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Abstract

Scheduling with testing is a recent online optimization problem in the framework of
explorable uncertainty which models situations where some preliminary action can de-
crease the duration of tasks. The problem is motivated by real-world applications in-
cluding production planning, market demand predictions, distributed computing, and
medical diagnoses. A given number of jobs with uncertain processing times has to be
assigned to a set of given machines. Jobs can be run in one of two possible configura-
tions: Running a job tested reveals the previously unknown processing time, and the
job can then be executed on some machine. Running the job untested takes a predeter-
mined amount of time which is always at least as large the job’s actual processing time.
The difficulty of the scheduling with testing problem lies in balancing the uncertain but
possibly beneficial investment into the test and the fallback strategy of running the job
untested with a fixed duration.
We study the problem on a single machine as well as on multiple identical machines

and examine the objectives of minimizing the makespan and the total completion time
of the schedule. We also differentiate between non-preemptive, test-preemptive, and
preemptive settings for both objectives. We provide several new, theoretical algorithms
and lower bounds for the problem and study their performance based on the concept of
competitive analysis. For this, we utilize testing schemes based on job parameters, pair-
wise examination of contributions to the completion time of jobs, and elaborate sorting
procedures. We also adapt and extend well-known algorithms from the literature, like
List Scheduling and Round Robin, to our problem.
For the makespan objective, we prove optimal algorithms and lower bounds on a single

machine, both for the deterministic and the randomized case. On multiple machines,
we present several algorithms with constant competitive ratios for the non-preemptive
setting, which are complemented by a lower bound with constant value. In addition,
we give an algorithm and a lower bound which apply to both test-preemptive and
preemptive settings and are optimal if the number of machines approaches infinity.
We also consider an extension of the problem to sequential online arrivals of jobs, for
which we provide improved lower bounds. For the sum of completion times, we examine
constant-competitive algorithms for the test-preemptive and the preemptive setting on
one machine and show that such a result cannot exist in the non-preemptive variant.
Additionally, we present a lower bound for the preemptive setting as well as an improved
result for randomized algorithms.
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Zusammenfassung

Scheduling with Testing ist ein aktuelles Online-Optimierungsproblem im Rahmen von
erkundbarer Unsicherheit, welches Situationen modelliert, bei denen eine vorangehen-
de Maßnahme die Dauer von Tätigkeiten reduzieren kann. Das Problem wird moti-
viert durch reale Anwendungen, wie zum Beispiel Produktionsplanung, Prognosen über
Marktnachfrage, verteilte Rechensysteme, oder medizinische Diagnosen. Eine gegebene
Anzahl von Aufgaben mit unsicheren Laufzeiten soll einer Menge von gegebenen Maschi-
nen zugewiesen werden. Aufgaben können in einer von zwei Konfigurationen ausgeführt
werden: Wird die Aufgabe getestet ausgeführt, so wird die bisher unbekannte Laufzeit
aufgedeckt, und die Aufgabe kann anschließend auf einer Maschine ausgeführt werden.
Eine Aufgabe ungetestet auszuführen dauert eine vorher festgelegte Zeitspanne, welche
immer mindestens so groß ist wie die eigentliche Laufzeit des Jobs. Die Schwierigkeit
des Scheduling with Testing-Problems liegt in der Balance zwischen der unsicheren
aber möglicherweise vorteilhaften Investition in den Test und der Rückfallstrategie die
Aufgabe ungetestet mit feststehender Dauer auszuführen.
Wir untersuchen das Problem auf einer einzelnen Maschine sowie auf mehreren iden-

tischen Maschinen und betrachten als Zielsetzung die Minimierung der Produktionss-
panne und der Summe der Komplettierungszeiten des Zeitplans. Wir unterscheiden au-
ßerdem zwischen nicht-präemptiven, Test-präemptiven, und präemptiven Szenarien für
beide Zielfunktionen. Wir stellen mehrere neue, theoretische Algorithmen und untere
Schranken für das Problem bereit und untersuchen deren Leistungen basierend auf dem
Konzept der kompetitiven Analyse. Dafür benutzen wir Test-Schemata beruhend auf
Aufgabenparametern, die paarweise Auswertung von Beiträgen zur Komplettierungs-
zeit von Aufgaben, und ausführliche Sortierungsmethoden. Außerdem adaptieren und
erweitern wir bekannte Algorithmen aus der Literatur, wie List Scheduling und Round
Robin, auf unser Problem.
Für die Zielfunktion der Produktionsspanne beweisen wir optimale Algorithmen und

untere Schranken auf einer einzelnen Maschine, sowohl für den deterministischen als
auch den randomisierten Fall. Auf mehreren Maschinen präsentieren wir mehrere Al-
gorithmen mit konstantem kompetitivem Verhältnis für das nicht-präemptive Szenario,
welche durch eine untere Schranke mit konstantemWert ergänzt werden. Weiterhin stel-
len wir einen Algorithmus und eine untere Schranke vor, die sowohl für Test-präemptive
als auch präemptive Szenarien angewandt werden können und optimal sind, wenn die
Anzahl an Maschinen gegen unendlich geht. Wir betrachten zusätzlich eine Erweiterung
des Problems auf sequenzielle Online-Ankünfte von Aufgaben, wofür wir verbesserte un-
tere Schranken bereitstellen. Für die Summe der Komplettierungszeiten untersuchen wir
konstant kompetitive Algorithmen für das Test-präemptive und das präemptive Szena-
rio auf einer Maschine und zeigen, dass ein solches Resultat in der nicht-präemptiven
Variante nicht möglich ist. Außerdem präsentieren wir eine untere Schranke für das
präemptive Szenario und ein verbessertes Resultat für randomisierte Algorithmen.
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1 Introduction
In the fundamental research area of scheduling the goal is to efficiently distribute, al-
locate, or sort limited resources to complete jobs over given time periods. As such it is
being used widely in industries like manufacturing, service provision, IT management,
and resource planning, to name just a few. Commonly, a single decision maker has to
find a strategy to optimize some kind of cost or reward function based on the schedule,
for example minimizing production times or maximizing revenue. At the same time
they must adhere to numerous constraints that may overlap each other, like bounded
resources or personnel restrictions. The performance of a given approach can be eval-
uated for example by mathematical analysis or experimental investigation.
As part of the theoretical field of operations research, scheduling has been one of the

most established and fruitful settings in the last decades — with substantial advances
since its inception during the 1950s [74]. Earliest work for scheduling as an independent
area includes seminal papers by Johnson [58] and Smith [83]. Today, scheduling remains
one of the most widely studied areas in operations research. The fundamental challenges
of a modern, networked economy continually require new and up-to-date methods for
an ever-increasing landscape of problems.
In this thesis, we mathematically design and analyze algorithms for a recent schedul-

ing problem called scheduling with testing. It arises from real-life applications where
partially unknown information about tasks can be obtained at some given additional
cost. As such, the problem involves uncertainty with respect to the input values that
are used by the decision maker to define a strategy.
Scheduling settings with uncertainty are characterized by some form of incomplete

information about the problem input. Possible reasons for uncertain input are plentiful:
missing or unobtainable data, information that changes depending on time or context,
or simply the difficulty of assessing the available information properly. Different frame-
works have been used in the operations research literature to handle uncertainty [62]:
Stochastic optimization assumes that the unknown input behaves based on a known
random distribution. Dantzig [31] studied this setting already in 1955. In robust op-
timization, the worst possible outcome over all inputs is analyzed. Earliest work in
this area includes Soyster [84]. In this thesis, we study online optimization, where un-
certain information is presented sequentially over time to the problem solver. Online
optimization settings in scheduling were investigated by Graham [51] as early as 1966.
In the comparatively new scheduling with testing problem, a given number of jobs

whose processing times are unknown have to be assigned to a given set of machines
such that certain objective functions based on the completion time of the jobs are
minimized. The characteristic feature of this setting is that the scheduler can invest
additional resources to test a job and reveal its processing length. The cost of testing is

1



1 Introduction

added directly to one of the machines responsible for running the jobs. Alternatively,
a job can be executed without testing, a kind of fallback strategy which takes a fixed
amount of time that is at least as long as the true processing time of the job. Since
additional information is revealed during the runtime of an algorithm, this problem can
be interpreted as part of the online optimization framework.
In online optimization, unknown input values are made available at fixed times during

the runtime of an algorithm, potentially depending on previous choices it has already
made. A very common way to mathematically analyze such online algorithms is the
concept of competitive analysis, first considered by Sleator and Tarjan [82], where an
algorithm is compared against a best possible offline strategy with complete information.
The competitive ratio is defined as the worst-case ratio over all inputs between the value
of the algorithm and the value of the optimal offline solution [23].
This thesis addresses the following research questions for the topic of scheduling with

testing: How can we develop new algorithms to solve the problem theoretically such
that solutions lie within a provably good factor of the best possible solution as defined
by the concept of the competitive ratio? Can we construct explicit examples such that
a specific algorithm performs poorly on these instances, yielding an impossibility result
for the given algorithm? Finally, which theoretical lower bounds can we provide in the
competitive analysis framework such that it is provably impossible for any algorithm
to achieve a ratio smaller than the given bound?

1.1 Scheduling with Testing
In many applications arising in IT management, resource planning, or manufacturing,
partially or completely uncertain information is found. To compensate for these uncer-
tainties, some preparatory action is often taken to gain more information: A construc-
tion firm usually prepares cost estimates for their clients before they start building a
house. Similarly, a medical practitioner may run several elaborate examinations before
deciding on a diagnosis.
Whenever there is the possibility of gaining more precise information through some

preliminary action, usually involving some additional cost, we can model this situation
mathematically using the scheduling with testing framework. The process of investing
additional resources like time, computing power, human labor, or money, to attain the
previously unknown information is referred to as testing in this model.
Additionally, we assume that there is always a fallback strategy that can be executed

whenever we do not want to invest these additional resources. For example, instead of
paying the uncertain repair cost for an old and damaged car, we may invest our money
into buying a new car. The cost of this upper bound strategy is always assumed to be at
least as large as the resulting cost of the job if we had invested into the test. There is a
natural trade-off in the model between the uncertain but possibly beneficial investment
of resources and the upper bound strategy with known cost.
Mathematically, we consider a set of m machines, where n jobs have to be assigned.

All job processing times pj ≥ 0 are unknown. However, the algorithm is given known
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1.2 Motivating Examples and Applications

upper bounds uj which fulfill uj ≥ pj, as well as known testing times tj ≥ 0. The
algorithm can decide for each job in which configuration it should be executed on a
machine: Testing and running its processing time takes a total time of tj + pj, while
executing it untested takes time equal to uj. The true processing time pj of a job is only
revealed if the job is run in the tested configuration, and then only after completing
the test. A rigorous formal definition of the mathematical model is given in Chapter 2.
The scheduling with testing problem has first been introduced in this form by Dürr

et al. [35] in 2018. They consider the single machine case and give results for minimizing
the sum of completion times and the makespan.
The problem falls into the framework of explorable uncertainty, a field concerned

with optimizing under uncertain parameters that can be explored by the algorithm
for a certain cost. Explorable uncertainty has been considered in previous research
extensively, see for example [24,38,59,81].
The model is also naturally connected with classic machine scheduling models on a

single machine, as well as on multiple machines. We mention in particular the sum of
completion times objective on a single machine [1,66,78,83], and makespan minimization
on multiple machines [46, 51, 76], since these settings are primarily considered in this
thesis. For a first overview, we recommend the book on scheduling by Pinedo [73]. For
more details on previous work and related literature, we refer to Chapter 3.
Compared to some of the traditional machine scheduling settings, the possibility of

testing jobs to improve their processing by an a priori unknown amount increases the
complexity of the scheduling with testing problem. Even for a single job, an algorithm
must make the non-trivial decision to invest into gaining more information or using the
fallback strategy. Additional decisions concerning the order of the jobs in the sum of
completion times objective or the assignment of jobs to multiple machines add even
more intricacies to the problem.
To fulfill the tasks determined by our research questions, we present and analyze

several deterministic online algorithms as well as lower bounds for the scheduling with
testing setting in this thesis. We consider one or more machines for both the objective
of minimizing the sum of completion times as well as the makespan. In our analysis
for a single machine, we utilize both established and new testing rules based on job
parameters, introduce tailored sorting schemes, and evaluate pairwise contributions of
jobs to their completion times. For more than one machine, we extend the testing
rules from the single machine case, sort jobs into groups based on their parameters,
and extend classic proof methods from makespan minimization. We consider different
settings concerning preemption, where jobs may be interrupted at predefined times
during their runtime. Finally, we also consider two randomized algorithms in the single
machine case. Our results and methods are presented in Chapters 4 and 5, respectively.

1.2 Motivating Examples and Applications
Scheduling with testing has many direct applications in real-world settings, including
data and resource management, manufacturing, construction and maintenance work,
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1 Introduction

market demand predictions, distributed computing, and medical diagnoses. In this sec-
tion, we talk about several such applications and consider a number of explicit examples
in detail.
Consider first a very simple example in car maintenance. Let us assume the engine

of our car does not start anymore as a consequence of a defective battery. We might
decide to bring the car to a repair shop and simply exchange the battery, inducing a
fixed cost for the new battery and the workers’ hours. Alternatively, we can instruct
the shop to first run a fault diagnosis, which also incurs a fixed, but smaller cost. In the
worst case, the battery is in fact faulty and has to be exchanged, and we have to pay
for a new one in addition to the cost of the diagnosis. But if it turns out that the cause
of the problem was just an electronic malfunction that drained the fully operational
battery, it might be enough to fix the malfunction and recharge the battery, saving a
lot of money. In this example, we have a simple trade-off for a single task that might
become cheaper by running a preliminary diagnosis, illustrating a basic instance of our
problem with one job.
Next, we examine a setting in market demand predictions. Say, a production company

conducts online surveys to determine customer demands for newly developed products.
The results of a survey can be used to accurately predict necessary production volumes
to satisfy the demand, likely leading to reduced production costs. However, conducting
the survey beforehand takes a certain amount of time and money. Thus, the company
has to decide whether to run a survey for a given product or not. In addition, this
example highlights the need for the possibility of preemption in our model: After the
responsible department has finished evaluating the survey for a product, it is unlikely
that the same people immediately start working on its production. Instead, this is
managed by an entirely different department later on, which we can model in the
scheduling with testing problem by interrupting the associated job and resuming it
later on a different machine.
In order to investigate a more complex example, we look at a distributed comput-

ing setting with a number of remote computing servers and one centralized master
server. Data is exchanged between the master and the remote servers. Over time, the
saved data at the remote servers may become out of date or inconsistent with the mas-
ter. Many distributed applications allow this kind of inconsistency, often called stale
replication, since keeping data consistent all the time is infeasible from a performance
perspective [71]. However, using replicated data for computing jobs at the local servers
may lead to results with lower quality. At the same time, querying the master server
for the precise data incurs a query cost, e.g. the waiting time for the answer from the
master. This trade-off can be modeled directly in the scheduling with testing setting
by letting the cost for querying the master correspond to the execution of a test. The
goal is then to minimize quality loss of the computing jobs and the total query duration
or costs. In the scheduling with testing model, both objectives are combined into one.
This setting features non-uniform testing requirements: the time to query the mas-
ter server may differ substantially depending on the connection distance between the
two servers. Additionally, the distributed computing framework represents an instance
with multiple remote servers executing jobs, which necessitates multiple machines in
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1.2 Motivating Examples and Applications

the scheduling with testing model.
Olston and Widom [71] provide a simple explicit example for a stale replication sys-

tem: Web browsers commonly save copies of websites in the local cache of a computer.
The saved copy might become out of date after some time has passed, reducing the
quality of the displayed website, but refreshing a site by retrieving the master copy
from a web server will take additional time, thus reducing performance.
To list some further possible scenarios, we mention manufacturing schedules where

personnel has to be assigned to production tasks with uncertain duration, data trans-
mission requests using file compression which may vary in size, or acquiring a house
through an agent who gives us more information about its value, location, and condition
in exchange for a fee.
In general, any circumstances where the outcome is influenced by some preceding

action, be it cost or duration estimates, the acquisition of previously unknown infor-
mation, or the improvement of some procedure by an indeterminate amount, can be
modeled by the scheduling with testing framework.

A Detailed Example with Explicit Values. To conclude this section, we take a look at
an example with explicit values to further motivate our setting and explain the difficulty
as well as the distinctive traits of the mathematical model. The following example is
based on running computer programs with an additional pre-optimizer that can be used
to potentially improve the runtime of the code.
Suppose that we are working in a software company. One day in the morning, we

receive an e-mail from our boss that the only thing we have to do on that particular day
is to run a number of computing tasks. As soon as they are all finished, we are allowed
to go home. All tasks we received have a known runtime and can be executed on one
of three available computers. In addition, our boss also sends us a black-box optimizer
which can be used to improve the runtime of any job by an unknown amount. We
have no further information on how well the optimizer performs and after optimizing,
the job’s runtime can be anything between the initial runtime and zero. Running the
optimizer takes a known, predetermined amount of time. In our simplified world, any
computer running a job or the optimizer is not available to do anything else. Our goal,
of course, is to go home as early as possible.
In the scheduling with testing problem, we can model the known initial runtime of

a computing task as its upper bound, and the optimizer as the test that reveals the
improved processing time. The computers are the machines where jobs can be assigned
to. The goal of going home as early as possible can be equated to minimizing the
time when the final job finishes on the last computer. This corresponds directly to the
objective of minimizing the makespan of the machines.
Assume for now that our boss only sends a single computing task. The job she sends

has an initial runtime of 2 hours, and the black-box optimizer runs for 1 hour. The
immediate question is of course whether we should run the optimizer or not. If it is
successful in decreasing the initial runtime by more than 1 hour, we get a better result,
otherwise the total duration might even be larger than before.
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To better understand this decision, let us fix the optimizer duration to 1 hour and
consider what happens if the initial runtime of the task takes on other values larger or
smaller than 2. Let us pay particular attention to the ratio between our solution and
the best possible result if we knew how much the optimizer improves the runtime —
this ratio is the basis of the competitive analysis framework we will use later to measure
the performance of our methods.
If the initial runtime is less than 1, we speak of a trivial job. It makes no sense to

run the optimizer, since the initial runtime of the task is actually less than the time the
optimizer needs. For initial runtimes that are at least 1 but still small, it is intuitive to
still not use the optimizer: Even though there is a chance that the optimizer reduces
the total duration, the improvement would be comparatively small, and there is a risk
of almost doubling the total duration if the optimizer does not reduce the runtime at
all. In contrast, it is clear that optimizing becomes more and more lucrative the larger
the initial runtime is: The comparatively small testing period in the beginning makes
almost no difference to the total duration if the optimizer performs poorly, but it might
possibly improve it by a large margin if the optimizer performs well.
Looking at the cases above, it becomes apparent quickly that if we have no further

information about the performance of our black-box optimizer, the optimal strategy
must be some kind of threshold algorithm. If the ratio between initial runtime and
optimizing time is small, we shouldn’t run the optimizer. If the ratio is large however,
our result can improve a lot if we do. The point where we should switch between the
two strategies is somewhere in between.
It turns out that the point where the optimal strategy switches between running the

optimizer and ignoring it is approximately at a ratio of 1.6180 between initial runtime
and optimizing time, a value which corresponds to the golden ratio. This was proven
for the case when the testing time is equal to 1 by Dürr et al. [35] in their introductory
paper on scheduling with testing. In [6] we generalized this result to any non-negative
testing time. In Section 5 we provide more details on how to prove this result.
Let us now look at our original example and assume that the actual set of tasks sent

by our boss contains more computing jobs. We give some example runtimes and the
time needed by the optimizer in Table 1. The improved time of a job after optimizing
is displayed in parentheses. Only when we decide to actually run the optimizer, these
values are revealed to us. In particular, we have to decide whether to optimize or not
without knowing them.
Now that we at least have an idea of how a single job behaves, how should we assign

multiple jobs to our three different available computers? The List Scheduling algorithm

Table 1: Example parameters for a set of seven jobs.
Job number 1 2 3 4 5 6 7
Initial runtime 2 2 2 3 3 1.25 4
Optimizer duration 1 1 1 1 2 1 2
Runtime after optimizing (1.5) (1.5) (1.5) (1) (1) (0) (3)
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(c) Optimal offline solution

Figure 1: Resulting schedules for the example instance in Table 1 based on different
approaches. A job’s height corresponds to its duration. Non-optimized jobs
are dark blue and optimized jobs are light blue. The duration of the optimizer
is indicated by the light gray area for each optimized job.

is a well-known heuristic approach to this problem. It simply assigns any job to the
computer with the current smallest sum of runtimes. Our first try based on this idea
is depicted in Figure 1(a): We simply consider the jobs in the given order, and use
List Scheduling to assign them. Once a computer is fixed for a job, we use the optimal
threshold method from above to decide whether we optimize or not. We only find out
how much the runtime can be improved for those jobs which we use the optimizer on.
We can see that after 8.75 hours all jobs are done and we can go home.
Can we do better than this? One advantage that we have not used in the simple

approach above is that we can sort the jobs based on their known parameters. The
schedule in Figure 1(b) is obtained by sorting the jobs based on non-increasing initial
runtime, again using List Scheduling to decide the computers and the optimal threshold
method to decide the optimizer strategy. As we can see, the time needed to finish all
jobs has improved to 7 hours.
The approaches for one of the most important settings we analyze in paper [7] are

based on the ideas shown in the above example. Our extension of the List Scheduling
algorithm works almost exactly as shown in Figure 1(a). Our main algorithm uses a
more sophisticated sorting scheme than the one used in Figure 1(b), and additionally
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1 Introduction

modifies the threshold idea to be dependent on the number of available machines.
Finally, the best possible result that can be achieved is depicted in Figure 1(c). After

only 6 hours of executing tasks on our three computers we are allowed to go home,
saving almost three hours compared to our first intuitive approach. This is the value
against which we compare all our solutions. However, this best possible result makes
heavy use of the knowledge of how much the optimizer reduces the runtime of our jobs
and very often can be shown to be unattainable without this extra information. As a
matter of fact, one partial goal in our analysis will be to prove that algorithms cannot
achieve results better than a certain value unless they have access to this unknown
information.
More details on our methods are presented in Chapter 5. One goal that we considered

in paper [6] which was not described in this example, was to minimize the sum of
completion times on a single machine. A brief overview of all our results, including
ones not described here, can be found in the next section.

1.3 Brief Summary of Achieved Contributions
In this section we give a short high-level summary of the most important contributions
of this thesis. All results were achieved in the papers [6] and [7]. All technical terms
and notations used here are described in detail in Chapter 2.
We examine new algorithms and general lower bounds for the makespan and sum of

completion times objectives, answering our two most important research questions to
satisfaction. Additionally, some lower bounds that only hold for our given algorithms
are studied. We will briefly describe the ideas and concepts behind most of the results.

Results for the Makespan. For one machine, we provide optimal algorithms and
lower bounds. The deterministic ratio is ϕ ≈ 1.6180 and the randomized ratio is 4/3.
Both results are based on a threshold strategy and extend the ratios by Dürr et al. [35],
which were provided for a less general form of the problem where the testing times of
all jobs are equal.
For multiple machines, we are the first to analyze algorithms and lower bounds in

the setting of scheduling with testing. We examine three different deterministic algo-
rithms whose competitive ratios increase together with the number of machines. For
general testing times, we analyze a simple combination of the threshold method and
List Scheduling. It has a competitive ratio of 2ϕ ≈ 3.2361 in the worst case, and there
exist examples where the algorithm has the same value as its competitive ratio. By sort-
ing the jobs into phases based on job parameters, we achieve an improved algorithm
where the competitive ratio is at most 3.1016. By employing the same ideas for uniform
testing times, the resulting ratio is not worse than 3. A corresponding lower bound has
a value of 2 if the number of machines becomes large. It is based on a common lower
bound construction for ordinary makespan minimization. Finally, for the special case
when most jobs are trivial, i.e. their optimal processing time is known, we demonstrate
that a uniform algorithm can have a worst-case ratio of 2.1574.
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1.4 Publication Overview and Thesis Outline

For the case when preemption is allowed, we give a straightforward algorithm with
competitive ratio 2, which works by applying a brute force offline algorithm two times.
The corresponding lower bound also has a value of 2 if the number of machines ap-
proaches infinity. Hence, in this case it follows that the results are optimal. We also
describe the novel concept of test-preemption, where jobs can only be interrupted right
after their test is completely executed.
Additionally, we present first results for what we call fully-online scheduling with

testing. In this variation, all job parameters including upper bounds and testing times
are unknown in the beginning and arrive sequentially one by one. The extension of List
Scheduling above can be applied directly, giving a competitive ratio of 2ϕ. Moreover,
we prove a lower bound of 2 that holds for any fixed number of machines m ≥ 2. This
bound can be increased to 2.0953 for 2 machines, and we argue that this likely holds
for higher numbers of machines as well.

Results for the Sum of Completion Times. We consider this objective on one ma-
chine, where we again extend the results by Dürr et al. [35] to general testing times.
We give a deterministic algorithm with competitive ratio 4, for which we also provide
lower bounds that only hold for this particular algorithm. In the analysis we use novel
methods of sorting the jobs by their known parameters and use cross-examination of
job contributions to determine completion times. We additionally show that the meth-
ods used by Dürr et al. [35] cannot be extended to the general problem we considered.
Conversely, we provide a short proof of the main deterministic result of [35] using our
methods.
In the deterministic preemptive setting, we present an approach with competitive

ratio 2ϕ ≈ 3.2361. For this, we customize the preemptive Round Robin method and
apply it to our problem. Since the lower bound of Dürr et al. was not formulated for
the preemptive setting, we adapt it and retain their value of 1.8546.
Finally, in the randomized setting, we devise an algorithm that is 3.3794-competitive.

The randomization is applied to the testing scheme, while the ordering of the jobs is
performed as in the deterministic setting. We use computer-aided computations with
the software Mathematica [86] to calculate explicit values for the parameters of the
algorithm.
For a detailed overview of all achieved contributions and a comparison to earlier

results, we refer to Chapter 4. For details on our methods, please consult Chapter 5.

1.4 Publication Overview and Thesis Outline
This publication-based thesis includes two first-author papers which appeared in pro-
ceedings of peer-reviewed computer science conferences.
For every paper, we present in the appendix a short summary containing a description

of the publication’s content and the individual contributions of the author of this thesis.
For the first paper A, the complete text including all tables and figures in the original
form follows. For the second paper B, we include the final author’s manuscript including

9



1 Introduction

all tables and figures and a link to the published version at the publisher’s web page.
The bibliographic references within this thesis are [6] for paper A and [7] for paper B.

Appendix A S. Albers and A. Eckl. Explorable Uncertainty in Scheduling with Non-
uniform Testing Times. In C. Kaklamanis and A. Levin, editors, Approximation and
Online Algorithms, Lecture Notes in Computer Science, pages 127–142, Cham, 2021.
Springer International Publishing. [6]

Appendix B Final author’s manuscript of: S. Albers and A. Eckl. Scheduling with
Testing on Multiple Identical Parallel Machines. In A. Lubiw and M. Salavatipour,
editors, Algorithms and Data Structures, Lecture Notes in Computer Science, pages
29–42, Cham, 2021. Springer International Publishing. [7]
Published version: https://doi.org/10.1007/978-3-030-83508-8_3

For both papers, we have published full versions containing all detailed proofs and
concepts omitted from the original publications. The full versions were originally up-
loaded to the free distribution service and open-access archive arxiv.org. For biblio-
graphic information on the full versions, we refer to reference [5] for paper A and to
reference [8] for paper B.
This thesis is primarily structured into six chapters: In Chapter 1 we introduced

the problem setting and gave an introductory example as well as several applications.
In Chapter 2, we give general definitions and describe our setting from a rigorous
mathematical standpoint. Chapter 3 is dedicated to an in-depth and comprehensive
review of material from the literature. We summarize all results for scheduling with
testing that are known to date in Chapter 4 and place particular focus on our own
results. In Chapter 5 we summarize the most important proof concepts and methods
we used. Finally, we conclude with some comments, open questions, and future research
possibilities in Chapter 6. In the Appendix, we include the two papers which this thesis
is based upon.
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2 Problem Statement

2.1 General Notions and Definitions
In this chapter we provide the basic theoretical groundwork for our problem and rig-
orously introduce all necessary notations, definitions, and concepts used in this thesis
and the accompanying publications.
The goal of any scheduling problem is to find a schedule which assigns the given

jobs to the machines within some given time horizon such that certain constraints are
fulfilled. Whenever a schedule assigns some job to a machine, we also say that the job
is executed or simply run on that machine.
In the scheduling with testing setting, we consider a continuous time horizon [0,∞),

where jobs are assigned to machines for continuous intervals. The most important
constraint that has to be fulfilled is that no two assigned job intervals may overlap on
a single machine. We describe more involved constraints that have to be satisfied in
Section 2.2.
A single schedule is evaluated using a given objective function, which is almost always

based on the completion times of the jobs. For a given job, the completion time describes
the moment in time when all processing requirements of the job are finished, i.e. the
latest point anywhere on the time horizon that it is assigned to. In all problems we
consider in this thesis, the goal is to minimize the value of the given objective function.
An algorithm for a given problem takes as input an instance with given parameters

and outputs a schedule. We differentiate between deterministic and randomized algo-
rithms. The latter is allowed to use random choices during its runtime to produce the
schedule, while the former cannot use randomness as part of its computation.
In the scheduling with testing problem, some parts of the input are considered un-

certain. We model this uncertainty by revealing information over the course of the
execution of an algorithm. This means that at fixed times during the decisions of an
algorithm further information about the input sequence is made available. All decisions
of the algorithm must be made without any input information that has not yet been
revealed. Such settings are referred to as online, while settings with full information
about the input at all times are also referred to as offline. We evaluate online algo-
rithms using the standard notion of competitive analysis, which was first introduced by
Sleator and Tarjan [82] in 1985. It compares the algorithmic value against an optimal
(offline) schedule.

Definition 2.1 (Competitive Ratio). Let c ≥ 1, and let an online minimization schedul-
ing problem and a deterministic algorithm ALG for the same problem be given. Let
ALGI denote the objective function value associated with the schedule produced by the
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2 Problem Statement

algorithm on a given input sequence I and let OPTI denote the value of an optimal
offline schedule with minimum objective function value on the same input.
The algorithm ALG is called c-competitive or is said to have competitive ratio c for

the given problem if for all possible input sequences I it holds that

ALGI ≤ c ·OPTI .

Commonly, we drop the index I in the above notations when the input is clear by
context or the statement holds for all inputs. We then simply write ALG for the
algorithmic value and OPT for the optimal value, slightly abusing this notation since
it also refers to the algorithm and the optimum itself.
Note that we do not explicitly demand polynomial runtime of the algorithm in the

above definition. However, in many cases competitive online algorithms still fulfill this
condition even though it is not required.
We also note that in some definitions of competitiveness an additive term of size

o(OPTI) is added to the right hand side of the inequality, leading to a slightly more
general definition that is not as susceptible to difficult small instances. The above defi-
nition without this additive term is then sometimes referred to as strictly c-competitive
[23, Chapter 1.1.2]. The two variations can in certain cases make an actual difference
in the competitive ratio, see for example [16]. All proofs of competitive ratios provided
in this thesis and its accompanying papers hold under the stricter definition.
For randomized algorithms, the objective value ALGI of a schedule produced on an

input sequence I is a random variable based on the algorithm’s random choices. To
evaluate an algorithm, we only consider settings where the input sequence is constructed
in advance without any knowledge of the outcome of these random choices. In the
literature, this is usually referred to as an oblivious adversary who plays in a two-player
game against the algorithm. For more on this and other kinds of adversaries, see for
example [21,23]. We define the competitive ratio for randomized algorithms as follows
using fixed input sequences:

Definition 2.2 (Competitive Ratio for Randomized Algorithms). Let c ≥ 1, and let an
online minimization scheduling problem and a randomized algorithm ALG for the same
problem be given. Let ALGI denote the random objective function value associated with
the schedule produced by the algorithm on a given fixed input sequence I and let OPTI

denote the value of an optimal offline schedule with minimum objective function value
on the same input.
The algorithm ALG is called c-competitive or is said to have competitive ratio c for

the given problem if for all possible fixed input sequences I it holds that

E[ALGI ] ≤ c ·OPTI .

Here, E[ALGI ] refers to the expected value of the random variable ALGI .

Our goal is to provide online algorithms such that their competitive ratios are as small
as possible, the best value of 1 corresponding to an algorithm providing an optimal
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2.2 Description of Scheduling with Testing

schedule for any input. Of course, achieving this value is not always possible. For
competitive algorithms, impossibility results are proven based on the notion of lower
bounds:

Definition 2.3. Let an online minimization scheduling problem be given. Any value
l ≥ 1 such that for all c-competitive online algorithms for the problem it holds that c ≥ l
is called a lower bound for this problem.

It follows directly that any online algorithm for a problem with a lower bound of l
cannot have a competitive ratio smaller than l. The ultimate goal in competitive analy-
sis is usually to close the gap between the lower bound and the best known competitive
ratio of an algorithm. Hence, the current best known ratio is also sometimes referred to
as an upper bound to the problem. If an l-competitive algorithm is known for a problem
with lower bound l, we refer to the algorithm and the lower bound as tight.
To prove lower bounds for deterministic algorithms, it is very common to describe

an example input where any possible online algorithm returns a schedule whose value
is at least l times larger than the optimum. We note that for the more general defini-
tion of competitiveness with an additive term technically a sequence of examples with
increasing size has to be provided to prove a valid lower bound. It is easy to check that
all given lower bound examples in this thesis and the appended papers can be extended
to such an increasing sequence of inputs, hence all provided lower bounds hold even for
the more general version of competitiveness.
For randomized algorithms, a lower bound can theoretically be achieved in the same

fashion. However, when describing the counterexample one has to ensure not only that
any online algorithm has an expected objective value at least l times larger than the
optimum, but this also has to be true for any probability distribution of its random
choices. Since this can sometimes be difficult to achieve, lower bounds for random-
ized algorithms are often proven using Yao’s principle [87]. For more details, see for
example [23, Chapter 8.3].
For a complete and in-depth overview of online algorithms and competitive analysis,

we refer the reader to the book by Borodin and El-Yaniv [23]. In the next section we
describe the parameters and notations of the scheduling with testing setting in elaborate
detail.

2.2 Description of Scheduling with Testing
An instance of the scheduling with testing problem consists of n jobs that have to be
assigned to m machines, where m,n ∈ N. We usually use the index j for a job and the
index i for a machine. Within some proofs, index k is also used to refer to a job.
All jobs j have a processing time pj ∈ R+

0 , which is unknown to the algorithm at
the beginning of its execution. Every job j also has an upper bound uj ∈ R+

0 and a
testing time tj ∈ R+

0 . Unlike the processing times, the upper bounds and testing times
are known to the algorithm from the start. In particular, it follows that the algorithm
knows the number of jobs n. As indicated by the name, the upper bound of a job
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2 Problem Statement

provides a maximum size for the corresponding processing time, or in other words it
always holds that

0 ≤ pj ≤ uj, ∀j ∈ [n]. (1)
Any job j must be assigned to the machines in one of two possible configurations: it

is either run untested or tested. In the untested configuration, the total time the job
has to be executed is uj. If the job is tested, it has to be executed for a total time of
tj + pj. Here, the uncertainty of the parameter pj comes into play to make our problem
an online one: Only as soon as the testing time tj is fully completed on some machine,
the value of pj is revealed to the algorithm. Depending on the specific setting, the
algorithm can then reevaluate its decision for the assignment of the processing time
that it just received. When the testing time is already larger than the upper bound, i.e.
tj > uj, we say the job is trivial. It is clear that trivial jobs are always run untested.
Furthermore, an instance is called uniform, if all testing times tj are equal to 1.
Once an algorithm ALG has assigned all jobs, we can determine the objective value of

the resulting schedule. As mentioned in the previous section, we define the completion
time CALG

j of a job j as the maximum time on the time horizon where an assignment of
j to some machine is made. Usually, the algorithm and the resulting schedule are clear
by context, and we simply write Cj. In rare cases when we refer to the completion time
of j under the schedule produced by the optimum, we use COPT

j instead.

Definition 2.4 (Objective Functions). Let an instance of scheduling with testing with n
jobs and a corresponding schedule be given. We define the makespan objective function
as

max
j∈[n]

Cj,

and the sum of completion times objective function as
n∑

j=1
Cj.

It can be seen directly that in case there is only a single job, i.e. n = 1, the two
objectives are actually equivalent. In almost all other scenarios, it will turn out that
optimizing the sum of completion times is harder than the makespan.

Assignment of Jobs to Machines. In the next paragraphs, we describe the specific
rules of how a job can be assigned to the machines. This depends not only on its
configuration, but also whether we allow jobs to be interrupted.
In all settings, the following conditions must hold: Every machine can only schedule

a single job at once, and a single job cannot be assigned to more than one machine at
the same time. The configuration of a job has to be decided before any part of the job
is assigned. Additionally, in case a job is run in the tested configuration, any section of
the processing of the job can only happen after any section of the test. This corresponds
to the intuitive idea that the test - which reveals the processing time - has to be fully
completed in order to impart the information. Finally, we differentiate between three
settings pertaining to the interruption of jobs:
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In the non-preemptive setting, jobs are not allowed to be interrupted and have to be
assigned to a single uninterrupted interval on one machine. The length of the assignment
is uj in the untested configuration and tj + pj in the tested configuration.
In the test-preemptive setting, only tested jobs can be interrupted, and only right

after their test is completed. Hence, in the untested configuration, a job has to be
assigned to an uninterrupted interval of length uj on a single machine. In the tested
configuration, the test has to be assigned to one machine for an uninterrupted interval
of length tj. The following processing time can then be assigned to some other machine
for an uninterrupted interval of length pj.
Lastly, in the preemptive setting, jobs can be interrupted at any time independent of

their configuration and can be assigned to an unbounded number of different intervals
on all machines for a total time depending on the job configuration: the total assignment
length is uj in the untested configuration and tj + pj in the tested configuration.
It is easy to see that the difficulty of these settings decreases in the order of non-

preemptive, test-preemptive, and preemptive, since the opportunities of interrupting
jobs are increasing. In particular, an algorithm for a more difficult setting can always
be applied to an easier setting by just ignoring the additional possibility of interrupting
jobs.
Even though jobs are always assigned to fixed intervals according to the rules estab-

lished in the previous paragraphs, we might sometimes make shortcuts when describing
this assignment for a given objective function. For example, it is clear that it makes no
sense for an algorithm to leave empty space somewhere on a machine only to resume
executing jobs later on that same machine. Instead, it could just move all jobs forward
until the gap is filled. Therefore, we assume that any algorithm we describe always
fulfills this very simple condition that it leaves no gaps in the schedule on any machine.
Using this, we can simplify the description of how an algorithm assigns jobs in certain
situations:
For the makespan objective, we only need to describe which machine a job is assigned

to, and then assume that the jobs are run on this machine in some order without any
gaps. Since the order on the machines does not influence the maximum completion
time over all jobs, this is a sufficient description of a unique solution for the makespan.
For the sum of completion times, the order of the jobs on a machine does indeed

matter, and therefore we need to specify it when describing a solution. However, the
exact start and end times of the assigned intervals can again be omitted, because we
may assume all jobs are scheduled one after another in the specified order without
leaving any gaps.

Fully-Online Variant of Scheduling with Testing. We now define a special case of
our problem, the so-called fully-online variant. In this version, the jobs are not known
to the scheduler in the beginning, and are only revealed one by one. Therefore, an
algorithm does not know the total number of jobs, and only learns the values of upper
bound and testing time at the moment when a new job arrives. Only if the job is tested,
its processing time is revealed. After completely and irrevocably assigning a job to the
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machines, the next job is presented to the algorithm. All other aspects of this setting
are equivalent to the normal version of scheduling with testing.

Job Variables. Before we conclude this section, we define some useful variables based
on the already described parameters. These variables will appear frequently in our
algorithms and proofs.
The first such variable is the parameter ratio rj between the upper bound and the

testing time. Let a job j be given. Then

rj := uj
tj
. (2)

If tj = 0, we define rj = " +∞". It is clear that for non-trivial jobs it holds that
rj ≥ 1. We will use the parameter ratio quite often to define testing strategies in our
algorithms. In connection to the ratio, the mathematical constant of the golden ratio
will appear frequently. We define ϕ ∈ R+ as the unique positive real number fulfilling
the equation ϕ = 1 + 1/ϕ. It holds

ϕ = 1 +
√

5
2 ≈ 1.6180.

Next, we describe the three running time variables of jobs:

Definition 2.5 (Job Running Times). Let an instance of scheduling with testing and
an online algorithm ALG be given. Additionally, let j be a given job.
The (optimal) offline running time ρj of job j is defined as

ρj := min(tj + pj, uj).

The algorithmic running time pAj of job j is defined as

pAj :=




tj + pj if j is tested by ALG,
uj if j is not tested by ALG.

The minimal running time τj of job j is defined as

τj := min(tj, uj).

The job running times are directly related to the lengths of jobs under different
schedules: A schedule with optimal objective value, against which we compare the
algorithmic solution, is constructed with full knowledge about the parameters of the
problem, in particular the processing times pj. Therefore, we can directly determine
the best configuration of a single job j: If pj + tj < uj, then test the job, otherwise
run it untested. Hence, the optimal offline running time ρj corresponds to the time the
optimum needs to run job j.
A given online algorithm ALG, on the other hand, does not know the processing

times pj. It has to non-trivially decide whether a given job j is tested or not. Therefore,
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the algorithmic running time pAj , i.e. the time needed for ALG to execute job j on a
machine, is dependent on the used configuration. Usually, the associated algorithm for
pAj is clear by context, and we only specifically mention it in ambiguous cases.
Finally, the minimal running time τj is a lower bound for the minimum time any

schedule has to spend on running job j. The minimal running time is based only on
known parameters of the problem, which means it can be computed for all jobs by
any algorithm. It will be used frequently for sorting or categorizing the jobs when the
processing times are not yet known.
One main aspect of any competitive algorithm will be how well it can bound the

algorithmic running times against the optimal offline running times. When there is
more than one job or multiple machines, a second goal will be to sort and assign the jobs
in a suitable way. We will see simple algorithms that tackle these challenges separately,
as well as more sophisticated algorithms where the job assignment is influenced by the
testing decision and vice versa.
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3 Literature Review

3.1 Scheduling with Testing
We begin the literature section with a review of the scheduling with testing model itself.
In 2018, Dürr et al. [35] published the paper ’Scheduling with Explorable Uncertainty’
where they first introduced the new model motivated by real life settings where some
preliminary test can be applied to jobs before they are executed. Their results focused
on scheduling on a single machine where all testing times are equal to 1, a setting we
refer to as uniform testing. They later published a journal version [34] of their paper.
The main results of Dürr et al. for the objective of minimizing the sum of completion

times are: The algorithm Threshold which is 2-competitive in the deterministic setting,
and the algorithm Random which has an improved ratio of 1.7453 in the randomized
setting. Additionally, they presented algorithms with improved ratios for the determin-
istic setting if all upper bound parameters have the same value. They completed their
results with a deterministic lower bound of 1.8546, which holds even in the case when
all upper bound parameters are equal and the processing times are either 0 or equal to
the upper bound. Finally, they also provided a randomized lower bound with a value
of 1.6257.
For the makespan objective, Dürr et al. provided a ratio of ϕ ≈ 1.6180 in the deter-

ministic setting as well as a ratio of 4/3 in the randomized setting. For both settings,
they also provided tight counterexamples.
Dürr et al. acknowledged that "In some applications, it may be appropriate to allow

the time for testing a job to be different for different jobs [...]" [35] and left the investiga-
tion of this general case up to future research. In our paper [6] from 2021 we studied the
case with non-uniform testing times tj ≥ 0 on one machine. For the sum of completion
times, we presented the deterministic 4-competitive algorithm (α, β)-SORT as well as
the randomized 3.3784-competitive algorithm Randomized-SORT. For both cases, the
lower bounds from the uniform case apply. Contrary to Dürr et al., we also consid-
ered the preemptive setting and proved a 3.2361-competitive algorithm called Golden
Round Robin. We additionally extended the uniform deterministic lower bound to the
preemptive setting. Finally, we extended the makespan results of the uniform case to
general testing, achieving the same ratios as Dürr et al. [35].
More recently, we generalized the problem further and considered multiple machines

in our paper [7] published later in 2021. We focused on the makespan objective, a
setting which is quite similar to the classic online makespan minimization problem. The
main results from this paper are a 3.1016-competitive algorithm in the non-preemptive
setting which can improved to a 3-competitive algorithm in the case of uniform tests.
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We compare these results with a simple extension of List Scheduling, which is 3.2361-
competitive, and a lower bound that approaches 2 if the number of machines becomes
large. We additionally considered settings where jobs can be interrupted, and achieved
a 2-competitive algorithm called Two Phases for the test-preemptive setting, as well as
a lower bound that approaches 2 for the ordinary preemptive case.
The achievements from the papers [6] and [7] are the main focus of this thesis. We

refer to Chapter 4 for an in-depth overview of all results, and to Chapter 5 for a high
level introduction to the methods used.

3.2 Explorable Uncertainty
Explorable uncertainty is a specific model of handling uncertainty, which was introduced
in a seminal paper by Kahan [59] in 1991. It is sometimes also referred to as queryable
uncertainty and describes settings where some query can be used to receive more in-
formation about the uncertain input. The algorithm can explore this yet unavailable
information by investing resources into the query.
We first consider query-competitive algorithms, i.e. algorithms with the objective of

minimizing the number of queries. Kahan’s work [59] studied uncertain values obtained
from given closed intervals, and derived approximation guarantees for the number of
queries needed to obtain the maximum, median or minimum distance of the values.
Following his work, other publications studying selection problems include Khanna
and Tan [65], who computed the average and the k-smallest value, Feder et al. [45],
who also studied the k-smallest value, and Charikar et al. [26], who evaluated boolean
AND/OR trees and search functions for sorted arrays. Very recently, Erlebach et al. [39]
considered selection problems with rounds of parallel queries.
In 2005, Bruce et al. [24] considered geometric tasks, more specifically finding all

maximal points or all points lying on the boundary of the convex hull of an uncertain
two-dimensional input set. Additionally, Bruce et al. introduced the notion of witness
sets: In order to obtain a solution, at least one value from every witness set has to be
queried. This concept was later stated in more general form by Erlebach et al. [42].
Olston and Widom [71] developed a system for computing query answers in dis-

tributed applications, where the solution is allowed to be inaccurate up to some specified
precision constraint. Sorting in the query-competitive setting was examined recently
by Halldórsson and de Lima [55]. Arantes et al. [14] studied scheduling with uncertain
error occurrences, where the number of queries used to detect time slots with errors is
minimized.
Quite a few combinatorial problems have also been studied: One such problem is mini-

mum spanning trees, which was studied by Erlebach et al. [42], Megow et al. [68], as well
as Gupta et al. [54]. Feder et al. [44] considered shortest paths, while Goerigk et al. [50]
investigated the knapsack problem. Erlebach et al. [41] and Merino and Soto [70] re-
searched methods for finding minimum-weight bases of matroids and more general set
collections.
A very recent line of research is concerned with online algorithms using machine-
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learned predictions. We refer to the paper by Erlebach et al. [40], which combined this
new area with explorable uncertainty and references therein.
The survey from 2015 by Erlebach and Hoffmann [38] contains an overview of research

on query-competitive algorithms.
A related but slightly different setting are tasks where the query cost is included in

the objective function of the corresponding optimization problem. Most importantly,
the scheduling with testing problem that was considered in [6, 7, 35] and is the main
topic of this thesis falls into this category: To receive more information about the
processing time of a job, the corresponding test has to be executed on some machine of
the instance and directly counts towards the given objective based on the completion
time of the jobs. A framework that is very close to this setting is the processing time
oracle model introduced recently by Dufossé et al. [33].
Another example for such settings is the so-called Pandora’s Box problem (Weitz-

man [85]). Herein, a set of random variables are explored with the goal of maximizing
the highest revealed value, where the costs of revealing a value are subtracted from the
collected reward.
In 2018, Singla [81] introduced his ’price of information’ model, where he examined

combinatorial problems with stochastic uncertainty. Information is received in exchange
for paying a probing price, which is again subtracted from the given objective. More re-
cently, Gupta et al. [53] generalized this model to combinatorial optimization problems
with multiple stages of stochastic uncertainty.
Finally, there are many publications in the so-called multi-armed bandit framework,

which studies the trade-off between exploration and exploitation, mostly under stochas-
tic uncertainty models. For an overview, we refer to the monograph by Bubeck and
Cesa-Bianchi [25] and the book by Gittins et al. [49]. We highlight a paper by Levi
et al. [67], who studied a model where testing jobs with stochastic parameters pro-
vides additional information to the scheduler. They presented structural insights and
(near-)optimal results.

3.3 Scheduling on a Single Machine
Scheduling in the single machine case is of interest for us, since we consider scheduling
with testing on one machine extensively in our paper [6], both for the makespan and
the sum of completion times objective. In this section, we briefly give an overview of
previous results for these two objectives on one machine.
In its classic form without any additional uncertainty, the makespan objective can be

solved optimally by any algorithm that does not leave any gaps in the schedule. This
holds true even if the jobs arrive one by one in an online setting.
For the sum of completion times, the picture is more varied. We restrict our attention

to results without job weights and first look at non-preemptive algorithms. In the offline
variant, the Shortest Processing Time first (SPT) algorithm is optimal, as has been
proven by Smith [83] as early as 1956. Apart from that, there are several results with
release times, where jobs may only be assigned to the machine after a given point on
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the time horizon. The offline problem with release times is strongly NP-hard (Lenstra
et al. [66]) and can be solved with a polynomial-time approximation scheme (Afrati
et al. [1]) up to an arbitrarily small relative error in the objective function. In the
online version, jobs are only revealed to the algorithm at their release time. For this
setting, a lower bound of 2− ε was provided by Hoogeveen and Vestjens [57]. A tight
upper bound of 2 was given in the same paper and independently by Phillips et al. [72].
The preemptive setting is easier than its non-preemptive counterpart. The Shortest

Remaining Processing Time first (SRPT) algorithm is optimal in the presence of release
times and in the online version (Schrage [78]). One algorithm of note in the preemptive
online one machine setting is the so-called Round Robin algorithm. It continually cycles
through all available jobs, running every job for a very small, fixed amount of time on
the machine before moving on to the next job. The competitive ratio of this algorithm in
the preemptive setting is 2 [73]. In our paper [6], we adapt this algorithm for scheduling
with testing in the preemptive case on one machine.

3.4 Online Makespan Minimization
In our second paper [7], we consider scheduling with testing on multiple machines with
the objective of minimizing the makespan. In its offline form, makespan minimization on
m machines has been proven to be NP-hard [48]. There exists a well-known polynomial-
time approximation scheme by Hochbaum and Shmoys [56].
The online variant of makespan minimization in its basic form has been investigated

in great detail in the last decades. Already in 1966, Graham [51] published his well-
known List Scheduling algorithm, which is (2− 1/m)-competitive in the deterministic
setting.
The systematic initiation of competitive analysis following the 1985 paper by Sleator

and Tarjan [82] lead to the problem being studied extensively and Graham’s determin-
istic upper bound was improved multiple times: Galambos and Woeginger [47] proved
a slightly smaller ratio of 2 − 1/m − εm where εm → 0 for m → ∞. The first result
beating 2 even for large values of m came from Bartal et al. [17] with a ratio of 1.985.
This was improved to 1.945 by Karger et al. [61] and then to 1.923 by Albers [2], before
Fleischer and Wahl [46] presented the best currently known result of 1.9201 in 2000.
The lower bound was likewise the focus of many publications. Faigle et al. [43] proved

a bound of 1.707, which was improved to 1.837 by Bartal et al. [18] and then to 1.852
by Albers [2]. Rudin [76] gave the current best lower bound of 1.88 in his PhD thesis.
For the randomized version of online makespan minimization, an upper bound of

1.916 was shown by Albers [3]. For the lower bound, a value of e/(e− 1) ≈ 1.582 was
proven independently by Chen et al. [27] and Sgall [80]. In the deterministic preemptive
setting, there exists a tight bound of e/(e− 1) for large m by Chen et al. [28].
There are numerous variations of online makespan minimization that have been in-

troduced in more recent years, like for example in semi-online scheduling or resource
augmentation. We summarize a selection of publications for these two variants in sep-
arate sections below.
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3.5 Semi-online Scheduling
In semi-online settings, the algorithm has access to some additional piece of information
of the instance, e.g. the sum of all processing times, the job order, or the value of
the optimum. Scheduling in the semi-online setting is of particular interest for our
problem, since we may consider our upper bounds and testing times as the extra pieces
of information an algorithm receives about the unknown processing times of the jobs,
making our problem a semi-online one from a certain viewpoint.
We focus our attention on deterministic settings with makespan minimization on

multiple identical machines. Graham [52] considered makespan minimization with jobs
sorted by processing time as early as 1969 and presented the well-known Longest Pro-
cessing Time first (LPT) algorithm. More recently, Cheng et al. [29] also considered
this setting and improved Graham’s result. Additional information about the sum of
all processing times was first considered in Kellerer et al. [64], recent optimal results
for m machines are found in Albers and Hellwig [9] and Kellerer et al. [63]. The case
when the additional piece of information corresponds to the value of the optimum was
studied by Azar and Regev [15]. In this variant, the problem is also known as bin
stretching [15]. Böhm et al. [22] presented the best known algorithm for the problem.
A recent survey by Epstein [37] gives a detailed overview of publications regarding

deterministic semi-online scheduling.

3.6 Resource Augmentation
In resource augmentation settings, the algorithm receives access to some extra resources,
for example machines with higher speed or a reordering buffer. Compared to semi-online
scheduling, the algorithm now has no extra input information, but can instead alter the
machines, the schedule, or other characteristics of the instance.
We again provide some examples of papers that examine resource augmentation for

makespan minimization on identical machines: With a so-called reordering buffer, an
algorithm can temporarily store jobs before they are assigned. Kellerer et al. [64] and
Zhang [88] initiated this setting in 1997. The most important result on reordering
buffers was presented by Englert et al. [36]. Kellerer et al. [64] also proposed the idea
of parallel schedules where an algorithm can compute several schedules in parallel and
then use the best solution it obtained. Albers and Hellwig [11] provided more insights
for this setting. Parallel schedules are closely related to settings with advice, where
the algorithms can access a number of bits telling it how to behave. Dohrau [32]
studied this framework in the online makespan minimization setting. For settings where
machines with higher speed are available to the algorithm, we mention the papers by
Kalyanasundaram and Pruhs [60] and Anand et al. [13]. Finally, an algorithm might
be allowed to migrate jobs, that is to remove and reschedule already assigned jobs, as
for example in Sanders et al. [77] or Albers and Hellwig [10].
More details on resource augmentation can also be found in the surveys by Ep-

stein [37] and Albers [4].
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3.7 Other Notable Publications in Online and
Stochastic Optimization

In this section, we provide some more publications for the online and stochastic opti-
mization setting and highlight a few papers that are similar to our problem.
A version of online scheduling that is closely related to scheduling with testing is

scheduling with rejections. Here, a job may either be scheduled on a machine or alter-
natively be rejected at the cost of a predetermined penalty. The balance between the
fixed penalty and an increase in the objective is reminiscent of the testing decision an
algorithm has to make in the scheduling with testing setting. Bartal et al. [19] con-
sidered scheduling with rejections using deterministic non-preemptive algorithms with
the goal of minimizing the makespan, while Seiden [79] considered the corresponding
preemptive setting. Just as in our problem, many competitive ratios depend on the
golden ratio, again illustrating the balancing decisions based on job parameters an al-
gorithm has to address in both scenarios. However, contrary to our setting, scheduling
with rejections only contains uncertainty in the form of online arrivals, no parameters
are unknown or have to be explored via a test.
Another interesting setting investigated by Albers and Janke [12] in 2021 is online

makespan minimization under budgeted uncertainty. In this framework, a constant
number of jobs may fail and require additional processing time. For more information
and previous work on budgeted uncertainty, we refer to the references in [12].
Some historical notes, a general overview, and several related settings for online

scheduling are discussed in Pruhs et al. [75].
To conclude this chapter, we briefly give some references for stochastic optimization.

The topic is related to our setting since some additional information on the unknown
input is given by a known probability distribution. Early work in stochastic optimiza-
tion includes Dantzig [31] and Beale [20]. We also refer to the chapters on stochastic
scheduling models in Pinedo [73]. We conclude with two papers that first combined the
frameworks of online and stochastic optimization in scheduling and refer to contained
references: Chou et al. [30] considered the sum of completion times on a single machine,
while Megow et al. [69] studied identical parallel machines.
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Results for Scheduling with Testing

We now summarize all currently known results for scheduling with testing. For the
makespan objective, we present results for a single machine as well as multiple identical
machines. For the sum of completion times objective, we give results for the case of a
single machine.

4.1 Makespan
We start by presenting the currently known results for the scheduling with testing
problem for the makespan objective on a single machine. Dürr et al. [35] initiated the
line of research into scheduling with testing in 2018 by considering this setting with
uniform testing times tj ≡ 1. They provided a ϕ-competitive deterministic algorithm
based on a simple testing scheme that evaluates the known parameters of a single job.
Here, ϕ ≈ 1.6180 is the golden ratio. They complemented this result with a tight lower
bound of the same value. For the setting where an algorithm can make randomized
decisions, Dürr et al. provided a 4/3-competitive algorithm and again a tight lower
bound. In our paper [6], we extended their results to general testing times tj ≥ 0 and
achieved the same ratios. It follows that our results are tight as well, since the lower
bounds by Dürr et al. can be directly extended to the more general case. All results for
the makespan on a single machine are summarized in Table 2. We take a closer look at
the methods used for the one machine case in Section 5.2.1.

Table 2: Results for the makespan objective on a single machine.
Algorithm General Tests Uniform Tests Lower Bound
deterministic ϕ ≈ 1.6180 [6] ϕ [35] ϕ [35]
randomized 4

3 [6] 4
3 [35] 4

3 [35]

We note that for the makespan objective on one machine, the distinction between non-
preemptive and (test-)preemptive settings is unnecessary since they are all equivalent.
This follows directly from the fact that the order of executions on a single machine does
not influence the objective value of the makespan as long as there are no gaps between
the jobs. For more than one machine, however, this changes because jobs can then be
assigned to a different machine after being interrupted.
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In our paper [7] and its full version [8], we presented deterministic algorithms for the
makespan objective for any number of machines m ∈ N and examined non-preemptive,
test-preemptive, and preemptive settings. We did not consider any randomized algo-
rithms for multiple machines.
For the non-preemptive setting, we presented a sophisticated method called SBS

algorithm, whose competitive ratio c(m) increases with the number of machines m and
reaches a maximum value of 3.1016 for m → ∞. For uniform testing times, the same
algorithm can be adapted to be c1(m)-competitive, where the function c1(m) is also
increasing in m and has a maximum value of 3 if m approaches infinity. Additionally,
we compared our results to a method based on the List Scheduling algorithm. This
so-called Extended List Scheduling algorithm is ϕ(2 − 1/m)-competitive, a value that
approaches 3.2361 for large m. The analysis of the algorithm is tight, i.e. there exist
specific examples where the ratio is not better than ϕ(2 − 1/m). To complement our
results, we provided a lower bound of max(ϕ, 2− 1/m). As an additional minor result,
we introduced an algorithm for the case when there are at most m non-trivial jobs.
This algorithm has a competitive ratio of ϕ(4/3 − 1/(3m)), a value which approaches
2.1574 if m becomes large. Note that the lower bound above does not apply to this
specialized case since it requires a higher number of non-trivial jobs.
In Table 3, we give an overview of the competitive ratios of the Extended List Schedul-

ing algorithm, the SBS algorithm in both general and uniform form, and the lower
bound and how they vary for different values of m. For completeness, we also include
the ratios of the special algorithm for instances with few non-trivial jobs.

Table 3: Deterministic non-preemptive results from [7] and [8] for fixed values of m.
m = 1 m = 2 m = 3 m = 4 m = 5 m = 10 m = 100 m→∞

Extended LS 1.6180 2.4271 2.6967 2.8316 2.9125 3.0743 3.2199 3.2361
SBS 1.6180 2.3806 2.6235 2.7439 2.8158 2.9591 3.0874 3.1016
Uniform-SBS 1.6180 2.3112 2.5412 2.6560 2.7248 2.8625 2.9862 3
Lower Bound 1.6180 1.6180 1.6667 1.75 1.8 1.9 1.99 2

Few Non-trivial Jobs 1.6180 1.8877 1.9776 2.0225 2.0495 2.1034 2.1520 2.1574

As we can see, all algorithms from [7] and [8] achieve the same tight ratio of ϕ ≈
1.6180 for m = 1 as was already proven in [35]. Additionally, it is apparent that the
simple Extended List Scheduling method is outperformed by the SBS algorithm for
all values of m ≥ 2. In turn, the uniform version of SBS improves the results even
further. Finally, it is not surprising that the algorithm for the case with at most m
non-trivial jobs provides the best ratios. In Figure 2, we additionally present the graphs
of the functions ϕ(2 − 1/m), c(m), c1(m), ϕ(4/3 − 1/(3m)), and max(ϕ, 2 − 1/m) in
dependence of m.
For the non-preemptive setting, on the other hand, we introduced almost tight results:

The Two Phases algorithm has a competitive ratio of 2 for any value of m, both for
general and uniform testing times. Additionally, this algorithm works even in the more
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Figure 2: Function plots of the competitive ratios of Extended List Scheduling, SBS,
Uniform-SBS, and the algorithm for instances with few non-trivial jobs as
well as the function plot of the lower bound.

restrictive test-preemptive setting. We also proved a corresponding lower bound of
max(ϕ, 2 − 2/m + 1/m2) for the ordinary preemptive setting which can be directly
extended to the test-preemptive setting. Hence, this bound is tight if the number of
machines approaches infinity.
The best currently known results for the makespan objective on multiple machines

are summarized in Table 4. Please consult Sections 5.2.2 and 5.2.3 for more details on
the methods we applied in the proofs.

Table 4: Deterministic results from [7] for the makespan on m machines.
Setting General Tests Uniform Tests Lower Bound

non-preemptive c(m) −−−→
m→∞

3.1016 c1(m) −−−→
m→∞

3 max
(
ϕ, 2− 1

m

)

(test-)preemptive 2 2 max
(
ϕ, 2− 2

m
+ 1

m2

)

Finally, we briefly examined the fully-online variation where all jobs are revealed to
the algorithm one by one in the full version [8]. We only considered the test-preemptive
setting. Extended List Scheduling can be applied directly, giving a competitive ratio of
2ϕ in the worst case. We also provided a lower bound with a value of 2 that holds for
all m ≥ 2. If m = 2, this bound can be increased to 2.0953. For more details, we refer
to Section 5.2.4.
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4.2 Sum of Completion Times
In this section, we summarize the results on a single machine for the objective of
minimizing the sum of completion times. We first focus on the uniform testing case, for
which Dürr et al. [35] provided the first results when they introduced the problem in
2018. We present these results in Table 5. They described a deterministic 2-competitive
algorithm called Threshold as well as a deterministic lower bound of 1.8546. In the
randomized setting, they provided an algorithm Random with competitive ratio of
1.7453 and a lower bound of 1.6257. Additionally, they provided several special case
algorithms for uniform job bounds that are closer to the lower bound of 1.8546.

Table 5: Results from [35] for the sum of completion times with uniform tests.
Algorithm Setting Competitive Ratio Lower Bound
deterministic test-preemptive 2 1.8546
randomized test-preemptive 1.7453 1.6257

It should be noted that all results from [35] are presented for what we call the test-
preemptive setting, even though Dürr et al. do not make this distinction. In other
words, in their setting jobs are allowed to be interrupted after the test is completed,
a concept which they call deferring or delaying a job. For the strictly non-preemptive
setting, no deterministic algorithm with finite competitive ratio can exist, even on one
machine with uniform testing. This result is new in this thesis and was not presented
before. We provide the proof, which is based on a counterexample, and the relevant
mathematical details in Section 5.3.3.
In the non-uniform testing case, we have several findings to report that were achieved

in our paper [6] and its full version [5]. As our main result, we provided a determinis-
tic test-preemptive 4-competitive algorithm called (1, 1)-SORT. This result is comple-
mented by the lower bound from [35] for the uniform case, which can be extended to
general tests directly. We also proved that the algorithm itself cannot be better than
3-competitive. Even if some parameters are modified in the algorithm, it can still not
be better than 2-competitive.
Additionally, we considered the deterministic preemptive setting where we achieved a

2ϕ-competitive algorithm. The analysis of the algorithm is tight. We also non-trivially
adopted the corresponding result by Dürr et al. to achieve a lower bound of 1.8546 for
this setting.
For randomized algorithms, we only considered the test-preemptive setting, where

we provided a 3.3794-competitive approach. Here, the lower bound by Dürr et al. [35]
can again be applied directly.
Consult Table 6 for an overview of the achieved ratios for the sum of completion

times with general tests. Please refer to Sections 5.3.1, 5.3.2, and 5.3.4 for details on
the methods used in the proofs.
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Table 6: Results for the sum of completion times with general tests.
Algorithm Setting Competitive Ratio Lower Bound
deterministic non-preemptive no finite ratio possible
deterministic test-preemptive 4 [6] 1.8546 [35]
deterministic preemptive 2ϕ ≈ 3.2361 [6] 1.8546 [6]
randomized test-preemptive 3.3794 [6] 1.6257 [35]

4.3 Comparing Results for Both Objectives
To conclude this section, we compare some of the results presented above. We start by
comparing the two different objective functions that we considered for the one machine
case. As we have mentioned previously in Section 2.2, the makespan and the sum of
completion times are equivalent if there is only a single job.
For more than one job in the makespan case, there is a tight deterministic algorithmic

solution with ratio ϕ ≈ 1.6180, as can be seen in Table 2. On the other hand, for the
deterministic (test-)preemptive sum of completion times there is a lower bound equal
to 1.8546 (c.f. Tables 5, 6). Hence, in the deterministic setting, minimizing the sum of
completion times is strictly harder than minimizing the makespan on a single machine
with more than one job.
This holds for randomized algorithms as well: The tight algorithmic solution for

the makespan has a ratio of 4/3 (c.f. Table 2), while the lower bound for the sum of
completion times is 1.6257 (c.f. Tables 5, 6). Again, minimizing the sum of completion
times is strictly harder than minimizing the makespan if there is more than one job on
a single machine.
In addition, we compare the different settings of how jobs can be assigned to the

machines. It is clear that the difficulty of scheduling with testing decreases in the
following order: non-preemptive, test-preemptive, and preemptive. This can also be
seen in the corresponding results in Tables 4 and 6.
Similarly, allowing an algorithm to make random choices is stronger than not permit-

ting randomness. In the one machine case for the makespan and in the case of uniform
testing times for the sum of completion times, we already know that randomization
leads to the problem being strictly easier (c.f. Tables 2, 5). Comparatively, it is still
unclear whether randomization leads to a strictly easier problem in the case of general
tests for the sum of completion times (c.f. Table 6).
Finally, the test-preemptive fully-online variation of the problem has a lower bound

that is strictly larger than the corresponding bound for the ordinary version. However,
it is again unclear whether the fully-online setting itself is strictly harder or not, since
there is no known competitive algorithm in the ordinary version beating this bound.
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5 Methodology
In this chapter we report the most important methodological aspects of our results.
For each statement in this chapter, we assume that all definitions for the scheduling
with testing setting are given as described in Chapter 2. We focus on the concepts
and ideas of our approaches and only give complete proofs whenever this contributes
to the understanding of the associated method. Unless otherwise stated, all results in
this chapter originate from the papers [6] and [7]. At times, we have slightly adjusted
the wording within the cited statements to better fit into the streamlined description
of the thesis. Omitted proofs can be found in the papers or in the corresponding full
versions.

5.1 Important General Results
This section provides a few introductory results which are used in many of the subse-
quent proofs. They summarize various findings from [6] and [7] that were not given as
explicit statements. The first two results will be on the values of our objective functions
on one machine.

Lemma 5.1. Let an instance of scheduling with testing on a single machine, an online
algorithm ALG, and the offline optimum OPT be given. The objective values for the
makespan can be written as

ALG =
n∑

j=1
pAj , OPT =

n∑

j=1
ρj.

Proof. We first recall from Chapter 2 that the time an online algorithm ALG needs for
a single job j was given by pAj , while the time the offline optimum OPT needs for j was
given by ρj. We also assumed without loss of generality that all algorithms leave no
gaps in the schedule and argued that the makespan objective value does not depend on
the job order.
By Definition 2.4, the makespan of the algorithm is maxj∈[n] C

ALG
j . Since the algo-

rithm leaves no gaps in the schedule, this is the same as the sum over the algorithmic
running times of all jobs:

ALG = max
j∈[n]

CALG
j =

n∑

j=1
pAj
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This can be done equivalently for the optimum, which clearly also leaves no gaps in the
schedule:

OPT = max
j∈[n]

COPT
j =

n∑

j=1
ρj

Lemma 5.2. Let an instance of scheduling with testing on a single machine and the
offline optimum OPT be given. Additionally, let the order of the jobs be such that
ρ1 ≥ · · · ≥ ρn. For the sum of completion times, the objective value of OPT can be
written as

OPT =
n∑

j=1
j · ρj.

Proof. Again note that the duration OPT needs for a single job j is given by ρj, and
OPT leaves no gaps in the schedule. In contrast to the makespan, the sum of completion
times objective does indeed depend on the job order. It is clear that the optimal strategy
is to sort the jobs by non-decreasing optimal offline running time. Since ρ1 ≥ · · · ≥ ρn,
the schedule on the machine is therefore given by n, n−1, . . . , 2, 1. For a given job j,
the completion time under the optimum is

COPT
j =

n∑

i=j
ρi.

To receive the actual value of the optimum we sum up all these value according to
Definition 2.4 and apply some elemental algebra:

OPT =
n∑

j=1
COPT
j =

n∑

j=1

n∑

i=j
ρi =

n∑

j=1
j · ρj

The above Lemma can also be reformulated to include the formula for the objective
value of an algorithm. However, this would require re-arranging the jobs by non-
increasing size of the algorithmic running times. Since an actual representation of the
algorithmic value is rarely needed in our methods, we forgo the necessary re-indexing
and only present the far more important optimal value.
We continue with two important, general observations on the relationships of the

different running times. The following proposition contains a number of statements
from [6] and [7]:

Proposition 5.3. Let an instance of scheduling with testing and an online algorithm
ALG be given. Then the following holds:

τj ≤ ρj ≤ pAj , ∀j ∈ [n] (3)

Additionally, pj ≤ ρj for all jobs and tj ≤ ρj for all non-trivial jobs.
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Proof. Let j be any job in the instance. It is directly clear that

τj = min(tj, uj) ≤ min(tj + pj, uj) = ρj,

since the processing times pj are non-negative. The second inequality ρj ≤ pAj follows
from the fact that ρj is the minimum of the two cases in the definition of pAj .
The first additional equation pj ≤ ρj can be proven by a brief case distinction: If

ρj = tj + pj, this follows from tj ≥ 0. If ρj = uj, we have pj ≤ uj = ρj by the upper
bound property (1). For the second additional equation, we note that since j is non-
trivial, we have tj ≤ uj and thus tj = τj ≤ ρj by the already proven inequality (3).

The above proposition arranges the running time variables by increasing size and
introduces some helpful estimates for later use. The minimal running time τj is es-
tablished as a lower bound for the running times of the offline optimum as well as any
online algorithm. Since τj can be computed using offline input, this is incredibly helpful
in designing methods, e.g. for sorting jobs or estimating parameters.
The proposition also states that the offline running time is always less than the

algorithmic running time, which is very intuitive. At the same time, by employing
certain testing strategies, we can guarantee that the algorithmic running time is not
too large compared to the offline running time.
Recall the definition of rj = uj/tj from equation (2). The testing scheme in the

following proposition was used frequently in both of our papers. It allows us to bound
the algorithmic running times from above:

Proposition 5.4 ([6, Proposition 1, (b)(c)], [7, Proposition 1]). Let an instance of
scheduling with testing and an online algorithm ALG be given. Let ALG test a non-
trivial job j if and only if rj ≥ α for some α ≥ 1. Then:

(a) ∀j ∈ [n], j tested: pAj ≤
(
1 + 1

α

)
ρj

(b) ∀j ∈ [n], j not tested: pAj ≤ αρj

Proof. First, assume the non-trivial job j is tested by ALG. Then it holds rj ≥ α as well
as pAj = tj + pj. We again use a case distinction over the value of OPT: If ρj = tj + pj
as well, then clearly pAj = ρj. If, however, ρj = uj, then

pAj = tj + pj ≤
uj
α

+ uj =
( 1
α

+ 1
)
uj =

(
1 + 1

α

)
ρj.

Here, we also used the upper bound property (1).
Now assume that j is not tested by ALG. Then we have rj < α and pAj = uj. In

case that OPT behaves the same, we have ρj = uj and thus pAj = ρj. In the case that
ρj = tj + pj, we get

pAj = uj < αtj ≤ α(tj + pj) = αρj

by the non-negativity of pj.
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Originally, the above proof concept was introduced in slightly different form by Dürr
et al. [35]. They used a very similar line of arguments to prove that the simplified
uniform testing scheme where α is fixed to a value of ϕ ≈ 1.6180 leads to an optimal
algorithm for the deterministic minimization of the makespan. In the first part of the
makespan section below, we go into details on how their result follows from the above
proposition and how the same approach can be used to prove the optimal randomized
ratio of 4/3.
An additional insight is somewhat hidden in the proposition: Setting α = 1 yields

that all non-trivial jobs are tested and additionally

pAj ≤ 2ρj, ∀j ∈ [n],

independent of the actual ratio rj. For a single non-trivial job, testing and running it
is therefore already 2-competitive, which holds for both objective functions. Compara-
tively, the algorithmic running time pAj can become arbitrarily large in comparison to
ρj if a job is not tested.

5.2 Makespan

5.2.1 Optimal Results for a Single Machine
We start by considering the makespan objective on a single machine. We do not need to
differentiate between different settings regarding preemption, since they are all equiva-
lent.
The following two results were first proven by Dürr et al. [35] for uniform testing

times tj ≡ 1. The non-uniform versions were introduced in [6]. Recall that ϕ ≈ 1.6180
is the golden ratio and that we defined rj = uj/tj.

Theorem 5.5 ([35, Theorem 14], [6, Theorem 5]). Let an instance of scheduling with
testing on a single machine be given. The deterministic algorithm that tests all jobs j
if and only if rj ≥ ϕ is ϕ-competitive for the objective of minimizing the makespan. No
deterministic algorithm can achieve a smaller competitive ratio.

Theorem 5.6 ([35, Theorem 15], [6, Theorem 6]). Let an instance of scheduling with
testing on a single machine be given. The randomized algorithm that tests all jobs j
with probability p = 1−1/(r2

j −rj +1) is 4/3-competitive for the objective of minimizing
the makespan. No randomized algorithm can achieve a smaller competitive ratio.

Dürr et al. proved both results by reducing worst case instances for the makespan
objective to a single job and then used a case distinction very similar to the proof of
Proposition 5.4.
We now show how to use Proposition 5.4 directly to prove Theorem 5.5. We omit

the proof for Theorem 5.6 since it is very similar and will not be used in later proofs.
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Proof of Theorem 5.5. Let ALG be the algorithm described in the theorem. Let j ∈ [n]
be any job. If j is tested by ALG, we have by Proposition 5.4 and the testing scheme
that

pAj ≤
(

1 + 1
ϕ

)
ρj.

If j is not tested by the algorithm, we have by the same reasoning that

pAj ≤ ϕρj.

The defining property of the golden ratio is that ϕ = 1 + 1/ϕ. Therefore: pAj ≤ ϕρj in
both cases.
To compare the values of OPT and ALG, we now only need to use Lemma 5.1:

ALG =
n∑

j=1
pAj ≤

n∑

j=1
ϕρj = ϕOPT

It follows that ALG is ϕ-competitive. For the lower bound, we reference the corre-
sponding proof in the complete version of Dürr et al. [34].

The above proof also reflects why the golden ratio corresponds to the optimal ratio in
the one machine makespan setting: it minimizes the maximum of the two factors from
Proposition 5.4. In the subsequent sections, we will often reference the case α := ϕ in
Proposition 5.4 as the so-called optimal strategy for a single job. It always follows that
pAj ≤ ϕρj for the corresponding job j.

5.2.2 Non-preemptive Results on Multiple Machines
We now consider the makespan objectives on m machines with m ∈ N. Here, the
algorithm has to determine where to assign jobs in addition to the testing decision. In
this section, we always assume that the jobs are sorted by non-increasing value of the
offline running times ρ1 ≥ · · · ≥ ρn. For now, we do not allow preemption, meaning
that jobs cannot be interrupted and have to be executed on exactly one machine.

Bounds for the Value of the Optimum. Before we present our algorithms, we in-
troduce an important concept for makespan minimization on multiple machines that is
used frequently to prove competitive ratios.
The ultimate goal of any proof is to bound the value of ALG against the value of

OPT from below. However, the value of OPT is often difficult to accurately calculate.
Instead, we use so-called lower bounds, which suffice to guarantee competitiveness with-
out the need to calculate the value of OPT explicitly. We give three very important
lower bounds in the next few paragraphs.
The first bound is based on the explicit value of OPT = ∑n

j=1 ρj on a single machine
as given by Lemma 5.1. We extend this formula to more than one machine by taking
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the average over all machines. Since the objective value corresponds to the largest
completion time on any machine, the average is always at most OPT.

1
m

n∑

j=1
ρj ≤ OPT (4)

The next lower bound formalizes the condition that the optimum has to schedule
every job somewhere:

ρj ≤ OPT, ∀j ∈ [n] (5)

Finally, we observe that if there are at least m + 1 jobs in the instance, then some
machine has to schedule at least two of them. Since the jobs are sorted by non-increasing
offline running times, we get

ρm + ρm+1 ≤ OPT . (6)

Here, we define ρk = 0 in case the instance has less than k jobs.

The Extended List Scheduling Algorithm. The famous List Scheduling algorithm
by Graham [51] schedules the current job on the least loaded machine. Here, the load
is the sum of all processing times of jobs already assigned to the machine. We now
combine this idea with the optimal testing strategy for a single job from Proposition
5.4 and Theorem 5.5.
The Extended List Scheduling algorithm works as follows: Consider the jobs in any

order. For the next job j to be scheduled, test j if and only if rj ≥ ϕ and assign it to
the machine which has the current smallest load.

Theorem 5.7 ([7, Theorem 2]). Let an instance of scheduling with testing on m ma-
chines be given. The Extended List Scheduling algorithm is ϕ

(
2− 1

m

)
-competitive for

minimizing the makespan. Extended List Scheduling can have no smaller competitive
ratio.

In the worst case, the algorithm has a competitive ratio of 3.2361. As we can see, the
result directly combines the competitive ratios of the optimal strategy for a single job (ϕ)
and the List Scheduling algorithm (2− 1/m). In the proof, we combine Proposition 5.4
with the proof structure of List Scheduling. For this, we also use the lower bounds (4)
and (5). Finally, we provide an example with many small jobs followed by one large
job, showing that the algorithm cannot achieve a better ratio.

The SBS Algorithm. Our main result in paper [7] is an algorithm that beats Extended
List Scheduling on m ≥ 2 machines. It works in three phases named S1, B, and S2 and
has a competitive ratio of 3.1016 in the worst case.
To describe the algorithm, we define a threshold function T (m) depending on the

number of machines m which is used for partitioning the job set [n]. Its definition is
given further below in equation (7). Algorithm 1 provides the pseudo-code for the SBS
algorithm.
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Algorithm 1: SBS algorithm [7, Algorithm 1]
1 B ← {j ∈ [n] : rj ≥ T (m)};
2 S ← [n] \B;
3 S1 ← S ′ ⊂ S, s.t. |S ′| = min(m, |S|), τj1 ≥ τj2 , ∀j1∈S ′, j2∈S\S ′;
4 S2 ← S \ S1;
5 foreach j ∈ S1 do
6 if rj ≥ ϕ then
7 test and run j on an empty machine;
8 else
9 run j untested on an empty machine;

10 end
11 end
12 foreach j ∈ B do
13 test and run j on the current least-loaded machine;
14 end
15 foreach j ∈ S2 do
16 run j untested on the current least-loaded machine;
17 end

The threshold divides the jobs into a set of jobs B = {j ∈ [n] : rj ≥ T (m)} with
large parameter ratio and a set of jobs S = [n] \ B with small parameter ratio. The
set S is then further partitioned into S1 and S2, where S1 contains the largest jobs in
S with respect to the minimal running times and S2 contains the remaining jobs.
The SBS algorithm first runs the at most m jobs in S1 using the optimal testing

strategy for single jobs. Then it runs all jobs in B untested, before testing and executing
the remaining jobs from S2.
The general idea of dividing the jobs into sets S and B is based on Proposition 5.4,

where α is replaced by the threshold function T (m). The reason for further subdividing
S is that we want to use the lower bound (6) on the jobs in S2. For this, we need
to compare them against at least m other jobs which should be as large as possible.
Since the minimal running time can be computed with offline input and S1 contains
by definition the m jobs with largest minimal running time, it is a natural choice for
estimating the jobs in S2.
The threshold function is kept general in the proof of the ratio of the algorithm and

then optimized in the last step. The final definition of T (m) is as follows:

T (m) =
(3 +

√
5)m− 2 +

√
(38 + 6

√
5)m2 − 4(11 +

√
5)m+ 12

6m− 2 (7)

The resulting competitive value of the algorithm is also a function in m which we
call c(m). Its explicit form is given below:

c(m) =
(3 +

√
5)m− 2 +

√
(38 + 6

√
5)m2 − 4(11 +

√
5)m+ 12

4m
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For explicit evaluations of the function, behavior for small and large values of m, and
comparison to other results we refer to Chapter 4. It remains to state the theorem
establishing this competitive ratio for the SBS algorithm.

Theorem 5.8 ([7, Theorem 3]). Let an instance of scheduling with testing on m ma-
chines be given. The SBS algorithm is c(m)-competitive for minimizing the makespan.

Proof sketch. Let us first consider the testing strategy of the SBS algorithm for a single
job j ∈ [n]. Depending on which set of S1, B, S2 the job belongs to, its algorithmic
running time may vary. By Proposition 5.4, we have

pAj ≤





ϕρj if j ∈ S1,(
1 + 1

T (m)

)
ρj if j ∈ B,

T (m) ρj if j ∈ S2.

(8)

Now let l be the index of the job that has the largest completion time under the
produced schedule, i.e. the job that is responsible for the final value of the makespan
maxj Cj. Also let t denote the minimum load over all machines at the time just before
ALG assigned job l to some machine. Clearly, we have

ALG = max
j
Cj = Cl = t+ pAl .

The remainder of the proof consists of estimating t+ pAl depending on which set job
l belongs to. The mathematical details are given by the following proposition:

Proposition 5.9 ([7, Proposition 2]). The value of the algorithm can be estimated as
follows:

ALG ≤





ϕOPT if l ∈ S1,(
ϕ+

(
1 + 1

T (m)

) (
1− 1

m

))
OPT if l ∈ B,

T (m)
(

3
2 − 1

2m

)
OPT if l ∈ S2.

A proof is provided in the full version [8] of paper [7]. It combines the lower bounds
(4) - (6) with the estimates (8) for the algorithmic running time of a job under the SBS
algorithm. As we have pointed out, the critical estimation of pAl for l ∈ S2 is possible
since the algorithm has already scheduled m larger jobs w.r.t. the minimal running time
from S1 beforehand. In addition, we also need inequality (3) from Proposition 5.3 for
the estimation of the minimal running times in terms of the optimum.
For the final ratio, we take the maximum over the three cases in Proposition 5.9 and

minimize this value in dependence of T (m). The case l ∈ S1 is always smaller than
the other cases. It can be easily checked that the definition (7) of T (m) minimizes
the maximum of the two remaining cases for all values m ≥ 1. Similarly, it can be
verified that the value of the resulting maximum is given by c(m) and thus ALG ≤
c(m) OPT.
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The Uniform-SBS Algorithm. If the scheduling with testing instance is uniform,
then all testing times tj are equal to 1. For this slightly easier setting, we present an
improved version of the SBS algorithm called Uniform-SBS, which is 3-competitive in
the worst case. For this, we need an alternate uniform definition of the threshold:

T1(m) = 2m− 1 +
√

16m2 − 14m+ 3
3m− 1

Uniform-SBS then works as follows: Sort all jobs by non-increasing upper bound value
uj. Go through the sorted list one by one and schedule the next job on the machine
which has the current lowest load. Here, the load is again the sum of all processing
times of jobs already assigned to the machine. Test job j if and only if uj ≥ T1(m).
The competitive ratio of Uniform-SBS is given by c1(m), where

c1(m) = 2m− 1 +
√

16m2 − 14m+ 3
2m .

We again refer to Chapter 4 for details on the behavior of this function and comparison
to other results.

Theorem 5.10 ([7, Theorem 4]). Let an instance of scheduling with testing on m
machines be given where all testing times are uniformly equal to 1. The Uniform-SBS
algorithm is c1(m)-competitive for minimizing the makespan.

We omit the proof and only give a brief intuition here: If all testing times are equal to
1, then sorting by uj is equivalent to sorting by the parameter ratio rj = uj/1. Hence,
Uniform-SBS first tests and runs all jobs with a large ratio and afterwards executes
all jobs with a small ratio untested. Therefore, Uniform-SBS corresponds to the non-
uniform SBS algorithm without the extra division of small jobs into the sets S1 and S2.
In the proof, we again use the lower bounds (4) - (6) to estimate the algorithmic value
of the algorithm. In particular, we can use (6) without the set S1 of the non-uniform
version, since the fixed testing times tj ≡ 1 replace the role of the minimal running
times.

Lower Bound. The following lower bound is based on a typical counterexample for
List Scheduling where many small jobs are followed by a single large job. If we let the
upper bounds be very large in comparison to the testing times, then an algorithm must
test every job, forcing it to decide on a machine with almost no information about the
real processing time of the job. The result holds even in the case of uniform testing
times. The proof is omitted.

Theorem 5.11 ([7, Theorem 1]). Let an instance of scheduling with testing on m ma-
chines be given where all testing times are uniformly equal to 1. In the non-preemptive
setting, no online algorithm for minimizing the makespan is better than max(ϕ, 2−1/m)-
competitive.
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An Improved Result for Uniform Instances with Few Non-trivial Jobs. Recall
that a job was called trivial if tj > uj. Such jobs are never tested by any reasonable
algorithm. We now present a minor result that works only for uniform instances where
the number of non-trivial jobs is at most m.

Lemma 5.12 ([8, Lemma 1]). Let an instance of scheduling with testing on m ma-
chines be given where all testing times are uniformly equal to 1 and the number of
non-trivial jobs is at most m. There exists a ϕ

(
4
3 − 1

3m

)
-competitive online algorithm

for minimizing the makespan.

In the worst case, the above competitive ratio is 2.1574. The corresponding algorithm
first distributes all non-trivial jobs over all machines, which is possible since there are
at most m such jobs. Tests are decided by the optimal testing strategy for a single
job. The remaining jobs are trivial, therefore the algorithm has full knowledge about
the relevant parameters and can employ the offline algorithm Largest Processing Time
first (LPT) [52].
We note that the lower bound presented in the previous section is based on a coun-

terexample with more thanm(m−1) jobs and is therefore not applicable to this setting.

5.2.3 Preemptive Results on Multiple Machines
We are still studying the makespan objectives on m machines with m ∈ N. In this
section, we now allow preemption, meaning jobs can be interrupted and then executed
on a different machine after the interruption. We consider both the test-preemptive and
the ordinary preemptive setting in accordance with the definitions we gave in Chapter 2.

The Two Phases Algorithm. For the test-preemptive setting, we provide a straight-
forward algorithm called Two Phases. The algorithm can be applied without changes
to the slightly easier ordinary preemptive setting. It works as follows:
Let OFF be any optimal offline algorithm, e.g. a brute force method. In the first

phase, apply OFF to the offline instance consisting of all jobs with processing require-
ments equal to their minimal running time τj. Afterwards, all trivial jobs are completely
executed, while the non-trivial jobs have all been tested. Therefore all processing times
pj of the remaining jobs are known. In the second phase, apply OFF again, this time to
the offline instance consisting of all remaining jobs with processing requirements equal
to pj. Put the resulting schedule obliviously on top of the schedule produced in phase
one.

Theorem 5.13 ([7, Theorem 5]). Let an instance of scheduling with testing on m
machines be given. The Two Phases algorithm is 2-competitive for minimizing the
makespan in the test-preemptive setting.

In accordance with Definition 2.1, we may assume that an online algorithm has access
to unlimited computational power. Therefore, it is valid to use for example a brute
force method as the offline algorithm OFF. In case we do not allow a non-polynomial
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runtime of the algorithm, we can instead use the PTAS by Hochbaum and Shmoys [56],
to achieve a competitive ratio of 2 + ε for any ε > 0.
The proof consists of two straightforward applications of OFF in combination with

Proposition 5.3 and is omitted here.

Lower Bound. We were able to prove a lower bound that holds for the ordinary pre-
emptive setting and thus can be applied to the test-preemptive setting, too. Combined
with the Two Phases algorithm above, we have therefore almost completely solved the
(test)-preemptive setting for large values ofm. The results also holds for uniform testing
times.

Theorem 5.14 ([7, Theorem 6]). Let an instance of scheduling with testing on m
machines be given where all testing times are uniformly equal to 1. In the preemptive
setting, no online algorithm for minimizing the makespan is better than max(ϕ, 2 −
2/m+ 1/m2)-competitive.

The proof is omitted. It is similar to the proof of Theorem 5.11.

5.2.4 Fully-Online Results on Multiple Machines
As the final portion of results for the makespan objective, we consider the fully-online
variant. Jobs are presented to the algorithm one by one, and it does not know the total
number of jobs. Whenever a job arrives, its upper bound and its testing time become
known to the algorithm. Only if the job is tested, its processing time is revealed. After
completely and irrevocably assigning a job to some machine, the next one is presented
to the algorithm. We only examine results for the non-preemptive setting.

Extended List Scheduling Applied to the Fully-Online Case. The Extended List
Scheduling algorithm we provided in Theorem 5.7 is ϕ(2 − 1/m)-competitive. It can
be applied to the fully-online case without any changes: Since the algorithm did not
impose any order on the jobs, it still works when they arrive one by one.

Corollary 5.15. Let an instance of scheduling with testing on m machines be given.
The Extended List Scheduling algorithm is ϕ

(
2− 1

m

)
-competitive for minimizing the

makespan in the fully-online setting.

Proof. This follows directly from Theorem 5.7 and the fact that Extended List Schedul-
ing is a fully-online algorithm considering jobs one by one.

Lower Bounds. It is clear that the lower bound from Theorem 5.11 can be extended
to the fully-online variant. For m = 1, the Extended List Scheduling had the same ratio
as this lower bound, hence the single machine case remains completely solved when jobs
arrive one by one. We now present a slightly better lower bound for m ≥ 2 than we
were able to prove for the ordinary version.
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Theorem 5.16 ([8, Theorem 7]). Let an instance of scheduling with testing on m ≥ 2
machines be given where all testing times are uniformly equal to 1. In the fully-online
setting, no online algorithm for minimizing the makespan is better than 2-competitive.

The proof consists of a simple counterexample with m+ 1 jobs.
To conclude the section on the fully-online makespan objective, we provide a final

lower bound that is even larger than 2. In the proof, we use numerical parameter op-
timization with Mathematica [86]. Because the number of necessary parameters in the
proof increases exponentially with m, we were unable to prove this result for a general
number of machines and present the simplest case m = 2 as a substitute. However, we
conjecture that the result can indeed be extended to any number of machines larger
than two.

Theorem 5.17 ([8, Theorem 8]). Let an instance of scheduling with testing on m = 2
machines be given. In the fully-online setting, no online algorithm for minimizing the
makespan is better than 2.0953-competitive.

5.3 Sum of Completion Times

5.3.1 Deterministic Test-Preemptive Results for a Single Machine
We now consider the sum of completion times objective on one machine in the deter-
ministic test-preemptive setting. Jobs can be interrupted, but only right after their test
has ended. Untested jobs cannot be interrupted. The algorithm has to determine the
order of the tests and executions in addition to the testing decision. In this section,
we again assume that the jobs are sorted by non-increasing value of the offline running
times ρ1 ≥ . . . ≥ ρn.

Comparison to the Uniform Case. Dürr et al. [35] showed that there exists a 2-
competitive algorithm for the deterministic test-preemptive setting. They decide testing
and delaying of jobs based on a threshold value of 2. In this context, delaying a job
means to interrupt it right after its test and then continue it at some point later in the
schedule.
We note here that Dürr et al. later gave an even easier 2-competitive algorithm in

the journal version of their paper [34] and analyzed it using their methods. In the
appendix of our full version [5], we summarize how our approach for the general case
can be applied to provide an alternative proof of this result.
One important insight by Dürr et al. was the following lemma concerning jobs with

small upper bounds:

Lemma 5.18 ([35, Lemma 1]). Let an instance of scheduling with testing on one ma-
chine be given where all testing times are uniformly equal to 1. Without loss of gen-
erality, we can assume that any c-competitive algorithm for minimizing the sum of
completion times executes all jobs with uj < c untested in non-decreasing order of uj
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in the beginning of the schedule. In particular, worst case instances for the algorithm
consist only of jobs j with uj ≥ c.

The approach in the proofs of the competitive ratios in [35] was to describe the worst
case ratio by a parameterized formula. For this, they relied on Lemma 5.18 to reduce
worst case instances to a simple structure, which they could then describe with such a
formula. In the full version [5], we show that the lemma cannot be generalized to non-
uniform tests, signifying the necessity of a new approach to solve these more difficult
instances.
It is clear that Lemma 5.18 does not generalize directly: a single job with 0 < uj < c,

pj = tj = 0 has to be tested to guarantee a finite competitive ratio. Instead, it seems
intuitive to generalize the lemma based on the parameter ratio rj = uj/tj. However,
it can be shown [5] that for any c ≥ 1 executing all jobs with rj < c untested in the
beginning of the schedule leads to an arbitrarily bad outcome. The proof is based on a
counterexample with one large job and many small jobs. If we let the size of the large
job and the number of small jobs approach infinity at the same time, the ratio between
any algorithm obeying the rule that jobs with rj < c are run untested in the beginning
and the optimum becomes arbitrarily large.
The problem with running jobs with small parameter ratio first is that potentially

large jobs are pushed to the front of the schedule and cause high completion times for
all following jobs. Hence, an algorithm for the non-uniform case must carefully consider
the size of all parameters, not only during the testing decision, but also when sorting
the executions. Our main algorithm (α, β)-SORT takes into account not only the job
configurations, but also the resulting execution lengths when deciding on the order of
the jobs.

The (α, β)-SORT Algorithm. We now present the main result from our paper [6]:
a 4-competitive algorithm for the deterministic test-preemptive setting. The basic
premise is similar to previous algorithms we already presented: We let the parame-
ter α ≥ 1 correspond to the threshold in Proposition 5.4 and use it to partition the jobs
into two sets B = {j ∈ [n] : rj ≥ α} and S = [n] \ B, where jobs from B are tested
and jobs from S are not. The new parameter β ≥ 1 is used for sorting the jobs in
an adequate way: the next job scheduled on the machine is determined by the current
smallest scaling time σj, where

σj =





uj if j ∈ S,
βtj if j ∈ B and has not been tested,
pj if j ∈ B and has already been tested.

As we can see, β is used for artificially increasing the testing time of a job j ∈ B,
such that it is considered later than other executions in the ordering of the algorithm.
Intuitively, testing can be considered less important, since it does not immediately lead
to a job being completed. We provide the complete pseudo-code for (α, β)-SORT in
Algorithm 2.
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Algorithm 2: (α, β)-SORT [6, Algorithm 1]
1 B ← {j ∈ [n] : rj ≥ α};
2 S ← [n] \B;
3 foreach j ∈ B do
4 σj ← βtj;
5 end
6 foreach j ∈ S do
7 σj ← uj;
8 end
9 while B ∪ S 6= ∅ do

10 choose jmin ∈ argminj∈B∪S σj;
11 if jmin ∈ S then
12 run jmin untested;
13 remove jmin from S;
14 else if jmin ∈ B then
15 if jmin not tested then
16 test jmin;
17 σjmin ← pjmin ;
18 else
19 run jmin;
20 remove jmin from B;
21 end
22 end
23 end

We keep α and β general and optimize them in the final step of the proof. Keeping
the parameters general in the algorithm and the proof is helpful to better demonstrate
the structural ideas behind them. Moreover, the algorithm framework and some of the
achievements in the proof will be reused later in the results of Sections 5.3.2 and 5.3.4
with different values for α and β.
We achieved a best possible competitive ratio of 4 in the (α, β)-SORT algorithm by

setting α = β = 1. Choosing the parameters like this is slightly at odds with the
intuition behind them: a value of α = 1 means that all non-trivial jobs are tested by
the algorithm, which is likely not an optimal strategy in view of the makespan results
presented earlier. Setting β = 1 signifies that other executions are not prioritized over
testing, putting the impact of this parameter into question. However, in the randomized
setting, the optimal choice for β will in fact be larger, hence the fundamental idea behind
the parameter is indeed valid. In summary, we conjecture that an improved bound is
possible by choosing other values for the parameters in (α, β)-SORT. However, for the
closed coefficient formula we received through our proof, setting α = β = 1 was optimal.
To further investigate how much the algorithm can be improved by other parameter

choices, we considered algorithmic lower bounds in the full version [5] of our paper.
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We proved that for any α, β ≥ 1, the algorithm cannot be better than 2-competitive.
Additionally, (1, 1)-SORT itself can have no competitive ratio smaller than 3.

Theorem 5.19 ([6, Theorem 1]). Let an instance of scheduling with testing on one
machine be given. The (1, 1)-SORT algorithm is 4-competitive for minimizing the sum
of completion times in the test-preemptive setting.

Proof sketch. To compute the objective value of an algorithm, we need to estimate the
completion times of all jobs (c.f. Definition 2.4). For this, we introduce the notion
of contributions: We define the contribution c(k, j) of job k to the completion time
Cj of job j as the amount of time on the schedule that the algorithm assign to k
before the point where j is completed. The contribution of k to j is clearly upper
bounded by the total amount of time the algorithm spends on scheduling k, or formally:
c(k, j) ≤ pAk . The following lemma describes the completion time of a job j in terms
of the contributions of other jobs k. It additionally gives a very useful estimation of
c(k, j) independent of k.

Lemma 5.20 (Contribution Lemma, [6, Lemma 1]). Let j ∈ [n] be a given job. The
completion time of j can be written as

Cj =
n∑

k=1
c(k, j). (9)

Additionally, for the contribution of k to j it holds that

c(k, j) ≤ max
((

1 + 1
β

)
α, 1 + 1

α
, 1 + β

)
ρj. (10)

Expressing Cj in terms of the contributions is straightforward. The estimation in the
second part of the lemma relies heavily on the inequalities from Proposition 5.3 and
the testing scheme from Proposition 5.4. The complete proof is provided in the full
version [5] of paper [6].
In the estimation for Cj, we will use inequality (10) from the Contribution Lemma

to bound the contribution of jobs k ≤ j, and use c(k, j) ≤ pAk directly to bound the
contribution of jobs k > j. We have

Cj =
∑

k>j

c(k, j) +
∑

k≤j
c(k, j)

≤
∑

k>j

pAk +
∑

k≤j
max

((
1 + 1

β

)
α, 1 + 1

α
, 1 + β

)
ρj

=
∑

k>j

max
(
α, 1 + 1

α

)
ρk + max

((
1 + 1

β

)
α, 1 + 1

α
, 1 + β

)
j · ρj,

where we also used Proposition 5.4 once more in the final line.
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Now we can estimate the algorithmic value against the optimum. Since we made
the assumption ρ1 ≥ . . . ≥ ρn in the beginning of the section, we can use Lemma 5.2.
Therefore:

ALG =
n∑

j=1
Cj

≤
n∑

j=1

n∑

k=j+1
max

(
α, 1 + 1

α

)
ρk +

n∑

j=1
max

((
1 + 1

β

)
α, 1 + 1

α
, 1 + β

)
j · ρj

= max
(
α, 1 + 1

α

) n∑

j=1
(j − 1)ρj + max

((
1 + 1

β

)
α, 1 + 1

α
, 1 + β

)
n∑

j=1
j · ρj

≤
(

max
(
α, 1 + 1

α

)
+ max

((
1 + 1

β

)
α, 1 + 1

α
, 1 + β

))
OPT

Minimizing the coefficient of this final estimation in dependence of α and β leads to
an optimal value of 4 when setting α = β = 1.

5.3.2 Deterministic Preemptive Results for a Single Machine
This section highlights an algorithm for the sum of completion times on one machine in
the deterministic preemptive setting. Now, jobs can be interrupted at any time during
their execution, independent of their configuration. The algorithm has to determine
where to interrupt jobs, how to order all execution fragments, and of course decide
whether a job is tested or not. As before, we assume that the jobs are sorted by
non-increasing value of the offline running times ρ1 ≥ . . . ≥ ρn.

The Golden Round Robin Algorithm. The basic idea for our algorithm in the or-
dinary preemptive setting stems from the so-called Round Robin rule. Pinedo [73]
describes this common approach in preemptive machine scheduling as follows: Round
Robin continually cycles through the list of all jobs, tending to each job for a fixed,
very small time unit, before switching to the next job. It ensures that, at any time, any
single job has received at most one unit of processing time more than any other job.
For the scheduling with testing setting, we combine this method with our optimal

strategy for a single job. Below, we give a complete description of the resulting Golden
Round Robin algorithm, which is 3.2361-competitive in the worst case:
First, decide the configuration for all jobs: If rj ≥ ϕ, test the job, if not, run it

untested. Then, run all jobs in a Round Robin scheme until every job has been com-
pletely executed. Whenever a job has been run for a total time equal to pAj , i.e. it is
completely executed, drop it from the rotation and continue the Round Robin with the
remaining jobs.
For jobs that the algorithm wants to execute tested, the actual value of pAj is not

known until the corresponding test is completed. Therefore, it is important to note
that the Round Robin scheme works even under incomplete knowledge of the processing
times of the jobs, as long as it knows when a job will be completed [73].
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Theorem 5.21 ([6, Theorem 2]). Let an instance of scheduling with testing on one
machine be given. The Golden Round Robin algorithm is 2ϕ-competitive for minimizing
the sum of completion times in the preemptive setting. Golden Round Robin can have
no smaller competitive ratio.
In the proof of this theorem, we again use Proposition 5.4 towards the optimal strat-

egy for a single job. To estimate the completion time Cj, we categorize the contributions
of other jobs based on whether they finish before or after j in the Round Robin scheme.
To show that the algorithm cannot achieve a better competitive ratio, we provide a
sequence of examples where the algorithmic objective value approaches 2ϕOPT.

Lower Bound. Since Dürr et al. [35] did not consider the ordinary preemptive case,
we provide a dedicated lower bound for this case which builds on the test-preemptive
lower bound from their paper. Therefore, it even holds for uniform testing times.
Theorem 5.22 ([6, Theorem 3]). Let an instance of scheduling with testing on one
machine be given where all testing times are uniformly equal to 1. In the preemptive
setting, no online algorithm for minimizing the sum of completion times is better than
1.8546-competitive.
In the proof, we adopt the counterexample given by [35] and show that any preemptive

algorithm on this instance can be replaced by a test-preemptive algorithm with the same
competitive ratio. Since no test-preemptive result better than 1.8546 exists, the same
follows for the preemptive case.

5.3.3 Deterministic Non-preemptive Impossibility Result
In this section we show via a counterexample that no finite competitive ratio is possible
in the strictly non-preemptive setting on one machine. This result is new in this thesis
and was not part of any prior publications.
Theorem 5.23. Let an instance of scheduling with testing on one machine be given
where all testing times are uniformly equal to 1. In the non-preemptive setting, no online
algorithm for minimizing the sum of completion times can have a finite competitive ratio.
Proof. Let n ∈ N jobs be given, and let M ∈ N be defined as M = n3. Let every job
have uj = M, tj = 1. Depending on the choices of a given algorithm ALG, an adversary
will determine the value of the pj.
Consider first the case that ALG does not test every job, i.e. there is at least one job k

that is run untested. The adversary sets pj = 0, ∀j ∈ [n], and therefore by Lemma 5.2
we have

OPT =
n∑

j=1
j · ρj =

n∑

j=1
j = n2 + n

2 .

The algorithm runs k untested and therefore

ALG =
n∑

j=1
Cj = Ck +

∑

j 6=k
Cj ≥M + n2 − n

2 .
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If we let n→∞, we have ALG /OPT→∞ due to M = n3.
Now consider the case that all jobs are tested. Since the upper bounds are quite high,

this is in fact the expected behavior of ALG. We will see that the competitive ratio can
still become arbitrarily bad.
W.l.o.g. we may assume that ALG tests the jobs in order of their index since they are

indistinguishable. Then the adversary sets all job processing times to pj = 0, except for
the first job j = 1 for which it sets p1 = M . It follows that the optimal offline running
times ρj are sorted by non-increasing size and therefore by Lemma 5.2:

OPT =
n∑

j=1
j · ρj = M +

n∑

j=2
j = M + n2 + n

2 − 1

The algorithm, however, is forced by the adversary to schedule the large job j = 1
first on the machine. Since all jobs have to wait for this first job to finish, this leads to
very large completion times Cj = M + j for all j ∈ [n]. In total:

ALG =
n∑

j=1
Cj =

n∑

j=1
(M + j) = n ·M + n2 + n

2

Again, we let n→∞. Since M = n3, it follows again that ALG /OPT→∞.

As we can see, the problem in the non-preemptive sum of completion times objective
is that the algorithm cannot prevent a large job to occur in the beginning of the schedule.
This causes all subsequent jobs to have a large completion time as well and leads to a
very high competitive ratio.

5.3.4 Randomized Test-Preemptive Results for a Single Machine
In the final section of this chapter, we consider the sum of completion times objective on
one machine in the randomized test-preemptive setting. An algorithm has to determine
the order of the jobs and decide the testing, but it now also has access to a number of
random choices during its runtime. Jobs can be interrupted, but only right after their
test has ended. Untested jobs cannot be interrupted. Once again, we assume that the
jobs are sorted by non-increasing value of the offline running times ρ1 ≥ . . . ≥ ρn.
The randomized algorithm Random-SORT we present is very similar to the deter-

ministic (α, β)-SORT. We replace the testing scheme based on Proposition 5.4 by a
randomized decision of whether a job is tested or not. The probability p(rj) of job j
being tested depends on the parameter ratio rj and is done independently for all jobs.
We note that trivial jobs are exempt from this and are never tested. The sorting
parameter β is adopted without changes. We give the pseudo-code in Algorithm 3.

Theorem 5.24 ([6, Theorem 4]). Let an instance of scheduling with testing on one ma-
chine be given. The Randomized-SORT algorithm is 3.3794-competitive for minimizing
the sum of completion times in the test-preemptive setting.
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Algorithm 3: Randomized-SORT [6, Algorithm 3]
1 B ← ∅, S ← ∅;
2 foreach j ∈ [n] do
3 if rj ≥ 1, add j to B with probability p(rj) and set σj ← βtj;
4 otherwise add j to S and set σj ← uj;
5 end
6 while B ∪ S 6= ∅ do
7 choose jmin ∈ argminj∈B∪S σj;
8 if jmin ∈ S then
9 run jmin untested;

10 remove jmin from S;
11 else if jmin ∈ B then
12 if jmin not tested then
13 test jmin;
14 σjmin ← pjmin ;
15 else
16 run jmin;
17 remove jmin from B;
18 end
19 end
20 end

The function p(rj) and the parameter β are kept general in the proof and are then
optimized using the mathematical software Mathematica [86]. The final value of β will
be approximately 1.2574. The final choice of p(rj) fulfills p(1) = 0 and increases in rj.
For rj > 2.1637, it holds that p(rj) = 1, hence jobs with large parameter ratio are
always tested. The function term is too cumbersome to explicitly state here, thus we
refer to the corresponding proof in paper [6] and its full version [5]. Since Randomized-
SORT is the only elaborate randomized algorithm that is studied in this thesis, we give
a sketch of the main proof ideas below.

Proof sketch. Based on the randomized testing scheme, the algorithmic running times
are now random variables and it holds

pAj =




tj + pj with probability p(rj),
uj with probability 1− p(rj),

independently for all jobs j.
Similarly, the contributions c(k, j) for fixed jobs j and k are now also random vari-

ables. We estimate the values for all jobs with Propositions 5.3 and 5.4, and then use
the law of total expectation to compute the expected value:

E[c(k, j)] ≤
(

1 + 1
β

)
uj · (1− p(rj)) + max

(
(1 + β)tj,

(
1 + 1

β

)
pj, tj + pj

)
· p(rj)
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Alternatively, we may again use E[c(k, j)] ≤ E[pAk ] directly for all jobs with large index
k > j. We combine the bounds with equation (9) from the Contribution Lemma and
obtain

E[ALG] ≤
n∑

j=1
j · λj(β, p(rj)),

where λj(β, p(rj)) is a function depending on job j, parameter β, and the probability
p(rj). The final competitive ratio of Random-SORT will depend on the worst case ratio
maxj λj(β, p(rj))/ρj over all jobs of the instance. The following lemma establishes an
upper bound for this value:
Lemma 5.25 ([6, Lemma 2]). There exist a parameter β̂ ≥ 1 and a probability function
p̂(rj) ∈ [0, 1] such that

max
j

λj(β̂, p̂(rj))
ρj

≤ 3.3794.

The explicit choice for parameter β is β̂ ≈ 1.2574. The somewhat lengthy term p̂(rj)
is given in the proof of the lemma, which we omit here. The proof includes computer-
aided optimization with Mathematica [86], all details including the code can be found
in the full version [5].
Finally, we estimate the value of the algorithm using the lemma above in combination

with Lemma 5.2:

E[ALG] ≤
n∑

j=1
j · λj(β̂, p̂(rj)) ≤ 3.3794

n∑

j=1
j · ρj = 3.3794 ·OPT
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6 Open Research Questions and
Directions

This thesis presented algorithms and lower bounds for the scheduling with testing prob-
lem, a theoretical optimization framework that is concerned with scheduling applica-
tions where uncertain information can be obtain by investing some additional cost.
It is clear that the research area of scheduling with testing setting is far from com-

pleted, nor fully understood. Aside from the obvious gaps to be closed between the
achieved algorithmic ratios and lower bounds, an abundance of other related directions
are viable for future research. In this section, we talk about some of the missing results
that we were unable to provide and then go over research possibilities for the future.
We begin by summarizing some of the shortcomings in our results regarding open

gaps. For the sum of completion times, no dedicated lower bounds for general testing
times that beat the uniform version could be found. As we have conjectured in [6], in
order to achieve better lower bounds it seems the adversary has to modify the input
during the runtime of an algorithm based on its decisions. For non-uniform testing times
we did not find a way to describe such adversarial strategies in general. Additionally, the
final choice of parameters in our main algorithm (α, β)-SORT was likely not optimal.
It might be possible to find and prove better parameters using a different proof strategy
under the same algorithmic framework.
For the makespan objective on more than one machine, there is also quite a large

distance between the best algorithmic value and the lower bound we provided. In
terms of an improvement of the algorithmic solution, we were unable to find general
methods to beneficially sort jobs other than grouping them by testing configuration.
We conjecture that some clever sorting scheme would improve upon the best possible
competitive ratio. We also think it likely that some improved lower bound can be
achieved by combining the typical construction from makespan minimization with the
difficulty of the testing decision. However, it is tricky to achieve one of the two without
sacrificing the other within a single counterexample.
In terms of possible directions, we first mention the promising variation we only

considered very briefly in this thesis and our publications: Fully-online arrivals of jobs
in the scheduling with testing setting. As we have seen in Section 5.2.4, this variation
is at least as hard as the ordinary problem. Our Extended List Scheduling algorithm is
a basic method which can be applied and provides a first upper bound. Closing the gap
between this value and the simple lower bound we provided, as well as the introduction
of customized methods and approaches are compelling directions for future research.
Furthermore, it could be interesting to consider other multi-machine models besides

identical parallel machines. Results for related machines with different speeds often
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contain the golden ratio in some way [75], which might hint to a possible methodolog-
ical connection to scheduling with testing. Other interesting settings to be considered
include unrelated machines or multi-stage job scheduling problems.
The golden ratio also appears frequently in ratios from algorithms for scheduling

with rejections (see also Section 3.7). Some of the methods for this problem can be
compared to approaches used in scheduling with testing, in particular concerning the
balancing decisions an algorithm has to address. It could be promising to further study
the connection between the two settings.
Finally, we mention possible variations of the underlying framework of our model.

In certain applications, it might be plausible to consider slightly different parameter
conditions. For example, one could study the setting where the processing time of a
job j is always given by pj, even in the case that the job is run untested, and uj is
effectively only a bound for this value. Dürr et al. [35] briefly mention a setting with
additional lower limits lj, where job processing times lie in an interval [tj, uj]. Though
they point out that this setting is not harder than without lower limits, it might still be
interesting to study how the additional information influences the outcome, for example
in combination with general testing times. Other possible variants include the addition
of release times for the sum of completion times objective, considering job-dependent
weights, or examining other objective functions. Historically, explorable uncertainty
was concerned with minimizing the number of queries instead of subtracting costs from
an objective function. In scheduling with testing this could be incorporated for example
with a dedicated machine that is only allowed to run tests. Numerous other possibilities
are conceivable, each presenting new opportunities to explore and study.
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Abstract. The problem of scheduling with testing in the framework
of explorable uncertainty models environments where some preliminary
action can influence the duration of a task. In the model, each job has an
unknown processing time that can be revealed by running a test. Alter-
natively, jobs may be run untested for the duration of a given upper limit.
Recently, Dürr et al. [4] have studied the setting where all testing times
are of unit size and have given lower and upper bounds for the objectives
of minimizing the sum of completion times and the makespan on a single
machine. In this paper, we extend the problem to non-uniform testing
times and present the first competitive algorithms. The general setting
is motivated for example by online user surveys for market prediction
or querying centralized databases in distributed computing. Introducing
general testing times gives the problem a new flavor and requires updated
methods with new techniques in the analysis. We present constant com-
petitive ratios for the objective of minimizing the sum of completion
times in the deterministic case, both in the non-preemptive and pre-
emptive setting. For the preemptive setting, we additionally give a first
lower bound. We also present a randomized algorithm with improved
competitive ratio. Furthermore, we give tight competitive ratios for the
objective of minimizing the makespan, both in the deterministic and the
randomized setting.

Keywords: Online scheduling · Explorable uncertainty · Competitive
analysis · Single machine · Sum of completion times · Makespan

1 Introduction

In scheduling environments, uncertainty is a common consideration for optimiza-
tion problems. Commonly, results are either based on worst case considerations
or a random distribution over the input. These approaches are known as robust
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optimization and stochastic optimization, respectively. However, it is often the
case that unknown information can be attained through investing some addi-
tional resources, e.g. time, computing power or money. In his seminal paper,
Kahan [11] has first introduced the notion of explorable or queryable uncer-
tainty to model obtaining additional information for a problem at a given cost
during the runtime of an algorithm. Since then, these kind of problems have
been explored in different optimization contexts, for example in the framework
of combinatorial, geometric or function value optimization tasks.

Recently, Dürr et al. [4] have introduced a model for scheduling with testing
on a single machine within the framework of explorable uncertainty. In their
approach, a number of jobs with unknown processing times are given. Testing
takes one unit of time and reveals the processing time. If a job is executed
untested, the time it takes to run the job is given by an upper bound. The
novelty of their approach lies in having tests executed directly on the machine
running the jobs as opposed to considering tests separately.

In view of this model, a natural extension is to consider non-uniform testing
times to allow for a wider range of problems. Dürr et al. state that for certain
applications it is appropriate to consider a broader variation on testing times
and leave this question up for future research.

Situations where a preliminary action, operation or test can be executed
before a job are manifold and include a wide range of real-life applications. In
the following, we discuss a small selection of such problems and emphasize cases
with heterogeneous testing requirements. Consider first a situation where an
online user survey can help predict market demand and production times. The
time needed to produce the necessary amount of goods for the given demand is
only known after conducting the survey. Depending on its scope and size, the
invested costs for the survey may vary significantly.

As a second example, we look at distributed computing in a setting with
many distributed local databases and one centralized master server. At the local
stations, only estimates of some data values are stored; in order to obtain the
true value one must query the master server. It depends on the distance and
connection quality from any localized database to the master how much time
and resources this requires. Olston and Widom [14] have considered this setting
in detail.

Another possible example is the acquisition of a house through an agent giv-
ing us more information about its value, location, condition, etc., but demanding
a price for her services. This payment could vary based on the price of the house,
the amount of work of the agent or the number of competitors.

In their paper, Dürr et al. [4] mention fault diagnosis in maintenance and
medical treatment, file compression for transmissions, and running jobs in an
alternative fast mode whose availability can be determined through a test. Gen-
erally, any situation involving diverse cost and duration estimates, like e.g. in
construction work, manufacturing or insurance, falls into our category of possible
applications.
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In view of all these examples, we investigate non-uniform testing in the scope
of explorable uncertainty on a single machine as introduced by [4]. We study
whether algorithms can be extended to this non-uniform case and if not, how
we can find new methods for it.

1.1 Problem Statement

We consider n jobs to be scheduled on a single machine. Every job j has an
unknown processing time pj and a known upper bound uj . It holds 0 ≤ pj ≤ uj

for all j. Each job also has a testing time tj ≥ 0. A job can either be executed
untested, which takes time uj , or be tested and then executed, which takes a
total time of tj + pj . Note that a tested job does not necessarily have to be
executed right after its test, it may be delayed arbitrarily while the algorithm
tests or executes other jobs.

Since only the upper bounds are initially known to the algorithm, the task
can be viewed as an online problem with an adaptive adversary. The actual
processing times pj are only realized after job j has been tested by the algorithm.
In the randomized case, the adversary knows the distribution of the random
input parameters of an algorithm, but not their outcome.

We denote the completion time of a job j as Cj and primarily consider the
objective of minimizing the total sum of completion times

∑
j Cj . As a secondary

objective, we also investigate the simpler goal of minimizing the makespan
maxj Cj . We use competitive analysis to compare the value produced by an
algorithm with an optimal offline solution.

Clearly, in the offline setting where all processing times are known, an opti-
mal schedule can be determined directly: If tj + pj ≤ uj then job j is tested,
otherwise it is run untested. For the sum of completion times, the jobs are there-
fore scheduled in order of non-decreasing min(tj +pj , uj). Any algorithm for the
online problem not only has to decide whether to test a given job or not, but
also in which order to run all tests and executions of both untested and tested
jobs. For a solution to the makespan objective, the ordering of the jobs does not
matter and an optimal offline algorithm decides the testing by the same principle
as above.

1.2 Related Work

Our setting is directly based on the problem of scheduling uncertain jobs on a
single machine with explorable processing times, introduced by Dürr et al. [4] in
2018. They only consider the special case where tj ≡ 1 for all jobs. For determin-
istic algorithms, they give a lower bound of 1.8546 and an upper bound of 2. In
the randomized case, they give a lower bound of 1.6257 and a 1.7453-competitive
algorithm. For several deterministic special case instances, they provide upper
bounds closer to the best possible ratio of 1.8546. Additionally, tight algorithms
for the objective of minimizing the makespan are given for both the deterministic
and randomized cases.
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Testing and executing jobs on a single machine can be viewed as part of
the research area of queryable uncertainty or explorable uncertainty. The first
seminal paper on dealing with uncertainty by querying parts of the input was
published in 1991 by Kahan [11]. In his paper, Kahan considers a set of elements
with uncertain values that lie in a closed interval. He explores approximation
guarantees for the number of queries necessary to obtain the maximum and
median value of the uncertain elements.

Since then, there has been a large amount of research concerned with the
objective of minimizing the number of queries to obtain a solution. A variety
of numerical, geometric and combinatorial problems have been studied in this
framework, the following is a selection of some of these publications: Next to
Kahan, Feder et al. [8], Khanna and Tan [12], and Gupta et al. [10] have also
considered the objective of determining different function values, in particular
the k-smallest value and the median. Bruce et al. [2] have analysed geometric
tasks, specifically the Maximal Points and Convex Hull problems. They have also
introduced the notion of witness sets as a general concept for queryable uncer-
tainty, which was then generalized by Erlebach et al. [6]. Olston and Widom [14]
researched caching problems while allowing for some inaccuracy in the objective
function. Other studied combinatorial problems include minimum spanning tree
[6,13], shortest path [7], knapsack [9] and boolean trees [3]. See also the survey
by Erlebach and Hoffmann [5] for an overview over research in this area.

A related type of problems within optimization under uncertainty are set-
tings where the cost of the queries is a direct part of the objective function.
Most notably, the paper by Dürr et al. [4] falls into this category. There, the
tests necessary to obtain additional information about the runtime of the jobs
are executed on the same machine as the jobs themselves. Other examples include
Weitzman’s original Pandora’s Box problem [17], where n independent random
variables are probed to maximize the highest revealed value. Every probing
incurs a price directly subtracted from the objective function. Recently, Singla
[16] introduced the ‘price of information’ model to describe receiving informa-
tion in exchange for a probing price. He gives approximation ratios for various
well-known combinatorial problems with stochastic uncertainty.

1.3 Contribution

In this paper, we provide the first algorithms for the more general scheduling
with testing problem where testing times can be non-uniform. Consult Table 1
for an overview of results for both the non-uniform and uniform versions of the
problem. All ratios provided without citation are introduced in this paper. The
remaining results are presented in [4].

For the problem of scheduling uncertain jobs with non-uniform testing times
on a single machine, our results are the following: A deterministic 4-competitive
algorithm for the objective of minimizing the sum of completion times and a
randomized 3.3794-competitive algorithm for the same objective. If we allow
preemption - that is, to cancel the execution of a job at any time and start
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Table 1. Overview of results

Objective type General tests Uniform tests Lower bound
∑

Cj - deterministic 4 2 [4] 1.8546 [4]
∑

Cj - randomized 3.3794 1.7453 [4] 1.6257 [4]
∑

Cj - determ. preemptive 2ϕ ≈ 3.2361 - 1.8546

max Cj - deterministic ϕ ≈ 1.6180 ϕ [4] ϕ [4]

max Cj - randomized 4
3

4
3

[4] 4
3

[4]

working on a different job - then we can improve the deterministic case to be
2ϕ-competitive. Here, ϕ ≈ 1.6180 is the golden ratio.

For the objective of minimizing the makespan, we adopt and extend the ideas
of Dürr et al. [4] to provide a tight ϕ-competitive algorithm in the deterministic
case and a tight 4

3 -competitive algorithm in the randomized case.
Our approaches handle non-uniform testing times in a novel fashion distinct

from the methods of [4]. As we show in the full version of this paper [1], the idea of
scheduling untested jobs with small upper bounds in the beginning of the sched-
ule, which works well in the uniform case, fails to generalize to non-uniform tests.
Additionally, describing parameterized worst-case instances becomes intangible
in the presence of an arbitrary number of different testing times.

In place of these methods, we compute job completion times by cross-exa-
mining contributions of other jobs in the schedule. We determine tests based
on the ratio between the upper bound and the given test time and pay specific
attention to sorting the involved executions and tests in an suitable way.

The paper is structured as follows: Sects. 2 and 3 examine the deterministic
and randomized cases respectively. Various algorithms are presented and their
competitive ratios proven. We extend the optimal results for the objective of
minimizing the makespan from the uniform case to general testing times in
Sect. 4. Finally, we conclude with some open problems.

2 Deterministic Setting

In this section, we introduce our basic algorithm and prove deterministic upper
bounds for the non-preemptive as well as the preemptive case. The basic struc-
ture introduced in Sect. 2.1 works as a framework for other algorithms presented
later. We give a detailed analysis of the deterministic algorithm and prove that
it is 4-competitive if parameters are chosen accordingly. In Sect. 2.2 we prove
that an algorithm for the preemptive case is 3.2361-competitive and that no
preemptive algorithm can have a ratio better than 1.8546.

2.1 Basic Algorithm and Proof of 4-Competitiveness

We now present the elemental framework of our algorithm, which we call (α, β)-
SORT. As input, the algorithm has two real parameters, α ≥ 1 and β ≥ 1.



132 S. Albers and A. Eckl

Algorithm 1: (α, β)-SORT

1 T ← ∅, N ← ∅, σj ≡ 0;
2 foreach j ∈ [m] do
3 if uj ≥ αtj then
4 add j to T ;
5 set σj ← βtj ;

6 else
7 add j to N ;
8 set σj ← uj ;

9 end

10 end
11 while N ∪ T 	= ∅ do
12 choose jmin ∈ argminj∈N∪T σj ;

13 if jmin ∈ N then
14 execute jmin untested;
15 remove jmin from N ;

16 else if jmin ∈ T then
17 if jmin not tested then
18 test jmin;
19 set σjmin ← pjmin ;

20 else
21 execute jmin;
22 remove jmin from T ;

23 end

24 end

The algorithm is divided into two phases. First, we decide for each job
whether we test this job or not based on the ratio

uj

tj
. This gives us a parti-

tion of [m] into the disjoint sets T = {j ∈ [m] : ALG tests j} and N = {j ∈
[m] : ALG runs j untested}. In the second phase, we always attend to the job
jmin with the current smallest scaling time σj . The scaling time is the time
needed for the next step of executing j:

• If j is in N , then σj = uj .
• If j is in T and has not been tested, then σj = βtj .
• If j is in T and has already been tested, then σj = pj .

Note that in the second case above, we ‘stretch’ the scaling time by multiply-
ing with β ≥ 1. The intention behind this stretching is that testing a job, unlike
executing it, does not immediately lead to a job being completed. Therefore the
parameter β artificially lowers the relevance of testing in the ordering of our
algorithm. Note that the actual time needed for testing remains tj .

In the following, we show that the above algorithm achieves a provably good
competitive ratio. The parameters are kept general in the proof and are then
optimized in a final step. We present the computations with general parameters
for a clearer picture of the proof structure, which we will reuse in later sections.
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In the final optimization step it will turn out that setting α = β = 1 yields a
best-possible competitive ratio of 4.

Theorem 1. The (1, 1)-SORT algorithm is 4-competitive for the objective of
minimizing the sum of completion times.

Proof. For the purpose of estimating the algorithmic result against the optimum,
let ρj := min(uj , tj + pj) be the optimal running time of job j. Without loss of
generality, we order the jobs s.t. ρ1 ≥ . . . ≥ ρn. Hence the objective value of the
optimum is

OPT =
n∑

j=1

j · ρj (1)

Additionally, let

pA
j :=

{
tj + pj if j ∈ T,

uj if j ∈ N,
(2)

be the algorithmic running time of j, i.e. the time the algorithm spends on
running job j.

We start our analysis by comparing pA
j to the optimal runtime ρj for a single

job, summarized in the following Proposition:

Proposition 1.(a) ∀j ∈ T : tj ≤ ρj, pj ≤ ρj

(b) ∀j ∈ T : pA
j ≤

(
1 + 1

α

)
ρj

(c) ∀j ∈ N : pA
j ≤ αρj

Part (a) directly estimates testing and running times of tested jobs against
the values of the optimum. We will use this extensively when computing the
completion time of the jobs. The proof of parts (b) and (c) is very similar to
the proof of Theorem 14 in [4] for uniform testing times. We refer to the full
version [1] for a complete write-down of the proof. Note that instead of consid-
ering a single bound, we split the upper bound of the algorithmic running time
pA

j into different results for tested (b) and untested jobs (c). This allows us to
differentiate between different cases in the proof of Lemma 1 in more detail. We
will often make use of this Proposition to upper bound the algorithmic running
time in later sections.

To obtain an estimate of the completion time Cj , we consider the contribution
c(k, j) of all jobs k ∈ [n] to Cj . We define c(k, j) to be the amount of time
the algorithm spends scheduling job k before the completion of j. Obviously
it holds that c(k, j) ≤ pA

k . The following central lemma computes an improved
upper bound on the contribution c(k, j), using a rigorous case distinction over
all possible configurations of k and j:

Lemma 1 (Contribution Lemma). Let j ∈ [n] be a given job. The comple-
tion time of j can be written as

Cj =
∑

k∈[n]

c(k, j).



134 S. Albers and A. Eckl

Additionally, for the contribution of k to j it holds that

c(k, j) ≤ max

((
1 +

1

β

)
α, 1 +

1

α
, 1 + β

)
ρj .

Refer to the full version [1] for the proof. Depending on whether j and k are
tested or not, the lemma computes various upper bounds on the contribution
using estimates from Proposition 1. Finally, the given bound on c(k, j) is achieved
by taking the maximum over the different cases.

Recall that the jobs are ordered by non-increasing optimal execution times
ρj , which by Proposition 1 are directly tied to the algorithmic running times.
Hence, the jobs k with small indices are the ‘bad’ jobs with possibly large running
times. For jobs with k ≤ j we therefore use the independent upper bound from
the Contribution Lemma. Jobs with large indices k > j are handled separately
and we directly estimate them using their running time pA

k .
By Lemma 1 and Proposition 1(b),(c) we have

Cj =
∑

k>j

c(k, j) +
∑

k≤j

c(k, j)

≤
∑

k>j

pA
k +

∑

k≤j

max

((
1 +

1

β

)
α, 1 +

1

α
, 1 + β

)
ρj

=
∑

k>j

max

(
α, 1 +

1

α

)
ρk + max

((
1 +

1

β

)
α, 1 +

1

α
, 1 + β

)
j · ρj .

Finally, we sum over all jobs j:

n∑

j=1

Cj =

n∑

j=1

n∑

k=j+1

max

(
α, 1 +

1

α

)
ρk

+
n∑

j=1

max

((
1 +

1

β

)
α, 1 +

1

α
, 1 + β

)
j · ρj

= max

(
α, 1 +

1

α

) n∑

j=1

(j − 1)ρj

+ max

((
1 +

1

β

)
α, 1 +

1

α
, 1 + β

) n∑

j=1

j · ρj

≤
(

max

(
α, 1 +

1

α

)
+ max

((
1 +

1

β

)
α, 1 +

1

α
, 1 + β

))

︸ ︷︷ ︸
=:f(α,β)

n∑

j=1

j · ρj

= f(α, β) · OPT

Minimizing f(α, β) on the domain α, β ≥ 1 yields optimal parameters α = β = 1
and a value of f(1, 1) = 4. We conclude that (1, 1)-SORT is 4-competitive.
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The parameter selection α = 1, β = 1 is optimal for the closed upper bound
formula we obtained in our proof. It is possible and somewhat likely that a
different parameter choice leads to better overall results for the algorithm. In
the optimal makespan algorithm (see Sect. 4) the value of α is higher, suggesting
that α = 1, which leads to testing all non-trivial jobs, might not be the best
choice. The problem structure and the approach by Dürr et al. [4] also motivate
setting β to some higher value than 1. For our proof, setting parameters like we
did is optimal.

In the full version of the paper [1], we take advantage of this somewhat
unexpected parameter outcome to prove that (1, 1)-SORT cannot be better than
3-competitive. Additionally, we show that for any choice of parameters, (α, β)-
SORT is not better than 2-competitive.

2.2 A Deterministic Algorithm with Preemption

The goal of this section is to show that if we allow jobs to be preempted there
exists a 3.2361-competitive algorithm. In his book on Scheduling, Pinedo [15]
defines preemption as follows: “The scheduler is allowed to interrupt the pro-
cessing of a job (preempt) at any point in time and put a different job on the
machine instead.”

The idea for our algorithm in the preemptive setting is based on the so-called
Round Robin rule, which is used frequently in preemptive machine scheduling
[15, Chapters 3.7, 5.6, 12.4]. The scheduling time frame is divided into very
small equal-sized units. The Round Robin algorithm then cycles through all
jobs, tending to each job for exactly one unit of time before switching to the
next. It ensures that at any time the amount every job has been processed only
differs by at most one time unit [15].

The Round Robin algorithm is typically applied when job processing times
are completely unknown. In our setting, we are actually given some upper bounds
for our processing times and may invest testing time to find out the actual values.
Despite having more information, it turns out that treating all job processing
times as unknown in a Round Robin setting gives a provably good result. The
only way we employ upper bounds and testing times is again to decide which
jobs will be tested and which will not. We again do this at the beginning of
our schedule for all given jobs. The rule to decide testing is exactly the same
as in the first phase of Algorithm 1: If uj/tj ≥ α, then test j, otherwise run j
untested. Again, α is a parameter that is to be determined. It will turn out that
setting α = ϕ gives the best result.

The pseudo-code for the Golden Round Robin algorithm is given in
Algorithm 2.

Essentially, the algorithm first decides for all jobs whether to test them and
then runs a regular Round Robin scheme on the algorithmic testing time pA

j ,
which is defined as in (2).

Theorem 2. The Golden Round Robin algorithm is 3.2361-competitive in the
preemptive setting for the objective of minimizing the sum of completion times.
This analysis is tight.
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Algorithm 2: Golden Round Robin

1 T ← ∅, N ← ∅, σj ≡ 0;
2 foreach j ∈ [m] do
3 if uj ≥ ϕtj then
4 add j to T ;
5 set σj ← tj ;

6 else
7 add j to N ;
8 set σj ← uj ;

9 end

10 end
11 while ∃j ∈ [m] not completely scheduled do
12 run Round Robin on all jobs using σj as their processing time;
13 let jmin be the first job to finish during the current execution;
14 if jmin ∈ T and jmin tested but not executed then
15 set σjmin ← pjmin and keep jmin in the Round Robin rotation;
16 end

17 end

We only provide a sketch of the proof here, the complete proof can be found
in the full version of the paper [1].

Proof (Proof sketch). We set α = ϕ and use Proposition 1(b),(c) to bound the
algorithmic running time pA

j of a job j by its optimal running time ρj .

pA
j ≤ ϕρj .

We then compute the contribution of a job k to a fixed job j by grouping
jobs based on their finishing order in the schedule. This allows us to estimate
the completion time of job j:

Cj ≤
∑

k>j

pA
k + j · pA

j

Finally, we sum over all jobs to receive ALG ≤ 2ϕ · OPT.
To show that the analysis is tight, we provide an example where the algo-

rithmic solution has a value of 2ϕ · OPT if we let the number of jobs approach
infinity.

The following theorem additionally provides a lower bound for the deter-
ministic preemptive setting, giving us a first simple lower bound for this case.
The proof is based on the lower bound provided in [4] for the deterministic
non-preemptive case. We again defer the proof to the full version [1].

Theorem 3. No algorithm in the preemptive deterministic setting can be better
than 1.8546-competitive.
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3 Randomized Setting

In this section we introduce randomness to further improve the competitive ratio
of Algorithm 1. There are two natural places to randomize: when deciding which
jobs to test and the decision about the ordering of the jobs. These decisions
directly correspond to the parameters α and β.

Making α randomized, for instance, could be achieved by defining α as a
random variable with density function fα : [1,∞] → R+

0 and testing j if and
only if rj := uj/tj ≥ α. Then the probability for testing j would be given by
p =

∫ rj

1
fα(x)dx. Using a random variable α like this would make the analysis

unnecessarily complicated, therefore we directly consider the probability p with-
out defining a density, and let p depend on rj . This additionally allows us to
compute the probability of testing independently for each job.

Introducing randomness for β is even harder. The choice of β influences
multiple jobs at the same time, therefore independence is hard to establish.
Additionally, β appears in the denominator of our analysis frequently, hindering
computations using expected values. We therefore forgo using randomness for
the β-parameter and focus on α in this paper. We encourage future research to
try their hand at making β random.

We give a short pseudo-code of our randomized algorithm in Algorithm 3. It
is given a parameter-function p(rj) and a parameter β, both of which are to be
determined later.

Algorithm 3: Randomized-SORT

1 T ← ∅, N ← ∅, σj ≡ 0;
2 foreach j ∈ [m] do
3 add j to T with probability p(rj) and set σj ← βtj ;
4 otherwise add it to N and set σj ← uj ;

5 end
6 while N ∪ T 	= ∅ do
7 choose jmin ∈ argminj∈N∪T σj ;

8 if jmin ∈ N then
9 execute jmin untested;

10 remove jmin from N ;

11 else if jmin ∈ T then
12 if jmin not tested then
13 test jmin;
14 set σjmin ← pjmin ;

15 else
16 execute jmin;
17 remove jmin from T ;

18 end

19 end
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Theorem 4. Randomized-SORT is 3.3794-competitive for the objective of min-
imizing the sum of completion times.

Proof. Again, we let ρ1 ≥ . . . ≥ ρn denote the ordered optimal running time
of jobs 1, . . . , n. The optimal objective value is given by (1). Fix jobs j and k.
For easier readability, we write p instead of p(rj). Since the testing decision is
now done randomly, the algorithmic running time pA

j as well as the contribution
c(k, j) are now random variables. It holds

pA
j =

{
tj + pj with probability p

uj with probability 1 − p

For the values of c(k, j) we consult the case distinctions from the proof of the
Contribution Lemma 1. If j ∈ N , one can easily determine that c(k, j) ≤ (1 +
1/β)uj for all cases. Note that for this we did not need to use the final estimates
with parameter α from the case distinction. Therefore this upper bound holds
deterministically as long as we assume j ∈ N . By extension it also trivially holds
for the expectation of c(k, j):

E[c(k, j) | j untested] ≤ (1 + 1/β)uj .

Doing the same for the case distinction of j ∈ T , we get

E[c(k, j) | j tested] ≤ max

(
(1 + β)tj ,

(
1 +

1

β

)
pj , tj + pj

)
.

For the expected value of the contribution we have by the law of total
expectation:

E[c(k, j)] = E[c(k, j) | j untested] · Pr[j untested]

+ E[c(k, j) | j tested] · Pr[j tested]

≤
(

1 +
1

β

)
uj · (1 − p) + max

(
(1 + β)tj ,

(
1 +

1

β

)
pj , tj + pj

)
· p

Note that this estimation of the expected value is independent of any parameters
of k. That means, for fixed j we estimate the contribution to be the same for all
jobs with small parameter k ≤ j. Of course, as before, for the jobs with large
parameter k > j we may also alternatively directly use the algorithmic runtime
of k:

E[c(k, j)] ≤ E[pA
k ].

Putting the above arguments together, we use the Contribution Lemma and
linearity of expectation to estimate the completion time of j:

E[Cj ] =

n∑

j=1

E[c(k, j)]

≤
∑

k>j

E[pA
k ] +

∑

k≤j

E[c(k, j)].
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For the total objective value of the algorithm we receive again using linearity of
expectation:

E

⎡
⎣

n∑

j=1

Cj

⎤
⎦ ≤

n∑

j=1

(j − 1)E[pA
j ] +

n∑

j=1

j · E[c(k, j)]

≤
n∑

j=1

(j − 1)(uj · (1 − p) + (tj + pj) · p)

+

n∑

j=1

j

((
1 +

1

β

)
uj · (1 − p)

+ max

(
(1 + β)tj ,

(
1 +

1

β

)
pj , tj + pj

)
· p

)

≤
n∑

j=1

j · λj(β, p),

where we define

λj(β, p) :=

(
uj +

(
1 +

1

β

)
uj

)
· (1 − p)

+

(
tj + pj + max

(
(1 + β)tj ,

(
1 +

1

β

)
pj , tj + pj

))
· p.

Having computed this first estimation for the objective of the algorithm, we
now consider the ratio λj(β, p)/ρj as a standalone. If we can prove an upper
bound for this ratio, the same holds as competitive ratio for our algorithm.

Hence the goal is to choose parameters β and p, where p can depend on j,
s.t. λj(β, p)/ρj is as small as possible. In the best case, we want to compute

min
β≥1,p∈[0,1]

max
j

λj(β, p)

ρj
.

Lemma 2. There exist parameters β̂ ≥ 1 and p̂ ∈ [0, 1] s.t.

max
j

λj(β̂, p̂)

ρj
≤ 3.3794.

The choice of parameters is given in the proof of the lemma, which can be
found in the full version of our paper [1]. During the proof we use computer-
aided computations with Mathematica. The Mathematica code can be found in
the full version.

To conclude the proof of the theorem, we write

E

⎡
⎣

n∑

j=1

Cj

⎤
⎦ ≤

n∑

j=1

j · λj(β̂, p̂) ≤ 3.3794
n∑

j=1

j · ρj = 3.3794 · OPT.
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4 Optimal Results for Minimizing the Makespan

In this section, we consider the objective of minimizing the makespan of our
schedule. It turns out that we are able to prove the same tight algorithmic bounds
for this objective function as Dürr et al. in the unit-time testing case, both for
deterministic and randomized algorithms. The decisions of the algorithms only
depend on the ratio rj = uj/tj . Refer to the full version [1] for the proofs.

Theorem 5. The algorithm that tests job j iff rj ≥ ϕ is ϕ-competitive for the
objective of minimizing the makespan. No deterministic algorithm can achieve a
smaller competitive ratio.

Theorem 6. The randomized algorithm that tests job j with probability p =
1−1/(r2

j −rj+1) is 4/3-competitive for the objective of minimizing the makespan.
No randomized algorithm can achieve a smaller competitive ratio.

5 Conclusion

In this paper, we introduced the first algorithms for the problem of schedul-
ing with testing on a single machine with general testing times that arises in
the context of settings where a preliminary action can influence cost, duration
or difficulty of a task. For the objective of minimizing the sum of completion
times, we presented a 4-approximation for the deterministic case, and a 3.3794-
approximation for the randomized case. If preemption is allowed, we can improve
the deterministic result to 3.2361. We also considered the objective of minimiz-
ing the makespan, for which we showed tight ratios of 1.618 and 4/3 for the
deterministic and randomized cases, respectively.

Our results open promising avenues for future research, in particular tight-
ening the gaps between our ratios and the lower bounds given by the unit case.
Based on various experiments using different adversarial behaviour and multiple
testing times it seems hard to force the algorithm to make mistakes that lead
to worse ratios than those proven in [4] for the unit case. We conjecture that
in order to achieve better lower bounds, the adversary must make live decisions
based on previous choices of the algorithm, in particular depending on how much
the algorithm has already tested, run or deferred jobs up to a certain point.

Further interesting directions for future work are the extension of the problem
to multiple machines to consider scheduling problems like open shop, flow shop,
or other parallel machine settings.
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Abstract. Scheduling with testing is a recent online problem within the
framework of explorable uncertainty motivated by environments where
some preliminary action can influence the duration of a task. Jobs have
an unknown processing time that can be explored by running a test.
Alternatively, jobs can be executed for the duration of a given upper
limit. We consider this problem within the setting of multiple identical
parallel machines and present competitive deterministic algorithms and
lower bounds for the objective of minimizing the makespan of the sched-
ule. In the non-preemptive setting, we present the SBS algorithm whose
competitive ratio approaches 3.1016 if the number of machines becomes
large. We compare this result with a simple greedy strategy and a lower
bound which approaches 2. In the case of uniform testing times, we can
improve the SBS algorithm to be 3-competitive. For the preemptive case
we provide a 2-competitive algorithm and a tight lower bound which
approaches the same value.
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1 Introduction

One of the most fundamental problems in online scheduling is makespan mini-
mization on multiple parallel machines. An online sequence of n jobs with pro-
cessing times pj has to be assigned to m identical machines. The objective is to
minimize the makespan of the schedule, i.e. the maximum load on any machine.
In 1966, Graham [25] showed that the List Scheduling algorithm, which assigns
every job to the currently least loaded machine, is (2 − 1

m )-competitive. Since
then the upper bound has been improved multiple times, most recently to 1.9201
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by Fleischer and Wahl [22]. At the same time, the lower bound has also been
the focus of a lot of research, the current best result is 1.88 by Rudin [37].

We consider this classical problem in the framework of explorable uncertainty,
where part the input is initially unknown to the algorithm and can be explored
by investing resources which are added as costs to the objective function. Let
n jobs be given. Every job j has a processing time pj and an upper bound uj .
It holds 0 ≤ pj ≤ uj for all j. Each job also has a testing time tj ≥ 0. A job
can be executed on one of m identical machines in one of two modes: It can
either be run untested, which takes time uj , or be tested and then executed,
which takes a total time of tj + pj . The number of jobs n, as well as all testing
times tj and upper bounds uj are known to the algorithm in the beginning. In
particular, an algorithm can sort/order the jobs in a convenient way based on
these parameters. The processing time pj for job j is revealed once the test tj
is completed. This scheduling with testing setting has been recently studied by
Dürr et al. [13], and Albers and Eckl [3] on a single machine.

We differentiate between preemptive and non-preemptive settings: If preemp-
tion is allowed, a job may be interrupted at any time, and then continued later
on a possibly different machine. No two machines may work on the same job at
the same time. In case a job is tested, any section of the test must be scheduled
earlier than any section of the actual job processing. In the non-preemptive set-
ting, a job assigned to a machine has be fully scheduled without interruption on
this machine, independent of whether it is tested or not. We also introduce the
notion of test-preemptive scheduling, where a job can only be interrupted right
after its test is completed.

Scheduling with testing is well-motivated by real world settings where a pre-
liminary evaluation or operation can be executed to improve the duration or
difficulty of a task. Examples for the case of multiple machines include e.g. a
manufacturing plan where a number of jobs with uncertain length have to be
assigned to multiple workers, or a distributed computing setting where tasks
with unknown parameters have to be allocated to remote computing nodes by
a central scheduler. Several examples for applicable settings for scheduling with
testing can also be found in [3, 13].

In summary, we study the classical problem of makespan minimization on
identical parallel machines in the framework of explorable uncertainty. We use
competitive analysis to compare the value of an algorithm with an optimal off-
line solution. The setting closely relates to online machine scheduling problems
studied previously in the literature. We investigate deterministic algorithms and
lower bounds for the preemptive and non-preemptive variations of this problem.

1.1 Related Work

Scheduling with testing describes the setting where jobs with uncertain process-
ing times have to be scheduled tested or untested on a given number of machines.
The problem has been first studied by Dürr et al. [13,14] for the special case of
scheduling jobs on a single machine with uniform testing times tj ≡ 1. They
presented several algorithms and lower bounds for the objectives of the sum of
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completion times and the makespan. More recently, Albers and Eckl [3] con-
sidered the one machine case with testing times tj ∈ N, presenting generalized
algorithms for both objectives. In this paper, we consider scheduling with testing
on identical parallel machines, a natural generalization of the previously studied
one machine case.

Makespan minimization in online scheduling with identical machines has been
studied extensively in the past decades, ever since Graham [25] established his
(2 − 1

m )-competitive List Scheduling algorithm in 1966. In the deterministic
setting, a series of publications improved Graham’s result to competitive ratios
of 2− 1

m − εm [23] where εm → 0 for large m, 1.985 [8], 1.945 [31], and 1.923 [1],
before Fleischer and Wahl [22] presented the current best result of 1.9201. In
terms of the deterministic lower bound for general m, research has been just as
fruitful. The bound was improved from 1.707 [19], to 1.837 [9], and 1.852 [1]. The
best currently known bound of 1.88 is due to Rudin [37]. For the randomized
variant, the lower bound has a current value of e

e−1 ≈ 1.582 [11, 38], while
the upper bound is 1.916 [2]. For the deterministic preemptive setting, Chen
et al. [12] provide a tight bound of e

e−1 for large values of m.
More recently, various extension of this basic case have emerged. In resource

augmentation settings the algorithm receives some extra resources like machines
with higher speed [30], parallel schedules [6, 33], or a reordering buffer [15, 33].
A variation that is closely related to our setting is semi-online scheduling, where
some additional piece of information is available to the online algorithm in ad-
vance. Possible pieces of information include for example the sum of all process-
ing times [5, 32, 33], the value of the optimum [7], or information about the job
order [26]. Refer also to the survey by Epstein [16] for an overview of makespan
minimization in semi-online scheduling.

Scheduling with testing is directly related to explorable uncertainty, a research
area concerned with obtaining additional information of unknown parameters
through queries with a given cost. Kahan [29] pioneered this line of research in
1991 by studying approximation guarantees for the number of queries necessary
to obtain the maximum and median value of a set of uncertain elements. Fol-
lowing this, a variety of problems have been studied in this setting, for example
finding the median or k-smallest value [21, 27, 34], geometric tasks [10], caching
[36], as well as combinatorial problems like minimum spanning tree [18, 35],
shortest path [20], and knapsack [24]. We refer to the survey by Erlebach and
Hoffmann [17] for an overview. In the scheduling with testing model, the cost
of the queries is added to the objective function. Similar settings are considered
for example in Weitzman’s pandora’s box problem [40], or in the recent ’price of
information’ model by Singla [39].

1.2 Contribution

In this paper we provide the first results for makespan minimization on multiple
machines with testing. We differentiate between general tests tj ∈ N and uniform
tests tj = 1, and consider non-preemptive as well as preemptive environments. In
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Table 1, we illustrate our results for these cases. The parameter m corresponds
to the number of machines in the instance.

Table 1. Overview of results

Setting General tests Uniform tests Lower bound

Non-preemptive c(m) −−−−→
m→∞

3.1016 c1(m) −−−−→
m→∞

3 max(ϕ, 2− 1
m

)

Preemptive 2 2 max(ϕ, 2− 2
m

+ 1
m2 )

In the non-preemptive setting, we present our main algorithm with compet-
itive ratio c(m), which we refer to as the SBS algorithm. The function c(m) is
increasing in m and has a value of approximately 3.1016 for m → ∞. For uni-
form tests, we can improve the algorithm to a competitive ratio of c1(m), which
approaches 3 for large values of m. Additionally, we analyze a simple Greedy al-
gorithm for general tests with a competitive ratio of ϕ(2− 1

m ), where ϕ ≈ 1.6180
is the golden ratio. We also provide a lower bound with value max(ϕ, 2 − 1

m ).
The values of c(m), c1(m), the Greedy algorithm and the lower bound are sum-
marized in Table 2. For all values of m > 1 the SBS algorithm has better ratios
compared to Greedy. At the same time, the uniform version of the algorithm
improves these results further. Though our algorithms work for any number of
machines m, they all achieve the same ratio for m = 1 as was already proven in
[13] and [3] for uniform and general tests, respectively.

If the scheduler is allowed to use preemption, we obtain a 2-approximation
for both general and uniform tests. The result holds even in the more restrictive
test-preemptive setting. The corresponding lower bound of max(ϕ, 2− 2

m + 1
m2 )

is tight when the number of machines becomes large.
We utilize various methods for our algorithms and lower bounds. The Greedy

algorithm we present is a variation of the well-known List Scheduling algorithm
introduced by Graham [25]. For the more involved SBS algorithm and its uniform
version we employ testing rules for jobs based on the ratio between their upper
bound and testing time similar to [3]. We additionally divide the schedule into
phases based on these ratios, therefore sorting the jobs by the given parameters
to guarantee competitiveness. In the preemptive setting, we divide the schedule
into two independent phases, testing and execution, and use an offline algorithm
for makespan minimization to solve each instance separately. Lastly, the lower

Table 2. Results in the non-preemptive setting for selected values of m

1 2 3 4 5 10 100 ∞
Greedy 1.6180 2.4271 2.6967 2.8316 2.9125 3.0743 3.2199 3.2361
SBS 1.6180 2.3806 2.6235 2.7439 2.8158 2.9591 3.0874 3.1016

Uniform-SBS 1.6180 2.3112 2.5412 2.6560 2.7248 2.8625 2.9862 3
Lower Bound 1.6180 1.6180 1.6667 1.75 1.8 1.9 1.99 2
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bounds we provide are loosely based on a common construction for the classical
makespan minimization setting on multiple machines, where a large number of
small jobs is followed by a single larger job.

The rest of the paper is structured in the following way: We start by giving
some general definitions needed for later sections. In Section 2 we then first
prove the competitive ratio of Greedy and the lower bound, before describing
the main algorithm for the general case. At the end of the section, we then build
a special version of the algorithm for the uniform case. In Section 3 we consider
the preemptive setting and give an algorithm as well as a tight lower bound. We
conclude the paper by describing some open problems.

1.3 Preliminary Definitions

We use the following notations throughout the document: For a job j ∈ [n], the
optimal offline running time of j, i.e. the time needed by the optimum to schedule
j on a machine, is denoted as ρj := min(tj+pj , uj), while the algorithmic running
time of j, i.e. the time needed for an algorithm to run j on a machine, is given
by

pAj :=
{
tj + pj if j is tested,
uj if j is not tested.

(1)

It is clear that ρj ≤ pAj for any job j. Additionally, it holds that pj ≤ ρj ,
since the processing times pj are upper bounded by uj .

At times, we may use the definition of the minimal running time of job j,
which is given by τj := min(tj , uj).

It is clear that any job must fulfill τj ≤ ρj . In total, we get the following
estimation for the different running times:

τj ≤ ρj ≤ pAj , ∀j ∈ [n] (2)

Since an algorithm does not know the values pj , the testing decisions for the
jobs are non-trivial. A partial goal for any competitive algorithm is to define a
testing scheme such that the algorithmic running times are not too large com-
pared to the optimal offline running times. We provide the following result which
was used previously in [3] and is based on Theorem 14 of [13]. The given testing
scheme based on the ratio rj = uj/tj between upper bound and testing time is
used multiple times within this paper.

Proposition 1. Let job j be tested iff rj ≥ α for some α ≥ 1. Then:

(a) ∀j ∈ [n] tested: pAj ≤
(
1 + 1

α

)
ρj

(b) ∀j ∈ [n] not tested: pAj ≤ αρj

As a direct consequence of Proposition 1, an optimal testing scheme for a
single job is given by setting the threshold α to the golden ratio ϕ ≈ 1.6180 [13].
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2 Non-preemptive Setting

In this section we assume that preemption is not allowed. Any job has to be
assigned to one of m available machines. Since we only consider makespan min-
imization, we may assume that there is no idle time on the machines and the
actual ordering of the executions on a machine does not influence the outcome
of the objective. It is therefore sufficient to only consider the assignment of the
jobs to the machines.

2.1 Lower Bound and Greedy Algorithm

We first prove a straightforward lower bound and extend the simple List Schedul-
ing algorithm from the classical setting to our problem.

For the lower bound we choose negligibly small testing times coupled with
very large upper bounds. This forces the algorithm to test all jobs and thus
having to decide on a machine for a given job while having no information about
its real execution time.

Theorem 1. No online algorithm is better than (2 − 1
m )-competitive for the

problem of makespan minimization on m identical machines with testing, even
if all testing times are equal to 1.

We note that ϕ ≈ 1.6180 is always a lower bound for our problem (see [13]),
which is relevant only for small values of m ≤ 2. The proof of Theorem 1 is
provided in the full version of this paper [4].

To prove a simple upper bound, we can generalize the List Scheduling algo-
rithm to our problem variant as follows:

Consider the given jobs in any order. For a job j to be scheduled next, test j if
and only if uj/tj ≥ ϕ and then execute it completely on the current least-loaded
machine.

Theorem 2. The extension of List Scheduling described above is ϕ (2 − 1
m )-

competitive for minimizing the makespan on m identical machines with non-
uniform testing, where ϕ ≈ 1.6180 is the golden ratio. This analysis is tight.

The proof structure is similar to the proof of List Scheduling and uses com-
mon lower bounds for makespan minimization. We again refer to the full version
for all details.

2.2 SBS Algorithm

In this section we provide a 3.1016-competitive algorithm for the non-preemptive
setting. It assigns jobs into three classes S1, B, and S2 based on their ratios
between upper bounds and testing times.

Let [n] be the set of all jobs. We define a threshold function T (m) for allm and
divide the jobs into disjoint sets [n] = B ∪̇S, where S will be further subdivided
into S1 and S2. The set B corresponds to jobs where the ratio rj = uj/tj between
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upper bound and testing time is large, while jobs in S have a small ratio. We
define

B := {j ∈ [n] : rj ≥ T (m)} ,
S :=[n] \B.

For the set S, we would like the algorithm to be able to distinguish jobs based on
their optimal offline running time ρj . Of course, without testing the algorithm
does not know these values, so we instead use the minimal running time τj , which
can be computed directly using offline input only, to divide the set S further.

We define S1 ⊂ S, such that |S1| = min(m, |S|) and ∀j1 ∈ S1, j2 ∈ S \ S1:
τj1 ≥ τj2 . In other words, S1 is the set of at most m jobs in S with the largest
minimal running times. If this definition of S1 is not unique, we may choose any
such set. We set S2 := S \ S1. It follows that if |S| ≤ m, then S2 = ∅.

The idea behind dividing S into two sets is to identify the m largest jobs
according to minimal running time and schedule them first, each on a separate
machine. This allows us to lower bound the runtime of the remaining jobs later
in the schedule.

In Algorithm 1 we describe the SBS algorithm which solves the non-uniform
case and works in three phases corresponding to the sets S1, B and S2:

Algorithm 1: SBS algorithm
1 B ← {j ∈ [n] : rj ≥ T (m)};
2 S ← [n] \B;
3 S1 ← S′ ⊂ S s.t. |S′| = min(m, |S|), τj1 ≥ τj2 ∀j1∈S′, j2∈S\S′;
4 S2 ← S \ S1;
5 foreach j ∈ S1 do
6 if rj ≥ ϕ then
7 test and run j on an empty machine;
8 else
9 run j untested on an empty machine;

10 end
11 end
12 foreach j ∈ B do
13 test and run j on the current least-loaded machine;
14 end
15 foreach j ∈ S2 do
16 run j untested on the current least-loaded machine;
17 end

In order to have a non-trivial testing decision for jobs in S1, it makes sense to
require that T (m) ≥ ϕ for all m. More specifically, we will define the threshold
function T (m) in the non-uniform setting as follows:

T (m) =
(3 +

√
5)m− 2 +

√
(38 + 6

√
5)m2 − 4(11 +

√
5)m+ 12

6m− 2
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Theorem 3. Let T (m) be a parameter function of m defined as above. The
SBS algorithm is T (m)

( 3
2 − 1

2m
)
-competitive for minimizing the makespan on

m identical machines with non-uniform testing.

The function T (m) is increasing for all m ≥ 1 and fulfills T (1) = ϕ as well
as approximately T (m) → 2.0678 for m → ∞. The competitive ratio of the
algorithm is explicitly given by

c(m) =
(3 +

√
5)m− 2 +

√
(38 + 6

√
5)m2 − 4(11 +

√
5)m+ 12

4m .

For this function we have c(1) = ϕ as well as approximately c(m)→ 3.1016 if m
approaches infinity. Additionally, it holds that c(m) < ϕ

(
2− 1

m

)
for all m > 1.

Proof. We assume w.l.o.g. that the job indices are sorted by non-increasing op-
timal offline running times ρ1 ≥ · · · ≥ ρn. We denote the last job to finish in the
schedule of the algorithm as l and the minimum machine load before job l as t.
It follows that the value of the algorithm is t+ pAl .

The value of the optimum is at least as large as the average sum of the
optimal offline running times, or

L := 1
m

∑

j∈[n]

ρj ≤ OPT, (3)

since in any schedule at least one machine must have a load of at least this
average. At the same time, we know that the optimum has to schedule every job
on some machine:

ρj ≤ OPT ∀j ∈ [n] (4)
We also utilize another common lower bound in makespan minimization, which
is the sum of the processing times of the m-th and (m+1)-th largest job. If there
are at least m + 1 jobs, then some machine has to schedule at least 2 of these
jobs:

ρm + ρm+1 ≤ OPT . (5)
Here, ρj is defined as 0 if the instance has less than j jobs.

We differentiate between jobs handled by the algorithm in different phases
and bound the algorithmic running times against the optimal offline running
times. We write pAj ≤ αjρj and define different values for αj depending on the
set j belongs to. It holds that

αj =





ϕ if j ∈ S1,

1 + 1
T (m) if j ∈ B,

T (m) if j ∈ S2,

(6)

by Proposition 1 and the testing strategy of the algorithm.
The objective value of the algorithm depends on the set job l belongs to,

so we differentiate between three cases. The following proposition upper bounds
the algorithmic value ALG = t+ pAl for each of these cases:
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Proposition 2. The value of the algorithm can be estimated as follows:

ALG ≤





ϕOPT if l ∈ S1,(
ϕ+

(
1 + 1

T (m)

) (
1− 1

m

))
OPT if l ∈ B,

T (m)
( 3

2 − 1
2m
)

OPT if l ∈ S2.

To prove this proposition, we utilize the lower bounds (3)-(5) and the es-
timates (6) for the value of αj . A critical step lies in the estimation of pAl for
l ∈ S2, where we are able to lower bound τl using the size of the m-th and
(m+1)-th largest job because the algorithm already ran m jobs from S1 in the
beginning of the schedule. We refer to the full version [4] for a detailed proof.

It remains to take the maximum over all three cases and minimize the value
in dependence of T (m). The value in the case l ∈ S1 is always less than the
values given by the other cases, therefore we only want to minimize

max
(
ϕ+

(
1 + 1

T (m)

)(
1− 1

m

)
, T (m)

(
3
2 −

1
2m

))
.

The left side of the maximum is decreasing in T (m), while the right side
is increasing. The minimal maximum is therefore attained when both sides are
equal. It can be easily verified that for the given definition of the threshold
function T (m) both sides of the maximum are equal for all values of m ≥ 1.

It follows that the final ratio can be estimated by ALG
OPT ≤ T (m)

( 3
2 − 1

2m
)
. ut

2.3 An Improved Algorithm for the Uniform Case

The previous section established an algorithm with a competitive ratio of ap-
proximately 3.1016. We now present an algorithm with a better ratio in the case
when tj = 1 for all jobs. We define the threshold function T1(m) as follows:

T1(m) = 2m− 1 +
√

16m2 − 14m+ 3
3m− 1

The Uniform-SBS algorithm works as follows: Sort the jobs by non-increasing
uj . Go through the sorted list of jobs and put the next job on the machine with
the lowest current load. A job j is tested if uj ≥ T1(m), otherwise it is run
untested.

Theorem 4. Uniform-SBS is a T1(m)( 3
2 − 1

2m )-competitive algorithm for uni-
form instances.

For uniform jobs with tj = 1, sorting by non-increasing upper bound uj is
consistent with sorting by non-increasing ratio rj . Hence, Uniform-SBS is similar
to the SBS algorithm reduced to the phases corresponding to the sets B and S,
where S contains all small jobs. The reason behind running the m largest jobs
of S first in the SBS algorithm was to upper bound the remaining jobs in S. For
uniform testing times, this bound can be achieved without this special structure.



10 S. Albers and A. Eckl

The function T1(m) is increasing for all m ≥ 1 and fulfills T1(1) = ϕ as well
as T1(m)→ 2 for m→∞. Computing the competitive ratio explicitly yields

c1(m) = 2m− 1 +
√

16m2 − 14m+ 3
2m .

These values start from c1(1) = ϕ and approach c1(m)→ 3 ifm→∞. Addition-
ally, it holds that c1(m) < c(m) for allm > 1. In other words, this special version
of the algorithm is strictly better than the general SBS algorithm described in
Section 2.2. We defer the proof of Theorem 4 to the full version of the paper [4].

3 Results with Preemption

In this section we assume that jobs can be preempted at any time during their
execution. An interrupted job may be continued on a possibly different machine,
but no two machines may work on the same job at the same time. Testing a job
must be completely finished before any part of its execution can take place.

It makes sense to additionally consider the following stricter definition of
preemption within scheduling with testing: Untested jobs must be run without
interruption on a single machine. If a job is tested, its test must also be run
without interruption on one machine. The execution after the test may then be
run without interruption on a possibly different machine. We call this setting
test-preemptive, referring to the fact that the only place where we might preempt
a job is exactly when its test is completed. From an application point of view,
the test-preemptive setting is a natural extension of the non-preemptive setting,
allowing the scheduler to reconsider the assignment of a job after receiving more
information through the test.

Clearly, the difficulty of settings within scheduling with testing increases in
the following order: preemptive, test-preemptive and non-preemptive. We now
present the 2-competitive Two Phases algorithm for the test-preemptive setting,
which can be applied directly to the ordinary preemptive case. Additionally, we
construct a lower bound of 2 − 2/m + 1/m2 for the ordinary preemptive case.
This lower bound then also holds for test-preemption, and is therefore tight for
both settings when the number of machines m approaches infinity.

The Two Phases algorithm for the test-preemptive setting works as follows:
Let OFF denote an optimal offline algorithm for makespan minimization on m
machines. In the first phase, the algorithm schedules all jobs for their minimal
running time τj using the algorithm OFF. Herein, the algorithm tests all jobs
except trivial jobs with tj > uj , where running the upper bound is optimal. In
the second phase, all remaining jobs are already tested, hence the algorithm now
knows all remaining processing times pj . We then use the offline algorithm OFF
again to schedule the remaining jobs optimally. Finally, the algorithm obliviously
puts the second schedule on top of the first.

Theorem 5. The Two Phases algorithm is 2-competitive for minimizing the
makespan on m machines with testing in the test-preemptive setting.
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The proof makes use of the assumption that the algorithm has access to
unlimited computational power, which is a common assumption in online opti-
mization. If we do not give the online algorithm this power, the result is slightly
worse, since offline makespan minimization is strongly NP-hard. We may then
make use of the PTAS for offline makespan minimization by Hochbaum and
Shmoys [28] to achieve a ratio of 2 + ε for any ε > 0, where the runtime of the
algorithm increases exponentially with 1/ε. All details of the proof can be found
in the full version [4].

For the lower bound result we now consider the standard preemptive setting
where a job can be interrupted at any time.

Theorem 6. In the preemptive setting, no online algorithm for makespan min-
imization on m identical machines with testing can have a better competitive
ratio than 2− 2/m+ 1/m2, even if all testing times are equal to 1.

We note that ϕ ≈ 1.6180 also remains a lower bound even for the preemptive
case, since two machines cannot run the same job concurrently. It holds 2 −
2/m+ 1/m2 < ϕ only for values of m ≤ 4.

Proof. Let us consider the following example: LetM be a sufficiently large num-
ber and let m(m − 1) small jobs be given with tj = 1, pj = 0, uj = M as well
as one large job f with tf = 1, pf = m − 1, uf = M . As argued in the proof of
Theorem 1, OPT has a value of m and we may assume that the algorithm tests
every job.

In the preemptive setting we required that any execution of the actual pro-
cessing time of a job can only happen after its test is completed, therefore any job
j that finished testing at some time t is completed not earlier than t+pj . The ad-
versary decides the processing time of j by the following rule: If t ≥ m−1+1/m
and job f has not yet been assigned, set pj = m − 1 (i.e. set j = f). Else, set
pj = 0.

If the adversary assigns job f at any point, then job f finished testing at
time t ≥ m− 1 + 1/m. It follows that

ALG ≥ t+ pf ≥ m− 1 + 1
m

+m− 1 = 2m− 2 + 1
m
.

Hence the competitive ratio is at least ALG
OPT ≥ 2− 2

m + 1
m2 .

All that remains is to show that this assignment of f happens at some point
during the runtime of the algorithm. Assume that this is not the case, i.e. all
jobs finish testing earlier than m−1+1/m. The adversary sets all pj = 0, hence
it follows directly that all jobs are completely finished before m− 1 + 1/m. But
this means that the algorithmic solution has a value of ALG < m− 1 + 1/m.

Since tj = 1 for all jobs, we know that the average load L fulfills

L ≥ 1
m

(m(m− 1) + 1) = m− 1 + 1/m.

But L is a lower bound on the optimal value of the instance, even in the pre-
emptive setting, contradicting ALG < m− 1 + 1/m. ut
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4 Conclusion

We presented algorithms and lower bounds for the problem of scheduling with
testing on multiple identical parallel machines with the objective of minimizing
the makespan. Such settings arise whenever a preliminary action influences cost,
duration or difficulty of a task. Our main results were a 3.1016-competitive
algorithm for the non-preemptive case and a tight 2-competitive algorithm for
the preemptive case if the number of machines becomes large.

Apart from closing the gaps between our ratios and the lower bounds, we
propose the following consideration for future work: A natural generalization of
our setting is to consider fully-online arrivals, where jobs arrive one by one and
have to be scheduled immediately. It is clear that this setting is at least as hard
as the problem considered in this paper. In the full version [4], we provide a
simple lower bound with value 2 for this generalization that holds for all values
of m ≥ 2. An upper bound is clearly given by the Greedy algorithm we provided
in Section 2. Finding further algorithms or lower bounds for this new setting is
a compelling direction for future research.
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