15], also called HOA.

We evaluate the performance of this tool by comparing it against Spot and
GOAL. For this, we use randomly generated automata as well as those
generated by the LTL translation procedures of Spot and Owl [KMS18]. We
also test it on automata generated from known LTL formulae [DAC98].
Our tool is slower than Spot, which is unverified and uses more advanced

35

algorithms and heuristics. However, it is faster than an implementation
of the same algorithm in GOAL, despite the latter being unverified. This is
due to more efficient data structures courtesy of the Isabelle Collections
Framework [Lam09; LL10]. For more details, see appendix B.

Overall, our tool is sufficiently fast to be useful as a verified reference im-
plementation. For instance, during the aforementioned evaluation, it dis-
covered that for some LTL formulae, Spot and Owl generate non-equivalent
automata. The developers of Owl confirmed that this was indeed a bug in
the implementation of its translation procedure and promptly fixed it.

36

Chapter 7

Conclusion

In this dissertation, we set out to use interactive theorem proving to for-
mally verify algorithms associated with model checking. The main ad-
vantage of formally verified theories and algorithms is that they are more
trustworthy than their pen and paper counterparts. Additionally, the for-
mal proof serves as a machine-checkable certificate of their correctness.
Furthermore, the formal theory constitutes a very detailed description of
the definitions and proofs involved. Thus, the theory is guaranteed to be
properly documented without any missing steps.

As a prerequisite of the algorithms that we wanted to verify, we first formal-
ized a library for transition systems and automata. It constitutes a general
and versatile theory that can be reused in and to the benefit of other formal-
ization projects. This is an important aspect, since lack of library support
can be a major obstacle for formalization projects. Thus, a growing library
of formalizations like this one enables more and more ambitious projects
in the future as the foundation that they can build on grows.

Next, we used our library for transition systems and automata to formalize
several verification algorithms. Firstly, we formalized a static ample set
partial order reduction algorithm and integrated it into the CAVA model
checker. Secondly, we formalized a rank-based Biichi complementation
algorithm and used it to formalize a Biichi equivalence checker.

The immediate advantage of this is having access to verification tools that
are formally verified and thus come with a strong correctness guarantee.
This correctness guarantee covers the abstract algorithm as well as its
implementation. It is an important ingredient towards building confidence
and trust in the verification tools that people use.

37

Furthermore, these tools can then act as verified reference implementa-
tions to check other unverified tools against. This is particularly important
in the case of model checkers, where the size of realistic systems often
makes it impossible to manually verify the results. Verified reference imple-
mentations are especially useful when they concern automata algorithms
like determinization or LTL to Biichi translation. These can be used to
independently test the building blocks that verification tools are comprised
of and thus achieve better modularity and more fine-grained testing.

Finally, Biichi complementation takes on a unique role among automata
algorithms. In addition to serving as a reference implementation of com-
plementation algorithms, it can also be used to decide language-wise equiv-
alence of Biichi automata. A formally verified equivalence checker can
thus check whether two algorithms produce equivalent automata for a
given input. This way, the results of individual automata algorithms can be
examined directly rather than treating the model checker as a whole like a
black box and comparing only the overall binary result.

Allin all, formally verified reference implementations are very useful. They
allow transferring some of the confidence and trustworthiness granted by
interactive theorem proving to unverified model checking tools.

The importance of formal proofs is often downplayed on the premise that
these theorems have already been proven informally. However, formaliza-
tion efforts have repeatedly proven useful, often leading to the discovery
of mistakes in proofs, and sometimes even in theorems. In the case of
verified reference implementations, these tools can themselves potentially
help uncover issues in the unverified tools that are compared against them.

We believe that our results also serve as a demonstration of the capabilities
of interactive theorem proving itself. Not only were we able to formalize
nontrivial algorithms, but one of them was integrated into a much larger
project, the CAVA model checker. This highlights the software engineering
aspect of interactive theorem proving, with modern systems supporting
the kind of modularity that makes large endeavors like this possible. This,
in turn, allows other projects to reuse these formalization efforts, thus
making the system more powerful for everyone.

At this point, the library for transition systems and automata is well-suited
to support further formalization projects involving automata. For instance,
an algorithm for Biichi determinization would be an obvious continuation
of the current line of research. It would add another algorithm to the
body of formalized automata theory as well as enable determinization-

38

based complementation procedures. While the asymptotic complexity of
determinization-based complementation is no better than that of the rank-
based one, the former promises better performance in practice [Tsa+14].

Another possible avenue would be to formalize the adjustments for dynamic
on-the-fly partial order reduction presented in [Siel9]. We estimate that
formalizing the notion of stuttering-invariant automata as well as how this
property is ensured and affects partial order reduction would be fairly
feasible. However, due to the persisting monolithicity of the dynamic
partial order reduction algorithm, verifying a model checker employing
this algorithm would require a significant amount of work.

The quest for software correctness is a never-ending one, with numerous
struggles on all fronts. Particularly within the field of formal verification,
there is always more to do. Despite this, we hope that our efforts have had a
positive impact both on the people formalizing verification tools and those
using the ones we developed.

39

40

Part 1l

Relevant Publications

41

Appendix A

Partial Order Reduction

This appendix includes a full copy of the following publication.

Julian Brunner and Peter Lammich. “Formal Verification of an Executable
LTL Model Checker with Partial Order Reduction”. In: Journal of Automated
Reasoning 60.1 (2018), pp. 3-21. DOI: 10.1007/s10817-017-9418-4

This article is included as part of this publication-based dissertation.
The article above is an extended version of the following publication.

Julian Brunner and Peter Lammich. “Formal Verification of an Executable
LTL Model Checker with Partial Order Reduction”. In: NASA Formal Meth-
ods - 8th International Symposium, NFM 2016, Minneapolis, MN, USA, June
7-9, 2016, Proceedings. Ed. by Sanjai Rayadurgam and Oksana Tkachuk.
Vol. 9690. Lecture Notes in Computer Science. Springer, 2016, pp. 307-321.
DOI: 10.1007/978-3-319-40648-0_23

Copyright

The journal article in this appendix was published by Springer Nature. Per
author retained rights, it can be reused in dissertations without obtaining
permission from the publisher. The accepted version of the manuscript is
thus reproduced here in accordance with the requirements of the publisher.

42

https://doi.org/10.1007/s10817-017-9418-4
https://doi.org/10.1007/978-3-319-40648-0_23

Summary

This article describes the formal verification of a partial order reduction
algorithm using the proof assistant Isabelle. We follow the ample set ap-
proach to partial order reduction [Pel96]. This method introduces a set of
reduction conditions that form the basis of the abstract correctness proof.
The actual reduction algorithm that ensures that these reduction conditions
hold is based on a static analysis approach [Kur+98].

We start by formalizing several prerequisites on finite, infinite, and mixed
sequences, the last of which we extend with limits and index sets. These
are then used to formalize the parts of trace theory [Maz86] required for
partial order reduction. We also formalize a library for systems with named
operations and connect it to our formalization of trace theory. With these
prerequisites, we then formalize the abstract correctness proof of partial
order reduction that is given in [Pel96].

We formalize a fragment of PROMELA together with the static analysis
required for partial order reduction. We then define the actual reduction
algorithm based on this, proving that it ensures the reduction conditions
that the abstract correctness proof needs. After this, we use refinement to
derive an executable implementation from this algorithm.

This algorithm is then integrated into the CAVA model checker, resultingin a
formally verified and executable on-the-fly LTL model checker with partial
order reduction. As all aspects are integrated into one formalization, the
verification covers everything from the abstract correctness proofs down
to the generated SML code. We evaluate the effectiveness of the model
checker on a distributed mutual exclusion algorithm.

Finally, we present a counterexample for one of the lemmata involved in
the proof of dynamic on-the-fly partial order reduction.

Contributions

I am the first author of this article. My contributions are the formalization
of abstract partial order reduction as well as prerequisites with respect to
sequences, trace theory, and automata. I also contributed a framework for
the static analysis part of the reduction algorithm. Finally, I contributed the
counterexample for the dynamic on-the-fly partial order reduction proof.

43

44

Journal of Automated Reasoning manuscript No.
(will be inserted by the editor)

Formal Verification of an Executable LTL Model Checker with
Partial Order Reduction

Julian Brunner - Peter Lammich

the date of receipt and acceptance should be inserted later

Abstract We present a formally verified and executable on-the-fly LTL model checker that
uses ample set partial order reduction. The verification is done using the proof assistant
Isabelle/HOL and covers everything from the abstract correctness proof down to the generated
SML code.

Building on Doron Peled’s paper “Combining Partial Order Reductions with On-the-Fly
Model-Checking”, we formally prove abstract correctness of ample set partial order reduction.
This theorem is independent of the actual reduction algorithm. We then verify a reduction
algorithm for a simple but expressive fragment of PRoMELA. We use static partial order
reduction, which allows separating the partial order reduction and the model checking
algorithms regarding both the correctness proof and the implementation. Thus, the Cava
model checker that we verified in previous work can be used as a back end with only minimal
changes. Finally, we generate executable SML code using a stepwise refinement approach.
We test our model checker on some examples, observing the effectiveness of the partial order
reduction algorithm.

1 Introduction

Partial order reduction [28] is an important optimization for model checkers, enabling them
to deal better with models involving concurrency. It allows the model checker to consider
only a subset of all possible interleavings of concurrently executing operations by identifying
equivalences between them. Unfortunately, partial order reduction is notoriously complex
and can easily affect the correctness of the model checker. For instance, [28] describes a
partial order reduction algorithm and claims that it can simply be used with on-the-fly nested
depth-first search. It was found out later that this compromises correctness due to the reduction
possibly differing between the inner and the outer search [9]. Moreover, while formalizing
the algorithm in [28], we discovered that its correctness proof uses an invalid lemma.
Implementation correctness is usually assessed via testing in the context of model
checking algorithms. However, testing is necessarily incomplete and may lead to incorrect

Research supported by DFG grant Cava (Computer Aided Verification of Automata, ES 139/5-1, NI 491/12-1,
SM 73/2-1) and Cava2 (Verified Model Checkers, KR 4890/1-1, LA 3292/1-1)

Technische Universitidt Miinchen

2 Julian Brunner, Peter Lammich

implementations due to missed corner cases. Furthermore, when using models of realistic size,
determining the correct outcome for a given test input requires the use of a model checker.

Thus, although in widespread use, neither the correctness of partial order reduction
algorithms, nor the correctness of their implementations can be taken for granted. This is
especially problematic since the trust in the correctness of a single model checker is used to
justify the confidence in the correctness of the many models that it checks. In order to meet
the very strict correctness requirements of model checking algorithms, we implement and
formally verify a partial order reduction algorithm.

In previous work [6], we have presented the Cava model checker, a fully verified and
executable LTL model checker a la Spin. The verification was done with the proof assistant
Isabelle/HOL [27] and covers everything from the correctness of the algorithms down to the
implementation. Due to its LCF-like architecture, Isabelle/HOL is more trustworthy than a
large unverified implementation like Spin. This paper now adds the following contributions:

. Formalization of a fragment of the modeling language PROMELA

. Formalization of the static analysis required for partial order reduction
. Formal abstract correctness proof for ample set partial order reduction
. Verified implementation and integration into the Cava model checker
. Development of reusable libraries for automata and trace theory

O R

This results in what we believe to be the first formally verified and executable imple-
mentation of partial order reduction, addressing both of the issues mentioned earlier. The
verification is carried out completely in Isabelle/HOL, such that the correctness of the model
checker only depends on the correctness of Isabelle/HOL. This integration avoids logical
gaps that may arise when manually composing the results of different verification tools. Most
importantly, we now have a formally verified reference implementation that can deal with
many models that would be infeasible without partial order reduction. This improves its
usefulness for testing other model checkers. To the best of our knowledge, there has been only
one other attempt at formalizing partial order reduction [5]. However, it does not cover the
reduction algorithm and is restricted to a specific fairness assumption.

The rest of the paper is organized as follows. In section 2, we cover theoretical aspects
of partial order reduction and elaborate on our choice of algorithm. In section 3, we report
on our Isabelle/HOL formalization. In section 4, we test the reduction effectiveness of our
implementation. Finally, in section 6, we give conclusions and future research directions.

This paper is an extended version of [4]. It includes more details about the formalization
of the abstract correctness proof of partial order reduction in section 3.6. There is also the
new section 3.9 describing the architecture of the Cava model checker. Finally, we added
section 5. It describes a counterexample for the invalid lemma used in the correctness proof
of dynamic partial order reduction with on-the-fly model checking.

2 Theory

Figure 1 illustrates the basics of partial order reduction. In regular model checking, the system
automaton ‘S’ is derived from the system and used as input for the model checker together
with the formula ‘’. The model checker then determines if the system automaton satisfies
the property expressed by the formula (£ .S C £ ¢). When using partial order reduction,
a reduction algorithm obtains a reduced system automaton ‘R’ from the system instead,
which fulfills certain reduction conditions. These conditions imply stuttering equivalence
between the language of the system automaton and that of the reduced system automaton

Formal Verification of an Executable LTL Model Checker with Partial Order Reduction 3

(L S = L R). Since properties expressed by next-free LTL formulae are stuttering-invariant
[29], using the reduced system automaton instead of the system automaton when model
checking yields the same result (L S C L ¢ <= L R C L ¢).

system

reduction

reduction
conditions

system
automaton S

reduced system
automaton R

formula ¢

model model
checking checking

abstract
correctness

LSCLy LRCLey

Fig. 1: Partial Order Reduction Overview. A reduction algorithm obtains the reduced system automaton
‘R’, which is then used as an input of the model checker instead of the system automaton ‘S”. The
reduction algorithm guarantees that the reduced system automaton fulfills certain reduction conditions,
from which one can prove stuttering equivalence between the two languages. This implies that the
result of the model checker is not affected by the reduction.

This is a very abstract description of partial order reduction. In actual implementations,
the reduced system automaton may be represented implicitly, and the reduction algorithm may
be merged with the model checking algorithm. However, this view allows us to identify the
three major tasks involved in developing a verified implementation of partial order reduction:

1. Reduction algorithm correctness: The automaton produced by the reduction algorithm
fulfills the reduction conditions.

2. Abstract correctness: If an automaton fulfills the reduction conditions, its language is
stuttering equivalent to that of the system automaton.

3. Implementation and verification of the reduction algorithm.

Unlike our formalization, [5] only covers the second task. This means there is no input
language, no static analysis, no reduction algorithm, no implementation, and no executable
model checker. Furthermore, it only covers the case where a certain fairness assumption is
met, which simplifies the abstract correctness proof. In absence of other formalizations, we
believe that our work is a significant contribution over the existing body of research.

2.1 Reduction Conditions

Both the reduction algorithm and the abstract correctness are built around the reduction
conditions, making them the main object of interest when dealing with partial order reduction.
We chose to implement an algorithm based on the ample set method and chose the reduction

4 Julian Brunner, Peter Lammich

conditions accordingly. Let ‘en ¢’ be the set of enabled actions at state ‘g’ of the system
automaton (enabled set). Let ‘ren ¢’ be the set of enabled actions at state ‘g’ of the reduced
system automaton (ample set). Let ‘ex a q’ be the successor of state ‘q” after executing action
‘a’ (‘ex’ is called execution function). This way, the pair ‘(en, ex)’ represents the system
automaton, while ‘(ren, ex)’ represents the reduced system automaton. The set of finite paths
executable at state ‘g’ of the system automaton ‘paths ¢’ is defined in terms of ‘en’ and
‘ex’. For a more detailed description of the system definitions, see section 3.4. With these
prerequisites, we define the following reduction conditions:

subset Vq.ren g Cenq
nonempty Vq.reng Cenq = renq # {}
independent Jindependence relation I. Vqw. ren ¢ C en ¢ =
w € paths ¢ = rengNset w ={} = I (ren q) (set w)
wellfounded Jwell-founded relation R. Vqa.ren ¢ C en ¢ —
a€renqg = R(exaq)q
invisible Vq.ren ¢ C en ¢ = ren ¢ C invisible

Condition subset states that the reduced system automaton is a subautomaton of the system
automaton and is usually not stated explicitly in the literature. Condition nonempty states that
the reduction algorithm must not omit all of the actions at any state. Condition independent
requires that all the actions that are executed after reaching some state but before an action
from the ample set at this state are independent of all the actions in this ample set. Condition
wellfounded requires that every cycle in the system automaton contains at least one state
where no reduction is performed. Condition invisible states that when a proper reduction takes
place, the ample set cannot contain any actions that are visible to the formula. Conditions
nonempty, independent, and wellfounded correspond to conditions C0O, C1, and C2 in [5,
pages 268, 269]. Condition invisible corresponds to condition C3’ in [28, page 50]. Note that
even though the reduction conditions are similar, our formalization is not based on [5].

2.2 Reduction Algorithm

These conditions are very abstract, so there are still many choices to be made with respect
to the actual reduction algorithm. We originally planned to verify dynamic partial order
reduction with on-the-fly model checking [28], but soon encountered difficulties. Dynamic
partial order reduction detects cycles during the emptiness check in order to ensure condition
wellfounded. This tight integration with the emptiness check has led to bugs in the past
[9]. When used with on-the-fly model checking, this integration also extends to the product
construction, effectively turning the whole model checker into one monolithic algorithm. It
also introduces a mismatch since an algorithm that conceptually works on a system automaton
is now used with a product automaton, requiring complicated reasoning. And indeed, during
our effort of formalizing the proof given in [28], we discovered a counterexample for one of
the lemmata used in this proof. This counterexample is based on the fact that, when exploring
the product automaton, different instances of the system automaton appearing in the product
automaton may be reduced differently. A detailed description can be found in section 5. Note
that this, while refuting the lemma, does not necessarily invalidate the correctness theorem,
only this particular proof thereof. However, despite investing a significant amount of time,
we were unable to find an alternative proof as it seems that the reasoning required is more
complex than anticipated in the original paper.

We chose to implement a static partial order reduction [10] algorithm instead, which avoids
these problems of the dynamic approach. It ensures condition wellfounded by performing

Formal Verification of an Executable LTL Model Checker with Partial Order Reduction 5

some static analysis initially, identifying a set of sticky edges which break every cycle in the
control flow graph. Static partial order reduction is much more modular, making it possible to
verify the reduction algorithm independently of the product construction and the emptiness
check. This way, we were able to simply add the reduction algorithm as a preprocessing step
to the existing Cava model checker, enabling reuse of existing optimizations.

The reduction algorithm itself is similar to the one used in Spin [8]. The basic idea is to
take the set of enabled actions of each process at some state as a candidate for an ample set. For
each candidate, an over-approximation of the reduction conditions is tested. If no candidate
satisfies the conditions, the state is fully expanded, that is, no reduction is performed.

For instance, our approximation checks that, in order to be used as an ample set, the
actions of a process must be independent of all actions of other processes. Moreover, it is
checked that no additional action of this process can be enabled as a consequence of executing
actions of other processes. Thus, only independent actions of other processes can be executed
before an action of the ample set, which implies condition independent.

3 Formalization

Our formalization contains all three of the tasks outlined in section 2. We integrated our
implementation into the Cava model checker, which was published previously [6, 7]. Since
then, various features have been added to this model checker. For instance, it now supports
using PROMELA as an input language [25]. Furthermore, the library for automata has been
updated [20, 14] and a new framework for depth-first search algorithms has been formalized
[18]. Also, an alternative algorithm for deciding language emptiness of Biichi automata based
on Gabow’s strongly-connected components algorithm has been implemented [16]. In order to
make all of these changes possible, the architecture of the Cava model checker was improved
to be more modular and extensible (see section 3.9). However, the focus of this paper is on
the implementation and verification of the partial order reduction algorithm.

In this section, we give some technical background regarding the tools that were used
as well as a high-level overview of the formalization. We also describe certain noteworthy
aspects of the formalization in isolated detail. The full formalization is available at https:
//cava.in.tum.de/CAVA_POR.

3.1 Isabelle/HOL

Isabelle/HOL [27, 26] is a proof assistant based on Higher-Order Logic (HOL), which can be
thought of as a combination of functional programming and logic. Formalizations done in
Isabelle/HOL are trustworthy for two reasons. Firstly, Isabelle’s LCF architecture guarantees
that all proofs are checked using a very small logical core which is rarely modified but tested
extensively over time. This reduces the trusted code base to a minimum. Secondly, bugs in
the core rarely lead to accidentally proving false propositions. Bugs that have large effects are
easily caught, while the limited applicability of bugs with small effects is unlikely to coincide
with a logical mistake in the large-scale structure of the proof.

Isabelle/HOL notation resembles standard mathematical notation with just a few differ-
ences. For instance, as in functional programming, functions are usually curried in HOL.
This means that instead of ‘f :: A x B — C” with application syntax f(x,y)’, we have
‘f + A— B — C” with application syntax ‘f x y’.

6 Julian Brunner, Peter Lammich

3.2 Refinement Framework

‘We want our model checker and the partial order reduction algorithm contained therein to
be executable. When developing formally verified algorithms, there is a trade-off between
the efficiency of the algorithm and the efficiency of the proof: For complex algorithms, a
direct proof of an efficient implementation tends to get unmanageable, as implementation
details obfuscate the main ideas of the proof. A standard approach to this problem is stepwise
refinement [1], which modularizes the correctness proof: One starts with an abstract version
of the algorithm and then refines it in correctness-preserving steps to the concrete, efficient
version. A refinement step may reduce the nondeterminism of a program, replace abstract
mathematical specifications by concrete algorithms, and replace abstract datatypes by their
implementations. For example, selection of an arbitrary element from a set may be refined to
getting the head of a list. This approach separates the correctness proof of the algorithm, which
focuses on the main algorithmic ideas, from the correctness proof of the implementation,
where the proof of each refinement step focuses on a specific implementation detail, not
caring about the overall correctness property.

In Isabelle/HOL, stepwise refinement is supported by the Refinement Framework [19, 12,
13, 15] and the Isabelle Collection Framework [17, 11]. The former framework implements
a refinement calculus [1] based on a nondeterminism monad [30], and the latter provides
a library of verified efficient data structures. Both frameworks come with tool support to
simplify their usage for algorithm development and to automate canonical tasks such as
verification condition generation.

3.3 Basics

The most basic concept needed for nearly all parts of the formalization is that of sequences.
With HOL being very similar to functional programming languages like SML or Haskell,
the standard library already includes extensive support for finite sequences via the type
‘ac list = Nil | Cons « (« list). For infinite sequences, the type ‘a word’ is used, which is
simply a type synonym for ‘N — a’.

We also use the library Coinductive [21] which formalizes lazy lists using codatatypes [2].
It provides the type ‘a 1list’, which models both finite and infinite sequences. This is useful
for selecting subsequences of infinite lists that can be either finite or infinite. Reasoning about
selections and indices of lazy lists required us to significantly extend the library Coinductive.

Another important component needed for partial order reduction is stuttering equivalence
and the proof that next-free LTL formulae can only express stuttering-invariant properties.
The library Stuttering Equivalence [23] is used for both.

3.4 Systems

Model checkers usually represent systems using the type ‘(state X state) set’. Reasoning
about partial order reduction requires transitions to be labeled with actions, suggesting the
type ‘(state x action x state) set’. However, this type allows multiple successor states
to be reached given a state and an action, making the type a bad fit for the deterministic
action model of partial order reduction. This leads to unnecessary wellformedness conditions,
inaccessible successor states, and overspecified path predicates. We thus chose the following

Formal Verification of an Executable LTL Model Checker with Partial Order Reduction 7

representation of the system automaton which was already referred to in section 2.1:

en :: state — action set (la)
ex : action — state — state (1b)
init :: state set (1c)

Here, ‘en’ is the set of enabled actions at a state (enabled set), ‘ex’ is the function that, given
an action, maps each state to its successor state (execution function), and ‘init’ is the set of
initial states.

This representation allows paths to be introduced in a straightforward way via the
inductively defined set ‘paths :: state — action list set’:

[| € paths p (2a)
a €enp = w € paths (ex a p) = a# w € paths p (2b)

Inductive definitions specify the smallest sets that satisfy the given rules. Equivalently, they
specify the sets containing those elements whose membership can be derived using the given
rules. These rules can be declared as safe introduction rules, so that whenever Isabelle/HOL
encounters proof obligations of the form ‘[] € paths p’ or ‘a# w € paths p’, it can
automatically split them into simpler goals or discharge them completely.

We prove an additional rule for the append operator on lists:

u € paths p = v € paths (fold ex u p) = u@uv € paths p 3)

Note how ‘fold’ lifts the execution function ‘ex :: action — state — state’ from single
actions to sequences of actions ‘fold ex :: action list — state — state’. Also note how
this rule generalizes rule 2b.

Together, rules 2a, 2b, and 3 form a set of introduction rules that break down most goals
automatically. For instance, the goal ‘u @a # v € paths p’ gets transformed into three
subgoals:

u € paths p (4a)
a € en (fold ex u p) (4b)
v € paths (ex a (fold ex u p)) (4¢)

Compared to the formalization using the type ‘(state x action X state) set’, this automates
proofs significantly. In some cases, proofs comprised of 50 to 100 lines become one-liners.
We have proven many more rules about this system formalization, making it a useful addition
to the Cava automata library.

3.5 Trace Theory

In order to formalize partial order reduction, we need the concept of independent actions,
which can be executed in any order without changing the result or enabling or disabling
each other. Trace theory [22] lifts this notion of commutable items to that of equivalent (=1)
sequences, which is needed in the abstract correctness proof.

Finite sequences are equivalent if they differ by a finite number of commutations of
independent actions. Using equivalence on finite sequences, it is possible to define equivalence
on infinite sequences via a series of definitions [28, page 41]. Unfortunately, these definitions

8 Julian Brunner, Peter Lammich

are not easily generalized to lazy lists, so we decided to work with separate types and
definitions for finite and infinite sequences.

Formalizing the necessary parts of trace theory took significant effort due to the large
number of theorems. There are also some theorems that look simple but are difficult to prove,
for instance:

w1 =r w2 <= vQuwQu=ruQuw;Qu 35)

The left to right direction can be proven via rule induction on the transitive structure of ‘=y’.
Doing the same for the right to left direction results in an unprovable induction step. It was
necessary to prove the following lemmata:

w1 =5 w2 = removel c w; =5 removel ¢ w2 (6a)
uQuwi = uQuwes — w1 =5 w2 (6b)
w1 =7 Wy = Trev w] =j rev wsa (6¢)

Here, ‘removel ¢ w’ removes the first occurrence of ‘c’ from the sequence ‘w’, and ‘rev w’
reverses the sequence ‘w’. Lemma 6a uses ‘removel’ to avoid the fact that rule induction
does not work with modified assumptions. We use lemma 6a to prove lemma 6b via reverse
induction on the sequence ‘uv’. Lemma 6c¢ is proven via rule induction and with lemma 6b, it
completes the proof of theorem 5.

We also had to define some concepts specific to partial order reduction. For instance, the
predicate specifying that the first occurrence of a symbol in a sequence is independent of all
symbols before it. In the end, the formalization of the relevant aspects of trace theory required
about as much proof text as the formalization of the abstract correctness proof itself.

3.6 Abstract Correctness

In this section, we discuss the part of the formalization dealing with the abstract correctness
proof of ample set partial order reduction. Assume that *S” is a system automaton and ‘R’ is
a reduced system automaton such that the reduction conditions introduced in section 2.1 hold.
Then, the abstract correctness theorem states that the languages of ‘S’ and ‘R’ are stuttering
equivalent:

LS~LR (7

The proof of this theorem required about 1000 lines of formal proof text including dozens of
lemmata. Its structure is similar to that of the informal proof [28].

However, we present the formalization of a lemma [28, Theorem 3.11] in detail and
highlight the differences between the formal and the informal proof. Informally, the lemma
states that, given an infinite sequence in the system automaton, it is possible to find a
corresponding sequence in the reduced system automaton. We would like to convey an idea
of what the formal proof looks like without going into every detail of it.

To do so, we need some definitions and some notation. We use ‘—~’ to denote concatenation
of a finite sequence and an infinite sequence. The constant ‘Ind’ lifts the independence
relation ‘I’ to sets. The operators ‘=g’ and ‘=;’ denote equivalence between finite and
infinite sequences, respectively.

First, we construct an arbitrarily long but finite sequence in the reduced system automaton
by transcribing longer and longer prefixes of the infinite sequence ‘v’ in the system automaton.
In order to do so, we inductively define a predicate that describes a valid state during this
construction process where a prefix of the sequence in the system automaton has already

Formal Verification of an Executable LTL Model Checker with Partial Order Reduction 9

been processed. We use the command ‘inductive’ to define the constant ‘reduced_run’ as
the least predicate that satisfies the rules init, absorb, and extend:

inductive reduced_run :: ”state = action list = action word = action list =
action list = action list = action list = action word = bool” where

init: 7reduced_rung [Ju[J[J[][Jv

7|

absorb: “reduced_run g vi ([a] ~v2)lwwi w2 u = a €setl =
reduced_run g (v1 @ [a]) v2 (removel al) w w1 wa u” |

extend: "reduced_run g v ([a] ~v2) lwwi wau = a ¢ setl =
b@ [a] € R.paths (fold ex w ¢) = Ind {a} (set b)) = set b C invisible —
b=p b1 @by = [a] ~b1 —~u =ru = Ind (set by) (rangeu’) =
reduced_run ¢ (v1 @ [a]) v2 (1@ by) (w@ b@Q [a]) (w1 @ by @ [a]) (w2 @ b2) u'”

The predicate ‘reduced_run’ uses the following parameters:

q initial state for ‘v’

vy prefix of ‘v’ that has been processed so far

vg suffix of ‘v’ that has not yet been processed

[actions that have been appended to ‘w1’ but did not yet appear in ‘v1’
w sequence in the reduced system automaton constructed so far

w1 possibly visible part of ‘w’

ws invisible part of ‘w’

u possible continuation of ‘w’

This predicate specifies that the state of the construction where nothing has been processed
yet is valid (init). It also specifies how one can extend a valid construction state by adding a
step in the system automaton and a sequence of corresponding steps in the reduced system
automaton (absorb and extend).

Next, we present some theorems that can be proven about this predicate using Isabelle
syntax, which should be fairly intuitive. After the theorem name, assumptions are stated using
the ‘assumes’ directive and the conclusion is stated using the ‘shows’ directive. The notation
‘obtains x where P’ denotes that the theorem proves an existential statement of the form
‘Jx. P’. We first prove that certain invariants hold at each point of the construction:

lemma reduced_run_invariants:
assumes "reduced_run q vi va | w w1 wa u”

shows "w € R.pathsq” "va =7l ~u” 01 Q l=p w1” "w = w1 Q wy”

”

”filter visible w1 = filter visible w” ”set wo C invisible”

"Ind (set w2) (range u)” ”length v1 < length wi” ”length v < length w”
We also prove that the construction can always be extended:

lemma reduced_run_step :

) ” N

assumes ”q € reachable

”

v1 —~ [a] ~ vz € runs ¢”

assumes "reduced_run q v1 ([a] —~ v2) l w wi w2 v’
. / / / / /

obtains [' w wi wa u

where ”reduced_run ¢ (v1 @ [a]) v2 I’ (w@ w') (w1 @ w}) (w2 @ wh) u'”

10 Julian Brunner, Peter Lammich

Proving reduced_run_invariants and reduced_run_step required a lot of effort as the informal
proof only provided a rough sketch of the arguments underlying these proofs.
With these lemmata proven, we can now show our lemma [28, Theorem 3.11]:

lemma reduction_word:

ki

assumes "¢ € reachable” v € runs q”

obtains v w
where "w € Roruns ¢” "v =7 u” "u 2y w”
"Ifilter visible (inf_llist v) = lfilter visible (inf_llist w)”
proof —
def P ="Xkwwi. 31wz u. reduced_run q (prefix k v) (suffix k v) l w w1 we w”
obtain w w; where "V k. Pk (wk) (w1 k)” ”chain w” ”chainwy” ...

proof (rule chain_construct_2’[of P])

show "PO[][]” ...
next
fix kww

assume " P kw w1”
show 73w’ wi. P (Suck)w wi Aw <w Awp <wi” ...
show "k < length w” 7k <length w;” ...
qed rule
show ?thesis
proof
show ”limit w € R.runsq” ...
show 7v = limit w1” ...
show ”limit w; < limit w” ...
show ”lfilter visible (inf_llist (limit w1)) = lfilter visible (inf_llist (limit w))”

qed
qed

Here, ‘Ilfilter’ is the filter function on lazy lists and ‘inf_llist’ converts an infinite sequence
to a lazy list. Proofs are enclosed in ‘proof ... qed’ blocks, with ‘next’ separating subgoals.
Inside these blocks, arbitrary propositions can be proven. Existential statements use the
form ‘obtain ... where’. Local definitions can also be made via ‘def’. The directives ‘fix’,
‘assume’, and ‘show’ are used to work with universally quantified variables, assumptions,
and goals, respectively. Once all goals have been discharged via ‘show’, the proof block can
be closed via ‘qed’. Note that we used °..." to signify an omitted proof.

In the proof, we have to show that there exists an infinite sequence ‘w’ with the required
properties in the reduced system automaton. While this step is almost completely skipped in
the informal proof, the formal one forces us to consider it rigorously. Lemma reduced_run_step
guarantees that for any number of steps that were already taken, another step can be taken,
extending the sequence in the process. Intuitively, such a theorem can be applied “infinitely
often” to obtain an infinite sequence, but this is not logically sound. Performing a step like

Formal Verification of an Executable LTL Model Checker with Partial Order Reduction 11

this in a formal proof requires precise reasoning and in our case the use of Hilbert’s epsilon
operator in lemma chain_construct_2’. This lemma turns the ability to perform an arbitrary
number of steps into an infinite chain of finite sequences where each sequence is a prefix of
the one following it. This property is stated via the constant ‘chain’. The constant ‘limit’ is
then used to derive the uniquely determined infinite sequence from this chain.

We believe that these difficulties do not point to a shortcoming of formal logic or the
particular system we are using. Instead, we think that situations like this one point to areas
where it became customary to use sloppy reasoning in informal proofs, possibly leading to
mistakes or overlooked side conditions. For instance, it is often not made clear in which way
variables depend on each other or what guarantees that an infinite sequence can actually be
constructed from an infinite set of finite sequences. Formal proofs point out required side
conditions like the fact that the infinite concatenation of these finite sequences needs to be
infinite. It also brought attention to the fact that many concepts need to be defined on both
finite and infinite sequences and that they need to correspond to each other in a specific way.

The formal proof constitutes both a certificate of the theorem’s correctness as well as a
detailed documentation of the reasoning used to prove it. As mentioned in sections 3.3, 3.4,
and 3.5, a large amount of foundational work was required in order to formally prove the
abstract correctness theorem.

3.7 The SM Language

In order to implement an executable reduction algorithm, we require a concrete modeling
language. We use a simple fragment of PRoMELA that is expressive enough to model interesting
examples. We call this fragment the SM language (simple modeling language).

A program in this language consists of a set of processes, each of which is described using
a guarded command language. Each process has a set of local variables and communication
between processes is modeled via global variables. A configuration of the system consists
of a valuation of the global variables and a list of process configurations, where a process
configuration consists of a command and a valuation of the local variables.

Most features of PROMELA are either contained in the SM language or can be expressed
directly using global variables. The behavior of channels, small integers, arrays, dynamic
processes, and process priorities has to be emulated via more complex constructions using
global variables.

We specify a structural operational semantics that establishes a control flow graph where
the nodes are commands and the edges are labeled with local actions. A local action can be a
guarded assignment, a test, or the skip action. Each local action is assigned an enabledness
check and an effect function on the local and global variables.

The system semantics describes a step relation between configurations by nondeterminis-
tically picking a process from a configuration, following an edge in the control flow graph
from the process’ command that is labeled with an enabled local action, and applying the
effect of the local action to the local and global state. To ensure that all runs of the system are
infinite, we apply a stuttering extension, that is, if there is no process with an enabled action,
the system may take a step that does not change the configuration.

Since we want to use the SM language in an LTL model checker, we need to define atomic
propositions and their connection to the system states. In our case, atomic propositions are
simply expressions in the SM language that contain only global variables. Then, we define the
interpretation function to map each state to the set of expressions that evaluate to a non-zero
value in this state. Finally, we define the language of a program as the set of infinite sequences

12 Julian Brunner, Peter Lammich

of sets of atomic propositions that correspond to infinite runs of the program:
L :: program — exp set word set ®)

We define a global action to consist of a process ID and a control flow graph edge. The
process ID is the position of the associated process in the list of all processes. A global action
is enabled if the associated process exists, the control flow graph edge is consistent with the
current command of the associated process, and the corresponding local action is enabled.
Execution of a global action transforms the state of the associated process and the global
variables according to the corresponding local action.

3.8 Reduction Algorithm

‘We make some approximations similar to those made in SpiN in order to define an efficiently
executable function which selects an ample set for a configuration, thereby implementing
the reduction algorithm. We call an action statically enabled if it occurs on a control flow
graph edge consistent with the current command of its process in the configuration. This
overapproximates the set of enabled actions by ignoring the enabledness conditions.

Similar to Spin, candidates for ample sets are the sets of enabled actions of each process.
We make a crude approximation and allow a nonempty set of enabled actions of a process as
an ample set, if (1) there is no statically enabled action of the process that reads or writes
global variables, and (2) none of the enabled actions corresponds to a sticky edge in the
control flow graph. Here, (1) is a way of guaranteeing condition independent (see section
2.1), and (2) is the condition imposed by static partial order reduction (see section 2.2).

We implemented and verified an algorithm based on depth-first search which computes
the set of sticky edges before the model checking phase. This algorithm starts with the set of
edges labeled with actions containing global variables and extends it to a feedback arc set on
the control flow graphs of the processes. For this task, we used the DFS Framework [18],
which simplifies the implementation and verification of efficient DFS-based algorithms.

We define the reduced system automaton based on this ample function and prove that
all of the reduction conditions from section 2.1 are fulfilled. This allows us to invoke the
abstract correctness theorem to obtain stuttering equivalence between the language of the
system automaton and that of the reduced system automaton. Together with the assumption
that the formula is next-free, this implies that using the reduced system automaton for model
checking instead of the system automaton does not change the result.

3.9 Architecture of the Cava Model Checker

Since the previous publication on the Cava model checker [6], many improvements have been
made. Following an overhaul of the automata library [20, 14], the architecture of the model
checker has been generalized to a point where it can be considered a generic framework
for assembling formally verified LTL model checkers. It is this architecture that we want to
describe in this section. Figure 2 shows the data flow of the Cava model checker. We use
generalized Biichi graphs to represent the product automaton, which are generalized Biichi
automata over the unit alphabet. As the alphabet is not needed to check for emptiness, this
avoids forcing implementations to include alphabet information in their product automaton
implementation.

Formal Verification of an Executable LTL Model Checker with Partial Order Reduction 13

model formula

. LTL-to-GBA
semantics
generalized
system Biichi
automaton automaton

synchronous product

generalized
Biichi
graph

emptiness check

projection

result

Fig. 2: Architecture of the Cava Model Checker. The boxes show the data, and the arrows show the
operations of the model checker. The input is a model and a formula. The semantics of the modeling
language interprets the model as a system automaton, and the LTL-to-GBA conversion creates a
generalized Biichi automaton from the formula. Then, the synchronous product of the two is formed,
and checked for emptiness. The result is either emptiness or an accepting run of the product automaton.
In the latter case, the run is projected back to the system automaton.

In order to get a flexible framework, we specify the data and components on an abstract
level. Automata are specified as relations over nodes and a function assigning sets of atomic
propositions to nodes. The specification is parameterized over the types of nodes and atomic
propositions. We do not specify an abstract model, but start with the system automaton.

The abstract components are nondeterministic specifications of the expected behavior. For
example, we specify the emptiness check ‘echk_abs’ to return ‘UNSAT” together with some
accepting run ‘ry’ of the generalized Biichi graph ‘G’ if there is one, and ‘SAT” otherwise:

case echk_abs G of
SAT = G.runs = {} |)
UNSAT ry = rx € G.runs
We assemble the abstract components to form the abstract model checker ‘cava_abs’
and show its correctness:
case cava_abs S ¢ of
SAT = intp' S.runs C £ ¢ | (10)
UNSAT r = r € SrunsAintpr ¢ L ¢

For a system automaton ‘S’ and an LTL formula ‘p’, the model checker returns ‘SAT” if all
runs of the system satisfy the formula, and ‘UNSAT 7’ if ‘r’ is a run that does not satisfy the

14 Julian Brunner, Peter Lammich

formula. Note that LTL formulae are independent of the system: They specify valid sequences
of sets of atomic propositions, while a run of the system is a sequence of system states. The
function ‘intp’ maps a run to the sequence of sets of atomic propositions that hold at the
states of the run, and ‘intp"’ is its extension to sets of runs. Note that ‘intp' S.runs = £ S’.

Next, we assume that we have implementations of the components that match the
implementations of the data. Formally, we fix refinement relations to relate the implementation
of data to its abstract representation, and assume that the components’ implementations
refine the abstract components’ specifications. This means that for related arguments, the
implementation and the abstract component return related results. For example, we assume
refinement relations ‘gbg_rel” and ‘resx_rel’ for generalized Biichi graphs and results of the
emptiness check, and an implementation ‘echk_impl’, such that:

(echk_impl, echk_abs) € gbg_rel — resx_rel (11)

Then, we assemble the assumed implementations of the components to a model checker
implementation ‘cava_impl’, and show that it refines the abstract model checker:

(cava_impl, cava_abs) € sa_rel — res_rel (12)

Here, ‘sa_rel’ relates the system automata implementation to the abstract system automata,
and ‘res_rel’ relates projected results.

Instantiating the above with actual implementations of the components and the data
yields an executable model checker and its correctness theorem. This approach has several
advantages. Firstly, the components of the model checker can be developed separately, as
long as they match the implementations of the passed data. Secondly, the Cava Automata
Library [14] provides efficient implementations of the required automata types, which can be
conveniently used by the components. Finally, components can easily be added or exchanged.
For example, the current Cava model checker supports two emptiness check algorithms, one
based on nested DFS, and the other based on SCCs, which can be selected by a configuration
option. Adding another algorithm amounts to proving that the algorithm refines the abstract
emptiness check, and then adding a new configuration option to Cava. In particular, it does
not require changing other components or the overall correctness proof.

Finally, using this refinement-based approach allows for the seamless integration of many
implementation techniques required to design an efficient model checker:

— When instantiating Cava with a modeling language, the modeling language has a
semantics which maps a model to an abstract system automaton. Moreover, we compile a
model to a system automaton implementation, usually a successor function, which maps
configurations to lists of successor configurations. Showing compiler correctness amounts
to showing that the abstract system automaton is related to the concrete one. Then, the
Cava correctness theorem (theorem 12) implies that the result of the implementation is
related to the abstract system automaton, that is, the semantics of the model.

— The states of the product automaton are constructed lazily. This saves memory if a
counterexample is found before the whole state space is explored, as the unexplored parts
of the state space do not occupy memory. This only affects the product construction
component and the generalized Biichi graph that is implemented by its successor function.

— The alphabets of the automata are sets of atomic propositions. However, these sets
have exponential size in general, so storing them explicitly is not efficient. Instead, the
automaton constructed from the LTL formula stores two sets ‘P’ and ‘N’ of atomic
propositions, representing all sets ‘A’ with ‘P C A A AN N = {}". This representation
is naturally generated by many algorithms that convert LTL formulae to automata.

Formal Verification of an Executable LTL Model Checker with Partial Order Reduction 15

The automaton constructed from the model uses system states to represent the set of all
atomic propositions that hold in a state. On product construction, it has to be decided
whether the intersection of two sets of atomic propositions, one represented by ‘(P, N)’
and the other represented by a system state ‘S’ is empty. This can simply be done by
evaluating the atomic propositions in ‘P’ and ‘N’ on “S".

— The result of the emptiness check may contain a counterexample, which is an infinite
run of the generalized Biichi graph. Clearly, a direct representation of infinite runs is not
possible. However, a common representation is to use a lasso, that is, a finite path to an
accepting state, and a finite, non-empty loop on this state, which has to contain states
from all acceptance classes of the generalized Biichi graph. For a non-empty graph, there
is always an accepting path that can be described by a lasso, which can be computed
naturally by the emptiness check algorithms.

3.10 Integration of Partial Order Reduction

At this point, we have formalized all the necessary prerequisites and will now integrate partial
order reduction into the Cava model checker. We refine the ample function, the execution
function, and the interpretation function to efficiently executable implementations. This
includes compilation of the model to a more efficient representation. Then, we replace the
implementation of the successor function with the ample function. Instantiating the generic
infrastructure of the Cava model checker then yields an executable LTL model checker
‘cava_por’ which uses the reduced system automaton. Combining its correctness theorem
with that of abstract partial order reduction and the theorem about stuttering invariance of
LTL properties then yields the main theorem of our development:

case cava_por S o of SAT=LSC L |UNSAT=LSZ Ly 13)

This theorem states that the function ‘cava_por’ decides whether or not the sequences of
atomic propositions admitted by runs of the program satisfy the LTL formula. The meaning
of this statement only depends on the abstract semantics of the SM language (£ S) and the
abstract semantics of LTL formulae (£). All other parts of the formalization, including
partial order reduction, LTL model checking, and implementations, are covered by this
machine-checked correctness theorem. Note that the model checker can actually provide a
counterexample in case the program does not satisfy the formula. However, we only show the
simplified view here as it is easier to understand.

Finally, Isabelle/HOL can generate Standard ML code from the definition of the function
‘cava_por’. This code then constitutes a formally verified and executable LTL model checker.
A snapshot of this formalization can be found athttps://cava.in. tum.de/CAVA_POR. We
are currently working on integrating the partial order reduction formalization into an up-to-date
AFP entry of the Cava model checker, which can be found at https://www.isa-afp.org.

We conclude with some statistics about the formalization, which took about 15 person-
months and resulted in about 13k lines of theory text being added to the model checker.
This includes both definitions and proofs and splits up into 6k lines for abstract partial order
reduction and 7k lines for the SM language and the associated program analysis. The size of
the whole codebase of the model checker and its libraries is about 140k lines of theory text.

16 Julian Brunner, Peter Lammich

4 Evaluation

We perform some basic sanity checks using systems that admit no reduction and complete
sequentialization. As a practical example, we implement a distributed mutual exclusion
algorithm called MuLog [24] using the supported PRoMELA fragment. The tested property
specifies that at most one process can be in the critical section at any point in time. We
perform model checking using both the Cava and the Spin model checkers, both with and
without partial order reduction. Figure 3 shows the reduction effectiveness for this algorithm.

n | SeIN | Sein* | Factor SPIN | Cava | Cava* | Factor Cava
1 27 27 1 52 52 1
2 2,674 2,004 1.33 5,538 4,284 1.29
3| 2,376,180 | 1,171,578 2.03 | 5,205,376 | 2,779,218 1.87

Fig. 3: Reduction Effectiveness for MuLog. Shown are the number of states that were explored during
model checking using both the Spin and the Cava model checkers for a given number of processes
‘n’. The starred variants indicate where partial order reduction was used. The table also shows the
reduction factor that was achieved by each model checker.

Both the Cava and the Spin model checker show a significant reduction in the number
of states. The reduction factors are comparable (roughly 1.3 for ‘n = 2’ and roughly 2 for
‘n = 3°). The Spin model checker explores fewer states in total (roughly factor 2) and has
shorter execution times (roughly factor 400) than the Cava model checker.

We would like to emphasize that in this paper, it is not our goal to compete with Spin.
Instead, our focus is on providing a verified and executable reference implementation of
partial order reduction. The SpiNn model checker employs various other optimizations and
compilation to C code, while the Cava model checker interprets the semantics of the modeling
language. Thus, little insight can be gained by directly comparing execution time and memory
consumption. Incorporating these optimizations is orthogonal to partial order reduction and
we consider this subject of further research. Due to the modular architecture of the Cava
model checker, doing so will not make this contribution obsolete. At this point, it will also be
possible to perform a more comprehensive evaluation with multiple example algorithms.

5 Dynamic Partial Order Reduction with On-The-Fly Model Checking

This section presents a counterexample for the invalid lemma mentioned in section 2.2. In
[28], the partial order reduction algorithm designed for off-line model checking is modified
and used with on-the-fly model checking. When doing off-line partial order reduction, the
reduced system automaton is explored via depth-first search and its product with the formula
automaton ‘3’ is checked for emptiness. On-the-fly partial order reduction consists of defining
the reduced product automaton ‘A’ directly and checking its emptiness while exploring it
via nested depth-first search.

The correctness proof introduces an intermediate automaton ‘G”’ that is structurally
similar to ‘A" but fulfills the conditions of the off-line correctness theorems. Together with
the formula automaton ‘53’, the following claim is then used to prove correctness:

LA=LGNLB (14)

However, in this section, we will present an example for which this claim does not hold. This
example is adapted from [3, section 8.4], where we originally discovered the problem.

Formal Verification of an Executable LTL Model Checker with Partial Order Reduction 17

Figures 4 and 5 show the system automaton ‘G’ and the formula automaton ‘B’,
respectively.

{p1}

(1)

{p2}

Fig. 4: System Automaton ‘G”. Fig. 5: Formula Automaton ‘13’.

We define the interpretation function ‘intp’ as follows:

{p} ifq=20
. {p2} ifg=1~
tpq = 15
B S -
{} otherwise

With this, we have ‘visible = {b, e, f}".
We use the independence relation ‘I = {(a, d), (d, a), (b, d), (d,b), (¢,d), (d,c)}" and
define the ample function as follows:

{d} ifz = aand (¢,y) is not open
ample (z,y) = ¢ {a} ifz = «and (83, y) is not open (16)
en x otherwise

If more than one condition is met, the topmost valid equation is used. This function fulfills all
the necessary conditions.

Figure 6 shows the reduced product automaton ‘A’ generated by the ample function
given above. In this case, the intermediate automaton ‘G”” looks exactly like ‘A", except that
all states are accepting.

In order to create a counterexample, we define the word ‘w’:

w={}-{}-A{p}- {3 - {} {p2}” (17)
We have ‘w € LG ANw € LBAw ¢ L A” and thus obtain:

LAALGNLB (18)

18 Julian Brunner, Peter Lammich

8 {
@ {3 @ {p2}
{p2} {p2} {p2}

Fig. 6: Reduced product automaton ‘A’’. We use shorthand state notation. For instance, the state
‘(ev, f1)’ is simply written as ‘o1’

This contradicts the claim 14 made earlier. However, the proof only needs a weaker version of
the claim:

LA ={} &= LGNLB={} (19)

Our example does not contradict this statement and we do in fact believe that it holds true.
Unfortunately, we have not been able to find a proof for this statement.

6 Conclusion

Formal verification is sometimes downplayed as “careful documentation of proven theorems”
or “filling in obvious details in proofs”. In practice, formal proofs usually involve extensive
modeling as well as abstraction, generalization, and simplification. What may seem like trivial
completion of the informal proof often involves bridging large gaps and proving omitted
corner cases. In this project, it even helped us discover an issue with the correctness proof
given in [28]. This demonstrates both the need for and the usefulness of formal verification.

More importantly, we developed a formally verified and executable LTL model checker
with partial order reduction. As the verification is machine-checked and covers everything
from the abstract algorithm to the generated SML code, this is a very strong correctness
guarantee. Our model checker is fast enough to serve as a reference implementation for
other model checkers on models of realistic size. This constitutes a much-needed source of
trust given the widespread use of partial order reduction together with its history of issues.
The formalization can further serve as a detailed description of the theory of partial order
reduction and its correctness proof, which is useful since nontrivial gaps were bridged in the
proof. We also developed a significant amount of foundational theories that can be reused in
other projects. Finally, our work demonstrates that large systems can now be verified using
proof assistants via modularization and reuse of existing theories.

Future work consists of extending the SM language to make it more practical, with the
ultimate goal of supporting most or all of the features of PRomELA. It is also possible to find
smaller sets of sticky actions by incorporating heuristics about variable increments/decrements
[10]. Another way to improve reduction consists of using additional static analysis to find

Formal Verification of an Executable LTL Model Checker with Partial Order Reduction 19

larger independence relations. Finally, there is still room for improvement concerning the
implementation, especially via the use of imperative data structures [13].

References

(1]

(2]

(3]

(4]

(71

(8]
(91

(10]

(11]

[12]

[13]

[14]

[15]

Ralph-Johan Back and Joakim von Wright. Refinement Calculus. A Systematic Intro-
duction. Graduate Texts in Computer Science. Springer, 1998.

Jasmin Christian Blanchette, Johannes Holzl, Andreas Lochbihler, Lorenz Panny,
Andrei Popescu, and Dmitriy Traytel. “Truly Modular (Co)datatypes for Isabelle/HOL”.
In: ITP. Vol. 8558. LNCS. Springer, 2014, pp. 93-110.

Julian Brunner. “Implementation and Verification of Partial Order Reduction for On-
The-Fly Model Checking”. MA thesis. Technische Universitidt Miinchen, July 15, 2014.
83 pp. URL: http://www2l.in. tum.de/~brunnerj/documents/ivporotfmc.
pdf.

Julian Brunner and Peter Lammich. “Formal Verification of an Executable LTL Model
Checker with Partial Order Reduction”. In: NFM. Springer, 2016, pp. 307-321.
Ching-Tsun Chou and Doron Peled. “Formal Verification of a Partial-Order Reduction
Technique for Model Checking”. In: TACAS. Vol. 1055. LNCS. Springer, 1996, pp. 241-
257.

Javier Esparza, Peter Lammich, René Neumann, Tobias Nipkow, Alexander Schimpf,
and Jan-Georg Smaus. “A Fully Verified Executable LTL Model Checker”. In: CAV.
Vol. 8044. LNCS. Springer, 2013, pp. 463—478.

Javier Esparza, Peter Lammich, René Neumann, Tobias Nipkow, Alexander Schimpf,
and Jan-Georg Smaus. “A Fully Verified Executable LTL Model Checker”. In: Archive
of Formal Proofs (May 2014). Formal proof development. urL: http://afp.sf.
net/entries/CAVA_LTL_Modelchecker.shtml.

Gerard J. Holzmann. The SPIN Model Checker. Primer and Reference Manual.
Addison-Wesley Professional, Sept. 2003.

Gerard J. Holzmann, Doron Peled, and Mihalis Yannakakis. “On Nested Depth First
Search”. In: SPIN Workshop. Vol. 32. 1996, pp. 81-89.

Robert Kurshan, Vladimir Levin, Marius Minea, Doron Peled, and Hiisnii Yenigiin.
“Static Partial Order Reduction”. In: TACAS. Vol. 1384. LNCS. Springer, 1998, pp. 345—
357.

Peter Lammich. “Collections Framework™. In: Archive of Formal Proofs (Nov. 2009).
Formal proof development. urL: http://afp.sf.net/entries/Collections.
shtml.

Peter Lammich. “Refinement for Monadic Programs”. In: Archive of Formal Proofs
(Jan. 2012). Formal proof development. urL: http://afp.sf.net/entries/
Refine_Monadic.shtml.

Peter Lammich. “Refinement to Imperative/HOL”. In: ITP. Vol. 9236. LNCS. Springer,
2015, pp. 253-269.

Peter Lammich. “The CAVA Automata Library”. In: Archive of Formal Proofs (May
2014). Formal proof development. urL: http://afp.sf.net/entries/CAVA_
Automata.shtml.

Peter Lammich. “The Imperative Refinement Framework”. In: Archive of Formal Proofs
(Aug. 2016). http://isa-afp.org/entries/Refine_Imperative_HOL.shtml,
Formal proof development. 1ssn: 2150-914x.

20 Julian Brunner, Peter Lammich

[16] Peter Lammich. “Verified Efficient Implementation of Gabow’s Strongly Connected
Component Algorithm”. In: ITP. Vol. 8558. LNCS. Springer, 2014, pp. 325-340.

[17] Peter Lammich and Andreas Lochbihler. “The Isabelle Collections Framework™. In:
ITP. Vol. 6172. LNCS. Springer, 2010, pp. 339-354.

[18] Peter Lammich and René Neumann. “A Framework for Verifying Depth-First Search
Algorithms”. In: CPP. ACM, Jan. 13, 2015, pp. 137-146.

[19] Peter Lammich and Thomas Tuerk. “Applying Data Refinement for Monadic Programs
to Hopcroft’s Algorithm”. In: ITP. Vol. 7406. LNCS. Springer, 2012, pp. 166—182.

[20] Peter Lammisch. “The CAVA Automata Library”. In: Isabelle Workshop 2014. May
2014.

[21] Andreas Lochbihler. “Coinductive”. In: Archive of Formal Proofs (Feb. 2010). Formal
proof development. urL: http://afp.sf.net/entries/Coinductive.shtml.

[22] Antoni Mazurkiewicz. “Trace Theory”. In: Advances in Petri Nets, Part II. Vol. 255.
LNCS. Springer, 1987, pp. 278-324.

[23] Stephan Merz. “Stuttering Equivalence”. In: Archive of Formal Proofs (May 2012).
Formal proof development. urL: http://afp.sf.net/entries/Stuttering_
Equivalence.shtml.

[24] Mohamed Naimi, Michel Trehel, and André Arnold. “A Log (N) Distributed Mutual
Exclusion Algorithm Based on Path Reversal”. In: Journal of Parallel and Distributed
Computing 34.1 (1996), pp. 1-13.

[25] René Neumann. “Using Promela in a Fully Verified Executable LTL Model Checker”.
In: VSTTE. LNCS. Springer, 2014, pp. 105-114.

[26] Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/HOL. A Proof
Assistant for Higher-Order Logic. Vol. 2283. LNCS. Springer, 2002.

[27] Larry Paulson, Tobias Nipkow, and Makarius Wenzel. Isabelle. 2014. UrL: http:
//isabelle.in.tum.de.

[28] Doron Peled. “Combining Partial Order Reductions with On-the-Fly Model-Checking”.
In: Formal Methods in System Design 8.1 (1996), pp. 39-64.

[29] Doron Peled and Thomas Wilke. “Stutter-Invariant Temporal Properties are Expressible
Without the Next-Time Operator”. In: Information Processing Letters 63.5 (1997),
pp- 243-246.

[30] Philip Wadler. “Comprehending Monads”. In: Mathematical Structures in Computer

Science 2 (04 Dec. 1992), pp. 461-493.

Appendix B

Buchi Complementation

This appendix includes a full copy of the following publication.

Julian Brunner. “Formal Verification of Executable Complementation and
Equivalence Checking for Biichi Automata”. In: Integrated Formal Methods -
16th International Conference, IFM 2020, Lugano, Switzerland, November 16-20,
2020, Proceedings. Ed. by Brijesh Dongol and Elena Troubitsyna. Vol. 12546.
Lecture Notes in Computer Science. Springer, 2020, pp. 239-256. DOI:
10.1007/978-3-030-63461-2_13

This article is included as part of this publication-based dissertation.

Copyright

The proceedings article in this appendix was published by Springer Na-
ture. Per author retained rights, it can be reused in dissertations without
obtaining permission from the publisher. The accepted version of the
manuscript is thus reproduced here in accordance with the requirements
of the publisher.

65

https://doi.org/10.1007/978-3-030-63461-2_13

Summary

This article describes the formal verification of algorithms for Biichi com-
plementation and equivalence checking using the proof assistant Isabelle.
We follow the rank-based approach to Biichi complementation [KVO01]. This
method introduces the concept of the run DAG, which contains all of the
possible paths that an automaton can take while reading a word. Run DAGs
are then used to define odd rankings for a given word, which exist if and
only if the automaton rejects said word. Finally, the complement automa-
ton is designed to nondeterministically search for such an odd ranking,
accepting if and only if one exists.

We make heavy use of the library for transition systems and automata,
which was originally developed to enable the formalization of Biichi com-
plementation. Using this library, we define the concepts of run DAGs, odd
rankings, as well as the actual complement automata. Based on these def-
initions, we formalize the correctness proof that is given in [KV01]. This
includes the equivalence between rejection by the original automaton and
odd rankings, as well as the one between odd rankings and the accep-
tance by the complement automaton. We then use refinement to derive an
executable implementation for this complementation algorithm.

We extend the library for transition systems and automata with intersec-
tion and union operations. In conjunction with an emptiness check on
Biichi automata, this allows us to use Biichi complementation to define
decision procedures for language containment and equality. Again, we use
refinement to derive executable implementations for these algorithms.

We integrate both the complementation algorithm and the decision proce-
dure for language-wise equivalence into a command-line tool. This tool can
then be used to process Biichi automata in the Hanoi Omega-Automata for-
mat. It represents a verified reference implementation that can be used to
check unverified tools. As all aspects are integrated into one formalization,
the verification covers everything from the abstract correctness proofs
down to the generated SML code. Finally, we evaluate the performance of
our tool by comparing it against Spot and GOAL as well as using it to check
LTL translation algorithms from Spot and Owl.

Contributions

I am the only author of this article. Thus, all contributions are mine.

66

Formal Verification of Executable
Complementation and Equivalence Checking for
Biichi Automata*

Julian Brunner[()OOOfOOOl7892276097]

Technische Universitdt Miinchen brunnerj@in.tum.de

Abstract. We develop a complementation procedure and an equivalence
checker for nondeterministic Biichi automata. Both are formally verified
using the proof assistant Isabelle/HoL. The verification covers everything
from the abstract correctness proof down to the generated SML code.
The complementation follows the rank-based approach. We formalize the
abstract algorithm and use refinement to derive an executable implemen-
tation. In conjunction with a product operation and an emptiness check,
this enables deciding language-wise equivalence between nondeterministic
Biichi automata. We also improve and extend our library for transition
systems and automata presented in previous research.

Finally, we develop a command-line executable providing complementa-
tion and equivalence checking as a verified reference tool. It can be used
to test the output of other, unverified tools. We also include some tests
that demonstrate that its performance is sufficient to do this in practice.

Keywords: formal verification - omega automata - complementation

1 Introduction

Biichi complementation is the process of taking a Biichi automaton, and con-
structing another Biichi automaton which accepts the complementary language.
It is a much-researched topic [10, 37, 20, 15, 38|. In fact, it has been so popular
that there are now several meta-papers [43, 41| chronologuing the research itself.
Much of this research has focused on the state complexity of the resulting au-
tomata (see section 2.3). However, Biichi complementation also has compelling
applications. Model checking usually requires having the property to be checked
against as either a formula or a deterministic Biichi automaton, as those are
easily negated and complemented, respectively [15]. However, having access to
a general complementation procedure, it becomes possible to decide language
containment between arbitrary nondeterministic Biichi automata. This not only
allows for more general model checking, but also enables checking if two automata
are equivalent in terms of their language.

* Research supported by Drc grant Cava (Computer Aided Verification of Automata,
ES 139/5-1, NI 491/12-1, SM 73/2-1) and Cava2 (Verified Model Checkers, KR
4890/1-1, LA 3292/1-1)

Unfortunately, complementation algorithms are complicated and their cor-
rectness proofs are involved. This is common in the model checking setting and
there are examples of algorithms widely believed to be correct turning out not
to be [18, 8, 40]. The situation is especially troubling as these tools act as trust
multipliers. That is, the trust in the correctness of one tool is used to justify
confidence in the correctness of the many entities that it checks. Motivated by
this situation, our goal is to formally verify one such complementation algorithm.

We use the proof assistant Isabelle/HoL [34] for this. Thanks to its LcF-like
architecture, Isabelle/HoL and the formalizations it facilitates grant very strong
correctness guarantees. Our contributions are as follows.

1. Formalization of rank-based complementation [20] theory

2. Formally verified complementation implementation

3. Formally verified equivalence checker

4. Extension and continued development of automata library [7, 9]

In previous work, Stephan Merz formalized complementation of weak al-
ternating automata [33]. He also started working on a formalization of Biichi
complementation. However, this only covers the first part of the complementation
procedure and was never finished or published. Thus, our work constitutes what
we believe to be the first formally verified implementation of Biichi complemen-
tation. The verification gaplessly covers everything from the abstract correctness
proof to the executable SML code.

The equivalence checker can be used as a command-line tool to check automata
in the Hanoi Omega-Automata format [1]. It takes the role of a trusted reference
implementation that can be used to test the correctness of other tools, like those
translating from LTL formulae to automata. With an equivalence checker, it
is possible to test whether several algorithms produce automata with identical
languages, given the same formula. It is also possible to test if an algorithm that
simplifies automata preserves their language.

2 Theory

We follow the rank-based complementation construction described in [20]. The
central concept here is the odd ranking, a function f that certifies the rejection of
a word w by the automaton A. The complement automaton A is then designed
to nondeterministically search for such an odd ranking, accepting if and only if
one exists. Thus, the complement automaton accepts exactly those words that
the original automaton rejects.

wé LA < If odd ranking Aw f < weL A (1)

Having access to complement and product operations as well as an emptiness
check, we can then decide language containment.

LACLB < LANLB=0 < L(AxB)=10 2)

Checking for containment in both directions then leads to a decision procedure
for language-wise equivalence of Biichi automata.

2.1 Notation

We introduce some basic notation. Let w € X* be an infinite sequence and wy, € X
be the symbol at index k in w. Let A = (X,Q, 1,6, F) be a nondeterministic
Biichi automaton with alphabet X, states @, initial states I :: @) set, successor
function 6 = ¥ — @ — @ set, and acceptance condition F' ::) — bool. Let
L A C X* denote the language of automaton A.

2.2 Complementation

We want to realize complementation according to equation 1. For this, we need
to define odd rankings and the complement automaton. We also need to define
run DAGs as a prerequisite for odd rankings.

A run DAG is a graph whose nodes are pairs of states and natural numbers.
Given an automaton A and a word w, we define it inductively as follows.

Definition 1 (Run DAG). G = (V,E) withVCQxNand ECV xV

pel = (p,0) eV
(pk)eV = qedw p = (g,k+1) eV
(p,k) eV = qedwpp = ((p,k),(¢,k+1)) € E

Intuitively, each node (p, k) € V represents A being in state p after having read
k characters from w. With that, the run DAG contains all possible paths that A
can take while reading w.

We can now define odd rankings. An odd ranking is a function assigning a
rank to each node in the run DAG. Given an automaton A and a word w, we
require the following properties to hold for odd rankings.

Definition 2 (Odd Ranking). odd ranking A w f with f =V — N

YveV. fv<2|Q|

V(u,v) €E. fu>fwo

V(p,k)eV. Fp = even (f (p,k))

Vr € paths G. the path r eventually gets stuck in an odd rank

Intuitively, the rank of a node indicates the distance to a node from which no
more accepting states are visited [15].

The final definition concerns the actual complement automaton. Given an
automaton A = (X, Q, I,0, F), we define its complement as follows.

Definition 3 (Complement Automaton). A = (X,Qc, Ic,d¢c, Fc)
0 o XY —=>(Q—-N)=(Q—~N) set
geEhaf << domg=Upedom f.dapA
Vpedom f.Vgedap fp>gqA
Vg€ dom g. F g = even (g q)

do . X —=(Q—-N)—=Qset > Q set

bpagP — {{qedomgeven(g(J)} i P=1{}

{geUpeP.dapleven (g q)} otherwise
Qc = ((Q —N)x Q@ set) set
Qc = 62X 1Ic
Ie = Qe set
Ic = (Apel.2]Q[.0)
o = XY —=Qc — Q¢ set
50&(f,P) = {(9752agp)|g€61af}

Fe = Q¢ — bool

Fo (f,P) = (P=0)

Since the complement automaton is designed to nondeterministically search for
an odd ranking, many of the properties from definition 2 reappear here. Instead
of a ranking on the whole run DAG (V' — N), the complement automaton deals
with level rankings. These assign ranks to only the reachable nodes in the current
level (@ — N). Furthermore, each state keeps track of which paths have yet to
visit an odd rank (@ set). This encodes the property of every path getting stuck
in an odd rank, with the acceptance condition requiring this set to become empty
infinitely often. Together, these lead to the state type (Q — N) x @ set.

2.3 Complexity and Optimizations

Much of the interest in Biichi complementation focuses on its state complexity
[43, 15, 38]. That is, one considers the number of states in the complement
automaton as a function of the number of states in the original automaton. For an
automaton with n states, the original construction by Biichi [10] resulted in 22
states [15]. The complementation procedure derived from Safra’s determinization
construction [37] reduces this to 2€(1°8™) or n?" states [15]. The algorithm from
[20] generates a complement automaton with at most (6n)" states [15]. In the
quest for closing the gap between the known lower and upper bounds, various
optimizations to this algorithm have been proposed. The optimization in [15]
lowers the bound to O((0.96n)") states. The algorithm is then adjusted further
in [38] to lower the bound to O((0.76n)™) states.

This being the first attempt at formalizing Biichi complementation, we chose
not to implement these more involved optimizations. Instead, we favor the original
version of the algorithm as presented in [20]. We do however implement one
optimization mentioned in [20]. In definition 3, for each successor g of p, the
function d; considers for ¢ all ranks lower than or equal to the rank of p. We
restrict 1 so that it only considers for ¢ a rank that is equal to or one less than
the rank of p. This does not change the language of the complement automaton
and significantly restricts the number of successors generated for each state.

It is worth noting that in practice, factors other than asymptotical state com-
plexity can also play a role. For instance, it turns out that determinization-based
complementation often generates fewer states than rank-based complementation
[41]. This is despite the fact that rank-based complementation is optimal in terms
of asymptotical state complexity.

2.4 Equivalence

We want to realize equivalence according to equation 2. For this, we need to
define a product operation and an emptiness check on Biichi automata.

The product construction follows the textbook approach, where the product of
two nondeterministic Biichi automata results in one nondeterministic generalized
Biichi automaton. For the emptiness check, we use Gabow’s algorithm for strongly-
connected components [16]. This enables checking emptiness of generalized Biichi
automata directly, skipping the degeneralization to regular Biichi automata that
is usually necessary for nested-DFs-based algorithms.

3 Formalization

With the theoretical background established, we now describe the various as-
pects of our formalization. This section will mostly give a high-level overview,
highlighting challenges and points of interest while avoiding technical details.
However, specific parts of the formalization will be presented in greater detail.

3.1 Isabelle/HoL

Isabelle/HOL [34] is a proof assistant based on Higher-Order Logic (HoL), which
can be thought of as a combination of functional programming and logic. Formal-
izations done in Isabelle are trustworthy due to its LCF architecture. It guarantees
that all proofs are checked using a small logical core which is rarely modified but
tested extensively over time, reducing the trusted code base to a minimum.
Code generation in Isabelle/HOL is based on a shallow embedding of HoL
constants in the target language. Equational theorems marked as code equations
are translated into rewrite rules in the target language [17]. This correspondence
embodies the specification of the target language semantics. As this process does
not involve the LCF kernel, the code generator is part of the trusted code base.

3.2 Basics

The most basic concept needed for our formalization is that of sequences. The
HoL standard library already includes extensive support for both finite and
infinite sequences. They take the form of the types list and stream.

Definition 4 (Sequences).

datatype « list =[] | « # « list

codatatype a stream = a ## « stream

The new datatype package [4, 3] allows for codatatypes like stream. The libraries
of both list and stream include many common operations and their properties.

We also make use of a shallow embedding of linear temporal logic (LTL) on
streams that is defined using inductive and coinductive predicates. This is used
to define a predicate holding infinitely often in an infinite sequence.

Definition 5 (Infinite Occurrence). infs P w <= alw (ev (holds P)) w

3.3 Transition Systems and Automata

In our formalization, we both use and extend the Transition Systems and Au-
tomata library [7, 9]. The development of this library was in fact motivated by
the idea of formalizing Biichi complementation and determinization. Since then,
it has been used in several other formalizations [6, 8, 39, 9, 35, 36].

The goal of this library is to support many different types of automata while
avoiding both duplication and compromising usability. This is achieved via several
layers of abstraction as well as the use of Isabelle’s locale mechanism. For an
in-depth description, see [9]. Since then, an additional abstraction layer has been
introduced to consolidate various operations on automata like intersection, union,
and degeneralization. However, describing this in detail is outside the scope of
this paper. Thus, we will only introduce the concepts and constants that are used
in later sections. We start with the definition of a transition system.

Definition 6 (Transition System).

locale transition system =
fixes execute :: transition = state = state

fixes enabled :: transition = state = bool

It fixes type variables for transitions and states as well as constants to determine
which transitions are enabled in each state and which target states they lead
to. This locale forms the backbone of the library. Note that it may look like it
can only be used to model (sub-)deterministic transition systems. However, by
instantiating the type variable transition, we can actually model many different
types of transition systems, including nondeterministic ones [9].

We can then define concepts concerning sequences of transitions.

Definition 7 (Targets and Traces).

target = fold execute :: transition list = state = state
trace = scan execute :: transition list = state = state list

strace = sscan execute :: transition stream = state = state stream

Given a sequence of transitions and a source state, these functions give the target
state and the finite and infinite sequence of traversed states, respectively. Note
how each of these is simply a lifted version of execute.

We can also define constants for finite and infinite paths, respectively.

Definition 8 (Paths).

inductive path :: transition list = state = bool where

path] p
enabled a p = path r (execute a p) = path (a#7) p

coinductive spath :: transition stream = state = bool where
enabled a p = spath r (execute a p) = spath (a##7) p

These constants are (co)inductively defined predicates that capture the notion of
all the transitions in a sequence being enabled at their respective states. Like
before, these are lifted versions of enabled, which is also reflected in their types.

3.4 Run DAGs

Having established all the basics and foundations, we can now turn to the actual
formalization of Biichi complementation. We start with formalizing definition 1
concerning run DAGs. We do this by instantiating the transition system locale
from definition 6. This yields definitions for all the required graph-related concepts,
like finite and infinite paths as well as reachability.

We then establish a tight correspondence between these definitions and
the ones concerning automata. This requires mostly elemental induction and
coinduction proofs. Only minor technical work was required to translate between
paths in the automaton being labeled and paths in its run DAG being indexed.

3.5 0Odd Rankings

Having formalized run DAGs, we can now formalize definition 2 concerning odd
rankings. The resulting formal definition does not differ significantly from its
informal counterpart and will thus not be repeated here.

We prove the left equivalence from equation 1, which states that an odd
ranking f exists if and only if the automaton A rejects the word w.

w¢ LA <= Ff odd ranking A w f

We follow the proof given in [20].

The direction <= is fairly straightforward. Given an odd ranking, we im-
mediately have that all infinite paths in the run DAG get trapped in an odd
rank. Together with the fact that odd ranks are not accepting, we obtain that
all infinite paths in the automaton are not accepting. Formally proving this is
mainly technical work consisting of establishing the correspondence between the
run DAG and the automaton. However, there is one exception. In [20], the fact
that all infinite paths get trapped in some rank is merely stated as part of the
definition of rankings. While this is intuitively obvious from the fact that ranks
are natural numbers and always decreasing along a path, it still requires rigorous
proof in a formal setting. Thus, we need to define the notion of decreasing infinite
sequences and prove this property via well-founded induction on the ranks.

The direction = is a lot more involved. It requires defining an infinite
sequence of subgraphs of the run DAG in order to construct an odd ranking.
Again, we follow the proof given in [20]. As before, we were able to follow the
high-level ideas of this proof in the formalized version, with some parts requiring
more fine-grained reasoning or additional technical work. However, we want to
highlight one particular technique that is used several times in the proof and
that required special attention in the formalized version. While most of our
descriptions focus on high-level ideas, we also want to take this opportunity to
present one part of the formalization in greater detail.

The idea in question concerns itself with the construction of infinite paths in
graphs and transition systems. We already encountered this type of reasoning
in [8]. Assume that there is a state with property P, and that for every state
with property P we can find a path to another state with property P. Then,
there exists an infinite path that contains infinitely many states with property P.
Intuitively, this seems obvious, which is why in informal proofs, statements like
these require no further elaboration. However, in a formal setting, this requires
rigorous reasoning, resulting in the following proof.

Lemma 1 (Recurring Condition).

lemma recurring condition:
assumes "P p” "Vp. P p = Jr.r # [| Apath r p A P (target r p)”
obtains r where "spath r p” "infs P (p ## strace r p)”
proof —
obtain f where " f p # " "path (f p) p” " P (target (f p) p)°
if P p” for p by ...
let 7g =" Ap. target (f p) p”
let 7r =7 Ap. flat (smap f (siterate 7g p))”
have ??r p=f p Q- ?r (?7¢g p)” if "P p” for p by ...
show ?thesis
proof
show ”spath (?r p) p” by ...
show 7infs P (p ## strace (?r p) p)” by ...
qed
qed

This theorem is stated for general transition systems and corresponds closely to
the informal one presented earlier. That is, we assume that P holds at some state
p. We also assume that for every state p where P holds, we can find a nonempty
path r leading to a state target r p where P holds again. We prove that from
these assumptions, one can obtain an infinite path r such that for the states it
traverses, P holds infinitely often. The proof consists of three major steps.

1. Skolemization of the assumption. We obtain a function f that for each state
in which P holds, gives a nonempty path that leads to another state in which
P holds. This can be done by either explicitly invoking the choice theorems
derived from Hilbert’s epsilon operator, or by using metis.

2. Definition of the state iteration function ?7¢ and the infinite path 7r. We define
a function 7g that for each state p gives the target state of the path given by
f. Iterating ?7g yields all those states along the infinite path where P holds.
We can then define 7, which is the infinite path obtained by concatenating
all the finite paths given by f from each state in the iteration of ?7g.

3. Proving the required properties of 7r. We now prove both that ?r is an infinite
path and that for the states it traverses, P holds infinitely often. Both of
these proofs require specific coinduction rules for the constants spath and
infs. This is because the coinduction cannot consume the infinite sequence
one item at a time, instead having to operate on finite nonempty prefixes.
However, these coinduction rules are generally useful and once proven, can
be reused and improve compositionality.

In the end, a surprising amount of work is necessary to prove a seemingly
obvious statement. While it is easy to dismiss this as a shortcoming of either
formal logic in general or of a particular proof assistant, we do not think that this
is the case. Instead, we believe that situations like these point out areas where
informal proofs rely on intuition, thereby hiding the actual complexity of the
proof. Since this can lead to subtle mistakes, the ability of formal proofs to make
it visible is valuable and one of the reasons for our confidence in them. It is also
worth noting that these situations do not persistently hinder the construction of
formal proofs. By proving the statement in its most general form, this needs to
be done only once for this type of reasoning to become available everywhere.

3.6 Complement Automaton

Next, we formalize definition 3 concerning the complement automaton. As in
the previous section, the resulting formal definition differs only slightly from the
informal one and will thus not be repeated here.

We prove the right equivalence from equation 1, which states that the com-
plement automaton A accepts a word w if and only if an odd ranking f exists.

Jf. odd ranking Aw f <= weLlL A (3)

We follow the proof given in [20].

There are two main challenges to formalizing this proof. The first one is
converting between different representations of rankings. On the side of the odd
ranking, a ranking is a function assigning ranks to the nodes in the run DAG.
On the side of the complement automaton, a ranking is an infinite sequence
of level rankings in the states of the accepting path. While this seems simple
enough conceptually, it requires attention to detail and much technical work in
the formalization. The second challenge consists of proving that two ways of
stating the same property are equivalent. The last condition in the definition of
the odd ranking states that all paths eventually get stuck in an odd rank. On
the side of the complement automaton, this property takes the form of a set
that keeps track of which paths have yet to visit an odd rank. The acceptance
condition of the complement automaton then requires this set to infinitely often
become empty, ensuring that no path visits even ranks indefinitely. This again
requires coinduction and the construction of infinite paths.

Together with the theorem from the previous section, we obtain the correctness
theorem of complementation.

Theorem 1 (Complement Language).

theorem complement language:
assumes ”finite (nodes A)”
shows "L A= X%\ L A”

3.7 Refinement Framework

‘We want our complementation algorithm and equivalence checker to be executable.
When developing formally verified algorithms, there is a trade-off between ef-
ficiency of the algorithm and simplicity of the proof. For complex algorithms,
a direct proof of an efficient implementation tends to get unmanageable, as
implementation details obfuscate the main ideas of the proof.

A standard approach to this problem is stepwise refinement [2]|, which modu-
larizes the correctness proof. One starts with an abstract version of the algorithm
and then refines it in correctness-preserving steps to the concrete, efficient ver-
sion. A refinement step may reduce the nondeterminism of a program, replace
abstract mathematical specifications by concrete algorithms, and replace abstract
datatypes by their implementations. For example, selection of an arbitrary el-
ement from a set may be refined to getting the head of a list. This approach
separates the correctness proof of the algorithm from the correctness proof of
the implementation. The former can focus on algorithmic ideas without imple-
mentation details getting in the way. The latter consists of a series of refinement
steps, each focusing on a specific implementation detail, without having to worry
about overall correctness.

In Isabelle/HoL, stepwise refinement is supported by the Refinement Frame-
work [24, 32, 26, 25] and the Isabelle Collections Framework [23, 29]. The former
implements a refinement calculus [2] based on a nondeterminism monad [44],

while the latter provides a library of verified efficient data structures. Both frame-
works come with tool support to simplify their usage for algorithm development
and to automate canonical tasks such as verification condition generation.

3.8 Implementation

Now that the abstract correctness of our complementation procedure is proven,
we want to derive an executable algorithm from our definitions. We use the
aforementioned refinement framework to refine our definitions that involve partial
functions and sets to executable code working on association lists. For instance,
the abstract correctness proof is most naturally stated on the complement state
type (@ — N) x @ set. However, the isomorphic type @ — (N x bool) is more
suitable for the implementation. Thus, this and several other preliminary steps
are taken to bring the definition into the correct shape. We also introduce the
language-preserving optimization mentioned in section 2.3 at this stage. The
correctness proof of this optimization involves establishing a simulation relation
between the original automaton and its optimized version.

Once these manual refinement steps are completed, we then use the automatic
refinement tool [21, 22]. It allows us to automatically refine an abstract definition
to an executable implementation. It does this by instantiating abstract data
structures like sets and partial functions with concrete ones like lists, hash sets,
and association lists. Since refinement is compositional and the structure of the
algorithm is not affected by these substitutions, refinement proofs only have to
be done once for each concrete data structure. As many of these data structures
have already been formalized in the library, very little has to be proven manually
by the user. For instance, choosing to implement a set with a hash set instead of
a list can be as simple as adding a type annotation. In particular, none of the
refinement proofs have to be adjusted or redone.

At this stage, we have an executable definition that takes a successor function
and gives the successor function of the complement automaton. However, we also
want to be able to generate the complement automaton as a whole in an explicit
representation. To do this, we make use of the DFs Framework [31, 30]. It comes
with a sample instantiation that collects all unique nodes in a graph. We define
the graph induced by a given automaton and generate an executable definition
of its successor function. We can then run the previously verified DFs algorithm
on this graph to explore the complement automaton. The correctness proof of
this algorithm then states that these are indeed all of the reachable states.

The complement automaton now has the state type (@ x (N x bool)) list.
This is the association list implementation of the type Q — N X bool mentioned
earlier. Since this type is rather unwieldy, we use the result of the exploration
phase to rename all the complement states using natural numbers. We then
use the states explored by the DFs algorithm to collect all of the transitions in
the automaton. The end result is an explicit representation of the complement
automaton with label type a and state type N. We have A = (X, 1,6, F) with
X o list, T Nlist, § 2 (N x @ x N) list, and F = N list.

3.9 Equivalence

We now want to use our complementation algorithm to build an equivalence
checker as outlined in section 2.4. In order to decide language containment and
thus equivalence, we still need a product operation and an emptiness check.
To this end, we add more operations to the automata library [7]. We already
added several operations for deterministic Biichi automata, deterministic co-Biichi
automata, and deterministic Rabin automata as part of [39, 9]. We now also add
intersection, union, and degeneralization constructions for nondeterministic Biichi
automata. Thanks to the new intermediate abstraction layer mentioned in section
3.3, these operations generalize to all other nondeterministic automata in the
library. The main challenge here was finding an abstraction for degeneralization
that enables sharing this part of the formalization between both deterministic
and nondeterministic automata. In the end, this was achieved by stating the
main idea of degeneralization on streams rather than automata.

As mentioned in section 2.4, we use an emptiness check based on Gabow’s
algorithm for strongly-connected components. For this, we reuse a formalization
originally developed as part of the CAvA model checker [14, 13]. This formalization
[28, 27] includes both the abstract correctness proof of the algorithm, as well
as executable code. Furthermore, it supports checking emptiness of generalized
Biichi automata directly, enabling us to skip the degeneralization step that would
usually be necessary after the product. This turns out to be significantly faster.

We now assemble these parts into an equivalence checker and then refine it
to be executable. In contrast to complementation, this algorithm is much more
compositional, simplifying both the abstract correctness proof and the refinement
steps. We ran into one issue with the correctness theorem in the formalization of
Gabow’s algorithm [28, 27] not being strong enough due to some technicalities.
We would like to thank the author Peter Lammich for quickly generalizing the
theorem after this issue was discovered.

3.10 Integration

With all the pieces in place, it is now time to integrate everything into a command-
line tool. Having refined all of our definitions to be executable, we can already
export SML code from Isabelle. In order for these algorithms to function as part
of a stand-alone tool, we need the ability to input and output automata. For this,
we have decided to use the Hanoi Omega-Automata format [1], also called HOA.
It is used by other automata tools such as Spot [11], Owl [19], and GOAL [42]. The
handling of command-line parameters as well as HOA parsing and printing are
implemented manually in SML. This piece of code wraps the verified algorithm
in a command-line tool and is the only unverified part of the final executable.

The result is a command-line tool with two modes of operation: complemen-
tation and equivalence checking. Complementation takes an input automaton in
the HoA format and outputs the complement automaton either as a transition
list or in the HOA format. Equivalence checking takes two input automata in the
HoA format and outputs a truth value indicating their equivalence.

Our formalization is available as part of the Archive of Formal Proofs [5].

4 FEvaluation

We evaluate the performance of both our complementation implementation and
our equivalence checker. As a benchmark for raw complementation performance,
we run our implementation on randomly-generated automata. The results are
shown in figure 1.

States‘Samples Completion Rate‘Average Time

5| 393438 100.00 % 0.006 s
10| 41496 99.98 % 0.110 s
15 15616 98.30 % 3.112 s
20 16 950 36.58 % 22.695 s

Fig. 1: Complementation Performance. We use Spot’s randaut tool to generate
random automata with a given number of states. We then run our complemen-
tation implementation on them. The time limit was set to 60 seconds.

Furthermore, we compare the performance of our complementation imple-
mentation to Spot [11] and GOAL [42]. The results are shown in figure 2.

Tool ‘Completion Rate‘Average Time‘States
Spot (--complement --ba) 100.00 % 0.006 s| 12.76
GOAL (rank -tr) 84.13 % 0.837s| 91.3
GoAL (rank -rd) 69.01 % 5.661 s| 6010
Our Tool 79.36 % 0.683 s| 6010

Fig. 2: Complementation Performance Comparison. We use Spot’s rand1tl and
1tl2tgba tools to generate automata from random LTL formulae. Automata
with a state count other than 10 are discarded and the rest is complemented
with various tools. Out of 5741 samples, 3962 could be complemented by all
tools within the time limit of 60 seconds. To ensure comparability, we use the
latter set of automata for the average time and complement states statistics.

Our tool implements the same algorithm as GOAL with the rank decrement
option (rank -rd), which is also reflected in the identical number of states of the
complement automata. However, our implementation has significantly shorter
execution times thanks to extensive profiling efforts and use of efficient data
structures from the Isabelle Collections Framework [23, 29]. In fact, this effect is
so large that it somewhat makes up for the worse asymptotical state complexity
when compared to GOAL with the tight rank option (rank -tr). The latter has
significant startup overhead, but performs better on automata that are difficult
to complement. While the performance of Spot is superior to either of the other
tools, we want to emphasize that absolute competitiveness with unverified tools
is not the goal of our work. As long as our tool is fast enough to process practical
examples, it can serve its purpose as a verified reference implementation.

We also evaluate the performance of the equivalence checker. To do so, we
generate random LTL formulae and translate them to Biichi automata via both
Spot [11] and Owl [19]. We then use our equivalence checker on these automata.
The results are shown in figure 3.

States|Samples|Completion Rate|Average Time
(0, 5] 73001 100.00 % 0.004 s
(5,10] 16024 98.49 % 0.632 s
(10, 15] 4128 88.32 % 3.607 s
(15,20] 1347 64.88 % 5.203 s
(20, c0) 1370 39.12 % 8.543 s
total| 95870 97.88 % 0.347 s

Fig. 3: Equivalence Checker Performance. We use Spot’s rand1ltl tool to gener-
ate random LTL formulae. We then use Spot’s 1t12tgba tool as well as Owl’s
1tl2dra translation in conjunction with Spot’s autfilt tool to obtain two trans-
lations of the same formula. Finally, we use our equivalence checker to check if
both automata do indeed have the same language. The time limit was set to 60
seconds. The state count shown is that of the larger of the two automata.

When running the equivalence checker on automata that are not equivalent,
the performance is often better. This is due to the fact that the algorithm searches
for an accepting cycle in either A x B or A x B. As soon as such a cycle is found,
it can abort and return a negative answer. Since both complement and product
are represented implicitly, this avoids constructing the full state space.

Finally, we use the same testing procedure on translations of the well-known
“Dwyer”-patterns [12]. We were able to successfully check 52 out of the 55 formulae
with the following exceptions. One formula resulted in automata of sizes 13 and
8, respectively, whose equivalence could not be verified within the time limit of
600 seconds. Two more formulae were successfully translated by Owl’s 1t12dra
translation procedure, but Spot’s autfilt tool could not translate them to a
nondeterministic Biichi automaton within the time limit of 600 seconds. Note
that Spot’s autfilt tool was also set up to simplify the resulting automata,
as otherwise, they would quickly grow to be too large. Out of the 52 checked
formulae, 49 could be processed in a matter of milliseconds, with two taking
about a second and one taking 129 seconds.

From these tests we conclude that the performance of our tool is good enough
to serve as a verified reference tool for examples of practical relevance. Note that
tools like Spot include many more optimizations and heuristics that enable them
to complement into much smaller automata as well as check the equivalence of
much larger automata. However, it is not our goal to compete with Spot, but
rather to provide a verified reference tool that is fast enough to be useful for
testing other tools.

It turns out that we do not have to look far to find an illustration for this
point. While gathering data for this section, our equivalence checker discovered a

language mismatch between Spot’s and Owl’s translation of the same LTL formula.
The developers of Owl confirmed that this was indeed a bug in the implementation
of its 1t12dra translation procedure and promptly fixed it. Manifestation of
this issue was very rare, first occurring after about 50 000 randomly-generated
formulae. This demonstrates the need for verified reference implementations, as
even extensively tested software can still contain undetected issues.

5 Conclusion

We developed a formally verified and executable complementation procedure
and equivalence checker. The formal theory acts as a very detailed and machine-
checkable description of rank-based complementation. Additionally, our formal-
ization includes executable reference tools. These come with a strong correctness
guarantee as everything from the abstract correctness down to the executable
SML code is covered by the verification. This high confidence in their correctness
justifies their use to test other, unverified tools.

We also contributed additional functionality as well as an improved architec-
ture to the automata library. This emphasizes the software engineering aspect of
formal theory development where theories can be reused and become more and
more useful as they mature.

For future work, it would be desirable to formalize an algorithm that generates
a complement automaton with fewer states. As mentioned in section 2.3, this
concerns both asymptotical state complexity as well as performance in practice.
It would also be of interest to verify the bounds on asymptotical state complexity.

References

[1] Tomas Babiak et al. “The Hanoi Omega-Automata Format”. In: CAV 2015.
2015. DOI: 10.1007/978-3-319-21690-4_31.

[2] Ralph-Johan Back and Joakim von Wright. Refinement Calculus - A Sys-
tematic Introduction. 1998. DOI: 10.1007/978-1-4612-1674-2.

[3] Julian Biendarra et al. “Foundational (Co)datatypes and (Co)recursion for
Higher-Order Logic”. In: FroCoS 2017. 2017. po1: 10.1007/978-3-319-
66167-4_1.

[4] Jasmin Blanchette et al. “Truly Modular (Co)datatypes for Isabelle/HOL”.
In: ITP 2014. 2014. DOIL: 10.1007/978-3-319-08970-6_7.

[6] Julian Brunner. “Biichi Complementation”. In: Archive of Formal Proofs
(2017). URL: https : / / www . isa - afp . org / entries / Buchi _
Complementation.html.

[6] Julian Brunner. “Partial Order Reduction”. In: Archive of Formal Proofs
(2018). URL: https://www.isa-afp.org/entries/Partial _Order _
Reduction.html.

[7] Julian Brunner. “Transition Systems and Automata”. In: Archive of Formal
Proofs (2017). URL: https://www.isa-afp.org/entries/Transition_
Systems_and_Automata.html.

18]

19]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

22]

Julian Brunner and Peter Lammich. “Formal Verification of an Executable
LTL Model Checker with Partial Order Reduction”. In: J. Autom. Reasoning
1 (2018). por: 10.1007/s10817-017-9418-4.

Julian Brunner, Benedikt Seidl, and Salomon Sickert. “A Verified and
Compositional Translation of LTL to Deterministic Rabin Automata”. In:
ITP 2019. 2019. pot: 10.4230/LIPIcs.ITP.2019.11.

J. Richard Biichi. “On a decision method in restricted second order arith-
metic”. In: Proceedings of the International Congress on Logic, Methodology,
and Philosophy of Science, 1960, Berkeley, California, USA. 1962.
Alexandre Duret-Lutz et al. “Spot 2.0 - A Framework for LTL and w-
Automata Manipulation”. In: ATVA 2016. 2016. por: 10.1007/978-3-
319-46520-3_8.

Matthew B. Dwyer, George S. Avrunin, and James C. Corbett. “Property
specification patterns for finite-state verification”. In: Proceedings of the
Second Workshop on Formal Methods in Software Practice, 1998. 1998. DOI:
10.1145/298595.298598.

Javier Esparza et al. “A Fully Verified Executable LTL Model Checker”. In:
CAV 2013. 2013. DOI: 10.1007/978-3-642-39799-8_31.

Javier Esparza et al. “A Fully Verified Executable LTL Model Checker”.
In: Archive of Formal Proofs (2014). URL: https://www.isa-afp.org/
entries/CAVA_LTL_Modelchecker.shtml.

Ehud Friedgut, Orna Kupferman, and Moshe Y. Vardi. “Biichi Comple-
mentation Made Tighter”. In: Int. J. Found. Comput. Sci. 4 (2006). DOI:
10.1142/S0129054106004145.

Harold N. Gabow. “Path-based depth-first search for strong and biconnected
components”. In: Inf. Process. Lett. 3-4 (2000). pOI: 10 . 1016 /80020 -
0190(00)00051-X.

Florian Haftmann and Tobias Nipkow. “Code Generation via Higher-Order
Rewrite Systems”. In: FLOPS 2010. 2010. poOIL: 10.1007/978-3-642-
12251-4_9.

Gerard J. Holzmann, Doron A. Peled, and Mihalis Yannakakis. “On nested
depth first search”. In: The Spin Verification System, Proceedings of a
DIMACS Workshop, 1996. 1996. DOI: 10.1090/dimacs/032/03.

Jan Kretinsky, Tobias Meggendorfer, and Salomon Sickert. “Owl: A Library
for w-Words, Automata, and LTL”. In: ATVA 2018. 2018. por: 10.1007/
978-3-030-01090-4_34.

Orna Kupferman and Moshe Y. Vardi. “Weak alternating automata are
not that weak”. In: ACM Trans. Comput. Log. 3 (2001). pOI: 10.1145/
377978.377993.

Peter Lammich. “Automatic Data Refinement”. In: Archive of Formal
Proofs (2013). URL: https://www.isa-afp.org/entries/Automatic_
Refinement.shtml.

Peter Lammich. “Automatic Data Refinement”. In: ITP 2013. 2013. DOTI:
10.1007/978-3-642-39634-2_9.

23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

Peter Lammich. “Collections Framework”. In: Archive of Formal Proofs
(2009). URL: https://www.isa-afp.org/entries/Collections.shtml.
Peter Lammich. “Refinement for Monadic Programs”. In: Archive of Formal
Proofs (2012). URL: https://www . isa- afp . org/entries/Refine _
Monadic.shtml.

Peter Lammich. “Refinement to Imperative/HOL”. In: ITP 2015. 2015. DOL:
10.1007/978-3-319-22102-1_17.

Peter Lammich. “The Imperative Refinement Framework”. In: Archive
of Formal Proofs (2016). URL: https://www.isa-afp.org/entries/
Refine_Imperative_HOL.shtml.

Peter Lammich. “Verified Efficient Implementation of Gabow’s Strongly
Connected Component Algorithm”. In: ITP 2014. 2014. bo1: 10.1007/978-
3-319-08970-6_21.

Peter Lammich. “Verified Efficient Implementation of Gabow’s Strongly
Connected Components Algorithm”. In: Archive of Formal Proofs (2014).
URL: https://www.isa-afp.org/entries/Gabow_SCC.shtml.

Peter Lammich and Andreas Lochbihler. “The Isabelle Collections Frame-
work”. In: ITP 2010. 2010. DOI: 10.1007/978-3-642-14052-5_24.

Peter Lammich and René Neumann. “A Framework for Verifying Depth-
First Search Algorithms”. In: CPP 2015. 2015. DOI: 10.1145/2676724 .
2693165.

Peter Lammich and René Neumann. “A Framework for Verifying Depth-
First Search Algorithms”. In: Archive of Formal Proofs (2016). URL: https:
//wuw.isa-afp.org/entries/DFS_Framework.shtml.

Peter Lammich and Thomas Tuerk. “ Applying Data Refinement for Monadic
Programs to Hopcroft’s Algorithm”. In: ITP 2012. 2012. DOL: 10.1007/978-
3-642-32347-8_12.

Stephan Merz. “Weak Alternating Automata in Isabelle/HOL”. In: TPHOLs
2000. 2000. DOI: 10.1007/3-540-44659-1_26.

Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/HOL -
A Proof Assistant for Higher-Order Logic. 2002. 1SBN: 3-540-43376-7. DOI:
10.1007/3-540-45949-9.

Robert Sachtleben. “Formalisation of an Adaptive State Counting Algo-
rithm”. In: Archive of Formal Proofs (2019). URL: https://www.isa-
afp.org/entries/Adaptive_State_Counting.html.

Robert Sachtleben et al. “A Mechanised Proof of an Adaptive State Count-
ing Algorithm”. In: ICTSS 2019. 2019. pDOI: 10.1007/978-3-030-31280-
0_11.

Shmuel Safra. “On the Complexity of omega-Automata”. In: 29th Annual
Symposium on Foundations of Computer Science, 1988. 1988. DOI: 10.
1109/SFCS.1988.21948.

Sven Schewe. “Biichi Complementation Made Tight”. In: STACS 2009. 2009.
DOI: 10.4230/LIPIcs.STACS.2009.1854.

[39]

[40]
[41]

[42]

[43]

[44]

Benedikt Seidl and Salomon Sickert. “A Compositional and Unified Trans-
lation of LTL into w-Automata”. In: Archive of Formal Proofs (2019). URL:
https://www.isa-afp.org/entries/LTL_Master_Theorem.html.
Stephen F. Siegel. “What’s Wrong with On-the-Fly Partial Order Reduc-
tion”. In: CAV 2019. 2019. pOI: 10.1007/978-3-030-25543-5_27.
Ming-Hsien Tsai et al. “State of Biichi Complementation”. In: Logical
Methods in Computer Science 4 (2014). DOI: 10.2168/LMCS-10(4:13)2014.
Yih-Kuen Tsay et al. “GOAL: A Graphical Tool for Manipulating Biichi
Automata and Temporal Formulae”. In: TACAS 2007. 2007. por: 10.1007/
978-3-540-71209-1_35.

Moshe Y. Vardi. “The Biichi Complementation Saga”. In: STACS 2007.
2007. DOI: 10.1007/978-3-540-70918-3_2.

Philip Wadler. “Comprehending Monads”. In: Math. Struct. Comput. Sci.
4 (1992). potr: 10.1017/80960129500001560.

Part 111

Extra Publications

85

Appendix C

LTL Translation

This appendix includes a full copy of the following publication.

Julian Brunner, Benedikt Seidl, and Salomon Sickert. “A Verified and Com-
positional Translation of LTL to Deterministic Rabin Automata”. In: 10th
International Conference on Interactive Theorem Proving, ITP 2019, September
9-12, 2019, Portland, OR, USA. ed. by John Harrison, John O’Leary, and An-
drew Tolmach. Vol. 141. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum fiir
Informatik, 2019, 11:1-11:19. DOI: 10.4230/LIPIcs.ITP.2019.11

This article is not relevant to the evaluation of this publication-based disser-
tation. Instead, it is included as the canonical publication of the library for
transition systems and automata introduced in chapter 4. It contains the
original introduction of the library, including a more detailed motivation
and review of existing formalizations.

Copyright

The article in this appendix was published in the open access series LIPIcs.
It was published under the Creative Commons Attribution 3.0 Unported
(cc BY 3.0) license. It can thus be freely redistributed, including the repro-
duction as part of this dissertation.

86

https://doi.org/10.4230/LIPIcs.ITP.2019.11

A Verified and Compositional Translation of LTL
to Deterministic Rabin Automata

Julian Brunner
Technische Universitdt Miinchen, Germany
julian.brunner@tum.de

Benedikt Seidl

Technische Universitdt Miinchen, Germany
benedikt.seidl@tum.de

Salomon Sickert!
Technische Universitdt Miinchen, Germany
salomon.sickert@tum.de

—— Abstract

We present a formalisation of the unified translation approach from linear temporal logic (LTL) to
w-automata from [19]. This approach decomposes LTL formulas into “simple” languages and allows
a clear separation of concerns: first, we formalise the purely logical result yielding this decomposition;
second, we develop a generic, executable, and expressive automata library providing necessary
operations on automata to re-combine the “simple” languages; third, we instantiate this generic
theory to obtain a construction for deterministic Rabin automata (DRA). We extract from this
particular instantiation an executable tool translating LTL to DRAs. To the best of our knowledge
this is the first verified translation of LTL to DRAs that is proven to be double-exponential in the
worst case which asymptotically matches the known lower bound.

2012 ACM Subject Classification Theory of computation — Automata over infinite objects; Theory
of computation — Modal and temporal logics; Theory of computation — Interactive proof systems

Keywords and phrases Automata Theory, Automata over Infinite Words, Deterministic Automata,
Linear Temporal Logic, Model Checking, Verified Algorithms

Digital Object Identifier 10.4230/LIPIcs.ITP.2019.11

Supplement Material The described Isabelle/HOL development is archived in the “Archive of
Formal Proofs” and is split into the entries [10] and [39].

Funding This work was partially funded and supported by the German Research Foundation (DFG)
project “Verified Model Checkers” (317422601).

Acknowledgements The authors want to thank Manuel Eberl, Javier Esparza, Lars Hupel, Peter
Lammich, and Tobias Nipkow for their helpful comments and technical expertise.

1 Introduction

As time has shown again and again, bugs in hardware and software can have dramatic costs,
ranging from monetary damages over destroyed property to life-threatening situations. In
order to prevent the introduction of unwanted behaviour into software or hardware designs,
an immense amount of testing and debugging is applied. However, for critical systems such
methods are not enough, since they simply cannot guarantee the absence of bugs in general.
Formal methods offer here a way forward by applying mathematical rigour to detect and
rule out unwanted behaviour. Model checking [14] is one of the most successful techniques

! Corresponding author

© Julian Brunner, Benedikt Seidl, and Salomon Sickert;
5v licensed under Creative Commons License CC-BY
10th International Conference on Interactive Theorem Proving (ITP 2019).
Editors: John Harrison, John O’Leary, and Andrew Tolmach; Article No.11; pp. 11:1-11:19

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

11:2

A Verified and Compositional Translation of LTL to Deterministic Rabin Automata

in the area of formal methods. A key component for model checking reactive systems,
i.e., non-terminating systems interacting with an open environment, against a temporal
specification language, in our case linear temporal logic (LTL), is the translation to a suitable
automaton model over infinite words.

Throughout the last decades, a wide variety of translation strategies to different types of
w-automata have been proposed and implemented, e.g. [23, 22, 2, 4, 43, 17]. However, as
mentioned before, software development seems to be inherently error-prone, not to mention
there might be mistakes in the definition of these constructions themselves. So, how can we
trust these implementations to produce the correct automata for identifying bugs or proving
their absence? Who watches the watchers?

Exactly that train of thought lead to the development of the CAva LTL model checker [20]
which is verified in Isabelle and exported as an executable tool. The model checker includes
a translation from LTL to nondeterministic Biichi automata due to [23]. However, for model
checking other structures, such as probabilistic systems, other types of automata are necessary,
such as limit-deterministic [44, 15] or deterministic automata [5]. Consequently, there is the
need to formalise new translations from scratch which seems wasteful and cumbersome.

It would be desirable to have a separation of concerns: a theory that captures the common
essence of LTL for all desired translations and that leaves a small gap to deal with the
specifics of a chosen automaton model. The logical framework of [19] sketches an approach
to such a modularisation: a theorem decomposing an LTL formula ¢ into “simple” languages,
named L v, L%y, and L% y, such that:

L(p) = U (L}a,x N L%@Y N Lg{,Y)
XCv(p)
Y Cu(p)

where X and Y are sets of least- and greatest-fixed operators — hence the names v and
1 — that are subformulas of ¢. We will later see a formal definition of these sets. This
decomposition outlines a simple strategy to obtain a translation from LTL to our chosen
automaton model: first, we define constructions for the “simple” languages; second, we
implement two Boolean operations, namely union and intersection, in the automaton model;
third, we combine the automata for Lg,lo, X Lg(,y, and Lg(’y using these Boolean operations.

Contribution

We provide a formalisation of [19] in Isabelle and contribute the following components: (1) a
generic and expressive automata library? providing the necessary Boolean operations, (2)
a formalisation of the Master Theorem [19] decomposing LTL formulas, (3) a combination
of these two components to obtain an executable and verified translation from LTL to
deterministic Rabin automata (DRA) of asymptotic optimal size, and (4) an implementation
extracted from the Isabelle theory combined with an LTL parser, a verified LTL simplifier,
and a serialisation to the HOA format [3], a textual format for w-automata. Note that the
resulting implementation is just one use-case and using the same framework we can also
obtain a construction for other types of w-automata, e.g. nondeterministic Biichi automata
(NBA) or deterministic generalised Rabin automata. However, this would exceed the scope
and space of this paper.

2 The scope of the library is actually wider than just the support of w-automata: automata on finite
words and abstract transition systems can also be expressed.

J. Brunner, B. Seidl, and S. Sickert

Isabelle/HOL [36] is a proof assistant based on Higher-Order Logic (HOL), which can
be thought of as a combination of functional programming and logic. Formalisations done
in Isabelle are trustworthy for two reasons: First, Isabelle’s LCF architecture guarantees
that all proofs are checked using a very small logical core which is rarely modified but
tested extensively over time. This reduces the trusted code base to a minimum. Second,
bugs in the core rarely lead to accidentally proving false propositions. Bugs that have large
effects are easily caught, while the limited applicability of bugs with small effects is unlikely
to coincide with a logical mistake in the large-scale structure of the proof. In order to
export executable code, we use the Isabelle code generator in conjunction with the monadic
refinement framework [26] and automatic refinement [27]. Finally, we use several entries
from the “Archive of Formal Proofs” (AFP), a collection of formalisations for Isabelle that
are maintained and continuously machine-checked.

Related Work

A substantial amount of work has already been invested into verifying translations from linear
temporal logic (LTL) to nondeterministic Biichi automata (NBA3): We already mentioned
[20] which includes a translation to NBAs following the tableau construction from [23].
Further, the translation proposed by [22], which translates LTL via very-weak alternating
automata to NBAs, has been formalised by [25] in HOL4. This work also includes an
executable refinement of the abstract algorithm.

Alternating automata have been previously studied in [34] with an application to the
translation of LTL to alternating w-automata. However, the translation from alternating
automaton to NBAs is not included. At the other end of the spectrum the publication
[17], with the formal proof development archived in [40], presents a direct, verified, and
executable translation from LTL to deterministic generalised Rabin automata. However, this
construction is only shown to be triple-exponential and thus one exponential larger than
the known, optimal lower bound. It is also important to mention that with the help of the
Isabelle formalisation errors in the original publication [18] were uncovered and removed for
the journal version [17]. This highlights again how important such a rigorous development
for verification tools is.

9

Another interesting point is that the DRA constructions we provide for the “simple
languages can be seen as a version of Brzozowski’s derivatives [13] applied to LTL formulas.
Derivative-based constructions seem to be more natural in the functional programming
paradigm as the work on regular expression equivalence from [37] shows.

Outline

After a brief introduction of the preliminaries in Section 2 we discuss the used automata
formalisation in Section 3. We then give an overview of the LTL decomposition results in
Section 4 and finally derive an executable LTL to DRA translation in Section 5.

3 In the context of this paper we do not distinguish minor variations of acceptance conditions and the
term NBA includes also nondeterministic generalised Biichi automata as well as transition-based Biichi
automata. Similar we use the term DRA also for deterministic generalised Rabin automata.

11:3

ITP 2019

11:4

A Verified and Compositional Translation of LTL to Deterministic Rabin Automata

2 Preliminaries

Locales

Isabelle provides a mechanism for parameterized theory contexts in the form of locales [6]. In
a simplified sense, this means that a named context can be defined that is both parameterized
by types and terms as well as augmented with assumptions. It is then possible to add
various definitions and theorems within this context. Finally, by instantiating the parameters
and proving the assumptions, these definitions and theorems also become instantiated and
available to the enclosing context.

w-Words

Let ¥ be a finite alphabet. An w-word w over X is an infinite sequence of letters agaias . ..
with a; € X for all ¢ > 0 and an w-language is a set of w-words. We use two different
representations for w-words over a type «a: as a function “aword = nat = «” and as a
codatatype “astream = « ## astream”. The reason for this division is historic and is due
to the fact that the material building on the LTL entry [41] predates the development of the
codatatype package [7]. Observe that these two types are isomorphic.

The function prefix ¢ w returns the finite prefix of w of length i and the function suffix ¢ w
gives the infinite suffix of w starting at 4. The concatenation operator w’ —~ w prepends the
finite word w’ to w.

We introduce the constants scan and sscan for lists and streams, respectively. They work
like the identically named function in Haskell, in that they perform a fold with accumulation.
That is, they fold over a list or stream and collect the state of the fold at each step and
return this collection as a list or stream, respectively. Thus, unlike fold, it is also possible to
define this function on infinite sequences.

We also introduce the constant “infs :: (o« = bool) = a stream = bool” that indicates
if a predicate is fulfilled infinitely often in a stream. We will use infs to define acceptance
conditions for w-automata.

Linear Temporal Logic

We base our contribution on the LTL entry found in the AFP [41] and extend it where
necessary. The datatype we use for LTL syntactically enforces formulas to be in negation
normal form. In order to preserve the expressiveness of LTL with negation, we need to
include for the U (Until) operator its dual R (Release). For the logical decomposition result
it is also essential to include W (Weak-Until) and M (Strong-Release). As usual we use F ¢
(Eventually) as an abbreviation for tt U ¢ and G ¢ (Always) for ff R .

» Definition 1 (Linear Temporal Logic).

datatype altl=1t [ff | a|—a | (alt) A (altl) | (alth) V (altl]) | X (alt])
| (alt) U (altl) | (alth) R (altl) | (altl) W (altl) | (alth) M («ltl)

The type variable o determines the type of the atomic propositions. We write atoms ¢
to refer to the set of atomic propositions in a formula ¢. The function sf ¢ computes all
subformulas of ¢, i.e., all subtrees of its syntax tree. Additionally, we define subformulas,, ¢ as
set of subformulas of the form ¢ U x or ¥ M x, and subformulas,, ¢ as the set of subformulas
of the form ¢ R x or v W .

J. Brunner, B. Seidl, and S. Sickert

» Definition 2 (Semantics). The entailment relation |= :: asetword = «ltl = bool is defined
recursively as follows:

w = tt wEXe =suffixlwpEye

w = F

wkEa =acw0 wEeUy = 3Ji.suffix i w =y A (V) <isuffix j w = @)
wkE-a =a¢w0 wEeRY =Vi.suffix i wE=y V(35 <i.suffix j w = @)
wEeANY=wEpAwEY wkEeWy=Vi.suffixiw=eV (3 <i suffix j w k=)
wEeVYy=wlEpVwlEYy wkEeMy=3isuffixiwEeAVj<isuffix j wkE=y)

We define the set of all words over an alphabet 3 satisfying a formula @:
language ¥ ¢ = {w.w = p Arange w C X}.

Equivalence Relations over LTL

We define three equivalence relations over LTL formulas: The largest equivalence relation is
language equivalence. Two formulas are (language-)equivalent if they are satisfied by exactly
the same words.

A smaller relation is defined by propositional equivalence. We interpret an LTL formula
© in propositional logic by treating every subformula that is a literal (a, —a) or a modal
operator (X, U, M, R, W) as a propositional variable. If a set of these subformulas Z is a
propositional model for ¢, we write Z |=, ¢. Two formulas are propositionally equivalent if
are satisfied by the same propositional models.

» Definition 3 (Propositional Semantics). The propositional entailment relation = :: o It set=
altl = bool is defined recursively as follows:

Ikt IXe =Xyp)el
T W, ff

Thya =—ael Th,¢U¢ = (pUy)eT
Ikp-a =(wa)el Ik, Ry =(pRY) €T
ITEppNY=TE, pNIEpY IE,oWiY=(pWy)eL

IEpeVy=TE,pVIE ¢ ITEppMy=(pMy)el

Finally, constants equivalence is the smallest of the three equivalence relations. We use
the function eval :: «rItl = tvl with the three-valued logic “tvl = Yes | No | Maybe”. It returns
Yes iff ¢ is propositionally equivalent to tt, and No iff ¢ is propositionally equivalent to fF,
respectively. Otherwise, Maybe is returned. The actual Isabelle formalisation does not refer
to propositional equivalence, but in order to simplify the presentation we use the presented
characterisation. Two formulas ¢ and ¢ are constants-equivalent iff they are (syntactically)
identical or “eval ¢ = eval 1) # Maybe”.

» Definition 4 (Equivalence Relations). For ¢ :: altl and ¢ = altl, we define:

o~ Y = Vw. wE@+—wEY
@ rpth = VI.IEpp«— Ty
P et = (o =1V (eval ¢ = eval ¥ A eval ¥ # Maybe))

» Lemma 5 (Order of Equivalence Relations).
~e < ~p <~

Note that this order also corresponds to the computational complexity, with ~. being
the easiest to compute and ~; the hardest.

11:5

ITP 2019

11:6

A Verified and Compositional Translation of LTL to Deterministic Rabin Automata

3 Transition Systems and Automata

Automata are a popular subject in their own right in theoretical computer science and
also have many applications, like regular expression matching and model checking. As
such, it suggests itself to formalise these concepts separately and generically as a library
to be shared. We first establish our goals for such a library. The deceptively simple term
automaton covers a diverse range of objects that need to be supported. These differ in various
ways, including but not limited to: successors (deterministic, nondeterministic), labelling
(state-labeled, transition-labeled), and acceptance condition (finite, Biichi, Rabin, etc.). For
each automaton type, we want to formalise fundamental concepts like path, reachability,
and language. We would also like to formalise constructions like Boolean operations (union,
intersection, complementation), and degeneralisation of Biichi acceptance conditions. As an
overall goal, we want to share as much of the formalisation as possible by keeping it abstract.
This avoids duplication and often makes definitions and proofs simpler and more elegant.
Finally, we want to do all of this while providing good usability and automation, especially
concerning the basic concepts that constitute the foundation of the library.

With these goals in mind, we look at the formalisations that are already available in the
Isabelle ecosystem. First off, there are many ad-hoc formalisations of transition systems and
automata done as part of other formalisations [40, 21, 1, 31]. Furthermore, there have been
a few major formalisations as part of the CAVA project [21], although not all of them were
preserved or published. Stephan Merz and Alexander Schimpf formalised NBAs and NGBAs
in preliminary work of the CAVA project [38] and then later as part of CAVA itself. Peter
Lammich is the author of the current CAvA automata library [28], which includes state-labeled
NBAs and NGBAs. These formalisations cover a very specific set of automata, making them
convenient to use, but only if one happens to need exactly that type of automaton. Another
unpublished formalisation by Thomas Tuerk is more generic and covers DFAs, NFAs, NBAs,
and NGBAs. It achieves this genericity by modelling some of these automata as special cases
of others, which allows for sharing of definitions and proofs. For instance, a deterministic
transition system would naturally be modelled using the type “a = p = p”. Alternatively, it
can also be treated as a special case of a nondeterministic transition system with the type
“(p x a x p)set”. However, this causes several issues. Firstly, since the type is too weak, a
uniqueness predicate on the term level is needed to only allow those transition relations that
act like functions. These predicates then have to be carried around in all proofs explicitly,
rather than being encoded in the type. Secondly, due to the type being a poor fit, we can
no longer do things like folding over the successor function. Lastly, the user is restricted
to a single representation, rather than, for instance, being able to choose between explicit
(“(p x a x p)set”) and implicit (“a = p = pset”) representations.

We use these experiences to design a new architecture in order to achieve the goals we set
earlier. Since our primary goal is sharing via abstraction, this is what will mainly motivate
our decisions. There are two observations to be made. Firstly, acceptance conditions are far
too diverse and specific to be treated abstractly. Thus, our abstract representation will cover
transition systems instead of automata, with acceptance conditions being added on a more
concrete level at a later stage. This idea is not new and was in fact used in most of the earlier
formalisations as well. Secondly, as mentioned in the previous paragraph, specialisation as
a mechanism of abstraction has various issues. Instead, we choose to use the mechanism
of instantiation via locales (Section 2), the advantages of which will become apparent in
the following sections. Thus, the library formalises abstract transition systems (Section 3.1),
which are then instantiated and used as building blocks for concrete automata (Section 3.2).

J. Brunner, B. Seidl, and S. Sickert

We try to formalise as much as possible in the context of abstract transition systems, since

this both often leads to elegance and conciseness and is shared between all concrete automata.

Thanks to this, adding a new automaton requires only a minimal amount of setup, allowing

users to use the library in conjunction with their own custom automata representations.

That being said, the set of automata supplied with the library is also growing and becoming
more useful, making this less and less necessary. In the end, we supply both a collection of
useful automata as well as the tools to easily add custom ones as needed.

3.1 Abstract Transition Systems

Having decided on our architecture, the central decision lies in the specification of the locale
for transition systems. We focus on the defining property of a transition system: its ability
to use transitions to move from state to state. This leads us directly to the specification in
terms of its types (transition and state) and its terms (execute and enabled).

» Definition 6.

locale transition-system =
fixes execute :: transition = state = state
fixes enabled :: transition = state = bool
Given a transition and a source state, the function execute specifies the target state for
that transition. Analogously, the function enabled determines whether the given transition

is enabled at the given source state. Together, these functions capture the essence of a
transition system in terms of its ability to transition between states. Given the types, it may

seem appealing to combine both constants into a single one with result type “state option”.
This sounds great in theory, but unfortunately, is very inconvenient to work with in practice.

It mixes the issue of finding the target of a transition with that of whether that transition
was valid in the first place. Keeping these two things separate makes definitions simpler and
allows for better automation in proofs.

Having defined the transition-system locale, we now develop some abstract theory within
this context. So far, we can only execute single transitions, so we look at finite and infinite

sequences of transitions. We introduce the following constants based on the execute function.

» Definition 7.

target = fold execute :: transition list = state = state
trace = scan execute :: transition list = state = state list
strace = sscan execute :: transition stream = state = statestream
Given a sequence of transitions and a source state, these functions give the target state and
the finite and infinite sequence of traversed states, respectively. Note both the simplicity and

elegance of these definitions and how each of them is simply a lifted version of execute.
We can do something similar for the enabled function.

» Definition 8.

inductive path :: transition list = state = bool where
path [p
enabled a p = path r (execute a p) = path (a#7r) p
coinductive spath :: transition stream = state = bool where

enabled a p = spath r (execute a p) = spath (a ##7r) p

11:7

ITP 2019

11:8

A Verified and Compositional Translation of LTL to Deterministic Rabin Automata

These constants are (co)inductively defined predicates that capture the notion of all the
transitions in a sequence being enabled at their respective states. Like in the previous
paragraph, these are basically lifted versions of enabled, which is also reflected in their types.

Together, these form the very foundation of the library, since almost every other concept
is in some way related to sequences of transitions. The nice thing about these definitions
is that they lend themselves very well to automation. In the case of definitions lifted from
execute, we can define simplification rules. In the case of definitions lifted from enabled, we
can define safe introduction and elimination rules. This works for both the constructors of
sequences (# and #+#), as well as the operators for concatenation (@, @—). Convenience
and automation regarding the basic concepts was a major shortcoming of earlier libraries.

Next, we define the constant reachable for the set of reachable states from a source state.
Like path, this is an inductively defined predicate. Alternatively, we could have defined
reachable in terms of target and path. Instead, it is defined directly based on execute and
enabled and the connection to target and path is shown as a lemma.

There are some interesting things we can formalise even on this very abstract level. We
present one such example in the construction of infinite paths.

» Lemma 9 (Recurring Condition).

fixes P :: state = bool and p : state
assumes P p and /\p. Pp = Jr.r#[] Apath r pA P (target r p)

obtains r :: transition stream

where spath r p and infs P (p ## strace r p)

Here, the premises only guarantee the repeated existence of a finite extension to an existing
finite path, which we want to use to construct an infinite path. Proving a statement like
this is cumbersome, as it requires skolemisation of the premise, construction of a stream
via iteration combinators and finally proving the properties via coinduction. By providing
generic rules like these, all this complexity is hidden and users can restrict themselves to
easy-to-work-with constants like spath and infs.

3.2 Concrete Automata

In order for our formalisation of abstract transition systems to be useful, it needs to be able

to express a wide range of transition system types and their representations. We now present

instantiations for various transition systems with labels of type a and states of type p.
Given a successor function “succ :: @ = p = poption”, we instantiate as follows.

» Example 10 (Incomplete Deterministic Transition System).

execute = Aa p. the (succ a p) transition = «

enabled = Aa p. succ a p # None state = p

Note how the deterministic successor function fits the interface straightforwardly.
Given a successor function “succ :: a = p = p” we instantiate as follows.

» Example 11 (Complete Deterministic Transition System).

execute = succ transition = «

enabled =T state = p

J. Brunner, B. Seidl, and S. Sickert

Things get interesting when considering “succ :: @« = p = pset”. Textbooks teach us that
deterministic transitions systems are a special case of nondeterministic ones. At first glance,
it may seem like we are trying to do the impossible opposite here. However, since we get to
instantiate the type variables, there is a surprisingly elegant solution.

» Example 12 (Implicit Nondeterministic Transition System).

execute = A(a, q) p. q transition = a X p

enabled = A(a,q) p. ¢ €succ a p state = p

Note how unlike in the first two examples, the type variable transition gets instantiated in
a nontrivial way. While it may seem backwards at first, this actually works out perfectly
and gives our constants the strongest possible type for this scenario. For instance, we get
“path = (ax p) list = p = bool”. That is, the path predicate expects a source state as well as a
list of the traversed labels and states. This expression contains exactly the necessary amount
of information, nothing more, nothing less. Note that the fact that we are dealing with
pairs is not an issue, as Isabelle has good automation for those. We also added some more
automation for sequences of pairs as part of this library. In the end, neither the deterministic
nor the nondeterministic case necessitates inconvenient wellformedness predicates while
sharing the same abstract formalisation.

Finally, we consider an explicit representation in “trans :: (p X a X p) set”. Being isomorphic
to the previous case, the type variables as well as execute are instantiated the same way.

» Example 13 (Explicit Nondeterministic Transition System).

execute = A(a, q) p. q transition = «a X p

enabled = A(a, q) p. (p,a,q) € trans state = p

Unsurprisingly, an isomorphic change in representation does not make a difference since the
instantiation absorbs such details.

Having shown that we can instantiate a variety of transition systems using our abstract
theory, we can now use these as building blocks for concrete automata. Since the abstraction is
achieved via type instantiation and locales, it only minimally impacts the usability compared
to a fully specific formalisation. Moreover, since it does not restrict the type of the automaton
at all, the user can use a representation that exactly fits their needs.

There are some definitions that one would expect to be part of a general automata library
that unfortunately cannot be formalised on transition systems. One of these are Boolean
operations, since they require information about the automaton’s successors, labelling, and
acceptance condition. With some effort, they could be formalised on intermediate abstraction
over a family of similar automata (for instance, DBA, DCA, DRA). However, we could not

justify the effort for our purposes, since these formalisations do not contain much substance.

Degeneralisation, which plays an important part in defining aforementioned Boolean
operations, can be generalised a little easier. The reason for this is that it is independent from
successors and labelling, requiring only the concept of state-based Biichi acceptance. Thanks
to this, we were able to abstractly formalise degeneralisation in a transition system locale
augmented with an acceptance condition. This intermediate abstraction is then instantiated
in order to facilitate the formalisation of Boolean operations on DBAs and DCAs.

11:9

ITP 2019

11:10

A Verified and Compositional Translation of LTL to Deterministic Rabin Automata

3.3 Predefined Automata

While the focus of the automata library is on the abstract part and the provision of tools to
build concrete automata, it also comes with a growing collection of the latter. At the time of
writing, it contains (non)deterministic finite automata, (non)deterministic Biichi automata,
as well as deterministic co-Biichi and Rabin automata. Each of these incurs around 50 lines
of proof text in order to set-up the automaton and to define its language. The latter is
fairly simple to achieve, as all the constituents (paths and acceptance conditions) are already
available and just need to be composed to yield a language definition.

3.4 Executable Implementation

One of our goals is also the ability to implement executable versions of some algorithms. As
mentioned earlier, we will use the refinement frameworks and the Isabelle code generator
for this. Most of this needs to be done on concrete automata, as it depends on details of
the representation. Furthermore, in many cases it is advantageous to be able to choose data
structures depending on the representation. Because of these reasons, all the executable
implementations are done on the concrete level, with only some proofs being reused.

We build on existing algorithms for graph structures to implement versions that work
with automata. For instance, we use the AFP entry about depth-first search [32, 33] to
explore all reachable states of an automaton. This is used to generate explicit representations
of automata in order to be able to serialise and output them. In the case of NBAs we consider
the successor function “succ :: @ = p = pset”, which implicitly represents the transitions
of the automaton. The algorithm can then turn this into an explicit set of transitions
“trans : (p X a X p)set”. We also implement an algorithm for translating an automaton with
an arbitrary state type into one whose states are natural numbers. Furthermore, we use the
AFP entry about Gabow’s algorithm for strongly-connected components [29, 30] to decide
language emptiness of NBAs.

3.5 Formalisation

The library is available in the form of the AFP entry Transition Systems and Automata
[10]. At the time of writing, it comprises about 5800 lines of theory text. Other than in this
paper, the library is used in the partial order reduction optimisation [12, 11] of the CAvA
model checker [21]. It is also used as the foundation of the AFP entry about rank-based
complementation of Biichi automata [9].

3.6 Contributions to the Translation Formalisation

For this paper, we contribute deterministic Biichi, co-Biichi, and Rabin automata. For
instance, the constructor for deterministic Biichi automata is “dba :: aset = p= (o = p =
p) = (p = bool) = («, p) dba”. Furthermore, we add corresponding union and intersection
operations to the library (Figure 1). In addition to those operations, we also implement a
specialised operation dbcrai that provides the intersection of a DBA and a DCA resulting in
a DRA. We prove both their correctness in terms of language as well as upper bounds on
the number of states of the resulting automata. Since the resulting automata are implicit,
we also provide an executable algorithm for exploration and subsequent conversion to an
explicit representation together with a numbering of the states.

J. Brunner, B. Seidl, and S. Sickert

Automaton ‘ N (Pair) () (List) U (Pair) [(J (List)

DBA dbail dbau dbaul
DCA dcai dcail dcaul
DRA draul

Figure 1 Boolean Operations on Deterministic w-Automata. Shown are the Boolean operations
that were implemented for deterministic Biichi, co-Biichi, and Rabin automata.

4 The Master Theorem: Decomposing LTL Formulas

The centrepiece for all translations is the Master Theorem [19] that decomposes LTL formulas
into a Boolean combination, in our case union and intersection, of “simple” languages. We
will recall important definitions from [19] in order to state the theorem itself and to highlight
obstacles we encountered in our formalisation. For an in-depth discussion and exposition of
the theory and its proof we refer the reader to the primary source [19].

We will now introduce the functions used in the scope of the Master Theorem: the
“after”-function af ¢ w, read “y after w”, and the two “advice” functions ¢[X], and ¥[Y],
which are pronounced as “p with GF-advice X” and “¢ with FG-advice Y, respectively.

4.1 The “after”-Function

Let us begin with the definition of the “after”-function [18, 17, 19]. The function application
af © w computes a new formula such that for every infinite word w’ we have:

» Lemma 14 ([19]).
w~w e <= wEaf pw.

We can intuitively see af as a function that returns a formula representing the language
that we obtain after reading the prefix w. We achieve this by using well-known LTL expansion
rules combined with partial evaluation.

» Definition 15 (“after’-Function [19]). The function af : altl = aset = «ltl is defined for
a single letter recursively as follows:

af tt o =tt af (X))o =9

af ff o =ff

af a o =if a €0 then tt else ff af (¢ U)o =(af Y o) V ((af ¢ o) A (p U 1))
af (ma) 0 =if a¢ o then tt else ff af (¢ RY) o = (af Y o) A((af ¢ o) V (¢ R ¥))
af (p A1) o= (af ¢ o) A (af ¥ o) af (¢ W) o= (af ¢ o) V ((af p o) A (9 W 1))
af (pV¢) o= (af o) V (af ¢ o) af (P My)) o= (af ¢ o) A ((af ¢ o)V (p M)

We generalise this definition to finite words by overloading af :: altl = asetlist = altl:
af ¢ w = foldl af ¢ w.

» Remark 16. The reader might have noticed that the definition of af resembles the idea
of Brzozowski’s derivatives for regular expressions [13]. In fact, as we will see later, the
DRA construction relies on af and the previously introduced LTL equivalence relations again
mirroring the idea of Brzozowski. However, this approach alone can only be applied to
fragments of LTL.

11:11

ITP 2019

11:12

A Verified and Compositional Translation of LTL to Deterministic Rabin Automata

4.2 Syntactic Fragments of LTL

We already teased the idea of the “simple” languages, but what is special about these? What
is the mechanism to achieve this? These languages are made simple by the fact that they can
be expressed by fragments of LTL. To be more precise, let uLTL be the fragment that only
contains modal operators that can be expressed as least-fixed points, i.e., we disallow the
operators R and W. Dually, vLLTL contains only modal operators that can be expressed as
greatest-fixed points, i.e., we disallow the operators U and M. The fragments GF(uLTL) and
FG(vLTL) contain all formulas GF¢ and FG where ¢ € uLTL and ¢ € vLTL, respectively.
For these fragments one can easily define translations to NBAs or DRAs, e.g. [19].

Let us now think about how to make use of this: Assume one gets a promise set
X = {a U b} guaranteeing that a U b holds infinitely often, i.e., w | GF(a U b), and assume
we have access to a translation for vLTL. Can we simplify ¢ = G(a U b) V Ge with this
information? Since w = GF(a U b) implies that b is infinitely often true, we can replace
the U by an W. Under the assumption that X is a correct promise, we simplify ¢ to an
equivalent formula G(a W b) V Ge which is a formula of vLTL. Then we can apply our
translation for the vLTL fragment.

Formally, we define the functions ¢[X], and ¢[Y], such that ¢[X], takes a promise set
X and produces a formula of vLTL, and such that ¢[Y],, takes a promise set ¥ and produces
a formula of puLTL:

» Definition 17 (“Advice"-Functions [19]). The function -[-], = altl = altlset = altl is
defined for the cases U and M as follows:

(P U)X], =if (pU) € X then (p[X],) W (4[X],) else ff
(e My)[X], =if (¢My)e X then (p[X],) R (4[X],) else ff

The function -[-], = altl = altlset = «altl is defined for the cases R and W as follows:

(pRY)Y], =if (pRY) €Y then tt else (p[Y],) M (4[Y],)
(P WH)[Y], =if (¢ W) €Y then tt else (p[Y],) U (¥[Y],)

For all other cases, both functions are defined as a recursive descent over the syntax tree.

4.3 The Master Theorem

We are now equipped with the necessary definitions to state the Master Theorem. Note that
the formulation we use is taken nearly verbatim from the Isabelle theory, apart from the
annotations lemX’ L%m,, and Lﬁ(,y that we added to relate to the introduction.

» Theorem 18 (Master Theorem [19]).

w = ¢ <= (3X C subformulas,, . 3Y C subformulas, .

(Fi. suffix i w |= af ¢ (prefix i w)[X],) —L;,X
ANV e X wiG (FPY],)) —Lxy
ANVYeY. wEF (G y[X])) —Lxy

The proof of this theorem intrinsically depends on the fact that we can check promise
sets bottom-up, as formalised by the following lemma. We highlight this intermediate lemma,
because we needed to introduce a custom induction mechanism over finite sets to our theory.
The remaining material needed to show Theorem 18 is obtained in straight-forward manner
and closely resembles the proofs of [19].

J. Brunner, B. Seidl, and S. Sickert

» Lemma 19 ([19]).

fixes w : asetword and ¢ :: altl
assumes X C subformulas, ¢ and Y C subformulas, ¢
and Vv €e X. w =G (F¢[Y],) and VY €Y. w = F (G ¢[X],)
shows Vp € X. w =G (F ¢) and VY € Y. w EF (G ¢)

The corresponding proof from [19] proceeds by constructing a sequence of pairs (X;,Y;)
where we have (Xg,Yy) = (0,0) and (X,,,Y,) = (X,Y). Moreover, in each step a single
formula ¥; € X WY is added to either X; or Y;, depending on whether v; € X or ¢, € Y.
However, 1; cannot be chosen arbitrarily and ; must respect the subformula order, i.e., if
; € sf 15, then ¢ < j. Then the proof proceeds by an induction over this sequence.

Since to the best of our knowledge there has been at the time of writing no matching
induction rule in Isabelle or its libraries, we derived a suitable induction rule for our purposes.
First, note that instead of sorting the formulas by the subformula order, it is sufficient to
order them by their size, because all subformulas of a formula ¢ are smaller than ¢. Second,
an induction over pairs of sets seemed inconvenient to us in the context of our theorem
prover. Hence we combined the two disjoint sets into a single one and used a suitable case
distinction. Finally, we arrived at the following, general induction rule? for finite sets with
an additional order constraint:

» Lemma 20 (Finite Ordered Induction).

fixes S :aset and P : aset = bool and f : a = (8 : linorder)

assumes finite S and P ()
and [\ z S.finite SA(Vy.y €S — fy<fa)APS = P (insert x S)
shows P S

5 Deriving the DRA Construction

With the necessary decomposition theorem in place, we now can follow our automata
construction blue-print to obtain a translation from LTL to DRAs. We will first build
automata for Ll% X L%c)y, and Ljn;(’y, named 2, ™Az, and Az, respectively. In the subsequent
section, we will assemble these pieces to the final automaton and end the section with a
description of the extracted, verified tool.

5.1 Constructing Automata for L_ ,, L% ,, and L%

We parametrise our automata constructions for the “simple” components by an equivalence
relation ~. The most important requirement for ~ is that ~. < ~ < ~; holds, i.e., that ~
does not consider two formulas with different languages equivalent and ~ eventually detects
equivalence to tt and ff for certain fragments. This abstraction has two advantages over fixing
a concrete equivalence: first, our proofs stay as abstract as possible and the proof automation
does not rely accidentally on irrelevant properties of the chosen equivalence relation; second,
we can instantiate the final automaton with any suitable equivalence relation. In Section 5.3
we exemplarily use propositional equivalence but one can easily replace it by a different
equivalence without any additional effort to speak of.

4 This induction rule has now been included in Isabelle/HOL, is located in HOL/Lattices_Big.thy, and
is named finite_ranking_induct.

11:13

ITP 2019

11:14

A Verified and Compositional Translation of LTL to Deterministic Rabin Automata

In this paper, we will only discuss the construction of 2y for L%m,. The constructions
for Lglo_’ y and L%{,Y as defined by [19] are formalised analogously. Remember that Lg(’y is
defined as “(¢ € X. language UNIV (GF(¢[Y],))” for the finite sets X and Y. Hence it
suffices to define a translation for formulas of the fragment GF(uLTL) and then apply the
intersection construction from the automaton library.

For the translation of formulas from the fragment GF(uLTL) we make use of the following
lemma. It states the we can monitor a formula from pLTL using af and the constrained
equivalence relation ~, and if a word satisfies the formula, then we will notice this after a
finite amount of steps. Furthermore, the lemma states that we can deal with GF(uLTL) by
repeatedly doing this:

» Lemma 21 (Logical Characterisation of uLTL and GF(uLTL) [19, 42]°).

assumes ¢ € uLTL and ~, <~ <~
shows w = ¢ <= Ji. af ¢ (prefix i w) ~ tt
and wE G (F) < Vi.3j. af (F @) (prefix j (suffix ¢ w)) ~ tt

Since ~ is such a fundamental ingredient throughout the formalisation of the automata
constructions, we use locales in Isabelle to fix ~ and assumptions about it. In particular, we
use the equivalence classes of ~ as states in our constructed automata. To define the quotient
type for a given equivalence relation, we use the Isabelle’s Quotient package introduced in [8]
and revised in [24]. However, it is not possible to define such a quotient type within a locale.
Thus we present a primitive, ad-hoc mechanism to simulate the quotient type in our locale.
We fix a type parameter v and the functions Rep and Abs that compute the representative of
an equivalence class and the equivalence class of a formula, respectively. In other words we
use Rep and Abs to map between equivalence classes and representatives. Further, we assume
the quotient type invariant “Abs (Rep x) = z” and require that equality on « is equivalent to
~ on formulas. Thus we can pretend - to be a quotient type over ~ which resembles “duck
typing” found in programming languages such as Python.

» Definition 22 (Locale for LTL to DRA translation©).

locale ltl-to-dra =
fixes ~ altl = «altl = bool
and Rep : v = «altl and Abs: «altl =~
assumes equivp ~ and ~, < ~ <~y
and Abs (Rep z) =z and Abs ¢ = Abs ¢ +— @~
and p~¢ = (af p o ~af Y o) A (p[X], ~ P[X],)

In this definition two new assumptions can be found that we have not talked about yet:
We also demand that af and - [-], are congruent with respect to ~. This is due to the fact
that our the automata use equivalence classes as states and for computing the successor with
af the choice of the representative must be irrelevant.

5 This lemma is a generalised version of [19] which only considers the special case for ~p.
6 We only present the final combination of several locales defined in our Isabelle formalisation to give an
overview of all assumptions required by our proofs.

J. Brunner, B. Seidl, and S. Sickert

Within this locale we now define the deterministic Biichi automaton QIS'F for a single
formula of the fragment GF(uLTL). The DBA 2 for L%{,Y is then computed by a Biichi
intersection (dbail). Note that this intersection construction requires the operands to be
ordered. Hence we represent the advice sets X and Y as the lists xs and ys and propagate
this order to dbail.

» Definition 23.

ATF o =dba UNIV (Abs (F ¢)) (afp @) (M. ¢ = Abs tt)
afp p o =if ¢ = Abs tt then Abs (F ¢) else Abs (af (Rep ¢) o)
Ao zs ys = dbail (map (\. QLSF ([set ysl,)) xs)

Using Lemma 21 we show correctness for a single component and using the lemmas from
the automata library we also prove the intersection correct. The constructions for L}D’ x and
Lj?;(’y are analogous and thus skipped from the presentation in this paper.

5.2 Assembling the Pieces

It now remains to intersect the (co-)Biichi automata “2; ¢ zs”, “QAs zs ys”, and “Az xs ys”,
representing L;’ X Lg()y, and Lg(,y, respectively. Again we need to use a list representation
for X and Y to fix an iteration order and thus we use xs and ys. We call the resulting
Rabin automaton “2A ¢ zs ys”. To finish the construction, we then iterate over all possible
choices for X C subformulas,, ¢ and Y C subformulas, ¢ and take the union of all languages
accepted by “2 ¢ zs ys” with draul (DRA union):

» Definition 24.
Itl-to-dra ¢ = draul (map (A(zs, ys). A ¢ zs ys) (advice-sets ¢)).

Using the Master Theorem (Theorem 18) and the correctness lemmas for the intermediate
constructions, we obtain the correctness of the translation:

» Theorem 25.

language (Itl-to-dra) = language UNIV ¢.

5.3 A Verified LTL Translator

We extract the executable translation of LTL formulas into w-automata by instantiating
the locale with a suitable equivalence relation. As mentioned above we use ~, and we
show for this equivalence relation that the constructed automaton indeed has at most a
double-exponential number of states in the size of the formula. Hence an exploration by
depth-first search terminates, and more importantly, this makes the construction the first
LTL to DRA translation with a formally verified double exponential size bound.

» Lemma 26.
card (nodes (Itl-to-dra)) < 27 2" (2 * size ¢ + floorlog 2 (size) + 4).

Exporting code for the LTL part needs only minor adjustments through code lemmas,
e.g. we instantiate ~, with code provided by [35]. For the parts related to automata we rely
on the code export feature of the automata library, see Section 3.4. Notice that Theorem 25

11:15

ITP 2019

11:16

A Verified and Compositional Translation of LTL to Deterministic Rabin Automata

refers to the potentially infinite alphabet UNIV. Choosing UNIV as the alphabet simplified
the proofs leading up to the result, but potentially infinite alphabets make an exploration
using depth-first search using a naive enumeration of letters impossible. Consequently, we
restrict the alphabet to a finite set for the code export by only considering atomic propositions
occurring in ¢. The resulting constant Itl-to-draei has the signature « Itl = (« set, nat) draei
which is then exported to Standard ML. The overall correctness theorem is as follows:

» Theorem 27.
language (draei-dra (Itl-to-draei)) = language (Pow (atoms ¢)) ¢.

Note that the constant language is only defined for DRAs with a transition function (dra)
while we obtain from the translation a DRA with a list of transitions (draei). The constant
draei-dra converts an automaton of type draei back to one of type dra.

In the final tool, we combine the function Itl-to-draei with an unverified LTL parser and
an unverified serialisation to the Hanoi Omega Automata format [3], a text-based format for
representing w-automata. It is then compiled with mlton or polyc using the build scripts
included in the formalisation [39].

» Example 28. The following command translates the formula FGa to a DRA in HOA
format and then, using autfilt from Spot [16], prints it in the dot-format. The result gets
rendered by dot and is written to a PDF file.

./1tl_to_dra "F G a" | autfilt --dot --merge-transitions | dot -Tpdf -0

6 Concluding Remarks

The formalisation of the “Master Theorem” itself did not pose major obstacles and did not
require special care except for the mentioned techniques. However, the LTL entry [41] and
dependencies are host to several LTL datatypes and matching lemmas and notation. This
excessive amount of copy-pasting is due the inability to define fragments of datatypes, i.e.,
restrictions on the constructors used. While one could use typedef to carve out restricted
types using a predicate, this new type misses the structure of the type we started with.
Thus we choose in some cases to have separate datatypes connected by translations, while
in other cases we used simple predicates to capture fragments. We think the addition of
a mechanism addressing this issue — the definition of datatype fragments and the addition
of necessary constants and proof automation — would be worthwhile, since we conjecture it
would significantly reduce the size and complexity of LTL related theories.

There are several topics we want to investigate going forward: First, we also want to derive
constructions for NBAs and LDBAs. Second, we plan to reduce the size of the generated
automata by restricting the possible choices for the advice sets X and Y. Third, we want to
provide implementations using better instantiations for the equivalence relation to further
reduce the size of the computed automata. Fourth, provide constructions for DRA variants,
e.g., transition-based or generalised acceptance. Fifth, while adding some of the Boolean
operations, we realised that constructions for w-automata could potentially be shared and
consolidated in an intermediate abstraction.

—— References

1 Romain Aissat, Frédéric Voisin, and Burkhart Wolff. Infeasible Paths Elimination by Symbolic
Execution Techniques: Proof of Correctness and Preservation of Paths. Archive of Formal
Proofs, 2016, 2016. URL: https://wuw.isa-afp.org/entries/InfPathElimination.shtml.

J. Brunner, B. Seidl, and S. Sickert

10

11

12

13

14

15

16

Toméas Babiak, Thomas Badie, Alexandre Duret-Lutz, Mojmir Kfetinsky, and Jan Strejcek.
Compositional Approach to Suspension and Other Improvements to LTL Translation. In Ezio
Bartocci and C. R. Ramakrishnan, editors, Model Checking Software - 20th International Sym-
posium, SPIN 2013, Stony Brook, NY, USA, July 8-9, 2013. Proceedings, volume 7976 of Lecture
Notes in Computer Science, pages 81-98. Springer, 2013. doi:10.1007/978-3-642-39176-7_6.
Toméas Babiak, Frantisek Blahoudek, Alexandre Duret-Lutz, Joachim Klein, Jan Kretinsky,
David Miiller, David Parker, and Jan Strejcek. The Hanoi Omega-Automata Format. In
Daniel Kroening and Corina S. Pasareanu, editors, Computer Aided Verification - 27th
International Conference, CAV 2015, San Francisco, CA, USA, July 18-24, 2015, Proceedings,
Part I, volume 9206 of Lecture Notes in Computer Science, pages 479-486. Springer, 2015.
d0i:10.1007/978-3-319-21690-4_31.

Tomés Babiak, Frantisek Blahoudek, Mojmir Kietinsky, and Jan Strejcek. Effective Translation
of LTL to Deterministic Rabin Automata: Beyond the (F, G)-Fragment. In Dang Van Hung
and Mizuhito Ogawa, editors, Automated Technology for Verification and Analysis - 11th
International Symposium, ATVA 2013, Hanoi, Vietnam, October 15-18, 2013. Proceedings,
volume 8172 of Lecture Notes in Computer Science, pages 24-39. Springer, 2013. doi:
10.1007/978-3-319-02444-8_4.

Christel Baier and Joost-Pieter Katoen. Principles of model checking. MIT Press, 2008.
Clemens Ballarin. Locales: A Module System for Mathematical Theories. J. Autom. Reasoning,
52(2):123-153, 2014. doi:10.1007/s10817-013-9284-7.

Jasmin Christian Blanchette, Johannes Holzl, Andreas Lochbihler, Lorenz Panny, Andrei
Popescu, and Dmitriy Traytel. Truly Modular (Co)datatypes for Isabelle/HOL. In Gerwin
Klein and Ruben Gamboa, editors, Interactive Theorem Proving - 5th International Conference,
ITP 2014, Held as Part of the Vienna Summer of Logic, VSL 2014, Vienna, Austria, July
14-17, 2014. Proceedings, volume 8558 of Lecture Notes in Computer Science, pages 93—110.
Springer, 2014. doi:10.1007/978-3-319-08970-6_7.

Maksym Bortin and Christoph Liith. Structured Formal Development with Quotient Types in
Isabelle/HOL. In Serge Autexier, Jacques Calmet, David Delahaye, Patrick D. F. Ion, Laurence
Rideau, Renaud Rioboo, and Alan P. Sexton, editors, Intelligent Computer Mathematics, 10th
International Conference, AISC 2010, 17th Symposium, Calculemus 2010, and 9th International
Conference, MKM 2010, Paris, France, July 5-10, 2010. Proceedings, volume 6167 of Lecture
Notes in Computer Science, pages 34-48. Springer, 2010. doi:10.1007/978-3-642-14128-7_5.
Julian Brunner. Biichi complementation. Archive of Formal Proofs, 2017, 2017. URL:
https://www.isa-afp.org/entries/Buchi_Complementation.html.

Julian Brunner. Transition Systems and Automata. Archive of Formal Proofs, 2017, 2017.
URL: https://www.isa-afp.org/entries/Transition_Systems_and_Automata.html.
Julian Brunner. Partial Order Reduction. Archive of Formal Proofs, 2018, 2018. URL:
https://www.isa-afp.org/entries/Partial_Order_Reduction.html.

Julian Brunner and Peter Lammich. Formal Verification of an Executable LTL Model
Checker with Partial Order Reduction. J. Autom. Reasoning, 60(1):3-21, 2018. doi:10.1007/
s10817-017-9418-4.

Janusz A. Brzozowski. Derivatives of Regular Expressions. J. ACM, 11(4):481-494, 1964.
doi:10.1145/321239.321249.

Edmund M. Clarke, Thomas A. Henzinger, Helmut Veith, and Roderick Bloem, editors.
Handbook of Model Checking. Springer, 2018. doi:10.1007/978-3-319-10575-8.

Costas Courcoubetis and Mihalis Yannakakis. The Complexity of Probabilistic Verification. J.
ACM, 42(4):857-907, 1995. doi:10.1145/210332.210339.

Alexandre Duret-Lutz, Alexandre Lewkowicz, Amaury Fauchille, Thibaud Michaud, Etienne
Renault, and Laurent Xu. Spot 2.0 - A Framework for LTL and w-Automata Manipulation.
In Cyrille Artho, Axel Legay, and Doron Peled, editors, Automated Technology for Verification
and Analysis - 14th International Symposium, ATVA 2016, Chiba, Japan, October 17-20,
2016, Proceedings, volume 9938 of Lecture Notes in Computer Science, pages 122-129, 2016.
do0i:10.1007/978-3-319-46520-3_8.

11:17

ITP 2019

11:18 A Verified and Compositional Translation of LTL to Deterministic Rabin Automata

17

18

19

20

21

22

23

24

25

26

27

28

29

Javier Esparza, Jan Kreinsky, and Salomon Sickert. From LTL to deterministic automata -
A safraless compositional approach. Formal Methods in System Design, 49(3):219-271, 2016.
doi:10.1007/s10703-016-0259-2.

Javier Esparza and Jan Kretinsky. From LTL to Deterministic Automata: A Safraless
Compositional Approach. In Armin Biere and Roderick Bloem, editors, Computer Aided
Verification - 26th International Conference, CAV 2014, Held as Part of the Vienna Summer of
Logic, VSL 2014, Vienna, Austria, July 18-22, 201/. Proceedings, volume 8559 of Lecture Notes
in Computer Science, pages 192—208. Springer, 2014. doi:10.1007/978-3-319-08867-9_13.
Javier Esparza, Jan Kretinsky, and Salomon Sickert. One Theorem to Rule Them All: A Unified
Translation of LTL into w-Automata. In Anuj Dawar and Erich Gradel, editors, Proceedings of
the 38rd Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2018, Ozford,
UK, July 09-12, 2018, pages 384-393. ACM, 2018. doi:10.1145/3209108.3209161.

Javier Esparza, Peter Lammich, René Neumann, Tobias Nipkow, Alexander Schimpf, and
Jan-Georg Smaus. A Fully Verified Executable LTL Model Checker. In Natasha Sharygina
and Helmut Veith, editors, Computer Aided Verification - 25th International Conference, CAV
2013, Saint Petersburg, Russia, July 13-19, 2013. Proceedings, volume 8044 of Lecture Notes
in Computer Science, pages 463-478. Springer, 2013. doi:10.1007/978-3-642-39799-8_31.
Javier Esparza, Peter Lammich, René Neumann, Tobias Nipkow, Alexander Schimpf, and
Jan-Georg Smaus. A Fully Verified Executable LTL Model Checker. Archive of Formal Proofs,
2014, 2014. URL: https://uww.isa-afp.org/entries/CAVA_LTL_Modelchecker.shtml.
Paul Gastin and Denis Oddoux. Fast LTL to Biichi Automata Translation. In Gérard Berry,
Hubert Comon, and Alain Finkel, editors, Computer Aided Verification, 13th International
Conference, CAV 2001, Paris, France, July 18-22, 2001, Proceedings, volume 2102 of Lecture
Notes in Computer Science, pages 53—65. Springer, 2001. doi:10.1007/3-540-44585-4_6.
Rob Gerth, Doron A. Peled, Moshe Y. Vardi, and Pierre Wolper. Simple on-the-fly automatic
verification of linear temporal logic. In Piotr Dembinski and Marek Sredniawa, editors,
Protocol Specification, Testing and Verification XV, Proceedings of the Fifteenth IFIP WG6.1
International Symposium on Protocol Specification, Testing and Verification, Warsaw, Poland,
June 1995, volume 38 of IFIP Conference Proceedings, pages 3—-18. Chapman & Hall, 1995.
Brian Huffman and Ondrej Kuncar. Lifting and Transfer: A Modular Design for Quotients
in Isabelle/HOL. In Georges Gonthier and Michael Norrish, editors, Certified Programs and
Proofs - Third International Conference, CPP 2013, Melbourne, VIC, Australia, December
11-13, 2018, Proceedings, volume 8307 of Lecture Notes in Computer Science, pages 131-146.
Springer, 2013. doi:10.1007/978-3-319-03545-1_9.

Simon Jantsch and Michael Norrish. Verifying the LTL to Biichi Automata Translation
via Very Weak Alternating Automata. In Jeremy Avigad and Assia Mahboubi, editors,
Interactive Theorem Proving - 9th International Conference, ITP 2018, Held as Part of the
Federated Logic Conference, FloC 2018, Ozford, UK, July 9-12, 2018, Proceedings, volume
10895 of Lecture Notes in Computer Science, pages 306—323. Springer, 2018. doi:10.1007/
978-3-319-94821-8_18.

Peter Lammich. Refinement for Monadic Programs. Archive of Formal Proofs, 2012, 2012.
URL: https://www.isa-afp.org/entries/Refine_Monadic.shtml.

Peter Lammich. Automatic Data Refinement. Archive of Formal Proofs, 2013, 2013. URL:
https://www.isa-afp.org/entries/Automatic_Refinement.shtml.

Peter Lammich. The CAVA Automata Library. Archive of Formal Proofs, 2014, 2014. URL:
https://www.isa-afp.org/entries/CAVA_Automata.shtml.

Peter Lammich. Verified Efficient Implementation of Gabow’s Strongly Connected Component
Algorithm. In Gerwin Klein and Ruben Gamboa, editors, Interactive Theorem Proving - 5th
International Conference, ITP 2014, Held as Part of the Vienna Summer of Logic, VSL 2014,
Vienna, Austria, July 14-17, 2014. Proceedings, volume 8558 of Lecture Notes in Computer
Science, pages 325-340. Springer, 2014. doi:10.1007/978-3-319-08970-6_21.

J. Brunner, B. Seidl, and S. Sickert

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

Peter Lammich. Verified Efficient Implementation of Gabow’s Strongly Connected Components
Algorithm. Archive of Formal Proofs, 2014, 2014. URL: https://www.isa-afp.org/entries/
Gabow_SCC.shtml.

Peter Lammich and Markus Miiller-Olm. Formalization of Conflict Analysis of Programs with
Procedures, Thread Creation, and Monitors. Archive of Formal Proofs, 2007, 2007. URL:
https://www.isa-afp.org/entries/Program-Conflict-Analysis.shtml.

Peter Lammich and René Neumann. A Framework for Verifying Depth-First Search Algorithms.
In Xavier Leroy and Alwen Tiu, editors, Proceedings of the 2015 Conference on Certified
Programs and Proofs, CPP 2015, Mumbai, India, January 15-17, 2015, pages 137-146. ACM,
2015. doi:10.1145/2676724.2693165.

Peter Lammich and René Neumann. A Framework for Verifying Depth-First Search Al-
gorithms. Archive of Formal Proofs, 2016, 2016. URL: https://www.isa-afp.org/entries/
DFS_Framework.shtml.

Stephan Merz. Weak Alternating Automata in Isabelle/HOL. In Mark Aagaard and John
Harrison, editors, Theorem Proving in Higher Order Logics, 13th International Conference,
TPHOLs 2000, Portland, Oregon, USA, August 14-18, 2000, Proceedings, volume 1869 of Lec-
ture Notes in Computer Science, pages 424—441. Springer, 2000. doi:10.1007/3-540-44659-1_
26.

Tobias Nipkow. Boolean Expression Checkers. Archive of Formal Proofs, 2014, 2014. URL:
https://www.isa-afp.org/entries/Boolean_Expression_Checkers.shtml.

Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/HOL - A Proof Assistant
for Higher-Order Logic, volume 2283 of Lecture Notes in Computer Science. Springer, 2002.
doi:10.1007/3-540-45949-9.

Tobias Nipkow and Dmitriy Traytel. Unified Decision Procedures for Regular Expression
Equivalence. In Gerwin Klein and Ruben Gamboa, editors, Interactive Theorem Proving - 5th
International Conference, ITP 201/, Held as Part of the Vienna Summer of Logic, VSL 2014,
Vienna, Austria, July 14-17, 2014. Proceedings, volume 8558 of Lecture Notes in Computer
Science, pages 450—466. Springer, 2014. doi:10.1007/978-3-319-08970-6_29.

Alexander Schimpf, Stephan Merz, and Jan-Georg Smaus. Construction of Biichi Automata
for LTL Model Checking Verified in Isabelle/HOL. In Stefan Berghofer, Tobias Nipkow,
Christian Urban, and Makarius Wenzel, editors, Theorem Proving in Higher Order Logics, 22nd
International Conference, TPHOLs 2009, Munich, Germany, August 17-20, 2009. Proceedings,
volume 5674 of Lecture Notes in Computer Science, pages 424—439. Springer, 2009. doi:
10.1007/978-3-642-03359-9_29.

Benedikt Seidl and Salomon Sickert. A Compositional and Unified Translation of LTL into
w-Automata. Archive of Formal Proofs, 2019, 2019. URL: https://isa-afp.org/entries/
LTL_Master_Theorem.html.

Salomon Sickert. Converting Linear Temporal Logic to Deterministic (Generalised) Rabin
Automata. Archive of Formal Proofs, 2015, 2015. URL: https://www.isa-afp.org/entries/
LTL_to_DRA.shtml.

Salomon Sickert. Linear Temporal Logic. Archive of Formal Proofs, 2016, 2016. URL:
https://www.isa-afp.org/entries/LTL.shtml.

Salomon Sickert. A Unified Translation of Linear Temporal Logic to w-Automata. PhD thesis,
Technical University Munich, Germany, 2019.

Salomon Sickert, Javier Esparza, Stefan Jaax, and Jan Kietinsky. Limit-Deterministic Biichi
Automata for Linear Temporal Logic. In Swarat Chaudhuri and Azadeh Farzan, editors,
Computer Aided Verification - 28th International Conference, CAV 2016, Toronto, ON, Canada,
July 17-28, 2016, Proceedings, Part 11, volume 9780 of Lecture Notes in Computer Science,
pages 312-332. Springer, 2016. doi:10.1007/978-3-319-41540-6_17.

Moshe Y. Vardi. Automatic Verification of Probabilistic Concurrent Finite-State Programs. In
26th Annual Symposium on Foundations of Computer Science, Portland, Oregon, USA, 21-23
October 1985, pages 327-338. IEEE Computer Society, 1985. doi:10.1109/SFCS.1985.12.

11:19

ITP 2019

106

PartIV

Bibliography

107

[AVW16]

[Bab+13a]

[Bab+13b]

[Bab+15]

[Bal14]

[Bie+17]

Romain Aissat, Frédéric Voisin, and Burkhart Wolff. “Infeasible
Paths Elimination by Symbolic Execution Techniques: Proof of
Correctness and Preservation of Paths”. In: Archive of Formal
Proofs 2016 (2016). URL: https://www.isa-afp.org/entries/
InfPathElimination.shtml.

Tomads Babiak, Thomas Badie, Alexandre Duret-Lutz, Mojmir
Kretinsky, and Jan Strejcek. “Compositional Approach to Sus-
pension and Other Improvements to LTL Translation”. In:
Model Checking Software - 20th International Symposium, SPIN
2013, Stony Brook, NY, USA, July 8-9, 2013. Proceedings. Ed. by
Ezio Bartocci and C. R. Ramakrishnan. Vol. 7976. Lecture
Notes in Computer Science. Springer, 2013, pp. 81-98. DOI:
10.1007/978-3-642-39176-7_6.

Tomas Babiak, Frantisek Blahoudek, Mojmir Kretinsky, and Jan
Strejcek. “Effective Translation of LTL to Deterministic Rabin
Automata: Beyond the (F, G)-Fragment”. In: Automated Technol-
ogy for Verification and Analysis - 11th International Symposium,
ATVA 2013, Hanoti, Vietnam, October 15-18, 2013. Proceedings. Ed.
by Dang Van Hung and Mizuhito Ogawa. Vol. 8172. Lecture
Notes in Computer Science. Springer, 2013, pp. 24-39. DOI:
10.1007/978-3-319-02444-8_4.

Tomads Babiak, Frantisek Blahoudek, Alexandre Duret-Lutz,
Joachim Klein, Jan Kretinsky, David Miiller, David Parker, and
Jan Strejcek. “The Hanoi Omega-Automata Format”. In: Com-
puter Aided Verification - 27th International Conference, CAV 2015,
San Francisco, CA, USA, July 18-24, 2015, Proceedings, Part I. Ed.
by Daniel Kroening and Corina S. Pasareanu. Vol. 9206. Lecture
Notes in Computer Science. Springer, 2015, pp. 479-486. DOI:
10.1007/978-3-319-21690-4_31.

Clemens Ballarin. “Locales: A Module System for Mathemati-
cal Theories”. In: Journal of Automated Reasoning 52.2 (2014),
pp- 123-153. DOI: 10.1007/s10817-013-9284-7.

Julian Biendarra, Jasmin Christian Blanchette, Aymeric Bouzy,
Martin Desharnais, Mathias Fleury, Johannes Holzl, Ondre;j
Kuncar, Andreas Lochbihler, Fabian Meier, Lorenz Panny, An-
drei Popescu, Christian Sternagel, René Thiemann, and Dmi-
triy Traytel. “Foundational (Co)datatypes and (Co)recursion for
Higher-Order Logic”. In: Frontiers of Combining Systems - 11th
International Symposium, FroCoS 2017, Brasilia, Brazil, September

108

https://www.isa-afp.org/entries/InfPathElimination.shtml
https://www.isa-afp.org/entries/InfPathElimination.shtml
https://doi.org/10.1007/978-3-642-39176-7_6
https://doi.org/10.1007/978-3-319-02444-8_4
https://doi.org/10.1007/978-3-319-21690-4_31
https://doi.org/10.1007/s10817-013-9284-7

[BL16]

[BL18]

[Bla+14]

[Brui4]

[Brul7a]

[Brul7b]

[Brul8]

27-29, 2017, Proceedings. Ed. by Clare Dixon and Marcelo Finger.
Vol. 10483. Lecture Notes in Computer Science. Springer, 2017,
pp. 3-21. DOI: 10.1007/978-3-319-66167-4_1.

Julian Brunner and Peter Lammich. “Formal Verification of an
Executable LTL Model Checker with Partial Order Reduction”.
In: NASA Formal Methods - 8th International Symposium, NFM
2016, Minneapolis, MN, USA, June 7-9, 2016, Proceedings. Ed. by
Sanjai Rayadurgam and Oksana Tkachuk. Vol. 9690. Lecture
Notes in Computer Science. Springer, 2016, pp. 307-321. DOI:
10.1007/978-3-319-40648-0_23.

Julian Brunner and Peter Lammich. “Formal Verification of an
Executable LTL Model Checker with Partial Order Reduction”.
In: Journal of Automated Reasoning 60.1 (2018), pp. 3-21. DOI:
10.1007/s10817-017-9418-4.

Jasmin Christian Blanchette, Johannes Holzl, Andreas Lochbih-
ler, Lorenz Panny, Andrei Popescu, and Dmitriy Traytel. “Truly
Modular (Co)datatypes for Isabelle/HOL”. In: Interactive Theo-
rem Proving - 5th International Conference, ITP 2014, Held as Part
of the Vienna Summer of Logic, VSL 2014, Vienna, Austria, July 14-
17, 2014. Proceedings. Ed. by Gerwin Klein and Ruben Gamboa.
Vol. 8558. Lecture Notes in Computer Science. Springer, 2014,
pp. 93-110. DOI: 10.1007/978-3-319-08970-6_7.

Julian Brunner. “Implementation and Verification of Partial
Order Reduction for On-The-Fly Model Checking”. MA thesis.
Technische Universitdat Miinchen, July 15, 2014. 83 pp. URL: http:
/fwww21.in.tum.de/~brunnerj/documents/ivporotfmc.pdf.

Julian Brunner. “Biichi Complementation”. In: Archive of For-
mal Proofs 2017 (2017). URL: https://www.isa-afp.org/entries/
Buchi_Complementation.html.

Julian Brunner. “Transition Systems and Automata”. In: Archive
of Formal Proofs 2017 (2017). URL: https://www.isa-afp.org/
entries/Transition_Systems_and_Automata.html.

Julian Brunner. “Partial Order Reduction”. In: Archive of Formal
Proofs 2018 (2018). URL: https://www.isa-afp.org/entries/
Partial_Order_Reduction.html.

109

https://doi.org/10.1007/978-3-319-66167-4_1
https://doi.org/10.1007/978-3-319-40648-0_23
https://doi.org/10.1007/s10817-017-9418-4
https://doi.org/10.1007/978-3-319-08970-6_7
http://www21.in.tum.de/~brunnerj/documents/ivporotfmc.pdf
http://www21.in.tum.de/~brunnerj/documents/ivporotfmc.pdf
https://www.isa-afp.org/entries/Buchi_Complementation.html
https://www.isa-afp.org/entries/Buchi_Complementation.html
https://www.isa-afp.org/entries/Transition_Systems_and_Automata.html
https://www.isa-afp.org/entries/Transition_Systems_and_Automata.html
https://www.isa-afp.org/entries/Partial_Order_Reduction.html
https://www.isa-afp.org/entries/Partial_Order_Reduction.html

[Bru20]

[BSS19]

[Blic62]

[BW98]

[CGPO1]

[Cho74]

[Cla+18]

[Cout+92]

Julian Brunner. “Formal Verification of Executable Comple-
mentation and Equivalence Checking for Biichi Automata”. In:
Integrated Formal Methods - 16th International Conference, IFM
2020, Lugano, Switzerland, November 16-20, 2020, Proceedings.
Ed. by Brijesh Dongol and Elena Troubitsyna. Vol. 12546. Lec-
ture Notes in Computer Science. Springer, 2020, pp. 239-256.
DOI: 10.1007/978-3-030-63461-2_13.

Julian Brunner, Benedikt Seidl, and Salomon Sickert. “A Ver-
ified and Compositional Translation of LTL to Deterministic
Rabin Automata”. In: 10th International Conference on Interac-
tive Theorem Proving, ITP 2019, September 9-12, 2019, Portland,
OR, USA. Ed. by John Harrison, John O’Leary, and Andrew Tol-
mach. Vol. 141. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum fiir
Informatik, 2019, 11:1-11:19. DOI: 10.4230/LIPIcs.ITP.2019.11.

J. Richard Biichi. “On a Decision Method in Restricted Second
Order Arithmetic”. In: Proceedings of the International Congress
on Logic, Methodology, and Philosophy of Science, 1960, Berkeley,
California, USA. Stanford University Press, 1962, pp. 1-12.

Ralph-Johan Back and Joakim von Wright. Refinement Calculus -
A Systematic Introduction. Graduate Texts in Computer Science.
Springer, 1998. ISBN: 978-0-387-98417-9. DOI: 10.1007/978-1-4612-
1674-2.

Edmund M. Clarke, Orna Grumberg, and Doron A. Peled. Model
checking. MIT Press, 2001. ISBN: 978-0-262-03270-4. URL: http:
//books.google.de/books?id=Nmc4wEaLXFEC.

Yaacov Choueka. “Theories of Automata on omega-Tapes: A
Simplified Approach”. In: Journal of Computer and System Sci-
ences 8.2 (1974), pp. 117-141. DOI: 10.1016/S0022-0000(74)80051-6.

Edmund M. Clarke, Thomas A. Henzinger, Helmut Veith, and
Roderick Bloem, eds. Handbook of Model Checking. Springer,
2018. 1SBN: 978-3-319-10574-1. DOI: 10.1007/978-3-319-10575-8.

Costas Courcoubetis, Moshe Y. Vardi, Pierre Wolper, and Mi-
halis Yannakakis. “Memory-Efficient Algorithms for the Verifi-
cation of Temporal Properties”. In: Formal Methods in System
Design 1.2/3 (1992), pp. 275-288. DOI: 10.1007/BF00121128.

110

https://doi.org/10.1007/978-3-030-63461-2_13
https://doi.org/10.4230/LIPIcs.ITP.2019.11
https://doi.org/10.1007/978-1-4612-1674-2
https://doi.org/10.1007/978-1-4612-1674-2
http://books.google.de/books?id=Nmc4wEaLXFEC
http://books.google.de/books?id=Nmc4wEaLXFEC
https://doi.org/10.1016/S0022-0000(74)80051-6
https://doi.org/10.1007/978-3-319-10575-8
https://doi.org/10.1007/BF00121128

[CPY6]

[DAC98]

[Dur+16]

[EKS16]

[EKS18]

[Esp+13]

Ching-Tsun Chou and Doron A. Peled. “Formal Verification of
a Partial-Order Reduction Technique for Model Checking”. In:
Tools and Algorithms for Construction and Analysis of Systems, Sec-
ond International Workshop, TACAS 96, Passau, Germany, March
27-29, 1996, Proceedings. Ed. by Tiziana Margaria and Bernhard
Steffen. Vol. 1055. Lecture Notes in Computer Science. Springer,
1996, pp. 241-257. DOI: 10.1007/3-540-61042-1_48.

Matthew B. Dwyer, George S. Avrunin, and James C. Corbett.
“Property specification patterns for finite-state verification”. In:
Proceedings of the Second Workshop on Formal Methods in Software
Practice, March 4-5, 1998, Clearwater Beach, Florida, USA. Ed. by
Mark A. Ardis and Joanne M. Atlee. ACM, 1998, pp. 7-15. DOI:
10.1145/298595.298598.

Alexandre Duret-Lutz, Alexandre Lewkowicz, Amaury Fau-
chille, Thibaud Michaud, Etienne Renault, and Laurent Xu.
“Spot 2.0 - A Framework for LTL and w-Automata Manipula-
tion”. In: Automated Technology for Verification and Analysis -
14th International Symposium, ATVA 2016, Chiba, Japan, October
17-20, 2016, Proceedings. Ed. by Cyrille Artho, Axel Legay, and
Doron Peled. Vol. 9938. Lecture Notes in Computer Science.
2016, pp. 122-129. DOI: 10.1007/978-3-319-46520-3_8.

Javier Esparza, Jan Kretinsky, and Salomon Sickert. “From
LTL to deterministic automata - A safraless compositional
approach”. In: Formal Methods in System Design 49.3 (2016),
pp. 219-271. DOI: 10.1007/s10703-016-0259-2.

Javier Esparza, Jan Kretinsky, and Salomon Sickert. “One The-
orem to Rule Them All: A Unified Translation of LTL into w-
Automata”. In: Proceedings of the 33rd Annual ACM/IEEE Sympo-
sium on Logic in Computer Science, LICS 2018, Oxford, UK, July
09-12, 2018. Ed. by Anuj Dawar and Erich Gradel. ACM, 2018,
pp- 384-393. DOI: 10.1145/3209108.3209161.

Javier Esparza, Peter Lammich, René Neumann, Tobias Nip-
kow, Alexander Schimpf, and Jan-Georg Smaus. “A Fully Veri-
fied Executable LTL Model Checker”. In: Computer Aided Verifi-
cation - 25th International Conference, CAV 2013, Saint Petersburg,
Russia, July 13-19, 2013. Proceedings. Ed. by Natasha Sharygina
and Helmut Veith. Vol. 8044. Lecture Notes in Computer Sci-
ence. Springer, 2013, pp. 463-478. DOI: 10.1007/978-3-642-39799-
8_31.

111

https://doi.org/10.1007/3-540-61042-1_48
https://doi.org/10.1145/298595.298598
https://doi.org/10.1007/978-3-319-46520-3_8
https://doi.org/10.1007/s10703-016-0259-2
https://doi.org/10.1145/3209108.3209161
https://doi.org/10.1007/978-3-642-39799-8_31
https://doi.org/10.1007/978-3-642-39799-8_31

[Esp+14]

[Ete99]

[FKV06]

[Gab00]

[Ger+95]

[GOO01]

[God90]

Javier Esparza, Peter Lammich, René Neumann, Tobias Nip-
kow, Alexander Schimpf, and Jan-Georg Smaus. “A Fully Ver-
ified Executable LTL Model Checker”. In: Archive of Formal
Proofs 2014 (2014). URL: https://www.isa-afp.org/entries/CAVA_
LTL_Modelchecker.shtml.

Kousha Etessami. “Stutter-Invariant Languages, omega-Auto-
mata, and Temporal Logic”. In: Computer Aided Verification, 11th
International Conference, CAV 99, Trento, Italy, July 6-10, 1999,
Proceedings. Ed. by Nicolas Halbwachs and Doron A. Peled.
Vol. 1633. Lecture Notes in Computer Science. Springer, 1999,
Pp- 236-248. DOI: 10.1007/3-540-48683-6_22.

Ehud Friedgut, Orna Kupferman, and Moshe Y. Vardi. “Biichi
Complementation Made Tighter”. In: International Journal of
Foundations of Computer Science 17.4 (2006), pp. 851-868. DOI:
10.1142/S0129054106004145.

Harold N. Gabow. “Path-based depth-first search for strong and
biconnected components”. In: Information Processing Letters
74.3-4 (2000), pp. 107-114. DOTI: 10.1016/S0020-0190(00)00051-X.

Rob Gerth, Doron A. Peled, Moshe Y. Vardi, and Pierre Wolper.
“Simple on-the-fly automatic verification of linear temporal
logic”. In: Protocol Specification, Testing and Verification XV, Pro-
ceedings of the Fifteenth IFIP WG6.1 International Symposium on
Protocol Specification, Testing and Verification, Warsaw, Poland,
June 1995. Ed. by Piotr Dembinski and Marek Sredniawa. Vol. 38.
IFIP Conference Proceedings. Chapman & Hall, 1995, pp. 3-18.

Paul Gastin and Denis Oddoux. “Fast LTL to Biichi Automata
Translation”. In: Computer Aided Verification, 13th International
Conference, CAV 2001, Paris, France, July 18-22, 2001, Proceedings.
Ed. by Gérard Berry, Hubert Comon, and Alain Finkel. Vol. 2102.
Lecture Notes in Computer Science. Springer, 2001, pp. 53-65.
DOI: 10.1007/3-540-44585-4_6.

Patrice Godefroid. “Using Partial Orders to Improve Automatic
Verification Methods”. In: Computer Aided Verification, 2nd Inter-
national Workshop, CAV ’90, New Brunswick, NJ, USA, June 18-21,
1990, Proceedings. Ed. by Edmund M. Clarke and Robert P. Kur-
shan. Vol. 531. Lecture Notes in Computer Science. Springer,
1990, pp. 176-185. DOI: 10.1007/BFb0023731.

112

https://www.isa-afp.org/entries/CAVA_LTL_Modelchecker.shtml
https://www.isa-afp.org/entries/CAVA_LTL_Modelchecker.shtml
https://doi.org/10.1007/3-540-48683-6_22
https://doi.org/10.1142/S0129054106004145
https://doi.org/10.1016/S0020-0190(00)00051-X
https://doi.org/10.1007/3-540-44585-4_6
https://doi.org/10.1007/BFb0023731

[God96]

[HK96]

[HN10]

[Hol04]

[Hol97]

[HPY%6]

[Jac06]

[KMS18]

Patrice Godefroid. Partial-Order Methods for the Verification of
Concurrent Systems - An Approach to the State-Explosion Problem.
Vol. 1032. Lecture Notes in Computer Science. Springer, 1996.
ISBN: 3-540-60761-7. DOI: 10.1007/3-540-60761-7.

Gerard J. Holzmann and Orna Kupferman. “Not checking for
closure under stuttering”. In: The Spin Verification System, Pro-
ceedings of a DIMACS Workshop, New Brunswick, New Jersey, USA,
August, 1996. Ed. by Jean-Charles Grégoire, Gerard J. Holzmann,
and Doron A. Peled. Vol. 32. DIMACS Series in Discrete Mathe-
matics and Theoretical Computer Science. DIMACS/AMS, 1996,
pp. 17-22. DOI: 10.1090/dimacs/032/02.

Florian Haftmann and Tobias Nipkow. “Code Generation via
Higher-Order Rewrite Systems”. In: Functional and Logic Pro-
gramming, 10th International Symposium, FLOPS 2010, Sendai,
Japan, April 19-21, 2010. Proceedings. Ed. by Matthias Blume,
Naoki Kobayashi, and German Vidal. Vol. 6009. Lecture Notes
in Computer Science. Springer, 2010, pp. 103-117. DOI: 10.1007/
978-3-642-12251-4_9.

Gerard J. Holzmann. The SPIN Model Checker - primer and refer-
ence manual. Addison-Wesley, 2004. ISBN: 978-0-321-22862-8.

Gerard J. Holzmann. “The Model Checker SPIN”. In: IEEE Trans-
actions on Software Engineering 23.5 (1997), pp. 279-295. DOI:
10.1109/32.588521.

Gerard J. Holzmann, Doron A. Peled, and Mihalis Yannakakis.
“On nested depth first search”. In: The Spin Verification System,
Proceedings of a DIMACS Workshop, New Brunswick, New Jersey,
USA, August, 1996. Ed. by Jean-Charles Grégoire, Gerard J. Holz-
mann, and Doron A. Peled. Vol. 32. DIMACS Series in Discrete
Mathematics and Theoretical Computer Science. DIMACS/AMS,
1996, pp. 23-31. DOI: 10.1090/dimacs/032/03.

Daniel Jackson. Software Abstractions - Logic, Language, and
Analysis. MIT Press, 2006. ISBN: 978-0-262-10114-1. URL: http:
//mitpress.mit.edu/catalog/item/default.asp?ttype=2&tid=
10928.

Jan Kretinsky, Tobias Meggendorfer, and Salomon Sickert.
“Owl: A Library for w-Words, Automata, and LTL”. In: Auto-
mated Technology for Verification and Analysis - 16th International
Symposium, ATVA 2018, Los Angeles, CA, USA, October 7-10,

113

https://doi.org/10.1007/3-540-60761-7
https://doi.org/10.1090/dimacs/032/02
https://doi.org/10.1007/978-3-642-12251-4_9
https://doi.org/10.1007/978-3-642-12251-4_9
https://doi.org/10.1109/32.588521
https://doi.org/10.1090/dimacs/032/03
http://mitpress.mit.edu/catalog/item/default.asp?ttype=2&tid=10928
http://mitpress.mit.edu/catalog/item/default.asp?ttype=2&tid=10928
http://mitpress.mit.edu/catalog/item/default.asp?ttype=2&tid=10928

[KNP11]

[Kur+98]

[Kur94]

[KV01]

[LamO09]

[Lam12]

[Lam13a]

[Lam13b]

2018, Proceedings. Ed. by Shuvendu K. Lahiri and Chao Wang.
Vol. 11138. Lecture Notes in Computer Science. Springer, 2018,
pp- 543-550. DOI: 10.1007/978-3-030-01090-4_34.

Marta Z. Kwiatkowska, Gethin Norman, and David Parker.
“PRISM 4.0: Verification of Probabilistic Real-Time Systems”.
In: Computer Aided Verification - 23rd International Conference,
CAV 2011, Snowbird, UT, USA, July 14-20, 2011. Proceedings. Ed. by
Ganesh Gopalakrishnan and Shaz Qadeer. Vol. 6806. Lecture
Notes in Computer Science. Springer, 2011, pp. 585-591. DOI:
10.1007/978-3-642-22110-1_47.

Robert P. Kurshan, Vladimir Levin, Marius Minea, Doron A.
Peled, and Hiisnii Yenigiin. “Static Partial Order Reduction”. In:
Tools and Algorithms for Construction and Analysis of Systems, 4th
International Conference, TACAS ’98, Held as Part of the European
Joint Conferences on the Theory and Practice of Software, ETAPS’98,
Lisbon, Portugal, March 28 - April 4, 1998, Proceedings. Ed. by
Bernhard Steffen. Vol. 1384. Lecture Notes in Computer Science.
Springer, 1998, pp. 345-357. DOI: 10.1007/BFb0054182.

Robert P. Kurshan. Computer-Aided Verification of Coordinating
Processes. The Automata-Theoretic Approach. Princeton Series
in Computer Science. Princeton University Press, 1994. ISBN:
978-0691034362.

Orna Kupferman and Moshe Y. Vardi. “Weak alternating au-
tomata are not that weak”. In: ACM Transactions on Computa-
tional Logic 2.3 (2001), pp. 408-429. DOI: 10.1145/377978.377993.

Peter Lammich. “Collections Framework”. In: Archive of Formal
Proofs 2009 (2009). URL: https://www.isa-afp.org/entries/
Collections.shtml.

Peter Lammich. “Refinement for Monadic Programs”. In: Ar-
chive of Formal Proofs 2012 (2012). URL: https://www.isa-afp.org/
entries/Refine_Monadic.shtml.

Peter Lammich. “Automatic Data Refinement”. In: Archive of
Formal Proofs 2013 (2013). URL: https://www.isa-afp.org/entries/
Automatic_Refinement.shtml.

Peter Lammich. “Automatic Data Refinement”. In: Interactive
Theorem Proving - 4th International Conference, ITP 2013, Rennes,
France, July 22-26, 2013. Proceedings. Ed. by Sandrine Blazy,

114

https://doi.org/10.1007/978-3-030-01090-4_34
https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1007/BFb0054182
https://doi.org/10.1145/377978.377993
https://www.isa-afp.org/entries/Collections.shtml
https://www.isa-afp.org/entries/Collections.shtml
https://www.isa-afp.org/entries/Refine_Monadic.shtml
https://www.isa-afp.org/entries/Refine_Monadic.shtml
https://www.isa-afp.org/entries/Automatic_Refinement.shtml
https://www.isa-afp.org/entries/Automatic_Refinement.shtml

[Laml4a]

[Lam14b]

[Laml4c]

[Lam15]

[Lam16]

[LL10]

[LMO07]

Christine Paulin-Mohring, and David Pichardie. Vol. 7998. Lec-
ture Notes in Computer Science. Springer, 2013, pp. 84-99. DOI:
10.1007/978-3-642-39634-2_9.

Peter Lammich. “The CAVA Automata Library”. In: Archive of
Formal Proofs 2014 (2014). URL: https://www.isa-afp.org/entries/
CAVA_Automata.shtml.

Peter Lammich. “Verified Efficient Implementation of Gabow’s
Strongly Connected Component Algorithm”. In: Interactive The-
orem Proving - 5th International Conference, ITP 2014, Held as Part
of the Vienna Summer of Logic, VSL 2014, Vienna, Austria, July 14-
17, 2014. Proceedings. Ed. by Gerwin Klein and Ruben Gamboa.
Vol. 8558. Lecture Notes in Computer Science. Springer, 2014,
pPp- 325-340. DOI: 10.1007/978-3-319-08970-6_21.

Peter Lammich. “Verified Efficient Implementation of Gabow’s
Strongly Connected Components Algorithm”. In: Archive of
Formal Proofs 2014 (2014). URL: https://www.isa-afp.org/entries/
Gabow_SCC.shtml.

Peter Lammich. “Refinement to Imperative/HOL”. In: Inter-
active Theorem Proving - 6th International Conference, ITP 2015,
Nanjing, China, August 24-27, 2015, Proceedings. Ed. by Christian
Urban and Xingyuan Zhang. Vol. 9236. Lecture Notes in Com-
puter Science. Springer, 2015, pp. 253-269. DOI: 10.1007/978-3-
319-22102-1_17.

Peter Lammich. “The Imperative Refinement Framework”. In:
Archive of Formal Proofs 2016 (2016). URL: https://www.isa-
afp.org/entries/Refine_Imperative_HOL.shtml.

Peter Lammich and Andreas Lochbihler. “The Isabelle Collec-
tions Framework”. In: Interactive Theorem Proving, First Inter-
national Conference, ITP 2010, Edinburgh, UK, July 11-14, 2010.
Proceedings. Ed. by Matt Kaufmann and Lawrence C. Paulson.
Vol. 6172. Lecture Notes in Computer Science. Springer, 2010,
pPp- 339-354. DOI: 10.1007/978-3-642-14052-5_24.

Peter Lammich and Markus Miiller-Olm. “Formalization of
Conflict Analysis of Programs with Procedures, Thread Cre-
ation, and Monitors”. In: Archive of Formal Proofs 2007 (2007).
URL: https://www.isa-afp.org/entries/Program- Conflict-
Analysis.shtml.

115

https://doi.org/10.1007/978-3-642-39634-2_9
https://www.isa-afp.org/entries/CAVA_Automata.shtml
https://www.isa-afp.org/entries/CAVA_Automata.shtml
https://doi.org/10.1007/978-3-319-08970-6_21
https://www.isa-afp.org/entries/Gabow_SCC.shtml
https://www.isa-afp.org/entries/Gabow_SCC.shtml
https://doi.org/10.1007/978-3-319-22102-1_17
https://doi.org/10.1007/978-3-319-22102-1_17
https://www.isa-afp.org/entries/Refine_Imperative_HOL.shtml
https://www.isa-afp.org/entries/Refine_Imperative_HOL.shtml
https://doi.org/10.1007/978-3-642-14052-5_24
https://www.isa-afp.org/entries/Program-Conflict-Analysis.shtml
https://www.isa-afp.org/entries/Program-Conflict-Analysis.shtml

[LN15]

[LN16]

[Loc10]

[LT12]

[Maz86]

[Mer00]

[Mer12]

[Mic88]

Peter Lammich and René Neumann. “A Framework for Verify-
ing Depth-First Search Algorithms”. In: Proceedings of the 2015
Conference on Certified Programs and Proofs, CPP 2015, Mumbai,
India, January 15-17, 2015. Ed. by Xavier Leroy and Alwen Tiu.
ACM, 2015, pp. 137-146. DOI: 10.1145/2676724.2693165.

Peter Lammich and René Neumann. “A Framework for Ver-
ifying Depth-First Search Algorithms”. In: Archive of Formal
Proofs 2016 (2016). URL: https://www.isa-afp.org/entries/DFS_
Framework.shtml.

Andreas Lochbihler. “Coinductive”. In: Archive of Formal Proofs
2010 (2010). URL: https://www.isa-afp.org/entries/Coinductive.
shtml.

Peter Lammich and Thomas Tuerk. “Applying Data Refinement
for Monadic Programs to Hopcroft’s Algorithm”. In: Interactive
Theorem Proving - Third International Conference, ITP 2012, Prince-
ton, NJ, USA, August 13-15, 2012. Proceedings. Ed. by Lennart
Beringer and Amy P. Felty. Vol. 7406. Lecture Notes in Com-
puter Science. Springer, 2012, pp. 166-182. DOI: 10.1007/978-3-
642-32347-8_12.

Antoni W. Mazurkiewicz. “Trace Theory”. In: Petri Nets: Central
Models and Their Properties, Advances in Petri Nets 1986, Part
II, Proceedings of an Advanced Course, Bad Honnef, Germany, 8-
19 September 1986. Ed. by Wilfried Brauer, Wolfgang Reisig,
and Grzegorz Rozenberg. Vol. 255. Lecture Notes in Computer
Science. Springer, 1986, pp. 279-324. DOI: 10.1007/3-540-17906-
2_30.

Stephan Merz. “Weak Alternating Automata in Isabelle/HOL”.
In: Theorem Proving in Higher Order Logics, 13th International
Conference, TPHOLSs 2000, Portland, Oregon, USA, August 14-18,
2000, Proceedings. Ed. by Mark Aagaard and John Harrison.
Vol. 1869. Lecture Notes in Computer Science. Springer, 2000,
pp. 424-441. DOL: 10.1007/3-540-44659-1_26.

Stephan Merz. “Stuttering Equivalence”. In: Archive of Formal
Proofs 2012 (2012). URL: https://www.isa-afp.org/entries/
Stuttering_Equivalence.shtml.

Max Michel. “Complementation is more difficult with automata
on infinite words”. Manuscript. 1988.

116

https://doi.org/10.1145/2676724.2693165
https://www.isa-afp.org/entries/DFS_Framework.shtml
https://www.isa-afp.org/entries/DFS_Framework.shtml
https://www.isa-afp.org/entries/Coinductive.shtml
https://www.isa-afp.org/entries/Coinductive.shtml
https://doi.org/10.1007/978-3-642-32347-8_12
https://doi.org/10.1007/978-3-642-32347-8_12
https://doi.org/10.1007/3-540-17906-2_30
https://doi.org/10.1007/3-540-17906-2_30
https://doi.org/10.1007/3-540-44659-1_26
https://www.isa-afp.org/entries/Stuttering_Equivalence.shtml
https://www.isa-afp.org/entries/Stuttering_Equivalence.shtml

[Neul4]

[NPWO02]

[NTA96]

[NVW20]

[Pel9o3]

[Pelo6]

[Pel9s]

René Neumann. “Using Promela in a Fully Verified Executable
LTL Model Checker”. In: Verified Software: Theories, Tools and
Experiments - 6th International Conference, VSTTE 2014, Vienna,
Austria, July 17-18, 2014, Revised Selected Papers. Ed. by Dimitra
Giannakopoulou and Daniel Kroening. Vol. 8471. Lecture Notes
in Computer Science. Springer, 2014, pp. 105-114. DOI: 10.1007/
978-3-319-12154-3_7.

Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Is-
abelle/HOL - A Proof Assistant for Higher-Order Logic. Vol. 2283.
Lecture Notes in Computer Science. Springer, 2002. ISBN: 3-
540-43376-7. DOI: 10.1007/3-540-45949-9.

Mohamed Naimi, Michel Tréhel, and André Arnold. “A Log(N)
Distributed Mutual Exclusion Algorithm Based on Path Rever-
sal”. In: Journal of Parallel and Distributed Computing 34.1(1996),
pp. 1-13. DOI: 10.1006/jpdc.1996.0041.

Thomas Neele, Antti Valmari, and Tim A. C. Willemse. “The
Inconsistent Labelling Problem of Stutter-Preserving Partial-
Order Reduction”. In: Foundations of Software Science and Com-
putation Structures - 23rd International Conference, FOSSACS 2020,
Held as Part of the European Joint Conferences on Theory and Prac-
tice of Software, ETAPS 2020, Dublin, Ireland, April 25-30, 2020,
Proceedings. Ed. by Jean Goubault-Larrecq and Barbara Konig.
Vol. 12077. Lecture Notes in Computer Science. Springer, 2020,
pp- 482-501. DOI: 10.1007/978-3-030-45231-5_25.

Doron A. Peled. “All from One, One for All: on Model Checking
Using Representatives”. In: Computer Aided Verification, 5th
International Conference, CAV "93, Elounda, Greece, June 28 - July 1,
1993, Proceedings. Ed. by Costas Courcoubetis. Vol. 697. Lecture
Notes in Computer Science. Springer, 1993, pp. 409-423. DOI:
10.1007/3-540-56922-7_34.

Doron A. Peled. “Combining Partial Order Reductions with On-
the-Fly Model-Checking”. In: Formal Methods in System Design
8.1 (1996), pp. 39-64. DOI: 10.1007/BF00121262.

Doron A. Peled. “Ten Years of Partial Order Reduction”. In:
Computer Aided Verification, 10th International Conference, CAV
’98, Vancouver, BC, Canada, June 28 - July 2, 1998, Proceedings.
Ed. by Alan J. Hu and Moshe Y. Vardi. Vol. 1427. Lecture Notes
in Computer Science. Springer, 1998, pp. 17-28. DOI: 10.1007/
BFb0028727.

117

https://doi.org/10.1007/978-3-319-12154-3_7
https://doi.org/10.1007/978-3-319-12154-3_7
https://doi.org/10.1007/3-540-45949-9
https://doi.org/10.1006/jpdc.1996.0041
https://doi.org/10.1007/978-3-030-45231-5_25
https://doi.org/10.1007/3-540-56922-7_34
https://doi.org/10.1007/BF00121262
https://doi.org/10.1007/BFb0028727
https://doi.org/10.1007/BFb0028727

[Pnu77]

[PW97]

[RS59]

[Sac+19]

[Sac19]

[Saf88]

[Sch09]

[SEO5]

Amir Pnueli. “The Temporal Logic of Programs”. In: 18th An-
nual Symposium on Foundations of Computer Science, Providence,
Rhode Island, USA, 31 October - 1 November 1977. IEEE Computer
Society, 1977, pp. 46-57. DOI: 10.1109/SFCS.1977.32.

Doron A. Peled and Thomas Wilke. “Stutter-Invariant Temporal
Properties are Expressible Without the Next-Time Operator”.
In: Information Processing Letters 63.5 (1997), pp. 243-246. DOI:
10.1016/S0020-0190(97)00133-6.

Michael O. Rabin and Dana S. Scott. “Finite Automata and Their
Decision Problems”. In: IBM Journal of Research and Develop-
ment 3.2 (1959), pp. 114-125. DOI: 10.1147/rd.32.0114.

Robert Sachtleben, Robert M. Hierons, Wen-ling Huang, and
Jan Peleska. “A Mechanised Proof of an Adaptive State Counting
Algorithm”. In: Testing Software and Systems - 31st IFIP WG 6.1
International Conference, ICTSS 2019, Paris, France, October 15-17,
2019, Proceedings. Ed. by Christophe Gaston, Nikolai Kosmatov,
and Pascale Le Gall. Vol. 11812. Lecture Notes in Computer
Science. Springer, 2019, pp. 176-193. DOI: 10.1007/978-3-030-
31280-0_11.

Robert Sachtleben. “Formalisation of an Adaptive State Count-
ing Algorithm”. In: Archive of Formal Proofs 2019 (2019). URL:
https://www.isa-afp.org/entries/Adaptive_State_Counting.
html.

Shmuel Safra. “On the Complexity of omega-Automata”. In:
29th Annual Symposium on Foundations of Computer Science,
White Plains, New York, USA, 24-26 October 1988. IEEE Computer
Society, 1988, pp. 319-327. DOI: 10.1109/SFCS.1988.21948.

Sven Schewe. “Biichi Complementation Made Tight”. In: 26th
International Symposium on Theoretical Aspects of Computer Sci-
ence, STACS 2009, February 26-28, 2009, Freiburg, Germany, Pro-
ceedings. Ed. by Susanne Albers and Jean-Yves Marion. Vol. 3.
LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik,
Germany, 2009, pp. 661-672. DOI: 10.4230/LIPIcs.STACS.20009.
1854.

Stefan Schwoon and Javier Esparza. “A Note on On-the-Fly
Verification Algorithms”. In: Tools and Algorithms for the Con-
struction and Analysis of Systems, 11th International Conference,
TACAS 2005, Held as Part of the Joint European Conferences on The-
ory and Practice of Software, ETAPS 2005, Edinburgh, UK, April

118

https://doi.org/10.1109/SFCS.1977.32
https://doi.org/10.1016/S0020-0190(97)00133-6
https://doi.org/10.1147/rd.32.0114
https://doi.org/10.1007/978-3-030-31280-0_11
https://doi.org/10.1007/978-3-030-31280-0_11
https://www.isa-afp.org/entries/Adaptive_State_Counting.html
https://www.isa-afp.org/entries/Adaptive_State_Counting.html
https://doi.org/10.1109/SFCS.1988.21948
https://doi.org/10.4230/LIPIcs.STACS.2009.1854
https://doi.org/10.4230/LIPIcs.STACS.2009.1854

[Sic+16]

[Sicl5]

[Sic16]

[Siel2]

[Siel9]

[SMS09]

[SS19]

4-8, 2005, Proceedings. Ed. by Nicolas Halbwachs and Lenore D.
Zuck. Vol. 3440. Lecture Notes in Computer Science. Springer,
2005, pp. 174-190. DOI: 10.1007/978-3-540-31980-1_12.

Salomon Sickert, Javier Esparza, Stefan Jaax, and Jan Kretin-
sky. “Limit-Deterministic Bilichi Automata for Linear Tempo-
ral Logic”. In: Computer Aided Verification - 28th International
Conference, CAV 2016, Toronto, ON, Canada, July 17-23, 2016, Pro-
ceedings, Part II. Ed. by Swarat Chaudhuri and Azadeh Farzan.
Vol. 9780. Lecture Notes in Computer Science. Springer, 2016,
pp. 312-332. DOI: 10.1007/978-3-319-41540-6_17.

Salomon Sickert. “Converting Linear Temporal Logic to Deter-
ministic (Generalised) Rabin Automata”. In: Archive of Formal
Proofs 2015 (2015). URL: https://www.isa-afp.org/entries/LTL_
to_DRA.shtml.

Salomon Sickert. “Linear Temporal Logic”. In: Archive of Formal
Proofs 2016 (2016). URL: https://www.isa-afp.org/entries/LTL.
shtml.

Stephen F. Siegel. “Transparent partial order reduction”. In:
Formal Methods in System Design 40.1 (2012), pp. 1-19. DOI: 10.
1007/s10703-011-0126-0.

Stephen F. Siegel. “What’s Wrong with On-the-Fly Partial Order
Reduction”. In: Computer Aided Verification - 31st International
Conference, CAV 2019, New York City, NY, USA, July 15-18, 2019, Pro-
ceedings, Part II. Ed. by Isil Dillig and Serdar Tasiran. Vol. 11562.
Lecture Notes in Computer Science. Springer, 2019, pp. 478-
495. DOI: 10.1007/978-3-030-25543-5_27.

Alexander Schimpf, Stephan Merz, and Jan-Georg Smaus. “Con-
struction of Biichi Automata for LTL Model Checking Verified
in Isabelle/HOL”. In: Theorem Proving in Higher Order Logics,
22nd International Conference, TPHOLs 2009, Munich, Germany,
August 17-20, 2009. Proceedings. Ed. by Stefan Berghofer, Tobias
Nipkow, Christian Urban, and Makarius Wenzel. Vol. 5674. Lec-
ture Notes in Computer Science. Springer, 2009, pp. 424-439.
DOI: 10.1007/978-3-642-03359-9_29.

Benedikt Seidl and Salomon Sickert. “A Compositional and
Unified Translation of LTL into w-Automata”. In: Archive of
Formal Proofs 2019 (2019). URL: https://www.isa-afp.org/
entries/LTL_Master_Theorem.html.

119

https://doi.org/10.1007/978-3-540-31980-1_12
https://doi.org/10.1007/978-3-319-41540-6_17
https://www.isa-afp.org/entries/LTL_to_DRA.shtml
https://www.isa-afp.org/entries/LTL_to_DRA.shtml
https://www.isa-afp.org/entries/LTL.shtml
https://www.isa-afp.org/entries/LTL.shtml
https://doi.org/10.1007/s10703-011-0126-0
https://doi.org/10.1007/s10703-011-0126-0
https://doi.org/10.1007/978-3-030-25543-5_27
https://doi.org/10.1007/978-3-642-03359-9_29
https://www.isa-afp.org/entries/LTL_Master_Theorem.html
https://www.isa-afp.org/entries/LTL_Master_Theorem.html

[SS78]

[SVW87]

[Tsa+07]

[Tsa+14]

[Val89]

[Var07]

[Var95]

William J. Sakoda and Michael Sipser. “Nondeterminism and
the Size of Two Way Finite Automata”. In: Proceedings of the 10th
Annual ACM Symposium on Theory of Computing, May 1-3, 1978,
San Diego, California, USA. Ed. by Richard J. Lipton, Walter A.
Burkhard, Walter J. Savitch, Emily P. Friedman, and Alfred V.
Aho. ACM, 1978, pp. 275-286. DOI: 10.1145/800133.804357.

A. Prasad Sistla, Moshe Y. Vardi, and Pierre Wolper. “The Com-
plementation Problem for Biichi Automata with Appplications
to Temporal Logic”. In: Theoretical Computer Science 49 (1987),
pp. 217-237. DOI: 10.1016/0304-3975(87)90008-9.

Yih-Kuen Tsay, Yu-Fang Chen, Ming-Hsien Tsai, Kang-Nien
Wu, and Wen-Chin Chan. “GOAL: A Graphical Tool for Manip-
ulating Biichi Automata and Temporal Formulae”. In: Tools
and Algorithms for the Construction and Analysis of Systems, 13th
International Conference, TACAS 2007, Held as Part of the Joint Eu-
ropean Conferences on Theory and Practice of Software, ETAPS 2007
Braga, Portugal, March 24 - April 1, 2007, Proceedings. Ed. by Orna
Grumberg and Michael Huth. Vol. 4424. Lecture Notes in Com-
puter Science. Springer, 2007, pp. 466—471. DOI: 10.1007/978-3-
540-71209-1_35.

Ming-Hsien Tsai, Seth Fogarty, Moshe Y. Vardi, and Yih-Kuen
Tsay. “State of Blichi Complementation”. In: Logical Methods in
Computer Science 10.4 (2014). DOI: 10.2168/LMCS-10(4:13)2014.

Antti Valmari. “Stubborn sets for reduced state space gener-
ation”. In: Advances in Petri Nets 1990 [10th International Con-
ference on Applications and Theory of Petri Nets, Bonn, Germany,
June 1989, Proceedings]. Ed. by Grzegorz Rozenberg. Vol. 483.
Lecture Notes in Computer Science. Springer, 1989, pp. 491-515.
DOI: 10.1007/3-540-53863-1_36.

Moshe Y. Vardi. “The Biichi Complementation Saga”. In: STACS
2007, 24th Annual Symposium on Theoretical Aspects of Computer
Science, Aachen, Germany, February 22-24, 2007, Proceedings. Ed.
by Wolfgang Thomas and Pascal Weil. Vol. 4393. Lecture Notes
in Computer Science. Springer, 2007, pp. 12-22. DOI: 10.1007/
978-3-540-70918-3_2.

Moshe Y. Vardi. “An Automata-Theoretic Approach to Linear
Temporal Logic”. In: Logics for Concurrency - Structure versus
Automata (8th Banff Higher Order Workshop, Banff, Canada, Au-
gust 27 - September 3, 1995, Proceedings). Ed. by Faron Moller and

120

https://doi.org/10.1145/800133.804357
https://doi.org/10.1016/0304-3975(87)90008-9
https://doi.org/10.1007/978-3-540-71209-1_35
https://doi.org/10.1007/978-3-540-71209-1_35
https://doi.org/10.2168/LMCS-10(4:13)2014
https://doi.org/10.1007/3-540-53863-1_36
https://doi.org/10.1007/978-3-540-70918-3_2
https://doi.org/10.1007/978-3-540-70918-3_2

Graham M. Birtwistle. Vol. 1043. Lecture Notes in Computer
Science. Springer, 1995, pp. 238-266. DOI: 10.1007/3-540-60915-
6_6.

[VWS86] Moshe Y. Vardi and Pierre Wolper. “An Automata-Theoretic
Approach to Automatic Program Verification (Preliminary Re-
port)”. In: Proceedings of the Symposium on Logic in Computer
Science (LICS ’86), Cambridge, Massachusetts, USA, June 16-18,
1986. IEEE Computer Society, 1986, pp. 332-344.

[Wad92] Philip Wadler. “Comprehending Monads”. In: Mathematical
Structures in Computer Science 2.4 (1992), pp. 461-493. DOTI: 10.
1017/S0960129500001560.

121

https://doi.org/10.1007/3-540-60915-6_6
https://doi.org/10.1007/3-540-60915-6_6
https://doi.org/10.1017/S0960129500001560
https://doi.org/10.1017/S0960129500001560

	I Discussion
	Introduction
	Interactive Theorem Proving
	Isabelle
	Verification
	Refinement
	Sequences

	Automatic Verification
	Linear Temporal Logic
	Omega Automata
	Logic and Automata
	Model Checking
	Formalization

	Transition Systems and Automata
	Architecture
	Prerequisites
	Transition Systems
	Intermediates
	Automata
	Implementation
	Formalization

	Partial Order Reduction
	Theory
	Abstract Correctness
	Static Partial Order Reduction
	Dynamic Partial Order Reduction
	Results

	Büchi Complementation
	Complementation
	Equivalence
	Results

	Conclusion

	II Relevant Publications
	Partial Order Reduction
	Introduction
	Theory
	Reduction Conditions
	Reduction Algorithm

	Formalization
	Isabelle/HOL
	Refinement Framework
	Basics
	Systems
	Trace Theory
	Abstract Correctness
	The SM Language
	Reduction Algorithm
	Architecture of the Cava Model Checker
	Integration of Partial Order Reduction

	Evaluation
	Dynamic Partial Order Reduction with On-The-Fly Model Checking
	Conclusion
	References

	Büchi Complementation
	Introduction
	Theory
	Notation
	Complementation
	Complexity and Optimizations
	Equivalence

	Formalization
	Isabelle/Hol
	Basics
	Transition Systems and Automata
	Run Dags
	Odd Rankings
	Complement Automaton
	Refinement Framework
	Implementation
	Equivalence
	Integration

	Evaluation
	Conclusion
	References

	III Extra Publications
	Ltl Translation
	Introduction
	Preliminaries
	Transition Systems and Automata
	Abstract Transition Systems
	Concrete Automata
	Predefined Automata
	Executable Implementation
	Formalisation
	Contributions to the Translation Formalisation

	The Master Theorem: Decomposing LTL Formulas
	The "after"-Function
	Syntactic Fragments of LTL
	The Master Theorem

	Deriving the DRA Construction
	Constructing Automata for L1, L2, and L3
	Assembling the Pieces
	A Verified LTL Translator

	Concluding Remarks
	References

	IV Bibliography

