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ABSTRACT
Manual software testing is tedious and costly as it involves signif-

icant human effort. Yet, it is still widely applied in industry and

will be in the foreseeable future. Although there is arguably a great

need for optimization of manual testing processes, research focuses

mostly on optimization techniques for automated tests. Accordingly,

there is no precise understanding of the practices and processes of

manual testing in industry nor about pitfalls and optimization po-

tential that is untapped. To shed light on this issue, we conducted

a survey among 38 testing professionals from 16 companies, to

investigate their manual testing processes and to identify poten-

tial for optimization. We synthesize guidelines when optimization

techniques from automated testing can be implemented for manual

testing. Bymeans of case studies on two industrial software projects,

we show that fault detection likelihood, test feedback time and test

creation efforts can be improved when following our guidelines.

CCS CONCEPTS
• Software and its engineering → Software testing and de-
bugging.
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1 INTRODUCTION
Manual software testing is tedious, costly, and involves significant

human effort. Yet, according to a recent survey, it is still widely

applied in industry [1]. Despite the availability of advanced test

automation techniques, previous research reports that manual soft-

ware testing often complements automated testing [10, 26]. In fact,

manual testing strategies can arguably detect other software faults

than automated strategies [4]. Depending on the project’s context,

automation might be too costly [37], too complex [36], or even

impossible [35], so there is no way around manual testing in the

foreseeable future.

With an increasing number of test cases and execution frequency,

due to shortening release cycles, long-running test suites impede the

software development process [18, 38]. There has been significant

research effort on optimizing automated testing, for example, on re-

gression test optimization [6–8, 12, 14, 15, 25, 28, 31]. Still, only few

research efforts attempt to transfer techniques such as regression

test selection [5, 30], regression test prioritization [17, 22], or failure

prediction [18] to manual software testing. Transfer is hindered,
among other things, by missing required data (e.g., unavailability

of code coverage information [17]): In contrast to automated test-

ing, manual testing processes are not necessarily integrated with

version control or continuous integration systems, test (reporting)

frameworks, and build or code instrumentation tools. In fact, it is

often precisely manual tests that hamper the rapid development of

systems, so optimizing them is even more important [17, 18].

Research Gap. While the few existing studies on optimizing man-

ual testing investigate the design and evaluation of specific tech-

niques in specific contexts, it is unclear for which automated tech-

nique(s) an existing manual testing process is an eligible target:

What data are available, easily producible, and can be leveraged

in which ways? Consequently, to foster adoption of manual test

optimization, practitioners need to understand what techniques are
applicable and how to integrate them in their existing processes

and infrastructure.

Solution. To address this gap, we qualitatively analyze the preva-

lence, characteristics, and problems of manual testing activities and

processes by surveying 38 test practitioners from 16 companies

and different project contexts. The goal is to discover and system-

atize characteristics of manual testing that deviate from automated

testing and that hinder or enable optimization of manual testing.
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We aim at deriving an actionable set of guidelines that empowers

practitioners to quickly identify potential for optimization in their

own context and reveal what researchers shall address. For this pur-

pose, we investigate the transferability of optimization techniques

from the literature and further derive techniques based on levers

identified in our survey. We synthesize our findings as guidelines

in the form of an annotated manual software testing process model,
which highlights integration points for optimization techniques

and summarizes associated prerequisites and caveats. By means

of case studies on two industrial software projects from different

domains we show that, using our guidelines, test feedback time and

test suite maintainability can be improved.

Contributions. Our contributions are the following:
• Developer Survey. Evidence that manual testing is deliber-

ately employed without the intention of full automation,

underlining the need for optimizing manual testing. We pro-

vide quantitative and qualitative insights on how software

is tested manually in practice.

• Optimization Guidelines. A set of guidelines rooted in an

annotated process model and derived from our developer

survey to implement 9 optimization techniques for manual

testing. We explain how to leverage existing processes and

highlight integration points.

• Industrial Case Studies. Demonstration of the guidelines’ use-

fulness in two industrial case studies. We pinpoint levers

that can reduce test feedback time and test creation efforts.

The survey results, analyses, and the optimization guidelines are

publicly available in our supplemental repository
1
.

2 RELATEDWORK
Studies from 2011 and 2013 on the state of software testing practice

report that more than 90% of survey participants test their software

manually [9, 11]. While participants of these studies see room for

improvement with regard to their testing strategy (e.g., through

better automation), they lack the resources to implement these. We

have argued that optimization of manual software testing processes

requires attention, as it addresses such scenarios where manual

testing is inevitable [35, 36] or deliberately employed [10, 26].

Test optimization is widespread in automated testing [6–8, 12, 14,

15, 25, 28, 31], but techniques are often not transferable to manual

testing due to missing data (e.g., code coverage information) [18]

or unsuitable testing processes (e.g., only black-box access during

testing) [17]. Despite these difficulties, several researchers have

applied techniques to optimize different aspects of manual test-

ing [2, 5, 17, 18, 21, 22, 30]. For example, Hemmati et al. [17] stud-

ied prioritization for manual regression tests on releases of Mozilla

Firefox. In general, these techniques are often tightly coupled to

specific testing processes or rely on specific data whose availability

depends on the context.

We aim at guidelines for developers and testers that identify

where existing optimization techniques can be used in practice

based on their associated prerequisites. In addition, we pinpoint the

challenges that arise in manual testing guiding further research in

this area. Therefore, in what follows, we thoroughly review existing

work and collect prerequisites and caveats for common optimization

1
https://github.com/manual-testing-study/manual-testing-esec-fse-21/

techniques, as shown in Table 1. The optimization techniques are

later consolidated with findings from our empirical study in Sec. 3.4

to provide a holistic view on manual test optimization.

Table 1: Prerequisites and caveats of existing techniques to
optimize manual testing

Ref. Prerequisites Caveats

1. Test Prioritization
[17] Textual test descriptions,

test failure history

Less effective in traditional

development approaches

[22] Textual test descriptions, test failure

and execution history, expert labels

to prioritize tests, test–requirement links

Labels and links are hard to obtain

in retrospective and, if available,

maintenance requires discipline

2. Test Selection
[21] Test traces, familiarity of testers

with code base

Under-specification of tests

leads to unstable traces

[5] Textual test descriptions, static code

analysis tool, program profiler

Accuracy of static analysis low (90%)

[30] Test traces, adjustment of system to

separate traces for parallel testing

Unsuitable in the case of large

or frequent changes

3. Test Gap Analysis
[3] Test traces, version control data Up-to-date test traces are costly,

data granularity is critical

4. Test Case Reduction
[18] Textual test descriptions,

test failure history

Test cases need to have similar

textual descriptions and there must not

exist flaky tests to enable reduction

5. Refactoring
[2] Textual test descriptions, individual test

steps, expert labels for test suites

Varying effectiveness

depending on the test suite

6. Test Quality Monitoring
[16] Textual test descriptions Parameterization requires experience

Test Prioritization. Hemmati et al. [17] were the first to study

regression test prioritization for manual black-box system testing

on releases of Mozilla Firefox. They found that in agile development

environments, historical riskiness (i.e., how often test cases have

detected faults before) is an effective surrogate for prioritizing

tests when compared to approaches based on text mining test-case

descriptions. Lachmann et al. [22] proposed to use machine learning

to learn from test execution history (i.e., failures and execution

time), requirements coverage, and test case descriptions to prioritize

manual system tests. Their approach is more effective than random

ordering, but requires labels, reflecting how important a test case

is, which are obtained from test experts.

Test Selection. Juergens et al. [21] report on an industrial case

study that demonstrates challenges of applying test selection to

manual system tests based onmethod-level test traces. They suggest

to use a semi-automated process in practice, where testers could re-

duce the set of tests with domain knowledge. However, one caveat

of this strategy is that testers need to know how to map code modi-

fications to test cases, which, in general, is not the case. In addition,

the common under-specification of manual tests leads to unstable

test traces, which reduces the effectiveness of the technique. Eder

et al. [5] propose an approach for regression test selection that

harnesses static analyses of the tested system’s source code and

manual system tests written in natural language to recover trace

links between the two. Their evaluation, performed on one system

and four test cases, indicates that their technique outperforms ran-

dom selection of test cases, but even 90% correctly linked source

code methods may be insufficient in practice. However, calibrating

and evaluating the approach still involves a program profiler, which
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limits its transferability. In a case study on manual end-to-end test-

ing of legacy Web applications, Nakagawa et al. [30] show that

their simple test selection approach based on method-level test

traces yields test effort reductions compared to manual selection.

However, it is not suitable in the presence of frequent or large code

changes due to the performance penalty of dynamic analysis.

TestGapAnalysis. Buchgeher et al. [3] describe a semi-automated

approach for manual regression test selection. Although their se-

lection technique reveals deficiencies in effectiveness, it provides

practical benefits for test gap analysis, that is, finding modifications

not covered by tests. Alongside, Buchgeher et al. state that selecting

tests solely by code coverage leads to unnecessarily large sets of test

cases, version control data is too coarse grained for their purposes,

and keeping up-to-date coverage data for manual tests is costly.

Test Case Reduction. Hemmati et al. [18] investigate text mining-

techniques coupled with failure history-based analysis for failure

prediction of system-level manual acceptance tests. Their technique

can be used for test case reduction, that is, for test suite maintenance

by minimizing the test suite permanently, but also for selection and

prioritization. Accordingly, their technique outperforms a naïve

history-based model. It is the only work we found that explicitly

states applicability for test case reduction, although such techniques

are often overlapping with prioritization and selection [38].

Refactoring. Bernard et al. [2] aim at improving tool support for

refactoring manual tests to increase test suite maintainability, (e.g.,

through guided test suite minimization). For this purpose, they

employ various text mining and machine learning algorithms on

test steps in test case descriptions and report time reductions for

refactoring and for execution of the refactored test suite. To apply

the technique to a test suite, testers have to supply complexity

estimates of the test suite and refactoring objectives; results vary

depending on these objectives and the maturity of the test suite.

Test Quality Monitoring. Hauptmann et al. [16] study how man-

ual tests written in natural language often suffer from quality

deficits leading to decreasedmaintenance and comprehension. Their

case study results show that their language models are able to de-

tect test smells, yet require parameterization based on experience

with the maintenance of natural language tests.

In summary, we are unaware of any previous work that investigates

which optimization techniques (see Table 1) are applicable in prac-

tice, given an arbitrary existing manual testing process. Moreover,

empirical studies on the state-of-practice in manual testing are

relatively outdated with the most recent one being from 2013 [11].

3 DEVELOPER SURVEY AND GUIDELINES
In this section, we provide details of our semi-structured online

interview, following the suggestions of Jedlitschka et al. [20], and

we derive a set of guidelines for optimization of manual testing

processes that synthesize our findings.

3.1 Research Areas and Questions
With our interviews, we target several research questions (RQs)

from three research areas (RAs): We are interested in the reasons

for the implementation of manual testing processes, outline their

characteristics, and derive viable optimization techniques.

RA1: Rationale behind Manual Testing. First, we need to un-

derstand what kind of manual testing processes are implemented in

practice, why practice relies on this resource-intense way of testing,

and what hinders test automation.

RQ1.1: Why is software tested manually and what technological and
organizational challenges hinder test automation? To be able to iden-

tify suitable optimization potential, we need to summarize why

practitioners rely on manual testing. Additionally, there might be

technological and organizational reasons for why test automation—

as one of the more obvious optimization approaches—is not used.

RQ1.2: Which testing activities are carried out manually in practice?
There are many different kinds of testing which can be performed

manually. We survey what testing activities (e.g., exploratory and

regression testing) are carried out manually to be able to tailor

optimization approaches to different needs.

RA2: Characteristics of Manual Testing. Second, we investi-

gate characteristics of manual software testing, how much effort

is actually invested into manual testing, and which optimization

techniques are already applied in practice.

RQ2.1: Howmuch effort is invested into manual software testing? This

research question aims at determining the optimization potential

with respect to testing accuracy and costs.

RQ2.2: How does manual software testing integrate with the develop-
ment process? We want to shed light on the interfaces and inter-

dependencies of manual testing with the development process to

uncover related optimization potentials.

RQ2.3: How are test cases selected for execution and how are tests
assigned to testers? Test case selection is a well-known optimiza-

tion technique for automated tests, and we investigate in which

circumstances it can be used in practice. The assignment of tests to

testers needs to be understood because this reveals optimization

constraints that might not be relevant for automated tests.

RQ2.4: What are technical and organizational characteristics of (sub-)
systems that are tested manually? We would like to understand

patterns that encourage or hinder manual testing.

RQ2.5: Do flaky tests exist inmanual test suites and, if so, how do testers
handle them? Flaky tests are a well-known problem for automated

tests [27]. If flaky tests are also an issue for manual testing, an

optimization goal would be to reduce the test flakiness, possibly

with techniques different from automated testing.

RA3: OptimizationTechniques inManual Testing. Finally, we
aim at summarizing optimization techniques for manual testing.

RQ3.1: Do manual test teams aim at test automation? How much time
do they plan to invest? We investigate whether test practitioners

strive for automation of their test suite and how much effort is

expected and invested for it.

RQ3.2: What potential for optimization of manual software testing
exists and what are its prerequisites? This is our core research ques-

tion. In Section 2, we summarize existing optimization techniques

and their prerequisites. With this research question, we enrich
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our research-oriented perspective by collecting actively used opti-

mization techniques reported by our participants. Following our

previous discussion on the eligibility of optimization techniques,

we also summarize associated prerequisites and caveats in practice.

3.2 Participants
In August 2020, we contacted 115 test engineers, testers, devel-

opers, test architects, test leads, and test managers of industry

partners. N = 38 responded to our survey within two months. The

response rate of 32.5% is relatively high, and we lead this back to our

close partnership with our research partners. Most of our partici-

pants work in Germany, but there are also several participants from

Canada (1), Italy (1), Romania (1), Switzerland (1), and the US (2).

The participants work for organizations of different sizes, including

medium-sized companies with a few dozen employees, as well as

large organizations with tens of thousands employees. Their busi-

ness domains include communication, network security, finance,

health technology, public transportation, information technology,

manufacturing, and hardware development.

3.3 Questionnaire and Conduct
We designed a questionnaire to address the above research ques-

tions. In Table 2, we list all survey questions, map them to our

research questions, and mark open () and closed (✓) questions.

Most of our survey questions were open so that the participants

could explain their context. We used SoSci Survey to host our ques-

tionnaire and provided it in English and German (the native lan-

guages of most of our participants). All questions were optional.

Table 2: Survey questions to answer the research questions

RQ Survey question Type

1.1 What advantages do you see in manual compared to automated software tests?
1.1 What factors force you to test manually?
1.1 What conditions and obstacles make test automation difficult or impossible?
1.2 Which test activities are performed manually?
2.1 How large is the manual test suite overall?
2.1 How many testers are there in your project?
2.1 How many test cycles take place per year?
2.1 How many test cases are executed per cycle?
2.1 How long does it take on average to run a test case?
2.1 How long does it take to execute the entire test suite?
2.2 Which events trigger the execution of a test case?
2.2 Is a successful test execution an acceptance criterion for change requests? ✓
2.2 How do developers find out about test failures?
2.2 When is a failed test case retested?
2.3 Is the entire test suite executed in every test phase? ✓
2.3 If not, how are test cases selected and prioritized for a test plan?
2.3 How are test cases assigned to individual testers?
2.4 Which interfaces are used to test the system under test technically?
2.4 Which technology-related challenges exist?
2.4 How is the System Under Test organizationally tested?
2.4 What organizational challenges are there?
2.5 Are there flaky manual test cases? ✓
2.5 How do you deal with flaky tests?
3.1 How should your testing process develop in the coming years?
3.1 Are there considerations or specific plans to carry out tests more automatically? ✓
3.1 By when should the automation be completed?
3.1 How much time is currently invested in the automation of manual test cases?
3.2 Which steps need to be taken for each test case?
3.2 Is the execution time recorded for each test case? If yes how?

3.4 Results
To analyze the answers of the survey, we used an open card-sorting

technique [19]. To this end, we looked iteratively for higher-order

patterns in the open answers of participants for each question.

Overall, we spent 25 × 2 hours (per open question) = 50 hours

on categorizing 633 answers.

We structure our discussion along our research areas and ques-

tions. For each research question, we present descriptive statistics of

our closed survey questions (if applicable), followed by a summary

of the identified categories and how often these were mentioned

by participants. To enrich our discussion, we weave in quotations

of responses where appropriate. We conclude this section with

interpretations and insights we gained.

RA1: Rationale behind Manual Testing In the following, we

delineate why manual testing is still applied in industry and what

prevents practitioners from automating tests.

RQ1.1: Why is software tested manually and what technological and
organizational challenges hinder test automation? Fig. 1.1 and 1.2

summarize the frequencies of given answers about reasons for why

software is tested manually. They are grouped into advantages of

manual testing and disadvantages of automated testing. We found

that manual testing is deliberately employed not only because of

comparatively low ramp-up costs and high flexibility, but also due to

its broader scope: its exploratory character and the often associated

intentional under-specification of tests. Accordingly, practitioners

deem manual testing to be “closer to reality, more context-specific,

and up-to-date” and more suitable when “complexity is high and

requirements are blurry.” Moreover, certain industries, such as the

medical technology sector, prescribe manual testing.

Regarding technological and organizational challenges that hin-

der test automation, we find the following obstacles to be prevalent

(number of mentions in parentheses): Lack of time (8), lack of bud-

get (6), limited know-how (6), limited technology (6), for example

unstable testing tools or tedious creation of test data in SAP systems,

interfaces to external systems (4), and high change frequency (4).

One participant stated that the evolution of the software forced

them to return to manual regression testing “because the [technical]

environment of test automation is outdated.”

RQ1.2: Which testing activities are carried out manually in practice?
Fig. 1.3 shows the frequencies of different testing activities that are

carried out manually. Except for exploratory testing (e.g., including

test-as-you-code), manual tests are specified in natural language.

Manual testing seems to take place at higher levels of abstraction

(integration- or system level); only two participants report conduct-

ing manual tests on the unit level.

Summary RA1. According to our participants, manual tests are
more flexible than automated tests in what is tested and easier to
set up. They are mostly used for regression and acceptance testing.

RA2: Characteristics of Manual Testing Next, we explore the

characteristics of manual testing processes of our participants.

RQ2.1: How much effort is invested into manual software testing?
Fig. 2 shows the distribution of manual test suite sizes and test team

sizes, number of test cycles per year, number of tests per cycle, and

duration of a single manual test and the entire manual test suite.

The test suite sizes show a large bandwidth, between 5 and 30,000

(sic!) test cases. Interestingly, the company with the largest test

suite builds software for medical devices and does not follow agile
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1.6: Expected evolution of the
manual testing process

Figure 1: Charts for survey answers

development practices. A test manager with a small test suite stated

that “this is much too little. Since the construction as well as the

recording of the test results costs a lot of time, some things are [...]

tested quickly and only bugs are reported to DEV accordingly.”

Also, the testing teams are of different sizes, with a median of

6 testers. The teams run from 1 to up to 40 test cycles per year,

with a median of 4.5 cycles. Still, some testers indicate that these

numbers may vary because “we claim to be an agile company, so

it’s difficult to give a number of times this process happens. ” Each

cycle contains, at least, 2 and up to 4,500 manual test cases, with

a median of 300 test cases per cycle, sometimes this “depends on

the number of change requests—for each cycle, the number of test

cases differs.” The median for the duration of executing a single test

case is 20 minutes, and the median for running the whole test suite

is 235 person hours, with a maximum of 992 man hours.

Overall, the survey responses reveal that our participants invest

a lot of resources into manual testing.
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Figure 2: Distributions ofmanual test process characteristics

RQ2.2: How does manual software testing integrate with the devel-
opment process? Triggers for test execution are: scheduled test

phases (17), finished feature tickets (16), and deployments to test en-

vironments (14). Surprisingly, more than 25% of the participants (8

out of 31 answers) state that successful test executions are not al-

ways a necessary acceptance criterion for change requests. That is,

in some cases, change requests are closed even though tests failed,

which might render test execution useless.

If a test has failed, 27 teams re-test directly after the code fix,

while 10 teams re-test in the next test phase.

RQ2.3: How are test cases selected for execution and how are tests
assigned to testers? While 15 participants always execute the whole

test suite, for example, because “from a customer point of view,

we MUST run the 52 validation tests (which are appropriate to

them), otherwise our software is potentially not valid for their use,”

some teams clean up their test suite before running it to avoid

executing outdated tests, as one participant proposes: “all test cases

that are not obsolete are performed in the annual test. This se-

lection is performed every year.” 20 other participants manually

select particular test cases for execution. Their selection is based

on code changes (6), tester experience (6), feature criticality (6),

requirements (4), time constraints (4), or test failure history (3).

Only 3 participants prioritize their selection explicitly, based on

experience (2), or based on licensing or hazard relevance (1).

Fig. 1.4 shows how test cases are assigned to testers, where tester

experience (18) and areas of responsibility (17) dominate other

assignment criteria.

RQ2.4: What are technical and organizational characteristics of (sub-)
systems that are tested manually? Most of our participants run

their manual tests using the system under test’s GUI (28). There

are also other testing environments, for example, a browser (14),

hardware in the loop (HIL) (3), external systems (2), and simula-

tors (1). Regarding tooling for running manual tests, participants

adopt network communication tools (6), for example, curl, SoapUI,

and Postman. Other tools mentioned by our participants are Load-

Runner (1), Tosca (1), scripts (1), and Excel (2), which might also be

used to manage their manual test cases.

According to our participants, the largest technology-related

challenge is interference with other test environments (17), for

example, because of non-isolated test systems concurrently are

used by multiple testers. Frequently, there are issues because of

interactions of the system under test (SUT) with other systems or

applications (15), and remote test environments (12). Furthermore,

different hardware combinations (4), legacy technologies (2), several

test environments (2), HIL tests (1) and network latency (1) were

highlighted as technology-related challenges.

Fig. 1.5 shows how manual software testing is organizationally

arranged. In many cases, several groups are responsible for manual

tests, for example, developers test their changes in a first stage

locally on their machine before a dedicated test team verifies the

changes in a later stage. Some participants report that, during a test

phase, people from business departments take part in testing, still,

“they all come with different enthusiasm for testing”, which makes

it harder for test managers to plan test activities thoroughly.

Our participants highlight many organizational challenges. One

major issue is lack of time in business departments for running

tests (10). Furthermore, participants point out that there is a lack of

domain knowledge or testing skills (7). Additional challenges are dif-

ferent time zones between test and development teams (6), as well as

communication and documentation challenges due to different na-

tive languages (6). For some participants, the organizational spread

between test and development over different organizations (2) is

another challenge. In the case of fixed release cycles, a participant

complains that there is lack of time for testing (3) “because we are
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the last but the release schedule is fix.” That is, if anything delays the

test execution, less time can be invested into solid validation. An-

other participant claims that—because different organizations are

responsible for test and production environments—“the test envi-

ronments do not match production environment enough, meaning

it’s possible that tests are passing but failing in production.”

Other organizational challenges include different languages in

specification, code and test cases (2), lack of time for training (1),

coordination of testing (1), long time-to-fix (1), restricted testing

environment (1), varying service providers over time (1), and, trans-

forming development processes (1). Moreover, the domain can also

pose challenges, for example, “medical technology is a strictly regu-

lated domain”, or might require special testing approaches “if I need

a parallel test, there is a team session and everyone clicks on “1-2-3”

at the same time.” Perhaps interestingly, in the context of regulated

medical technology, “agile development teams test on lower test

levels”, whereas manual testing is performed afterwards by the

“test center for system test”, implying a rather rigid (non-agile)

development process such as the V-Model.

RQ2.5: Do flaky tests exist inmanual test suites and, if so, how do testers
handle them? Flaky tests—tests that may non-deterministically fail

and pass with the same program version—are a well-known prob-

lem for automated tests [23, 27]. They are commonly first detected

if a previously passing test, that is clearly unrelated to code changes

introduced to the system, suddenly fails [23, 24]. Most of our par-

ticipants report that they do not encounter flaky tests (20), while

others report that flaky results appear from time to time (11)—5

participants are not sure whether there are flaky tests in their test

suite. Only 5 participants answered the question about how they

deal with flaky tests: 2 participants re-run tests that are deemed

flaky. 3 do nothing, because deviating results are “explained away”,

another participant puts this more diplomatically, “most of the time,

the deviation turns out to be an unnoticed difference in the proce-

dure or in the data. The tests are intentionally described vaguely

in the procedure in order to cover different procedures that are

supposed to produce the same result.”

Summary RA2. Our participants use manual tests extensively.
More than half of the participants manually select only subsets
of tests for execution. Tests are often assigned on the basis of
experience of testers and areas of responsibility. There are many
technological challenges including non-isolated test environments
and the interaction of the system under test with other systems.
Moreover, there are organizational challenges including lack of
domain knowledge in testing teams and lack of testing skills in
business departments.

RA3: Optimization Techniques in Manual Testing
RQ3.1: Do manual test teams aim at test automation? How much
time do they plan to invest? Finally, we report on automation and

optimization potentials identified in our survey. Fig. 1.6 shows how

our participants expect their manual testing process to evolve. Most

frequently, a higher degree of automation is desired (12) and lower

manual test efforts are expected (8). One of our participants ap-

pears to be quite frustrated about low investments into software

testing, because she feels that “testing is somehow out. Nowadays,

everyone tells us that a bug will simply be fixed when it appears in

production.” But there are also many participants who expect more

targeted testing with the same effort (6) or even higher manual test

efforts (2). The participants mentioned two process optimizations:

implementation of a selection strategy (2) and a change of responsi-

bility for testing (1), that is, a “shift left of our automated test cases

from downstream quality assurance to development.” Only a few

participants (3) expect no change.

In our survey, we explicitly asked whether our participants aim

at automation of their manual tests so that it becomes clear whether

the implementation of additional optimization techniques can pay

off in the long run. Only very few aim at automation of the entire

manual test suite (2). Most participants aim at automation of some

manual tests only (20). One participant points out that their goal

is the “optimization of test efforts—this can mean automation, but

does not have to be.” Some participants also aim at no automation

at all (9). Contrary to our intuition, even though most of our par-

ticipants are repeatedly testing their SUT via its GUI, there are

technical and organizational reasons for not automating manual

tests: For instance, “frequent changes on the GUI” that disallow

maintaining automated GUI tests and, according to a participant,

it is “difficult to predict how much effort automation will cause

because sometimes a small thing only works with extreme effort

and therefore makes it difficult to plan.”

For those who aim at (partial) automation of their test suite, we

asked two additional questions to learn about their automation

schedule and investments into test automation. 21 participants

answered the question on when the automation is planned to be

finished, but most of them have no specific plan when automation

will be finished (18). The 3 participants who have a schedule plan to

finish the automation of their test suite within the next 1–3 years.

Regarding the resources that are currently invested into test

automation, only few invest, at least, one full-time equivalent (4).

The other participants claim that, at least, one person works one day

per week (5) or, at least, one day per month (5) on test automation. A

handful of participants is investing no effort into test automation (5),

even though they plan to automate tests in the future.

RQ3.2: What potential for optimization of manual software testing ex-
ists and what are its prerequisites? In Section 2, we have approached

this question from a scientific perspective by reviewing existing work
onmanual testing. This way, we have identified six techniques listed

with their associated prerequisites and caveats in Table 1.

From our empirical study—taking a practical perspective—we
identify further levers for optimization and derive respective op-

timization techniques: First, several participants report that there

are test steps that need to be taken for each test case. Among these

login to the SUT (14), creating and loading test data (10), and setting

up the SUT (5) are the most common. However, only a single par-

ticipant noted that they have “tests for which recurring activities

are modeled with shared steps.” Hence, we identify an optimization

lever as the prevalence of repeated, similar test steps, which could

be tackled by re-using test steps, (e.g., by means of shared test steps).

This can reduce duplication and increase test suite maintainability.

Second, we found that 9 participants track the test duration ei-

ther manually (2) or automatically (7). It would not make sense

to track it if it did not vary among test cases and test runs. RQ2.1
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suggests that there is, in general, a large spread in test duration. At

the same time, in RQ2.3, we found that time capacity is among the

three most common test case assignment criteria. Consequently,

we deem the prevalence of varying test duration between tests to

be an optimization potential that can be exploited by test schedule
optimization: If test duration is recorded and varies, a test sched-

ule can be generated that meets time capacity, resource, or test

precedence constraints, while minimizing total testing time. Since

test execution scheduling has been studied for automated testing

already [29], the most straight-forward approach is to transfer these

techniques to manual testing and to study their effectiveness.

Third, throughout our survey and specifically in RQ1.1, we ob-

served that non-exploratory manual tests are often deliberately

under-specified to nudge exploratory testing. This sounds contra-

dictory at first, because it potentially leads to non-determinism and

false-negative or false-positive test results; but it seems to be one

of the most popular features in manual testing, as one test case can

express an entire equivalence class. Thus, one optimization lever

would be to implement flexible execution paths and test oracles that
allow the design of under-specified test cases which are still useful.

Table 3 lists the optimization levers that we identify, 3 derived

optimization techniques with associated prerequisites and caveats.

Together with Table 1, these make up the set of techniques that we

integrate in a manual testing process model in the next section.

Summary RA3. The overwhelming majority of our participants
does not plan to automate their entire manual test suite; GUI test
automation is often no option for technical and organizational
reasons. Therefore, optimizing their manual testing processes is
advisable. From our study, we identify 3 optimization levers.

3.5 Guidelines for Optimization
We aim at a set of actionable guidelines that empowers practitioners

to quickly identify optimization potential in their context. Therefore,

we have collected characteristics of manual testing processes in

our survey. In addition, we have collected and derived optimization

techniques for manual testing with associated prerequisites and

caveats from related work and practice (see Tables 1 and 3).

To embed these findings into an actionable set of guidelines,

we devise an annotated empirical process model for manual test-

ing. We modelled the testing processes described in the survey

answers and merged them into one general manual testing pro-

cess model. Although based on the empirical findings from our

study, we deliberately keep the process model generic to allow

practitioners to easily adopt it to their needs. We use a standard

Table 3: Prerequisites and caveats of derived optimization
techniques based on identified existing levers in practice (ex-
tension of Table 1)

Levers Prerequisites Caveats

7. Re-use Test Steps
Repeated, similar

test steps

Possibility to identify

and manage test steps

Over-use of shared
test steps

8. Test Schedule Optimization
Varying test

duration

Measuring and docu-

menting of test duration

Time constraints, expert

knowledge constraints

9. Intentional Under-specification
Flexible execution

paths and test oracles

Deterministic test oracles

per execution path

False positive or negative

test results, flaky tests

business process modelling notation (BPMN) to model the specifics

and variety of manual testing processes that were described by

our participants. Practitioners can instantiate the process model by

identifying events, actions, message flows, and artifacts of their test-

ing process. Based on this instantiation, practitioners are guided in

the selection of the optimization techniques that are most relevant

to them, for example, because they address current bottlenecks

in their process. Using Tables 1 and 3, specific optimization ap-

proaches can be selected, based on prerequisites and acceptable

caveats, and implemented in their process. For example, in the case

of manual regression testing, the trigger of the manual software

testing process might be an approaching release. In Fig. 3.1, this trig-

gers the sub-process Create Test Plan, which is unrolled in Fig. 3.3,

and its first activity is the identification of relevant test cases. The

annotation shows that test case selection techniques can be used

to optimize this activity. Table 1 collects prerequisites and caveats

of three test selection strategies, and it guides practitioners in their

assessment of the applicability of the strategies in their context.

Manual Testing Process. Depending on the specific test process,

there are different start events ( A ) that trigger the manual test-

ing process (i.e., acceptance criteria or a scheduled regression test

phase—other manual testing activities can also be covered by our

model). Activities in Fig. 3.1 labelled with ⊞ are sub-processes,

which are explained in more detail in the following paragraphs

and figures. The optimization techniques Refactoring and Test Case
Reduction can be applied most easily during test suite maintenance.

Test Case Creation. Fig. 3.2 depicts the Test Creation sub-process.

Test steps can be Re-Used when tests are specified and require the

same steps that are already documented for an existing test. When

new test steps are defined, Intentional Under-Specification can be

3.1: Manual software test process 3.2: Test case creation 3.3: Test plan creation 3.4: Test plan execution

Figure 3: Optimization potentials (green) in the empirical manual testing process
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applied. That is, the test can be defined generically such that several

cases are covered. For example, if there are mutliple ways to trigger

a functionality, the test can deliberately not specify which way to

use in the test. When the test case is stored in the test management

system, the Test Quality Monitoring can be triggered.

Test Plan Creation. Fig. 3.3 shows the Test Plan Creation sub-process.
Initially, the set of relevant test cases that should be executed needs

to be identified, optionally using Test Case Selection. Next, a prior-
itization of test cases needs to be done (which can be optimized

using Test Case Prioritization). Finally, tests need to be assigned to

testers where Test Schedule Optimization techniques can optimize

matching testers and tests while considering relevant constraints.

Test Plan Execution. Fig. 3.4 shows the Test Plan Execution sub-

process. The Test Gap Analysis can be used to determine whether

test end criteria have been fulfilled. For example, it may reveal

additional test opportunities from untested code changes.

4 TWO INDUSTRIAL CASE STUDIES
To demonstrate the applicability and usefulness of our guidelines,

we conducted two industrial case studies with testing teams from

different contexts (i.e., domain, company size, test process, and

technologies). We instantiated the process models of Section 3.5 to

identify applicable optimization guidelines. Together with the test

leads, we then validated the suggested optimization techniques, and

they decided which of these to implement. In the following, for each

case study, we first introduce the study subjects to provide necessary

background information. Then, we document the instantiation of

the process model and, finally, we summarize the feedback of the

test teams when we presented our results to them in Table 4.

4.1 Case Study 1: User Acceptance Testing
Background Information. Our first study subject is owned by

Munich Re
2
, an international company in the finance and insurance

domain with approximately 40 thousand employees. The business

information system is customized in ABAP, the custom code base

counts 2.1 million source lines of code. At the time the interviews

were conducted, a team of 5 testers did manual user acceptance

testing (UAT). There are approximately 7 releases per year, each

release has a pre-defined duration of 6–8 weeks. For each release

phase, the set of change requests (product backlog items), which
the product owner committed on and which were prioritized by

the users for the current release, needs to be tested. That is, the

manual software test process is triggered by new change requests,

for example, by product management or users. The software life

cycle management platform Azure DevOps with the plugin Azure

Test Plans
3
is used to manage test cases and results.

Applicability of Optimization Techniques Following our pro-

cess model in Fig. 3.1, we were able to suggest 5 optimization tech-

niques for our first study subject, which we discuss next.

Test Case Creation. Test steps are not re-used, but structurally iden-

tical test cases are typically filed as parameterized tests for which

different input and expected output values are given. This uncov-

ers the first optimization potential: re-use of existing test cases and
2
CQSE is a contracting partner of Munich Re

3
Azure Test Plans: https://azure.microsoft.com/de-de/services/devops/test-plans/

steps from former releases that have checked change requests in

the same code methods. The idea is that test cases can be re-used

entirely or with small modifications (e.g., new input values) if they

test changes in a method that a previous test already verified. This

requires that testers know which code is expected to be changed for

the current change request, and testers need to be able to identify

former tests that have executed this code.

The second and third optimization technique during test case

creation (see Fig. 3.2) offer no additional optimization potential:

intentional under-specification of tests is not applicable for user

acceptance tests in this case study, as user acceptance tests are not

meant to be re-executed in future release phases per se. Test cases

are already automatically checked for documentation quality issues,

for example, ambiguous formulations or redundancies
4
.

Test Plan Creation. In the current testing process of the study sub-

ject, test cases are never re-used, which prevents optimization tech-

niques such as test case selection, test case prioritization, and test

schedule optimization. Yet, test case selection would help to identify

relevant test cases if test cases or, at least, test steps are re-used. To

benefit from test case prioritization and better scheduling opportuni-
ties, a proxy for the costs of test executions needs to be monitored,

for example, the duration of test runs which is already tracked in

the study subject’s test management system.

Test Plan Execution. The optimization technique during test plan

execution, a test gap analysis, is already used by the team
5
to reveal

untested changes that should not be deployed to the production

environment before a test happened.

Test Suite Maintenance. Tests are currently not re-used, so, we see

no benefit of refactoring for this study subject. Some tests appear

to be partially redundant, so test case reduction is promising.

Developer Feedback. Based on our recommendations, the test

lead decided to implement the re-use of test steps in their manual

testing process. Regarding the previously mentioned prerequisites,

the development process has been changed as follows. First, the

development team passes information on which code is planned to

be changed to the test team. Second, the authors implemented test-

wise coverage recording for the team, so that similar former test

cases can be identified. For this purpose, the non-isolated testing

environment is profiled in a user-specific way, which helps identify

re-use opportunities. The testers highlighted that they like the

newly created “transparency regarding which code is being exe-

cuted by their manual tests.” The test lead pointed out that “it would

have been great to have this tool from the very beginning of the

project, where even more tests were run.” Now, the SUT is so large

that many test runs (and thus, code changes) are needed until all

actively maintained code regions are profiled. The team has started

to re-use test cases where possible, even though, typically, not the

entire test case can be re-used.

According to the test lead, at the end of a test phase, she again

runs the test case selection on changes of the current release. This

outputs a set of test cases that contains usage scenarios for the

changed code, and thus, additional testing opportunities. Hence,

she is not only using the selection as originally intended, but uses

4
Scout: https://www.qualicen.de/scout/

5
Teamscale: https://teamscale.com/, see also Haas et al. [13]
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Table 4: Developer feedback: ✓ has been implemented,
� can be implemented in the future, and × will not be im-
plemented

Study Subject 1

User acceptance tests 5 testers 6–8 week cycle 2.1M SLOC ABAP

Applicable Optimization Techniques Feedback

Re-use of existing test cases and steps ✓
Test case selection ✓
Test case prioritization ×

Test scheduling optimization ×

Test case reduction �

Study Subject 2

Manual regression tests 1+13 testers 12–16 week cycle 700 K SLOC C++

Applicable Optimization Techniques Feedback

Test case prioritization ✓
Test case selection ×

Test case reduction ×

Refactoring �
Test quality monitoring �
Test plan optimization �

it as inspiration for additional testing activities. She considers this

helpful because it “lowers the risk of missing relevant test cases”

and increases the likelihood of detecting faults before deploying

the SUT to production. As far as test case prioritization is concerned,
the test lead stated that “the order of the selected tests does not

matter that much” because she “checks all selected tests to see if

the team missed testing opportunities.” She thinks that test schedule
optimization “might be helpful for manual testing in general”, but

for her project, she doubts that “the input data is accurate enough.”

In contrast, she liked the idea of test case reduction because they

often have to test similar functionality via different interfaces, and

she would like to “reduce [...] redundancies.”

4.2 Case Study 2: Regression Testing
Background Information. Our second study subject is an appli-

cation from IVU Traffic Technologies, one of the world’s leading

providers of public transport software solutions. The company em-

ploys more than 700 people worldwide. We focus on the manual

regression testing process for one software product (primarily writ-

ten in C++, with more than 700 thousand source lines of code)

that is concerned with duty planning. At the time the interviews

were conducted, one tester was manually testing the product full

time and 13 additional testers provided targeted testing support

for releases. The test management software in use is TestLink
6
, an

open-source tool that is modified to suit the company’s needs.

Applicability of Optimization Techniques. Again, following
our process model of Section 3.5, we were able to suggest 6 opti-

mization techniques that are applicable for the second study subject.

Test Case Creation. The test management software does not support

the management of individual test steps, which prevents a re-use

of similar test steps. Furthermore, existing tests are already delib-

erately under-specified to enable more exploratory testing. The

first applicable optimization technique is test quality monitoring:
6
TestLink: http://testlink.org/

Test cases of the subject are constructed using natural language

descriptions, which can easily be checked by automated monitoring

tools for textual quality analysis.

Test Plan Creation. Minor releases are tested only with a set of

manual smoke regression tests (~30 test cases). For major releases, a

larger test suite (~360 manual test cases) is executed, in addition. In

general, there is no individual prioritization or selection of test cases.

However, a subset of test cases called “developer tests”, which cover

substantial functionality, are first executed, to prevent blocking

other test cases. As the name suggests, these tests are executed by

developers during development before the testing phase begins.

Testers implicitly create a test history by marking tests as “pass-

ing” or “failing” during their execution. These test reports form

a valuable artifact for optimization of the test plan. Both test case
selection and test case prioritization can benefit from failure pre-

diction models that solely rely on such information as shown by

prior research on automated [8] and manual testing [17, 18, 22]. In

addition, the textual descriptions could further be leveraged using

natural language analyses [18, 22].

Test schedule optimization is not directly applicable, as the re-

quirement of measuring test duration is not fulfilled, yet. However,

we still assume that there are two other levers for optimized test

scheduling: First, test assignments can be easily automated as they

are currently manually derived from prior test plans. Second, test

cases in the test management software may contain links, which de-

fine precedence or resource constraints. We propose to use existing

automated techniques for generating an optimized test schedule

that satisfies these constraints [29].

Test Plan Execution. Test gap analysis is infeasible, as there are no

test traces recorded during testing.

Test Suite Maintenance. Since textual test descriptions and test fail-

ure history are available, the optimization techniques refactoring
and test case reduction are applicable. They can be applied to create

a reduced test suite that is easier to maintain, query, and extend [2].

Developer Feedback. Together with the test lead, we identified

test case prioritization to be the most promising of the proposed

optimization techniques: Accordingly, it makes sense to execute

those tests first that found bugs before, “in the expectation that

they will be more likely to find bugs again and thus start fixing

them sooner”. Therefore, we implemented a simple prioritization

strategy, where tests that have failed before are executed first. This

proof-of-concept already reduced the feedback time compared to

the current random ordering of tests.

We decided to discard test case selection and test case reduction, as
the test lead pointed out that existing test cases “in principle already

represent a rather coarse-meshed coverage of the most important

features”, making further selection or reduction unnecessary.

Closer consideration of test quality monitoring and refactoring
is generally of interest, as it is already known by the developers

of the subject project that the “nature of test case descriptions

has evolved over time, test cases vary widely in the quality and

scope of the descriptions”. However, implementing such techniques

has lower priority than test prioritization inside the testing team.

Finally, test schedule optimization is already informally done in the

subject project by manually keeping track of which test cases were
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executed by which tester before. Yet, automated assistance in the

test assignment could still be helpful: “It would be conceivable to

provide guidance to testers in selecting unknown test cases through

tags on the test cases (e.g., required specialized knowledge).”

5 DISCUSSION
5.1 Case Studies
Both test leads find the recommendations of our guidelines useful.

For our first study subject, the test process and environments were

changed on our recommendation derived from our optimization

guidelines, so that test steps can be re-used, which saves test cre-

ation efforts. Another optimization is employing more in-depth

testing because selection of former test cases is used as inspiration

for additional tests. In the second case study, using our guidelines,

we were able to identify and exploit the potential of reducing test

feedback times by test prioritization based on test failure history.

Overall, during the case studies, our guidelines provided a goal-

oriented structure for the discussion of bottlenecks in manual test-

ing and helped the developers to focus on most relevant optimiza-

tion techniques. Thus, they are well suited for discussions with

testing practitioners to understand their process and tools, and

helps to communicate levers of optimization techniques.

Our guidelines summarize optimization techniques that are suit-

able to address bottlenecks in manual testing. From our case studies,

we learned that the evaluation of techniques for their practical ap-

plicability is guided well by the presented prerequisites and caveats.

In both case studies, the guidelines have shown to be effective: For

the first study subject, re-use of existing user acceptance tests has

been improved, and a variety of tests has been increased by test

case selection. In the second case study, feedback time could be

reduced by prioritizing tests based on failure history.

Nevertheless, further research on optimization approaches for

manual testing is necessary. Our guidelines can be extended to-

wards this goal, and we are happy to receive merge requests in our

supplementary repository.

5.2 Threats to Validity
Internal Validity. A threat to internal validity arises from the

Rosenthal effect [32]: The framing of our survey questions could

have influenced our participants, for example, by stating unbal-

anced advantages and disadvantages of manual testing. We chose

the formulations of our survey neutrally, and we did several rounds

of pretests with academic experts as well as testing professionals

from our target group to reveal potential misleading formulations

and misunderstandings. We refer the interested reader to our sup-

plementary repository for more information and replication.

The set of guidelines presented in Section 3.1 is not meant to be

complete. We focus on optimization techniques and levers that we

have identified in our survey.

External Validity. We selected the participants of our survey from

a small target group. We deliberately chose this group because, this

way, we could validate answers and clarify open questions with

participants to get a better and clearer understanding of manual

testing processes in industry. Nonetheless, manual testing might

be used in other ways, which limits the generalizability of our

results—a common issue in empirical software engineering [34]. In

particular, answers given in the survey indicate context-specific

challenges, such as regulations for the development of medical

technology or complexity of GUI testing, which need to be further

investigated. Still, the different project backgrounds and processes

provide deep insights into the variety of manual testing.

From the survey answers, we derived an empirical process model,

which might not be applicable to every testing process. Yet, our two

case studies show that the optimization levers and techniques, as

well as their prerequisites and caveats are helpful for practitioners

to identify optimization potentials in their testing processes.

In general, case study research [33] is notmeant to generalize, but

our two case studies nonetheless demonstrate the potential of our

guidelines to assist developers and test professionals in identifying

useful optimization techniques for their manual testing process.

6 CONCLUSION
Manual testing is widely used in industry, despite the high cost of

the human effort required. With increasingly short software release

cycles while operating large manual test suites, there is a growing

need for optimization of manual test processes. Yet, existing opti-

mization techniques from automated testing are often not directly

transferable, because it is unclear how to integrate them into man-

ual testing processes and required data are often missing. Since

there is no precise understanding of the practices and processes of

manual testing across industry, pitfalls and optimization potential

are generally unknown.

We have surveyed 38 testing professionals from 16 companies

and different project contexts to qualitatively analyze the preva-

lence, characteristics, and problems of manual testing activities

that enable or hinder optimization. The result of this empirical

study is a set of guidelines embodied in an annotated process model

that implements 9 optimization techniques for manual testing. We

discuss prerequisites and caveats for each technique, as they have

been described in the literature or reported by practitioners during

our study. We further demonstrate by means of two large-scale

industrial case studies that our guidelines are useful and actionable

to identify untapped optimization potential. Our two case study

subjects implemented the re-use of tests, test case selection, and

test case prioritization techniques. According to the test leads of

our study subjects, their teams benefit from a higher likelihood

of detecting faults, a reduced test feedback time, and an increased

re-use of manual test cases.

As manual testing will be applied in industry in the foreseeable

future without the intention of full automation, as is confirmed by

our developer survey, we deem optimization of manual testing to

be of significant relevance in practice. Hence, future work shall

investigate the identified and proposed optimization techniques in

varying settings, especially since existing studies on manual testing

are still rare and not unequivocal in their results.
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