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Abstract

Mathematical methods and applications aimed at understanding the effects
of inhomogeneous backgrounds in the context of quantum field theory are
presented. The first part introduces the reader to the necessary mathematical
tools given a graduate-level knowledge of theoretical physics. The second
describes applications to the electroweak vacuum decay of the Standard Model
of particle physics. The work ends with the demonstration of how similar
mathematical methods can be employed to include instanton effects and track
down CP-violating phases in the context of QCD.

Kurzfassung

Es werden mathematische Methoden und Anwendungen vorgestellt, die da-
rauf abzielen, die Auswirkungen inhomogener Hintergrinde im Kontext der
Quantenfeldtheorie zu verstehen. Der erste Teil fiihrt den Leser in die
notwendigen mathematischen Werkzeuge ein, wobei ein Absolventenniveau
der theoretischen Physik vorausgesetzt wird. Die zweite beschreibt Anwen-
dungen auf den elektroschwachen Vakuumzerfall des Standardmodells der
Teilchenphysik. Die Arbeit endet mit der Demonstration, wie dhnliche
mathematische Methoden verwendet werden kénnen, um Instanton-Effekte
einzubeziehen und CP-verletzende Phasen im Kontext von QCD aufzuspiiren.
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Preface

Allow me a few words about the purpose and making of this document. Put shortly, it
is the love for challenges, comparable to the thrill provided by a roller-coaster. A roller-
coaster of feelings of successes and failures, which serves to describe what doing research
in physics seems to be. I have written it first to me, then for the physics community, with
the hope of contributing to something bigger than what a single man can be. To me, this
document will be forever a weird superposition of a beginning, of a deeper adventure, and
the end of a journey. Hence, I must observe.

And with the fear of words being friendlier than formulas here it goes...

Juan S. Cruz
December 17, 2021
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Introduction

One of the most striking things among the features of quantum mechanics is the nature of
the vacuum. The idea of nothingness has accompanied humankind since the very far back
in time and has evolved along with us through time. However, with the establishment
of quantum mechanics in the early 20" century, the classical notions of vacuum as just
“emptiness” were not able to stand any longer.

According to quantum mechanics, one of the simplest systems we can think of, the har-
monic oscillator, already presents a lowest-energy state which we call vacuum, to which it
corresponds a non-zero energy. Moreover, the idea that all other states of the system are
excitations of the vacuum acquires much importance since it promotes the vacuum from a
sterile and spectating entity to one of the main characters in the history of the universe.
This thesis pretends to expose and hopefully deepen the understanding of some charac-
teristics of the quantum field theoretical vacuum from the point of view of current physics
and mathematics. Although the latter is the language used to describe the ideas that
follow, it is the physical intuition and the careful experimental observation, the elements
that guide our studies. That is the attitude we want to maintain among the different
views within science itself.

This document is by no means a mathematics thesis, so we will not claim to derive the
most general results starting with rigorous axioms; on the contrary, we study specific cases
where we find interesting features and try to understand, with all the formality available
to us, what their implications are to the current mainstream models.

The thesis is divided into three parts. They attempt to be as self-consistent as possible
but, they do assume the background knowledge of a graduate-level physics student. The
necessary tools are presented so that the reader attains a full grasp of the techniques
that the author has learned in the last four years while doing research at the Technical
University of Munich.

Part || of this document has the purpose of introducing the reader to the set of techniques
we use in our computations. To do that, we start reviewing the path integral formulation
while showing an explicit example of its usage and at the same time using many of the ideas
that will be central in later chapters. Therein, a brief presentation of the construction
of the effective action in the context of statistical mechanics is given. We also go over
the concept of renormalization, which will also be needed in later stages of the document
and is essential to extract physical quantities from quantum field theory computations.
Finally, Part [l ends with the application of the presented tools to quantum tunneling,
which will be a central topic in part

The second part of this work deals with the stability of the electroweak vacuum. A
question that arises naturally once a field configuration acquires a non-zero expectation
value is; whether the vacuum can somehow decay into a configuration with even lower
energy within the current Standard Model (SM) of particle physics. It has been known
since the late 70s that there are non-perturbative euclidean solutions that may contribute
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to vacuum decay [I]. At that time, this feature might have looked like a curiosity since
the Standard Model of particle physics did not contain the Higgs boson; it was just a
theoretical suggestion.

Things changed after 2012 when the discovery of the Higgs boson at LHC [2, 3] established
the existence of a scalar particle, which we know today has the expected properties of the
sought Higgs boson with a mass of m;, = 125.18+0.16 GeV [4]. This observation together
with the improvements in the determination of the mass of the top quark, m; = 173.0+:0.4
GeV [], puts the SM in a metastable phase [5]. Therefore, it is of much relevance to
understand and compute not only the tree-level decay rate of the vacuum but possible
corrections from higher-order effects as well, such as those coming from traditional one-
loop diagrams or the gradients of an inhomogeneous background. We summarize previous
studies and elaborate on the published work produced by our group[6] concerning this
topic. In addition, we include some newly developed techniques that allow us to estimate
gradient contributions utilizing a gradient expansion and which will be later published.
The last part, Part[[II} of this work is concerned with the computation of correlation func-
tions over an instanton background[7]. These considerations have, in turn, led us to inter-
esting implications to the strong CP problem. First, we review the pertaining interactions
in the SM and then describe the low-energy quantum chromodynamics (QCD) effective
models that are important for our discussion of instantons as well as their relation with the
chiral anomaly[8, 9] and to the mesons 7 and 7’ known from the “U(1)-problem” [10]. We
then describe how to derive Minkowskian or real-time versions of the fields and correlation
functions needed, usually found in the literature written in Euclidean space. We compute
correlation functions for fermions in QCD using a spectral decomposition which will allow
us to study complex phases and draw conclusions on the relative phases contributing to
CP-violation effects. We conclude by deriving consistent results from the point of view of
the cluster decomposition principle, which supports our conclusions previously obtained
using instantons.
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Mathematical Background






1

The path integral and the effective
action

Quantum mechanics can be formulated in several ways. A traditional starting point is
the treatment of the harmonic oscillator via canonical quantization, which is the algebraic
approach of using creation and annihilation operators which diagonalize the Hamiltonian
and capture the non-commutativity of observables such as position and momentum. Al-
though this procedure lets itself generalize to multi-particle systems, in what is historically
referred to as second quantization and the Fock space construction, it is not always suit-
able, in the context of field theory, for the computation of non-perturbative effects, which
are often not captured by usual Feynman diagram techniques. For this reason, we employ
the path integral formulation. Historically the idea of summing over paths was used for
the study of Brownian motion and was much later shown by Feynman[11] to be completely
equivalent to the canonical formulation of quantum mechanics. Here we review such for-
mulation and expand by illustrating more modern techniques suited to the computation
of effective actions over non-standard backgrounds. We follow the expositions of [12HIF].

1.1 The Path Integral Formulation

Let us begin the discussion by obtaining the known quantum mechanics oscillator prop-
agator by using the path integral. Then, we will show a generic construction that will
highlight why the propagator is an essential building block giving out the transition am-
plitude connecting two states. Allow us to label such states generically by their degrees of
freedom and an external time parameter, [qo, %) and |gyf,f), via the evolution operator
of the system, U(t,t'):

K(qg,tf,q0,t0) = (a7, 7| Ults,to) [0, to) - (1.1.1)

Let us then consider a one dimensional quantum mechanical system with describing some
particle of mass m, whose dynamics are governed by the following Hamiltonian:
.p?
H=_—+V(2). 1.1.2
2 v v (112)

In this simple case U(t - to) is related to the Hamiltonian of the system by

Ut t') = exp (—i(t ;t/)ﬁ) (1.1.3)
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Recall that the propagator is the integral kernel that allows us to obtain the wavefunction
of the system at time ¢, ¥(¢), given as input the wavefunction of the system at an earlier

time t[), 1/)(150)2

Blyst) = (ylo()) = ] Tt to) [(to)) = / do K (y, t,, to) (. o), (1.1.4)

where we have inserted a completeness relation and the definition in Eq. (1.1.1)) to write
down the last line. Now we will use the composition law for the evolution operator to
rewrite the propagator as a sum over paths. We remind ourselves of said composition law,

Uty to) = Uty YUt 1), (1.1.5)

which evolves the system from time ¢y to time ¢ in two steps, first evolving the system to
some intermediate time t' > to and then evolving it to tf > /. A repeated application of
such law allows us to break down any time interval into arbitrarily many time steps At.
Let us split the time interval [tg,tf] into N € Z equal sub-intervals, so that we can write
the transition amplitude between two wavefunctions as

(xp,tp|U(t s, t0)|zo, to) = (g, tp|U(t s, tn—1)U(ts, tn—2) - Ultr, to)|zo, to).  (1.1.6)

Let us insert a completeness relation [ |z) (x| da between the application of each evolution
operator and notice that for Hamiltonian operators without an explicit time dependence,
the evolution operator, 4(¢,t'), depends only on the time difference ¢t — ', so that we can
write

<xf,tf|U(tf,to)|xo,to>

N-2
- / dey_y day_g - day(ag, tgU(A)en—1) [] <xi+1|ﬁ(At)|xi> (21]U (A1) 2o, to)
=1
N—-2 A
/Dx 2t U(AD|zn—1) [ <x,+1yU At |x,> (21| U (A)|zo, to), (1.1.7)
=1

where we have abbreviated the measure by Dz = dxi---dexy_1. Now we can use the
relation between the coordinate basis, |z), and the momentum basis |p), to make contact
with the classical action, i.e. (z|p) = ¢*/". By inserting closure relations for momentum
space to the left of every evolution operator

(xp,t|U(tr, t0) |0, to) = /ﬁfﬁpp@fatf|pN><pN|ff(At)|$N—1>
N—-2
LT @iralpisa) (pia U (AL [2) (1 ]p1) (91| U (AL) o, to),
=1

(1.1.8)
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where Dp = dp; --- dpn/(27h)V. Let us estimate the expected values containing the
evolution operator

N 1 N
<p¢+1|U(At)|IL‘i> ~ <pi+1 1-— ﬁAtH :L'2> (1.1.9)
~ (pia |1 — LAt ﬁﬂ/(A) : (1.1.10)
~ pl+1 h 2m xr fljz A
. 2
~ (s | Ly (Pt .
~ (pit1]T;) exp < hAt < o) + V(m2)>> (1.1.11)
i
= (pit1|x;) exp <—hAtH(Pi+1,fEi)> , (1.1.12)

note that the expression above does not contain operators anymore. We can write the
factors (z;|p;) as exponentials to obtain

A~ ~ ‘A — — — — _ -
(xf,tf]U(tf,to)|$o,t0> :/DxDpeXp{lht [pN(wath 1) +pN 1($NA1t TN 2)+
Tog — X
ot 1?1(2At0) — H(pn,an—1) — H(pn—1,on—2) — -+ — H(phl’o)} } :

(1.1.13)

Let us perform the momentum integrals to simplify the exponent. They are all of the
following form and can be computed by completing the binomial in the exponent into a
perfect square

dp; 1 (m — 1) p? B m i oom (@i— i\
/ onh eXp{hAt( A om ) § =\ 2mmn P | 7802 T A '

(1.1.14)

With this last expression we can take the limit of N — oo, which is the same as taking
At — 0 and thus
Ti — Tj—1
At

while making the sum over sub-intervals an integral,

. N 2
~ . 1 m [ T; — Tj—1
(g, t|U(tg,to)|zo, to) = ]\}LH;O/Dﬁ exp {h ;1 At (2 (At) - V(%’—l)) }

_ /D:c o {; /t:f " (%j;Q(t) _ V(x(t)))} : (1.1.16)

N
. m m
Do = I A\ ornar 131 iy o rnar (1.1.17)

We can see that the exponential contains nothing else but the Lagrangian of the system
which after integration gives us its action and the path integral

~ i, (1.1.15)

where

(@710t o), to) = [ Do oS0 (1.1.18)

which summarizes the idea of summing paths weighted by their action contribution,
Fig. illustrates what we have done by discretization through a fixed time interval

and what formulas Eq. (1.1.7) and briefly in Eq. (1.1.18]).
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€T; Xy

Figure 1.1: Depiction of several discrete paths (dashed) and a lim-
iting path (solid line) joining the initial and final points considered
in the path integral formulation.

1.1.1 The free particle revisited

As an example of the spoken formulation, let us consider a non-relativistic free particle
of mass m, for which we only need to employ Eq. (1.1.18)) with V' = 0, and compute the
propagator,

z(tf):;rf

(@, te|U(AD) |2y, t:) =/ Dy en ) (547, (1.1.19)

x(t;)=w;

The path can be split into sub-intervals as described previously and together with Eq. (1.1.14])
one can arrive to the equation

. _ xi 2
bl (Al t) = th(z_m oxp {(tf — )5 <é;_tz)> } +O((ty —t:)*)
A 2min(ty =ty Y {%(tf_t)} +O((ty —t)%).  (1.1.20)

This result can be further interpreted in relation to the action evaluated on a classical
solution. That is, a free particle moves with constant speed and if we require the boundary
conditions above, we have the following classical path,

rat) = e ((F— 1)y — (6~ 1)), (1.1.21)
f 7

Evaluating the action over such path, we have

m [ . m [l 1
Stea = [ atGaae)? = [ dt oy -

m (zy — x;)?

m [t 1
—_ dti i - 2 = 1.1.22
), G ™ T -
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Observe as well that

2
oSeal _ 1 (1.1.23)
0z 1 0x; ty —t;
which hints at the formula
i 82S[xcl] i
te|U(A) |zs, ) = 4 | — =l —S[za]) . 1.1.24
(AU ) = | [ g5 e ( 5 STl (11.24)

1.1.2 The harmonic oscillator revisited

For the harmonic oscillator of mass m and natural frequency w, we take Eq. with
V(%) = mw?3? and attempt to compute the propagator as in Eq. (1.1.18). We follow
closely the arguments exposed in Section 2.7 from [I5]. We will already employ here some
of the common methods used for the calculation of fluctuations in field theory. In order to
deal with the oscillatory behavior displayed by the exponential of the action, we perform
a Wick rotation, i.e. ¢t — —ir. Doing this leads us to

x(Tf)=xy
@Vl = [ Dlae-Seli, (1.1.25)
x(Ti)=;

with

Sglz] = /Tf dT% (md?(r) +mw®2?(7)) . (1.1.26)

The next step is to expand the path integration around a classical solution, x.(7), which
satisfies the classical equation of motion,

mi. — mw?z. = 0, (1.1.27)

where the dot means derivative with respect to 7. We then integrate over a new set of
paths,

(1) = xe(7) 4+ 7(7), (1.1.28)

which corresponds to a translation at every point in Euclidean time. These means that
the following boundary conditions are to be met

xe(T1i) = x4, xe(Tf) = X, and r(m) =r(1r) =0, (1.1.29)
while the path integral measure changes from D[x] = D[r], since translations in functional
space have a Jacobian of 1. The action is in turn expanded as

s
Splz] = Sglx.] + / drm (#(7)de(T) + w2r(7'):vc(7')) + Sg[r]. (1.1.30)

We observe that by means of integration by parts we can identify the second term of
the right hand side as nothing else than the equations of motion evaluated at x., which
vanishes according to Eq. (1.1.27). We have reduced the propagator, Eq. (1.1.25]), to

(xf|U (17, 7)|2s) = N(w,m,7) e~ SEle/M, (1.1.31)
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with

r(75)=0

N(w,m,Ar) = /(

r(7;)=0

DIr] exp{—;;/: dr (P (1) + wr?(r ))}. (1.1.32)

Which is expected already from the Eq. , we learn that the exponential factor will
contain the classical action while the normalization will depend on the fluctuations around
it. At this point we can solve the equation of motion, Eq. , subject to the given
boundary conditions in order to obtain a closed form for the classical action Sg[x.]. It is
immediate to verify that

|
sinh(w(rf — 7))

x(T) = xjsinh(w(ry — 7)) + ¢ sinh(w(7 — 7))] (1.1.33)

solves such equation and satisfies the boundary conditions. Let us now evaluate the action
on this solution:

Elre] = m/ dr (& ) +wiad(r ) = m [:pca'cc

Ti

Tf

+ / f drae (—io(r) + wPae(r))
[556(77)530(77) — Ze(73)Ee(Ti)]
T2 sinh(wAT)

T2
[(2% + 27) cosh(wAT) — 2z fa] . (1.1.34)

At this point the the integral over fluctuations r is missing, however it does not depend
on the boundary conditions anymore and will produce a normalization factor, which we
can compute as follows. Let us introduce the partition function

Z(8) = tr (efﬁH) , (1.1.35)

where [ is conventionally related with temperature in statistical systems, here it serves
for book-keeping of the boundary conditions, ¢ = x(h8/2) and x; = z(—hfS/2). We
can relate the partition function with the normalization by choosing periodic boundary
conditions zy = x; = xp, in which case we can take the trace of Eq. ,

2(6) = | oy (@lU(3/2.~6/2)ws) (1.1:36)
= N(m,w, ) / day, e Selze(l/h (1.1.37)
— N(m,w, 5)/ day exp (—m(cosh(whﬁ) - 1)) (1.1.38)
- N(m,w,ﬁ)/ dxy exp <—Tr;;)x§ tanh <°"Zﬁ>) (1.1.39)
- N(m’w’ﬂ)\/mwtanZ?BhWQ)’ (1.1.40)

where we have used the result of Eq. (1.1.34) before computing the last Gaussian integral.
At this point we have that

N(m,w, ) =

\/mw tanh(fhw/2) (1.1.41)
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Let us now compute Z(f) using spectral techniques which will be often used in later
chapters. We consider first a discrete version of the problem (with 7 = 1 and m = 1),
where one has initially a finite number of sub-intervals:

2me

1 n/2 n—1
Z(B,€) = < > / dzo dzpd(xy, — xo)/H day, e =B @) (1.1.42)
k=1
with a discrete version of the action

n _ 2
Sp(z,e) = Z [(mk;ek_l) + ;erxi} . (1.1.43)
k=1

Let us decompose zj into discrete mode expansion

1 = 2imkl/n
= — E 1.1.44
xk \/ﬁ Z_O € C[, ( )

with the convention that £ is a periodic integer modulo n, i.e. —¢ ~ n—/{, demanding that
x is real, so that we have the condition ¢, = ¢_y, and remembering the relation

n—1

J>j£: e?mikt/n — 5o 4, (1.1.45)

n
k=0

the action takes the form
“on o7l 1
Sp(z,e) = EE_O o [6 (1 — CoS <n>> + 2w2e] . (1.1.46)

We can recognize this as a change of variables, through transformation which is unitary
and with a Jacobian which is just a phase. Coming back to the partition function, we will
need the known result for Gaussian integrals (see Appendix

n 1=, _ 1 A=
/(IIQM%)“PPA@J%+bZ+Z*ﬂ:dmAJM12 (140

. 21
1=1

where A is a quadratic form on zZ and z. For our case we have b = 0 and that the
integration has n/2 independent directions because of the reality condition means we get
a square root over the determinant,

ZWﬁ):<2L>é/&?/<iidqd@)iimm(@[1(1am(%f)>+QW%]q)
() (MO () 5)

N2 (1, ore\\ 2
== 14 - — — . 1.14
<2> g + Swe cos< - ) ( 9)
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We can parameterize 1 + w?e?/2 = cosh @ = cos(if) and prove the following trigonometric
identity:

ot ot w0 w0
H cos(if) — cos(2nwl/n) = H 2sin < + > sin <n - 2> (1.1.50)

k=0
n 1 . [ind -1 . [inf
=2 <2n1 Sin <2>> <2n1 Sin <2>) (1151)

21— cos(ind)
_ 1.1.52
on—1 2 ( )

= F(cosh(nﬁ) - 1), (1.1.53)

where we have used the following multiple angle product formula for the Sine to obtain
the second line of the above computation:

1 . o km
Sl sin(nx) = H sin | x 4+ - (1.1.54)
Applying the result from Eq. (1.1.53)) to the last expression in Eq. (1.1.49)),

Z(8,€) = <;>n/2 <22n(cosh(n9) _ 1)> o (1.1.55)

In order to finally obtain the partition function we must take ¢ — 0 and n — oo simultane-
ously, meaning that ne = 8 remains fixed. For small € we have from our parametrization,
0 ~ we and nf — Bw hence

—Bw/2
2(8) = lim Z(B,e) = ! ! ¢

K ~ /2(cosh(Bw) — 1) 28mh< > = (1156)

We can make an analogous computation without discretization to illustrate the appearance
of an infinite factor coming from the measure and to confirm the above equation. Let us
consider again an expansion in modes for the paths z(7), notice the sum will still be
discrete given the boundary conditions,

z(7) =7 Zc eArt.r/B (1.1.57)

>0
Again the Jacobian amounts to an overall phase and the measure is then
Dla] = dao [ [ de, day, (1.1.58)
£>0

where the reality condition is the same as before, c_y = ¢y. The action for the Euclidean
operator (after one integration by parts) is —d?/dr? + w? and in these new coordinates
becomes

2[2 1
Selee, ¢ = Z <w + 452> co + w2c(2), (1.1.59)
>1
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after having integrated over 7 and used the orthogonality of the modes. The partition

function is then
4202 -1
(w2 L art ) , (1.1.60)

Z(B) = / dag [ ] dex dege55/" = N’% 11 P

k>0 >0

where there are an infinite number of factors being absorbed in A. In order to extract
physical information from determinants of operators, called functional determinants, it is
necessary to compare against a reference case, usually the free case, however in this case
it is easier to use theories with different w parameters. A formal mathematical definition
for these determinants and the equivalence to what we have described above can be found
in[16], but the intuitive picture of a product of eigenvalues will suffice. Let us then consider
the logarithmic derivative to check that we indeed make contact with Eq. ;

o) o) 1= 0 o Am2(?
8—wan(6) —lnw—gln(w + ,6’2)

2w B
_ 1.1 _ , (1.1.61)
w2t 747;;2@ 2 tanh(Sw/2)

where the last equality can be proven using the following factorization of sin(rz) coming
from the Weierstrass factorization theorem,

sin(rz) = mi[l (1 - (;)2> : (1.1.62)

and then taking a logarithmic derivative. The result in Eq. agrees with the previ-
ous discrete calculation, from which we can finish the computation of the normalization for
the propagator. Using the result for the partition function, Eq. , and plugging it in
Eq. we can fully write down the propagator for the Euclidean harmonic oscillator.
Restoring factors of i the propagator is

UG, i) = o ( e

2 2
) cosh(wAT) — 2z52;] ) .
2hsinh(wAT) ¥ \ 2hsinh(wAr) (2% + 22) cosh(wAT) g;f;g]>

(1.1.63)

In order to obtain the real time propagator we need to Wick rotate back, 7 — it,

N — mw imw 9 2 _ '
(U tolei = [ o oan <2hsin(wAt) [y + ) cos(wrt) - 2y xl}) '
(1.1.64)

As a bonus, we remark that the knowledge of the propagator allowed us, in this case, to
compute the partition function, and with it extract the energy levels of the system without
any a priori knowledge about them or the use of the traditional algebraic techniques that
use creation and annihilation operators. Expression Eq. can be written down as
a series for large enough 8 and with A restored, as

€ —Bh/2 —Bhw n+1/2
208) = 1——pw Z e (1.1.65)
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meaning

1
E, = hw <n + 2) for neN. (1.1.66)

Of course, this is not the simplest method for the quantum harmonic oscillator, but it has
the advantage that it can be generalized to more complicated situations.

Comments on the harmonic oscillator example

The purpose of the last example is to demonstrate several techniques that will be used
later in our studies, in a case where all computations can be done analytically and closed
expressions are known for the quantities of interest such as the propagator or the partition
function.

Therefore, it is crucial to highlight the central role played by the path integral formulation
in connection with statistical ensembles. They together allow us to compute expectation
values for desired observables. Another powerful tool is Gaussian integration. At the
end of the day, in the context of quantum field theory, Gaussian integrals are the only
functional integral which we can perform exactly, especially when dealing with more spatial
dimensions. Therefore, handling them in all their possible forms is a must, for example,
the fermionic case, the diagonalization operators appearing in the exponents, etc.

We will often use the exposed expansion around a classical solution to the equations of mo-
tion, which is generally referred to as the semi-classical expansion, where the perturbation
parameter is to be understood to be A. As we will see later in Sec. this expansion co-
incides in the quantum field theoretic setting with an expansion in loops. We will concern
ourselves with ways to compute fluctuation effects, that is, effects that appear at one-loop
order in the traditional perturbative expansion in terms of the interaction couplings.

1.1.3 Connecting the dots towards Quantum Field Theory (QFT)

We now take the task of applying the previous techniques for a case closer to the main
topics of the present document. Let us show a possible use of the path integral methods
for the case of a real scalar field. For this purpose, we follow closely Fujikawa’s book
on path integrals[I4] and Zinn-Justin’s[I2] as well as [I3]. We introduce the generating
functional which will frequently appear in our computations and show how it can be used
to obtain the propagator for this model and give some comments about the ie prescription
often found in traditional approaches to QFT. Let us consider the action for a free real
scalar field in 4 dimensional Minkowski space in natural units c=h =1,

S[¢] = / dz £ = / dtz %6M¢8“¢ - %m2¢2 (1.1.67)

o1 i}
:/y dt/d3a: — S0 D)0+ m)o(t, D), (1.1.68)

where we have written the arguments for time and space explicitly in the second line and
added the .7 = (t;,ty) subscript to label the specific boundary conditions. If we were
interested in vacuum to vacuum transitions within a certain time window for example, we
would have to look at the set of fields

-@(tiatf) = {Qﬁ(t,f) : R4 — R } Cb(tl,f) = ¢asymp.(f) and ¢(tfaf) = ¢asymp.(f }7
(1.1.69)
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where the free configurations above are eigenvalues of the free field operator
] - &’y 1 iz, t —ipE
Pasymp.(T) = | o5 —Fm= (aﬁe +age ) : (1.1.70)

(2m)3 \/2E,

with E, = /m? 4+ p?. We can employ the canonical quantization prescription, to write
down a Hamiltonian and build the path integral from the evolution operator. For that
purpose we will need the conjugated momentum field obtained by

. S oL

Tasymp. (T) = ———

By [E
L I L
0(F) lasym. 2r)

where ° means derivative with respect to time, together with the canonical commutation
relations (CCR) at fixed time

A~

[6(Z), 7 ()] = 16° (& — ) (1.1.72)

The associated Hilbert space of states can be spanned by a set of eigen-field configurations:
(1.1.73)

which allow us to change from momentum to configuration space representation with the
formula

(M|®) = et/ PeT@e@) (1.1.74)

The Hamiltonian density is computed using the Legendre transform with the free operators

defined in Eqgs. (|1.1.70)),(1.1.71)), to arrive to

. 1 1o 1 55
H:/d%%:/d?’f §ﬁ2+§(v¢)2+§m2¢2. (1.1.75)

As in previous sections, we use the Hamiltonian to evolve states. As an example, we
consider the vacuum to vacuum transition amplitude, evolved in time steps of At:

(0, 44U (ty, )]0, &) —/chl(:v) DBy (z) <0\ e—i%ﬁ<tn>\¢n> <<I>n\ e—i%ﬁ<tn—1>\q>n_1> .
(1] 71 H A0}
(1.1.76)

We can compute each of these expectation values as follows

_jAt

ot AN 2
@il F10)a,) = [ D@ e (5 [ o)) oy

- /DHexp <1/ 437 TL(Z) (D41 (%) —@j(f))>
X exp <1Aht/ B (;112(5) + %(v«pjf + ;m%b?)) ,
(1.1.77)
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where we have used Eq. (1.1.74). We can now perform the Gauflian integral and get
—i2t [ (t;) . At 3
<¢)j+1‘ e h ’(I)J> = Nexp 1? d°x E[q)j,ﬁt@j] . (1178)
Next, using this result in Eq. (1.1.76) we arrive to the conventional expression of the

amplitude as a path integral over a phase given by the action,

0.0700.8) = OutsU G )l0.0) = [ Do i (1.1.79)
D(tisty)

and for the case of S-matrix elements:

(0, —00|0, 00) = / DY o519, (1.1.80)
P (—00,00)

For interacting theories we must define an interacting vacuum state |2) which takes care
of removing vacuum-bubble diagrams. For this vacuum state we demand

1=(Q|Q), (1.1.81)

which implies the following general formula for correlation functions

_ [ D1 Do er (1) - ulan)
| Dér- - Doy er® '

(QT{d1(z1) - In(z0)}|Q) (1.1.82)

Notice that we have added the time-ordering prescription for the quantum fields appearing
on the left-hand side, while within the path integral, only classical fields appear. We will
provide more details concerning the ie prescription, which will confirm that the equation
above indeed holds.

One way to compute such correlations in practice is by means of the generating functional.
Let us add an external classical source to the exponent in Eq.. We call the following
functional of a current, the generating functional

ZJ] = /DCI)eXp (;S[QZ)] - 7;/ d*z J(:c)d)(m)). (1.1.83)
From functional calculus we have
6J(x) 4 B
57(3) =0"(x —y), (1.1.84)

which allows us to express Eq. (1.1.82]) in terms of functional derivatives of the generating
functional Z[J] (for the case of only one field) as

(—i)" 1 5"

me Z[0] 87 (x1) -0 (2n) = (QT{(x1) - - b(wn)}| ). (1.1.85)

J=0

Z1J]

We use the above formula to verify a matching result for the case of the two-point correla-
tion function in the free theory. That is, we should obtain the Feynman propagator when
we take n = 2,

Zuld) = [Doesp |3 [ ate (=30@O, + o) + Jo)) | (110
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Using the result from the Appendix on Gaufiian integrals Eq. (A.10), we have for the
Klein-Gordon operator i((J, +m?),

ZineelJ] = N exp [i / e / d4yéj(m)a<x—y).](y) , (1.1.87)

where G is its Green’s function, i.e. observes i((J; +m?)G(x —y) = 6*(z — ), and can be
written as

Gex—-—y)=i| ————. 1.1.88
@ =i [ G (11.89)
Then we using the functional derivatives prescription described, Eq. (|1.1.85)), we get
(—-i)2 1 52

h?  Z[0]6J(x)dJ(y)

=iG(z —y), (1.1.89)
J=0

(OIT{$(2)o(y)}[0) = Z1J]

as expected. So far we have not been explicit enough with the boundary conditions and the
time ordering which is the reason why we do not have the ie in the Feynman propagator.
We recall the ie is related with causality and specifies which type of Green’s function is to
be considered. The Feynman propagator is the Green’s function complying with causality
and therefore compliant with time ordering. Let us now consider explicitly an S-matrix
element to see how the ie prescription shows up from the path integral formulation.

We follow the explanations from Refs. [13], I7] to see how imposing a projection on states
with appropriate boundary conditions, we can understand the appearance of the ie pre-
scription. Let us remark its importance by noting that from a mathematical perspective,
the path integral does not converge without any imaginary part in the action. Consider
then a matrix element

(fIS]i) = / D eSlel, (1.1.90)
@(t—£00)=¢asymp.

Another way to impose the boundary conditions is to write explicit projectors in the
integrand while leaving the integration constraints unspecified:

(1151} = [ Do 51 (fla(t = oc) (B(t = ~co)li. (1191

Let us consider the vacuum-to-vacuum transition amplitude in a free theory. Given the
mode expansion a free scalar field and denoting with boldface letters the spatial compo-
nents of vectors, we have

~ dgp 1 —ip-z T oipz
¢(t7x)—/(2w)3\/E<ape +aj,e )

with E, = /p? +m? and where we have included the time dependence in contrast to
the asymptotic expressions written before. Recalling the definition of the conjugated
momentum field:

, (1.1.92)
pOZEp

7 7 : d3p E —ip-x ip-x
(t,x) = Ohop(t, x) = —1/ @n)? 7" (ape pT _ a};ep )

, (1.1.93)
POZEP
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we can write the creation and annihilation operators in terms of the field and its conjugated
momentum by first inverting the Fourier transform and then writing down an appropriate
linear combination:

ap = \%/ d3x eP? <\/E7pqg(t,x) + \/iEipfr(t,x)>

CLT:i 3x ez h(t,x) — i w(t,x

Let us keep the notation given in Eq. (1.1.73)) while noticing that the operators at a given
t have a given field configuration ®(x) as eigenvalue. We can understand the action of
7(t,x) as an operator acting on eigenstates of ¢ as follows,

)

pOZEp

(1.1.94)

pOZEp

7(t,x)|®) = / DII #(t, x)|II) (IT|®) = / DI TI(x) e~/ EYI)2W) 1) (1.1.95)

:/DH15<I>

We can obtain a differential equation for the transition amplitude (®|0) by using the
annihilation of the vacuum property of ap. Explicitly, for a given p and field configuration
® it holds that

ip-2 2 1
0 = (®|ap asymp.[0) = (@] / dPxe’ (\/ Ep@iree(X) + —==Tree(X )

ot dsyH(y)é(y)‘H> =i |B). (1.1.96)

IP(x)

10), (1.1.97)
PP=Ep

\/E— Tfree ( )

for t — 400, so that the operators inside the parenthesis are the free ones and only depend
on space. Multiplying the equation above by e Frt, /By,

0—/d3xe <E P(x) + 5<I>ix)> (®|0). (1.1.98)

In analogy with the quantum harmonic oscillator, we take a Gaufiian state as an Ansatz

(®]0) oc exp (—;/d3xd3yg(x,y)<1>(x)¢>(y)>, (1.1.99)

with some symmetric kernel, G(x,y), to be determined and plug it in the differential
equation Eq. (1.1.98]), to get

0= [ aaert (Buvio) + 5 Ve (-3 [ dxdyey)eeone) )

(E D (z) - [ / d3xg<z,x><1><x>])exp (—; / d3xd3yg<x,y>¢<x>¢<y>)

/
/

d3z elP? [ / d3xG(z, X)@(x)]

>z eP“E,®(z) —

A
/d3ze‘sz ®(z) —
-/

&2 [ [ @ eip'z’g<z',z>¢><z>] ,
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where we relabeled the variables to obtain the last line. It follows that G(z', z) is a solution
for any ®(x) if it observes

0= eP?E, — / Pz P7 G2 | 2), (1.1.100)
or clearly
1 - 1 .
G(x,y) = (27T)3/d3p P Y B = (27T)3/d3p P Y /p2 £ m2. (1.1.101)

This integral is obviously divergent and formally is only defined in the sense of distri-
butions, but can be regulated to express it in terms of a Bessel function which serves
perhaps to the intuition around this Gauflian solution for (®|0). Consider r = |x —y| and
choosing spherical coordinates for the momentum integration, whose polar axis is aligned
with x — y one can perform the angular integration

1 *° ;
g(x,y) = (277)3/0 dp €y p? €70 \/p? + m?
o0 21 24
_ Ar / dpp\/m + p? sin(pr) (1.1.102)
0

(2m)3 r '

Using Basset’s integral for modified Bessel functions[I8, Eq. 10.32.11], (however outside
of its domain of validity)

r $) (2z)Y [~ t) dt 1
K, (zz) = v +12) (22) / cos (21) -, for Rev > —— |argz| < T (1.1.103)
T2V 0o (24222 2 2
so that
r 2) (22)" [ tsi
4 K (22) = — (v+ 21) (22) / sin (at) dt (1.1.104)
dx T2 0 (124222
Setting ¥ = —1 and identifying variables we have
1 md /1
=———|-K_ . 1.1.1
G(r) 2n2 v dr <7“ 1(mr)) ( 05)

The graphs corresponding to this integration kernel are shown in Fig. as a function
of the distance between the points x and y. We can see how higher masses make the curve
steeper and more and more concentrated at r = 0.

Let us go back to computing the vacuum-to-vacuum matrix element of Eq. , first
let us analyze the projectors using the GauBlian form of G(x,y),

(01 (t = 50)) (®(t = —00)[0) x exp (—; / PBxddy G(x,y) [B(t = 00, x)B(t = 0, y)

+P(t = —00,x)P(t = —oo,y)]) , (1.1.106)

where we have made explicit that the field configurations are to be evaluated at infinite
past/future. Assuming the field configurations are smooth and have such limit one can
prove that

f(o0) + f(—o0) = lim e/oo drf(r)e I, (1.1.107)

e—0t  J_
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Figure 1.2: Plot of G(x —y) for different increasing masses inserted in
Eq. (blue tones) and the corresponding plot from Eq.
made by using Riemann’s Zeta function regularization, that is introducing
—exp(—eEp) into the integrand and taking the limit ¢ — 0.

via splitting the integral at 7 = 0 and an integration by parts given |f(0)] < oco. This
allows us to write down the projectors including an integral over time

(0]@(t = 00)) (P(t = —00)|0) x exp (—;e /OO dt/ d*x d®y Q(x,y)@(t,x)@(t,y)) ,

(1.1.108)

where terms going like O(€?) have not been written. Using the above formula in Eq. (1.1.91]),
we get the full S-matrix element

(0]0) = lim D@exp{iS[fb] — ;e/oo dt/ d3xd3yg(x,y)<I>(t,x)CI>(t,y)}, (1.1.109)

up to order e. Simplifying this by using the specific action for the free case and Eq.(1.1.101)),
with eEp — €, we obtain

: o) 3 .
(0|0) = elir(% D exp {—;/ dt/ d3xd3y/ (;17TI))3 P XY (¢, y) (O + m? — ie)@(t,x)}

= lim D@exp{—l/d4x<I)(t,x)(D+m2—ie)@(t,x)}, (1.1.110)
e—0t 2

where we have integrated over p and over y thereafter. The last equation recovers already
the action including the ie prescription, coming from the fact that we want to deal with
local theories, where field are to interact at the same space-time point, this locality is
what Eq. encapsulates, and has the effect of choosing the Feynman propagator

for the theory. Employing this careful projection over the boundary configurations, the
generating functional in Eq. (1.1.87]) acquires the usual +ie leading to the correct Feynman

propagator
‘ dip Py
Gz — ) :1/ L (1.1.111)
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Although we computed only the vacuum-to-vacuum transition in a free scalar theory,
the arguments can be translated verbatim to other models. Even more care must be
taken when dealing when curved spacetimes. For more details about imposing boundary
conditions in the path integral formalism, see Ref.[19].

1.2 The Effective Action

Although classical field theory is successful in describing many degrees of freedom and
allows for models that can avoid the concept of action at a distance, with the most famous
example probably being electromagnetism, it does not incorporate quantum mechanics. In
other words, for cases where we are interested in describing a large and possibly changing
number of particles, while at the same time taking into account their causal interactions
and their quantum aspects, we are lead to work within the quantum field theory framework.
Such a framework is vast and contains an enormous amount of tools that have been
developed over time to address different situations. One such tool was already presented
in the previous section, the path integral, which allows us to employ functional calculus to
obtain correlation functions. Here we will introduce the effective action, whose objective
is to incorporate one-loop or radiative corrections (or even higher-order corrections) on
top of the classical contributions. The following exposition is based on these references
[20, Ch. 11.3], [21, Ch. 16] and [12, Ch. 7].

There are several ways to motivate the introduction of the effective action. On the one
hand, it can be understood as the resulting action when external fields are present. On
the other, it is meant to be an effective description after certain loop effects have been
resummed. For the studies presented in this document, we are mainly focused on com-
puting the effective action for the computation of vacuum expectation values of different
fields. It is known that classical expectation values are altered by means of quantum cor-
rections. Hence the stationary points of the action do not provide the correct expectation
values. The effective action, I'[¢], plays the role of such a functional, one whose minimum
corresponds to the quantum corrected (¢).

It is because of that reason that the effective action is particularly relevant for phenomena
surrounding spontaneous symmetry breaking. It is only after the effective potential is
calculated that the local and global minima of the theory can be studied. In practice, one
does not have access to the full effective potential since that would mean having solved the
theory completely and having taken into account corrections of all orders. Therefore we
are forced to truncate the computation at a given order in an expansion in terms of some
perturbative parameter, the most common one perhaps being an expansion in h. We will
show how h serves as a bookkeeping parameter for the number of loops being included in
the effective potential.

1.2.1 Effective action

To explain the construction of the effective action, let us consider a field theory in an
unbounded flat spacetime of dimension d, featuring field content ®¢, where a is a label
running over the fields of the theory. Assume we are dealing with scalars to be able to
write down the kinetic term explicitly. Then it suffices to substitute such term with the
kinetic term of a spinor or a gauge boson accordingly. Assume as well that the model may
have a local scalar potential for certain fields which we will denote Uy, (z) = U, (®%(x)), for
certain a’s. Lastly, assume the model is specified through a Lagrangian density £ which
may include polynomial interactions, Li,; among the fields. The full Lagrangian of the
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theory has the form:
a 1 a a
L@%) = 5 (042 + U(P?) + Lim. (1.2.112)

a
The partition function as explained in the previous section can be interpreted as a gen-
erating functional when extended by terms containing auxiliary external sources J,(x),
abbreviating the set of external sources by J we have that the generating functional is

Z[J] = <Q|e—iHT\Q>_/ (1;[1)[@&0 exp (;,L [S[@“H/ddwa(x)@“(x)]),

(1.2.113)
where H is the Hamiltonian of the theory and 7T represents the time window over which
the system is studied and

S[®%] = / Az L(DY). (1.2.114)

We can now introduce
WIJ] = —ihlog (Z[J]), (1.2.115)

the generating functional of connected diagrams as an analogue of the Helmholtz free
energy in thermodynamic systems. It is useful to give some comments pertaining W in
order to develop some intuition about what it describes, which seems at glance obscure
in its definition. From quantum field theory, we know that the partition function is
understood as the vacuum-to-vacuum transition amplitude, which could in principle be
obtained exactly if one could sum over all vacuum diagrams, that is, over all connected
and disconnected Feynman diagrams that have no external legs. A neat interpretation for
W was provided by Weinberg in [21], where simply put, while Z sums over all possible
diagrams, W only sums over connected diagrams (see [I5] for a proof). By letting N
be the number of connected components of a given diagram, we see how Z counts all
components, while avoiding possible over counting produced by permuting vertices within
a component, through the formula

o0

Z=> % <;_LW[J]>N = exp <;W[J]> : (1.2.116)

N=0

We can also see already that the generating functional would factorize into an integral
over each sector if it were not for the interactions. In order to obtain the effective action,
it is convenient to define new fields which follow the one-point expectation values of the
original fields ®¢, let

ih  6Z[J] IWI[J]

05 (z) = Q@ (2)|) |, = N ACEEACE (1.2.117)

creating a correspondence
pi(r) = Jg(2). (1.2.118)

The ¢%’s are commonly referred to as the classical fields. The effective action corresponds
to the Legendre transform of W, (using the sign convention from [21])

T[e? = WLJ] — Z/ A4z J,(z)p% (), (1.2.119)
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where J% is obtained by inverting Eq. , or in other words using the correspondence
written above (possible under the assumption of convexity on W). In other words, given a
configuration ¢(z), Jy is the current that satisfies Eq. . This procedure returns
the convex hull of the initial functional, which is at the same time a functional, although
now dependent on the new fields. It is the effective action in the sense that it has the
properties we seek:

1. It provides us with quantum corrected field equations.

2. It is an action from which Feynman rules can be extracted. In the case of truncating
W to first order in A, the tree-level diagrams will include all one-loop effects of the
original theory.

We can show the first property by showing how to obtain the equations of motion for the
fields ¢* and realizing that a solution to such equation for vanishing sources becomes an
extremum of the action automatically. Let us compute the variation with respect to some
new field ©° of the effective action I':

T[] _ W] LA - Sp(y)
Soh(x)  oph(z) Za: / dy s (z) P W)~ Za: / d%y Ju(y) ")

dep
_ 0, [ OWLJ]
B ZC:/ v (&fc(y))

5jc(y) 6ja(y) a T
o)~ 2 | A — i)

Je=J
which after using Eq. (1.2.117)) gives
T[] i
= —Jp(z). 1.2.120

This last expression indeed tells us that the configuration solving it for vanishing sources
is a stationary point.

Let us know understand how the lowest order of I' includes corrections from one-loop
Feynman diagrams. The exact effective action, as defined in Eq. , can be expanded
in powers of the fields, let us assume for simplicity that the theory contains only one field—
although the expansion may be also done for multiple fields,

Ip] = Z;,/ ddzt . A% p(zh) - ()T (21, . ), (1.2.121)

where the coefficients are

5" T[]
dp(a!)op(x?) - - dp(z™)
and receive the name of proper vertices or 1PI diagrams (one-particle irreducible, meaning

that cutting any internal propagator line disconnects the diagram), having n external
insertion points, by convention they are taken to be amputated.

™! ") = (1.2.122)

1.2.2 The semi-classical (or loop) expansion

Let us use h as a book-keeping device and perform a saddle point expansion on I'. It is
worth noting that a priori, the steepest descent approach, does not work for a theory on
Minkowski space because of the oscillatory exponent in the path integral. To overcome



22 The path integral and the effective action

such an obstacle and still be able to extract physical information from vacuum expectation
values, we again use a Wick rotation as illustrated for the harmonic oscillator previously.
Therefore we assume in this section that the spacetime is O(d) symmetric so that no
imaginary units appear in the exponents. We begin by finding the saddle point of the
exponential of the path integral Eq. , that is, assume ¢, satisfies:

55[900,](53)]
o (x)

and without loss of generality, we can adjust S such that for ¢. = 0, S = 0. So to the
lowest order we get

= J(z) such that ¢ =0 when J(z)=0, (1.2.123)

WolJ] = S[pe,s] —|—/ A%z’ J (") e (2), (1.2.124)

meaning that the lowest order of W is the Legendre transform of the action, provided
equation Eq. (1.2.123)) holds. This in turn means that the effective action to lowest order
is

O[] = S[y], (1.2.125)

which contains the usual vertices and corresponding Feynman diagrams, and is valid for
a field, ¢, with no reference to external currents J. In order to include the next order
corrections in i we proceed along the same lines as in the exposition of the path integral in
earlier sections. Consider the effective action now for a field expanded around the classical
solution,

OW(2) = g (x) + Vix(a) (1.2.126)

and expand the action together with the external source accordingly to get
ﬂ@W—/Wfﬂﬂ@Wﬂ=Smm—/&wﬂw%ﬂﬁ

h
+ 5 / A4z dday xX(21) A e s w1, 22) X (72) + O(h3/2)7
(1.2.127)

with

Ao al) = OS]

= 3950 (1.2.128)

P=pc,s

Computing the path integral using the expression above leads to

Z[J] = Zo|J] /D[X] exp <—;/ dzy d%a, X(fBl)A_l(goc,J;ml,zg)x(x2)> . (1.2.129)

modulo a normalization factor and where Zy[J] is the part involving only ¢.j. It is
possible to perform the Gauflian integral on x, which together with the normalization
condition Z[0] = 1 gives

det A= (e 05 21, T2)
det A=Y (pe, 7 (z); 21, x2)’

Z[J] ZO[J]\/ (1.2.130)



1.2. THE EFFECTIVE ACTION 23

using this result in the definition of WW- technically the Euclidean version of Eq. (|1.2.115))
where there is no factor of “i”, and exchanging log det with trlog

WIJ] = WolJ] + bW, [J] + O(h?), (1.2.131)

with
WolJ] = ~hlog(Zol7)) = Slpe] + [ a2l (@)pes(o) (1.2.132)

and
Wi ] = % (srlog A (pes(@); 21, 72) — trlog A (pe0; @1, 72)) (1.2.133)
- ;/ dz log (Agl_(l‘p((pJ(():”me;”)) . (1.2.134)

To understand the previous term, let us expand the two point correlation function writ-
ten in Eq. (1.2.128)) in terms of a free part and an the terms of the action containing
interactions, S,

62 Sint

A ] N — AL . / o C vt
(¢e,g(z); 2, 2") (¢e0i@,27) + 6 ()0 (z')

, (1.2.135)
D=y,

then we have

1 d d. ./ / 525int
— = log | 1 Alpeg: T, ') =02t . 1.2.1
Wi J] 2/d z og< —I—/ d%z" A(pe0;x x)(SCI)(x’)d(I)(x) . ( 36)

Assuming the interactions can be treated perturbatively we can expand the logarithm in
its series expansion

1 —, .l 52Sin "
Wi [J] :—2/ddac > (-1 - (/ ddm’A(ng,O;x,x’)m ) . (1.2.137)
n=1 ¢’:S0c

where the notation O™ (z, x) for operators of two-points means each factor is chained with
the next one by integration. Before giving a particular diagrammatic illustration let us
write down the effective action to this order. From the definition of the effective action
Eq. , we have that the following relation must hold for any external parameter
on which I and W may depend on, in particular for A:

ow or _

oh oh
So up to order A, using the results for W, above we obtain finally the one-loop effective
action which will be used throughout this document

0. (1.2.138)

-1 x);xr,T
L(p) = Sle] + ;/ d%z log (AA_SSZEO?;;’ ;:))) + O(h?). (1.2.139)

Before moving on, let us provide an example for the case of a ®3 interaction

Sint[P] = ;\'/ d%z (1)3(56) =

52 Sint

W = Ape(x)d(x — 9:/), (1.2.140)

d=p,
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then up to second order in the interaction

Wl[J] = —;\/ dde(@c,O;:va)Soc(x)

)\2
+ 7 [ ot Mg 8 )eula) Mpuoi ' 2)oelo) + -,

to which we can already give a diagrammatic interpretation

s
- =~ P 7 Pe
// \\ // \.\
WilJ] =\ | oA b - TR (1.2.141)
\\ // c \\
p_— ~S__-- \\\<)OC
.:!‘-

where dashed lines are the propagators, and the external lines with crosses represent
insertions of the background (with no propagator included if the line ends in a cross). We
can now understand visually what the n-th term of Eq. (1.2.137) for this theory, looks
like:

SOCX <PcX
\ /
\ /
\ /
_—- !
e .
// Tnot \\\ ,/+
/ ;,’ Pe
Ty
: , (1.2.142)
]
To ‘
/ = \\900
o *

which illustrates the claim that T'; sums up the contributions up to 1PI (one-particle
irreducible). The statement can be made more precise[22] by counting powers of A. We
can see from Eq. that the propagator appears with a linear power of A, that is
RA~!, while interaction vertices will appear always proportional to h_i. If we count the
powers of A in the amplitude corresponding to a 1PI diagram, having I internal lines and
V' vertices will have

P=I-V, (1.2.143)

while the number of loops is equal to the number of free remaining momentum integrals.
Each internal line contributes one integral while each vertex comes with a § which cancels
one. The minimal loop consists, however, of only one internal line and one vertex, which
must be counted separately, and any additional loop is one of three cases: it is anchored
in an existing vertex and the new internal line comes back to it increasing I by 1, or it
is anchored in an existing vertex and a new one and thus increases I by two and V by
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1, or the loop comes from two new vertices thus increasing I by three and V by 2. In
either case, an extra loop implies that I — V increases by one. We have that the number
of independent momentum integrals left, or equivalently the number of loops, is

L=1-V+1. (1.2.144)

We can write down the powers of i of a given 1PI diagram (with no external lines) in
terms of the number of loops to find

P=L-1. (1.2.145)

So we can conclude that an expansion in powers of h corresponds indeed one-to-one to
summing contributions of increasing order of loops. Where h~! corresponds to the tree-
level diagrams, contributions proportional to # come then from one-loop 1PI diagrams,
etc.

1.3 Computing and Renormalizing the one-Loop effective
action

1.3.1 Computing the Coleman-Weinberg potential

We can make the arguments of the previous section even more explicit by directly com-
puting the effective potential up to one-loop for a scalar theory with a ¢* self-interaction.
We follow Coleman and Weinberg’s original paper[22] to obtain the one-loop effective po-
tential for a constant vacuum expectation value, named thereafter the Coleman-Weinberg
potential (CW). The Lagrangian density for this simplest case is the following:

_1 2 l 4 1 2_1 2 2_l 4
L= 5(0u0)" = A5;0" + 502(0u0)° — S0m*¢* — 10N, (1.3.146)

where 67, 6m? and d)\ are counterterms related to the renormalization of the theory and
will be specified later. We can build then the effective one-loop potential by adding all
contributions from tree-level diagrams and 1PI diagrams. For this theory, at tree level we
have only the term already appearing in the Lagrangian, which becomes

_ IWLJ] _ (t = 00,0]|¢(z)|t = —00,0)
dJ(x) (t = 00,0|t = —00,0)

(1.3.147)

Viree = L 2R for (P(x)
4! 7
Then we have to add all contributions coming from diagrams with one loop but an arbitrary
number of field insertions. In the ¢* theory specifically, we have a minimal of 2 insertions
and a single diagram for every even number onward, the so-called polygon graphs (see
Fig. , these diagrams produce then effective one-loop vertices for all orders, hence

d*k 1 (/1 1 \"
nomtoop =1 [ T 2 (22 1.3.14
Vone-toop 1/(27r)4 Zaom <2 v k:2—|—ie) ’ (1.3.148)

where the i in front enters in the definition of W, the % in front of ¢ occurs because
interchanging two ¢’s (bosonic) at a given vertex does not generate a new diagram.

Formula already includes the geometry factors for each order: a factor of (1/2)"
for interchanging two sources at a given vertex and a factor of 1/2n from rotations and
reflections (see [20, Sec 9.5] for a more modern explanation.). We can observe how this

contribution corresponds to the Taylor series of the natural logarithm and exactly matches
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Figure 1.3: Feynman diagram corresponding to one of the 1PI one-loop
diagrams displaying n vertices and 2n insertions of ¢ in the ¢* theory.

what we expected from the general case, Eq. (1.2.136)). All contributions up to one-loop

order, including counterterms for the theory, can be written down as follows, where we

can neglect the ie and perform the integral appearing in the last term in Euclidean space:
Vow(w) = 2ot — Lgm2? 15)\4+1/ e (1422 (1.3.149)

= —p  —-—0m Y’ — — = o) — . .3.
W)= % 70 T T | ana 8 2k
By performing the momentum integral in the last term up to some cutoff A, we can see
that the apparent infrared divergences are resummed into something finite, viz.

dk
/B(A) 2n) log (K* + f(¢))

272

A 5 5
:W/O d|k| k> log (k> + ()

1 A2+ ()

= 1672 /f(w) e o)

1 [ /A2+f(so) 22 210g(2) /A2+f(<p) L2 o) og )]
= — zzlog(z) — z [(p)log(z
1672 | Jf(p) ()

4 4 9 ,
- # B log(A? + f()) — AZ i é«p) log <A2i(?(go)> LA j;(p)}

2 4 4 )
e St (505) 0]

(1.3.150)

with f(¢) = %)\902 we get for the effective potential for large but still finite A

A 1 1 1 )\2()04 )\2()04 A(pQ /\902
VCW“”):M—5m29”2—4u‘w4‘327r2< 6 s () M)

2
(1.3.151)
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where terms vanishing in the limit A — oo have been omitted and the log expanded
assuming f(¢) < A%. Before dealing with renormalization and finding the determining
the counterterms, let us generalize the above expression to a scalar field subject to an
arbitrary potential by making contact with the functional tools explained in Sec.
Let us now consider a more general case, which will serve us later, consider a potential
term U(¢) in the Lagrangian density, which contains all polynomial self-interaction terms
in the field ¢, including possibly a mass term and satisfies U(p = 0) = 0. We expand the
field ¢ around the expectation value ¢, so that we can use Eq. to compute the
one-loop contributions in general,

— 0l — 1 Afl(go(x);a:,x) B 1 d4k ]C2+U”( )
la o=y [t (S) = e (kw{f;lm

where U”(¢) means the second derivative with respect to ¢, evaluated at ¢ and where we
have inserted a complete set of states of momentum to be able to compute the log, recall
this expression is already in its Euclidean fornﬂ With the extra assumption that ¢ is
to be fixed an therefore space-time independent, we can perform the momentum integral,
using the formula in Eq. , while extracting a space-time volume factor 2 and
identifying the Coleman-Weinberg potential:

" " 2 "
Wil = 0] = ~QVew(e) =~ sy (U () U g (UA“")) - A?U"«o)) .
(1.3.153)

Having derived the above expression, which will be applied several times in later chapters,
we go ahead and describe the procedure of renormalization for the above case.

1.3.2 Renormalization

Historically, renormalization was a prescription that allowed us to address certain divergent
results appearing in quantum field theory. Since its introduction by Stiickelberg and
Petermann[23], it has been employed to build counterterms, examples are dm? and 6\ in
the previous section, which are additional terms for the Lagrangian density, whose job is to
absorb the divergent behavior coming out of the perturbative treatment of the theory by
means of Feynman diagrams presenting loops. Depending on the context and the specific
theory we might be looking at, they might play specific roles, e.g., mass renormalization,
vacuum polarization, charge renormalization, etc.

Renormalization has been, since its introduction, a very relevant guideline for constructing
theories. It used to stand at the same level, compared to Poincaré symmetry and gauge
symmetry, when model building. However, later on, with the appearance of Wilsonian
renormalization group ideas|24] 25], together with more modern views on effective field
theories, renormalizability became no longer a requirement, as long as the model under
consideration is understood as an effective description of phenomena below a certain energy
scale.

In this section, we intend to describe the basic ideas concerning renormalization. We will
go over the construction of the counterterms for the example theory of the previous section
and take the chance to speak about renormalization schemes that will be used in later
applications. Not pretending to review the topic of renormalization in its full detail and

!Starting from the Minkowskian action, there is an i in the definition of the generating functional and
another one coming from the measure after doing the Wick rotation.
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generality, we show in the present section how to impose basic renormalization conditions
and how to employ the so-called WKB expansion to compute the divergent contributions
often appearing in one-loop effective actions.

Let us make some comments on the steps already taken to get the CW effective potential
in the previous section. In actuality, we have only postponed the issue of dealing with
divergent contributions. This has been done by employing a hard cutoff, A, that is re-
stricting the integrals over all momentum space to a ball of radius A. This procedure, as
it stands, for example, breaks translation symmetry, so without taking the limit A — oo,
we can not make any statement about the initial theory we started with. Any prescrip-
tion whose objective is to extract finite pieces from divergent integrals receives the name
of regularization and constitutes the first step in renormalizing a field theory. Although
different techniques exist for this purpose, we will mostly employ hard momentum cutoffs
which will suffice for our purposes.

Once divergent quantities have been regularized, we must choose a renormalization scheme.
That is, we must impose certain renormalization conditions that will allow us to fully
determine the counterterms in terms of the regularizing parameter.

For the purpose of illustration, we use the following conditions,

42V,
il = mo, (1.3.154)
de® |y
d4
Viw = (1.3.155)
de* |y

which are arbitrary and up to us to choose, however, motivated by keeping the effective
parameters appearing in the one-loop potential equal to the bare parameters, very similar
to what is known as the on-shell scheme, where the pole mass is required to match the
effective mass. It is typical, but not necessary, to choose the scale M to be such that the
log’s are minimized so that if our scalar had a non-zero mass, typical values for the field
should oscillate in its vicinity and choosing M close to the tree-level mass would ensure
logarithms are small. In our case, mg was taken to be 0 in the previous section, so we
will see that choosing M = 0 is possible in the first condition, Eq. , but not for
the second one Eq. . In general, we would need to consider a counterterm for the
normalization of the field itself, using canonical normalization, the terms proportional to
(0¢)?/2 should add up to one, in our notation and up to one-loop

1+6Z(M) =1, (1.3.156)

at mass/energy scale M. With this additional condition, we are able to determine 67 in
Eq. . However, we postpone this issue and deal with it when we speak about the
WKB expansion.
For definiteness let us follow the original exposition by Coleman and Weinberg[22] and
take the renormalization scale in Eq. in the limit M — 0. Imposing this in our
toy CW potential in Eq. we get the following result
2= A A2

322
For the condition in Eq. we must choose a different renormalization scale, let it
be some chosen scale M to arrive to

11 A M2
oA 43 A210g< ) (1.3.158)

sm, (1.3.157)

~ 3272 " 3272 2 AZ
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Plugging in these quantities back in the CW potential, we obtain an expression,

2
VISR () = %@4 - %/\2@4 + %;’—2/\2@4 log <A‘Z2> . (1.3.159)
which becomes predictive once observations have set the value of A at scale M within the
full Lagrangian density of the model.

The last observation concerning this model is that of the symmetry-breaking process that
occurred when including one-loop effects. The original potential was fully symmetric in
the sense that no explicit mass term was included and the theory only possessed one
minimum. Nonetheless, the one-loop logarithms are negative for values of ¢ < M and
thus lifts the minimum at the origin while generating a new minimum displaced from
the origin at a non-zero value of ¢. We can state that such a model suffers spontaneous
symmetry breaking (SSB) coming from radiative effects, this is a particular case of SSB
about which we will expand in a coming chapter. We must mention a caveat in the
above interpretation. The new minima can actually occur at large field values, moreover,
values that are beyond the perturbative regime in which the one-loop effective potential
was computed. In order to address the validity of the model, we must make sure that
large field values do not interfere with the perturbation theory. This is remedied by the
renormalization group improvement, which will be explained in the next section.

Before we describe the renormalization group improvement, let us attempt to address the
renormalization procedure by computing the divergences occurring in the Greens’ functions
of the model directly by employing the so-called WKB expansion[26-H28|] (named after its
authors Wentzel-Kramers—Brillouin). The method has already been applied in previous
studies[29H31], where it has been used in the context of non-homogeneous backgrounds.
Given its generality and usefulness, we describe the generic results applied to Greens’
functions found in QFT here, to which we will refer to in later, more specific applications.
Thus, bear in mind that the method works for a more general class of differential equations.
Let us consider finding the Green’s function for a fluctuation operator, corresponding to
the differential operator shown in Eq. when the theory is expanded around a
given VEV, ¢. Let us consider the problem in its minimal version. That is, let us assume
it has been reduced to one direction, e.g., in the case of a system enjoying a O(4) symmetry
in four-dimensional Euclidean space. Then the Green’s equation will look like

G5 Cla.y) = [0+ V(p(@))] Cla,y) = bz —y). (1.3.160)

where V(¢(x)) can be thought of as a point-dependent effective mass and d(x) is the Dirac
delta distribution. We start by considering a specific form for the Green’s function, where
we decompose G as follows

G(z,y) =O(z —y)f (2)9~(y) + Oy — 2)g” (y) f~(2), (1.3.161)
where
1 ifx>0
O(x) =19 1/2 ifx=0 , (1.3.162)
0 ifx<0
is the Heaviside step function, which has been regularized at * = 0 and we use as

such in numerical computations in the applications (Part . Plugging Eq. (|1.3.161)) into
Eq. (1.3.160) we get, for = # y, two ordinary differential equations to be solved separately

(02 + V(p())] f5(z) = 0. (1.3.163)
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Let us consider boundary conditions were the Green’s function itself vanishes at infinity,
so we will impose

lim > (2) =0, (1.3.164)
xli}r_noo [S(x)=0 (1.3.165)

These are technically the conditions associated to the Feynman propagator which can be
understood as the average between retarded and advanced Green’s functions where each
satisfies only one of the above. The WKB Ansatz tells us to take f= in the following form,

) = e F ST W), (1.3.166)

for some function, W (z) in the exponential, to be determined. The pre-factor has been
chosen for convenience and where there is no i in the exponential because we are working
in Euclidean space. Observe as well that if V were independent of x then the Ansatz
above already gives the exact solution. Before continuing the computation let us obtain
conditions of validity for the procedure in general.

Consider then the simpler Ansatz of an exponential function with a position dependent
exponent, f(x) = ew, where we have introduced an auxiliary parameter, ¢ which can
be taken as a scale related to V, so let us re-scale it and express such term as V. = €2V.

Using this form in Eq. (1.3.163)):

_S"z)  (S'(x))?
2

= 1.3.1
- 2 V@) =0, (1.3.167)

or in other words
(8'(2))? = Ve(z) — 5" (). (1.3.168)
We can be solve it perturbatively, by an expansion of the type
S(z) = SO(x) + SV (x) + 5P (2) 4 - - -, (1.3.169)

which leads to the following equations by collecting orders in ¢,

(SO =Ve(a), (1.3.170)
e 2980(2)8W(z) = —5"O)(z), (1.3.171)
. 29802)8@ (z) + (8D (x))? = ='W (), (1.3.172)

so we can now estimate when the expansion above is convergent and when it is not. The
set of equations above lead to a convergent sum if they satisfy the necessary condition of
each order being smaller than the one immediately before, in terms of the first derivative:

\S'(O)(a:)] > |S’(1)(az)| > \S'(Q)(m)\ > ... (1.3.173)
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Examining Eqgs. (1.3.170)-(1.3.172), we see that we have the conditions

g//(/0 f:),))Q (1.3.174)
(5" (2))? = (;;’/(0)"; ) = V(=), (1.3.175)
(1) :L‘
(S (z))? = <S (25,(0) ) 2 < Ve(a), (1.3.176)

where the first condition is the one allowing us to start the chain and where the last
condition can be cleaned up to find

S”(l)(x) 2
251 ()

§(1) (:B) 2

2\ (1) () [2

< |80 (2)]2 ~ V.. (1.3.177)

This procedure can be continued to higher orders to find analogous relations even when
€ — 1. These conditions, although not sufficient, provide us with a quick test of whether
the WKB expansion is sensible. We can observe that solving Eq. (|1.3.170)) leads exactly
to

:C/_m d2’'\/V(z'), (1.3.178)

which explains the exponent chosen in Eq. . The factor sitting in front of the
exponential is a convenient modification of the method that ensures a constant Wronskian,
as we will soon see. The last observation of the method itself concerns the classical turning
points, namely the z’s where V vanishes. Close to these points, S(©) becomes extremely
small and the inequalities above will not necessarily hold any longer, so we cannot expect
the WKB expansion to be reliable close to such points.

Coming back to our problem, to determine W (x) we plug in the Ansatz for fS(z) in

Eq. (1.3.163), to find

W2(z) = V(z) — Z (

/ 2 "

7o) W) (1.3.179)

Depending on V), this equation might not be solvable in closed form, so we often resort to
perturbative treatments. Consider expanding the square of W (x) rather than W (z) itself

W(z)?= WO z)? + eWD (@) + -, (1.3.180)

using € as a bookkeeping device. Given that we know from Eq.([1.3.178]), that (W(O) (1)) =
V(x), we can subsequently compute the next order in the series following the assumption
that higher order derivatives are smaller and smaller, thus

() (p . W\
W' (z) = WO (z) + eW' D (z) (%«n 8) — 5W’<0> (z) <W> + O(e?),

(1.3.181)
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which leads to an equation for the next order of the form

<wmuwzscvww)21wwww

(1.3.182)

I\ WO@) | T2 WO@) ey

This already constitutes the WKB method. Let us now finish writing down the Green’s
function for which we need to impose, in this case, the conditions of continuity of the 0-th
derivative and an appropriate discontinuity in the 1-st derivative.

Continuity of Eq. is ensured at the coincident point if we demand the we reach
the same value from both sides, that is

7 (@)9%(2) = ¢” (2)<(a). (1.3.183)

while the discontinuity in the 1-st derivative is obtained by integrating one of the variables
in Eq. (1.3.160]) in an interval around the coincident point and then taking the limit of
the interval going to zero length to arrive to

7 (@)g=(z) — g~ (2) f'<(2) = 1. (1.3.184)
The two conditions above allow us to determine g5 in terms of fS and f'S,

S(g) = f=(x)
IO =l )

where Wr stands for the Wronskian of the two functions and is defined as
Wrf1, fol(z) = fi(z) fa(x) — fa(z) fi(2), (1.3.186)

and for f= as in Eq. (1.3.166]), we actually have Wr[f>, f<](z) = 1. Collecting all the
results, we have for the Green’s function and its coincident limit:

(1.3.185)

1 > () £< ) <(x
vy @@ 1
Wil @ T = ey .

The last expression can be estimated up to the desired order by using the corresponding
WKB equations obtained previously, for illustration purposes we go up to order (1), using

Eq. (T.3.180),

1 1 WO (z) —1/2
G(z,r) = )~ 2w () (1 +€ <W(0)(a;)> + 0(62)) (1.3.189)

1 3 (WO@)? 1 WO (g)

~
~

WO (2) T 16 (WO (2)p 8 (W ()

(1.3.190)

We can finally use this expression to estimate the possible wavefunction divergence in the
present toy theory, but also in more complicated scenarios later on. For a model such us
the ¢* we have been treating,

2
Vireo| - _ A 2 (1.3.191)

V(x = e
( )’¢=g0 d¢2 (b:[p 2
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so that for a fixed ¢ we will find no divergent term proportional to (augb)Q and thus no
infinite wavefunction renormalization coming from one-loop contributions. As long as
there are no other fields, such as gauge or fermionic fields, and the VEV is constant, this
will be the case. Finite pieces will be fixed by the subtraction scheme adopted and do not
have an impact on the extraction of physical statements from our studies. We can then
pick §Z = 0 for this particular example to one-loop, which is a known feature of the ¢*
theory (see [20, Ch. 10.2]).

We will later see how to express the one-loop contributions to the effective action in terms
of the coincident Green’s functions, which will complete the argument and show explicitly
how the possible scale dependence can show up.

1.3.3 Renormalization Group Improvement

Besides the renormalization procedure carried on in the previous subsection, we would like
to have an effective potential that is valid for high field values, provided the values of the
couplings remain in the perturbation regime. As it stands, the one-loop effective action
does not enjoy that feature. Hence we would like to improve on the one-loop effective
Lagrangian to avoid the fact that the logarithmic terms might become large. In other
words, after having picked a renormalization scale M, if the range of ¢ is too large, we
might leave the perturbative regime because of the combination A\? log(¢? /M?). To address
such failure, we describe the renormalization group improvement.

The main observation is that in a finite theory describing phenomena at a certain energy
scale E < A, for some UV cutoff A, observables cannot depend on the renormalization
conditions chosen. Once a theory has been renormalized and a certain subtraction scheme
has been chosen, leading to some scale M as in the previous subsection, we should be
able to demand that observables do not change whenever M is varied. These ideas are
summarized in the Callan-Symanzik equation[32, [33].

Mathematically, the renormalized n-point functions are then a rescaling of the bare ones,
by an appropriate power of the wavefunction normalization factor, Z which renormalizes
the field. ¢(x) = Z~1/2¢y, and we have implicitly written as Z =1+ 62 + - - -,

G (1,22, ., ) = (QTP(x1)$(w2) - - D(wn)|Q) = Z7> (QUT o (1) do(w2) - - b0 () |2) -
(1.3.192)

Since these n-point functions are the building blocks of observables, they must be inde-
pendent of the renormalization scale chosen. This means that considering renormalized
n-point functions as functions of the couplings and the renormalization scale, as they
would be when computed from for example a renormalized one-loop effective potential,
the following equation— Callan-Symanzik Equation— must hold

0 0
Magyp + BN gy ] G ) =0 (13.193)
where A; are the couplings of the theory, the 8’s are the so-called beta-functions or renor-
malization group equation, there is one for each coupling and they track the running of
the couplings with respect to the renormalization scale and are often defined as

BN = o7 O (13194)

The other as of yet undefined quantity is v which receives the name of anomalous dimension
and encodes the deviations from the expected scaling of the n-point function according
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to mass-dimensions of the fields appearing in the n-point function. The Callan-Symanzik
equation will have a term for each type of field appearing on the given n-point function,
which can be written as

(ﬁ): 1 d

———7Z(M). 1.3.1
27 dlog M (M) (1.3.195)

(Z) = ~Tlog M log
These two equations give out how the theory changes when different renormalization
scales are chosen. In practice, to find out how a theory responds to a change in scale,
the SB-functions and the anomalous dimensions are approximated to a certain order in
the couplings with which the two differential equations above can be used to predict the
running of the couplings by using a chosen scale, where the couplings are known, as an
initial condition.
Let us then close the chapter by obtaining the running for A in our ¢* theory. This will
explicitly show us how the coupling A runs; up to this order, and clarify where we can
expect the approximations made to start to break down.
Following the explanation of Coleman and Weinberg [22], let us consider the coincident
2-point and 4-point functions of the renormalized theory having V(i as its potential and
apply to them the Callan-Symanzik Equation, Eq. . For that purpose let us
define:

47 /ren

¢ =G (z, 2, z,1) = 9ot (1.3.196)
G(2)(ac,x) B
Z = sty =2 (1.3.197)

and observe that both ¢ and £ are functions solely of the couplings, in this case A alone
and implicitly on the ratio log(¢/M) and the Callan-Symanzik equation for them is

0 0

(_ o + 5()\)5\ + 47) G =0, (1.3.198)
0 0

<_(‘9t + 5()\)a + 27> ¥ =0, (1.3.199)

where we have written the first term also in terms of the logarithm of the renormalization
scale, t = log M. From our computations from the last section, we have to one-loop

oV 3
=\
opt + 1672

Z=1. (1.3.201)

We can plug Z into the Eq. (1.3.199)) to find that v = 0 and consequently Eq. (|1.3.198))

gives

Nt (1.3.200)

2
5 0g_ 3\

With the beta-function to second order in the coupling, we can write down and solve the
renormalization group equation, Eq. (|1.3.194)):

dN'(t)  3N2(¢) , A
at  16m2 i“’f)_l_m'
1672

(1.3.203)
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We can now build an effective potential by using the running coupling N,

A
VrRa(p) = W@{

1672

(1.3.204)

which recovers the CW potential of the last section, whenever A < 1 and At < 1, but
is additionally well defined for large negative values of ¢t which supports the conclusions
regarding spontaneous symmetry breaking coming from radiative corrections.
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2
Decay by tunneling

2.1 Quantum mechanical illustration of tunneling

It is known that certain processes within the quantum field theory framework are not
fully captured by traditional perturbative expansions for small couplings such as quantum
tunneling processes (also known as barrier penetration). These require then a different
treatment, the so-called semi-classical expansions, where the perturbation parameter is h.
In this section, we illustrate the main computational technique of our work. In order to
do this, we start by examining a classical quantum mechanical system by means of its
path integral formulation to arrive at its WKB-approximation result via a semi-classical
approach. For this, we closely follow Coleman’s book[34]. Let us then begin by considering
a one-dimensional quantum mechanical system of a particle subject to a potential well
V(x). This system can be described by the following Hamiltonian operator:

H—p;JrV(x). (2.1.1)

Our objective is to obtain the ground state energy of this system by using the path integral,
a Wick rotation and an appropriate limit. Let the position basis consist of |x) for x € R.
We can compute the probability amplitude for finding the system in state |xf), given that
it is prepared in the state |x;) by letting the evolution operator exp(—iHt/h) act on the
initial state and projecting into the final state, that is:

<xf ‘ lHt/h N/ )] &S/, (2.1.2)

z(0)==;

z(t)=xy
where t > 0 and N is some normalization constant. Each side of the equation above must
be elaborated on to understand the present methodology. Let us consider first the left
hand side of the equation. Suppose there exists a Completﬁﬂ basis of eigenfunctions for
the Hamiltonian, |n), labeled discretely for simplicity and with corresponding eigenvalues

E,, so inserting the identity to the left of |x;), the left hand side can be written as

(i) = 32 50" ) (k) (2139

By performing a Wick rotation, ¢ — —ir with 7 commonly referred to as FEuclidean time
or imaginary time, of the expression above, we can exchange the oscillatory behavior of

In the physics sense, it is to be understood as satisfying the closure property, i.e. 1 = > n) (nl.



38 Decay by tunneling

the exponential with a decaying one:
(ar] e ) = 32 7/ o) . 2.1.4)
n

If we were to consider large imaginary times, 7 > 1, the expression above should have an
asymptotic behavior that allows us to extract the ground state energy. For example by
taking |zf) = |z;) = |0) we would obtain this formula for the ground state

Ey=— lim Elog <<0}€_H7/h|0>> = — lim Elog <<O ‘ e*HT/h’ O>) ) (2.1.5)

T00 T ‘ <O|O> |2 T500 T

meaning that if we are able to compute the Wick rotated probability amplitude, without
having full knowledge of |0), we can still obtain the ground state energy.

Let us now return to the right-hand side of Eq. We are interested in its Wick-
rotation as well, for the same reasons as before, it allows us to obtain a decaying behavior,
thus:

N / Dl (t)] e~ Sl ®l/h, (2.1.6)
z(0)=z;
x(t)=xf
where S stands for the Wick-rotated action of the problem and is by convention defined
to be positive (an overall minus is therefore explicitly written in front as in the previous

formula)
T 2\ 2
Sglz(r)] :/0 dr <; (37) + V(:L‘(T))) : (2.1.7)

Observe that the potential V' appears with the opposite sign in the Euclidean version and
that we have labeled the upper limit of Euclidean time by 7. In order to approximate
the path-integral and illustrate the technique, let us assume the potential has only one
saddle-point, that is there exists some path Z(7) that minimizes the action. We can then
expand the integration path as follows:

(1) = 2(1) + VhAZ(T). (2.1.8)

The action functional can be expanded using a functional Taylor series:

T
Sglx(r)] = Sglz(7)] —1—/0 dr —=[z(7)]Az(7)

o7 62Sp[z (7))
— dr d7 ————~ 2= A Ax (' A3z). 2.1.
+ 2/0 T dr 52(r)0(r) z(1)Az(7") + O]A°x] (2.1.9)
In the case of Z(7) being a saddle-point, the second term of the expansion vanishes and
one is left with

§2Sg[z(7)]

-
Sglz(r)] = Selz(r)] + h/o dr dr’ ACE(T)W z(1'),

: (2.1.10)

up to quadratic variations. The second functional derivative of the action is known as the
fluctuations operator, since it can be interpreted as a propagator for the variations of the
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path as we will later see in the case of field theories. Let us then compute such operator
for the case at hand. We obtain

M— T—7 —d2 "(z(r'
Sx(r)dx(r") J ) < 12 VI ))) ) (2.1.11)

where V" (z) is the second derivative with respect to x. Using this result in Eq. (2.1.10)
and performing the 7/ integration we have:
ho(7T d
Sglz(T)] = Sglz(1)] + 2/ dr Az(T) <_(12 + V" (z(r ))) Ax(T). (2.1.12)
0

We can now pick an orthonormal basis of normalizable eigenfunctions of the fluctuations
operator as to decompose the fluctuations, Az, as

= ZcmAajm(T)a (2113)

for some appropriate index m which can be either discrete, continuous or a mixture of
both, and Ax,, satisfies

d? _
( 42T V" (z(r ))) Ay (T) = A Az (7). (2.1.14)
This expansion allows us to trade the integral over all fluctuation paths for integration
over the coefficients of the linear combination in Eq. (2.1.13]), to do that let us plug the
expansion of the action, Eq. (2.1.12)), into the Wick rotated Eq. (2.1.2)):

(|72 N/ )] exp (—;SE[Q;(T)O (2.1.15)
i
=N /A (0) 0 )] P I:_;SE[E(T)]

_;/OT dr Ar(r) <_;22+v"(g:«( ))> A{L‘(T):| (2.1.16)

1 c?
— N/ IT dem exp [—hsE[x(T)] = §Am|mm|2 (2.1.17)
Az(0)=0 m m
Az(T)=0
2
— N e S&lz]/h _ Em 1.
e H de,, exp Z 5 Am (2.1.18)
Az(0)=0 m m
Az(T)=0
- 27
= N plal/h = 2.1.1

Rewriting the above in a general form

<xf‘ HT/"?‘ > NV e S8/ (et p1)~1/2 (2.1.20)
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where V is an infinite volume factor and we have named the fluctuations operator M1
and assumed for the time being that all eigenvalues are positive.

We can interpret this result as leading to a non-zero probability of finding our particle in
the vicinity of 2y when it started closely localized at ;. Independently of a classical barrier
separating both points, we can see that the quantity above is not zero and lends itself to
the interpretation of the particle tunneling through the barrier itself. In the following, we
extend these notions to the field theory setting. Nonetheless, the interpretation remains
the same.

2.2 False vacuum decay in field theory

We can now utilize the tools of the previous section in the framework of field theory,
which we will use for the rest of the document. In particular, we will be interested in
applying such tools for the study of transitions between vacua so that z; and x; now
adopt the meaning of minima of the potential. For this, we summarize Coleman’s original
paper[l]. Let us then consider a scalar field ¢ on four-dimensional space-time, subject to
a potential U having two local minima as the one drawn in Fig. which is such that
U(p4+) = 0, and has been sketched inverted to make an analogy with mechanical systems.
The corresponding Euclidean equation of motion for such a field is

24— U
— T+ V= s (2.2.21)

The boundary conditions for a bounce-like solution are analogously

AT X) 2 P+
d¢

I (0,x) =0,

and

(7, [x]) Pty

—
|z|—o00

(2.2.22)

where the last condition is needed when we demand that the action evaluated at such
configuration remains finite. As shown in Fig. 2.1 a way to think about this type of
configurations is in analogy to mechanical systems. A system described by Eq.
can be thought of as a particle rolling down an inverted potential, if one in addition imposes
the boundary conditions above we can imagine a particle starting on ¢4 and rolling back
and forth. This matches graciously with the picture of a bubble appearing in some region
whose inside experiences true vacuum, ¢, and where outer far away regions experience
false vacuum, ¢_.

As before the 0-th order contribution to the action from bounce configuration satisfying

Bos. €221). @220

1/do\? 1
B=5Y :/de% [2 (df) +§(V2¢)2+U(¢) . (2.2.23)

After observing that the differential equation determining the bounce configuration is
translation invariant, and more over O(4) symmetric, we can perform a coordinate change
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~U(®)

Y
©

Figure 2.1: Depiction of the bounce solution as a mechanical system,
rolling down an inverted potential having several local minima.

to exploit such property. Let us introduce r2 = 72 + x? and assume that ¢ = ¢(r), this
renders Eq. (2.2.21)) into the following form:

S N s Y (70 Y (2.2.24)

and the boundary conditions to be met become only the following two equations:

o(r) — o4,

r—00

dy (2.2.25)

E(O) =0,
where the second condition ensures that the field configuration is non-singular at » = 0.
Coleman argues and proves[35] that an O(4)-symmetric solution would correspond to a
minimum, thus we adopt the above conditions.
A second look at Eq. , using the mechanical system analogy of a particle rolling
down a potential, calls for the interpretation of the second term on the left-hand side as a
friction term or viscous force. Under this perspective, one can understand the existence of
the sought configuration via the traditional argument of overshooting and undershooting.
If we were to release our particle from a given point in the vicinity of p_ (see Fig. ),
too far to the right, the particle will not have enough energy to climb up to ¢, especially
not since friction is always dissipating energy. Along the continuous process of moving
the release point to the left, Coleman|l] proves that even when considering friction, if a
hypothetical particle is released from too close to ¢_, it will roll down, then up and go
past ¢y, i.e., it will overshoot. Since the dependence of the solution to Eq. on the
release point is continuous, there must exist at least one point between both behaviors,
where there is a solution that exactly stops at ¢4, which is the bounce configuration we
seek.
Having argued in favor of the existence of such configuration in general, we now elab-
orate on the treatable case where we neglect the friction term, the so-called thin-wall
approximation. Let us for that purpose begin with a symmetric potential Ugym, such that
Usym(¢) = Usym(—¢), with minima at field values £@gym, let its second derivative at the
minima be Uég,m(igosym) = 112 and consider a perturbation breaking the Zs-symmetry, so
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that our new potential is

€
2 Psym

U(g) = Usyrn(@) + (¢ — Spsym)' (2.2.26)
Under the current approximations, we can divide the behavior of the solution into three
pieces, inside the bubble r» <« R, near the bubble-wall » ~ R and outside the bubble
r > R, where R is the location of the bubble wall. For ¢ <« 1, we have that the field
spends a large amount of time at the top before rolling down the valley. That is, we expect
R to be generally large and to be able to neglect the friction term for regions far away
from the wall. This makes Eq. into the equation of a one-dimensional soliton over
the potential Usym, whose solution can be written in implicit form by

- / o
0 \/2Usym(9)

We can compute an approximation to the classical action

Swalel = [ @[ (8) s vanio)] = [ dp liane. 229)

—Psym

(2.2.27)

Under the current approximation we have the following piece-wise profile for the bounce
configuration

— Psym if r>R
Pbounce = § @(r — R) if r~R . (2.2.29)
Psym if r< R

The Euclidean action can then be evaluated over the bounce configuration by splitting the
contributions into the one coming from the interior and the one coming from the wall’s
tension:

o 1 dépounce 2
B = SE(qbbounce) = 2712/ T3 dr |- < (bb + U(¢b0unce)> ] (2230)
0 2 d?“
1
= —§7T2R46 + 2 R3Syl (2.2.31)

The location of the wall can then be specified by finding the extreme point of the expression
above, leading immediately to R = 3Syan/e. This is in agreement with the picture of a
large bubble for degenerate potentials, i.e. € — 0 and gives

_277%8,

B 263%‘“ (2.2.32)

for such cases.

From Eq. one can obtain a condition for the validity of the thin-wall approxi-
mation, the relevant scale is ur for the asymptotic behavior used, and it corresponds to
pr > 1 thus we have the condition

_ 34 Syan
€

uR > 1. (2.2.33)
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For example, for a Mexican-hat type of potential of the form

1 1
Usym = —§,u2gz52 + E)\QSZL + const., (2.2.34)
the thin-wall condition becomes
12p*
1, 2.2.35
SV ( )

which we can take to mean that the asymmetry multiplied with the quartic self-coupling
is small when compared to the tree-level mass, which we can consider as a rule of thumb
for later cases.

In order to relate the saddle-point expansion of the action with a decay rate, we can
use exactly the arguments used in the previous section of the quantum mechanical case.
Coleman’s argument[34], that under the view of turning-on perturbations adiabatically,
we may see that the ground state may be displaced to an unstable state, which acquires
a negative imaginary part which we just witnessed above, and then decays exponentially.
At this point, it is natural to ask ourselves how to improve on the estimation of the
tunneling rate and maintain the interpretation of a decay rate when an imaginary part of
the energy is not possible or not clear enough. It can be argued[36] via Picard-Lifschitz
theory that the decay rate per unit volume and time expression,

i 2 ~ 2 ~ Zbounce
= =——=ImEy = —Jmlog | ——— |, 2.2.36
AR Y R v v g( 7 > (2.2.36)
is indeed correct and in agreement with other approaches, by means of a proper analytical

continuation, that takes the results from their Euclidean to their Minkowskian version.

2.2.1 Subtleties when including higher-order corrections

As we saw in Eq. , we need to not only evaluate the action at the interpolating
solution but also need to compute the prefactor in front of the exponential. For fluctua-
tion operators that are positive-definite, the computation can be done straightforwardly
as we did before. However, it is often the case that the fluctuation operator will have
certain symmetry leading to zero eigenvalues, in which case we must be careful when us-
ing Eq. . Furthermore, besides zero-modes, we must also be careful with negative
modes associated with tunneling and with the type of spectrum of the fluctuations op-
erator, which might have a discrete part and a continuum part, or a mixture, that must
be dealt with carefully in a case by case basis. Let us here discuss the impact of possible
zero-modes before moving on to the computation of higher-order corrections.

Precisely this phenomenon would have occurred in the case of study of the previous sec-
tion, were we to choose the polynomial potential in Eq. [37]. For such a case, the
potential respects an O(4) and a translations symmetry, implying there are four directions
in which we can translate the bounce configuration without incurring additional contribu-
tions to the fluctuation operator, or in other words, the bounce configuration constitutes
a saddle-point of the action and there are flat-directions around it corresponding to the
normalizable configurations proportional to 0,¢pounce for p=1,...,4.

In computing the Gaussian path integral for the fluctuation operator, it was required for
us to consider a decomposition in eigenfunctions, Eq. . However, this made no
mention of possible zero eigenvalues. In such a case, we may exchange such directions for
integrals over collective coordinates[38], which represent the symmetries associated with
the zero-modes.
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For the case of the translations symmetry the path integral is computed by using a de-
composition (assuming a discrete spectrum), analogous to the one in Eq. (2.1.13)),

4
$) = Z Cu,0 5(25“7 —|— Z Cn5¢n Z 0 xa,u(lsbounce ) + Z Cné(bn(x)
pn=1

cn;éO cngéO
(2.2.37)

where 0,z represents an infinitesimal displacement in the y direction, d¢, o are the four
zero-modes and where the d,¢ as before, represent the orthonormal set of eigenfunctions
of the fluctuation operator with eigenvalues ¢, respectively. The arrow in the equation
above means we have changed our basis from the one including d¢, o to one including
Ou®bounce() instead. We identify then a variation of the coefficients of the normalized
zero-modes with a translation displacement

dep0d¢u0(x) = depoNudy dbounce() = Aoz Oudbounce (), (2.2.38)

for some normalization factor NV,. We can thus identify dec,o = dé,z/N,,. Performing
such an exchange, we transform the integration measure accordingly, that is, we integrate
over the coefficients of the non-zero modes and over the infinitesimal displacements for
the zero-modes, namely

4

4
H CMO H\/dci H du2 H dc” (2.2.39)

p=1 cnyéO cnyéO

that way we manage to trade the integrals over zero eigenvalues for integrals over the
collective coordinates, d,2, which represent an infinite set of bounces centered at different
locations, thus their name. All that remains is to compute the normalization and proceed
to compute integrals that are now independent of the zero-mode directions. To obtain
the normalization, recall ¢pounce() satisfies the equation of motion and corresponds to a
solution which has 0 energy-momentum, since we set the false vacuum at zero potential
at the starting point, ¢, the trace of the stress-energy momentum tensor evaluated on
the bounce implies:

= - / d4l' a,uqbbouncea“gbbounce =+ 4U(¢bounce)' (2240)

Be means of isotropy we can state that each direction then contributes a fourth of U, so
for a given fixed p,

/ d4l‘ aMbeouncea'u(lsbounce = _/ d4$ U(¢bounce)- (2'2'41)

where no Einstein summation is implied. Then we have, by applying Eq. (2.2.40)), that

1
Stree = / d4$ |:28,u¢bounceau¢bounce + U(¢b0unce>:|
= / d4x - 2U(¢bounce) + U(¢bounce)

= —/ d4$ U(¢bounce)7
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and comparing Eq. (2.2.41)) and Eq. (2.2.42) we can conclude that N, = (Siee)” /2. The

integration measure gets then an overall factor of (\/Stree)*‘l, and we can write down a
formula with this correction as follows

Y St?ree e—Stree/h det/[_A4+U”(¢bounce)] 12

YV 4nZh? det[— Ay + U ()]

!/

+O(h), (2.2.42)

where the ’ indicates that the zero-modes have been extracted. We observe that all
prefactors are dimensionless and given that the eigenvalues of the operators inside the
determinants have units of length ™2, extracting four of them leaves an excess of length™*
as the overall units of v/V, which agrees with a decay rate per unit time and volume.
Besides extracting the zero-modes of the fluctuation operator, we must expect at least a
possible negative mode, responsible for the imaginary piece of the action. Coleman and
Callan’s[37] argument ensures the existence of at least one mode but is not really conclusive
concerning the question of the existence of multiple negative modes in the case of a four-
dimensional field theory. Some can be found by studying the thin-wall limit, where if they
do exist, they must belong to the £ = 0 sector of an expansion in hyper-spherical harmonics,
with £ being the generalization of angular momentum to four-dimensional space. We will
attempt to extract the negative modes on a case-by-case basis.

The last but not least important matter to discuss, before suggesting our own methods,
is that of renormalization and higher-order corrections. Already in Coleman and Callan’s
paper[l] and in Coleman’s book[34], it is suggested that we replace the action with the
renormalized action plus some given order of loop-diagrams. Substituting S[¢] for

Sglg] = S[é] + Salg] + Y h"S"™g], (2.2.43)

which is the renormalized action and has been broken down into: a bare pieceE| S, a piece
containing the counterterms required to renormalize the theory, i.e. absorb all divergences,
S. and contributions from higher number of loops S(™), which stands for those coming
from m-loop diagrams.
An improvement on the computations of the present section is achieved already by in-
cluding one-loop diagrams. We can actually follow the same path we have followed, but
compute a bounce for the action S[¢] + Sct[d], Pbounce; and obtain the following formula
for the decay rate which would include one-loop contributions
Y e (5D e -5y |40V A0 + U (Bhounce)] |
A e ounce

YV 4r2p? det[—Ay + U"(¢4)]

(2.2.44)

This expression coincides with a renormalized effective action to one-loop level as we
explained in Sec[I.2] In the first set of applications, related to the electroweak sector and
the vacuum stability, we focus on computing the exponent appearing in the decay rate not
only to one-loop order but also including the gradients of the bounce solution. That is,
accounting for the non-homogeneity of the bounce. The prescription demonstrating how
to do such a thing is what is presented in the following subsection.

2.2.2 Green’s function and self-consistent method

In this subsection, we introduce the prescription we will follow in order to include the ef-
fects of gradient corrections from the background, besides the already mentioned radiative

2Corrected so that the whole action still vanishes at ., by possibly adding a constant
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corrections of the one-loop diagrams. The proposal is later applied to specific sectors which
serve the role of test grounds for the methods here presented. We follow the exposition of
the methods as introduced by Garbrecht and Millington[30],[39]. Therein the method is
applied for a ¢* toy model, similar to what we have used in this chapter to illustrate most
of the mathematical tools. We do not pretend to reproduce the paper in full detail but to
highlight the steps that need to be followed in order to include the effects of gradients into
the computation of the exponents appearing in the formula for the vacuum decay rate,
Eq. (2.

The method consists of using a saddle-point expansion as we have done to compute the
action and possible higher-order corrections to it. Once we have found the saddle-point,
e.g., the bounce, we compute the Green’s functions for the fluctuations operators. These
allow us, in turn, to compute the functional determinants appearing in the prefactor of the
exponential as well as the one-loop contributions. In a self-consistent manner, the Green’s
functions can be used in the one-loop effective action to obtain a corrected equation of
motion for the saddle-point configuration. The corrected bounce can be used to estimate
h? contributions, which may be particularly relevant in certain models. We describe here
the missing steps not yet covered to compute the effects described above.

The whole prescription relies heavily on the availability of the Green’s functions, so let
us begin by going over that point in view of its applications to vacuum decay. Given a
fluctuation operator M !, which consists of derivatives and functionals on configurations
depending on the coordinate x, the Green’s function problem is then

MIAM(z,2") = 6(x — 2'), (2.2.45)

where M is to be found, as already postulated when explaining the WKB method in
Subsec. As described there, the WKB-method is one possible method to approximate
the Green’s function M, which is useful under specific conditions and is known to be
insufficient for others. Specifically, the WKB approximation fails to account correctly for
the inhomogeneity of the background. That is the reason we are interested in looking for
alternatives.

We do not pretend to give a compilation of methods here but only mention some pos-
sibilities in passing and make some comments about this point. For specific models, we
might even be able to solve for the Green’s function analytically (see [30] and [31]) when
the bounce configuration itself has been found in closed analytical form. In such cases,
exploiting the SO(4) symmetry permits an expansion in hyperspherical harmonics, which
can be truncated at a given order and proceed with the program described above. How-
ever, that will not be the case for more realistic cases and the bounce configuration must
be found using numerical methods. For such cases, we will attempt to find the Green’s
function as well by using computational methods. From this point on and until the end
of this subsection, we assume M (xz,2’) has been found in some way.

We need then only answer how the Green’s functions allow us to compute functional
determinants and the quantum corrected equation of motion. In this subsection, we try
to remain fairly general as the same methods will be employed later in the next chapter,
where the specific models of a fermion sector and a gauge sector are addressed.

The functional determinants can be expressed in terms of Green’s functions, M(x,z’),
through the resolvent method which exploits the spectral decomposition of an operator,
as shown on Refs. [31, 40H42]. We summarize the procedure here. Given a hermitian
and positive-definite operator between Hilbert spaces, M1 : H — H, with a continuous
spectrum, and a basis for H consisting of orthogonal eigenfunctions, {f\}\egr+ of M1
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we can employ the spectral theorem to decompose its Green’s functions M as follows:

M(z,y) = / dA fk(xlf;(y). (2.2.46)

It is immediate to verify that the expression above does indeed solve the Green’s function
equation. A deformation of the operator, M~!, can be made by means of the addition of
an auxiliary parameter s € R,

M@, y) = M (2, y) + 51, (2.2.47)
so that the corresponding Green’s function is now

=) f3(y)

Moy = [ PR

(2.2.48)
The integration over the auxiliary parameter to obtain the logarithm of the operator M~!
does not converge when the parameter s is integrated up to infinity, however the ratio of
the logarithms of two operators M; and M3, with eigenfunctions f) ;1 and f) o respectively,
and having the same continuous spectrum of eigenvalues, does:

M (z,y)

log —=
MQ l(xa y)

— [ AN IosNL @) 540 — [ X 0N 20 520

= _/ ds My, (z,y) — Mo, (x,y),
0

where we have used Eq. (2.2.48)) to get to the last line. Then taking a full trace leads us
to the equation:

det My (z,y) M7 (z,y) 00
gm = trlog 1—1 = _trdis/ dl‘/o ds My, (z,2) — Ma, (7, 2).

lo —
M2 ($7 y)
(2.2.49)

where trq;s denotes a trace over possible remaining indices, such as Lorentz or color. The
formula above shows how to compute the one-loop contribution terms by using the Green’s
functions for the deformed operators. In the next part of the document we will adapt this
formula given some extra assumptions and obtain with it an estimate of the size of the
gradient effects compared to the CW version.

The next observations pertain to the so-called tadpole contributions, which usually are
diagrammatically represented by a loop with one insertion of the background or external
leg. In general, their mathematical expression might not correspond only to such diagram,
but may also contain more insertions depending on the specific potential of the model.
What is important nonetheless is that their relation to the Green’s function remains the
same, which we then can take as a definition. We will call tadpole contributions from field
X, to those coming from a functional derivative of the logarithm of the one-loop diagrams

WW[J = 0], with respect to X (see Eq. (1.2.134)),
-1 /]
_ (1) 4] det' My (p; 2/, 2")
1I ,r)o(r) = ——B5' = o
X0 2)p00) = ) = o s S AT

o
2.2.
o S (2250)



48 Decay by tunneling

where gx is generally associated to the degrees of freedom of the field and is negative
for fermions, while the origin of the logarithm is the use of the generating functional
of connected diagrams (see for computing the one-loop effective action. We then
compute the corresponding corrected equation of motion in a self-consistent manner, that
is we find the equation of motion for a bounce subject to the one-loop effective potential.
Mathematically we do this by expanding the effective action Eq. around the
classical bounce 90(1) = ¢ + hdyp, the quantum corrected bounce, and subsequently by
taking a functional derivative with respect to it to obtain a corrected equation of motion:

J

"= 5o

P[] = 0% (z) + Vi (pM; 2), (2:251)

where Vg is the collection of terms appearing in I'}) other than the kinetic term and with
the present notation we have

e/ﬁ(@(1)§ T) = Vtree(QO(l);x) + Z hx (g3 )0 (), (2.2.52)
X

where X runs over the field content of the model. We then have some h? corrections
appearing when we evaluate the effective action on the quantum corrected bounce. The
first corrections will come from the tree-level action and the second from the variation of
the one-loop terms as above. In the case more fields are involved, each term will have such
a contribution and all must be added. We only collect the results here, which have been
derived already in [30} 31]. The contribution from the tree-level action for the scalar case
is

h*5S, = ;/ d4a:5<p(x)/\/l;1(g0;x,x)5g0(a:) = —;/ d*z sp(x) (g 2)p(z)  (2.2.53)

and the one from the variations within the one-loop term are

1 1)
2B<1):/4 log det’ NN 2.2.54
h*6 By, 5 d a:égo(x)(sgo(x) ogdet' M (¢; ', z") (2.2.54)
— [ Aoy (oi)e(o) (2.2.55)

The total contribution of order A2 appearing in the one-loop effective action evaluated at
the quantum corrected bounce is, for the case of a single scalar field,

BY =468, + 6B = —48. (2.2.56)

Collecting the different contributions we have seen, we have a final expression for the
exponent of the decay rate

ok 1 M) 4 52p®
Lo exp{ = (Stree[go] +hBY + h2B¢ ) , (2.2.57)

where the constant of proportionality is given by the factors coming out of the integration
over collective coordinates and the negative mode.
Having reached this point, we believe the main mathematical tools for the studies that fol-

low have been discussed, and we consider we can now elaborate on the specific applications
pursued.
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3

The Electroweak sector of the
minimal Standard Model

3.1 The electroweak sector

The electroweak (EW) sector we know today was suggested in the 1960s, known as the
GWS after its creators [43-45] for which they were later awarded the 1979 Nobel prize
in physics. Here we present the ingredients needed to understand the current knowledge
concerning vacuum stability. Thus we begin by motivating our studies by using the math-
ematical tools available to summarize and obtain a one-loop improved scalar potential for
the SM. Although our specific toy model on which we elaborate later does not correspond
to the current SM, it serves as a testing ground for the functional techniques used and to
examine possible contributions that are usually neglected in traditional computations of
the effective scalar potential.

For this short presentation of the EW sector, we will follow closely what has been exposed
in the review by Sher [46] and in the book by Donoghue [47]. The GWS model mixes the
electromagnetic interaction and the weak interactions under a single framework. Formally
we say the EW sector corresponds to a gauge field theory with gauge group SUL(2) X
Uy (1). Matter fields are, in contrast, described by massless spin one-half fermions. The
group factor SUL(2) is referred to as (weak) isospin and the Uy (1) factor as the (weak)
hypercharge. The subscript L highlights the fact that only the left-handed components of
the fermions have non-trivial isospin, opposed to the right-handed components, which are
isospin singlets. The subscript Y denotes the weak hypercharge that is possessed by all
leptons and quarks (not counting possible right-handed neutrinos).

The last field in the model is the Higgs field which, as is now known[2] [3], is responsible
for the mechanism of spontaneous symmetry breaking (SSB) which provides the fermions
and the gauge bosons with mass. It is this field about which we will generally speak when
referring to vacuum because it is a scalar of the model and hence is allowed to have a non-
trivial potential without disrupting the condition of renormalizability. The SSB mechanism
as such requires just one such field as a SUL(2)-doublet (or isospin 1/2 representation),
although modern theories aiming to extend the standard model may include more such
fields (see Ref. [48] for a review).

The model consists of a Lagrangian density,

Lew = Lx.g + Lxr + Ly + Ly, (3.1.1)

which can be split into the four terms above: a kinetic term for the gauge fields, a kinetic
term for the fermions, the Higgs sector and an interactions part between the Higgs field
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and the fermions.

Fermions are split between leptons and quarks, the latter carrying also color corresponding
to the SU(3) symmetry or strong sector, which is not relevant for the present discussion.
Leptons consist of neutrinos and electrons from three families which differ only in their
mass, the label f will denote the field’s family. The fields themselves are generally denoted
by

Lf—<ULf> and  eg;,. (3.1.2)
er, ’

!

Similarly the quarks are denoted by

Qf:<uLf)’ up, and dp,. (3.1.3)

dr,

The gauge field components are commonly denoted by W and By, corresponding to
the SU(2)r and the Uy (1), respectively. This implies we will have in principle four real
gauge fields, three corresponding to the infinitesimal generators of SUL(2) and one for
the infinitesimal generator of Uy (1). We may make use of a slight abuse of notation and
denote their field strength tensors by using the same letter, however attaching two indices
since they are second-order tensors,

Wi, = 0,W) — 8,Wy + g™ WiWy (3.1.4)
B,uu = a,uBu - aVB/L (315)

where a = 1,2, 3 and we have chosen the generators of SUL(2) to be ¢;/2 with o; the Pauli
matrices, which leads to the structure constants appearing above, 2ie;j,01 = [04,0;]. We
can now write down the kinetic term for the gauge fields,

1 1
ﬁk.G = _ZWaﬂVWZV - ZBMVBHV (316)

and the kinetic terms of the fermions

3
Lir = Z Z Xpily, Xy, (3.1.7)

=1 XeF

where .# = {Qy, Ly, €Rs> URy de} are all the matter fields of the model and where the
covariant derivative, D, appears already contracted with the Gamma matrices, v*. It is
given by the general expression

/
g .o
Dx, =9"Dux, =" [(QL + 12YXfBu> ® Lgim Ry (X;) T lggaWﬁPL (3.1.8)

where the hypercharge, Y, as well as the isospin representation, R;(Xy), can depend on
the family but as it turns out, measurements show they remain the same across families,
we have used dim R;(Xy) to denote the dimension of the isospin representation and in-
cluded an identity matrix which is formally present. For that reason we have fixed the
representation for the field Xy to be an isospin 1/2 representation, provided the field is
left-handed, as indicated by the projector P = (1 —~°)/2 in the last term, meaning all
right-handed fields simply do not couple to the W,,.
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So far, we have described the gauge bosons and the fermions of the theory, but then the
Electroweak sector would consist only of massless particles if that were the full story, given
that no mass terms are allowed that respect the imposed symmetries. In order to give
them mass and for unitarity reasons, the model needs a scalar particle that can implement
the SSB mechanism. In its minimal version, the Higgs field is an SUL(2) doublet with
hypercharge 1/2, labeled by H with the following Lagrangian density:

Ly = (D, H)' D, H — Vipee(H'H) = (D, H) D, H + *H'H — \(H'H)?,  (3.1.9)

where
1., . Oaa H*
DHH = 6# + ilg BH X ﬂdimRI(H) + 1g?WM and H = HO (3110)

The specific form of the potential is chosen as to respect the gauge symmetries, be renor-
malizable and to present a U(1) degenerate minima. In order for the fermions of the theory
to acquire mass, they must also be coupled to the Higgs field, this is done via Yukawa
type interactions,

Lur =Y 7Yff,QfﬁuR,f - def,QfHdR} ~YfpLyHep, +h.c, (3.1.11)
LI

where H = i% H* and the Y’s are the coupling matrices which mix the families and are
a priori not diagonal. The Yukawa couplings form matrices of dimensions Ny X Ny that
are responsible for introducing flavor mixing, which we wont be discussing further in this
document.

For the sake of completeness, we summarize the charges of the different fields in Table
where the numbers shown specify then the representation, Ty, and the conserved charge
in the Tys = 03/2 direction for the SUf(2) part. Finally, the last line is assigned with
2 the electromagnetic charge operator and the stated convention, which can be obtained
after anomaly cancellation, as explained in most QFT and SM books [13], [17, 47].

Leptons Quarks Higgs

L R L R -

Field a
VLf €Lf 6Rf uLf de uRf de H

Generator

T sl o[ PE] o o] s

Tws 5 |-31] 0 5 1510 0 —1
Yx, =2(2-Tws) | -1 | -1 | -2 | 3 : 1] -2 1

Table 3.1: Assignment of charges for the fermions in the EW sector, where 2 re<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>