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Abstract— Posture estimation using a single depth camera has
become a useful tool for analyzing movements in rehabilitation.
Recent advances in posture estimation in computer vision
research have been possible due to the availability of large-
scale pose datasets. However, the complex postures involved
in rehabilitation exercises are not represented in the existing
benchmark depth datasets. To address this limitation, we pro-
pose two rehabilitation-specific pose datasets containing depth
images and 2D pose information of patients, both adult and
children, performing rehab exercises. We use a state-of-the-art
marker-less posture estimation model which is trained on a non-
rehab benchmark dataset. We evaluate it on our rehab datasets,
and observe that the performance degrades significantly from
non-rehab to rehab, highlighting the need for these datasets.
We show that our dataset can be used to train pose models
to detect rehab-specific complex postures. The datasets will be
released for the benefit of the research community.

I. INTRODUCTION

Posture estimation is an important tool for gait analysis.
Among the vision-based approaches for posture estimation,
marker-less methods are gaining momentum, as they are
user-friendly and non-invasive in nature. Though the marker-
based methods [1], [2] are more accurate, the space require-
ment, installation overhead, complex operation process, and
cost make their widespread use in rehab clinics difficult.

The introduction of Microsoft’s Kinect and its marker-
less skeleton tracking algorithm [3] paved the way for an
inexpensive alternative for the clinics. Multiple studies have
been conducted employing Kinect for movement analysis [4],
[5]. However, studies such as [6], [7] find that Kinect V2
system is reliable for assessing simple movements, but fails
for complex postures such as double leg squat, hip abduction,
lunge, or for movements with small amplitudes.

With the recent advances in deep-learning based marker-
less posture estimation methods complex postures such as
cycling, bending, etc. can now be detected. This has been
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particularly possible because of the availability of large-scale
human posture datasets such as COCO [8] and Human3.6M
[9]. As deep-learning based approaches are data-driven, their
performance depends on the training data. However, the
benchmark datasets are generic and mostly contain images of
adults. Rehabilitation scenarios involving patients of varied
ages are underrepresented there. Also, the color images raise
privacy concerns in the medical domain. Researchers in
rehabilitation have developed their own pose datasets in past
[10], [11], which are limited to specific movements and poses
such as ‘Picking up a cup’ motion [10] and lying poses of
infants and adults [11]. Due to the lack of large-scale rehab-
specific pose datasets, only a limited number of work has
adapted the state-of-the-art pose models in rehab [10], [12].

In this paper, we propose two newly created rehab depth
datasets labeled with 2D poses.Our datasets have varied
samples of adults and children, different genders, and also
instances of limited range of motion for some joints. We
evaluate a state-of-the-art posture estimation algorithm on
our datasets. We show that the performance of model trained
on generic pose dataset does not translate to rehabilitation-
specific scenarios, justifying the need for these datasets.

II. DATASETS

As privacy is an obligation in children’s rehabilitation, we
collected only depth images. We created two depth datasets,
namely Vogtareuth Rehab (VtR) and Vogtareuth Rehab –
Optitrack (VtR-O), containing images of children and adults
performing rehabilitation exercises. The two datasets differ
in the complexity of the poses and the type of motion-capture
systems used for annotation.

A. Data collection setup

A data collection setup was built in Schön Klinik,
Vogtareuth with six infrared Optitrack cameras [2] and a
Kinect V2 camera. A program called MoveLab from reFit
Systems [13] was used to record and synchronize the data
from both Kinect and Optitrack. The depth data from Kinect
V2 was clamped at 4 meters and was compressed using a
lossless compression algorithm [14].

B. Vogtareuth Rehab (VtR) Dataset

For this dataset, we collected data of 9 healthy users in-
cluding 7 children and 2 adults, of male and female genders,
while they played reFit Gamo games [15] for rehabilitation.
The actions involved in the games are sideways movement
of the trunk in the sagittal plane, arm abduction, arm flexion,
knee raise, bending, and some free movements. Every 15th
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Fig. 1. Sample depth images from VtR dataset, showing following actions:
raising knee, arm abduction, arm flexion and squat.

Fig. 2. Sample depth images from VtR-O dataset, showing following
actions: touching toe, crisscrossing arms, raising both arms upwards, and
turning 360◦.

frame was processed and 2D poses derived by Kinect’s skele-
ton detection algorithm were extracted. Altogether 24,742
depth images and 15 joint locations were extracted from the
raw data, out of which 3712 images were reserved for the
test set. We discarded the frames where the number of noisy
joints, i.e. joints estimated outside the body, exceeded two.

C. Vogtareuth Rehab – Optitrack (VtR-O) Dataset

In addition to VtR, a smaller dataset of complex postures
was created. A series of actions such as raising both arms up-
wards, crisscrossing arms while stretched out in front, turning
360◦, and bending down to touch the toes were specifically
selected, where we observed Kinect to fail in detecting the
correct pose. We used Optitrack [2], a marker-based motion
capture system for recording precise joint locations for the
postures. We record 2 children with restricted motions in one
arm and one leg respectively, as they were instructed by a
physiotherapist to perform the actions.

We placed 27 markers on the upper body following the
conventional upper body markerset of Optitrack [2]. Six
additional markers were placed on the lower body - on the
knees, ankles, and foot tips. This hybrid markerset was cho-
sen as Optitrack’s full body markerset has 39 markers which
are difficult for the children to wear. Optitrack recorded
the precise 3D locations of 13 upper body joints and the
6 additional markers for the lower body. Out of the 19
Optitrack joints, 15 joints as in VtR were extracted. The leg
markers were labeled manually with the joint names. Fig.
2 shows sample images from this dataset. As can be seen
in the figure, Optitrack’s infrared markers create holes in the
depth image. Also, noisy protrusions are detected around the
markers. This is caused by the interference between Kinect
V2 and Optitrack.

We synchronized the data from the two sources using the
timestamp. Unlike VtR, we processed every frame for which
skeletons from both devices were available. The marker holes
were removed from the depth images using a median filter.
We did not discard frames with Kinect’s noisy skeleton as our
objective is also to compare Kinect’s performance with that
of Optitrack. Optitrack’s 3D skeleton was first transformed

to Kinect’s coordinate frame by subtracting Kinect’s position
and then transformed to Kinect’s 2D depth space using
Kinect’s coordinate mapping algorithm. Altogether 2145
depth images and 2D joint locations from both Kinect and
Optitrack were recorded.

III. EXPERIMENTS

In this section, we evaluate an off-the-shelf model, trained
using a generic pose dataset, on the rehabilitation dataset
VtR. The objective is to analyze the performance shift, if
any, from non-rehab to rehab. Additionally, we also highlight
the shortcomings of Kinect-annotated data. We do so by
training a model with the VtR dataset and evaluating it
against Optitrack’s ground truth in the VtR-O dataset.

A. Pose Estimation Model

There exist multiple deep learning-based 2D pose estima-
tion methods that perform well on benchmark pose datasets.
We choose a ResNet-based method [16], hereafter referred
to as Pose-ResNet. It has a relatively simple architecture in
contrast to the other complex multi-stage designs [17], [18]
and yet has comparable performance. For our experiment,
we use the Pose-ResNet-50. Pose-ResNet originally takes a
3 channel RGB image as input. As depth images contain
only one channel, we convert it to a 3 channel input by
copying it to the rest of the channels. Moreover, we use
128 filters in the deconvolutional layers instead of 256. The
network produces a 2D heatmap for every joint as output.
The heatmap indicates the location of the corresponding joint
in the input scene. The joint location is extracted from the
heatmap by selecting the pixel with maximum value.

B. Training Details

State-of-the-art pose models, including Pose-ResNet, are
mostly trained on color images. Hence, we need to retrain the
model on depth images. For the generic dataset, we choose a
benchmark pose depth dataset, named ITOP [19]. It contains
poses of 20 adults performing 15 action sequences, which are
not specific to rehabilitation. The images are annotated with
15 body joints extracted using [3], similar to VtR. We use
only clean and human-approved images from the side view
set of ITOP [19]. Additionally, we also train Pose-ResNet on
our VtR dataset to compare its performance with Optitrack’s
data. The models trained on ITOP and VtR are named as
Pose-ResNet-ITOP and Pose-ResNet-VtR respectively. The
ITOP dataset is split into training, validation and test sets of
13623, 3406 and 4606 images, and VtR into 17244, 3786
and 3712 images respectively.

The training procedure for both models is the same.
Data augmentation techniques such as random cropping and
flipping are applied. The depth values in the image are
normalized to [0,1], using min-max normalization, where the
minimum and maximum depths are set to 0 and 4 meters
respectively. Finally, the image is resized to 224×224. Target
heatmaps of 64× 64 size are generated for each joint by
applying a 2D Gaussian centered on the joint’s ground truth
location. We use the Adam optimizer, a learning rate of



TABLE I
PCK AND PCKH OF POSE-RESNET-ITOP ON ITOP AND VTR.

Dataset PCK PCKh
ITOP 89.21 89.12
VtR/All 41.08 22.31
VtR/Adult 48.73 28.96
VtR/Child 38.27 19.87

Fig. 3. Visualization of torso variability. Torso pixel position in (a) ITOP
(b) VtR dataset. Each point represents an image. (c) Mean and standard
deviation of torso depth for both datasets.

2.5×10−4, a dropout rate of 0.5, and mean squared error
loss between the predicted and target heatmaps. Both Pose-
ResNet-ITOP and Pose-ResNet-VtR are finetuned for 10
epochs on the training set of the respective datasets.

C. Evaluation Metrics

The model is evaluated using the Percentage of Correct
Keypoints (PCK) metric [17], [18] with a variable threshold.
PCK is the percentage of correctly detected joints. A detected
joint is considered correct if the normalized distance between
the predicted and the true joint is within a threshold value.
The distance is normalized by the torso size. Additionally,
we use PCKh metric [18], where the distance is normalized
by head size. Both metrics use adaptive thresholding based
on the subject’s torso or head size and hence can deal with
the variation in size and scale of people.

D. Evaluation on ITOP and VtR datasets

Table I reports the PCK and PCKh scores of Pose-ResNet-
ITOP at 0.5 threshold on the test sets of ITOP and VtR.
The model performs well on the ITOP test set in both
metrics. However, there is a significant drop in performance,
when evaluated on the VtR dataset, from 89.21% to 41.08%
in PCK and worse for PCKh. To investigate further, we
evaluate the performance on adults and children separately,
and observe that the model performs worse for children. The
training dataset of ITOP does not contain any samples of
children, which explains this behavior.

Additionally, we observe that the subjects in ITOP are
standing mostly in the image center, and the movements are
also restricted to a small region in the depth or Z axis. On
the contrary, the VtR dataset has higher variability in terms
of the subjects’ position in X, Y and Z axis. This can be
seen from the torso positions and the corresponding depth
values reported in Fig. 3 for both datasets. Due to the higher
variance in size, scale and position of the subjects, VtR is
more challenging, and hence the performance is affected.

Fig. 4. Sample results of Pose-ResNet-ITOP from ITOP dataset.

Fig. 5. Sample results of Pose-ResNet-VtR from VtR dataset, showing
both adult and children.

The PCKh score of Pose-ResNet-ITOP on VtR dataset is
much lower than the corresponding PCK (refer Table I). As
head size is smaller than torso size, the effective threshold in
PCKh is smaller compared to PCK, resulting in lower PCKh
scores in general. However, the drop in score is negligible
for ITOP. We observe that in the ITOP dataset the position
of the neck is midway between the head and torso joints, as
can be seen in Fig. 4. This leads to the mean head and torso
sizes becoming very similar, with a difference of only 0.13
pixels. On the other hand, in VtR, this difference is 12.97
pixels. As seen in Fig. 5, our annotation in the VtR dataset
agrees more with the anatomical structure of the human body
and so is more relevant for possible rehabilitation analysis.

When Pose-ResNet is trained on the generic pose dataset,
it cannot perform well on VtR, which contains complex and
varied postures specific to rehabilitation. Pose-ResNet-VtR
which is trained on the VtR dataset achieves 93.90% and
86.03% in PCK and PCKh metric respectively on the VtR
test set. This implies that deep-learning models trained using
our rehabilitation-specific dataset can be effectively utilized
in rehabilitation scenarios.

E. Evaluation on VtR-O dataset

We evaluate the Pose-ResNet-VtR model also on the VtR-
O dataset. As explained in section II-C, VtR-O contains
complex postures, where we have seen Kinect’s algorithm
to fail specifically. In this study, we aim to analyze the
performance of models trained on Kinect’s skeletal data
with respect to Optitrack’s precise annotation. For this, we
consider Pose-ResNet-VtR and also Kinect’s algorithm itself.

Fig. 6 shows some sample results from VtR-O dataset. The
mean and joint-level PCK scores of both models are shown
in Fig. 7 for a range of threshold values from 0.0 to 1.0.
With increasing threshold, the margin of error is higher and
so is the PCK score. Complex poses in the VtR-O dataset
such as raising arms and standing sideways, together with
the subjects’ size make the pose detection task challenging.
This is reflected by the large degradation of the mean score



Fig. 6. Sample results of Pose-ResNet-VtR and Kinect’s algorithm from
VtR-O dataset

Fig. 7. PCK score on VtR-O: Mean and joint level PCK of Model and
Kinect against Optitrack ground truth.

of Pose-ResNet-VtR on VtR-O: the performance drops from
93.90% in VtR test-set to 49.60% for 0.5 threshold. The
mean score of Kinect’s model is 51.64% for these complex
poses.

At joint-level, Kinect’s algorithm performs poorly for the
upper-limb joints (see PCK curves for hands, elbows and
shoulders in Fig. 7), as they are too close to the body in
VtR-O dataset. Also, both models confuse the head with the
hand, when the hand is too close to the head. This is shown
in the right-most image in Fig. 6.

As Optitrack’s ground truth skeleton is more precise, we
plan to extend the VtR-O dataset in the future, so that pose
estimation models for rehabilitation can be trained using this
dataset. With more accurate ground truth for complex poses,
the performance of the models will increase further.

IV. CONCLUSIONS

We present two depth datasets, namely Vogtareuth Re-
hab (VtR) and Vogtareuth Rehab – Optitrack (VtR-O) for
2D poses. The datasets contain complex poses specific to
rehabilitation exercises and are diverse in terms of age,
size, gender, position and also range of motions of the
subjects. We evaluate a state-of-the-art deep-learning based
pose estimation method which is trained on a generic pose
depth dataset on our datasets. We show that the performance
degrades because of the domain shift from non-rehab to
rehab, showing the need for a rehab-specific dataset. In the
future, we want to extend the VtR-O dataset with more
complex poses, for example involving wheelchairs, so that
Optitrack’s accurate skeletal data can be used to train and
improve deep-learning based marker-less methods.
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